
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0198776A1

US 20090 198776A1

HOt (43) Pub. Date: Aug. 6, 2009

(54) COMPUTER ARCHITECTURE AND Apr. 21, 2005 (AU) 2005902O24
METHOD OF OPERATION FOR Apr. 21, 2005 (AU). ... 2005902O25
MULT-COMPUTER DISTRIBUTED Apr. 21, 2005 (AU) 2005902O26
PROCESSING WITH INITIALIZATION OF Apr. 21, 2005 (AU) 2005.902027
OBJECTS Apr. 22, 2005 (AU) PCT/AUO5/OO578

Apr. 22, 2005 (AU) PCT/AUO5/OO579
(75) Inventor: John Matthew Holt, Hornchurch Apr. 22, 2005 (AU) PCT/AUO5/OO580

(GB) Apr. 22, 2005 (AU) PCT/AUO5/O0581
Apr. 22, 2005 (AU) PCT/AUO5/OO582

Correspondence Address:
PERKINS COE LLP Publication Classification
P.O. BOX 1208
SEATTLE, WA 98111-1208 (US) (51) Int. Cl.

G06F 5/16 (2006.01)

(73) Assignee: WARATEK PTY LTD., Lindfield (52) U.S. Cl. .. 709/205
(AU)

(21) Appl. No.: 12/340,303 (57) ABSTRACT
The present invention discloses a modified computer archi

(22) Filed: Dec. 19, 2008 tecture which (50, 71, 72) enables an applications program
O O (50) to be run simultaneously on a plurality of computers

Related U.S. Application Data (M1, ... Mn). Shared memory at each computer is updated
(63) Continuation of application No. 1 1/259,744, filed on with amendments and/or overwrites so that all memory read

Oct. 25, 2005, now abandoned, which is a continua- requests are satisfied locally. During initial program loading
tion-in-part of application No. 11/111,781, filed on (75), or similar, instructions which result in memory being
Apr. 22, 2005, which is a continuation-in-part of appli- re-written or manipulated are identified (92). Additional
cation No. 10/830,042, filed on Apr. 23, 2004. instructions are inserted (103) to cause the equivalent

memory locations at all computers to be updated. In particu
(30) Foreign Application Priority Data lar, the initialisation of JAVA language classes and objects is

disclosed (162, 163) so all memory locations for all comput
Apr. 21, 2005 (AU) 2005.902023 ers are initialized in the same manner.

5O 5O 50

APPLICATION

MODIFIER

M1

APPLICATION

MODIFIER

M2 Me

)

5 1/2 5 1/3

APPLICATION

MODIFIER

53

Patent Application Publication Aug. 6, 2009 Sheet 1 of 15 US 2009/O198776A1

FIG. 1
PRIOR ART

12

13

GLOBAL MEMORY

FIG. 2
PRIOR ART

FIG. 3
PRIOR ART

Patent Application Publication Aug. 6, 2009 Sheet 2 of 15 US 2009/0198776 A1

DATABASE

um - alia - -

FIG. 4
PRIOR ART

APPLICATION APPLICATION APPLICATION

MODIFIER MODIFIER

M1

US 2009/O198776A1 Aug. 6, 2009 Sheet 3 of 15

©NIOWOTL:T94| 9
BWLI Nn!! CT31081)||1SIG (L –V/LV/C)] + ECJOO

09

Patent Application Publication

Patent Application Publication Aug. 6, 2009 Sheet 4 of 15 US 2009/0198776 A1

START LOADING PROCEDURE 90

CREATEA LIST OF ALL MEMORY LOCATIONS
(ie. CLASSES & OBJECT FIELDS IN THE

JAVALANGUAGE)

SEARCH THROUGH THE EXECUTABLE CODE TO
DETECT MWRITING TO ANY OF THE LISTED

MEMORY LOCATION(S)

INSERT THE "UPDATING PROPOGATION ROUTINE"
TO (i) PROPOGATE THE IDENTITY OF LISTED

MEMORY LOCATION(S) TO ALL OTHER MACHINES,
AND (ii) UPDATE ANY CHANGED VALUE OF

ANY LISTED MEMORY LOCATION TO ALL OTHER
MACHINES

93

CONTINUE LOADING PROCEDURE

F.G. 9
94

Patent Application Publication Aug. 6, 2009 Sheet 5 of 15 US 2009/0198776 A1

START LOADING PROCEDURE

CREATE A LIST OF ALL MEMORY LOCATIONS
(ie. CLASSES & OBJECT FIELDS IN THE

JAVA LANGUAGE)

9O

91

SEARCH THROUGH THE EXECUTABLE CODE TO
DETECT WRITING TO ANY OF THE LISTEO

MEMORY LOCATION(S)

92

INSERT THE "ALERT ROUTINE" TO REGUEST
THE THREAD(S) OF THE DRT TO

(i) PROPOGATE THE IDENTITY OF LISTED MEMORY
LOCATION(S) TO ALL OTHER MACHINES, AND

(ii) UPDATE ANY CHANGED VALUE OF ANY
LISTED MEMORY LOCATION TO ALL OTHER

MACHINES

CONTINUE LOADING PROCEDURE

F.G. 10
94

US 2009/0198776A1 Patent Application Publication

Patent Application Publication Aug. 6, 2009 Sheet 9 of 15 US 2009/0198776A1

OBJECT #2

RUN
OBJECT if TIME

CLASS 1 N

JAVA VIRTUAL MACHINE

DISTRIBUTED
50

71

5OX 72

F.G. 14
PRIOR ART

Patent Application Publication Aug. 6, 2009 Sheet 10 of 15 US 2009/0198776A1

161

START LOADING PROCEDURE

DETECT ALL INITIALIZATION ROUTINES
(ie. <initY & <clinita in JAVA)

162

163

INSERTAN "ENABLE/DISABLE" ROUTINE
TO MODIFYEACH DETECTED

INITIALIZATION ROUTINE

CONTINUE LOADING PROCEDURE

FIG. 16

164

Patent Application Publication Aug. 6, 2009 Sheet 11 of 15 US 2009/0198776A1

171

COMMENCE "ENABLE/OFSABLE" ROUTINE

RESOLVE A GLOBAL "NAME"FOR THE STRUCTURE
ASSET OR RESOURCE TO BE INITIALIZED

f72

DETERMINE THE INITIALIZATION STATUS OF
THE STRUCTURE, ASSET OR RESOURCE TO BE

INTIALIZED

174 173

175

IS
GLOBAL A BORT THE

"NAME"ALREADY YES ENTIRE
INITIALIZED INITIALIZATION
ELSE WHERE ROUTINE

2

NO

CONTINUE THE 176
INITIALIZATION

ROUTINE FIG. 17

Patent Application Publication Aug. 6, 2009 Sheet 12 of 15 US 2009/0198776A1

SEND AN ENGUIRY TO MACHINE X
TO ADVISE THE INITIALIZATION STATUS

OF THE STRUCTURE ASSET OR
RESOURCE TO BE INITIALIZED

AWA ITA REPLY FROM MACHINE X
AS TO REGUESTED INITIALIZATION STATUS

FIG. 18

Patent Application Publication Aug. 6, 2009 Sheet 13 of 15 US 2009/0198776A1

RECEIVE AN INITIALIZATION STATUS REO UEST

191

CONSULTA SHARED TABLE OF INITIALIZATION
STATUS STATES TO DETERMINE IF STRUCTURE,
ASSET OR RESOURCE WITH GLOBAL "NAME"

IS AREADY INITIALIZED

192

SEND A RESPONSE
IS TO REPLY TO

AL READ Y REOUEST & ADVISE
INTIALIZED GLOBAL. "NAME"

2 IS PREVIOUSLY
INITIALIZED

194

UPDATE ENTRY FOR
GLOBAL "NAME'. IN
THE SHARED TABLE

AS NOW
INITIALIZED

195

196

SEND A RESPONSE TO
REPLY TO REOUEST
& ADVISE GLOBAL.

"NAME" NOTAL READY
INITIALIZED F.G. 19

Patent Application Publication Aug. 6, 2009 Sheet 14 of 15 US 2009/0198776A1

STARTAPPLICATION PROGRAM LOADING PROCEDURE
2O2

DETECT ALL <Clinit)

MODIFYEACH <Clinited ROUTINE 2O4

CONTINUEAPPLICATION PROGRAM LOADING PROCEDURE

FIG. 20

-201

STARTAPPLICATION PROGRAM LOADING PROCEDURE

DETECT ALL <inita ROUTINES

MODIFYEACH Cirit ROUTINE

CONTINUE APPLICATION PROGRAM LOADING PROCEDURE

212

FIG 21

Patent Application Publication Aug. 6, 2009 Sheet 15 of 15 US 2009/0198776A1

A / / / / / /
A 77 A.

US 2009/O 198776 A1

COMPUTER ARCHITECTURE AND
METHOD OF OPERATION FOR

MULT-COMPUTER DISTRIBUTED
PROCESSING WITH INITIALIZATION OF

OBJECTS

PRIORITY

0001. This application is a continuation application and
claims the benefit of priority of U.S. patent application Ser.
No. 1 1/259,744, filed Oct. 25, 2005, entitled “COMPUTER
ARCHITECTURE AND METHOD OF OPERATION FOR
MULTI-COMPUTER DISTRIBUTED PROCESSING
WITH INITIALIZATION OF OBJECTS, which is hereby
incorporated by this reference.

RELATED APPLICATIONS

0002 This application claims the benefit of priority under
ore or more of 35 U.S.C. 119 and/or 35 U.S.C. 120 to the
following Australian Patent Applications, U.S. Utility patent
applications and PCT International Patent Applications, each
of which is also a related application and each is incorporated
herein by reference in its entirety:
0003 U.S. patent application Ser. No. 1 1/259,634 filed 25
Oct. 2005 entitled “Computer Architecture And Method Of
Operation For Multi-Computer Distributed Processing With
Replicated Memory':
0004 U.S. patent application Ser. No. 1 1/259,744 filed 25
Oct. 2005 entitled “Computer Architecture And Method Of
Operation For Multi-Computer Distributed Processing With
Initialization Of Objects’;
0005 U.S. patent application Ser. No. 1 1/259,762 filed 25
Oct. 2005 entitled “Computer Architecture And Method Of
Operation For Multi-Computer Distributed Processing With
Finalization Of Objects’;
0006 U.S. patent application Ser. No. 1 1/259,761 filed 25
Oct. 2005 entitled “Computer Architecture And Method Of
Operation For Multi-Computer Distributed Processing With
Synchronization':
0007 U.S. patent application Ser. No. 1 1/259,895 filed 25
Oct. 2005 entitled “Computer Architecture And Method Of
Operation For Multi-Computer Distributed Processing And
Coordinated Memory And Asset Handling';
0008 Australian Provisional Patent Application No. 2005
902 023 filed 21 Apr. 2005 entitled “Multiple Computer
Architecture with Replicated Memory Fields':
0009 Australian Provisional Patent Application No. 2005
902 024 filed 21 Apr. 2005 entitled “Modified Computer
Architecture with Initialization of Objects’; Australian Pro
visional Patent Application No. 2005 902 025 filed 21 Apr.
2005 entitled “Modified Computer Architecture with Final
ization of Objects”:
0010 Australian Provisional Patent Application No. 2005
902 026 filed 21 Apr. 2005 entitled “Modified Computer
Architecture with Synchronization of Objects’;
0011 Australian Provisional Patent Application No. 2004
902 027 filed 21 Apr. 2005 entitled “Modified Computer
Architecture with Coordinated Objects”:
0012 U.S. patent application Ser. No. 1 1/111,757 filed 22
Apr. 2005 entitled “Multiple Computer Architecture with
Replicated Memory Fields':
0013 U.S. patent application Ser. No. 1 1/111,781 filed 22
Apr. 2005 entitled “Modified Computer Architecture with
Initialization of Objects”:

Aug. 6, 2009

(0014 U.S. patent application Ser. No. 1 1/111,778 filed 22
Apr. 2005 entitled “Modified Computer Architecture with
Finalization of Objects’;
(0015 U.S. patent application Ser. No. 1 1/111,779 filed 22
Apr. 2005 entitled “Modified Computer Architecture with
Synchronization of Objects’;
(0016 U.S. patent application Ser. No. 1 1/111.946 filed 22
Apr. 2005 entitled “Modified Computer Architecture with
Coordinated Objects’;
0017 PCT International Application No. PCT/AU05/000/
5B2 filed 22 Apr. 2005 entitled “Multiple Computer Archi
tecture with Replicated Memory Fields':
(0018 PCT International Application No. PCT/AU05/000/
578 filed 22 Apr. 2005 entitled “Modified Computer Archi
tecture with Initialization of Objects”:
(0019 PCT International Application No. PCT/AU05/000/
581 filed 22 Apr. 2005 entitled “Modified Computer Archi
tecture with Finalization of Objects’;
(0020 PCT International Application No. PCT/AU05/000/
579 filed 22 Apr. 2005 entitled “Modified Computer Archi
tecture with Synchronization of Objects’; and
(0021 PCT International Application No. PCT/AU05/000/
580 filed 22 Apr. 2005 entitled “Modified Computer Archi
tecture with Coordinated Objects’.
0022. A further related patent application that is hereby
incorporated by reference is U.S. patent application Ser. No.
10/830,042 filed 23 Apr. 2004 entitled “Modified Computer
Architecture'.

FIELD OF THE INVENTION

0023 The present invention relates to computers and other
computing machines and information appliances, in particu
lar, to a modified computer architecture and program struc
ture which enables the operation of an application program
concurrently or simultaneously on a plurality of computers
interconnected via a communications link using a distributed
runtime and enables improved performance to be achieved.

BACKGROUND OF THE INVENTION

0024. Ever since the advent of computers, and computing,
software for computers has been written to be operated upon
a single machine. As indicated in FIG. 1, that single prior art
machine 1 is made up from a central processing unit, or CPU,
2 which is connected to a memory 3 via a bus 4. Also con
nected to the bus 4 are various other functional units of the
single machine 1 such as a screen 5, keyboard 6 and mouse 7.
0025. A fundamental limit to the performance of the
machine 1 is that the data to be manipulated by the CPU 2, and
the results of those manipulations, must be moved by the bus
4. The bus 4 suffers from a number of problems including so
called bus "queues’’ formed by units wishing to gain an access
to the bus, contention problems, and the like. These problems
can, to Some extent, be alleviated by various stratagems
including cache memory, however, Such stratagems invari
ably increase the administrative overhead of the machine 1.
0026 Naturally, over the years various attempts have been
made to increase machine performance. One approach is to
use symmetric multi-processors. This prior art approach has
been used in so called 'Super computers and is schematically
indicated in FIG. 2. Here a plurality of CPU's 12 are con
nected to global memory 13. Again, a bottleneck arises in the
communications between the CPU's 12 and the memory 13.
This process has been termed “Single System Image'. There

US 2009/O 198776 A1

is only one application and one whole copy of the memory for
the application which is distributed over the global memory.
The single application can read from and write to, (i.e. share)
any memory location completely transparently.
0027. Where there are a number of such machines inter
connected via a network, this is achieved by taking the single
application written for a single machine and partitioning the
required memory resources into parts. These parts are then
distributed across a number of computers to form the global
memory 13 accessible by all CPU's 12. This procedure relies
on masking, or hiding, the memory partition from the single
running application program. The performance degrades
when one CPU on one machine must access (via a network) a
memory location physically located in a different machine.
0028. Although super computers have been technically
Successful in achieving high computational rates, they are not
commercially Successful in that their inherent complexity
makes them extremely expensive not only to manufacture but
to administer. In particular, the single system image concept
has never been able to scale over “commodity” (or mass
produced) computers and networks. In particular, the Single
System Image concept has only found practical application
on very fast (and hence very expensive) computers intercon
nected by very fast (and similarly expensive) networks.
0029. A further possibility of increased computer power
through the use of a plural number of machines arises from
the prior art concept of distributed computing which is sche
matically illustrated in FIG. 3. In this known arrangement, a
single application program (Ap) is partitioned by its author
(or another programmer who has become familiar with the
application program) into various discrete tasks So as to run
upon, say, three machines in which case n in FIG. 3 is the
integer 3. The intention here is that each of the machines M1
... M3 runs a different third of the entire application and the
intention is that the loads applied to the various machines be
approximately equal. The machines communicate via a net
work 14 which can be provided in various forms such as a
communications link, the internet, intranets, local area net
works, and the like. Typically the speed of operation of such
networks 14 is an order of magnitude slower than the speed of
operation of the bus 4 in each of the individual machines M1,
M2, ..., Mn.
0030) Distributed computing suffers from a number of
disadvantages. Firstly, it is a difficult job to partition the
application and this must be done manually. Secondly, com
municating data, partial results, results and the like over the
network 14 is an administrative overhead. Thirdly, the need
for partitioning makes it extremely difficult to scale upwardly
by utilising more machines since the application having been
partitioned into, say three, does not run well upon four
machines. Fourthly, in the event that one of the machines
should become disabled, the overall performance of the entire
system is Substantially degraded.
0031. A further prior art arrangement is known as network
computing via “clusters' as is schematically illustrated in
FIG. 4. In this approach, the entire application is loaded onto
each of the machines M1, M2, . . . , Mn. Each machine
communicates with a common database but does not com
municate directly with the other machines. Although each
machine runs the same application, each machine is doing a
different job” and uses only its own memory. This is some
what analogous to a number of windows each of which sell
train tickets to the public. This approach does operate, is

Aug. 6, 2009

Scalable and mainly suffers from the disadvantage that it is
difficult to administer the network.
0032. In computer languages such as for example JAVA
and MICROSOFT.NET there are two major types of con
structs with which programmers deal. In the JAVA language
these are known as objects and classes. More generally they
may be referred to as assets. Every time an object (or other
asset) is created there is an initialization routine runknown as
an object initialization (e.g., "-initd.) routine. Similarly,
every time a class is loaded there is a class initialization
routine known as “-clinite”. Other languages use different
terms but utilize a similar concept. In either case, however,
there is no equivalent “clean up' or deletion routine to delete
an object or class (or other asset) once it is no longer required.
Instead, this "clean up” happens unobtrusively in a back
ground mode.
0033. Furthermore, in any computer environment it is nec
essary to acquire and release a lock to enable the use of Such
objects, classes, assets, resources or structures to avoid dif
ferent parts of the application program from attempting to use
the same objects, classes, assets, resources or structures at the
one time. In the JAVA environment this is known as Synchro
nization. Synchronization more generally refers to the exclu
sive use of an object, class, resource, structure, or other asset
to avoid contention between and among computers or
machines. This is achieved in JAVA by the “monitor enter
and “monitor exit' instructions or routines. Other languages
use different terms but utilize a similar concept.
0034. Unfortunately, conventional computing systems,
architectures, and operating schemes do not provide for com
puting environments and methods in which an application
program can operate simultaneously on an arbitrary plurality
of computers where the environment and operating scheme
ensure that the abovementioned memory management, ini
tialization, clean up and synchronization procedures operate
in a consistent and coordinated fashion across all the comput
ing machines.

SUMMARY

0035. The present invention discloses a computing envi
ronment in which an application program operates simulta
neously on a plurality of computers. In such an environment
it is advantageous to ensure that the abovementioned asset
initialization, clean-up and synchronization procedures oper
ate in a consistent and coordinated fashion across all the
machines.
0036. The present invention further discloses a computing
environment in which an application program operates simul
taneously on a plurality of computers. In such an environment
it is advantageous to ensure that the abovementioned initial
ization routines operate in a consistent fashion across all the
machines. It is this goal of consistent initialization that is the
genesis of the present invention.
0037. In accordance with a first aspect of the present
invention there is disclosed a multiple computer system hav
ing at least one application program each written to operate on
only a single computer but running simultaneously on a plu
rality of computers interconnected by a communications net
work, wherein different portions of said application program
(s) execute substantially simultaneously on different ones of
said computers and for each said portion a like plurality of
Substantially identical objects are created, each in the corre
sponding computer and each having a Substantially identical

US 2009/O 198776 A1

name, and wherein the initial contents of each of said identi
cally named objects is substantially the same.
0038. In accordance with a second aspect of the present
invention there is disclosed a plurality of computers intercon
nected via a communications link and simultaneously oper
ating at least one application program each written to opera
tion on only a single computer wherein each said computer
substantially simultaneously executes a different portion of
said application program(s), each said computer in operating
its application program portion creates objects only in local
memory physically located in each said computer, the con
tents of the local memory utilized by each said computer are
fundamentally similar but not, at each instant, identical, and
every one of said computers has distribution update means to
distribute to all other said computers objects created by said
one computer.
0039. In accordance with a third aspect of the present
invention there is disclosed a method of running simulta
neously on a plurality of computers at least one application
program each written to operate on only a single computer,
said computers being interconnected by means of a commu
nications network, said method comprising the steps of: (i)
executing different portions of said application program(s) on
different ones of said computers and for each said portion
creating a like plurality of substantially identical objects each
in the corresponding computer and each having a Substan
tially identical name, and (ii) creating the initial contents of
each of said identically named objects Substantially the same.
0040. In accordance with a fourth aspect of the present
invention there is disclosed a method of compiling or modi
fying an application program written to operate on only a
single computer to have different portions thereof to execute
substantially simultaneously on different ones of a plurality
of computers interconnected via a communications link, said
method comprising the steps of: (i) detecting instructions
which create objects utilizing one of said computers, (ii)
activating an initialization routine following each said
detected object creation instruction, said initialization routine
forwarding each created object to the remainder of said com
puters.
0041. In accordance with a fifth aspect of the present
invention there is disclosed a multiple thread processing com
puter operation in which individual threads of a single appli
cation program written to operate on only a single computer
are simultaneously being processed each on a different cor
responding one of a plurality of computers interconnected via
a communications link, the improvement comprising com
municating objects created in local memory physically asso
ciated with the computer processing each thread to the local
memory of each other said computer via said communica
tions link.
0042. In accordance with a sixth aspect of the present
invention there is disclosed a method of ensuring consistent
initialization of an application program written to operate on
only a single computer but different portions of which are to
be executed simultaneously each on a different one of a plu
rality of computers interconnected via a communications net
work, said method comprising the steps of: (i) scrutinizing or
analysing said application program at, or prior to, or after
loading to detect each program step defining an initialization
routine, and (ii) modifying said initialization routine to ensure
consistent operation of all said computers.
0043. In accordance with a twenty-sixth aspect of the
present invention there is disclosed a computer program prod

Aug. 6, 2009

uct comprising a set of program instructions stored in a stor
age medium and operable to permit a plurality of computers
to carry out the abovementioned methods.
0044. In accordance with a twenty-seventh aspect of the
invention there is disclosed a distributed run time and distrib
uted run time system adapted to enable communications
between a plurality of computers, computing machines, or
information appliances.
0045. In accordance with a twenty-eighth aspect of the
invention there is disclosed a modifier, modifier means, and
modifier routine for modifying an application program writ
ten to execute on a single computer or computing machine at
a time to execute simultaneously on a plurality of networked
computers or computing machines, distributed run time and
distributed run time system adapted to enable communica
tions between a plurality of computers, computing machines,
or information appliances.
0046. In accordance with a twenty-ninth aspect of the
present invention there is disclosed a computer program and
computer program product written to operate on only a single
computer but product comprising a set of program instruc
tions stored in a storage medium and operable to permit a
plurality of computers to carry out the abovementioned pro
cedures, routines, and methods.

BRIEF DESCRIPTION OF THE DRAWINGS

0047 Embodiments of the present invention are now
described with reference to the drawings in which:
0048 FIG. 1 is a schematic view of the internal architec
ture of a conventional computer;
0049 FIG. 2 is a schematic illustration showing the inter
nal architecture of known symmetric multiple processors;
0050 FIG. 3 is a schematic representation of prior art
distributed computing;
0051 FIG. 4 is a schematic representation of a prior art
network computing using clusters;
0.052 FIG. 5 is a schematic block diagram of a plurality of
machines operating the same application program in accor
dance with a first embodiment of the present invention;
0053 FIG. 6 is a schematic illustration of a prior art com
puter arranged to operate JAVA code and thereby constitute a
JAVA virtual machine;
0054 FIG. 7 is a drawing similar to FIG. 6 but illustrating
the initial loading of code in accordance with the preferred
embodiment;
0055 FIG. 8 is a drawing similar to FIG. 5 but illustrating
the interconnection of a plurality of computers each operating
JAVA code in the manner illustrated in FIG. 7:
0056 FIG. 9 is a flow chart of the procedure followed
during loading of the same application on each machine in the
network;
0057 FIG. 10 is a flow chart showing a modified proce
dure similar to that of FIG. 9;
0.058 FIG. 11 is a schematic representation of multiple
thread processing carried out on the machines of FIG. 8
utilizing a first embodiment of memory updating:
0059 FIG. 12 is a schematic representation similar to FIG.
11 but illustrating an alternative embodiment;
0060 FIG. 13 illustrates multi-thread memory updating
for the computers of FIG. 8:
0061 FIG. 14 is a schematic illustration of a prior art
computer arranged to operate in JAVA code and thereby con
stitute a JAVA virtual machine;

US 2009/O 198776 A1

0062 FIG. 15 is a schematic representation of n machines
running the application program and serviced by an addi
tional server machine X;
0063 FIG. 16 is a flow chart of illustrating the modifica
tion of initialization routines;
0064 FIG. 17 is a flow chart illustrating the continuation
or abortion of initialization routines;
0065 FIG. 18 is a flow chart illustrating the enquiry sent to
the server machine X;
0066 FIG. 19 is a flow chart of the response of the server
machine X to the request of FIG. 18;
0067 FIG. 20 is a flowchart illustrating a modified initial
ization routine for the class initialization <clinitd instruction:
0068 FIG. 21 is a flowchart illustrating a modified initial
ization routine for the object initialization <inite instruction;
0069 FIG. 22 is a schematic representation of two laptop
computers interconnected to simultaneously run a plurality of
applications, with both applications running on a single com
puter;
0070 FIG. 23 is a view similar to FIG.22 but showing the
FIG. 22 apparatus with one application operating on each
computer, and
(0071 FIG. 24 is a view similar to FIGS. 22 and 23 but
showing the FIG. 22 apparatus with both applications oper
ating simultaneously on both computers.
0072 The specification includes Annexures A and B
which provide actual program fragments which implement
various aspects of the described embodiments. Annexure A
relates to fields and Annexure B relates to initialization.

REFERENCE TO ANNEXES

0073. Although the specification provides a complete and
detailed description of the several embodiments of the inven
tion Such that the invention may be understood and imple
mented without reference to other materials, the specification
does includes Annexures A and B which provide exemplary
actual program or code fragments which implement various
aspects of the described embodiments. Although aspects of
the invention are described throughout the specification
including the Annexes, drawings, and claims, it may be appre
ciated that Annexure A relates primarily to fields, and Annex
ure B relates primarily to initialization.
0074 More particularly, the accompanying Annexures are
provided in which:
0075 Annexures A1-A10 illustrate exemplary code to
illustrate embodiments of the invention in relation to fields.
0076 Annexure B1 is an exemplary typical code fragment
from an unmodified class initialization <clinit> instruction,
Annexure B2 is an equivalent in respect of a modified class
initialization <clinited instruction. Annexure B3 is a typical
code fragment from an unmodified object initialization <init>
instruction. Annexure B4 is an equivalent in respect of a
modified object initialization <inited instruction. In addition,
Annexure B5 is an alternative to the code of Annexure B2 for
an unmodified class initialization instruction, and Annexure
B6 is an alternative to the code of Annexure B4 for a modified
object initialization <init> instruction. Furthermore, Annex
ure B7 is exemplary computer program Source-code of Init
Client, which queries an “initialization server for the initial
ization status of the relevant class or object. Annexure B8 is
the computer program source-code of InitServer, which
receives an initialization status query by InitClient and in
response returns the corresponding status. Similarly, Annex

Aug. 6, 2009

ure B9 is the computer program source-code of the example
application used in the before/after examples of Annexure
B1-B6.
0077. It will be appreciated in light of the description
provided here that the categorization of the Annexures as well
as the use of other headings and Subheadings in this descrip
tion is intended as an aid to the reader and is not to be used to
limit the scope of the invention in any way.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

0078. The present invention discloses a modified com
puter architecture which enables an applications program to
be run simultaneously on a plurality of computers in a manner
that overcomes the limitations of the aforedescribed conven
tional architectures, systems, methods, and computer pro
grams.
0079. In one aspect, shared memory at each computer may
be updated with amendments and/or overwrites so that all
memory read requests are satisfied locally. Before, during or
after program loading, but before execution of relevant por
tions of the program code are executed, or similar, instruc
tions which result in memory being re-written or manipulated
are identified. Additional instructions are inserted into the
program code (or other modification made) to cause the
equivalent memory locations at all computers to be updated.
While the invention is not limited to JAVA language or virtual
machines, exemplary embodiments are described relative to
the JAVA language and standards.
0080. In another aspect, the initialization of JAVA lan
guage classes and objects (or other assets) are provided for So
all memory locations for all computers are initialized in the
same manner. In another aspect, the finalization of JAVA
language classes and objects is also provide so finalization
only occurs when the last class or object present on all
machines is no longer required. In still another aspect, Syn
chronization is provided such that instructions which result in
the application program acquiring (or releasing) a lock on a
particular asset (synchronization) are identified. Additional
instructions are inserted (or other code modifications per
formed) to result in a modified synchronization routine with
which all computers are updated.
I0081. As will become more apparent in light of the further
description provided herein, one of the features of the inven
tion is to make it appear that one common application pro
gram or application code and its executable version (with
likely modification) is simultaneously or concurrently
executing across a plurality of computers or machines M1, ..
., Mn. As will be described in considerable detail hereinafter,
the instant invention achieves this by running the same appli
cation program (for example, Microsoft Word or Adobe Pho
toshop CS2) on each machine, but modifying the executable
code of that application program on each machine as neces
sary Such that each executing instance (copy) on each
machine coordinates its local operations on any particular
machine with the operations of the respective instances on the
other machines such that they all function together in a con
sistent, coherent and coordinated manner and give the appear
ance of being one global instance of the application (i.e., a
"meta-application').
I0082 In accordance with embodiments of the present
invention a single application code 50 (sometimes more
informally referred to as the application or the application
program) can be operated simultaneously on a number of

US 2009/O 198776 A1

machines M1, M2 ... Mn interconnected via a communica
tions network or other communications link or path 53. The
communications network or path may be any electronic sig
naling, data, or digital communications network or path and
may advantageously be a relatively slow speed communica
tions path, Such as a network connection over the Internet or
any common networking configurations known or available
as of the date or this applications, and extensions and
improvements, thereto.
0083. By way of example but not limitation, one applica
tion code or program 50 may be a single application on the
machines, such as Microsoft Word, as opposed to different
applications on each machine, Such as Microsoft Word on
machine M1, and Microsoft PowerPoint on machine M2, and
Netscape Navigator on machine M3 and so forth. Therefore
the terminology "one application code or program and a
“common application code or program is used to try and
capture this situation where all machines M1, Mn are
operating or executing the same program or code and not
different (and unrelated) programs. In other words copies or
replicas of same or Substantially the same application code is
loaded onto each of the interoperating and connected
machines or computers. As the characteristics of each
machine or computer may differ, the application code 50 may
be modified before loading, during the loading process, and
with some restrictions after the loading process to provide a
customization or modification of the code on each machine.
Some dissimilarity between the programs may be permitted
so long as the other requirements for interoperability, consis
tency, and coherency as described herein can be maintain. As
it will become apparent hereafter, each of the machines M1,
M2 . . . Mn operates with the same application code 50 on
each machine M1, M2 ... Min and thus all of the machines
M1, M2, Mn have the same or substantially the same
application code 50 usually with a modification that may be
machine specific.
0084. Similarly, each of the machines M1, M2, ..., Mn
operates with the same (or Substantially the same or similar)
modifier 51 (in some embodiments implemented as a distrib
uted run time or DRT 71) on each machine M1, M2,..., Mn
and thus all of the machines M1, M2... Mn have the same (or
substantially the same or similar) modifier 51 for each modi
fication required. Different modification for example may be
required for memory management and replication, initializa
tion, finalization, and/or synchronization (though not all of
these modification types may be required for all embodi
ments).
0085. In addition, during the loading of, or at any time
preceding the execution of the application code 50 (or rel
evant portion thereof) on each machine M1, M2... Mn, each
application code 50 has been modified by the corresponding
modifier 51 according to the same rules (or substantially the
same rules since minor optimizing changes are permitted
within each modifier 51/1, 51/2, ... , 51/n).
I0086. With reference to any initialisation modifier that
may be present, such initialisation modifier 51-I or DRT 71-I
or other code modifying means component of the overall
modifier or distributed run time means is responsible for
modifying the application code 50 so that it may execute
initialisation routines or other initialization operations. Such
as for example class and object initialization methods or
routines in the JAVA language and virtual machine environ
ment, in a coordinated, coherent, and consistent manner
across the plurality of individual machines M1, M2... Mn

Aug. 6, 2009

I0087. These structures and procedures when applied in
combination when required, maintain a computing environ
ment where memory locations, address ranges, objects,
classes, assets, resources, or any other procedural or struc
tural aspect of a computer or computing environment are
where required created, maintained, operated, and deacti
vated or deleted in a coordinated, coherent, and consistent
manner across the plurality of individual machines M1, M2.
. . Mn.

I0088 Attention is now directed to the particulars of sev
eral aspects of the invention that may be utilised alone or in
any combination.
0089. In connection with FIG. 5, in accordance with a
preferred embodiment of the present invention a single appli
cation code 50 (sometimes more informally referred to as the
application or the application program) can be operated
simultaneously on a number of machines M1, M2 . . . Mn
interconnected via a communications network or other com
munications link or path 53. By way of example but not
limitation, one application code or program 50 would be a
single common application program on the machines, such as
Microsoft Word, as opposed to different applications on each
machine, such as Microsoft Word on machine M1, and
Microsoft PowerPoint on machine M2, and Netscape Navi
gator on machine M3 and so forth. Therefore the terminology
'one', 'single', and “common application code or program
is used to try and capture this situation where all machines
M1,..., Mn are operating or executing the same program or
code and not different (and unrelated) programs. In other
words copies or replicas of same or Substantially the same
application code is loaded onto each of the interoperating and
connected machines or computers. As the characteristics of
each machine or computer may differ, the application code 50
may be modified before loading, during the loading process,
or after the loading process to provide a customization or
modification of the code on each machine. Some dissimilarity
between the programs may be permitted so long as the other
requirements for interoperability, consistency, and coherency
as described herein can be maintain. As it will become appar
ent hereafter, each of the machines M1, M2 ... Min operates
with the same application code 50 on each machine M1, M2
... Mnand thus all of the machines M1, M2,..., Minhave the
same or substantially the same application code 50 usually
with a modification that may be machine specific.
(0090 Similarly, each of the machines M1, M2,..., Mn
operates with the same (or Substantially the same or similar)
modifier 51 on each machine M1, M2..., Mn and thus all of
the machines M1, M2... Mn have the same (or substantially
the same or similar) modifier 51 with the modifier of machine
M1 being designated 51/1 and the modifier of machine M2
being designated 51/2, etc. In addition, before or during the
loading of, or preceding the execution of, or even after execu
tion has commenced, the application code 50 on each
machine M1, M2 . . . Mn is modified by the corresponding
modifier 51 according to the same rules (or substantially the
same rules since minor optimizing changes are permitted
within each modifier 51/1, 51/2, ... , 51/n).
0091. As will become more apparent in light of the further
description provided herein, one of the features of the inven
tion is to make it appear that one application program instance
of application code 50 is executing simultaneously across all
of the plurality of machines M1, M2. . . . , Mn. As will be
described in considerable detail hereinafter, the instant inven
tion achieves this by running the same application program

US 2009/O 198776 A1

code (for example, Microsoft Word or Adobe Photoshop
CS2) on each machine, but modifying the executable code of
that application program on each machine Such that each
executing occurrence (or local instance) on each one of the
machines M1 ... Mn coordinates its local operations with the
operations of the respective occurrences on each one of the
other machines such that each occurrence on each one of the
plurality of machines function together in a consistent, coher
ent and coordinated manner so as to give the appearance of
being one global instance (or occurrence) of the application
program and program code (i.e., a “meta-application').
0092. As a consequence of the above described arrange
ment, if each of the machines M1, M2, ..., Minhas, say, an
internal memory capability of 10 MB, then the total memory
available to each application code 50 is not necessarily, as one
might expect the number of machines (n) times 10 MB, or
alternatively the additive combination of the internal memory
capability of all n machines, but rather or still may only be 10
MB. In the situation where the internal memory capacities of
the machines are different, which is permissible, then in the
case where the internal memory in one machine is Smaller
than the internal memory capability of at least one other of the
machines, then the size of the Smallest memory of any of the
machines may be used as the maximum memory capacity of
the machines when such memory (or a portion thereof) is to
be treated as a common memory (i.e. similar equivalent
memory on each of the machines M1 ... Mn) or otherwise
used to execute the common application code.
0093. However, even though the manner that the internal
memory of each machine is treated may initially appear to be
a possible constraint on performance, how this results in
improved operation and performance will become apparent
hereafter. Naturally, each machine M1, M2 . . . Mn has an
private (i.e. non-common) internal memory capability. The
private internal memory capability of the machines M1, M2,
..., Mn are normally approximately equal but need not be. It
may also be advantageous to select the amounts of internal
memory in each machine to achieve a desired performance
level in each machine and across a constellation or network of
connected or coupled plurality of machines, computers, or
information appliances M1, M2,..., Mn. Having described
these internal and common memory considerations, it will be
apparent in light of the description provided herein that the
amount of memory that can be common between machines is
not a limitation of the invention.

0094. It is known from the prior art to operate a single
computer or machine (produced by one of various manufac
turers and having an operating system operating in one of
various different languages) in a particular language of the
application, by creating a virtual machine as Schematically
illustrated in FIG. 6. The code and data and virtual machine
configuration or arrangement of FIG. 6 takes the form of the
application code 50 written in the Java language and execut
ing within a Java Virtual Machine 61. Thus, where the
intended language of the application is the language JAVA, a
JAVA virtual machine is used which is able to operate code in
JAVA irrespective of the machine manufacturer and internal
details of the machine. For further details see "The JAVA
Virtual Machine Specification”2" Edition by T. Lindholm &
F. Yellin of Sun Microsystems Inc. of the USA, which is
incorporated by reference herein.
0095. This conventional art arrangement of FIG. 6 is
modified in accordance with embodiments of the present
invention by the provision of an additional facility which is

Aug. 6, 2009

conveniently termed “distributed run time' or “distributed
run time system” DRT 71 and as seen in FIG. 7.
(0096. In FIG. 7, the application code 50 is loaded onto the
Java Virtual Machine 72 in cooperation with the distributed
runtime system 71, through the loading procedure indicated
by arrow 75. As used herein the terms distributed runtime and
the distributed run time system are essentially synonymous,
and by means of illustration but not limitation are generally
understood to include library code and processes which Sup
port Software written in a particular language running on a
particular platform. Additionally, a distributed runtime sys
tem may also include library code and processes which Sup
port Software written in a particular language running within
a particular distributed computing environment. The runtime
system typically deals with the details of the interface
between the program and the operation system such as system
calls, program start-up and termination, and memory man
agement. For purposes of background, a conventional Dis
tributed Computing Environment (DCE) that does not pro
vide the capabilities of the inventive distributed run time or
distributed run time system 71 required in the invention is
available from the Open Software Foundation. This Distrib
uted Computing Environment (DCE) performs a form of
computer-to-computer communication for Software running
on the machines, but among its many limitations, it is notable
to implement the modification or communication operations
of this invention. Among its functions and operations, the
inventive DRT 71 coordinates the particular communications
between the plurality of machines M1, M2,..., Mn. More
over, the inventive distributed runtime 71 comes into opera
tion during the loading procedure indicated by arrow 75 of the
JAVA application 50 on each JAVA virtual machine 72 of
machines JVMH1, JVMi2, . . . JVMin. The sequence of
operations during loading will be described hereafter in rela
tion to FIG. 9. It will be appreciated in light of the description
provided herein that although many examples and descrip
tions are provided relative to the JAVA language and JAVA
virtual machines so that the reader may get the benefit of
specific examples, the invention is not restricted to either the
JAVA language or JAVA virtual machines, or to any other
language, virtual machine, machine, or operating environ
ment.

0097 FIG. 8 shows in modified form the arrangement of
FIG. 5 utilising JAVA virtual machines, each as illustrated in
FIG. 7. It will be apparent that again the same application
code 50 is loaded onto each machine M1, M2 . . . Mn.
However, the communications between each machine M1,
M2,..., Mn, and indicated by arrows 83, although physically
routed through the machine hardware, are advantageously
controlled by the individual DRT's 71/1... 71/n within each
machine. Thus, in practice this may be conceptionalised as
the DRT's 71/1,..., 71/n communicating with each other via
the network or other communications link 73 rather than the
machines M1, M2, Mn communicating directly with
themselves or each other. Actually, the invention contem
plates and included either this direct communication between
machines M1, M2,..., Minor DRTs 71/1, 71/2, ..., 71/n or
a combination of such communications. The inventive DRT
71 provides communication that is transport, protocol, and
link independent.
0098. It will be appreciated in light of the description
provided herein that there are alternative implementations of
the modifier 51 and the distributed run time 71. For example,
the modifier 51 may be implemented as a component of or

US 2009/O 198776 A1

within the distributed run time 71, and therefore the DRT 71
may implement the functions and operations of the modifier
51. Alternatively, the function and operation of the modifier
51 may be implemented outside of the structure, software,
firmware, or other means used to implement the DRT 71. In
one embodiment, the modifier 51 and DRT 71 are imple
mented or written in a single piece of computer program code
that provides the functions of the DRT and modifier. The
modifier function and structure therefore maybe subsumed
into the DRT and considered to be an optional component.
Independent of how implemented, the modifier function and
structure is responsible for modifying the executable code of
the application code program, and the distributed run time
function and structure is responsible for implementing com
munications between and among the computers or machines.
The communications functionality in one embodiment is
implemented via an intermediary protocol layer within the
computer program code of the DRT on each machine. The
DRT may for example implement a communications stack in
the JAVA language and use the Transmission Control Proto
col/Internet Protocol (TCP/IP) to provide for communica
tions or talking between the machines. Exactly how these
functions or operations are implemented or divided between
structural and/or procedural elements, or between computer
program code or data structures within the invention are less
important than that they are provided.
0099. However, in the arrangement illustrated in FIG. 8,
(and also in FIGS. 31-32), a plurality of individual computers
or machines M1, M2, ... Mn are provided, each of which are
interconnected via a communications network 53 or other
communications link and each of which individual computers
or machines provided with a modifier 51 (See in FIG. 5) and
realised by or in for example the distributed run time (DRT)
71 (See FIG. 8) and loaded with a common application code
50. The term common application program is to be under
stood to mean an application program or application program
code written to operate on a single machine, and loaded
and/or executed in whole or in part on each one of the plurality
of computers or machines M1, M2 ... Mn, or optionally on
each one of some subset of the plurality of computers or
machines M1, M2... Mn. Put somewhat differently, there is
a common application program represented in application
code 50, and this single copy or perhaps a plurality of iden
tical copies are modified to generate a modified copy or
version of the application program or program code, each
copy or instance prepared for execution on the plurality of
machines. At the point after they are modified they are com
mon in the sense that they perform similar operations and
operate consistently and coherently with each other. It will be
appreciated that a plurality of computers, machines, informa
tion appliances, or the like implementing the features of the
invention may optionally be connected to or coupled with
other computers, machines, information appliances, or the
like that do not implement the features of the invention.
0100 Essentially in at least one embodiment the modifier
51 or DRT 71 or other code modifying means is responsible
for modifying the application code 50 so that it may execute
memory manipulation operations, such as memory putstatic
and putfield instructions in the JAVA language and virtual
machine environment, in a coordinated, consistent, and
coherent manner across and between the plurality of indi
vidual machines M1 ... Min. It follows therefore that in such

Aug. 6, 2009

a computing environment it is necessary to ensure that each of
memory location is manipulated in a consistent fashion (with
respect to the others).
0101. In some embodiments, some or all of the plurality of
individual computers or machines may be contained within a
single housing or chassis (such as so-called “blade servers'
manufactured by Hewlett-Packard Development Company,
Intel Corporation, IBM Corporation and others) or imple
mented on a single printed circuit board or even within a
single chip or chip set.
0102. A machine (produced by any one of various manu
facturers and having an operating system operating in any one
of various different languages) can operate in the particular
language of the application program code 50, in this instance
the JAVA language. That is, a JAVA virtual machine 72 is able
to operate application code 50 in the JAVA language, and
utilize the JAVA architecture irrespective of the machine
manufacturer and the internal details of the machine.
0103) When implemented in a non-JAVA language or
application code environment, the generalized platform, and/
or virtual machine and/or machine and/or runtime system is
able to operate application code 50 in the language(s) (pos
sibly including for example, but not limited to any one or
more of Source-code languages, intermediate-code lan
guages, object-code languages, machine-code languages, and
any other code languages) of that platform, and/or virtual
machine and/or machine and/or runtime system environment,
and utilize the platform, and/or virtual machine and/or
machine and/or runtime System and/or language architecture
irrespective of the machine manufacturer and the internal
details of the machine. It will also be appreciated in light of
the description provided herein that platform and/or runtime
system may include virtual machine and non-virtual machine
software and/or firmware architectures, as well as hardware
and direct hardware coded applications and implementations.
0104 For a more general set of virtual machine or abstract
machine environments, and for current and future computers
and/or computing machines and/or information appliances or
processing systems, and that may not utilize or require utili
Zation of either classes and/or objects, the inventive structure,
method, and computer program and computer program prod
uct are still applicable. Examples of computers and/or com
puting machines that do not utilize either classes and/or
objects include for example, the x86 computer architecture
manufactured by Intel Corporation and others, the SPARC
computer architecture manufactured by Sun MicroSystems,
Inc and others, the PowerPC computer architecture manufac
tured by International Business Machines Corporation and
others, and the personal computer products made by Apple
Computer, Inc., and others. For these types of computers,
computing machines, information appliances, and the virtual
machine or virtual computing environments implemented
thereon that do not utilize the idea of classes or objects, may
be generalized for example to include primitive data types
(such as integer data types, floating point data types, long data
types, double data types, string data types, character data
types and Boolean data types), structured data types (such as
arrays and records) derived types, or other code or data struc
tures of procedural languages or other languages and envi
ronments such as functions, pointers, components, modules,
structures, references and unions.
0105 Turning now to FIGS. 7 and 9, during the loading
procedure 75, the application code 50 being loaded onto or
into each JAVA virtual machine 72 is modified by DRT 71.

US 2009/O 198776 A1

This modification commences at Step 90 in FIG. 9 and
involves the initial step 91 of preferably scrutinizing or anal
ysing the code and detecting all memory locations address
able by the application code 50, or optionally some subset of
all memory locations addressable by the application code 50:
Such as for example named and unnamed memory locations,
variables (such as local variables, global variables, and formal
arguments to Subroutines or functions), fields, registers, or
any other address space or range of addresses which applica
tion code 50 may access. Such memory locations in some
instances need to be identified for Subsequent processing at
steps 92 and 93. In some embodiments, where a list of
detected memory locations is required for further processing,
the DRT 71 during the loading procedure 75 creates a list of
all the memory locations thus identified. In one embodiment,
the memory locations in the form of JAVA fields are listed by
object and class, however, the memory locations, fields, or the
like may be listed or organized in any manner So long as they
comport with the architectural and programming require
ments of the system on which the program is to be used and
the principles of the invention described herein. This detec
tion is optional and not required in all embodiments of the
invention. It may be noted that the DRT is at least in part
fulfilling the roll of the modifier 51.
0106. The next phase (designated Step 92 in FIG.9) Step
92 of the modification procedure is to search through the
application code 50 in order to locate processing activity or
activities that manipulate or change values or contents of any
listed memory location (for example, but not limited to JAVA
fields) corresponding to the list generated at step 91 when
required. Preferably, all processing activities that manipulate
or change any one or more values or contents of any one or
more listed memory locations, are located.
0107. When such a processing activity or operation (typi
cally “putstatic' or “putfield' in the JAVA language, or for
example, a memory assignment operation, or a memory write
operation, or a memory manipulation operation, or more gen
erally operations that otherwise manipulate or change value
(s) or content(s) of memory or other addressable areas), is
detected which changes the value or content of a fisted or
detected memory location, then an “updating propagation
routine' is inserted by step 93 in the application code 50
corresponding to the detected memory manipulation opera
tion, to communicate with all other machines in order to
notify all other machines of the identity of the manipulated
memory location, and the updated, manipulated or changed
value(s) or content(s) of the manipulated memory location.
The inserted "updating propagation routine' preferably takes
the form of a method, function, procedure, or similar Subrou
tine call or operation to a network communications library of
DRT 71. Alternatively, the “updating propagation routine'
may take the optional form of a code-block (or other inline
code form) inserted into the application code instruction
stream at, after, before, or otherwise corresponding to the
detected manipulation instruction or operation. And prefer
ably, in a multi-tasking or parallel processing machine envi
ronment (and in Some embodiments inclusive or exclusive of
operating system), Such as a machine environment capable of
potentially simultaneous or concurrent execution of multiple
or different threads or processes, the “updating propagation
routine' may execute on the same thread or process or pro
cessor as the detected memory manipulation operation of step
92. Thereafter, the loading procedure continues, by loading

Aug. 6, 2009

the modified application code 50 on the machine 72 in place
of the unmodified application code 50, as indicated by step 94
in FIG. 9.

0108. An alternative form of modification during loading
is illustrated in the illustration of FIG. 10. Here the start and
listing steps 90 and 91 and the searching step 92 are the same
as in FIG.9. However, rather than insert the “updating propa
gation routine' into the application code 50 corresponding to
the detected memory manipulation operation identified in
step 92, as is indicated in step 93, in which the application
code 50, or network communications library code 71 of the
DRT executing on the same thread or process or processor as
the detected memory manipulation operation, carries out the
updating, instead an “alert routine' is inserted corresponding
to the detected memory manipulation operation, at step 103.
The “alert routine' instructs, notifies or otherwise requests a
different and potentially simultaneously or concurrently
executing thread or process or processor not used to perform
the memory manipulation operation (that is, a different thread
or process or processor than the thread or process or processor
which manipulated the memory location), Such as a different
thread or process allocated to the DRT 71, to carry out the
notification, propagation, or communication of all other
machines of the identity of the manipulated memory location,
and the updated, manipulated or changed value(s) or content
(s) of the manipulated memory location.
0109. Once this modification during the loading proce
dure has taken place and execution begins of the modified
application code 50, then either the steps of FIG.11 or FIG. 12
take place. FIG. 11 (and the steps 112, 113, 114, and 115
therein) correspond to the execution and operation of the
modified application code 50 when modified in accordance
with the procedures set forth in and described relative to FIG.
9. FIG. 12 on the other hand (and the steps 112,113,125, 127,
and 115therein) set forth therein correspond to the execution
and operation of the modified application code 50 when
modified in accordance with FIG. 10.

0110. This analysis or scrutiny of the application code 50
can may take place either prior to loading the application
program code 50, or during the application program code 50
loading procedure, or even after the application program code
50 loading procedure. It may be likened to an instrumenta
tion, program transformation, translation, or compilation pro
cedure in that the application code may be instrumented with
additional instructions, and/or otherwise modified by mean
ing-preserving program manipulations, and/or optionally
translated from an input code language to a different code
language (such as for example from Source-code language or
intermediate-code language to object-code language or
machine-code language), and with the understanding that the
term compilation normally or conventionally involves a
change in code or language, for example, from source code to
object code or from one language to another language. How
ever, in the present instance the term “compilation' (and its
grammatical equivalents) is not so restricted and can also
include or embrace modifications within the same code or
language. For example, the compilation and its equivalents
are understood to encompass both ordinary compilation (Such
as for example by way of illustration but not limitation, from
Source-code to object-code), and compilation from source
code to Source-code, as well as compilation from object-code
to object-code, and any altered combinations therein. It is also
inclusive of so-called “intermediary-code languages' which
are a form of “pseudo object-code'.

US 2009/O 198776 A1

0111. By way of illustration and not limitation, in one
embodiment, the analysis or scrutiny of the application code
50 may take place during the loading of the application pro
gram code such as by the operating system reading the appli
cation code from the hard disk or other storage device or
Source and copying it into memory and preparing to begin
execution of the application program code. In another
embodiment, in a JAVA virtual machine, the analysis or scru
tiny may take place during the class loading procedure of the
java.lang. ClassLoader loadClass method (e.g., java.lang.
ClassLoaderloadClass()').
0112 Alternatively, the analysis or scrutiny of the appli
cation code 50 may take place even after the application
program code loading procedure. Such as after the operating
system has loaded the application code into memory, or
optionally even after execution of the relevant corresponding
portion of the application program code has started. Such as
for example after the JAVA virtual machine has loaded the
application code into the virtual machine via the java.lang.
ClassLoaderloadClass() method and optionally com
menced execution.

0113. As seen in FIG. 11, a multiple thread processing
machine environment 110, on each one of the machines M1,
..., Mn and consisting of threads 111/1...111/4 exists. The
processing and execution of the second thread 111/2 (in this
example) results in that thread 111/2 manipulating a memory
location at step 113, by writing to a listed memory location. In
accordance with the modifications made to the application
code 50 in the steps 90-94 of FIG.9, the application code 50
is modified at a point corresponding to the write to the
memory location of step 113, so that it propagates, notifies, or
communicates the identity and changed value of the manipu
lated memory location of step 113 to the other machines M2,
..., Mn via network 53 or other communication link or path,
as indicated at step 114. At this stage the processing of the
application code 50 of that thread 111/2 is or may be altered
and in some instances interrupted at step 114 by the executing
of the inserted "updating propagation routine', and the same
thread 111/2 notifies, or propagates, or communicates to all
other machines M2, . . . , Mn via the network 53 or other
communications link or path of the identity and changed
value of the manipulated memory location of step 113. At the
end of that notification, or propagation, or communication
procedure 114, the thread 111/2 then resumes or continues the
processing or the execution of the modified application code
50 at step 115.
0114. In the alternative arrangement illustrated in FIG. 12,
a multiple thread processing machine environment 110 com
prising or consisting of threads 111/1, . . . , 111/3, and a
simultaneously or concurrently executing DRT processing
environment 120 consisting of the thread 121/1 as illustrated,
or optionally a plurality of threads, is executing on each one of
the machines M1, ... Mn. The processing and execution of the
modified application code 50 on thread 111/2 results in a
memory manipulation operation of step 113, which in this
instance is a write to a listed memory location. In accordance
with the modifications made to the application code 50 in the
steps 90,91,92, 103, and 94 of FIG.9, the application code 50
is modified at a point corresponding to the write to the
memory location of step 113, so that it requests or otherwise
notifies the threads of the DRT processing environment 120 to
notify, or propagate, or communicate to the other machines
M2,..., Mn of the identity and changed value of the manipu
lated memory location of step 113, as indicated at steps 125

Aug. 6, 2009

and 128 and arrow 127. In accordance with this modification,
the thread 111/2 processing and executing the modified appli
cation code 50 requests a different and potentially simulta
neously or concurrently executing thread or process (such as
thread 121/1) of the DRT processing environment 120 to
notify the machines M2, Mn via network 53 or other
communications link or path of the identity and changed
value of the manipulated memory location of step 113, as
indicated in step 125 and arrow 127. In response to this
request of step 125 and arrow 127, a different and potentially
simultaneously or concurrently executing thread or process
121/1 of the DRT processing environment 120 notifies the
machines M2, ..., Mn via network 53 or other communica
tions link or path of the identity and changed value of the
manipulated memory location of step 113, as requested of it
by the modified application code 50 executing on thread
111/2 of step 125 and arrow 127.
0.115. When compared to the earlier described step 114 of
thread 111/2 of FIG. 11, step 125 of thread 111/2 of FIG. 12
can be carried out quickly, because step 114 of thread 111/2
must notify and communicate with machines M2..., Mn via
the relatively slow network 53 (relatively slow for example
when compared to the internal memory bus 4 of FIG. 1 or the
global memory 13 of FIG. 2) of the identity and changed
value of the manipulated memory location of step 113,
whereas step 125 of thread 11 1/2 does not communicate with
machines M2, ..., Mn via the relatively slow network 53.
Instead, step 125 of thread 111/2 requests or otherwise noti
fies a different and potentially simultaneously or concurrently
executing thread 121/1 of the DRT processing environment
120 to perform the notification and communication with
machines M2, ..., Mn via the relatively slow network 53 of
the identify and changed value of the manipulated memory
location of step 113, as indicated by arrow 127. Thus thread
111/2 carrying out step 125 is only interrupted momentarily
before the thread 11 1/2 resumes or continues processing or
execution of modified application code in step 115. The other
thread 121/1 of the DRT processing environment 120 then
communicates the identity and changed value of the manipu
lated memory location of step 113 to machines M2,..., Mn
via the relatively slow network 53 or other relatively slow
communications link or path.
0116. This second arrangement of FIG. 12 makes better
utilisation of the processing power of the various threads
111/1...111/3 and 121/1 (which are not, in general, subject
to equal demands). Irrespective of which arrangement is used,
the identity and change value of the manipulated memory
location(s) of step 113 is (are) propagated to all the other
machines M2 ... Min on the network 53 or other communi
cations link or path.
0117. This is illustrated in FIG. 13 where step 114 of FIG.
11, or the DRT 71/1 (corresponding to the DRT processing
environment 120 of FIG. 12) and its thread 121/1 of FIG. 12
(represented by step 128 in FIG. 13), send, via the network 53
or other communications link or path, the identity and
changed value of the manipulated memory location of step
113 of FIGS. 11 and 12, to each of the other machines M2, .

Mn.

0118 With reference to FIG. 13, each of the other
machines M2,..., Mn carries out the action of receiving from
the network 53 the identity and changed value of, for
example, the manipulated memory location of step 113 from
machine M1, indicated by step 135, and writes the value

US 2009/O 198776 A1

received at step 135 to the local memory location correspond
ing to the identified memory location received at step 135,
indicated by step 136.
0119. In the conventional arrangement in FIG. 3 utilising
distributed Software, memory access from one machine's
Software to memory physically located on another machine is
permitted by the network interconnecting the machines.
However, because the read and/or write memory access to
memory physically located on another computer require the
use of the slow network 14, in these configurations such
memory accesses can result in Substantial delays in memory
read/write processing operation, potentially of the order of
10°-107 cycles of the central processing unit of the machine,
but ultimately being dependent upon numerous factors. Such
as for example, the speed, bandwidth, and/or latency of the
network 14. This in large part accounts for the diminished
performance of the multiple interconnected machines in the
prior art arrangement of FIG. 3.
0120 However, in the present arrangement as described
above in connection with FIG. 8, it will be appreciated that all
reading of memory locations or data is satisfied locally
because a current value of all (or some subset of all) memory
locations is stored on the machine carrying out the processing
which generates the demand to read memory.
0121 Similarly, in the present arrangement as described
above in connection with FIG. 8, it will be appreciated that all
writing of memory locations or data may be satisfied locally
because a current value of all (or some subset of all) memory
locations is stored on the machine carrying out the processing
which generates the demand to write to memory.
0122) Such local memory read and write processing
operation as performed according to the invention can typi
cally be satisfied within 10°-10 cycles of the central process
ing unit. Thus, in practice, there is substantially less waiting
for memory accesses which involves reads than the arrange
ment shown and described relative to FIG. 3. Additionally, in
practice, there may be less waiting for memory accesses
which involve writes than the arrangement shown and
described relative to FIG. 3
0123. It may be appreciated that most application software
reads memory frequently but writes to memory relatively
infrequently. As a consequence, the rate at which memory is
being written or re-written is relatively slow compared to the
rate at which memory is being read. Because of this slow
demand for writing or re-writing of memory, the memory
locations or fields can be continually updated at a relatively
low speed via the possibly relatively slow and inexpensive
commodity network 53, yet this possibly relatively slow
speed is Sufficient to meet the application program's demand
for writing to memory. The result is that the performance of
the FIG. 8 arrangement is superior to that of FIG.3. It may be
appreciated in light of the description provided herein that
while a relatively slow network communication link or path
53 may advantageously be used because it provides the
desired performance and low cost, the invention is not limited
to a relatively low speed network connection and may be used
with any communication link or path. The invention is trans
port, network, and communications path independent, and
does not depend on how the communication between
machines or DRTs takes place. In one embodiment, even
electronic mail (email) exchanges between machines or
DRTs may suffice for the communications.
0.124. In a further optional modification in relation to the
above, the identity and changed value pair of a manipulated

Aug. 6, 2009

memory location sent over network 53, each pair typically
sent as the sole contents of a single packet, frame or cell for
example, can be grouped into batches of multiple pairs of
identities and changed values corresponding to multiple
manipulated memory locations, and sent together over net
work 53 or other communications link or path in a single
packet, frame, or cell. This further modification further
reduces the demands on the communication speed of the
network 53 or other communications link or path intercon
necting the various machines, as each packet, cell or frame
may contain multiple identity and changed value pairs, and
therefore fewer packets, frames, or cells require to be sent.
0.125. It may be apparent that in an environment where the
application program code writes repeatedly to a single
memory location, the embodiment illustrated of FIG. 11 of
step 114 sends an updating and propagation message to all
machines corresponding to every performed memory
manipulation operation. In a still further optimal modification
in relation to the above, the DRT thread 121/1 of FIG. 12 does
not need to perform an updating and propagation operation
corresponding to every local memory manipulation opera
tion, but instead may send fewer updating and propagation
messages than memory manipulation operations, each mes
sage containing the last or latest changed value or content of
the manipulated memory location, or optionally may only
send a single updating and propagation message correspond
ing to the last memory manipulation operation. This further
improvement reduces the demands on the network 53 or other
communications link or path, as fewer packets, frames, or
cells require to be sent.
I0126. It will also be apparent to those skilled in the art in
light of the detailed description provided herein that in a table
or list or other data structure created by each DRT 71 when
initially recording or creating the list of all, or some Subset of
all, memory locations (or fields), for each Such recorded
memory location on each machine M1, Mn there is a
name or identity which is common or similar on each of the
machines M1,..., Mn. However, in the individual machines
the local memory location corresponding to a given name or
identity (listed for example, during step 91 of FIG.9) will or
may vary over time since each machine may and generally
will store changed memory values or contents at different
memory locations according to its own internal processes.
Thus the table, or list, or other data structure in each of the
DRTs will have, in general, different local memory locations
corresponding to a single memory name or identity, but each
global “memory name' or identity will have the same
“memory value” stored in the different local memory loca
tions.

I0127. It will also be apparent to those skilled in the art in
light of the description provided herein that the abovemen
tioned modification of the application program code 50 dur
ing loading can be accomplished in many ways or by a variety
of means. These ways or means include, but are not limited to
at least the following five ways and variations or combina
tions of these five, including by:
(i) re-compilation at loading,
(ii) by a pre-compilation procedure prior to loading,
(iii) compilation prior to loading,
(iv) a “just-in-time’ compilation, or
(V) re-compilation after loading (but, or for example, before
execution of the relevant or corresponding application code in
a distributed environment).

US 2009/O 198776 A1

0128 Traditionally the term “compilation' implies a
change in code or language, for example, from source to
object code or one language to another. Clearly the use of the
term “compilation' (and its grammatical equivalents) in the
present specification is not so restricted and can also include
or embrace modifications within the same code or language
0129 Given the fundamental concept of modifying
memory manipulation operations to coordinate operation
between and amongst a plurality of machines M1, ... Mn,
there are several different ways or embodiments in which this
coordinated, coherent and consistent memory state and
manipulation operation concept, method, and procedure may
be carried out or implemented.
0130. In the first embodiment, a particular machine, say
machine M2, loads the asset (Such as class or object) inclusive
of memory manipulation operation(s), modifies it, and then
loads each of the other machines M1, M3, Mn (either
sequentially or simultaneously or according to any other
order, routine or procedure) with the modified object (or class
or other asset or resource) inclusive of the new modified
memory manipulation operation. Note that there may be one
or a plurality of memory manipulation operations corre
sponding to only one object in the application code, or there
may be a plurality of memory manipulation operations cor
responding to a plurality of objects in the application code.
Note that in one embodiment, the memory manipulation
operation(s) that is (are) loaded is binary executable object
code. Alternatively, the memory manipulation operation(s)
that is (are) loaded is executable intermediary code.
0131. In this arrangement, which may be termed “master/
slave” each of the slave (or secondary) machines M1, M3, ..
., Mnloads the modified object (or class), and inclusive of the
new modified memory manipulation operation(s), that was
sent to it over the computer communications network or other
communications link or path by the master (or primary)
machine, such as machine M2, or some other machine such as
a machine X of FIG. 15. In a slight variation of this “master/
slave' or “primary/secondary arrangement, the computer
communications network can be replaced by a shared storage
device such as a shared file system, or a shared document/file
repository such as a shared database.
0132) Note that the modification performed on each
machine or computer need not and frequently will not be the
same or identical. What is required is that they are modified in
a similar enough way that in accordance with the inventive
principles described herein, each of the plurality of machines
behaves consistently and coherently relative to the other
machines to accomplish the operations and objectives
described herein. Furthermore, it will be appreciated in light
of the description provided herein that there are a myriad of
ways to implement the modifications that may for example
depend on the particular hardware, architecture, operating
system, application program code, or the like or different
factors. It will also be appreciated that embodiments of the

Aug. 6, 2009

invention may be implemented within an operating system,
outside of or without the benefit of any operating system,
inside the virtual machine, in an EPROM, in software, in
firmware, or in any combination of these.
0133. In a still further embodiment, each machine M1, ..

... Mn receives the unmodified asset (such as class or object)
inclusive of one or more memory manipulation operation(s),
but modifies the operations and then loads the asset (such as
class or object) consisting of the now modified operations.
Although one machine. Such as the master or primary
machine may customize or perform a different modification
to the memory manipulation operation(s) sent to each
machine, this embodiment more readily enables the modifi
cation carried out by each machine to be slightly different and
to be enhanced, customized, and/or optimized based upon its
particular machine architecture, hardware, processor,
memory, configuration, operating system, or other factors,
yet still similar, coherent and consistent with other machines
with all other similar modifications and characteristics that
may not need to be similar or identical.
0.134. In all of the described instances or embodiments, the
Supply or the communication of the asset code (such as class
code or object code) to the machines M1, . . . , Mn, and
optionally inclusive of a machine X of FIG. 15, can be
branched, distributed or communicated among and between
the different machines in any combination or permutation;
Such as by providing direct machine to machine communica
tion (for example, M2 supplies each of M1, M3, M4, etc.
directly), or by providing or using cascaded or sequential
communication (for example, M2 Supplies M1 which then
supplies M3 which then supplies M4, and so on), or a com
bination of the direct and cascaded and/or sequential.
0.135 Reference is made to the accompanying Annexure A
in which: Annexure A5 is a typical code fragment from a
memory manipulation operation prior to modification (e.g.,
an exemplary unmodified routine with a memory manipula
tion operation), and Annexure A6 is the same routine with a
memory manipulation operation after modification (e.g., an
exemplary modified routine with a memory manipulation
operation). These code fragments are exemplary only and
identify one software code means for performing the modi
fication in an exemplary language. It will be appreciated that
other software/firmware or computer program code may be
used to accomplish the same or analogous function or opera
tion without departing from the invention.
0.136 Annexures A5 and A6 (also reproduced in part in
Table VI and Table VII below) are exemplary code listings
that set forth the conventional or unmodified computer pro
gram Software code (such as may be used in a single machine
or computer environment) of a routine with a memory
manipulation operation of application program code 50 and a
post-modification excerpt of the same routine Such as may be
used in embodiments of the present invention having multiple
machines. The modified code that is added to the routine is
highlighted in bold text.

TABLE I

Summary Listing of Contents of Annexure A
Annexure A includes exemplary program listings in the JAVA language to further
illustrate features, aspects, methods, and procedures of described in the detailed

description

A1. This first excerpt is part of an illustration of the modification code of the modifier 51 in
accordance with steps 92 and 103 of FIG. 10. It searches through the code array of the

US 2009/O 198776 A1
12

TABLE I-continued

Summary Listing of Contents of Annexure A
Annexure A includes exemplary program listings in the JAVA language to further
illustrate features, aspects, methods, and procedures of described in the detailed

description

application program code 50, and when it detects a memory manipulation instruction (i.e. a
putStatic instruction (opcode 178) in the JAVA language and virtual machine environment) it
modifies the application program code by the insertion of an alert routine.
A2. This second excerpt is part of the DRTalert() method and implements the step of 125
and arrow of 127 of FIG. 12. This DRTalert() method requests one or more threads of the
DRT processing environment of FIG. 12 to update and propagate the value and identity of the
changed memory location corresponding to the operation of Annexure A1.
A3. This third excerpt is part of the DRT 71, and corresponds to step 128 of FIG. 12.
This code fragment shows the DRT in a separate thread, such as thread 121/1 of FIG. 12,
after being notified or requested by step 125 and array 127, and sending the changed value
and changed value location/identity across the network 53 to the other of the plurality of
machines M1 ... Mn.
A4. The fourth excerpt is part of the DRT 71, and corresponds to steps 135 and 136 of
FIG. 13. This is a fragment of code to receive a propagated identity and value pair sent by
another DRT 71 over the network, and write the changed value to the identified memory
location.
A5. The fifth excerpt is an disassembled compiled form of the example.java application of
Annexure A7, which performs a memory manipulation operation (putStatic and putfield).
A6. The sixth excerpt is the disassembled compiled form of the same example application
in Annexure A5 after modification has been performed by Field Loader.java of Annexure A11,
in accordance with FIG. 9 of this invention. The modifications are highlighted in bold.
A7. The seventh excerpt is the source-code of the example.java application used in
excerpt A5 and A6. This example application has two memory locations (staticValue and
instanceValue) and performs two memory manipulation operations.
A8. The eighth excerpt is the source-code of FieldAlert.java which corresponds to step
125 and arrow 127 of FIG. 12, and which requests a thread 121/1 executing FieldSend.Java of
the “distributed run-time' 71 to propagate a changed value and identity pair to the other
machines M1 ... Mn.
A9. The ninth excerpt is the source-code of FieldSend.java which corresponds to step
128 of FIG. 12, and waits for a request notification generated by FieldAlert.java of A8
corresponding to step 125 and arrow 127, and which propagates a changed valuefidentity
pair requested of it by Field Alert.java, via network 53.
A10. The tenth excerpt is the source-code of FieldReceive.java, which corresponds to
steps 135 and 136 of FIG. 13, and which receives a propagated changed value and identity
pair sent to it over the network 53 via FieldSend.java of annexure A9.
A11. Field Loader.java. This excerpt is the source-code of Field Loader.java, which modifies
an application program code, Such as the example.java application code of Annexure A7, as it
is being loaded into a JAVA virtual machine in accordance with steps 90,91, 92, 103, and 94
of FIG. 10. Field Loader.java makes use of the convenience classes of Annexures A12
through to A36 during the modification of a compiled JAVA
A12. Attribute info.java
Convience class for representing attribute info structures within ClassFiles.
A13. ClassFile.java
Convience class for representing ClassFile structures.
A14. Code attribute.java.
Convience class for representing Code attribute structures within ClassFiles.
A15. CONSTANT Class info.java
Convience class for representing CONSTANT Class info structures within ClassFiles.
A16. CONSTANT Double info.java
Convience class for representing CONSTANT Double info structures within ClassFiles.
A17. CONSTANT Fieldref info.java
Convience class for representing CONSTANT Fieldref info structures within ClassFiles.
A18. CONSTANT Float info.java
Convience class for representing CONSTANT Float info structures within ClassFiles.
A19. CONSTANT Integer info.java
Convience class for representing CONSTANT Integer info structures within ClassFiles.
A20. CONSTANT InterfaceMethodref info.java
Convience class for representing CONSTANT InterfaceMethodref info structures within
ClassFiles.
A21. CONSTANT Long info.java
Convience class for representing CONSTANT Long info structures within ClassFiles.
A22. CONSTANT Methodref info.java
Convience class for representing CONSTANT Methodref info structures within ClassFiles.
A23. CONSTANT NameAndType info.java
Convience class for representing CONSTANT NameAnd Type info structures within
ClassFiles.
A24. CONSTANT String info.java
Convience class for representing CONSTANT String info structures within ClassFiles.
A25. CONSTANT Utf8 info.java
Convience class for representing CONSTANT Utf8 info structures within ClassFiles.

Aug. 6, 2009

US 2009/019877 6 A1
13

Aug. 6, 2009

TABLE I-continued

Summary Listing of Contents of Annexure A
Annexure A includes exemplary program listings in the JAVA language to further
illustrate features, aspects, methods, and procedures of described in the detailed

description

A26. ConstantValue attribute.java
Convience class for representing ConstantValue attribute structures within ClassFiles.
A27. cp info.java.
Convience class for representing cp info structures within ClassFiles.
A28. Deprecated attribute.java
Convience class for representing Deprecated attribute structures within ClassFiles.
A29. Exceptions attribute.java.
Convience class for representing Exceptions attribute structures within ClassFiles.
A30. field info.java.
Convience class for representing field info structures within ClassFiles.
A31. InnerClasses attribute.java
Convience class for representing InnerClasses attribute structures within ClassFiles.
A32. LineNumberTable attribute.java
Convience class for representing LineNumberTable attribute structures within ClassFiles.
A33. LocalVariableTable attribute.java
Convience class for representing LocalVariableTable attribute structures within ClassFiles.
A34. method info.java
Convience class for representing method info structures within ClassFiles.
A35. SourceFile attribute.java
Convience class for representing SourceFile attribute structures within ClassFiles.
A36. Synthetic attribute.java
Convience class for representing Synthetic attribute structures within ClassFiles.

TABLE II

Exemplary code listing showing embodiment of modified code.

A1. This first excerpt is part of an illustration of the modification code of the modifier 51 in
accordance with steps 92 and 103 of FIG. 10. It searches through the code array of the
application program code 50, and when it detects a memory manipulation instruction (i.e. a
putStatic instruction (opcode 178) in the JAVA language and virtual machine environment) it
modifies the application program code by the insertion of an alert routine.
if START
byte code = Code attribute.code:

if given classfile.
int code length = Code attribute.code length;
int DRT = 99;

// DRTalert() method.
for (int i=0; i-code length; i++){

if (codei & Oxff) == 179) { // Putstatic instruction.
System.arraycopy (code, i-3, code, i+6, code length-(i+3));
codei+3 = (byte) 184: if Invokestatic instruction for the

// DRT alert() method.
codei+4 = (byte) (DRTss> 8) & 0xff);
codei+5 = (byte) (DRT & Oxff);

if END

f Bytecode of a given method in a

Location of the CONSTANT Methodref info for the

TABLE III

Exemplary code listing showing embodiment of code for alert method

A2. This second excerpt is part of the DRTalert() method and
implements the step of 125 and arrow of 127 of FIG. 12. This
DRTalert() method requests one or more threads of the DRT
processing environment of FIG. 12 to update and propagate the
value and identity of the changed memory location corresponding
to the operation of Annexure A1.
if START

public static void alert(){
synchronized (ALERT LOCK){
ALERT LOCK.notify(); // Alerts a waiting DRT
thread in the background.

TABLE III-continued

Exemplary code listing showing embodiment of code for alert method

if END

TABLE IV

Exemplary code listing showing embodiment of code for DRT

A3. This third excerpt is part of the DRT 71, and corresponds to step
128 of FIG. 12. This code fragment shows the DRT in a separate thread,
Such as thread 121/1 of FIG. 12, after being notified or requested by

US 2009/O 198776 A1

TABLE IV-continued

Exemplary code listing showing embodiment of code for DRT

step 125 and array 127, and sending the changed value and changed
value location/identity across the network 53 to the other of the plurality of
machines M1...Mn.
if START
MulticastSocket ms = DRT getMulticastSocket(); // The multicast socket

// used by the DRT for
if communication.

// This is the “name tag on the network for this
field.

Field field = modifiedClass.getDeclaredField (“myField1);

byte nameTag = 33;

Stores
if the field
f from the
if modified
if class.

// In this example, the field is a byte field.
while (DRT.isRunning()) {

synchronized (ALERT LOCK){
ALERT LOCK. wait(); // The DRT thread is waiting for the alert

if method to be called.
byte b = new byte {nameTag, field.getByte(null); / Stores

if the
i? nameTag
if and the
if value
of the
field from

if the
modified
if class in a

buffer.
DatagramPacket dip = new Datagram Packet(b, O, b.length):
ms.send(dp); // Send the buffer out across the network.

if END

TABLEV

Exemplary code listing showing embodiment of code for DRT receiving.

A4. The fourth excerpt is part of the DRT 71, and corresponds to
steps 135 and 136 of FIG. 13. This is a fragment of code to receive a
propagated identity and value pair sent by another DRT 71 over the
network, and write the changed value to the identified memory location.
if START
MulticastSocket ms = DRT getMulticastSocket(); // The multicast socket

// used by the DRT for
if communication.

DatagramPacket dip = new Datagram Packet(new byte2, 0, 2);
byte nameTag = 33; // This is the “name tag on the network for this

field.
Field field = modifiedClass.getDeclaredField (“myField1); // Stores the

field from
if the
modified
if class.

// In this example, the field is a byte field.
while (DRT.isRunning) {

ms.receive(dp); // Receive the previously sent buffer from
the network.
byte b = dp.getData ();
if (bO == nameTag){

field.setByte(null, b1));
if Check the nametags match.

// Write the value from the network packet
ff into the field location in memory.

if END

14
Aug. 6, 2009

TABLE VI

Exemplary code listing showing embodiment of application before
modification is made.

A5. The fifth excerpt is an disassembled compiled form of the
example.java application of Annexure A7, which performs a memory

manipulation operation (putStatic and putfield).

Method void setValues(int, int)
Oiload 1
1 putstatic #3 <Field int staticValues
4 aload O
5 i load 2
6 putfield #2 <Field int instanceValues
9 return

TABLE VII

Exemplary code listing showing embodiment of application after
modification is made.

A6. The sixth excerpt is the disassembled compiled form of the
same example application in Annexure A5 after modification has

been performed by Field Loader.java of Annexure A11,
in accordance with FIG. 9 of this invention. The modifications are

highlighted in bold.

Method void setValues(int, int)
Oiload 1
1 putstatic #3 <Field int staticValues
4ldc #4 <String “example's
6 iconst 0
7 invokestatic #5 <Method void alert(java.lang. Object, int)>
10 aload O
11 ilload 2
12 putfield #2 <Field int instanceValues
15 aload 0
16 iconst 1
17 invokestatic #5 <Method void alert(java.lang. Object, int)>
20 return

TABLE VIII

Exemplary code listing showing embodiment of source-code of the
example application.

A7. The seventh excerpt is the source-code of the example.java.
application used in excerpt A5 and A6. This example application has
two memory locations (staticValue and instanceValue) and performs two
memory manipulation operations.
import.java.lang. *;
public class example

f** Shared static field. *.
public static int staticValue = 0;
f** Shared instance field. *.
public int instanceValue = 0;
f** Example method that writes to memory (instance field). */
public void setValues(inta, int b){

staticValue = a:
instanceValue = b:

TABLE IX

Exemplary code listing showing embodiment of the source-code
of FieldAlert.

A8. The eighth excerpt is the source-code of FieldAlert.java
which corresponds to step 125 and arrow 127 of FIG. 12, and which
requests a thread 121f1 executing FieldSend.java of the
“distributed run-time 71 to propagate a changed value

US 2009/O 198776 A1

TABLE IX-continued

Exemplary code listing showing embodiment of the source-code
of FieldAlert.

and identity pair to the other
machines M1...Mn.
import.java.lang.*;
import.java. util.*:
import.java.net.*;
import.java.io.;
public class Field Alert{

f** Table of alerts. *.
public final static Hashtable alerts = new Hashtable();
f** Object handle. */
public Object reference = null:
/** Table of field alerts for this object. */
public boolean field Alerts = null:
f** Constructor. *.
public Field Alert(Objecto, int initialFieldCount){

reference = o:
field Alerts = new booleaninitialFieldCount:

f** Called when an application modifies a value. (Both objects and
classes) */

public static void alert(Object o, int fieldID){
if Lock the alerts table.
synchronized (alerts){

FieldAlert alert = (FieldAlert) alerts.get(o);
if (alert == null) { // This object hasn't been alerted already,

if so add to alerts table.
alert = new Field Alert(o, field ID + 1);
alerts.put(o, alert);

if (fieldID >= alert.field Alerts.length){
fi Ok, enlarge fieldAlerts array.
boolean b = new booleanfield ID-1):
System.arraycopy (alert.field Alerts, 0, b, O,

alert.fieldAlerts.length):
alert.fieldAlerts = b:

if Record the alert.
alert.fieldAlertsfieldID = true:
if Mark as pending.
FieldSend-pending = true; // Signal that there is one or more

if propagations waiting.
fi Finally, notify the waiting FieldSend thread(s)
if (FieldSend...waiting) {

FieldSend.waiting = false;
alerts.notify();

0.137 It is noted that the compiled code in the annexure
and portion repeated in the table is taken from the Source-code
of the file “example java' which is included in the Annexure
A7 (Table VIII). In the procedure of Annexure A5 and Table
VI, the procedure name “Method void setvalues(int, int) of
Step 001 is the name of the displayed disassembled output of
the setValues method of the compiled application code of
“example.java’’. The name “Method void setValues(int, int)
is arbitrary and selected for this example to indicate a typical
JAVA method inclusive of a memory manipulation operation.
Overall the method is responsible for writing two values to
two different memory locations through the use of an memory
manipulation assignment statement (being “putstatic' and
“putfield' in this example) and the steps to accomplish this
are described in turn.

0138 First (Step 002), the Java Virtual Machine instruc
tion “iload 1 causes the Java Virtual Machine to load the
integer value in the local variable array at index 1 of the

15
Aug. 6, 2009

current method frame and store this item on the top of the
stack of the current method frame and results in the integer
value passed to this method as the first argument and stored in
the local variable array at index 1 being pushed onto the stack.
(0.139. The Java Virtual Machine instruction “putstatic #3
<Field int staticValues” (Step 003) causes the Java Virtual
Machine to pop the topmost value off the stack of the current
method frame and store the value in the static field indicated
by the CONSTANT Fieldref info constant-pool item stored
in the 3" index of the classfile structure of the application
program containing this example setValues() method and
results in the topmost integer value of the stack of the current
method frame being stored in the integer field named “stat
icValue.

0140. The Java Virtual Machine instruction “aload O'
(Step 004) causes the Java Virtual Machine to load the item in
the local variable array at index 0 of the current method frame
and store this item on the top of the stack of the current
method frame and results in the this object reference stored
in the local variable array at index 0 being pushed onto the
stack.

0141 First (Step 005), the Java Virtual Machine instruc
tion “iload 2 causes the Java Virtual Machine to load the
integer value in the local variable array at index 2 of the
current method frame and store this item on the top of the
stack of the current method frame and results in the integer
value passed to this method as the first argument and stored in
the local variable array at index 2 being pushed onto the stack.
0142. The Java Virtual Machine instruction “putfield #2
<Field int instanceValues” (Step 006) causes the Java Virtual
Machine to pop the two topmost values off the stack of the
current method frame and store the topmost value in the
object instance field of the second popped value, indicated by
the CONSTANT Feldref info constant-pool item stored in
the 2" index of the classfile structure of the application pro
gram containing this example setValues method and results in
the integer value on the top of the stack of the current method
frame being stored in the instance field named
“instanceValue” of the object reference below the integer
value on the stack.
0.143 Finally, the JAVA virtual machine instruction
“return” (Step 007) causes the JAVA virtual machine to cease
executing this setValues() method by returning control to the
previous method frame and results in termination of execu
tion of this setValues() method.
0144. As a result of these steps operating on a single
machine of the conventional configurations in FIG. 1 and
FIG. 2, the JAVA virtual machine manipulates (i.e. writes to)
the static Value and instanceValue memory locations, and in
executing the setValues() method containing the memory
manipulation operation(s) is able to ensure that memory is
and remains consistent between multiple threads of a single
application instance, and therefore ensure that unwanted
behaviour, Such as for example inconsistent or incoherent
memory between multiple threads of a single application
instance (such inconsistent or incoherent memory being for
example incorrector different values or contents with respect
to a single memory location) does not occur. Were these steps
to be carried out on the plurality of machines of the configu
rations of FIG. 5 and FIG. 8 by concurrently executing the
application program code 50 on each one of the plurality of
machines M1 ... Mn, the memory manipulation operations of
each concurrently executing application program occurrence
on each one of the machines would be performed without

US 2009/O 198776 A1

coordination between any other machine(s). Such coordina
tion being for example updating of corresponding memory
locations on each machine such that they each report a same
content or value. Given the goal of consistent, coordinated
and coherent memory state and manipulation and updating
operation across a plurality of a machines, this prior art
arrangement would fail to perform such consistent, coherent,
and coordinated memory state and manipulation and updat
ing operation across the plurality of machines, as each
machine performs memory manipulation only locally and
without any attempt to coordinate or update their local
memory state and manipulation operation with any other
similar memory state on any one or more other machines.
Such an arrangement would therefore be susceptible to incon
sistent and incoherent memory state amongst machines M1.
... Mn due to uncoordinated, inconsistent and/or incoherent
memory manipulation and updating operation. Therefore it is
the goal of the present invention to overcome this limitation of
the prior art arrangement.
0145. In the exemplary code in Table VII (Annexure A6).
the code has been modified so that it solves the problem of
consistent, coordinated memory manipulation and updating
operation for a plurality of machines M1 ... Mn, that was not
solved in the code example from Table VI (Annexure A5). In
this modified setvalues() method code, an “Idc #4 <String
“example'>'' instruction is inserted after the “putstatic #3
instruction in order to be the first instruction following the
execution of the “putstatic #3 instruction. This causes the
JAVA virtual machine to load the String value"example onto
the stack of the current method frame and results in the String
value of “example” loaded onto the top of the stack of the
current method frame. This change is significant because it
modifies the setvalues() method to load a String identifier
corresponding to the classname of the class containing the
static field location written to by the “putstatic #3 instruction
onto the stack.

0146 Furthermore, the JAVA virtual machine instruction
"iconst O’ is inserted after the "Idc H4' instruction so that the
JAVA virtual machine loads an integer value of “0” onto the
stack of the current method frame and results in the integer
value of “0” loaded onto the top of the stack of the current
method frame. This change is significant because it modifies
the setValues() method to load an integer value, which in this
example is “0”, which represents the identity of the memory
location (field) manipulated by the preceding “putstatic #3
operation. It is to be noted that the choice or particular form of
the memory identifier used for the implementation of this
invention is for illustration purposes only. In this example, the
integer value of “O'” is the identifier used of the manipulated
memory location, and corresponds to the “staticvalue” field
as the first field of the “example.java' application, as shown in
Annexure A7. Therefore, corresponding to the “putstatic #3
instruction, the "iconst 0” instruction loads the integer value
“0” corresponding to the index of the manipulated field of the
“putstatic #3 instruction, and which in this case is the first
field of “example.java' hence the “O'” integer index value,
onto the stack.

0147 Additionally, the JAVA virtual machine instruction
“invokestatic #5 <Method boolean alert(java.lang. Object,
int)>'' is inserted after the "iconst 0” instruction so that the
JAVA virtual machine pops the two topmost items off the
stack of the current method frame (which in accordance with
the preceding “Idc #4 instruction is a reference to the String
object with the value “example corresponding to the name of

Aug. 6, 2009

the class to which manipulated field belongs, and the integer
“0” corresponding to the index of the manipulated field in the
example.java application) and invokes the “alert method,
passing the two topmost items popped off the stack to the new
method frame as its first two arguments. This change is sig
nificant because it modifies the setvalues() method to execute
the “alert' method and associated operations, corresponding
to the preceding memory manipulation operation (that is, the
“putstatic #3 instruction) of the setvalues() method.
0.148. Likewise, in this modified setvalues() method code,
an “aload 0” instruction is inserted after the “putfield #2
instruction in order to be the first instruction following the
execution of the “putfield #2 instruction. This causes the
JAVA virtual machine to load the instance object of the
example class to which the manipulated field of the preceding
"puffield #2 instruction belongs, onto the stack of the current
method frame and results in the object reference correspond
ing to the instance field written to by the “putfield #2 instruc
tion, loaded onto the top of the stack of the current method
frame. This change is significant because it modifies the set
values() method to load a reference to the object correspond
ing to the manipulated field onto the stack.
0.149 Furthermore, the JAVA virtual machine instruction
"iconst 1” is inserted after the “aload O' instruction so that
the JAVA virtual machine loads an integer value of “1” onto
the stack of the current method frame and results in the integer
value of “1” loaded onto the top of the stack of the current
method frame. This change is significant because it modifies
the setValues() method to load an integer value, which in this
example is “1”, which represents the identity of the memory
location (field) manipulated by the preceding “putfield #2
operation. It is to be noted that the choice or particular form of
the identifier used for the implementation of this invention is
for illustration purposes only. In this example, the integer
value of “1” corresponds to the “instanceValue” field as the
second field of the “example.java' application, as shown in
Annexure A7. Therefore, corresponding to the “putfield #2
instruction, the "iconst 1” instruction loads the integer value
“1” corresponding to the index of the manipulated field of the
“putfield #2 instruction, and which in this case is the second
field of “example.java' hence the “1” integer index value,
onto the stack.

0150. Additionally, the JAVA virtual machine instruction
“invokestatic #5 <Method boolean alert(java.lang. Object,
int)>'' is inserted after the "iconst 1” instruction so that the
JAVA virtual machine pops the two topmost item off the stack
of the current method frame (which in accordance with the
preceding “aload 0” instruction is a reference to the object
corresponding to the object to which the manipulated
instance field belongs, and the integer “1” corresponding to
the index of the manipulated field in the example.java appli
cation) and invokes the “alert method, passing the two top
most items popped off the Stack to the new method frame as
its first two arguments. This change is significant because it
modifies the setValues() method to execute the “alert”
method and associated operations, corresponding to the pre
ceding memory manipulation operation (that is, the “putfield
#2 instruction) of the setValues() method.
0151. The method void alert(java.lang. Object, int), part of
the Field Alert code of Annexure A8 and part of the distributed
runtime system (DRT) 71, requests or otherwise notifies a
DRT thread 121/1 executing the FieldSend.java code of

US 2009/O 198776 A1

Annexure A9 to update and propagate the changed identity
and value of the manipulated memory location to the plurality
of machines M. . . Mn.
0152. It will be appreciated that the modified code permits,
in a distributed computing environment having a plurality of
computers or computing machines, the coordinated operation
of memory manipulation operations so that the problems
associated with the operation of the unmodified code or pro
cedure on a plurality of machines M1 . . . Mn (such as for
example inconsistent and incoherent memory state and
manipulation and updating operation) does not occur when
applying the modified code or procedure.
0153. Turning to FIG. 14, there is illustrated a schematic
representation of a single prior art computer operated as a
JAVA virtual machine. In this way, a machine (produced by
any one of various manufacturers and having an operating
system operating in any one of various different languages)
can operate in the particular language of the application pro
gram code 50, in this instance the JAVA language. That is, a
JAVA virtual machine 72 is able to operate application code
50 in the JAVA language, and utilize the JAVA architecture
irrespective of the machine manufacturer and the internal
details of the machine.
0154 When implemented in a non-JAVA language or
application code environment, the generalized platform, and/
or virtual machine and/or machine and/or runtime system is
able to operate application code 50 in the language(s) (pos
sibly including for example, but not limited to any one or
more of Source-code languages, intermediate-code lan
guages, object-code languages, machine-code languages, and
any other code languages) of that platform, and/or virtual
machine and/or machine and/or runtime system environment,
and utilize the platform, and/or virtual machine and/or
machine and/or runtime system and/or language architecture
irrespective of the machine manufacturer and the internal
details of the machine. It will also be appreciated in light of
the description provided herein that the platform and/or runt
ime system may include virtual machine and non-virtual
machine software and/or firmware architectures, as well as
hardware and direct hardware coded applications and imple
mentations.
0155 Returning to the example of the JAVA language
virtual machine environment, in the JAVA language, the class
initialization routine <clinitd happens only once when a given
class file 50A is loaded. However, the object initialization
routine <init> typically happens frequently, for example the
object initialization routine may usually occur every time a
new object (such as an object 50X,50Y or 50Z) is created. In
addition, within the JAVA environment and other machine or
other runtime system environments using classes and object
constructs, classes (generally being a broader category than
objects) are loaded prior to objects (which are the narrower
category and wherein the objects belong to or are identified
with a particular class) so that in the application code 50
illustrated in FIG. 14, having a single class 50A and three
objects 50X, 50Y, and 50Z, the first class 50A is loaded first,
then first object 50X is loaded, then second object 50Y is
loaded and finally third object 50Z is loaded.
0156 Where, as in the embodiment illustrated relative to
FIG. 14, there is only a single computer or machine 72 (and
not a plurality of connected or coupled computers or
machines), then no conflict or inconsistency arises in the
running of the initialization routines (such as class and object
initialization routines) intended to operate during the loading

Aug. 6, 2009

procedure because for conventional operation each initializa
tion routine is executed only once by the single virtual
machine or machine or runtime system or language environ
ment as needed for each of the one or more classes and one or
more objects belonging to or identified with the classes, or
equivalent where the terms classes and object are not used.
0157 For a more general set of virtual machine or abstract
machine environments, and for current and future computers
and/or computing machines and/or information appliances or
processing systems, and that may not utilize or require utili
Zation of either classes and/or objects, the inventive structure,
method, and computer program and computer program prod
uct are still applicable. Examples of computers and/or com
puting machines that do not utilize either classes and/or
objects include for example, the x86 computer architecture
manufactured by Intel Corporation and others, the SPARC
computer architecture manufactured by Sun MicroSystems,
Inc and others, the PowerPC computer architecture manufac
tured by International Business Machines Corporation and
others, and the personal computer products made by Apple
Computer, Inc., and others. For these types of computers,
computing machines, information appliances, and the virtual
machine or virtual computing environments implemented
thereon that do not utilize the idea of classes or objects, the
terms class and object may be generalized for example to
include primitive data types (such as integer data types, float
ing point data types, long data types, double data types, string
data types, character data types and boolean data types),
structured data types (such as arrays and records) derived
types, or other code or data structures of procedural languages
or other languages and environments such as functions, point
ers, components, modules, structures, references and unions.
0158 Returning to the example of the JAVA language
virtual machine environment, in the JAVA language, the class
initialization routine <clinitd happens only once when a given
class file 50A is loaded. However, the object initialization
routine <init> typically happens frequently, for example the
object initialization routine will occur every time a new object
(such as an object 50X,50Y and 50Z) is created. In addition,
within the JAVA environment and other machine or other
runtime system environments using classes and object con
structures, classes (being the broader category) are loaded
prior to objects (which are the narrower category and wherein
the objects belong to or are identified with a particular class)
so that in the application code 50 illustrated in FIG. 14, having
a single class 50A and three objects 50X-50Z, the first class
50A is loaded first, then the first object 50X is loaded, then
second object 50Y is loaded and finally third object 50Z is
loaded.

0159. Where, as in the embodiment illustrated relative to
FIG. 14, there is only a single computer or machine 72 (not a
plurality of connected or coupled machines), then no conflict
or inconsistency arises in the running of the initialization
routines (i.e. the class initialization routine <clinitd and the
object initialisation routine <initd) intended to operate during
the loading procedure because for conventional operation
each initialisation routine is executed only once by the single
virtual machine or machine or runtime system or language
environment as needed for each of the one or more classes and
one or more objects belonging to or identified with the
classes.

0160 However, in the arrangement illustrated in FIG. 8,
(and also in FIGS. 31-33), a plurality of individual computers
or machines M1, M2,..., Minare provided, each of which are

US 2009/O 198776 A1

interconnected via a communications network 53 or other
communications link and each of which individual computers
or machines provided with a modifier 51 (See in FIG. 5) and
realised by or in for example the distributed runtime system
(DRT) 71 (See FIG. 8) and loaded with a common application
code 50. The term common application program is to be
understood to mean an application program or application
program code written to operate on a single machine, and
loaded and/or executed in whole or in part on each one of the
plurality of computers or machines M1, M2 . . . Mn, or
optionally on each one of some subset of the plurality of
computers or machines M1, M2 . . . Mn. Put somewhat
differently, there is a common application program repre
sented in application code 50, and this single copy or perhaps
a plurality of identical copies are modified to generate a
modified copy or version of the application program or pro
gram code, each copy or instance prepared for execution on
the plurality of machines. At the point after they are modified
they are common in the sense that they perform similar opera
tions and operate consistently and coherently with each other.
It will be appreciated that a plurality of computers, machines,
information appliances, or the like implementing the features
of the invention may optionally be connected to or coupled
with other computers, machines, information appliances, or
the like that do not implement the features of the invention.
0161 In some embodiments, some or all of the plurality of
individual computers or machines may be contained within a
single housing or chassis (such as so-called “blade servers'
manufactured by Hewlett-Packard Development Company,
Intel Corporation, IBM Corporation and others) or imple
mented on a single printed circuit board or even within a
single chip or chip set.
(0162 Essentially the modifier 51 or DRT 71 or other code
modifying means is responsible for modifying the application
code 50 so that it may execute initialisation routines or other
initialization operations, such as for example class and object
initialization methods or routines in the JAVA language and
virtual machine environment, in a coordinated, coherent, and
consistent manner across and between the plurality of indi
vidual machines M1, M2... Min. It follows therefore that in
Such a computing environment it is necessary to ensure that
the local objects and classes on each of the individual
machines M1, M2... Mn is initialized in a consistent fashion
(with respect to the others).
0163. It will be appreciated in light of the description
provided herein that there are alternative implementations of
the modifier 51 and the distributed run time 71. For example,
the modifier 51 may be implemented as a component of or
within the distributed run time 71, and therefore the DRT 71
may implement the functions and operations of the modifier
51. Alternatively, the function and operation of the modifier
51 may be implemented outside of the structure, software,
firmware, or other means used to implement the DRT 71. In
one embodiment, the modifier 51 and DRT 71 are imple
mented or written in a single piece of computer program code
that provides the functions of the DRT and modifier. The
modifier function and structure therefore maybe subsumed
into the DRT and considered to be an optional component.
Independent of how implemented, the modifier function and
structure is responsible for modifying the executable code of
the application code program, and the distributed run time
function and structure is responsible for implementing com
munications between and among the computers or machines.
The communications functionality in one embodiment is

Aug. 6, 2009

implemented via an intermediary protocol layer within the
computer program code of the DRT on each machine. The
DRT may for example implement a communications stack in
the JAVA language and use the Transmission Control Proto
col/Internet Protocol (TCP/IP) to provide for communica
tions or talking between the machines. Exactly how these
functions or operations are implemented or divided between
structural and/or procedural elements, or between computer
program code or data structures within the invention are less
important than that they are provided.
0164. In order to ensure consistent class and object (or
equivalent) initialisation status and initialisation operation
between and amongst machines M1, M2, . . . , Mn, the
application code 50 is analysed or scrutinized by searching
through the executable application code 50 in order to detect
program steps (such as particular instructions or instruction
types) in the application code 50 which define or constitute or
otherwise represent an initialization operation or routine (or
other similar memory, resource, data, or code initialization
routine or operation). In the JAVA language. Such program
steps may for example comprise or consist of some part of, or
all of a "-initz' or “-clinitz' method of an object or class,
and optionally any other code, routine, or method related to a
“<inite” or “-clinitz' method, for example by means of a
method invocation from the body of the “-inite of "<clinite”
method to a different method.

0.165. This analysis or scrutiny of the application code 50
may take place either prior to loading the application program
code 50, or during the application program code 50 loading
procedure, or even after the application program code 50
loading procedure. It may be likened to an instrumentation,
program transformation, translation, or compilation proce
dure in that the application code may be instrumented with
additional instructions, and/or otherwise modified by mean
ing-preserving program manipulations, and/or optionally
translated from an input code language to a different code
language (such as for example from Source-code language or
intermediate-code language to object-code language or
machine-code language), and with the understanding that the
term compilation normally or conventionally involves a
change in code or language, for example, from source code to
object code or from one language to another language. How
ever, in the present instance the term “compilation' (and its
grammatical equivalents) is not so restricted and can also
include or embrace modifications within the same code or
language. For example, the compilation and its equivalents
are understood to encompass both ordinary compilation (Such
as for example by way of illustration but not limitation, from
Source-code to object-code), and compilation from source
code to Source-code, as well as compilation from object-code
to object-code, and any altered combinations therein. It is also
inclusive of so-called “intermediary-code languages' which
are a form of “pseudo object-code'.
0166 By way of illustration and not limitation, in one
embodiment, the analysis or scrutiny of the application code
50 may take place during the loading of the application pro
gram code Such as by the operating system reading the appli
cation code from the hard disk or other storage device or
Source and copying it into memory and preparing to begin
execution of the application program code. In another
embodiment, in a JAVA virtual machine, the analysis or scru
tiny may take place during the class loading procedure of the
java.lang. ClassLoader loadClass method (e.g., java.lang.
ClassLoaderloadClass()').

US 2009/O 198776 A1

0167 Alternatively, the analysis or scrutiny of the appli
cation code 50 may take place even after the application
program code loading procedure. Such as after the operating
system has loaded the application code into memory, or
optionally even after execution of the application program
code has started or commenced, such as for example after the
JAVA virtual machine has loaded the application code into the
virtual machine via the java.lang. ClassLoader.loadClass()
method and optionally commenced execution.
0168 As a consequence, of the above described analysis
or scrutiny, initialization routines (for example <clinit> class
initialisation methods and <initid object initialization meth
ods) are initially looked for, and when found or identified a
modifying code is inserted, so as to give rise to a modified
initialization routine. This modified routine is adapted and
written to initialize the class 50A on one of the machines, for
example JVMH1, and tell, notify, or otherwise communicate
to all the other machines M2, ..., Mn that such a class 50A
exists and optionally its initialized state. There are several
different alternative modes wherein this modification and
loading can be carried out.
(0169. Thus, in one mode, the DRT 71/1 on the loading
machine, in this example Java Virtual Machine M1 (JVMH1),
asks the DRT's 71/2 ... 71/n of all the other machines M1, .
. . . Mn if the similar equivalent first class 50A is initialized
(i.e. has already been initialized) on any other machine. If the
answer to this question is yes (that is, a similar equivalent
class 50A has already been initialized on another machine),
then the execution of the initialization procedure is aborted,
paused, terminated, turned off or otherwise disabled for the
class 50A on machine JVMH1. If the answer is no (that is, a
similar equivalent class 50A has not already been initialised
on another machine), then the initialization operation is con
tinued (or resumed, or started, or commenced and the class
50A is initialized and optionally the consequential changes
(such as for example initialized code and data-structures in
memory) brought about during that initialization procedure
are transferred to each similar equivalent local class on each
one of the other machines as indicated by arrows 83 in FIG.8.
0170 A similar procedure happens on each occasion that
an object, say 50X,50Y or 50Z is to be loaded and initialized.
Where the DRT 71/1 of the loading machine, in this example
Java Machine M1 (JVMii1), does not discern, as a result of
interrogation of the other machines M2... Mn that, a similar
equivalent object to the particular object to be initialized on
machine M1, say object 50Y, has already been initialised by
another machine, then the DRT 71/1 on machine M1 may
execute the object initialization routine corresponding to
object 50Y, and optionally each of the other machines M2 ..
. Mn may load a similar equivalent local object (which may
conveniently be termed a peer object) and associated conse
quential changes (such as for example initialized data, initial
ized code, and/or initialized system or resources structures)
brought about by the execution of the initialization operation
on machine M1. However, if the DRT 71/1 of machine M1
determines that a similar equivalent object to the object 50Y
in question has already been initialization on another machine
of the plurality of machines (say for example machine M2).
then the execution by machine M1 of the initialization func
tion, procedure, or routine corresponding to object 50Y is not
started or commenced, or is otherwise aborted, terminated,
turned off or otherwise disabled, and object 50Y on machine
M1 is loaded, and preferably but optionally the consequential
changes (such as for example initialized data, initialized

Aug. 6, 2009

code, and/or other initialized system or resource structures)
brought about by the execution of the initialization routine by
machine M2, is loaded on machine M1 corresponding to
object 50Y. Again there are various ways of bringing about
the desired result.
0171 Preferably, execution of the initialization routine is
allocated to one machine, such as the first machine M1 to load
(and optionally seek to initialize) the object or class. The
execution of the initialization routine corresponding to the
determination that a particular class or object (and any similar
equivalent local classes or objects on each of the machines
M1 ... Mn) is not already initialized, is to execute only once
with respect to all machines M1 . . . Mn, and preferably by
only one machine, on behalf of all machines M1 . . . Mn.
Corresponding to, and preferably following, the execution of
the initialization routine by one machine (say machine M1),
all other machines may then each load a similar equivalent
local object (or class) and optionally load the consequential
changes (such as for example initialized data, initialized
code, and/or other initialized system or resource structures)
brought about by the execution of the initialization operation
by machine M1.
0172. As seen in FIG. 15 a modification to the general
arrangement of FIG. 8 is provided in that machines M1, M2.
... Mn are as before and run the same application code 50 (or
codes) on all machines M1, M2 . . . Mn simultaneously or
concurrently. However, the previous arrangement is modified
by the provision of a server machine X which is conveniently
able to supply housekeeping functions, for example, and
especially the initialisation of structures, assets, and
resources. Such a server machine X can be a low value com
modity computer Such as a PC since its computational load is
low. As indicated by broken lines in FIG. 15, two server
machines X and X-1 can be provided for redundancy pur
poses to increase the overall reliability of the system. Where
two such server machines X and X-1 are provided, they are
preferably but optionally operated as redundant machines in a
failover arrangement.
0173 It is not necessary to provide a server machine X as

its computational load can be distributed over machines M1,
M2... Mn. Alternatively, a database operated by one machine
(in a master/slave type operation) can be used for the house
keeping function(s).
0.174 FIG. 16 shows a preferred general procedure to be
followed. After a loading step 161 has been commenced, the
instructions to be executed are considered in sequence and all
initialization routines are detected as indicated in step 162. In
the JAVA language these are the object initialisation methods
(e.g. ''<init>') and class initialisation methods (e.g.
“<clinite”). Other languages use different terms.
0.175 Where an initialization routine is detected in step
162, it is modified in step 163 in order to perform consistent,
coordinated, and coherent initialization operation (Such as for
example initialization of data structures and code structures)
across and between the plurality of machines M1, M2... Mn,
typically by inserting further instructions into the initialisa
tion routine to, for example, determine if a similar equivalent
object or class (or other asset) on machines M1 . . . Mn
corresponding to the object or class (or asset) to which this
initialisation routine corresponds, has already been initia
lised, and if so, aborting, pausing, terminating, turning off, or
otherwise disabling the execution of this initialization routine
(and/or initialization operation(s)), or if not then starting,
continuing, or resuming the executing the initialization rou

US 2009/O 198776 A1

tine (and/or initialization operation(s)), and optionally
instructing the other machines M1 . . . Mn to load a similar
equivalent object or class and consequential changes brought
about by the execution of the initialization routine. Alterna
tively, the modifying instructions may be inserted prior to the
routine, such as for example prior to the instruction(s) or
operation(s) which commence initialization of the corre
sponding class or object. Once the modification step 163 has
been completed the loading procedure continues by loading
the modified application code in place of the unmodified
application code, as indicated in step 164. Altogether, the
initialization routine is to be executed only once, and prefer
ably by only one machine, on behalf of all machines M1 ...
Mncorresponding to the determination by all machines M1.
. . Mn that the particular object or class (i.e. the similar
equivalent local object or class on each machine M1 ... Mn
corresponding to the particular object or class to which this
initialization routine relates) has not been initialized.
0176 FIG. 17 illustrates a particular form of modification.
After commencing the routine in step 171, the structures,
assets or resources (in JAVA termed classes or objects) to be
initialised are, in step 172, allocated a name or tag (for
example a global name or tag) which can be used to identify
corresponding similar equivalent local objects on each of the
machines M1, ..., Mn. This is most conveniently done via a
table (or similar data or record structure) maintained by server
machine X of FIG. 15. This table may also include an initial
ization status of the similar equivalent classes or object to be
initialised. It will be understood that this table or other data
structure may store only the initialization status, or it may
store other status or information as well.

(0177. As indicated in FIG. 17, if steps 173 and 174 deter
mine by means of the communication between machines M1
... Mn by DRT 71 that the similar equivalent local objects on
each other machine corresponding to the global name or tag is
not already initialised (i.e., not initialized on a machine other
than the machine carrying out the loading and seeking to
perform initialization), then this means that the object or class
can be initialised, preferably but optionally in the normal
fashion, by starting, commencing, continuing, or resuming
the execution of, or otherwise executing, the initialization
routine, as indicated in step 176, since it is the first of the
plurality of similar equivalent local objects or classes of
machines M1 ... Mn to be initialized.

0178. In one embodiment, the initialization routine is
stopped from initiating or commencing or beginning execu
tion; however, in some implementations it is difficult or prac
tically impossible to stop the initialization routine from initi
ating or beginning or commencing execution. Therefore, in
an alternative embodiment, the execution of the initialization
routine that has already started or commenced is aborted Such
that it does not complete or does not complete in its normal
manner. This alternative abortion is understood to include an
actual abortion, or a Suspend, or postpone, or pause of the
execution of a initialization routine that has started to execute
(regardless of the stage of execution before completion) and
therefore to make sure that the initialization routine does not
get the chance to execute to completion the initialization of
the object (or class or other asset)—and therefore the object
(or class or other asset) remains “un-initialized' (i.e., “not
initialized).
(0179. However or alternatively, if steps 173 and 174 deter
mine that the global name corresponding to the plurality of
similar equivalent local objects or classes, each on a one of the

20
Aug. 6, 2009

plurality of machines M1 . . . Mn, is already initialised on
another machine, then this means that the object or class is
considered to be initialized on behalf of, and for the purposes
of the plurality of machines M1 ... Mn. As a consequence,
the execution of the initialisation routine is aborted, termi
nated, turned off, or otherwise disabled, by carrying out step
175.

0180 FIG. 18, illustrative of one embodiment of step 173
of FIG. 17, shows the inquiry made by the loading machine
(one of M1, M2... Mn) to the server machine X of FIG. 15,
to enquire as to the initialisation status of the plurality of
similar equivalent local objects (or classes) corresponding to
the global name. The operation of the loading machine is
temporarily interrupted as indicated by step 181, and corre
sponding to step 173 of FIG. 17, until a reply to this preceding
request is received from machine X, as indicated by step 182.
In step 181 the loading machine sends an inquiry message to
machine X to request the initialization status of the object (or
class or other asset) to be initialized. Next, the loading
machine awaits a reply from machine X corresponding to the
inquiry message sent by the proposing machine at Step 181,
indicated by step 182.
0181 FIG. 19 shows the activity carried out by machineX
of FIG. 15 in response to such an initialization enquiry of step
181 of FIG. 18. The initialization status is determined in steps
192 and 193, which determines if a similar equivalent object
(or class or other asset) corresponding to the initialization
status request of global name, as received at step 191, is
initialized on another machine (i.e. a machine other than the
inquiring machine 181 from which the initialization status
request of step 191 originates), where a table of initialisation
states is consulted corresponding to the record for the global
name and, if the initialisation status record indicates that a
similar equivalent local object (or class) on another machine
(such as on a one of the machines M1 . . . Mn) and corre
sponding to global name is already initialised, the response to
that effect is sent to the inquiring machine by carrying out step
194. Alternatively, if the initialisation status record indicates
that a similar equivalent local object (or class) on another
machine (such as on a one of the plurality of machines M1 ..
. Mn) and corresponding to global name is uninitialized, a
corresponding reply is sent to the inquiring machine by car
rying out steps 195 and 196. The singular term object or class
as used here (or the equivalent term of asset, or resource used
in step 192) are to be understood to be inclusive of all similar
equivalent objects (or classes, or assets, or resources) corre
sponding to the same global name on each one of the plurality
of machines M1. Mn. The waiting inquiring machine of step
182 is then able to respond and/or operate accordingly, such
as for example by (i) aborting (or pausing, or postponing)
execution of the initialization routine when the reply from
machine X of step 182 indicated that a similar equivalent local
object on another machine (such as a one of the plurality of
machines M1 ... Mn) corresponding to the global name of the
object proposed to be initialized of step 172 is already initial
ized elsewhere (i.e. is initialized on a machine other than the
machine proposing to carry out the initialization); or (ii) by
continuing (or resuming, or starting, or commencing) execu
tion of the initialization routine when the reply from machine
X of step 182 indicated that a similar equivalent local object
on the plurality of machines M1 ... Mncorresponding to the
global name of the object proposing to be initialized of step

US 2009/O 198776 A1

172 is not initialized elsewhere (i.e. not initialized on a
machine other than the machine proposing to carry out the
initialization).
0182 Reference is made to the accompanying Annexures
in which: Annexures A1-A10 illustrate actual code in relation
to fields, Annexure B1 is a typical code fragment from an
unmodified <clinit> instruction, Annexure B2 is an equiva
lent in respect of a modified <clinitd instruction, Annexure
B3 is a typical code fragment from an unmodified <inite
instruction, Annexure B4 is an equivalent in respect of a
modified <inite instruction, In addition, Annexure B5 is an
alternative to the code of Annexure B2, and Annexure B6 is an
alternative to the code of Annexure B4.
0183. Furthermore, Annexure B7 is the source-code of
InitClient which carries out one embodiment of the steps of
FIGS. 17 and 18, which queries an “initialization server' (for
example a machine X) for the initialization status of the
specified class or object with respect to the plurality of similar
equivalent classes or objects on the plurality of machines M1
... Mn. Annexure B8 is the source-code of InitServer which
carries out one embodiment of the steps of FIG. 19, which
receives an initialization status query sent by InitClient and in
response returns the corresponding initialization status of the
specified class or object. Similarly, Annexure B9 is the
Source-code of the example application used in the before?
after examples of Annexure B1-B6 (Repeated as Tables X
through XV). And, Annexure B10 is the source-code of Init
Loader which carries out one embodiment of the steps of
FIGS. 16, 20, and 21, which modifies the example application
program code of Annexure B9 in accordance with one mode
of this invention.
0184 Annexures B1 and B2 (also reproduced in part in
Tables X and XI below) are exemplary code listings that set
forth the conventional or unmodified computer program Soft
ware code (such as may be used in a single machine or
computer environment) of an initialization routine of appli
cation program 50 and a post-modification excerpt of the
same initialization routine Such as may be used in embodi
ments of the present invention having multiple machines. The
modified code that is added to the initialization routine is
highlighted in bold text.
0185. It is noted that the disassembled compiled code in
the annexure and portion repeated in the table is taken from
the source-code of the file “example java' which is included
in the Annexure B4 (Table XIII). In the procedure of Annex
ure B1 and Table X, the procedure name “Method <clinite” of
Step 001 is the name of the displayed disassembled output of
the clinit method of the compiled application code “example
java’’. The method name “-clinited is the name of a class
initialization method in accordance with the JAVA platform
specification, and selected for this example to indicate a typi
cal mode of operation of a JAVA initialization method. Over
all the method is responsible for initializing the class
example so that it may be used, and the steps the “example.
java code performs are described in turn.
0186 First (Step 002) the JAVA virtual machine instruc
tion “new #2 <Class example>' causes the JAVA virtual
machine to instantiate a new class instance of the example
class indicated by the CONSTANT Classref info constant
pool item stored in the 2" index of the classfile structure of
the application program containing this example <clinit>
method and results in a reference to an newly created object of
type example being placed (pushed) on the stack of the
current method frame of the currently executing thread.

Aug. 6, 2009

0187 Next (Step 003), the Java Virtual Machine instruc
tion “dup” causes the Java Virtual Machine to duplicate the
topmost item of the Stack and push the duplicated item onto
the topmost position of the stack of the current method frame
and results in the reference to the new created example
object at the top of the stack being duplicated and pushed onto
the stack.

0188 Next (Step 004), the JAVA virtual machine instruc
tion “invokespecial #3 <Method example()>' causes the
JAVA virtual machine to pop the topmost item off the stack of
the current method frame and invoke the instance initializa
tion method".<inite on the popped object and results in the
“<inite” constructor of the newly created example object
being invoked.
(0189 The Java Virtual Machine instruction “putstatic #3
<Field example currentExample>” (Step 005) causes the Java
Virtual Machine to pop the topmost value off the stack of the
current method frame and store the value in the static field
indicated by the CONSTANT Fieldref info constant-pool
item stored in the 3" index of the classfile structure of the
application program containing this example <cliniti> method
and results in the reference to the newly created and initial
ized example object on the top of the stack of the current
method frame being stored in the static reference field named
“currentExample of class example.
0190. Finally, the Java Virtual Machine instruction
“return” (Step 006) causes the Java Virtual Machine to cease
executing this <clinitd method by returning control to the
previous method frame and results in termination of execu
tion of this <clinite method.
0191 As a result of these steps operating on a single
machine of the conventional configurations in FIG. 1 and
FIG. 2, the JAVA virtual machine can keep track of the ini
tialization status of a class in a consistent, coherent and coor
dinated manner, and in executing the <clinitd method con
taining the initialization operations is able to ensure that
unwanted behaviour (for example execution of the <inite
method of class example.java more than once) Such as may
be caused by inconsistent and/or incoherent initialization
operation, does not occur. Were these steps to be carried out
on the plurality of machines of the configurations of FIG. 5
and FIG.8 with the memory update and propagation replica
tion means of FIGS. 9, 10, 11, 12, and 13, and concurrently
executing the application program code 50 on each one of the
plurality of machines M1 ... Mn, the initialization operations
of each concurrently executing application program occur
rence on each one of the machines would be performed with
out coordination between any other of the occurrences on any
other of the machine(s). Given the goal of consistent, coordi
nated and coherent initialization operation across a plurality
of a machines, this prior art arrangement would fail to per
form Such consistent coordinated initialization operation
across the plurality of machines, as each machine performs
initialization only locally and without any attempt to coordi
nate their local initialization operation with any other similar
initialization operation on any one or more other machines.
Such an arrangement would therefore be susceptible to
unwanted or other anomalous behaviour due to uncoordi
nated, inconsistent and/or incoherent initialization states, and
associated initialization operation. Therefore it is the goal of
the present invention to overcome this limitation of the prior
art arrangement.
(0192. In the exemplary code in Table XIV (Annexure B5),
the code has been modified so that it solves the problem of

US 2009/O 198776 A1

consistent, coordinated initialization operation for a plurality
of machines M1 . . . Mn, that was not solved in the code
example from Table X (Annexure B1). In this modified
<clinite method code, an “Idc #2 <String “example'>
instruction is inserted before the “new #5’ instruction in order
to be the first instruction of the <clinite method. This causes
the JAVA virtual machine to load the item in the constant
pool at index 2 of the current classfile and store this item on
the top of the stack of the current method frame, and results in
the reference to a String object of value “example” being
pushed onto the stack.
0193 Furthermore, the JAVA virtual machine instruction
“invokestatic #3 <Method Boolean is AlreadyLoaded(java.
lang. String)>'' is inserted after the “0 Idc #2 instruction so
that the JAVA virtual machine pops the topmost item off the
stack of the current method frame (which in accordance with
the preceding “Idc #2 instruction is a reference to the String
object with the value “example' which corresponds to the
name of the class to which this <clinitz method belongs) and
invokes the “is AlreadyLoaded' method, passing the popped
item to the new method frame as its first argument, and
returning a boolean value onto the stack upon return from this
“invokestatic' instruction. This change is significant because
it modifies the <clinite method to execute the “is Already
Loaded method and associated operations, corresponding to
the start of execution of the <clinite method, and returns a
boolean argument (indicating whether the class correspond
ing to this <clinitd method is initialized on another machine
amongst the plurality of machines M1 ... Mn) onto the stack
of the executing method frame of the <clinitz method.
0194 Next, two JAVA virtual machine instructions “ifeq.
9 and “return' are inserted into the code stream after the “2
invokestatic #3” instruction and before the “new #5 instruc
tion. The first of these two instructions, the “ifeq 9” instruc
tion, causes the JAVA virtual machine to pop the topmost item
off the stack and performs a comparison between the popped
value and Zero. If the performed comparison Succeeds (i.e. if
and only if the popped value is equal to Zero), then execution
continues at the "9 new #5 instruction. If however the per
formed comparison fails (i.e. if and only if the popped value
is not equal to Zero), then execution continues at the next
instruction in the code stream, which is the “8 return' instruc
tion. This change is particularly significant because it modi
fies the <clinite method to either continue execution of the
<clinite method (i.e. instructions 9-19) if the returned value
of the “is AlreadyLoaded' method was negative (i.e. “false'),
or discontinue execution of the <clinitid method (i.e. the “8
return' instruction causing a return of control to the invoker of
this <clinite method) if the returned value of the “is Already
Loaded' method was positive (i.e. “true').
0.195 The method Void is AlreadyLoaded(java.lang.
String), part of the InitClient code of Annexure B7, and part of
the distributed runtime system (DRT) 71, performs the com
munications operations between machines M1 . . . Mn to
coordinate the execution of the <clinit> method amongst the
machines M1 ... Mn. The is AlreadyLoaded method of this
example communicates with the InitServer code of Annexure
B8 executing on a machine X of FIG. 15, by means of sending
an “initialization status request' to machine X corresponding
to the class being “initialized (i.e. the class to which this
<clinite method belongs). With reference to FIG. 19 and
Annexure B8, machine X receives the “initialization status
request corresponding to the class to which the <clinit>
method belongs, and consults a table of initialization states or

22
Aug. 6, 2009

records to determine the initialization state for the class to
which the request corresponds.
0196. If the class corresponding to the initialization status
request is not initialized on another machine other than the
requesting machine, then machine X will send a response
indicating that the class was not already initialized, and
update a record entry corresponding to the specified class to
indicate the class is now initialized. Alternatively, if the class
corresponding to the initialization status request is initialized
on another machine other than the requesting machine, then
machine X will send a response indicating that the class is
already initialized. Corresponding to the determination that
the class to which this initialization status request pertains is
not initialized on another machine other than the requesting
machine, a reply is generated and sent to the requesting
machine indicating that the class is not initialized. Addition
ally, machine Xpreferably updates the entry corresponding to
the class to which the initialization status request pertained to
indicate the class is now initialized. Following a receipt of
Sucha message from machine Xindicating that the class is not
initialized on another machine, the is AlreadyLoaded()
method and operations terminate execution and return a
false value to the previous method frame, which is the
executing method frame of the <clinitz method. Alterna
tively, following a receipt of a message from machine X
indicating that the class is already initialized on another
machine, the is AlreadyLoaded() method and operations ter
minate execution and return a “true value to the previous
method frame, which is the executing method frame of the
<clinitid method. Following this return operation, the execu
tion of the <clinite method frame then resumes as indicated in
the code sequence of Annexure B5 at step 004.
0197) It will be appreciated that the modified code permits,
in a distributed computing environment having a plurality of
computers or computing machines, the coordinated operation
of initialization routines or other initialization operations
between and amongst machines M1 . . . Mn so that the
problems associated with the operation of the unmodified
code or procedure on a plurality of machines M1 ... Mn (such
as for example multiple initialization operation, or re-initial
ization operation) does not occur when applying the modified
code or procedure.
0198 Similarly, the procedure followed to modify an
<initid method relating to objects so as to convert from the
code fragment of Annexure B3 (See Table XII) to the code
fragment of Annexure B6 (See Table XV) is indicated.
0199 Annexures B3 and B6 (also reproduced in part in
Tables XII and XV below) are exemplary code listings that set
forth the conventional or unmodified computer program Soft
ware code (such as may be used in a single machine or
computer environment) of an initialization routine of appli
cation program 50 and a post-modification excerpt of the
same initialization routine Such as may be used in embodi
ments of the present invention having multiple machines. The
modified code that is added to the initialization routine is
highlighted in bold text.
0200. It is noted that the disassembled compiled code in
the annexure and portion repeated in the table is taken from
the source-code of the file “example.java' which is included
in the Annexure B4. In the procedure of Annexure B1 and
Table XI, the procedure name “Method <inite” of Step 001 is
the name of the displayed disassembled output of the init
method of the compiled application code “example Java’’.
The method name "-inite” is the name of an object's initial

US 2009/O 198776 A1

ization method (or methods, as there may be more than one)
in accordance with the JAVA platform specification, and
selected for this example to indicate a typical mode of opera
tion of a JAVA initialization method. Overall the method is
responsible for initializing an example object so that it may
be used, and the steps the “example.java’ code performs are
described in turn.
0201 The Java Virtual Machine instruction “aload O'
(Step 002) causes the Java Virtual Machine to load the item in
the local variable arrayal index 0 of the current method frame
and store this item on the top of the stack of the current
method frame and results in the this object reference stored
in the local variable array at index 0 being pushed onto the
stack.
(0202 Next (Step 003), the JAVA virtual machine instruc
tion “invokespecial #1 <Methodjava.lang. Object()>' causes
the JAVA virtual machine to pop the topmost item off the
stack of the current method frame and invoke the instance
initialization method “-initz' on the popped object and
results in the “-inite” constructor (or method) of the
example object's Superclass being invoked.
0203 The Java Virtual Machine instruction “aload O'
(Step 004) causes the Java Virtual Machine to load the item in
the local variable array at index 0 of the current method frame
and store this item on the top of the stack of the current
method frame and results in the this object reference stored
in the local variable array at index 0 being pushed onto the
stack.

0204 Next (Step 005), the JAVA virtual machine instruc
tion “invokestatic #2 <Method long currentTimeNillis()>
causes the JAVA virtual machine to invoke the “current
TimeMillis() method of the java.lang.System class, and
results in a long value pushed onto the top of the stack corre
sponding to the return value from the currentTimeNillis()
method invocation.
0205 The Java Virtual Machine instruction “putfield #3
<Field long timestamps” (Step 006) causes the Java Virtual
Machine to pop the two topmost values off the stack of the
current method frame and store the topmost value in the
object instance field of the second popped value, indicated by
the CONSTANT Fieldref info constant-pool item stored in
the 3" index of the classfile structure of the application pro
gram containing this example <initid method, and results in
the long value on the top of the stack of the current method
frame being stored in the instance field named “timestamp' of
the object reference below the long value on the stack.
0206 Finally, the Java Virtual Machine instruction
“return” (Step 007) causes the Java Virtual Machine to cease
executing this <initid method by returning control to the pre
vious method frame and results in termination of execution of
this <inite method.
0207 As a result of these steps operating on a single
machine of the conventional configurations in FIG. 1 and
FIG. 2, the JAVA virtual machine can keep track of the ini
tialization status of an object in a consistent, coherent and
coordinated manner, and in executing the <initd method con
taining the initialization operations is able to ensure that
unwanted behaviour (for example execution of the <inite
method of a single example.java object more than once, or
re-initialization of the same object) Such as may be caused by
inconsistent and/or incoherent initialization operation, does
not occur. Were these steps to be carried out on the plurality of
machines of the configurations of FIG. 5 and FIG.8 with the
memory update and propagation replication means of FIGS.

Aug. 6, 2009

9, 10, 11, 12, and 13, and concurrently executing the appli
cation program code 50 on each one of the plurality of
machines M1 . . . Mn, the initialization operations of each
concurrently executing application program occurrence on
each one of the machines would be performed without coor
dination between any other of the occurrences on any other of
the machine(s). Given the goal of consistent, coordinated and
coherent initialization operation across a plurality of a
machines, this prior art arrangement would fail to perform
Such consistent coordinated initialization operation across the
plurality of machines, as each machine performs initializa
tion only locally and without any attempt to coordinate their
local initialization operation with any other similar initializa
tion operation on any one or more other machines. Such an
arrangement would therefore be susceptible to unwanted or
other anomalous behaviour due to uncoordinated, inconsis
tent and/or incoherent initialization states, and associated
initialization operation. Therefore it is the goal of the present
invention to overcome this limitation of the prior art arrange
ment.

0208. In the exemplary code in Table XV (Annexure B6),
the code has been modified so that it solves the problem of
consistent, coordinated initialization operation for a plurality
of machines M1 . . . Mn, that was not solved in the code
example from Table XII (Annexure B3). In this modified
<inite method code, an "aload O' instruction is inserted after
the “1 invokespecial #1 instruction, as the “invokespecial
#1 instruction must execute before the object may be further
used. This inserted “aload O' instruction causes the JAVA
virtual machine to load the item in the local variable array at
index 0 of the current method frame and store this item on the
top of the stack of the current method frame, and results in the
object reference to the this object at index 0 being pushed
onto the stack.

0209 Furthermore, the JAVA virtual machine instruction
“invokestatic #3 <Method Boolean is AlreadyLoaded(java.
lang. Object)>'' is inserted after the “4 aload 0” instruction so
that the JAVA virtual machine pops the topmost item off the
stack of the current method frame (which in accordance with
the preceding “aload 0” instruction is a reference to the
object to which this <initz method belongs) and invokes the
“is AlreadyLoaded method, passing the popped item to the
new method frame as its first argument, and returning a bool
ean value onto the stack upon return from this “invokestatic'
instruction. This change is significant because it modifies the
<inited method to execute the “is AlreadyLoaded' method and
associated operations, corresponding to the start of execution
of the <init> method, and returns a boolean argument (indi
cating whether the object corresponding to this <initi> method
is initialized on another machine amongst the plurality of
machines M1 ... Mn) onto the stack of the executing method
frame of the <inite method.

0210. Next, two JAVA virtual machine instructions “ifeq.
13 and “return are inserted into the code stream after the “5
invokestatic #2 instruction and before the “12 aload O'
instruction. The first of these two instructions, the “ifeq 13'
instruction, causes the JAVA virtual machine to pop the top
most item off the stack and performs a comparison between
the popped value and Zero. If the performed comparison
Succeeds (i.e. if and only if the popped value is equal to Zero),
then execution continues at the “12 aload O' instruction. If
however the performed comparison fails (i.e. if and only if the
popped value is not equal to Zero), then execution continues at
the next instruction in the code stream, which is the “11

US 2009/O 198776 A1

return' instruction. This change is particularly significant
because it modifies the <inite method to either continue
execution of the <inite method (i.e. instructions 12-19) if the
returned value of the “is AlreadyLoaded' method was nega
tive (i.e. “false'), or discontinue execution of the <inite
method (i.e. the “11 return instruction causing a return of
control to the invoker of this <initid method) if the returned
value of the “is AlreadyLoaded' method was positive (i.e.
“true”).
0211. The method void is AlreadyLoaded(java.lang.Ob

ject), part of the InitClient code of Annexure B7, and part of
the distributed runtime system (DRT) 71, performs the com
munications operations between machines M1 . . . Mn to
coordinate the execution of the <initi> method amongst the
machines M1 ... Mn. The is AlreadyLoaded method of this
example communicates with the Initserver code of Annexure
B8 executing on a machine X of FIG. 15, by means of sending
an “initialization status request' to machine X corresponding
to the object being “initialized' (i.e. the object to which this
<clinite method belongs). With reference to FIG. 19 and
Annexure B8, machine X receives the “initialization status
request corresponding to the object to which the <clinite
method belongs, and consults a table of initialization states or
records to determine the initialization state for the object to
which the request corresponds.
0212. If the object corresponding to the initialization sta
tus request is not initialized on another machine other than the
requesting machine, then machine X will send a response
indicating that the object was not already initialized, and
update a record entry corresponding to the specified object to
indicate the object is now initialized. Alternatively, if the
object corresponding to the initialization status request is
initialized on another machine other than the requesting
machine, then machine X will send a response indicating that
the object is already initialized. Corresponding to the deter
mination that the object to which this initialization status
request pertains is not initialized on another machine other
than the requesting machine, a reply is generated and sent to
the requesting machine indicating that the object is not ini
tialized. Additionally, machine Xpreferably updates the entry
corresponding to the object to which the initialization status
request pertained to indicate the object is now initialized.
Following a receipt of Such a message from machine X indi
cating that the object is not initialized on another machine, the
is AlreadyLoaded() method and operations terminate execu
tion and return a false value to the previous method frame,
which is the executing method frame of the <initz method.
Alternatively, following a receipt of a message from machine
X indicating that the object is already initialized on another
machine, the is AlreadyLoaded() method and operations ter
minate execution and return a “true value to the previous
method frame, which is the executing method frame of the
<init> method. Following this return operation, the execution
of the <inite method frame then resumes as indicated in the
code sequence of Annexure B5 at step 006.
0213. It will be appreciated that the modified code permits,
in a distributed computing environment having a plurality of
computers or computing machines, the coordinated operation
of initialization routines or other initialization operations so
that the problems associated with the operation of the
unmodified code or procedure on a plurality of machines M1.
Mn (such as for example multiple initialization, or re-initial
ization operation) does not occur when applying the modified
code or procedure.

24
Aug. 6, 2009

0214) Annexure B1 is a before-modification excerpt of the
disassembled compiled form of the <clinite method of the
example.java application of Annexure B9. Annexure B2 is an
after-modification form of Annexure B1, modified by Init
Loader.java of Annexure B10 in accordance with the steps of
FIG. 20. Annexure B3 is a before-modification excerpt of the
disassembled compiled form of the <initz method of the
example.java application of Annexure B9. Annexure B4 is an
after-modification form of Annexure B3, modified by Init
Loader.java of Annexure B10 in accordance with the steps of
FIG. 21. Annexure B5 is an alternative after-modification
form of Annexure B1, modified by InitLoader.java of Annex
ure B10 in accordance with the steps of FIG. 20. And Annex
ure B6 is an alternative after-modification form of Annexure
B3, modified by Initoader.java of Annexure B10 in accor
dance with the steps of FIG. 21. The modifications are high
lighted in bold.

TABLE X

Annexure B1

Method <clinits
0 new #2 <Class example>
3 dup
4 invokespecial #3 <Method example()>
7 putstatic #4 <Field example currentExample>
10 return

TABLE XI

Annexure B2

B2
Method <clinits

0 invokestatic i3 <Method boolean is AlreadyLoaded ()>
3 ifeq 7
6 return
7 new #5 <Class example>
10 dup
11 invokespecial #6 <Method example()>
14 putstatic #7 <Field example example>
17 return

TABLE XII

Annexure B3

B3
Method <inits

O aload O
1 invokespecial #1 <Method java.lang. Object()>
4 aload O
5 invokestatic #2 <Method long currentTimeMillis();
8 putfield #3 <Field long timestamps
11 return

TABLE XIII

Annexure B4

B4
Method <inits

O aload O
1 invokespecial #1 <Method java.lang. Object()>
4 invokestatic #2 <Method boolean is AlreadyLoaded()>
7ifeq 11

US 2009/O 198776 A1

TABLE XIII-continued

Annexure B4

10 return
11 aload O
12 invokestatic #4 <Method long currentTimeMillis();
15 putfield #5 <Field long timestamps
18 return

TABLE XIV

Annexure B5

B5
Method <clinits

Oldc #2 <String “example's
2 invokestatic i3 <Method boolean is AlreadyLoaded(java.lang.

String)>
5ifeq9
8 return
9 new #5 <Class example>
12 dup
13 invokespecial #6 <Method example()>
16 putstatic #7 <Field example currentExample>
19 return

TABLE XV

Annexure B6

Method <inits
O aload O
1 invokespecial #1 <Method java.lang.Object()>
4 aload 0
5 invokestatic i2
<Method boolean is AlreadyLoaded(java.lang.Object)>
8 ifeq 12
11 return
12 aload O
13 invokestatic #4 <Method long currentTimeMillis();
16 putfield #5 <Field long timestamps
19 return

0215 Turning now to FIGS. 20 and 21, the procedure
followed to modify class initialisation routines (i.e., the
“<clinite” method) and object initialization routines (i.e. the
“<initz' method) is presented. The procedure followed to
modify a <clinit> method relating to classes so as to convert
from the code fragment of Annexure B1 (See Table X) to the
code fragment of Annexure B5 (See Table XIV) is indicated.
Similarly, the procedure followed to modify an object initial
ization <initid method relating to objects so as to convert from
the code fragment of Annexure B3 (See Table XII) to the code
fragment of Annexure B6 (See Table XV) is indicated.
0216. The initial loading of the application code 50 (an
illustrative example in source-code form of which is dis
played in Annexure B9, and a corresponding partially disas
sembled form of which is displayed in Annexure B1 (See also
Table X) and Annexure B3 (See also Table XII)) onto the
JAVA virtual machine 72 is commenced at step 201, and the
code is analysed or scrutinized in order to detect one or more
class initialization instructions, code-blocks or methods (i.e.
“<clinite” methods) by carrying out step 202, and/or one or
more object initialization instructions, code-blocks, or meth
ods (i.e."<initz' methods) by carrying out step 212. Once so
detected, an <clinit> method is modified by carrying out step

25
Aug. 6, 2009

203, and an <init > method is modified by carrying out step
213. One example illustration for a modified class initialisa
tion routine is indicated in Annexure B2 (See also Table XI),
and a further illustration of which is indicated in Annexure B5
(See also Table XIV). One example illustration for a modified
object initialisation routine is indicated in Annexure B4 (See
also Table XIII), and a further illustration of which is indi
cated in Annexure B6 (See also Table XV). As indicated by
step 204 and 214, after the modification is completed the
loading procedure is then continued Such that the modified
application code is loaded into or onto each of the machines
instead of the unmodified application code.
0217. Annexure B1 (See also Table X) and Annexure B2
(See also Table XI) are the before (or pre-modification or
unmodified code) and after (or post-modification or modified
code) excerpt of a class initialisation routine (i.e. a “-clinite”
method) respectively. Additionally, a further example of an
alternative modified <clinite method is illustrated in Annex
ure B5 (See also Table XIV). The modified code that is added
to the method is highlighted in bold. In the unmodified par
tially disassembled code sample of Annexure B1, the “new
#2 and “invokespecial #3 instructions of the <clinite
method creates a new object (of the type example), and the
following instruction “putstatic #4' writes the reference of
this newly created object to the memory location (field) called
“currentExample'. Thus, without management of coordi
nated class initialisation in a distributed environment of a
plurality of machines M1, ..., Mn, and each with a memory
updating and propagation means of FIGS. 9, 10, 11, 12, and
13, whereby the application program code 50 is to operate as
a single coordinated, consistent, and coherent instance across
the plurality of machines M1 . . . Mn, each computer or
computing machine would re-initialise (and optionally alter
natively re-write or over-write) the “currentExample'
memory location (field) with multiple and different objects
corresponding to the multiple executions of the <clinit>
method, leading to potentially incoherent or inconsistent
memory between and amongst the occurrences of the appli
cation program code 50 on each of the machines M1,..., Mn.
Clearly this is not what the programmer or user of a single
application program code 50 instance expects to happen.
0218. So, taking advantage of the DRT, the application
code 50 is modified as it is loaded into the machine by chang
ing the class initialisation routine (i.e., the <clinitd method).
The changes made (highlighted in bold) are the initial instruc
tions that the modified <clinite method executes. These added
instructions determine the initialization status of this particu
lar class by checking if a similar equivalent local class on
another machine corresponding to this particular class, has
already been initialized and optionally loaded, by calling a
routine or procedure to determine the initialization status of
the plurality of similar equivalent classes, such as the "is
already loaded” (e.g., “is AlreadyLoaded()) procedure or
method. The “is AlreadyLoaded () method of InitClient of
Annexure B7 of DRT 71 performing the steps of 172-176 of
FIG. 17 determines the initialization status of the similar
equivalent local classes each on a one of the machines M1, .
... Mncorresponding to the particular class being loaded, the
result of which is either a true result or a false result corre
sponding to whether or not another one (or more) of the
machines M1. Mn have already initialized, and optionally
loaded, a similar equivalent class.
0219. The initialisation determination procedure or
method “is AlreadyLoaded() of InitClient of Annexure B7

US 2009/O 198776 A1

of the DRT 71 can optionally take an argument which repre
sents a unique identifier for this class (See Annexure B5 and
Table XIV). For example, the name of the class that is being
considered for initialisation, a reference to the class or class
object representing this class being considered for initializa
tion, or a unique number or identifier representing this class
across all machines (that is, a unique identifier corresponding
to the plurality of similar equivalent local classes each on a
one of the plurality of machines M1 ... Mn), to be used in the
determination of the initialisation status of the plurality of
similar equivalent local classes on each of the machines M1.
. . Mn. This way, the DRT can support the initialization of
multiple classes at the same time without becoming confused
as to which of the multiple classes are already loaded and
which are not, by using the unique identifier of each class.
0220. The DRT 71 can determine the initialization status
of the class in a number of possible ways. Preferably, the
requesting machine can ask each other requested machine in
turn (such as by using a computer communications network to
exchange query and response messages between the request
ing machine and the requested machine(s)) if the requested
machine's similar equivalent local class corresponding to the
unique identifier is initialized, and if any requested machine
replies true indicating that the similar equivalent local class
has already been initialized, then return a true result at return
from the is AlreadyLoaded() method indicating that the local
class should not be initialized, otherwise return a false result
at return from the is AlreadyLoaded() method indicating that
the local class should be initialized. Of course different logic
schemes for true or false results may alternatively be imple
mented with the same effect. Alternatively, the DRT on the
local machine can consult a shared record table (perhaps on a
separate machine (eg machine X), or a coherent shared record
table on each local machine and updated to remain Substan
tially identical, or in a database) to determine if one of the
plurality of similar equivalent classes on other machines has
been initialised.

0221) If the is AlreadyLoaded() method of the DRT 71
returns false, then this means that this class (of the plurality of
similar equivalent local classes on the plurality of machines
M1 . . . Mn) has not been initialized before on any other
machine in the distributed computing environment of the
plurality of machines M1 ... Mn, and hence, the execution of
the class initialisation method is to take place or proceed as
this is considered the first and original initialization of a class
of the plurality of similar equivalent classes on each machine.
As a result, when a shared record table of initialisation states
exists, the DRT must update the initialisation status record
corresponding to this class in the shared recordtable to true or
other value indicating that this class is initialized. Such that
subsequent consultations of the shared record table of initiali
sation states (such as performed by all Subsequent invocations
of is AlreadyLoaded method) by all machines, and optionally
including the current machine, will now return a true value
indicating that this class is already initialized. Thus, if is Al
readyLoaded() returns false, the modified class initialisation
routine resumes or continues (or otherwise optionally begins
or starts) execution.
0222. On the other hand, if the is AlreadyLoaded method
of the DRT 71 returns true, then this means that this class (of
the plurality of similar equivalent local classes each on one of
the plurality of machines M1 . . . Mn) has already been
initialised in the distributed environment, as recorded in the
shared recordtable on machine X of the initialisation states of

26
Aug. 6, 2009

classes. In such a case, the class initialisation method is not to
be executed (or alternatively resumed, or continued, or
started, or executed to completion), as it will potentially cause
unwanted interactions or conflicts, such as re-initialization of
memory, data structures or other machine resources or
devices. Thus, when the DRT returns true, the inserted
instructions at the start of the <clinitz method prevent execu
tion of the initialization routine (optionally in whole or in
part) by aborting the start or continued execution of the
<clinite method through the use of the return instruction, and
consequently aborting the JAVA Virtual Machine's initializa
tion operation for this class.
0223) An equivalent procedure for the initialization rou
tines of object (for example".<initz' methods) is illustrated in
FIG. 21 where steps 212 and 213 are equivalent to steps 202
and 203 of FIG. 20. This results in the code of Annexure B3
being converted into the code of Annexure B4 (See also Table
XIII) or Annexure B6 (See also Table XV).
0224 Annexure B3 (See also Table XII) and Annexure B4
(See also Table XIV) are the before (or pre-modification or
unmodified code) and after (or post-modification or modified
code) excerpt of a object initialisation routine (i.e. a "-inite”
method) respectively. Additionally, a further example of an
alternative modified <inite method is illustrated in Annexure
B6 (See also Table XV). The modified code that is added to
the method is highlighted in bold. In the unmodified partially
disassembled code sample of Annexure B4, the “aload O'
and “invokespecial #3 instructions of the <initz method
invokes the <init> of the java.lang. Object Superclass. Next,
the following instructions “aload 0” loads a reference to the
this object onto the stack to be one of the arguments to the “8
putfield #3 instruction. Next, the following instruction
“invokestatic #2 invokes the method java.lang...System.cur
rentTimeMillis() and returns a long value on the stack. Next
the following instruction “putfield #3” writes the long value
placed on the stack be the preceding “invokestatic #2
instruction to the memory location (field) called “timestamp'
corresponding to the object instance loaded on the stack by
the “4 aload 0” instruction. Thus, without management of
coordinated object initialisation in a distributed environment
of a plurality of machines M1, . . . , Mn, and each with a
memory updating and propagation means of FIGS. 9, 10, 11,
12, and 13, whereby the application program code 50 is to
operate as a single coordinated, consistent, and coherent
instance across the plurality of machines M1 . . . Mn, each
computer or computing machine would re-initialise (and
optionally alternatively re-write or over-write) the “times
tamp' memory location (field) with multiple and different
values corresponding to the multiple executions of the <init>
method, leading to potentially incoherent or inconsistent
memory between and amongst the occurrences of application
program code 50 on each of the machines M1, . . . , Mn.
Clearly this is not what the programmer or user of a single
application program code 50 instance expects to happen.
0225. So, taking advantage of the DRT, the application
code 50 is modified as it is loaded into the machine by chang
ing the object initialisation routine (i.e. the <initi> method).
The changes made (highlighted in bold) are the initial instruc
tions that the modified <inite method executes. These added
instructions determine the initialisation status of this particu
lar object by checking if a similar equivalent local object on
another machine corresponding to this particular object, has
already been initialized and optionally loaded, by calling a
routine or procedure to determine the initialisation status of

US 2009/O 198776 A1

the object to be initialised, such as the “is already loaded
(e.g., “is AlreadyLoaded()) procedure or method of Annex
ure B7. The “is AlreadyLoaded() method of DRT 71 per
forming the steps of 172-176 of FIG. 17 determines the ini
tialization status of the similar equivalent local objects each
on a one of the machines M1, ..., Mn corresponding to the
particular object being loaded, the result of which is either a
true result or a false result corresponding to whether or not
another one (or more) of the machines M1 . . . Mn have
already initialized, and optionally loaded, this object.
0226. The initialisation determination procedure or
method “is AlreadyLoaded() of the DRT 71 can optionally
take an argument which represents a unique identifier for this
object (See Annexure B6 and Table XV). For example, the
name of the object that is being considered for initialisation,
a reference to the object being considered for initialization, or
a unique number or identifier representing this object across
all machines (that is, a unique identifier corresponding to the
plurality of similar equivalent local objects each on a one of
the plurality of machines M1 . . . Mn), to be used in the
determination of the initialisation status of this object in the
plurality of similar equivalent local objects on each of the
machines M1 . . . Mn. This way, the DRT can support the
initialization of multiple objects at the same time without
becoming confused as to which of the multiple objects are
already loaded and which are not, by using the unique iden
tifier of each object.
0227. The DRT 71 can determine the initialization status
of the object in a number of possible ways. Preferably, the
requesting machine can ask each other requested machine in
turn (such as by using a computer communications network to
exchange query and response messages between the request
ing machine and the requested machine(s)) if the requested
machine's similar equivalent local object corresponding to
the unique identifier is initialized, and if any requested
machine replies true indicating that the similar equivalent
local object has already been initialized, then return a true
result at return from the is AlreadyLoaded() method indicat
ing that the local object should not be initialized, otherwise
return a false result at return from the is AlreadyLoaded.()
method indicating that the local object should be initialized.
Ofcourse different logic schemes for true or false results may
alternatively be implemented with the same effect. Alterna
tively, the DRT on the local machine can consult a shared
record table (perhaps on a separate machine (eg machine X),
or a coherent shared record table on each local machine and
updated to remain Substantially identical, or in a database) to
determine if this particular object (or any one of the plurality
of similar equivalent objects on other machines) has been
initialised by one of the requested machines.
0228 If the is AlreadyLoaded() method of the DRT 71
returns false, then this means that this object (of the plurality
of similar equivalent local objects on the plurality of
machines M1 ... Mn) has not been initialized before on any
other machine in the distributed computing environment of
the plurality of machines M1 ... Mn, and hence, the execution
of the object initialisation method is to take place or proceed
as this is considered the first and original initialization. As a
result, when a shared record table of initialisation states
exists, the DRT must update the initialisation status record
corresponding to this object in the shared record table to true
or other value indicating that this object is initialized. Such
that subsequent consultations of the shared record table of
initialisation states (such as performed by all Subsequent

27
Aug. 6, 2009

invocations of is AlreadyLoaded method) by all machines,
and including the current machine, will now return a true
value indicating that this object is already initialized. Thus, if
is AlreadyLoaded() returns false, the modified object initiali
sation routine resumes or continues (or otherwise optionally
begins or starts) execution.
0229. On the other hand, if the is AlreadyLoaded method
of the DRT 71 returns true, then this means that this object (of
the plurality of similar equivalent local objects each on one of
the plurality of machines M1 . . . Mn) has already been
initialised in the distributed environment, as recorded in the
shared recordtable on machine X of the initialisation states of
objects. In such a case, the object initialisation method is not
to be executed (or alternatively resumed, or continued, or
started, or executed to completion), as it will potentially cause
unwanted interactions or conflicts, such as re-initialization of
memory, data structures or other machine resources or
devices. Thus, when the DRT returns true, the inserted
instructions near the start of the <inite method prevent execu
tion of the initialization routine (optionally in whole or in
part) by aborting the start or continued execution of the <inite
method through the use of the return instruction, and conse
quently aborting the JAVA Virtual Machine's initialization
operation for this object.
0230. A similar modification as used for <clinite is used
for <initd. The application program's<initd method (or meth
ods, as there may be multiple) is or are detected as shown by
step 212 and modified as shown by step 213 to behave coher
ently across the distributed environment.
0231. The disassembled instruction sequence after modi
fication has taken place is set out in Annexure B4 (and an
alternative similar arrangement is provided in Annexure B6)
and the modified/inserted instructions are highlighted in bold.
For the <inite modification, unlike the <clinite modification,
the modifying instructions are often required to be placed
after the “invokespecial' instruction, instead of at the very
beginning. The reasons for this are driven by the JAVAVirtual
Machine specification. Other languages often have similar
Subtle design nuances.
0232 Given the fundamental concept of testing to deter
mine if initialization has already been carried out on a one of
a plurality of similar equivalent classes or objector other asset
each on a one of the machines M1 ... Mn, and if not carrying
out the initialization, and if so, not carrying out the initializa
tion; there are several different ways or embodiments in
which this coordinated and coherent initialization concept,
method, and procedure may be carried out or implemented.
0233. In the first embodiment, a particular machine, say
machine M2, loads the asset (such as class or object) inclusive
of an initialisation routine, modifies it, and then loads each of
the other machines M1, M3, ..., Mn (either sequentially or
simultaneously or according to any other order, routine or
procedure) with the modified object (or class or other asset or
resource) inclusive of the new modified initialization routine
(s). Note that there may be one or a plurality of routines
corresponding to only one object in the application code, or
there may be a plurality of routines corresponding to a plu
rality of objects in the application code. Note that in one
embodiment, the initialization routine(s) that is (are) loaded is
binary executable object code. Alternatively, the initialization
routine(s) that is (are) loaded is executable intermediary code.
0234. In this arrangement, which may be termed “master/
slave” each of the slave (or secondary) machines M1, M3, ..
., Mnloads the modified object (or class), and inclusive of the

US 2009/O 198776 A1

new modified initialisation routine(s), that was sent to it over
the computer communications network or other communica
tions link or path by the master (or primary) machine, such as
machine M2, or some other machine Such as a machine X of
FIG. 15. In a slight variation of this “master/slave' or “pri
mary/secondary arrangement, the computer communica
tions network can be replaced by a shared storage device Such
as a shared file system, or a shared document/file repository
Such as a shared database.

0235. Note that the modification performed on each
machine or computer need not and frequently will not be the
same or identical. What is required is that they are modified in
a similar enough way that in accordance with the inventive
principles described herein, each of the plurality of machines
behaves consistently and coherently relative to the other
machines to accomplish the operations and objectives
described herein. Furthermore, it will be appreciated in light
of the description provided herein that there are a myriad of
ways to implement the modifications that may for example
depend on the particular hardware, architecture, operating
system, application program code, or the like or different
factors. It will also be appreciated that embodiments of the
invention may be implemented within an operating system,
outside of or without the benefit of any operating system,
inside the virtual machine, in an EPROM, in software, in
firmware, or in any combination of these.
0236. In a further variation of this “master/slave' or “pri
mary/secondary arrangement, machine M2 loads asset (Such
as class or object) inclusive of an (or even one or more)
initialization routine in unmodified form on machine M2, and
then (for example, machine M2 or each local machine) modi
fies the class (or object or asset) by deleting the initialization
routine in whole or part from the asset (or class or object) and
loads by means of a computer communications network or
other communications link or path the modified code for the
asset with the now modified or deleted initialization routine
on the other machines. Thus in this instance the modification
is not a transformation, instrumentation, translation or com
pilation of the asset initialization routine but a deletion of the
initialization routine on all machines except one.
0237. The process of deleting the initialization routine in

its entirety can either be performed by the “master machine
(such as machine M2 or some other machine such as machine
X of FIG. 15) or alternatively by each other machine M1, M3,
. . . . Mn upon receipt of the unmodified asset. An additional
variation of this “master/slave' or “primary/secondary
arrangement is to use a shared storage device Such as a shared
file system, or a shared document/file repository Such as a
shared database as means of exchanging the code (including
for example, the modified code) for the asset, class or object
between machines M1, M2,..., Mn and optionally a machine
X of FIG. 15.

0238. In a still further embodiment, each machine M1, ..
... Mn receives the unmodified asset (such as class or object)
inclusive of one or more initialization routines, but modifies
the routines and then loads the asset (Such as class or object)
consisting of the now modified routines. Although one
machine, such as the master or primary machine may custom
ize or perform a different modification to the initialization
routine sent to each machine, this embodiment more readily
enables the modification carried out by each machine to be
slightly different and to be enhanced, customized, and/or
optimized based upon its particular machine architecture,
hardware, processor, memory, configuration, operating sys

28
Aug. 6, 2009

tem, or other factors, yet still similar, coherent and consistent
with other machines with all other similar modifications and
characteristics that may not need to be similar or identical.
0239. In a further arrangement, a particular machine, say
M1, loads the unmodified asset (such as class or object)
inclusive of one or more initialisation routine and all other
machines M2, M3, ..., Mn perform a modification to delete
the initialization routine of the asset (Such as class or object)
and load the modified version.

0240. In all of the described instances or embodiments, the
Supply or the communication of the asset code (such as class
code or object code) to the machines M1, . . . , Mn, and
optionally inclusive of a machine X of FIG. 15, can be
branched, distributed or communicated among and between
the different machines in any combination or permutation:
Such as by providing direct machine to machine communica
tion (for example, M2 supplies each of M1, M3, M4, etc.
directly), or by providing or using cascaded or sequential
communication (for example, M2 supplies M1 which then
supplies M3 which then supplies M4, and so on), or a com
bination of the direct and cascaded and/or sequential.
0241. In a still further arrangement, the initial machine,
say M2, can carry out the initial loading of the application
code 50, modify it in accordance with this invention, and then
generate a class/object loaded and initialised table which lists
all or at least all the pertinent classes and/or objects loaded
and initialised by machine M2. This table is then sent or
communicated (or at least its contents are sent or communi
cated) to all other machines (including for example in
branched or cascade fashion). Then if a machine, other than
M2, needs to load and therefore initialise a class listed in the
table, it sends a request to M2 to provide the necessary infor
mation, optionally consisting of either the unmodified appli
cation code 50 of the class or object to be loaded, or the
modified application code of the class or object to be loaded,
and optionally a copy of the previously initialised (or option
ally and if available, the latest or even the current) values or
contents of the previously loaded and initialised class or
object on machine M2. An alternative arrangement of this
mode may be to send the request for necessary information
not to machine M2, but some other, or even more than one of
machine M1, ..., Min or machine X. Thus the information
provided to machine Mn is, in general, different from the
initial state loaded and initialise by machine M2.
0242 Under the above circumstances it is preferable and
advantageous for each entry in the table to be accompanied by
a counter which is incremented on each occasion that a class
or object is loaded and initialised on one of the machines M1,
..., Mn. Thus, when data or other content is demanded, both
the class or object contents and the count of the corresponding
counter, and optionally in addition the modified or unmodi
fied application code, are transferred in response to the
demand. This "on demand mode may somewhat increase the
overhead of the execution of this invention for one or more
machines M1, . . . , Mn, but it also reduces the volume of
traffic on the communications network which interconnects
the computers and therefore provides an overall advantage.
0243 In a still further arrangement, the machines M1 to
Mn, may send Some or all load requests to an additional
machine X (see for example the embodiment of FIG. 15),
which performs the modification to the application code 50
inclusive of an (and possibly a plurality of) initialisation
routine(s) via any of the afore mentioned methods, and
returns the modified application code inclusive of the now

US 2009/O 198776 A1

modified initialization routine(s) to each of the machines M1
to Mn, and these machines in turn load the modified applica
tion code inclusive of the modified routines locally. In this
arrangement, machines M1 to Mnforward all load requests to
machine X, which returns a modified application program
code 50 inclusive of modified initialization routine(s) to each
machine. The modifications performed by machine X can
include any of the modifications covered under the scope of
the present invention. This arrangement may of course be
applied to Some of the machines and other arrangements
described herein before applied to other of the machines.
0244 Persons skilled in the computing arts will be aware
of various possible techniques that may be used in the modi
fication of computer code, including but not limited to instru
mentation, program transformation, translation, or compila
tion means.

0245 One such technique is to make the modification(s) to
the application code, without a preceding or consequential
change of the language of the application code. Another Such
technique is to convert the original code (for example, JAVA
language source-code) into an intermediate representation (or
intermediate-code language, or pseudo code). Such as JAVA
byte code. Once this conversion takes place the modification
is made to the byte code and then the conversion may be
reversed. This gives the desired result of modified JAVA code.
0246 A further possible technique is to convert the appli
cation program to machine code, either directly from source
code or via the abovementioned intermediate language or
through some other intermediate means. Then the machine
code is modified before being loaded and executed. A still
further such technique is to convert the original code to an
intermediate representation, which is thus modified and sub
sequently converted into machine code.
0247 The present invention encompasses all such modi
fication routes and also a combination of two, three or even
more, of Such routes.
0248 Having now described aspects of the memory man
agement and replication and initialization, attention is now
directed to an exemplary operational scenario illustrating the
manner in which application programs on two computers
may simultaneously execute the same application program in
a consistent, coherent manner.
0249. In this regard, attention is directed to FIGS. 22-24,
two laptop computers 101 and 102 are illustrated. The com
puters 101 and 102 are not necessarily identical and indeed,
one can be an IBM or IBM-clone and the other can be an
APPLE computer. The computers 101 and 102 have two
screens 105,115 two keyboards 106, 116 but a single mouse
107. The two machines 101, 102 are interconnected by a
means of a single coaxial cable or twisted pair cable 314.
0250) Two simple application programs are downloaded
onto each of the machines 101, 102, the programs being
modified as they are being loaded as described above. In this
embodiment the first application is a simple calculator pro
gram and results in the image of a calculator 108 being dis
played on the screen 105. The second program is a graphics
program which displays four coloured blocks 109 which are
of different colours and which move about at random within
a rectangular box 310. Again, after loading, the box 310 is
displayed on the screen 105. Each application operates inde
pendently so that the blocks 109 are in random motion on the
screen 105 whilst numerals within the calculator 108 can be
selected (with the mouse 107) together with a mathematical

29
Aug. 6, 2009

operator (Such as addition or multiplication) so that the cal
culator 108 displays the result.
(0251. The mouse 107 can be used to “grab' the box 310
and move same to the right across the screen 105 and onto the
screen 115 so as to arrive at the situation illustrated in FIG. 23.
In this arrangement, the calculator application is being con
ducted on machine 101 whilst the graphics application result
ing in display of box 310 is being conducted on machine 102.
0252) However, as illustrated in FIG. 24, it is possible by
means of the mouse 107 to drag the calculator 108 to the right
as seen in FIG. 23 so as to have a part of the calculator 108
displayed by each of the screens 105,115. Similarly, the box
310 can be dragged by means of the mouse 107 to the left as
seen in FIG. 23 so that the box 310 is partially displayed by
each of the screens 105, 115 as indicated FIG. 24. In this
configuration, part of the calculator operation is being per
formed on machine 101 and part on machine 102 whilst part
of the graphics application is being carried out the machine
101 and the remainder is carried out on machine 102.

Further Description

0253) The foregoing describes only some embodiments of
the present invention and modifications, obvious to those
skilled in the art, can be made thereto without departing from
the scope of the present invention. For example, reference to
JAVA includes both the JAVA language and also JAVA plat
form and architecture.

0254. In all described instances of modification, where the
application code 50 is modified before, or during loading, or
even after loading but before execution of the unmodified
application code has commenced, it is to be understood that
the modified application code is loaded in place of, and
executed in place of the unmodified application code Subse
quently to the modifications being performed.
0255 Alternatively, in the instances where modification
takes place after loading and after execution of the unmodi
fied application code has commenced, it is to be understood
that the unmodified application code may either be replaced
with the modified application code in whole, corresponding
to the modifications being performed, or alternatively, the
unmodified application code may be replaced in part or incre
mentally as the modifications are performed incrementally on
the executing unmodified application code. Regardless of
which such modification routes are used, the modifications
Subsequent to being performed execute in place of the
unmodified application code.
0256 An advantage of using a global identifier in the
invention described is as a form of meta-name or meta
identity for all the similar equivalent local objects (or classes,
or assets or resources or the like) on each one of the plurality
of machines M1,..., Mn. For example, rather than having to
keep track of each unique local name or identity of each
similar equivalent local object on each machine of the plural
ity of similar equivalent objects, one may instead define or use
a global name corresponding to the plurality of similar
equivalent objects on each machine (e.g., "global
name7787), and with the understanding that each machine
relates the global name to a specific local name or object (e.g.,
“globalname7787 corresponds to object “localobject456”
on machine M1, and “globalname7787 corresponds to
object “localobject885” on machine M2, and “global
name7787 corresponds to object “localobject111 on
machine M3, and so forth).

US 2009/O 198776 A1

0257 Those skilled in the programming arts will be aware
that when additional code or instructions is/are inserted into
an existing code or instruction set to modify same, the exist
ing code or instruction set may well require further modifi
cation (such as for example, by renumbering of sequential
instructions) so that offsets, branching, attributes, mark up
and the like are catered for.
0258 Similarly, in the JAVA language memory locations
include, for example, both fields and array types. The above
description deals with fields and the changes required for
array types are essentially the same mutatis mutandis. Also
the present invention is equally applicable to similar pro
gramming languages (including procedural, declarative and
object orientated) to JAVA including Micrsoft.NET platform
and architecture (Visual Basic, Visual C/C", and C#) FOR
TRAN, C/C", COBOL, BASIC etc.
0259. The abovementioned arrangement, in which the
JAVA code which updates memory locations or field values is
modified, is based on the assumption that either the runtime
system (say, JAVA HOTSPOTVIRTUAL MACHINE written
in C and Java) or the operating system (LINUX written in C
and Assembler, for example) of each machine M1 ... Mn will
ordinarily update memory on the local machine (say M2) but
not on any corresponding other machines (M1, M3 ... Mn).
It is possible to leave the JAVA code which updates memory
locations or field values unamended and instead amend the
LINUX or HOTSPOTroutine which updates memory locally,
so that it correspondingly updates memory on all other
machines as well. In order to embrace such an arrangement
the term "updating propagation routine' used herein in con
junction with maintaining the memory of all machines M1 ..
. Mn essentially the same, is to be understood to include
within its scope both the JAVA putfield and putstatic instruc
tions and related operations and the “combination of the
JAVA putfield and putstatic operations and the LINUX or
HOTSPOT code fragments which perform memory updating.
0260. The abovementioned embodiment in which the
code of the JAVA initialisation routine is modified, is based
upon the assumption that either the run time system (say,
JAVA HOTSPOT VIRTUAL MACHINE written in C and
JAVA) or the operating system (LINUX written in C and
Assembler, for example) of each machine M1 ... Mn will call
the JAVA initialisation routine. It is possible to leave the JAVA
initialisation routine unamended and instead amend the
LINUX or HOTSPOT routine which calls the JAVA initiali
sation routine, so that if the object or class is already loaded,
then the JAVA initialisation routine is not called. In order to
embrace Such an arrangement the term “initialisation routine'
is to be understood to include within its scope both the JAVA
initialisation routine and the “combination of the JAVA ini
tialisation routine and the LINUX or HOTSPOT code frag
ments which call or initiates the JAVA initialisation routine.

0261 The terms object and class used herein are derived
from the JAVA environment and are intended to embrace
similar terms derived from different environments such as
dynamically linked libraries (DLL), or object code packages,
or function unit or memory locations.
0262 Various means are described relative to embodi
ments of the invention, including for example but not limited
to lock means, distributed run time means, modifier or modi
fying means, propagation means, distribution update means,
counter means, synchronization means, and the like. In at
least one embodiment of the invention, any one or each of
these various means may be implemented by computer pro

30
Aug. 6, 2009

gram code statements or instructions (possibly including by a
plurality of computer program code statements or instruc
tions) that execute within computer logic circuits, processors,
ASICs, microprocessors, microcontrollers, or other logic to
modify the operation of Such logic or circuits to accomplish
the recited operation or function. In another embodiment, any
one or each of these various means may be implemented in
firmware and in other embodiments such may be imple
mented inhardware. Furthermore, in at least one embodiment
of the invention, any one or each of these various means may
be implemented by an combination of computer program
software, firmware, and/or hardware.
0263. Any and each of the aforedescribed methods, pro
cedures, and/or routines may advantageously be imple
mented as a computer program and/or computer program
product stored on any tangible media or existing in electronic,
signal, or digital form. Such computer program or computer
program products comprising instructions separately and/or
organized as modules, programs, Subroutines, or in any other
way for execution in processing logic Such as in a processor or
microprocessor of a computer, computing machine, or infor
mation appliance; the computer program or computer pro
gram products modifying the operation of the computer on
which it executes or on a computer coupled with, connected
to, or otherwise in signal communications with the computer
on which the computer program or computer program prod
uct is present or executing. Such computer program or com
puter program product modifying the operation and architec
tural structure of the computer, computing machine, and/or
information appliance to alter the technical operation of the
computer and realize the technical effects described herein.
0264. The invention may therefore includes a computer
program product comprising a set of program instructions
stored in a storage medium or exiting electronically in any
form and operable to permit a plurality of computers to carry
out any of the methods, procedures, routines, or the like as
described herein including in any of the claims.
0265. Furthermore, the invention may include a plurality
of computers interconnected via a communication network or
other communications ink or path and each operable to Sub
stantially simultaneously or concurrently execute the same or
a different portion of an application program code written to
operate on only a single computer on a corresponding differ
ent one of computers, wherein the computers being pro
grammed to carry out any of the methods, procedures, or
routines described in the specification or set forth in any of the
claims, or being loaded with a computer program product.
0266 The term “comprising (and its grammatical varia
tions) as used herein is used in the inclusive sense of “having
or “including and not in the exclusive sense of "consisting
only of.

COPYRIGHT NOTICE

0267. This patent specification and the Annexures which
form a part thereof contains material which is subject to
copyright protection. The copyright owner (which is the
applicant) has no objection to the reproduction of this patent
specification or related materials from publicly available
associated Patent Office files for the purposes of review, but
otherwise reserves all copyright whatsoever. In particular, the
various instructions are not to be entered into a computer
without the specific written approval of the copyright owner.

US 2009/O 198776 A1

I/We claim:
1. A method of compiling or modifying an application

program written to operate on only one computer to have
different portions thereof to execute substantially simulta
neously on different ones of a plurality of computers inter
connected via a communications link without creating a dis
tributed shared memory arrangement, said method
comprising the steps of: (i) detecting instructions which cre
ate objects a in local independent memory of a single one of
said computers; and (ii) activating an initialization routine
following each said detected object creation instruction, said
initialization routine forwarding each created object to the
remainder of said computers.

2. The method as claimed in claim 1 and carried out prior to
loading the application program onto each said computer, or
during loading of the application program onto each said
computer, or after loading of the application program onto
each said computer and before execution of the relevant por
tion of the application program.

3. A method of ensuring for a single computer consistent
initialization of an application program written to operate on
only one computer but different portions of which application
program are to be executed Substantially simultaneously each
on a different one of a plurality of computers: said plurality of
computers including said single computer and being inter
connected via a communications network without forming a
distributed shared memory arrangement; said method com
prising the steps of:

(i) scrutinizing said application program at, or prior to, or
after loading to detect each program step defining an
initialization routine; and

(ii) modifying said initialization routine to generate a cor
responding modified initialization routine to ensure con
sistent operation of all said computers.

4. The method as claimed in claim 3 wherein said initial
ization routine is modified to execute once only on the cre
ation of a first object by any one of said computers and is
modified to be disabled on the creation of each subsequent
peer copy of said object by the remainder of said computers.

5. The method claimed in claim 3 wherein step (ii) com
prises the steps of

(iii) loading and executing said initialization routine on
said single computer;

(iv) modifying said initialization routine by said single
computer, and

(v) transferring said modified initialization routine to each
of the remaining computers.

6. The method as claimed in claim 5 wherein said modified
initialization routine is Supplied by said single computer
direct to each of said remaining computers.

7. The method as claimed in claim 5 wherein said modified
initialization routine is Supplied in cascade fashion from said
single computer sequentially to each of said remaining com
puters.

8. The method claimed in claim 3 wherein step (ii) com
prises the steps of: (vi) loading and modifying said initializa
tion routine on said single computer; (vii) said single com
puter sending said initialization routine to each of the
remaining computers; and (viii) each of said remaining com
puters modifying said initialization routine after receipt of
SaC.

9. The method claimed in claim 8 wherein said initializa
tion routine is Supplied by said single computer directly to
each of said remaining computers.

Aug. 6, 2009

10. The method claimed in claim 8 wherein said initializa
tion routine is supplied in cascade fashion from said single
computer sequentially to each of said remaining computers.

11. The method claimed in claim 4 wherein step (ii) com
prises the steps

(iii) loading and executing said initialization routine on
said single computer;

(iv) modifying said initialization routine by said single
computer, and

(v) transferring said modified initialization routine to each
of the remaining computers.

12. The method as claimed in claim 11 wherein said modi
fied initialization routine is Supplied by said single computer
direct to each of said remaining computers.

13. The method as claimed in claim 11 wherein said modi
fied initialization routine is Supplied in cascade fashion from
said single computer sequentially to each of said remaining
computers.

14. The method claimed in claim 11 wherein step (ii)
comprises the steps of

(vi) loading and modifying said initialization routine on
said single computer;

(vii) said single computer sending said unmodified initial
ization routine to each of the remaining computers; and

(viii) each of said remaining computers modifying said
initialization routine after receipt of same.

15. The method claimed in claim 14 wherein said unmodi
fied initialization routine is Supplied by said single computer
directly to each of said remaining computers.

16. The method claimed in claim 14 wherein said unmodi
fied initialization routine is Supplied in cascade fashion from
said single computer sequentially to each of said remaining
computers.

17. A computer program product comprising a set of pro
gram instructions stored in a storage medium and operable to
permit either a single computer or a plurality of computers, or
a plurality of computers in cooperation with a single com
puter, to carry out the method as claimed in claim 1.

18. A computer program product comprising a set of pro
gram instructions stored in a storage medium and operable to
permit eithera single computer, or a plurality of computers, or
a plurality of computers in cooperation with a single com
puter, to carry out the method as claimed in claim 3.

19. A single computer intended to operate with a plurality
of computers interconnected via a communication network
without forming a distributed shared memory arrangement
and operable to ensure consistent initialization of an applica
tion program written to operate on only one computer but
running Substantially simultaneously on all said computers,
said single computer being programmed to carry out the
method as claimed in claim 1.

20. A single computer intended to operate with a plurality
of computers interconnected via a communication network
without forming a distributed shared memory arrangement
and operable to ensure consistent initialization of an applica
tion program written to operate on only one computer but
running Substantially simultaneously on all said computers,
said single computer being programmed to carry out the
method as claimed in claim 3.

21. A single computer intended to operate in a multiple
computer system comprising a plurality of computers inter
connected by a communications network without forming a
distributed shared memory arrangement, said single com
puter having at least one application program each written to

US 2009/O 198776 A1

operate on only one computer but running simultaneously on
said plurality of computers wherein different portions of said
at least one application program execute substantially simul
taneously on different ones of said plurality of computers and
for each said different portion a like plurality of substantially
identical objects are created; each in a local independent
memory of the corresponding computer and each having a
Substantially identical name; and wherein the initial contents
of each of said substantially identically named objects is
Substantially the same.

22. The single computer as claimed in claim 21 wherein
each said computer includes a distributed run time means
with the distributed run time means of each said computer
able to communicate with all other computers so that if a
portion of said application program(s) running on one of said
computers creates an object in that computer then the created
object is propagated by the distributed run time means of said
one computer to all the other computers.

23. The single computer as claimed in claim 22 wherein
each said application program is modified before, during, or
after loading by inserting an initialization routine to modify
each instance at which said application program creates an
object, said initialization routine propagating every object
newly created by one computer to all said other computers.

24. The single computer as claimed in claim 23 wherein
said inserted initialization routine modifies a preexisting ini
tialization routine to enable the pre-existing initialization rou
tine to execute on creation of the first of said like plurality of
objects, and to disable the pre-existing initialization routine
on creation of all Subsequent ones of said like plurality of
objects.

25. The single computer as claimed in claim 24 wherein the
application program is modified in accordance with a proce
dure selected from the group of procedures consisting of
re-compilation at loading, pre-compilation prior to loading,
compilation prior to loading, just-in-time compilation, and
re-compilation after loading and before execution of the rel
evant portion of application program.

26. The single computer as claimed in claim 25 wherein
said modified application program is transferred to all said
computers in accordance with a procedure selected from the
group consisting of master/slave transfer, branched transfer
and cascaded transfer.

27. A single computer arranged to operate within a plural
ity of computers interconnected via a communications link
without forming a distributed shared memory arrangement,
said plurality of computers Substantially simultaneously
operating at least one application program each written to
operate on only one computer, wherein each said computer
substantially simultaneously executes a different portion of
said at least one application program; each said computer in
operating its application program portion creates objects only
in local independent memory physically located in each said
computer, the contents of the local independent memory uti
lized by each said computer are fundamentally similar but
not, at each instant, identical; and every one of said computers
has a distribution update means to distribute to all other said
computers objects created by said single computer.

28. The single computer as claimed in claim 27 wherein the
local memory capacity allocated to each said application
program is Substantially identical and the total memory
capacity available to each said application program is said
allocated memory capacity.

32
Aug. 6, 2009

29. The single computer as claimed in claim 27 wherein all
said distribution update means communicate via said com
munications link at a data transfer rate which is substantially
less than the local memory read rate.

30. The single computer as claimed in claim 27 wherein at
least some of said computers are manufactured by different
manufacturers and/or have different operating systems.

31. A method of running on a single computer at least one
application program each written to operate on only one
computer, said single computer being intended to operate in
cooperation with a plurality of other computers which are
interconnected by means of a communications network with
out forming a distributed shared memory arrangement, said
method comprising the steps of

(i) executing different portions of said at least one applica
tion program Substantially simultaneously on different
ones of said other computers and for each said portion
creating a like plurality of substantially identical objects
each in a local independent memory of the correspond
ing computer and each having a substantially identical
name; and

(ii) creating the initial contents of each of said identically
named objects substantially the same.

32. The method as claimed in claim 31 comprising the
further step of: (iii) if a portion of said application program
running on one of said computers creates an object in that
computer, then the created object is propagated to all of the
other computers via said communications network.

33. The method as claimed in claim32 including the further
step of: (iv) modifying said application program before, dur
ing or after loading by inserting an initialization routine to
modify each instance at which said application program cre
ates an object, said initialization routine propagating every
object created by one computer to all said other computers.

34. The method as claimed in claim 33 including the further
step of (V) modifying said application program utilizing a
procedure selected from the group of procedures consisting
of re-compilation at loading, pre-compilation prior to load
ing, compilation prior to loading, just-in-time compilation,
and re-compilation after loading and before execution of the
relevant portion of application program.

35. The method as claimed in claim 33 including the further
step of: (vi) transferring the modified application program to
all said computers utilizing a procedure selected from the
group consisting of master/slave transfer, branched transfer
and cascaded transfer.

36. In a multiple thread processing computer operation
taking place on a single computer intended to operate in
cooperation with a plurality of computers and in which indi
vidual threads of a single application program written to
operate on only one computer are simultaneously being pro
cessed each on a different corresponding one of a plurality of
computers interconnected via a communications link without
forming a distributed shared memory arrangement; the
improvement comprising: communicating objects created in
local independent memory physically associated with the
computer processing each thread to the local independent
memory of each other said computer via said communica
tions link.

37. The improvement as claimed in claim 36 wherein
objects created in the memory associated with one said thread
are communicated by the computer of said one thread to all
other said computers.

US 2009/O 198776 A1

38. The improvement as claimed in claim 36 wherein
objects created the memory associated with one said thread
are transmitted to the computer associated with another said
thread and are transmitted thereby to all said other computers.

39. A computer program product comprising a set of pro
gram instructions stored in a storage medium and operable to
permit either a single computer, or a plurality of computers, or
a plurality of computers in cooperation with a single com
puter, to carry out the method as claimed in claim 36.

40. A single computer intended to operate with a plurality
of computers interconnected via a communication network
without forming a distributed shared memory arrangement
and operable to ensure consistent initialization of an applica
tion program written to operate on only one computer but
running Substantially simultaneously on all said computers,
said single computer being programmed to carry out the
method as claimed in claim 31.

41. A single computer intended to operate with a plurality
of computers interconnected via a communication network
without forming a distributed shared memory arrangement
and operable to ensure consistent initialization of an applica
tion program written to operate on only one computer but
running Substantially simultaneously on all said computers,
said single computer being programmed to carry out the
method as claimed in claim 36.

42. A single computer intended to operate with a plurality
of computers interconnected via a communication network
without forming a distributed shared memory arrangement
and operable to ensure consistent initialization of an applica
tion program written to operate on only one computer but
running Substantially simultaneously on all said computers,
said single computer being loaded with the computer pro
gram product as claimed in claim 17.

43. A single computer intended to operate with a plurality
of computers interconnected via a communication network
without forming a distributed shared memory arrangement
and operable to ensure consistent initialization of an applica
tion program written to operate on only one computer but
running Substantially simultaneously on all said computers,
said single computer being loaded with the computer pro
gram product as claimed in claim 39.

44. A single computer intended to operate with a plurality
of computers interconnected via a communication network
without forming a distributed shared memory arrangement
and operable to ensure consistent initialization of an applica
tion program written to operate on only one computer but
running Substantially simultaneously on all said computers,
said single computer being loaded with the computer pro
gram product as claimed in claim 18.

45. A computer program product comprising a set of pro
gram instructions stored in a storage medium and operable to
permit either a single computer, or a plurality of computers, or
a plurality of computers in cooperation with a single com
puter, to carry out the method as claimed in claim 31.

46. A single computer intended to operate with a plurality
of computers interconnected via a communication network
without forming a distributed shared memory arrangement
and operable to ensure consistent initialization of an applica
tion program written to operate on only one computer but
running Substantially simultaneously on all said computers,
said single computer being loaded with the computer pro
gram product as claimed in claim 45.

47. In a multiple computer system comprising a plurality of
computers, a method of compiling or modifying an applica

Aug. 6, 2009

tion program written to operate on only one computer to have
different portions thereof to execute substantially simulta
neously on different ones of said plurality of computers inter
connected via a communications link without creating a dis
tributed shared memory arrangement, said method
comprising the steps of

(i) detecting instructions which create objects a in local
independent memory of a single one of said computers
of said plurality of computers; and

(ii) activating an initialization routine following each said
detected object creation instruction, said initialization
routine forwarding each created object to the remainder
of said plurality of computers.

48. In a multiple computer system comprising a plurality of
computers interconnected via a communications network, a
method of ensuring for a single computer selected from
among the plurality of computers consistent initialization of
an application program written to operate on only one com
puter but different portions of which application program are
to be executed substantially simultaneously each on a differ
ent one of said plurality of computers: said plurality or com
puters including said single computer and being intercon
nected via a communications network without forming a
distributed shared memory arrangement; said method com
prising the steps of:

(i) scrutinizing said application program at, or prior to, or
after loading to detect each program step defining an
initialization routine; and

(ii) modifying said initialization routine to generate a cor
responding modified initialization routine to ensure con
sistent operation of all said computers.

49. A multiple computer system comprising a plurality of
computers interconnected by a communications network
without forming a distributed shared memory arrangement,
said plurality of computers each having at least one applica
tion program each written to operate on only one computer
but running simultaneously on said plurality of computers
wherein different portions of said at least one application
program execute Substantially simultaneously on different
ones of said plurality of computers and for each said different
portion a like plurality of substantially identical objects are
created; each in a local independent memory of the corre
sponding one of the plurality of computers and each having a
Substantially identical name; and wherein the initial contents
of each of said substantially identically named objects is
Substantially the same.

50. A multiple computer system comprising:
a plurality of single computers arranged to operate within

said multiple computer system, said plurality of com
puters interconnected via a communications link with
out forming a distributed shared memory arrangement,
said plurality of computers Substantially simultaneously
operating at least one application program each written
to operate on only one computer, wherein each said
computer Substantially simultaneously executes a differ
ent portion of said at least one application program;

each said computer in operating its application program
portion creates objects only in local independent
memory physically located in each said computer, the
contents of the local independent memory utilized by
each said computer are fundamentally similar but not, at
each instant, identical; and

US 2009/O 198776 A1

every one of said computers has a distribution update
means to distribute to all other said computers objects
created by said single computer.

51. A method of running on a multiple computer system
comprising a plurality of single computers at least one appli
cation program each written to operate on only one computer;
each said single computer being intended to operate in coop
eration with said plurality of computers which are intercon
nected by means of a communications network without form
ing a distributed shared memory arrangement, said method
comprising the steps of

(i) executing different portions of said at least one applica
tion program Substantially simultaneously on different
ones of said plurality of computers and for each said
portion creating a like plurality of substantially identical
objects each in a local independent memory of the cor
responding single computer and each having a Substan
tially identical name; and

(ii) creating the initial contents of each of said identically
named objects substantially the same.

52. In a multiple thread processing computer operation
configured to operate in cooperation with a plurality of single
computers and in which individual threads of a single appli
cation program written to operate on only one computer are
simultaneously being processed each on a different corre
sponding one of said plurality of computers interconnected
via a communications link without forming a distributed
shared memory arrangement; the improvement comprising:
communicating objects created in local independent memory
physically associated with the single computer from the plu
rality of computers processing each thread to the local inde
pendent memory of each other said plurality of computer via
said communications link different from the single computer
processing the tread.

53. A single computer configured for operating with a
plurality of single computers in a multiple computer system
and having at least one application program written to operate
on only a single computer but running Substantially simulta
neously on the plurality of single computers interconnected
by a communications network; the single computer compris
ing:

a local independent memory structure defined in a local
independent memory of the single computer and config
ured to provide execution of application program code
of the application program including a plurality of code
threads that are written with the intent to execute on and
reference a single computer having a single processing
unit or symmetric multiple processing units and the
single independent local memory with a local memory
capacity that is not shared with any other single com
puter of said plurality of single computers;

the single computer configured for and executing a differ
ent portion of said at least one application program than
the other computers of the plurality of single computers,
and executing its portion Substantially simultaneously
with the execution of different portions of the applica
tion program on the different other ones of said plurality
of computers and for each portion in said single com
puter a plurality of objects are created in its independent
local memory while alike plurality of substantially iden
tical objects are created in the independent local
memory of the other computers and each object having
a Substantially identical name; and

34
Aug. 6, 2009

means for consistently creating or initializing all said iden
tical objects on said single computer and on the other
plurality of computers.

54. A single computer configured for use with a plurality of
different networked single computers that are interconnected
via a communications link, the single computer and the plu
rality of different computers operating Substantially simulta
neously to execute an application program written to operate
on only a single computer, the application program having
application program code including a plurality of code
threads all intended to execute on and reference a single
computer having a single processing unit or symmetric mul
tiple processing units and a single independent local memory
with a local memory capacity that is not shared with any other
single computer of said plurality of single computers;

said single computer Substantially simultaneously
executes a first portion of said application program and
other of said plurality of different networked single com
puters Substantially simultaneously executes a second
and other different portion with said first portion;

said single computer in operating said application program
first portion utilizes an named object only by using a
local replica of the named object stored in independent
local memory physically located in said single computer
with a local memory capacity that is not shared with or
accessible by any other of the plurality of different net
worked single computers; the contents of the indepen
dent local memory utilized by said single computer and
by each said plurality of different networked single com
puters is fundamentally similar but not, at each instant,
identical; and

said single computer having and executing an object cre
ation or initialization routine which creates or initializes
objects consistently across the plurality of computers.

55. In a single computer, a method of ensuring consistent
initialization of an application program written to operate
only on one single computer but different portions of which
are to be executed Substantially simultaneously on the single
computer and on each different one of a plurality of comput
ers interconnected with each other and with the single com
puter via a communications network, the application program
having application program code including a plurality of code
threads all intended to execute on and reference only one
computer having a single processing unit or symmetric mul
tiple processing units and only one independent local
memory with a local memory capacity that is not shared with
any other computer, said method comprising:

(i) scrutinizing said application program at, or prior to, or
after loading on said single computer to detect each
application program step defining an initialization rou
tine instruction creating or initializing an object utilizing
said single computer or one of said plurality of other
computers in the application program, wherein for each
said different portion of the application program a like
plurality of substantially identical objects are created in
each single independent local memory of the corre
sponding computer including in the single independent
memory of the single computer and with a local memory
capacity that is not shared with or accessible by any
other computer of said plurality of computers and each
object having a Substantially identical name; and

(ii) modifying said initialization routine to generate a cor
responding modified initialization routine to ensure con

US 2009/O 198776 A1

sistent operation of all said plurality of computers and
forwarding each created object to the remainder of said
plurality of computers.

56. A multiple computer system having at least one appli
cation program each written to operate on only a single com
puter but running Substantially simultaneously on a plurality
of single computers interconnected by a communications
network; the system comprising:

a local independent memory structure defined for each of
the plurality of single computers configured to provide
execution of application program code of the application
program including a plurality of code threads that are
written with the intent to execute on and reference a
single computer having a single processing unit or sym
metric multiple processing units and a single indepen
dent local memory with a local memory capacity that is
not shared with any other single computer of said plu
rality of single computers;

means for executing different portions of said at least one
application program Substantially simultaneously on
different ones of said computers and for each portion a
like plurality of substantially identical objects are cre
ated in each independent local memory of the corre
sponding single computer and each object having a Sub
stantially identical name; and

a distribution update means including a distributed run
time to distribute to all other said plurality of computers
objects created or initialized by said single computer.

57. A method of ensuring consistent initialization of an
application program written to operate only on a single com

Aug. 6, 2009

puter but different portions of which are to be executed sub
stantially simultaneously each on a different one of a plurality
of single computers interconnected via a communications
network, the application program having application program
code including a plurality of code threads all intended to
execute on and reference a single computer having a single
processing unit or symmetric multiple processing units and a
single independent local memory with a local memory capac
ity that is not shared with any other single computer of said
plurality of single computers, said method comprising the
steps of:

(i) scrutinizing said application program at, or prior to, or
after loading to detect each application program Step
defining a object creation or initialization routine
instruction creating or initializing an object utilizing one
of said computers in the application program, wherein
for each said different portion of the application pro
gram a like plurality of Substantially identical objects
being created in each single independent local memory
of the corresponding computer with a local memory
capacity that is not shared with or accessible by any
other single computer of said plurality of single comput
ers and each object having a Substantially identical
name; and

(ii) modifying said object creation or initialization routine
to ensure collective creation or initialization of corre
sponding objects in all said single computers to ensure
consistent object creation and initialization in everyone
of said plurality of computers.

c c c c c

