
(19) United States
(12) Reissued Patent

Tucci
(10) Patent Number:
(45) Date of Reissued Patent:

USOORE4190OE

US RE41,900 E
Oct. 26, 2010

(54) COMPILER FOR A QUANTUM COMPUTER

(76) Inventor: Robert R. Tucci, P.O. Box 226, Bedford,
MA (US) 01730

(21) Appl. No.: 10/947,489
(22) Filed: Sep. 22, 2004

Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 6,456,994

Issued: Sep. 24, 2002
Appl. No.: 09/073,132
Filed: May 5, 1998

(51) Int. Cl.
G06F 9/44 (2006.01)
G06F 5/8 (2006.01)
G06F 7700 (2006.01)
G06N 7/02 (2006.01)
G06N 7/06 (2006.01)
G06N 5/02 (2006.01)

(52) U.S. Cl. 706/52; 706/14: 706/46
(58) Field of Classification Search 706/52,

706/14, 46
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,787,236 A * 7/1998 Tucci 7O6/52

OTHER PUBLICATIONS

J. Adams, S. Leestma, L. Nyhoff, “C++. An Inroduction to
Computing” (Prentice Hall 1995) (pp. 19–20).
A Barenco et al. Elementary Gates for Quantum Computa
tion, Phys. Review A52, 3457 (1995).
Brassard Teleportation as Quantum Computation Los Ala
mos preprint http://XXX.lanl.gov/abs/quant ph/9605035
(1996).
A. M. Steane, “Quantum Computing” (1997), Los Alamos
eprint http:/XXX.lanl.gov/abs/quant ph/9708022.

4. 1 qbits

Robert R. Tucci, A Quantum Compiler. Disclosure Docu
ment 431118 (1998).
Robert R. Tucci, “A Rudimentary Quantum Compiler Dis
closure Document 433559 (1998).
Robert R. Tucci, 'A Rudimentary Quantum Compiler
(1998) Los Alamos eprint http://XXX.lan1.gov/abs/
quant ph9805015.
Robert R. Tucci, “How to Compile a Quantum Bayerian
Net Los Alamos eprint http://XXX.lan1.gov/abs/
quant ph9805016.
Robert R. Tucci, “Quantum Fog Library of Essays'
(vers. 1.0) 1997.
Gilbert Strang, Linear Algebra and Its Applications: Third
Edition, 31–39, 195-206, 236–38, 1998.*
Barenco et al., Elementary Gates for Quantum Computation,
Physical Review A52, 3457, 1998.*
Bennett et al., Teleporting an Unknown Quantum State via
Dual Classical and EPR Channels, Physical Review Letters
70, 1895.*
Brassard, Teleportation as a Quantum Computation, Los
Alamos eprint http://XXX.lanl.gov/abs/quant ph/9605035.*
DiVincenzo, Quantum Computation, Science 270, 255,
1995.*

(Continued)
Primary Examiner David R Vincent
Assistant Examiner Benjamin Buss
(57) ABSTRACT

A quantum computer is an array of quantum bits (qubits)
together with some hardware for manipulating these qubits.
Quantum Bayesian (QB) nets are a method of modeling
quantum systems graphically in terms of network diagrams.
This invention comprises a classical computer running a
computer program that expresses the information contained
in a QB net as a sequence of elementary operations (SEO).
One can then run these sequences on a quantum computer.
We show how to reduce a QB net into a SEO by a two step
process. First, express the information contained in the QB
net as a sequence of unitary operators. Second, express each
of those unitary operators as a SEO. An appendix to this
document contains the C++ Source code of a computer pro
gram called “Qubiter1.0', which is a preferred embodiment
of the invention.

37 Claims, 11 Drawing Sheets

2 qbits

US RE41,900 E
Page 2

OTHER PUBLICATIONS Reck et al., Experimental Realization of Any Discrete
Flamig, Practical Algorothms in C++, 369-71, 1995.* Operator, Physical Review Letters 73,58, 1994.*
Murnaghan, The Orthogonal and Symplectic Groups, Insti- Tucci, Quantum Bayesian Nets, Int. Jour. of Mod. Physics
tute for Advanced Studies, Dublin 12–16, 1958.* B9, 295, 1995.*
Paige et al. History and Generality of the CS Decomposi
tion, Linear Algebra and Its Applications 208,303, 1994.* * cited by examiner

U.S. Patent Oct. 26, 2010 Sheet 2 of 11 US RE41,900 E

1 qbits

U.S. Patent Oct. 26, 2010 Sheet 3 of 11 US RE41,900 E

U.S. Patent Oct. 26, 2010 Sheet 4 of 11 US RE41,900 E

U.S. Patent Oct. 26, 2010 Sheet 5 of 11 US RE41,900 E

Jigure 5

U.S. Patent Oct. 26, 2010 Sheet 6 of 11 US RE41,900 E

figure 6

61

- 62
L(0, U) R(0, U)
LUSD(0. U) RUS

L(00, UL) R(00, UL) L(00, UR) R(00, UR)
L(01, UL) D(0, UL) R(01, UL) L(0), UR) D(0, UR) R(0), UR)
L(10, UL) D(l, UL) R(10, UL) L(10, UR) D(l, UR) R(10, UR)
L(ll, UL) R(ll, UL) L(ll, UR) R(ll, UR)

U.S. Patent Oct. 26, 2010 Sheet 7 of 11 US RE41,900 E

fiyure 7

71 72 73
CPU

INPUT OUTPUT INTERNAL MEMORY,

S. L. PUT QUANTUM CLASSICAL COMPUTER COMPUTER

70 75

U.S. Patent Oct. 26, 2010 Sheet 8 of 11 US RE41,900 E

Jigure 8
M/number of bits
2

//matrix U, as a string of columns
(2)

U.S. Patent Oct. 26, 2010

91

92

Sheet 9 of 11

figure 9

292 500000
45 (2000000)
T 2
315.000000
T 0
315.000000
T 0
(2). 00000000
T (2)
337.500000
2). 00000000
T 2
45 0000000
T (2)
315, 000000
T 1
22.5000000
T 1.
247.500000
45 0000000
T (2)
315.000000
T (2)
315.000000
T (2)
2, 20000000
T (2)
22.5000000
0.00000000
T (2)
31S, 000000
T 0

PHAS 157. S00000

US RE41,900 E

U.S. Patent Oct. 26, 2010 Sheet 10 of 11

Tigure 10
2
ROTZ 0
ROTZ 1.
CNOT 1
ROTZ
CNOT
ROTY
ROTZ
CNOT
ROTZ
CNOT
ROTY
CNOT
ROTY
CNOT
ROTZ
ROTZ
CNOT
ROTZ
CNOT
ROTY
ROZ
CNOT 1.
ROTZ (2)
CNOT 1.

292. 500000
45 0000000
T (2)
315 000000
T (2)
315.000000
337.500000
T (2)
45.0000000
T (2)
315.000000
T 1.
22.5000000
T 1.
247.500000
45.0000000
T 0
315 000000
T (2)
315 000000
22.5000000
T 0
315.000000
T 0

PHAS 157. 500000

US RE41,900 E

U.S. Patent Oct. 26, 2010 Sheet 11 of 11 US RE41,900 E

figure 11

111 //matrix name?
112-DiscFourier2bit

113 M/Do compilation? Cyes, no)

115 //Do decompilation? Cyes, no)
116-yes

117 //Do zero angle optimization? Cyes, no)
118-yes

US RE41,900 E
1.

COMPILER FOR A QUANTUM COMPUTER

Matter enclosed in heavy brackets appears in the
original patent but forms no part of this reissue specifica
tion; matter printed in italics indicates the additions
made by reissue.

REFERENCE TO AMICROFICHEAPPENDIX

The present application includes a microfiche appendix
comprising the C++ Source code of a fully functional com
puter program called Qubiter1.0. Qubiter1.0 is a possible
embodiment of the software of the present invention. The
microfiche appendix comprises 1 microfiche with a total of
52 frames. The first frame is a test pattern for focusing. The
second frame, called Appendix A, is a list of files contained
in a CodeWarriorTM project for Qubiter1.0. Subsequent
frames are labelled Appendix B, and comprise source code
contained within said files.

TECHNICAL FIELD

The invention relates to an array of quantum bits known as
a quantum computer. More specifically, it relates to the gen
eration of the instruction sequences that are used to manipu
late such an array.

BACKGROUND OF THE INVENTION

This invention deals with quantum computers. A quantum
computer is an array of quantum bits (qubits) together with
Some hardware for manipulating these qubits. Quantum
computers with only a few bits have already been built. For a
review of quantum computers, see DiV95: D. P. DiVincenzo,
Science 270, 255 (1995). See also Ste.97: A. M. Steane, Los
Alamos eprint http://XXX.lanl.gov/abs/quant-ph/9708022
www.arxiv.org/abs/quant-ph/9708022.

This invention also deals with Quantum Bayesian (QB)
nets. QB Nets are a method of modeling quantum systems
graphically in terms of network diagrams. For more
information, see Tuc95: R. R. Tucci, Int. Jour. of Mod. Phys
ics B9, 295 (1995). See also Tuc98: U.S. Pat. No. 5,787,236.

In classical computation and digital electronics, one deals
with sequences of elementary instructions (instructions such
as AND, NOT and OR). These sequences are used to
manipulate an array of classical bits. The instructions are
elementary in the sense that they act on only a few bits
(usually 1, 2 or 3) at a time. Henceforth, we will sometimes
refer to sequences as products and to instructions as
operations, operators, steps or gates. Furthermore, we will
abbreviate the phrase “sequence of elementary operations'
by “SEO. In quantum computation, one also deals with
SEOs, but for manipulating qubits instead of classical bits.

This invention comprises a classical computer running a
computer program that expresses the information contained
in a QB net as a SEO. One can then run these SEOs on a
quantum computer. Of course, QB nets can and have been
run entirely on a classical computer. (See the Software pro
gram called "Quantum Fog', produced by the Artiste com
pany (www.ar-tiste.com)). However, because of the higher
speeds promised by quantum parallelism, one expects QB
nets to run much faster on a quantum computer.

With classical computers, one usually writes a computer
program in a high level language (like Fortran, C or C++). A
compiler then expresses this as a SEO for manipulating bits.
In the case of quantum computers, a QB net may be thought
of as a program in a high level language. This invention is
like a “quantum compiler in the sense that it can take a QB

10

15

25

30

35

40

45

50

55

60

65

2
net input, and re-express it as a SEO that can then be used to
manipulate qubits.

This invention shows how to reduce a QB net into a SEO
by a two step process. First, express the information con
tained in the QB net as a sequence of unitary operators.
Second, express each of those unitary operators as a SEO.
An appendix to this document contains the C++ Source code
of a computer program called “Qubiter.1.0. In its current
version (1.0), Qubiter can decompose into a SEO only the
simplest non-trivial kind of QB net: a single unitary matrix,
or, equivalently, 2 connected nodes. Future versions of
Qubiter are planned that will take an arbitrary QB net as
input, and return as output a SEO for running a quantum
computer.
QB nets are to quantum physics what Classical Bayesian

(CB) nets are to classical physics. For a review of CB nets,
see Nea9O: Richard E. Neapolitan, Probabilistic Reasoning
in Expert Systems: Theory and Algorithms (Wiley, 1990).
See also Pea88: Judea Pearl, Probabilistic Reasoning in
Intelligent Systems: Networks of Plausible Inference
(Morgan Kaufmann, Palo Alto, 1988). CB nets have been
used very successfully in the field of artificial intelligence
(AI). Thus, we hope and expect that some day QB nets,
running on quantum computers, will be used for AI applica
tions. In fact, we believe that quantum computers are ideally
Suited for Such applications. First, because AI tasks often
require tremendous power, and quantum computers seem to
promise this. Second, because quantum computers are
plagued by quantum noise, which makes their coherence
times short. There are palliatives to this, Such as quantum
error correction (See the review Ste97). But such palliatives
come at a price: a large increase in the number of steps. The
current literature often mentions factoring a large number
into primes as a future use of quantum computers (See the
review Ste97). However, due to noise, quantum computers
may ultimately prove to be impractical for doing long pre
cise calculations such as this. On the other hand, short coher
ence times appear to be a less serious problem for the types
of calculations involved in AI. The human brain has coher
ence times too short to factor a 100 digit number into primes,
and yet long enough to conceive the frescoes in the Sistine
Chapel. We do not mean to imply that the human brain is a
quantum computer. An airplane is not a bird, but it makes a
good flyer. Perhaps a quantum computer, although not a
human brain, can make a good thinker.
To our knowledge, nobody else has invented a method of

reducing an arbitrary QB net to a SEO for running a quan
tum computer. It’s true that previous workers (See Bar95: A.
Barrenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N.
Margolus, P. Shor, T. Sleator, J. H. Smolin, H. Weinfurter,
Physical Review A 52, 3457 (1995)) have described a
method for reducing a single unitary operator into a SEO.
But our method for doing this is significantly different from
theirs. Their method is based on a mathematical technique
described in Rec94: M. Reck and A. Zeilinger, Physical
Review Letters 73, 58 (1994). Our method is based on a
mathematical technique called the CS Decomposition, to be
described later. For a review of the CS decomposition, see
Pai94: C. C. Paige, M. Wei, Linear Algebra And Its Applica
tions 208, 303 (1994). Our CS method for reducing unitary
matrices has inherent binary symmetries that make it easy to
apply to qubit systems, which also possess binary symme
tries. The method of Bar95 possesses no such symmetries.
For this reason, we believe our method to be superior to
theirs.

GOALS OF THE INVENTION

The main goal of the invention is to provide a new method
for generating the SEOs that are used to manipulate a quan

US RE41,900 E
3

tum computer. This goal is achieved by means of a classical
computer running a computer program that takes as input a
QB net, and returns as output the desired SEO.
A related goal of the invention is for said computer pro

gram to serve as a blueprint that future workers can modify
and enlarge.
A related goal is to allow users to run QB nets on a quan

tum instead of a classical computer. The QB nets could be
used, for example, to do AI tasks such as decision making.

SUMMARY OF THE INVENTION

A quantum computer is an array of quantum bits (qubits)
together with Some method for manipulating these qubits.
Quantum Bayesian (QB) nets are a method of modeling
quantum systems graphically in terms of network diagrams.

This invention comprises a classical computer that runs a
computer program. The program takes a QB net and decom
poses it into a sequence of elementary operations (SEO).
Such a sequence can be used to manipulate a quantum com
puter.

This invention shows how to reduce a QB net into a SEO
by performing four steps: (1) Find eras. (2) Insert delta func
tions. (3) Find unitary extensions of era matrices. (4)
Decompose each unitary matrix into a SEO.

In step (1), we partition the set of nodes of the QB net into
Subsets called eras. All nodes in a given era “occur at
roughly the same time'. We also assign a matrix to each era.

In step (2), we pad the era matrices of step (1) with delta
functions so that the resultant era matrices can be multiplied
by each other.

In step (3), we extend the era matrices of step (2) (by
adding rows and columns) so that the resultant era matrices
are all unitary and of the same size.

In step (4), we reduce into a SEO each of the unitary era
matrices of step (3). Step (4) is based on the CS Decomposi
tion Theorem. This theorem asserts that: given a unitary
matrix U, if we partition it into 4 blocks U, U, U3, U of
the same size, then one can express each U, where ke0, 1,
2, 3D, as a product LDR Such that L. and R are unitary
matrices and D is diagonal. Since the matrices Land Rare
unitary, one can apply the CS Decomposition Theorem to
them next. One can continue to apply the CS Decomposition
Theorem to the unitary matrices generated in previous steps.
In this way, one can express the original matrix U as a prod
uct of matrices of a type that we call “central matrices'. We
show how to express any central matrix as a SEO.
An appendix to this document contains the C++ Source

code of a computer program called “Qubiter1.0. In its cur
rent version (1.0), Qubiter can decompose into a SEO only
the simplest non-trivial kind of QB net: a single unitary
matrix, or, equivalently, 2 connected nodes. Future versions
of Qubiter are planned that will take an arbitrary QB net as
input, and return as output a SEO for running a quantum
computer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a labelled graph and the four node matrices
associated with the four nodes of the graph. A QB net con
sists of 2 parts: a labelled graph and a collection of node
matrices, one matrix for each node.

FIG. 2 shows a QB Net for Teleportation. This figure also
shows the number of quantum or classical bits carried by
each arrow.

10

15

25

30

35

40

45

50

55

60

65

4
FIG.3 shows the root node eras for the Teleportation net.
FIG. 4 shows the external node eras for the Teleportation

net.

FIG. 5 shows an example of a QB net in which an external
node is not in the final era.

FIG. 6 shows a binary tree. Each node B has a single
parent. If the parent is to B's right (ditto, left), then B con
tains the names of the matrices produced by applying the CS
Decomposition Theorem to the L matrices (ditto, R
matrices) of B's parent.

FIG. 7 shows a block diagram of a classical computer
feeding data to a quantum computer.

FIG. 8 shows a file listing the entries of a unitary matrix.
Such files are called “mat.in, where the string “mat' is a
variable specified by the user.

FIG. 9 shows a file listing a SEO. Such files are called
“mat-cmnd.out', where the string “mat is a variable speci
fied by the user. The SEO in this figure is a decomposition of
the matrix specified by FIG. 8.

FIG. 10 shows another file listing a SEO. This SEO can be
obtained from that in FIG.9 by deleting from the latter those
factors arising from rotations by a Zero angle.

FIG. 11 shows the first file that Qubiter looks for. It’s
called “qbtr-params.in', and it determines the name of other
input files that Qubiter may look for. It also determines the
mode of operation of Qubiter.

DETAILED DESCRIPTION OF THE INVENTION
(A)NEW METHOD
We begin by presenting a brief review of QB nets. For

more information, see Tuc95, Tuc98.
In what follows, we use the following notation. We define

Z={a,a+1a +2 . . . , b} for any integers a and b, Ö(x,y)
equals one if x=y and Zero otherwise. For any finite set S, S.
denotes the number of elements in S.
We call a graph (or a diagram) a collection of nodes with

arrows connecting some pairs of these nodes. The arrows of
the graph must satisfy certain constraints. We call a labelled
graph a graph whose nodes are labelled. A QB net consists of
two parts: a labelled graph with each node labelled by a
random variable, and a collection of node matrices, one
matrix for each node. These two parts must satisfy certain
constraints.
An internal arrow is an arrow that has a starting (source)

node and a different ending (destination) one. We will use
only internal arrows. We define two types of nodes: an inter
nal node is a node that has one or more internal arrows
leaving it, and an external node is a node that has no internal
arrows leaving it. It is also common to use the terms root
node or prior probability node for a node which has no
incoming arrows (if any arrows touch it, they are outgoing
ones).
We restrict our attention to acyclic graphs: that is, graphs

that do not contain cycles. (A cycle is a closed path of arrows
with the arrows all pointing in the same sense.)
We assign a random variable to each node of the QB net.

(Henceforth, we will underline or put a caret over random
variables. For example, we might write P(x=x) for the prob
ability that the random variable x assumes the particular
value x.) Suppose the random variables assigned to the N
nodes are x1, x2, xv. For each jeZy, the random
variable x, will be assumed to take on values within a finite
set X, called the set of possible states of X,

For example, consider the net of FIG.1. Nodes 11, 12 and
13 are internal and node 14 is external. Node 11 is a root
node. There are four nodes so N=4. We will assume that the

US RE41,900 E
5

four nodes must lie in one of two states: either no or si. Thus,
X =X =Xs=X={no.si.

If S={k. k.ks Ziv, and k <k.<... <ks, define
(X.)s=(X, X. Xs) and (x.)s=(X, X. xi).
Sometimes, we also abbreviate (X.)Zw (i.e., the vector that
includes all the possible X, components) by just X., and (x.)
Z1.N. by just x.

For example, Suppose N=4. One has Z={1,2,3,4}. If
S={1,3}, then S=2. Furthermore, (X.)=(x,x) and (x.)=
(x1, xs). One defines X.-(x)=(X1,X2, Xs.X.) and x.-(x) =
(x1, x2x3.x4). s s

Let Z., be the set of all jezy such that X, is an external
node, and let Z., be the set of all jeZy such that x, is an
internal node. Clearly, Z, and Z are disjoint and their
union is Zy.

For example, for FIG. 1, Z{4} and Z={1,2,3}.
Each possible value X. of x. defines a different net story.

For any net story X., we call (X.) the internal state of the
story and (x,) its external state.

For example. a possible story for the net of FIG. 1 is the
case when x=x=si and x=x=no. This net story may also
be represented by X.=(si, si, no, no). Since we are assuming
that each of the four nodes of FIG. 1 can assume two states,
there are total of 2'-16 stories possible for the net of FIG. 1.
For story x.=(si.si.no.no), the internal state is (XXX)=(si,
sino) and the external state is X=no.

For each net story, we may assign an amplitude to each
node. Define S, to be the set of all k such that an arrow
labelled X (i.e., an arrow whose source node is x.) enters
node x. We assign a complex number AX(x)s. to node
& We call Ax, (x,)s. the amplitude of node X, within net
story X.

For example, consider a particular net story, call it (X,
XXX), of FIG.1. No arrow enters node x so both S and
(X.)s are empty. Node X, is entered by an arrow from node
x, so S2={1} and (X.)s=(x). Likewise, S = {1} and (x.)s=
(X). Finally, S={2,3} and (x)s (xxs). We assign the
complex number AX) to node x, Axx) to node x.
Asxsix) to node xa, and A-XX.X.) to node x4.
The amplitude of net story X, call it A(X.), is defined to be

the product of all the node amplitudes AIX, (X.)sforjeZy.
Thus,

ext

A(X.) = Aix (X.)sil. (1)

For example, consider a particular net story, call it (X, X,
X,x), of FIG. 1. One has that

(2)

The function A, with values Ax, (x,)s. determines a
matrix that we will call the node matrix of node x, and
denote by Q, Thus, X, is the matrix's row index and (X.)S; is
its column index.

For example, FIG. 1 gives the four node matrices Q, Q,
Q, Q associated with the four nodes of the graph shown
there.
One can translate a QB net into a SEO by performing 4

steps: (1) Find eras. (2) Insert delta functions. (3) Find uni
tary extensions of era matrices. (4) Decompose each unitary
matrix into a SEO. Next we will discuss these 4 steps in
detail. We will illustrate our discussion by using Teleporta
tion as an example. Teleportation was first discussed in
Tel93: C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A.
Peres, W. K. Wootters, Physical Review Letters 70, 1895

5

10

15

25

30

35

40

45

50

55

60

65

6
(1993). FIG. 2 shows a QB net for Teleportation. Reference
Bra96: G. Brassard, Los Alamos eprint http://XXX.lanl.gov/
abs/quant-ph/96.05035 www.arxiv.org/abs/quant-ph/
960.5035, gives a SEO, expressed graphically as a qubit
circuit, for Teleportation. It appears that the author of Bra96
obtained his circuit mostly by hand, based on information
very similar to that contained in a QB net. The present inven
tion gives a general method whereby such circuits can be
obtained from a QB net in a completely mechanical way by
means of a classical computer.
Step 1: Find Eras
The root node eras of a graph are defined as follows. Call

the original graph Graph.(1). The first era T is defined as the
set of all root nodes of Graph.(1). Call Graph.(2) the graph
obtained by erasing from Graph.(1) all the T nodes and any
arrows connected to these nodes. Then T is defined as the
set of all root nodes of Graph.(2). One can continue this
process until one defines an era Tsuch that Graph(t+1) is
empty. (One can show that if Graph.(1) is acyclic, then one
always arrives at a Graph(t+1) that is empty.) For example,
FIG.3 shows the root node eras of the Teleportation net FIG.
2. Lett represent the set of eras: t={T.T. ... T}. Note
that TCZ for all aeZi and the union of all F. equals
Ziv. In mathematical partance, the collection of eras is a
partition of Ziv.

Rather than defining eras by (1) removing Successive lay
ers of root nodes, one can also define them by (2) removing
successive layers of external nodes. We call this second type
of era, the external node eras of the graph. For example, FIG.
4 shows the external node eras of the Teleportation net FIG.
2.

This process whereby one classifies the nodes of an acy
clic graph into eras is a well know technique referred to as a
chronological or topological sort in the computer literature.
See, for example, Fla95: Bryan Flamig, Practical Algorithms
in C++ (Wiley, 1995) page 369.

Henceforth, for the sake of definiteness, we will speak
only of root node eras. The case of external node eras can be
treated similarly.

Suppose that aeZ. The arrows exiting theath era are
labelled by (X.), Those entering it are labelled by (X.)
where T, is defined by T =U.S. Note that theath era
node is only entered by arrows from nodes that belong to
previous (not subsequent) eras so T. CTU. . . UTUT.
The amplitude B of theath era is defined as

B, (x,), (x)r, l = A;|xi|(x)sil. (3)
jeTa

The amplitude A(X.) of story X. is given by

T (4)

For example, for Teleportation we get from FIG. 3

and

US RE41,900 E
7

Step 2: Insert Delta Functions
The Feynman Integral FI for a QB net is defined by

Note that we are summing over all stories X. that have (X.)2
as their external state. We want to express the right side of
Eq. (7) as a product of matrices.

Consider how to do this for Teleportation. In that case one
has

FI(x) = X B.B.B.B., (8)

where the B are given by Eqs. (5). The right side of Eq. (8)
is not ready to be expressed as a product of matrices because
the column indices of B and the row indices of B are not
the same for all aez. Furthermore, the variable X,
occurs in B and B but not in B. Likewise, the variable X
occurs in B and B, but not in B. Suppose we define B for
aeZ by

where we sum over all intermediate indices; i.e., all x,"
except X. Contrary to Eq. (8), the right side of Eq. (10) can
be expressed immediately as a product of matrices since now
B column indices and B row indices are the same. The
purpose of inserting a delta function of X into B is to allow
the system to “remember the value of X between non
consecutive eras T and T. Inserting a delta function of X
into B serves a similar purpose.

In the Teleportation net of FIG. 2, the last era contains all
the external nodes. However, for some QB nets like the one
in FIG. 5, this is not the case. For the net of FIG. 5.

Even though node x is external, the variable X does not
appear as a row index in B. Suppose we set

Bi(x) = B(x), (12a)

B2 (xi, xix) = B2(x;, xix), (12b)

10

15

25

30

35

40

45

50

55

60

65

Then

FI(X2, Xs) = X BBBB1, (13)
interm

where we sum over all intermediate indices; i.e., all x,"
except X and Xs. Contrary to B, the rows of B are labelled
by the indices of both external nodes x and xs.

This technique of inserting delta functions can be general
ized as follows to deal with arbitrary QB nets. ForjeZy, let
a,(j) be the smallest aeZ such that X, appears in B.
Hence, ai,() is the first era in which x, appears. If X, is an
internal node, let al...(i) be the largest a such that x, appears
in B (i.e., the last era in which x, appears). If X, is an exter
nal node, let al.(j)=t+1. For aeZ1. For aeZ, let

A={jeZi Nani,(i)<asana (j)}, (14)

B, = B, (x), (x.1), 6(x, x'). (15)
jeAa

In Eq. (15), x7. should be identified with x, and x, with no
variable at all. Equation (7) for FI can be written in terms of
the B functions:

FI(X.)z. X BT1...B2B1, (16)
interm

where the sum is over all intermediate indices (i.e., all x," for
which azt). For all a, define matrix M so that the x,y entry
of M is B(x,y). Define M to be a column vector whose
components are the values of FI for each external state. Then
Eq. (16) can be expressed as:

M=M... M2M1. (17)
The rows of the column vector Mare labelled by the possible
values of (X.)- The rows of the column vector M are
labelled by the possible values of (X.), where T is the set
of root nodes.
Step 3: Find Unitary Extensions of Era Matrices
So far, we have Succeeded in expressing FI as a product of

matrices M, but these matrices are not necessarily unitary.
In this step, we will show how to extend each M matrix (by
adding rows and columns) into a unitary matrix U.
By combining adjacent Mas, one can produce a new,

Smaller set of matrices M. Suppose the union of two con
secutive eras is also defined to be an era. Then combining
adjacent MS is equivalent to combining consecutive eras to
produce a new, smaller set of eras. We define a breakpoint as
any position aez, between two adjacent matrices M.
and M. Combining two adjacent M's eliminates a break
point. Breakpoints are only necessary at positions where
internal measurements are made. For example, in Teleporta
tion experiments, one measures node Xs, which is in era T.
Hence, a breakpoint between M and M is necessary. If that
is the only internal measurement to be made, all other break
points can be dispensed with. Then we will have M=M.M.'
where M'=M. M'=MMM. If no internal measurements
are made, then we can combine all matrices Minto a single
one, and eliminate all breakpoints.

US RE41,900 E
9

We will henceforth assume that for all aez, the col
umns of M, are orthonormal. If for some ageZ., M., does
not satisfy this condition, it may be possible to “repair M,
so that it does. First: If a row B of M is zero, then elimi
nate the column B of M and the row B of M. Next: If a
row f of the column vector M. ... M.M. is zero, then flag
the column B of M. The flagged columns of M, can be
changed without affecting the value of M. If the non-flagged
columns of Mare orthonormal, and the number of columns
in M, does not exceed the number of rows, then the Gram
Schmidt method, to be discussed later, can be used to replace
the flagged columns by new columns such that all the col
umns of the new matrix M are orthonormal. If it is not
possible to repair M, in any of the above ways (or in some
other way that might become clear once we program this),
one can always remove the breakpoint between M and
M.
We will call d, the number of rows of matrix M and d.

its number of columns. We define D and Ns by

(18)

Let d=N-d, for all a. For each az1. we define U to be the
matrix that one obtains by extending M as follows. We
append and xd, block of Zeros beneath M, and an NSX
d block of gray entries to the right of M. By gray entries
we mean entries whose value is yet to be specified. When
a=1, M be can extended in two ways. One can append a
column of d zeros beneath it and call the resulting Ns
dimensional column vector V. Alternatively, one can append
a column of d zeros beneath M and an Nx(N-1 block of
gray entries to the right of M, and call the resulting NixNs
matrix U. In this second case, one must also insert e to the
right of U. By e we mean the Ns dimensional column
vector whose first entry equals one and all others equal Zero.
Which extension of M is used, whether the one that requires
e or the one that doesn’t, should be left as a choice of the
user. Henceforth, for the sake of definiteness, we will
assume that the user has chosen the extension without the e.
The other case can be treated similarly. Equation (17) then
becomes

v=U... Usuav 1. (20)
where v is just the column vector M with d Zeros attached
to the end.

To determine suitable values for the gray entries of the U.
matrices, one can use the Gram-Schmidt (G.S.) method.
(See Nob88: B. Noble and J. W. Daniels, Applied Linear
Algebra, Third Edition (Prentice Hall, 1988)). This method
takes as input an ordered set S=(V, V. V) of vectors,
not necessarily independent ones. It yields as output another
ordered set of vectors S'=(u, u, ..., u), Such that S spans
the same vector space as S. Some vectors in S" may be zero.
Those vectors of S' which arent Zero will be orthonormal.

For rez, if the first r vectors of S are already orthonormal,
then the first r vectors of S' will be the same as the first r

vectors of S. Lete, forje Z1x be the jth standard unit vector
(i.e., the vector whose jth entry is one and all other entries
are Zero). For each aeZ to determine the gray entries of
U, one can use the G.S. method on the set S consisting of the
non-gray columns of U, together with the vectors e. e. . . .
CN.
Step 4: Decompose Each Unitary Matrix into a SEO

In this section we present a CS method for decomposing
an arbitrary unitary matrix into a SEO. By following the

10

15

25

30

35

40

45

50

55

60

65

10
previous 3 steps, one can reduce a QB net to a product of
unitary operators U. By applying the CS method of this
section to each of the matrices U, one can reduce the QB net
to a SEO.
We will use the symbol N for the number (s1) of bits

and N=2' for the number of states with N bits. We define
Bool={0,1}. We will use lower case Latin letters a,b,c . . .
eBool to represent bit values and lower case Greek letters
C.E.8, ... eZow, to represent bit positions. A vector such as
-e

a =ax. . . . azalao will represent a string of bit values, a
s -e

being the value of the uth bit for uezo. A bit string a
has a decimal representation

NM-1 (21)

For Bezo, we will use u(B) to denote the Bth standard
unit vector, i.e., the vector with bit value of 1 at bit position B
and bit value of Zero at all other bit positions.

I will represent the r dimensional unit matrix. Suppose
BeZow, and M is any 2x2 matrix. We define M(B) by

where the matrix M on the right side is located at bit position
B in the tensor product of N2x2 matrices. The numbers that
label bit positions in the tensor product increase from right to
left (<-), and the rightmost bit is taken to be at position 0.

For any two square matrices A and B of the same
dimension, we define the () product by A()B=ABA, where
A is the Hermitian conjugate of A.

-e

O =(O,O,.O.) will represent the vector of Pauli matrices,
where

((...) (Ox Oy Oz 1 () () 0 - 1

The Sylvester-Hadamard matrices H are 2x2 matrices

(23)

-e -s .
whose entry at row a and column b is given by

(H.) R-(-1)", (24)
where

(25)
a b =X albu.

pt=0

The qubits basis states 0< and |1> will be represented by

The number operator n of the qubit is defined by

(26)

(27) O O 1 - O. n = |-

US RE41,900 E
11

Note that

in Os=0,n 1>=|1>. (28)

We will often use nas shorthand for

1 O 1 + O. (29)
n = 1 - n =

O O 2

We define Po and P. by

1 O O O (30) P = n = P = n = O O O 1

For Rezow, we define PCB).P. (B), n(B) and n(B) by
means of Eq. (22). For aeBool, let

As mentioned earlier, we utilize a mathematical technique
called the CS Decomposition. In this name, the letters C and
S stand for “cosine” and “sine”. Next we will state the spe
cial case of the CS Decomposition Theorem that arises in a
preferred embodiment of the invention.

Suppose that U is an NXN unitary matrix, where N is an
even number. Then the CS Decomposition Theorem states
that one can always express U in the form

Lin O R 0 32 U= O p O (32)
O L O R1

where LL.R.R are N/2xN/2 unitary matrices and

DE Dol (33a)
D10 D11

Doo = D11 = diag|C. C2, ..., CN), (33lb)
2

Do1 = diag S1, S2, ..., SN), (33c) O g 32 y)

D10 = -Do. (33d)

For

N
ie {1,2,... },

C, and S, are real numbers that satisfy

C2+S’=1. (33e)

Henceforth, we will use the term D matrix to refer to any
matrix that satisfies Eqs. (33). If one partitions U into four
blocks U of size

NN
2 2

5

10

15

25

30

35

40

45

50

55

60

65

12
then

(34)

for i,je{0,1}. Thus, D, gives the singular values of U.
More general versions of the CS Decomposition Theorem

allow for the possibility that we partition U into 4 blocks of
unequal size.

Note that if U were a general (not necessarily unitary)
matrix, then the four blocks U, would be unrelated. Then to
find the singular values of the four blocks U, would require
eight unitary matrices (two for each block), instead of the
four L.R. This double use of the LR, is a key property of
the CS decomposition.

Consider FIG. 6. We start at 61 with a unitary matrix U.
Without loss of generality, we can assume that the dimension
of U is 2' for some N21. (If initially U's dimension is not
a power of 2, we replace it by a direct sum U(+)I, whose
dimension is a power of two.) We apply the CS Decomposi
tion method to U. This yields node 62 comprising matrix
D(0.U) of singular values, two unitary matrices L(0.U) and
L(1U) on the left and two unitary matrices R(0.U) and R(1,
U) on the right. Then we apply the CS Decomposition
method to each of the 4 matrices L(0.U).L(1.U).R(0.U) and
R(1U) and obtain nodes 63 and 64. Then we apply the CS
Decomposition method to each of the 16 Rand L matrices in
nodes 63 and 64. And so on. This process ends when the
current row of nodes in the pyramid of FIG. 6 has L’s and
R’s that are 1x1 dimensional, i.e., just complex numbers.

Call a central matrix either (1) a single D matrix, or (2) a
direct Sum D(+)D(+) . . . (+)D, of D matrices, or (3) a
diagonal unitary matrix. From FIG. 6 it is clear that the
initial matrix U can be expressed as a product of central
matrices, with each node of the tree providing one of the
central matrices in the product. Next, we show how to
decompose each of the 3 possible kinds of central matrices
into a SEO.

Case 1: Central Matrix is a Single D Matrix
Consider how to decompose a central matrix when it is a

single D matrix. Before dealing with arbitrary N. consider
N=3. Then the central matrix D can be expressed as:

D = X exp(idoy)(X)P, (x)P. (35)
a,besool

-e -e

Suppose (p (ditto, 0) is a column vector whose components
are the numbers (p (ditto, 0) arranged in order of increas

-e -> . -e
ing a . We define new angles 0 in terms of the angles (p by

- 1 - 36 9 = H, i. (36)

Then one can show that

US RE41,900 E
13

Eqs. (37)–(38) achieve our goal of decomposing D into a
SEO. Now consider an arbitrary N. D can be written as

X
aeBooBl

(39)
5

-e

where the cp are real numbers. We define new angles 0 in
-e 10 terms of the angles (p by

- a - a (40)

8 = NB-1 HNB-1 (b.
Then one can show that

15

D = A, (41)
BeBooBl

where the operators AR on the right side commute and will 20
be defined next. For any bebool'' we can write

(42)
b = f. Xu B) 25 j=0

where

30

NR-22, 1>. . . f. 1-Bo2O. (43)

In other words, b has bit value of 1 at bit positions (3. At all 35
other bit positions, b has bit value of 0. r is the number of
bits in b whose value is 1. When b-0, r=0. One can show
that

40

A=o.(N-1)*P-1)... o.(N-1)"Po.(N-1)"PI(-)expie
Bo (N-1) (44)

45
There are other ways of decomposing AR into a SEO.

Case 2: Central Matrix is Direct Sum of D Matrices

Next, consider how to decompose a central matrix when it
is a direct sum of D matrices. Consider first the case N=3.
Let R(p)=exp(io,(p). Previously we mentioned the fact that 50
any D matrix D can be expressed as

D = X R(d)(x)P,(x)P. (46)
a,besool

55
One can also show that

Do(+)D = X P,(x)R(d)(x)P, (47)
a,besool

Doo(+)Dol (+)Do(+)D = X P,(x)P(x)R(dat), (48) 60
a,besool

where the D, and D, are D matrices. It follows that by per
muting the bit positions, we can change such a direct Sum of
D matrices into a single D matrix. The latter can then be
decomposed into a SEO by the method already discussed.

65

14
Case 3: Central Matrix is a Diagonal Unitary Matrix
Finally, consider how to decompose a central matrix when

it is a diagonal unitary matrix. Before dealing with arbitrary
NA, consider N=2. Then the central matrix C can be
expressed as

C-diag(eiboe, eibol, eith 10, eit II). (49)

-e

We define (p by

- 1 - 50 0 = H, i. (50)

One can show that

C=AooAo1A10A11, (51)

where

Aoo-exp(iOoo), (52a)

Ao=I2(x)exp(i0oo), (52b)

Ao-exp(i61oO)(x)12, (52c)

A =O,(0)" ()[I2(x)exp(ie.o.). (52d)

Now consider an arbitrary N. Any diagonal unitary matrix
C can be expressed as

C = X exp(ida)P, (53)
as BooB

-e

where the p are real numbers. We define 0 by

- a - a (54)

9 = N High.
Then one can show that

(55) C = A.
BeBooB

where the AR operators commute and will be defined next.
For any eBool', we can write

(56)
b =X u(p;)

j=0

where

NR-12?, 1>. . . DfIDfboaro. (57)

One can show that

expido if r = 0 (58)

explied, (fo) if r = 1
'site.(B)(B-1)....(B) blo, B. "Bl

(-)expido", (bo) if r > 2.

US RE41,900 E
15

There are other ways of decomposing AR into a SEO.
(B) Implementation of New Method on Classical Computer
So far in Section (A), we have described a mathematical

algorithm for decomposing any QB net into a SEO. Next we
describe a particular implementation of the algorithm, a
computer program called “Qubiter that can be run on a
classical computer.
The use of a computer is practically indispensable for

obtaining useful numerical answers through the method of
Section (A). In all but the simplest of cases, vast amounts of
data storage and processing are necessary to obtain final
numerical answers from the method of Section (A). The nec
essary book-keeping and number crunching are prohibi
tively error prone and time consuming to a human, but not to
a computer.
A preferred embodiment of the invention is a classical

computer that feeds data (a SEO) to a quantum computer. By
a classical computer, we mean a device that makes a desired
calculation using digital circuits which implement determin
istic (classical, non-quantum) logic. By a quantum computer
we mean a device that makes a desired calculation using an
array of quantum bits (qubits). Besides their calculational
circuits, classical and quantum computers may comprise
input, output and memory devices. The important difference
is that an array of quantum bits may be put in an entangled
quantum state, whereas a digital deterministic logic circuit
cannot be put in Such a state (in practice, for useful periods
of time). The classical computer of our preferred embodi
ment is a Mac computer, produced by Apple Computer Inc.
of Cupertino, California. The Mac is running a program
written in the computer language C++. Of course, this inven
tion could just as easily be implemented in a language other
than C++, and on a platform other than a Mac. FIG. 7 is a
block diagram of a classical computer feeding data to a
quantum computer. 70 represents a classical computer. It
comprises 71, 72, 73.71 represents input devices, such as a
mouse or a keyboard. 72 represents the CPU, internal and
external memory units. 72 does calculations and stores infor
mation. 73 represents output devices, such as a printer or a
display screen. An image of a QB net (for example, FIG. 2)
can be rendered on the display screen. 75 represents a quan
tum computer, comprising an array of quantum bits and
Some hardware for manipulating the state of those bits.

Software for a preferred embodiment of the invention was
written using Code WarriorTM. Code Warrior is a C++ Inte
grated Development Environment produced by MetroWerks
Inc. of Austin, Texas. C++ Source code for a computer pro
gram called “Qubiter1.0 is included as a Microfiche Appen
dix to this document. The Microfiche Appendix has two
parts: Appendix A and Appendix B.

Appendix A is a listing of the names of all the files in the
“Code Warrior Project” for Qubiter. Appendix B is a listing
of Qubiter source code. Apart from libraries provided with
Code Warrior, Qubiter requires parts of the C library called
Clapack. This library is freeware and can be downloaded via
the Internet from the website “www.netlib.org.

Qubiter uses files that list the entries of a unitary matrix U.
FIG. 8 shows an example of such files. Qubiter ignores the
lines labelled 81 and 83. The line labelled 82 tells how many
bits are necessary to label U's columns (or rows, since U
must be square). In the example of FIG. 8, according to 82,
two bits are necessary to label U's column, so one expects U
to be a 4x4 matrix with 16 elements. 84 labels all the lines
after the line labelled 83. Each line in 84 represents a com
plex number Z, the real part of Z is listed first, then some
white space to the right of it, and then the imaginary part of Z
to the right of that. 84 contains the entries of U, arranged so

5

10

15

25

30

35

40

45

50

55

60

65

16
that the entries in the first column of U are listed first, then
those of the second column of U, etc.

Qubiter also uses files that list SEOs. FIG. 9 is an example
of such a file. The line labelled 91 tells how many bits the
gates listed in the file are to operate on, (i.e., what we called
N in Section (A)). 92 labels all the other lines in the file.
Each line in 92 represents a gate. There are four types of
gates, and they are specified as follows:
(a) PHAS ang
where ang is a real number. This signifies a phase factor

t

exp(i(ang) 180).

(b) CNOT C. a char B
where C. ReZox, and chare {TF}.T and F stand for true

and false. If char is the character T, this signifies O (B)"
(c.). Read it as “c-not: if C. is true, then flip B.” If char is
the character F, this signifies O (B)"(C)n. Read it as
“c-not: if C is false, then flip B.”

(c) ROTY C. ang
where CeZow, and ang is a real number. This signifies

the rotation of qubit C. about the Y axis by an angle ang
in degrees. In other words,

t explicy(a)ang).

(d) ROTZ C. ang
This is the same as (c) except that the rotation is about the
Z axis instead of the Y one.

The matrix given in FIG. 8 can be decomposed into the
SEO given in FIG. 9. Such decompositions are not unique.
After doing the trivial optimization of removing all factors A
6 for which the rotation angle is Zero, the 33 operations in
FIG.9 reduce to 25 operations in FIG. 10.

Qubiter starts by looking for a parameter file entitled
“qbtr-params.in’. FIG. 11 is an example of such a file. Lines
labelled 111, 113, 115 and 117 are ignored by the program.
Lines labelled 112, 114, 116, 118 are not.
The user should enter into line 112 the name of a matrix.

In FIG. 11, we have used “DiscFourier2bits”.
If the user enters “yes” into line 114 as an answer to “Do

compilation?', then Qubiter will look for a file named
“DiscFourier2bits.in'. In other words, it will look for a file
whose name is the string in line 112 plus the suffix ".in'.
Qubiter expects to find in this file the entries of the unitary
matrix U, to be decomposed. The file should be of the
form exemplified by FIG. 8.

If the user enters “yes” into line 116 as an answer to “Do
decompilation?', then Qubiter will look for a file named
“DiscFourier2bits-cmind...out. In other words, it will look for
a file whose name is the string in line 112 plus the suffix
“-cmnd.out. Qubiter expects to find in this file a SEO. The
file should be of the form exemplified by FIGS. 9 and 10.

If the user enters “yes” into line 118 as an answer to “Do
Zero angle optimization?', then Qubiter will produce a file of
the type exemplified by FIG. 10 instead of the type exempli
fied by FIG. 9. Thus, it will omit those gates arising from a
rotation by a Zero angle.

Qubiter has 2 main modes of operation.
The first mode of operation is when the user enters “yes”

in line 114 as an answer to “Do compilation?', and “yes” in
line 116 as an answer to “Do decompilation?” In this mode,
the user must provide 2 input files entitled “qbtr-params.in
and “mat.in, where “mat' is the string in line 112. Qubiter

US RE41,900 E
17

will output a file called “mat-cmnd.out. Then it will use
mat-cmnd.out as input, multiply the SEO listed in this file,
arrive at a unitary matrix U, and output a file called “mat
check.out” which lists the entries of Ur. If everything goes
well, the matrix U specified by file “mat.in' and the
matrix U specified by file “mat-check.out” will be the
same matrix, within machine precision.
The second mode of operation is when the user enters

“no” in line 114 as an answer to “Do compilation?', and
“yes” in line 116 as an answer to “Do decompilation?” In
this mode, the user must provide 2 input files entitled “qbtr
params.in' and “mat-cmnd.out. Qubiter will multiply the
SEO listed in “mat-cmnd.out', arrive at a unitary matrix
U, and output a file called “mat-check.out” which lists
the entries of U.
We should also mention a small frill to the first mode of

operation. At the same time that Qubiter outputs the file
“mat-cmnd.out', it also outputs a file called “mat-pict.out
which is a translation of “mat-cmnd.out to a pictorial lan
guage. Each elementary gate is represented by a line in
“mat-pict.out. Consider a single line of the file. There is a 1
to 1 correspondence between the characters in the line and
the qubits of an array of qubits. The rightmost character
represents bit 0. The next to rightmost character in the line
represents bit 1. And so on. A bit that is not operated on is
represented by a “” character. A bit that is rotated about the
Z axis (ditto, Y axis) is represented by a “Z” character (ditto,
“Y” character). If the gate is a c-not that flips a bit when the
control bit is true (ditto, false), then the control bit is repre
sented by a “(a) character (ditto, "O' character). The bit to
be flipped is represented by an “X” character. If the gate is a
pure phase acting on all bits, all bits are represented by the -
character.
The CS Decomposition is intimately related to the Gener

alized Singular Value Decomposition (GSVD). In fact,
Qubiter1.0 does CS decompositions by means of a Clapack
subroutine for doing GSVD. For more information about the
GSVD and its connection to the CS Decomposition, see
Pai94 and references therein. See also the Clapack documen
tation that comes with the Subroutine ZggSVd.c

So far, we have described version 1.0 of Qubiter. Future
versions of Qubiter are planned that will: (1)Take as input an
arbitrary QB net (not just 2 connected nodes), and return as
output a SEO. (2) Add quantum error correction code to the
input QB net. (3) Include optimizations enabling it to pro
duce SEOs with fewer steps.

In classical computation, the basic set of elementary
operators is not unique. For example, instead of using AND,
NOT and OR gates, one can just use NAND gates. The same
is true in quantum computation: the basic set of elementary
operators is not unique. In this preferred embodiment of the
invention, we use the set {CONTROLLED-NOT, QUBIT
ROTATION} of elementary operators, but the invention also
applies to other sets of elementary operators.

So far, we have described what are at present the preferred
embodiments of this invention. Those skilled in the art will
be able to come up with many modifications to the given
embodiments without departing from the present invention.
It is therefore desired that the scope of the invention be deter
mined by the appended claims rather than by the given
embodiments.

I claim:
1. A method of operating a classical computer, wherein

said method must be stored in a computer readable medium
which said classical computer can read, wherein said
method must be stored in the external or internal memory
units of said classical computer; to calculate a sequence of

5

10

15

25

30

35

40

45

50

55

60

65

18
operations with the purpose of applying said sequence of
operations to a quantum computer comprising an array of
qubits, to induce said quantum computer to execute a desired
calculation, said method comprising the steps of:

storing in said classical computer a QB net (Ouantum
Bayesian net) data-set comprising:
(a) graph information comprising a node label for each
node of a plurality of N nodes, and also comprising a
plurality of directed lines, wherein a directed line
comprises an ordered pair of said node labels,
wherein one member of the label pair labels the
source node and the other member labels the destina
tion node of the directed line,

(b) state information comprising, for each je 1, 2, . . .
N}, a finite set X, containing labels for the states that
the jth nodex, (may assume assumes, and

(c) amplitude information comprising, for eachje 1, 2,
... N, a representation of a complex number

for each vector

(xj. Xkl Xk2 *s,

such that XeX, XeX, XeX. and

*::seks:

wherein

(&l $2, ... sys)

are the IS, nodes connected to x, by directed lines entering
X, wherein said directed lines entering x, transmit the state
of their source node, wherein said S, is an integer greater or
equal to Zero,

composing with said classical computer and using said
QB net data-set, a data-set that specifies yields a uni
tary matrix V, wherein V, is equivalent to the unitary
matrix U... USU, of Eq. (20), and V, describes the
quantum-State evolution for the situation described by
said OB net data-set,

calculating said sequence of operations using said classi
cal computer, wherein said sequence of operations and
said V, both would, if applied to an said array of
qubits, produce equivalent transformations of the array
of qubits.

2. The method of claim 1, wherein said sequence of opera
tions comprises c-not operations elementary operations on
said array of qubits.

3. The method of claim 1, wherein said sequence of opera
tions comprises qubit rotation operations is a sequence of
elementary operations on said array of qubits.

4. The method of claim 1, further also utilizing a quan
tum computer, comprising the additional step of:

manipulating said quantum computer largely according to
said sequence of operations.

5. The method of claim 1, wherein said classical computer
includes a unitary matrix decomposer which is used in the
calculation of said sequence of operations, wherein if the
decomposer is given data that fairly directly specifies a

US RE41,900 E
19

specifies a represetation of an initial unitary matrix U, then
the decomposer will calculate a data-set that fairly directly
specifies specifies a represetation of three unitary matrices:
L. D. R. Such that the following matrix equation holds:
U-LDR

6. The method of claim 1, wherein said classical computer
includes a unitary matrix decomposer which is used in the
calculation of said sequence of operations, wherein if the
decomposer is given data that fairly directly specifies a
specifies a represetation of an initial unitary matrix U, then
the decomposer will calculate a data-set that fairly directly
specifies eight unitary matrices: specifies a represetation of
four matrices Doo Do, Do. D1, and four unitary matrices
Lo, L. R. R. Such that if one partitions said U into four
blocks Uco, U, Uo. U, then the following four matrix
equations hold: U=L.D.R, for ieBool andje Bool.

7. The method of claim 1, comprising the additional step
of:

calculating with said classical computer and using said
QB net data-set, a tree data-set that comprises data that
can be represented as a tree-node matrix for each node
contained in a subset of the nodes of a tree, wherein the
product, in some order defined by the determined in
accordance with said tree, of all said tree-node matrices
is equivalent to said V.

8. A method of operating a classical computer having
display, storage and calculation means, wherein said
method must be stored in a computer readable medium
which said classical computer can read, wherein said
method must be stored in the external or internal memory
units of said classical computer; to analyze a quantum
physical system that exhibits quantum mechanical behav
ior comprising an array of qubits, said method comprising
the steps of:

displaying on said display means a graph comprising a
plurality of N nodes, and a plurality of directed lines
connecting certain pairs of said nodes,

storing in said storage means a QB net (Ouantum Baye
sian net) data-set comprising:
(a) graph information comprising a node label for each
of said N nodes, and also comprising, for each said
directed line, said node label for the source node and
for the destination node of the directed line,

(b) state information comprising, for each je 1, 2, . . .
N}, a finite set X, containing labels for the states that
the jth nodex, may assume assumes, and

(c) amplitude information comprising, for eachje 1, 2,
... N, a representation of a complex number

for each vector

Such that XeX, XceX XeX. and

10

15

25

30

35

40

45

50

55

60

65

20
wherein

(8:1. Sk2, ..., 8s)

are the IS, nodes connected to x, by directed lines entering
X, wherein said directed lines entering x, transmit the state
of their source node, wherein said S, is an integer greater or
equal to Zero,

composing with said calculation means and using said QB
net data-set, a data-set that specifies yields a unitary
matrix V, wherein V, is equivalent to the unitary
matrix U... U, U. of Eq. (20), and V, describes the
quantum-State evolution for the situation described by
said OB net data-set,

calculating with said calculation means and using said QB
net data-set, a sequence of operations on said array of
qubits, wherein said sequence of operations and said
V, both would, if applied to an said array of qubits,
produce equivalent transformations of the array of
qubits.

9. The method of claim 8, wherein said sequence of opera
tions comprises c-not operations elementary operations on
said array of qubits.

10. The method of claim 8, wherein said sequence of
operations comprises qubit rotation operations is a
sequence of elementary operations on said array of qubits.

11. The method of claim 8, further also utilizing a quan
tum computer, comprising the additional step of:

manipulating said quantum computer largely according to
said sequence of operations.

12. The method of claim 8, wherein said classical com
puter includes a unitary matrix decomposer which is used in
the calculation of said sequence of operations, wherein if the
decomposer is given data that fairly directly specifies a
specifies a represetation of an initial unitary matrix U, then
the decomposer will calculate a data-set that fairly directly
specifies specifies a represetation of three unitary matrices:
L. D. R. Such that the following matrix equation holds:
U-LDR

13. The method of claim 8, wherein said classical com
puter includes a unitary matrix decomposer which is used in
the calculation of said sequences sequence of operations,
wherein if the decomposer is given data that fairly directly
specifies a specifies a represetation of an initial unitary
matrix U, then the decomposer will calculate a data-set that
fairly directly specifies eight unitary matrices specifies a
represetation of four matrices Doo Do, Do. D1, and four
unitary matrices Lo, L. R. R. Such that if one partitions
said U into four blocks U, U, U. U, then the follow
ing four matrix equations hold: U=L.D.R, for ieBool and
jeBool.

14. The method of claim 8, comprising the additional step
of:

calculating with said classical computer and using said
QB net data-set, a tree data-set that comprises data that
can be represented as a tree-node matrix for each node
contained in a subset of the nodes of a tree, wherein the
product, in some order defined by the determined in
accordance with said tree, of all said tree-node matrices
is equivalent to said V.

15. A method of operating a classical computer, wherein
said method must be stored in a computer readable medium
which said classical computer can read, wherein said
method must be stored in the external or internal memory
units of said classical computer; to calculate a sequence of

US RE41,900 E
21

operations with the purpose of applying said sequence of
operations to a quantum computer comprising an array of
qubits, to induce said quantum computer to execute a desired
calculation, wherein said classical computer comprises a
unitary matrix decomposer, wherein if said unitary matrix
decomposer is given data that fairly directly specifies a
specifies a represetation of an initial unitary matrix U of
dimension greater than 2, then the decomposer will calculate
a data-set that fairly directly specifies specifies a represeta
tion of three unitary matrices: L, D, R, such that the follow
ing matrix equation holds: U=LDR, wherein L and Reach
yields unitary matrices whose dimension is Smaller than that
of U, said method comprising the steps of:

storing in said classical computer an input data-set that
fairly directly specifies specifies a represetation of a

unitary matrix V, wherein at least one row of V has 3
or more non-zero entries and at least one column of V,
has 3 or more non-Zero entries,

applying said unitary matrix decomposer to decompose
the initial unitary matrix U= V.

applying said unitary matrix decomposer repeatedly to
decompose initial unitary matrices obtained from the
output of a previous application of said unitary matrix
decomposer,

calculating with said classical computer, using said input
data-set and data obtained by applying said unitary
matrix decomposer, said sequence of operations on said
array of qubits, wherein said sequence of operations
and said V, both would, if applied to an said array of
qubits, produce equivalent transformations of the array
of qubits.

16. The method of claim 15, wherein if said unitary matrix
decomposer is given data that fairly directly specifies a uni
tary matrix U of dimension greater than 2 species a represe
tation of said initial unitary matrix U, then the decomposer
will calculate a data-set that fairly directly specifies eight
unitary matrices: specifies a represetation of four matrices
Doo Do, Do. D1, and four unitary matrices Lo. L. Ro, R.
Such that if one partitions said U into four blocks Uco, Uo.
Uo, U, then the following four matrix equations hold:
U=L.D.R, for ieBool and jeBool.

17. The method of claim 15, wherein said sequence of
operations comprises c-not operations.

18. The method of claim 15, wherein said sequence of
operations comprises qubit rotation operations elementary
operations on said array of qubits.

19. The method of claim 15, wherein some of said
sequences of operations comprise qubit rotations and c-nots
said sequence of operations is a sequence of elementary
operations on said array of qubits.

20. The method of claim 15, further also utilizing a
quantum computer, comprising the additional step of

manipulating said quantum computer largely according to
said sequence of operations.

21. A method of operating a classical computer, wherein
said method must be stored in a computer readable medium
which said classical computer can read, wherein said
method must be stored in the external or internal memory
units of said classical computer; to calculate a sequence of
operations with the purpose of applying said sequence of
operations to a quantum computer comprising an array of
qubits, to induce said quantum computer to execute a desired
calculation, said method comprising the steps of:

storing in said classical computer an input data-set that
fairly directly specifies specifies a represetation of a

unitary matrix V, wherein at least one row of V has 3 i

5

10

15

25

30

35

40

45

50

55

60

65

22
or more non-Zero entries and at least one column of V,
has 3 or more non-zero entries,

calculating with said classical computer and using said
input data-set, a tree data-set that comprises data that
can be represented as a node matrix M, for each nodej
contained in a subset J of the nodes of a tree, wherein
the product, in some order defined by the determined
in accordance with said tree, of all said node matrices is
equivalent to said V.

calculating with said classical computer and using said
tree data-set, for each of the node matrices M, a string
of operations on qubits, wherein said string of opera
tions and said M both would for each je.J. a product ,
of operations on said array of qubits, wherein M, and ,
both would, if applied to an said array of qubits, pro
duce equivalent transformations of the array of qubits.

22. The method of claim 21, wherein some of said
sequences of operations comprise for some je.J. J., com
prises c-not operations.

23. The method of claim 21, wherein some of said
sequences of operations comprise for some je.J. J., com
prises qubit rotation operations.

24. The method of claim 21, wherein some of said
sequences of operations comprise qubit rotations and c-nots
for some je.J. J., comprises elementary operations on said
array of qubits.

25. The method of claim 21, wherein said sequences of
operations are sequences of elementary operations for all
je.J. T., is a sequence of elementary operations on said array
of qubits.

26. The method of claim 21, further also utilizing a
quantum computer, comprising the additional Step of

manipulating said quantum computer largely according to
said sequence of operations.

27. The method of claim 21, wherein if said V is a square
matrix with N rows, then said node matrices are also square
matrices with N rows and with at most two non-zero entries
in each row and in each column.

28. The method of claim 21, wherein if said V is a square
matrix with N rows, then said node matrices are also square
matrices with N rows and with about two non-zero entries in
each row and in each column.

29. The method of claim 21, wherein if said V is a square
matrix with N rows, then said node matrices have theoreti
cally a number of nonzero real parameters which grows
linearly with N or slower, for large Ngrows, for large N.
linearly with N or slower.

30. The method of claim 21, wherein said classical com
puter includes a unitary matrix decomposer which is used in
the calculation of said sequences sequence of operations,
wherein if said unitary matrix decomposer is given data that
fairly directly specifies a specifies a represetation of an

initial unitary matrix U, then the decomposer will calculate a
data-set that fairly directly specifies specifies a represeta
tion of three unitary matrices: L, D, R, such that the follow
ing matrix equation holds: U=LDR.

31. The method of claim 21, wherein said tree is a binary
tree in which each node branches out into two nodes.

32. The method of claim 31 21, wherein said classical
computer includes a unitary matrix decomposer which is
used in the calculation of said sequences sequence of
operations, wherein if the decomposer is given data that
fairly directly specifies a specifies a represetation of an

initial unitary matrix U, then the decomposer will calculate a
data-set that fairly directly specifies eight unitary matrices:
Specifies a represetation of four matrices Doo Do, Do. D1.
and four unitary matrices Lo, L. R. R. Such that if one

US RE41,900 E
23

partitions said U into four blocks Uco, Uo, Ulo, U, then
the following four matrix equations hold: U=L.D.R, for
ieBool and jeBool.

33. The method of claim 32, wherein some of said
sequences of operations comprise for some je.J. J., com
prises c-not operations.

34. The method of claim 32, wherein some of said
sequences of operations comprise for some je J, T, Com
prises qubit rotation operations.

35. The method of claim 32, wherein some of said
sequences of operations comprise qubit rotations and c-nots
for some je J. J., comprises elementary operations on said
array of qubits.

10

24
36. The method of claim 32, wherein said sequences of

operations are sequences of elementary operations for all
je.J. J., is a sequence of elementary operations on said array
of qubits.

37. The method of claim 32, further also utilizing a
quantum computer, comprising the additional step of

manipulating said quantum computer largely according to
said sequence of operations.

