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A quantum computer is an array of quantum bits (qubits) 
together with some hardware for manipulating these qubits. 
Quantum Bayesian (QB) nets are a method of modeling 
quantum systems graphically in terms of network diagrams. 
This invention comprises a classical computer running a 
computer program that expresses the information contained 
in a QB net as a sequence of elementary operations (SEO). 
One can then run these sequences on a quantum computer. 
We show how to reduce a QB net into a SEO by a two step 
process. First, express the information contained in the QB 
net as a sequence of unitary operators. Second, express each 
of those unitary operators as a SEO. An appendix to this 
document contains the C++ Source code of a computer pro 
gram called “Qubiter1.0', which is a preferred embodiment 
of the invention. 
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figure 6 
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figure 11 
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COMPILER FOR A QUANTUM COMPUTER 

Matter enclosed in heavy brackets appears in the 
original patent but forms no part of this reissue specifica 
tion; matter printed in italics indicates the additions 
made by reissue. 

REFERENCE TO AMICROFICHEAPPENDIX 

The present application includes a microfiche appendix 
comprising the C++ Source code of a fully functional com 
puter program called Qubiter1.0. Qubiter1.0 is a possible 
embodiment of the software of the present invention. The 
microfiche appendix comprises 1 microfiche with a total of 
52 frames. The first frame is a test pattern for focusing. The 
second frame, called Appendix A, is a list of files contained 
in a CodeWarriorTM project for Qubiter1.0. Subsequent 
frames are labelled Appendix B, and comprise source code 
contained within said files. 

TECHNICAL FIELD 

The invention relates to an array of quantum bits known as 
a quantum computer. More specifically, it relates to the gen 
eration of the instruction sequences that are used to manipu 
late such an array. 

BACKGROUND OF THE INVENTION 

This invention deals with quantum computers. A quantum 
computer is an array of quantum bits (qubits) together with 
Some hardware for manipulating these qubits. Quantum 
computers with only a few bits have already been built. For a 
review of quantum computers, see DiV95: D. P. DiVincenzo, 
Science 270, 255 (1995). See also Ste.97: A. M. Steane, Los 
Alamos eprint http://XXX.lanl.gov/abs/quant-ph/9708022 
www.arxiv.org/abs/quant-ph/9708022. 

This invention also deals with Quantum Bayesian (QB) 
nets. QB Nets are a method of modeling quantum systems 
graphically in terms of network diagrams. For more 
information, see Tuc95: R. R. Tucci, Int. Jour. of Mod. Phys 
ics B9, 295 (1995). See also Tuc98: U.S. Pat. No. 5,787,236. 

In classical computation and digital electronics, one deals 
with sequences of elementary instructions (instructions such 
as AND, NOT and OR). These sequences are used to 
manipulate an array of classical bits. The instructions are 
elementary in the sense that they act on only a few bits 
(usually 1, 2 or 3) at a time. Henceforth, we will sometimes 
refer to sequences as products and to instructions as 
operations, operators, steps or gates. Furthermore, we will 
abbreviate the phrase “sequence of elementary operations' 
by “SEO. In quantum computation, one also deals with 
SEOs, but for manipulating qubits instead of classical bits. 

This invention comprises a classical computer running a 
computer program that expresses the information contained 
in a QB net as a SEO. One can then run these SEOs on a 
quantum computer. Of course, QB nets can and have been 
run entirely on a classical computer. (See the Software pro 
gram called "Quantum Fog', produced by the Artiste com 
pany (www.ar-tiste.com)). However, because of the higher 
speeds promised by quantum parallelism, one expects QB 
nets to run much faster on a quantum computer. 

With classical computers, one usually writes a computer 
program in a high level language (like Fortran, C or C++). A 
compiler then expresses this as a SEO for manipulating bits. 
In the case of quantum computers, a QB net may be thought 
of as a program in a high level language. This invention is 
like a “quantum compiler in the sense that it can take a QB 
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2 
net input, and re-express it as a SEO that can then be used to 
manipulate qubits. 

This invention shows how to reduce a QB net into a SEO 
by a two step process. First, express the information con 
tained in the QB net as a sequence of unitary operators. 
Second, express each of those unitary operators as a SEO. 
An appendix to this document contains the C++ Source code 
of a computer program called “Qubiter.1.0. In its current 
version (1.0), Qubiter can decompose into a SEO only the 
simplest non-trivial kind of QB net: a single unitary matrix, 
or, equivalently, 2 connected nodes. Future versions of 
Qubiter are planned that will take an arbitrary QB net as 
input, and return as output a SEO for running a quantum 
computer. 
QB nets are to quantum physics what Classical Bayesian 

(CB) nets are to classical physics. For a review of CB nets, 
see Nea9O: Richard E. Neapolitan, Probabilistic Reasoning 
in Expert Systems: Theory and Algorithms (Wiley, 1990). 
See also Pea88: Judea Pearl, Probabilistic Reasoning in 
Intelligent Systems: Networks of Plausible Inference 
(Morgan Kaufmann, Palo Alto, 1988). CB nets have been 
used very successfully in the field of artificial intelligence 
(AI). Thus, we hope and expect that some day QB nets, 
running on quantum computers, will be used for AI applica 
tions. In fact, we believe that quantum computers are ideally 
Suited for Such applications. First, because AI tasks often 
require tremendous power, and quantum computers seem to 
promise this. Second, because quantum computers are 
plagued by quantum noise, which makes their coherence 
times short. There are palliatives to this, Such as quantum 
error correction (See the review Ste97). But such palliatives 
come at a price: a large increase in the number of steps. The 
current literature often mentions factoring a large number 
into primes as a future use of quantum computers (See the 
review Ste97). However, due to noise, quantum computers 
may ultimately prove to be impractical for doing long pre 
cise calculations such as this. On the other hand, short coher 
ence times appear to be a less serious problem for the types 
of calculations involved in AI. The human brain has coher 
ence times too short to factor a 100 digit number into primes, 
and yet long enough to conceive the frescoes in the Sistine 
Chapel. We do not mean to imply that the human brain is a 
quantum computer. An airplane is not a bird, but it makes a 
good flyer. Perhaps a quantum computer, although not a 
human brain, can make a good thinker. 
To our knowledge, nobody else has invented a method of 

reducing an arbitrary QB net to a SEO for running a quan 
tum computer. It’s true that previous workers (See Bar95: A. 
Barrenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. 
Margolus, P. Shor, T. Sleator, J. H. Smolin, H. Weinfurter, 
Physical Review A 52, 3457 (1995)) have described a 
method for reducing a single unitary operator into a SEO. 
But our method for doing this is significantly different from 
theirs. Their method is based on a mathematical technique 
described in Rec94: M. Reck and A. Zeilinger, Physical 
Review Letters 73, 58 (1994). Our method is based on a 
mathematical technique called the CS Decomposition, to be 
described later. For a review of the CS decomposition, see 
Pai94: C. C. Paige, M. Wei, Linear Algebra And Its Applica 
tions 208, 303 (1994). Our CS method for reducing unitary 
matrices has inherent binary symmetries that make it easy to 
apply to qubit systems, which also possess binary symme 
tries. The method of Bar95 possesses no such symmetries. 
For this reason, we believe our method to be superior to 
theirs. 

GOALS OF THE INVENTION 

The main goal of the invention is to provide a new method 
for generating the SEOs that are used to manipulate a quan 
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tum computer. This goal is achieved by means of a classical 
computer running a computer program that takes as input a 
QB net, and returns as output the desired SEO. 
A related goal of the invention is for said computer pro 

gram to serve as a blueprint that future workers can modify 
and enlarge. 
A related goal is to allow users to run QB nets on a quan 

tum instead of a classical computer. The QB nets could be 
used, for example, to do AI tasks such as decision making. 

SUMMARY OF THE INVENTION 

A quantum computer is an array of quantum bits (qubits) 
together with Some method for manipulating these qubits. 
Quantum Bayesian (QB) nets are a method of modeling 
quantum systems graphically in terms of network diagrams. 

This invention comprises a classical computer that runs a 
computer program. The program takes a QB net and decom 
poses it into a sequence of elementary operations (SEO). 
Such a sequence can be used to manipulate a quantum com 
puter. 

This invention shows how to reduce a QB net into a SEO 
by performing four steps: (1) Find eras. (2) Insert delta func 
tions. (3) Find unitary extensions of era matrices. (4) 
Decompose each unitary matrix into a SEO. 

In step (1), we partition the set of nodes of the QB net into 
Subsets called eras. All nodes in a given era “occur at 
roughly the same time'. We also assign a matrix to each era. 

In step (2), we pad the era matrices of step (1) with delta 
functions so that the resultant era matrices can be multiplied 
by each other. 

In step (3), we extend the era matrices of step (2) (by 
adding rows and columns) so that the resultant era matrices 
are all unitary and of the same size. 

In step (4), we reduce into a SEO each of the unitary era 
matrices of step (3). Step (4) is based on the CS Decomposi 
tion Theorem. This theorem asserts that: given a unitary 
matrix U, if we partition it into 4 blocks U, U, U3, U of 
the same size, then one can express each U, where ke0, 1, 
2, 3D, as a product LDR Such that L. and R are unitary 
matrices and D is diagonal. Since the matrices Land Rare 
unitary, one can apply the CS Decomposition Theorem to 
them next. One can continue to apply the CS Decomposition 
Theorem to the unitary matrices generated in previous steps. 
In this way, one can express the original matrix U as a prod 
uct of matrices of a type that we call “central matrices'. We 
show how to express any central matrix as a SEO. 
An appendix to this document contains the C++ Source 

code of a computer program called “Qubiter1.0. In its cur 
rent version (1.0), Qubiter can decompose into a SEO only 
the simplest non-trivial kind of QB net: a single unitary 
matrix, or, equivalently, 2 connected nodes. Future versions 
of Qubiter are planned that will take an arbitrary QB net as 
input, and return as output a SEO for running a quantum 
computer. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows a labelled graph and the four node matrices 
associated with the four nodes of the graph. A QB net con 
sists of 2 parts: a labelled graph and a collection of node 
matrices, one matrix for each node. 

FIG. 2 shows a QB Net for Teleportation. This figure also 
shows the number of quantum or classical bits carried by 
each arrow. 
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4 
FIG.3 shows the root node eras for the Teleportation net. 
FIG. 4 shows the external node eras for the Teleportation 

net. 

FIG. 5 shows an example of a QB net in which an external 
node is not in the final era. 

FIG. 6 shows a binary tree. Each node B has a single 
parent. If the parent is to B's right (ditto, left), then B con 
tains the names of the matrices produced by applying the CS 
Decomposition Theorem to the L matrices (ditto, R 
matrices) of B's parent. 

FIG. 7 shows a block diagram of a classical computer 
feeding data to a quantum computer. 

FIG. 8 shows a file listing the entries of a unitary matrix. 
Such files are called “mat.in, where the string “mat' is a 
variable specified by the user. 

FIG. 9 shows a file listing a SEO. Such files are called 
“mat-cmnd.out', where the string “mat is a variable speci 
fied by the user. The SEO in this figure is a decomposition of 
the matrix specified by FIG. 8. 

FIG. 10 shows another file listing a SEO. This SEO can be 
obtained from that in FIG.9 by deleting from the latter those 
factors arising from rotations by a Zero angle. 

FIG. 11 shows the first file that Qubiter looks for. It’s 
called “qbtr-params.in', and it determines the name of other 
input files that Qubiter may look for. It also determines the 
mode of operation of Qubiter. 

DETAILED DESCRIPTION OF THE INVENTION 
(A)NEW METHOD 
We begin by presenting a brief review of QB nets. For 

more information, see Tuc95, Tuc98. 
In what follows, we use the following notation. We define 

Z={a,a+1a +2 . . . , b} for any integers a and b, Ö(x,y) 
equals one if x=y and Zero otherwise. For any finite set S, S. 
denotes the number of elements in S. 
We call a graph (or a diagram) a collection of nodes with 

arrows connecting some pairs of these nodes. The arrows of 
the graph must satisfy certain constraints. We call a labelled 
graph a graph whose nodes are labelled. A QB net consists of 
two parts: a labelled graph with each node labelled by a 
random variable, and a collection of node matrices, one 
matrix for each node. These two parts must satisfy certain 
constraints. 
An internal arrow is an arrow that has a starting (source) 

node and a different ending (destination) one. We will use 
only internal arrows. We define two types of nodes: an inter 
nal node is a node that has one or more internal arrows 
leaving it, and an external node is a node that has no internal 
arrows leaving it. It is also common to use the terms root 
node or prior probability node for a node which has no 
incoming arrows (if any arrows touch it, they are outgoing 
ones). 
We restrict our attention to acyclic graphs: that is, graphs 

that do not contain cycles. (A cycle is a closed path of arrows 
with the arrows all pointing in the same sense.) 
We assign a random variable to each node of the QB net. 

(Henceforth, we will underline or put a caret over random 
variables. For example, we might write P(x=x) for the prob 
ability that the random variable x assumes the particular 
value x.) Suppose the random variables assigned to the N 
nodes are x1, x2, . . . . xv. For each jeZy, the random 
variable x, will be assumed to take on values within a finite 
set X, called the set of possible states of X, 

For example, consider the net of FIG.1. Nodes 11, 12 and 
13 are internal and node 14 is external. Node 11 is a root 
node. There are four nodes so N=4. We will assume that the 
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four nodes must lie in one of two states: either no or si. Thus, 
X =X =Xs=X={no.si. 

If S={k. k. . . . .ks Ziv, and k <k.<... <ks, define 
(X.)s=(X, X. . . . . Xs) and (x.)s=(X, X. . . . . xi). 
Sometimes, we also abbreviate (X.)Zw (i.e., the vector that 
includes all the possible X, components) by just X., and (x.) 
Z1.N. by just x. 

For example, Suppose N=4. One has Z={1,2,3,4}. If 
S={1,3}, then S=2. Furthermore, (X.)=(x,x) and (x.)= 
(x1, xs). One defines X.-(x)=(X1,X2, Xs.X.) and x.-(x) = 
(x1, x2x3.x4). s s 

Let Z., be the set of all jezy such that X, is an external 
node, and let Z., be the set of all jeZy such that x, is an 
internal node. Clearly, Z, and Z are disjoint and their 
union is Zy. 

For example, for FIG. 1, Z{4} and Z={1,2,3}. 
Each possible value X. of x. defines a different net story. 

For any net story X., we call (X.) the internal state of the 
story and (x,) its external state. 

For example. a possible story for the net of FIG. 1 is the 
case when x=x=si and x=x=no. This net story may also 
be represented by X.=(si, si, no, no). Since we are assuming 
that each of the four nodes of FIG. 1 can assume two states, 
there are total of 2'-16 stories possible for the net of FIG. 1. 
For story x.=(si.si.no.no), the internal state is (XXX)=(si, 
sino) and the external state is X=no. 

For each net story, we may assign an amplitude to each 
node. Define S, to be the set of all k such that an arrow 
labelled X (i.e., an arrow whose source node is x.) enters 
node x. We assign a complex number AX(x)s. to node 
& We call Ax, (x,)s. the amplitude of node X, within net 
story X. 

For example, consider a particular net story, call it (X, 
XXX), of FIG.1. No arrow enters node x so both S and 
(X.)s are empty. Node X, is entered by an arrow from node 
x, so S2={1} and (X.)s=(x). Likewise, S = {1} and (x.)s= 
(X). Finally, S={2,3} and (x)s (xxs). We assign the 
complex number AX) to node x, Axx) to node x. 
Asxsix) to node xa, and A-XX.X.) to node x4. 
The amplitude of net story X, call it A(X.), is defined to be 

the product of all the node amplitudes AIX, (X.)sforjeZy. 
Thus, 

ext 

A(X.) = Aix (X.)sil. (1) 

For example, consider a particular net story, call it (X, X, 
X,x), of FIG. 1. One has that 

(2) 

The function A, with values Ax, (x,)s. determines a 
matrix that we will call the node matrix of node x, and 
denote by Q, Thus, X, is the matrix's row index and (X.)S; is 
its column index. 

For example, FIG. 1 gives the four node matrices Q, Q, 
Q, Q associated with the four nodes of the graph shown 
there. 
One can translate a QB net into a SEO by performing 4 

steps: (1) Find eras. (2) Insert delta functions. (3) Find uni 
tary extensions of era matrices. (4) Decompose each unitary 
matrix into a SEO. Next we will discuss these 4 steps in 
detail. We will illustrate our discussion by using Teleporta 
tion as an example. Teleportation was first discussed in 
Tel93: C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. 
Peres, W. K. Wootters, Physical Review Letters 70, 1895 
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6 
(1993). FIG. 2 shows a QB net for Teleportation. Reference 
Bra96: G. Brassard, Los Alamos eprint http://XXX.lanl.gov/ 
abs/quant-ph/96.05035 www.arxiv.org/abs/quant-ph/ 
960.5035, gives a SEO, expressed graphically as a qubit 
circuit, for Teleportation. It appears that the author of Bra96 
obtained his circuit mostly by hand, based on information 
very similar to that contained in a QB net. The present inven 
tion gives a general method whereby such circuits can be 
obtained from a QB net in a completely mechanical way by 
means of a classical computer. 
Step 1: Find Eras 
The root node eras of a graph are defined as follows. Call 

the original graph Graph.(1). The first era T is defined as the 
set of all root nodes of Graph.(1). Call Graph.(2) the graph 
obtained by erasing from Graph.(1) all the T nodes and any 
arrows connected to these nodes. Then T is defined as the 
set of all root nodes of Graph.(2). One can continue this 
process until one defines an era Tsuch that Graph(t+1) is 
empty. (One can show that if Graph.(1) is acyclic, then one 
always arrives at a Graph(t+1) that is empty.) For example, 
FIG.3 shows the root node eras of the Teleportation net FIG. 
2. Lett represent the set of eras: t={T.T. ... T}. Note 
that TCZ for all aeZi and the union of all F. equals 
Ziv. In mathematical partance, the collection of eras is a 
partition of Ziv. 

Rather than defining eras by (1) removing Successive lay 
ers of root nodes, one can also define them by (2) removing 
successive layers of external nodes. We call this second type 
of era, the external node eras of the graph. For example, FIG. 
4 shows the external node eras of the Teleportation net FIG. 
2. 

This process whereby one classifies the nodes of an acy 
clic graph into eras is a well know technique referred to as a 
chronological or topological sort in the computer literature. 
See, for example, Fla95: Bryan Flamig, Practical Algorithms 
in C++ (Wiley, 1995) page 369. 

Henceforth, for the sake of definiteness, we will speak 
only of root node eras. The case of external node eras can be 
treated similarly. 

Suppose that aeZ. The arrows exiting theath era are 
labelled by (X.), Those entering it are labelled by (X.) 
where T, is defined by T =U.S. Note that theath era 
node is only entered by arrows from nodes that belong to 
previous (not subsequent) eras so T. CTU. . . UTUT. 
The amplitude B of theath era is defined as 

B, (x,), (x)r, l = A;|xi|(x)sil. (3) 
jeTa 

The amplitude A(X.) of story X. is given by 

T (4) 

For example, for Teleportation we get from FIG. 3 

and 
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Step 2: Insert Delta Functions 
The Feynman Integral FI for a QB net is defined by 

Note that we are summing over all stories X. that have (X.)2 
as their external state. We want to express the right side of 
Eq. (7) as a product of matrices. 

Consider how to do this for Teleportation. In that case one 
has 

FI(x) = X B.B.B.B., (8) 

where the B are given by Eqs. (5). The right side of Eq. (8) 
is not ready to be expressed as a product of matrices because 
the column indices of B and the row indices of B are not 
the same for all aez. Furthermore, the variable X, 
occurs in B and B but not in B. Likewise, the variable X 
occurs in B and B, but not in B. Suppose we define B for 
aeZ by 

where we sum over all intermediate indices; i.e., all x," 
except X. Contrary to Eq. (8), the right side of Eq. (10) can 
be expressed immediately as a product of matrices since now 
B column indices and B row indices are the same. The 
purpose of inserting a delta function of X into B is to allow 
the system to “remember the value of X between non 
consecutive eras T and T. Inserting a delta function of X 
into B serves a similar purpose. 

In the Teleportation net of FIG. 2, the last era contains all 
the external nodes. However, for some QB nets like the one 
in FIG. 5, this is not the case. For the net of FIG. 5. 

Even though node x is external, the variable X does not 
appear as a row index in B. Suppose we set 

Bi(x) = B(x), (12a) 

B2 (xi, xix) = B2(x;, xix), (12b) 
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Then 

FI(X2, Xs) = X BBBB1, (13) 
interm 

where we sum over all intermediate indices; i.e., all x," 
except X and Xs. Contrary to B, the rows of B are labelled 
by the indices of both external nodes x and xs. 

This technique of inserting delta functions can be general 
ized as follows to deal with arbitrary QB nets. ForjeZy, let 
a,(j) be the smallest aeZ such that X, appears in B. 
Hence, ai,() is the first era in which x, appears. If X, is an 
internal node, let al...(i) be the largest a such that x, appears 
in B (i.e., the last era in which x, appears). If X, is an exter 
nal node, let al.(j)=t+1. For aeZ1. For aeZ, let 

A={jeZi Nani,(i)<asana (j)}, (14) 

B, = B, (x), (x.1), 6(x, x'). (15) 
jeAa 

In Eq. (15), x7. should be identified with x, and x, with no 
variable at all. Equation (7) for FI can be written in terms of 
the B functions: 

FI(X.)z. X BT1...B2B1, (16) 
interm 

where the sum is over all intermediate indices (i.e., all x," for 
which azt). For all a, define matrix M so that the x,y entry 
of M is B(x,y). Define M to be a column vector whose 
components are the values of FI for each external state. Then 
Eq. (16) can be expressed as: 

M=M... M2M1. (17) 
The rows of the column vector Mare labelled by the possible 
values of (X.)- The rows of the column vector M are 
labelled by the possible values of (X.), where T is the set 
of root nodes. 
Step 3: Find Unitary Extensions of Era Matrices 
So far, we have Succeeded in expressing FI as a product of 

matrices M, but these matrices are not necessarily unitary. 
In this step, we will show how to extend each M matrix (by 
adding rows and columns) into a unitary matrix U. 
By combining adjacent Mas, one can produce a new, 

Smaller set of matrices M. Suppose the union of two con 
secutive eras is also defined to be an era. Then combining 
adjacent MS is equivalent to combining consecutive eras to 
produce a new, smaller set of eras. We define a breakpoint as 
any position aez, between two adjacent matrices M. 
and M. Combining two adjacent M's eliminates a break 
point. Breakpoints are only necessary at positions where 
internal measurements are made. For example, in Teleporta 
tion experiments, one measures node Xs, which is in era T. 
Hence, a breakpoint between M and M is necessary. If that 
is the only internal measurement to be made, all other break 
points can be dispensed with. Then we will have M=M.M.' 
where M'=M. M'=MMM. If no internal measurements 
are made, then we can combine all matrices Minto a single 
one, and eliminate all breakpoints. 
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We will henceforth assume that for all aez, the col 
umns of M, are orthonormal. If for some ageZ., M., does 
not satisfy this condition, it may be possible to “repair M, 
so that it does. First: If a row B of M is zero, then elimi 
nate the column B of M and the row B of M. Next: If a 
row f of the column vector M. ... M.M. is zero, then flag 
the column B of M. The flagged columns of M, can be 
changed without affecting the value of M. If the non-flagged 
columns of Mare orthonormal, and the number of columns 
in M, does not exceed the number of rows, then the Gram 
Schmidt method, to be discussed later, can be used to replace 
the flagged columns by new columns such that all the col 
umns of the new matrix M are orthonormal. If it is not 
possible to repair M, in any of the above ways (or in some 
other way that might become clear once we program this), 
one can always remove the breakpoint between M and 
M. 
We will call d, the number of rows of matrix M and d. 

its number of columns. We define D and Ns by 

(18) 

Let d=N-d, for all a. For each az1. we define U to be the 
matrix that one obtains by extending M as follows. We 
append and xd, block of Zeros beneath M, and an NSX 
d block of gray entries to the right of M. By gray entries 
we mean entries whose value is yet to be specified. When 
a=1, M be can extended in two ways. One can append a 
column of d zeros beneath it and call the resulting Ns 
dimensional column vector V. Alternatively, one can append 
a column of d zeros beneath M and an Nx(N-1 block of 
gray entries to the right of M, and call the resulting NixNs 
matrix U. In this second case, one must also insert e to the 
right of U. By e we mean the Ns dimensional column 
vector whose first entry equals one and all others equal Zero. 
Which extension of M is used, whether the one that requires 
e or the one that doesn’t, should be left as a choice of the 
user. Henceforth, for the sake of definiteness, we will 
assume that the user has chosen the extension without the e. 
The other case can be treated similarly. Equation (17) then 
becomes 

v=U... Usuav 1. (20) 
where v is just the column vector M with d Zeros attached 
to the end. 

To determine suitable values for the gray entries of the U. 
matrices, one can use the Gram-Schmidt (G.S.) method. 
(See Nob88: B. Noble and J. W. Daniels, Applied Linear 
Algebra, Third Edition (Prentice Hall, 1988)). This method 
takes as input an ordered set S=(V, V. . . . . V) of vectors, 
not necessarily independent ones. It yields as output another 
ordered set of vectors S'=(u, u, ..., u), Such that S spans 
the same vector space as S. Some vectors in S" may be zero. 
Those vectors of S' which arent Zero will be orthonormal. 

For rez, if the first r vectors of S are already orthonormal, 
then the first r vectors of S' will be the same as the first r 

vectors of S. Lete, forje Z1x be the jth standard unit vector 
(i.e., the vector whose jth entry is one and all other entries 
are Zero). For each aeZ to determine the gray entries of 
U, one can use the G.S. method on the set S consisting of the 
non-gray columns of U, together with the vectors e. e. . . . 
CN. 
Step 4: Decompose Each Unitary Matrix into a SEO 

In this section we present a CS method for decomposing 
an arbitrary unitary matrix into a SEO. By following the 
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10 
previous 3 steps, one can reduce a QB net to a product of 
unitary operators U. By applying the CS method of this 
section to each of the matrices U, one can reduce the QB net 
to a SEO. 
We will use the symbol N for the number (s1) of bits 

and N=2' for the number of states with N bits. We define 
Bool={0,1}. We will use lower case Latin letters a,b,c . . . 
eBool to represent bit values and lower case Greek letters 
C.E.8, ... eZow, to represent bit positions. A vector such as 
-e 

a =ax. . . . azalao will represent a string of bit values, a 
s -e 

being the value of the uth bit for uezo. A bit string a 
has a decimal representation 

NM-1 (21) 

For Bezo, we will use u(B) to denote the Bth standard 
unit vector, i.e., the vector with bit value of 1 at bit position B 
and bit value of Zero at all other bit positions. 

I will represent the r dimensional unit matrix. Suppose 
BeZow, and M is any 2x2 matrix. We define M(B) by 

where the matrix M on the right side is located at bit position 
B in the tensor product of N2x2 matrices. The numbers that 
label bit positions in the tensor product increase from right to 
left (<-), and the rightmost bit is taken to be at position 0. 

For any two square matrices A and B of the same 
dimension, we define the () product by A()B=ABA, where 
A is the Hermitian conjugate of A. 

-e 

O =(O,O,.O.) will represent the vector of Pauli matrices, 
where 

( ( ...) ( Ox Oy Oz 1 () () 0 - 1 

The Sylvester-Hadamard matrices H are 2x2 matrices 

(23) 

-e -s . 
whose entry at row a and column b is given by 

(H.) R-(-1)", (24) 
where 

(25) 
a b =X albu. 

pt=0 

The qubits basis states 0< and |1> will be represented by 

The number operator n of the qubit is defined by 

(26) 

(27) O O 1 - O. n = |- 
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Note that 

in Os=0,n 1>=|1>. (28) 

We will often use nas shorthand for 

1 O 1 + O. (29) 
n = 1 - n = 

O O 2 

We define Po and P. by 

1 O O O (30) P = n = P = n = O O O 1 

For Rezow, we define PCB).P. (B), n(B) and n(B) by 
means of Eq. (22). For aeBool, let 

As mentioned earlier, we utilize a mathematical technique 
called the CS Decomposition. In this name, the letters C and 
S stand for “cosine” and “sine”. Next we will state the spe 
cial case of the CS Decomposition Theorem that arises in a 
preferred embodiment of the invention. 

Suppose that U is an NXN unitary matrix, where N is an 
even number. Then the CS Decomposition Theorem states 
that one can always express U in the form 

Lin O R 0 32 U= O p O (32) 
O L O R1 

where LL.R.R are N/2xN/2 unitary matrices and 

DE Dol (33a) 
D10 D11 

Doo = D11 = diag|C. C2, ..., CN), (33lb) 
2 

Do1 = diag S1, S2, ..., SN), (33c) O g 32 y) 

D10 = -Do. (33d) 

For 

N 
ie {1,2,... }, 

C, and S, are real numbers that satisfy 

C2+S’=1. (33e) 

Henceforth, we will use the term D matrix to refer to any 
matrix that satisfies Eqs. (33). If one partitions U into four 
blocks U of size 

NN 
2 2 
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12 
then 

(34) 

for i,je{0,1}. Thus, D, gives the singular values of U. 
More general versions of the CS Decomposition Theorem 

allow for the possibility that we partition U into 4 blocks of 
unequal size. 

Note that if U were a general (not necessarily unitary) 
matrix, then the four blocks U, would be unrelated. Then to 
find the singular values of the four blocks U, would require 
eight unitary matrices (two for each block), instead of the 
four L.R. This double use of the LR, is a key property of 
the CS decomposition. 

Consider FIG. 6. We start at 61 with a unitary matrix U. 
Without loss of generality, we can assume that the dimension 
of U is 2' for some N21. (If initially U's dimension is not 
a power of 2, we replace it by a direct sum U(+)I, whose 
dimension is a power of two.) We apply the CS Decomposi 
tion method to U. This yields node 62 comprising matrix 
D(0.U) of singular values, two unitary matrices L(0.U) and 
L(1U) on the left and two unitary matrices R(0.U) and R(1, 
U) on the right. Then we apply the CS Decomposition 
method to each of the 4 matrices L(0.U).L(1.U).R(0.U) and 
R(1U) and obtain nodes 63 and 64. Then we apply the CS 
Decomposition method to each of the 16 Rand L matrices in 
nodes 63 and 64. And so on. This process ends when the 
current row of nodes in the pyramid of FIG. 6 has L’s and 
R’s that are 1x1 dimensional, i.e., just complex numbers. 

Call a central matrix either (1) a single D matrix, or (2) a 
direct Sum D(+)D(+) . . . (+)D, of D matrices, or (3) a 
diagonal unitary matrix. From FIG. 6 it is clear that the 
initial matrix U can be expressed as a product of central 
matrices, with each node of the tree providing one of the 
central matrices in the product. Next, we show how to 
decompose each of the 3 possible kinds of central matrices 
into a SEO. 

Case 1: Central Matrix is a Single D Matrix 
Consider how to decompose a central matrix when it is a 

single D matrix. Before dealing with arbitrary N. consider 
N=3. Then the central matrix D can be expressed as: 

D = X exp(idoy)(X)P, (x)P. (35) 
a,besool 

-e -e 

Suppose (p (ditto, 0) is a column vector whose components 
are the numbers (p (ditto, 0) arranged in order of increas 

-e -> . -e 
ing a . We define new angles 0 in terms of the angles (p by 

- 1 - 36 9 = H, i. (36) 

Then one can show that 
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Eqs. (37)–(38) achieve our goal of decomposing D into a 
SEO. Now consider an arbitrary N. D can be written as 

X 
aeBooBl 

(39) 
5 

-e 

where the cp are real numbers. We define new angles 0 in 
-e 10 terms of the angles (p by 

- a - a (40) 

8 = NB-1 HNB-1 (b. 
Then one can show that 

15 

D = A, (41) 
BeBooBl 

where the operators AR on the right side commute and will 20 
be defined next. For any bebool'' we can write 

(42) 
b = f. Xu B) 25 j=0 

where 

30 

NR-22, 1>. . . f. 1-Bo2O. (43) 

In other words, b has bit value of 1 at bit positions (3. At all 35 
other bit positions, b has bit value of 0. r is the number of 
bits in b whose value is 1. When b-0, r=0. One can show 
that 

40 

A=o.(N-1)*P-1)... o.(N-1)"Po.(N-1)"PI(-)expie 
Bo (N-1) (44) 

45 
There are other ways of decomposing AR into a SEO. 

Case 2: Central Matrix is Direct Sum of D Matrices 

Next, consider how to decompose a central matrix when it 
is a direct sum of D matrices. Consider first the case N=3. 
Let R(p)=exp(io,(p). Previously we mentioned the fact that 50 
any D matrix D can be expressed as 

D = X R(d)(x)P,(x)P. (46) 
a,besool 

55 
One can also show that 

Do(+)D = X P,(x)R(d)(x)P, (47) 
a,besool 

Doo(+)Dol (+)Do(+)D = X P,(x)P(x)R(dat), (48) 60 
a,besool 

where the D, and D, are D matrices. It follows that by per 
muting the bit positions, we can change such a direct Sum of 
D matrices into a single D matrix. The latter can then be 
decomposed into a SEO by the method already discussed. 

65 

14 
Case 3: Central Matrix is a Diagonal Unitary Matrix 
Finally, consider how to decompose a central matrix when 

it is a diagonal unitary matrix. Before dealing with arbitrary 
NA, consider N=2. Then the central matrix C can be 
expressed as 

C-diag(eiboe, eibol, eith 10, eit II). (49) 

-e 

We define (p by 

- 1 - 50 0 = H, i. (50) 

One can show that 

C=AooAo1A10A11, (51) 

where 

Aoo-exp(iOoo), (52a) 

Ao=I2(x)exp(i0oo), (52b) 

Ao-exp(i61oO)(x)12, (52c) 

A =O,(0)" ()[I2(x)exp(ie.o.). (52d) 

Now consider an arbitrary N. Any diagonal unitary matrix 
C can be expressed as 

C = X exp(ida)P, (53) 
as BooB 

-e 

where the p are real numbers. We define 0 by 

- a - a (54) 

9 = N High. 
Then one can show that 

(55) C = A. 
BeBooB 

where the AR operators commute and will be defined next. 
For any eBool', we can write 

(56) 
b =X u(p;) 

j=0 

where 

NR-12?, 1>. . . DfIDfboaro. (57) 

One can show that 

expido if r = 0 (58) 

explied, (fo) if r = 1 
'site.(B)(B-1)....(B) blo, B. "Bl 

(-)expido", (bo) if r > 2. 
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There are other ways of decomposing AR into a SEO. 
(B) Implementation of New Method on Classical Computer 
So far in Section (A), we have described a mathematical 

algorithm for decomposing any QB net into a SEO. Next we 
describe a particular implementation of the algorithm, a 
computer program called “Qubiter that can be run on a 
classical computer. 
The use of a computer is practically indispensable for 

obtaining useful numerical answers through the method of 
Section (A). In all but the simplest of cases, vast amounts of 
data storage and processing are necessary to obtain final 
numerical answers from the method of Section (A). The nec 
essary book-keeping and number crunching are prohibi 
tively error prone and time consuming to a human, but not to 
a computer. 
A preferred embodiment of the invention is a classical 

computer that feeds data (a SEO) to a quantum computer. By 
a classical computer, we mean a device that makes a desired 
calculation using digital circuits which implement determin 
istic (classical, non-quantum) logic. By a quantum computer 
we mean a device that makes a desired calculation using an 
array of quantum bits (qubits). Besides their calculational 
circuits, classical and quantum computers may comprise 
input, output and memory devices. The important difference 
is that an array of quantum bits may be put in an entangled 
quantum state, whereas a digital deterministic logic circuit 
cannot be put in Such a state (in practice, for useful periods 
of time). The classical computer of our preferred embodi 
ment is a Mac computer, produced by Apple Computer Inc. 
of Cupertino, California. The Mac is running a program 
written in the computer language C++. Of course, this inven 
tion could just as easily be implemented in a language other 
than C++, and on a platform other than a Mac. FIG. 7 is a 
block diagram of a classical computer feeding data to a 
quantum computer. 70 represents a classical computer. It 
comprises 71, 72, 73.71 represents input devices, such as a 
mouse or a keyboard. 72 represents the CPU, internal and 
external memory units. 72 does calculations and stores infor 
mation. 73 represents output devices, such as a printer or a 
display screen. An image of a QB net (for example, FIG. 2) 
can be rendered on the display screen. 75 represents a quan 
tum computer, comprising an array of quantum bits and 
Some hardware for manipulating the state of those bits. 

Software for a preferred embodiment of the invention was 
written using Code WarriorTM. Code Warrior is a C++ Inte 
grated Development Environment produced by MetroWerks 
Inc. of Austin, Texas. C++ Source code for a computer pro 
gram called “Qubiter1.0 is included as a Microfiche Appen 
dix to this document. The Microfiche Appendix has two 
parts: Appendix A and Appendix B. 

Appendix A is a listing of the names of all the files in the 
“Code Warrior Project” for Qubiter. Appendix B is a listing 
of Qubiter source code. Apart from libraries provided with 
Code Warrior, Qubiter requires parts of the C library called 
Clapack. This library is freeware and can be downloaded via 
the Internet from the website “www.netlib.org. 

Qubiter uses files that list the entries of a unitary matrix U. 
FIG. 8 shows an example of such files. Qubiter ignores the 
lines labelled 81 and 83. The line labelled 82 tells how many 
bits are necessary to label U's columns (or rows, since U 
must be square). In the example of FIG. 8, according to 82, 
two bits are necessary to label U's column, so one expects U 
to be a 4x4 matrix with 16 elements. 84 labels all the lines 
after the line labelled 83. Each line in 84 represents a com 
plex number Z, the real part of Z is listed first, then some 
white space to the right of it, and then the imaginary part of Z 
to the right of that. 84 contains the entries of U, arranged so 
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16 
that the entries in the first column of U are listed first, then 
those of the second column of U, etc. 

Qubiter also uses files that list SEOs. FIG. 9 is an example 
of such a file. The line labelled 91 tells how many bits the 
gates listed in the file are to operate on, (i.e., what we called 
N in Section (A)). 92 labels all the other lines in the file. 
Each line in 92 represents a gate. There are four types of 
gates, and they are specified as follows: 
(a) PHAS ang 
where ang is a real number. This signifies a phase factor 

t 

exp(i(ang) 180 ). 

(b) CNOT C. a char B 
where C. ReZox, and chare {TF}.T and F stand for true 

and false. If char is the character T, this signifies O (B)" 
(c.). Read it as “c-not: if C. is true, then flip B.” If char is 
the character F, this signifies O (B)"(C)n. Read it as 
“c-not: if C is false, then flip B.” 

(c) ROTY C. ang 
where CeZow, and ang is a real number. This signifies 

the rotation of qubit C. about the Y axis by an angle ang 
in degrees. In other words, 

t explicy(a)ang ). 

(d) ROTZ C. ang 
This is the same as (c) except that the rotation is about the 
Z axis instead of the Y one. 

The matrix given in FIG. 8 can be decomposed into the 
SEO given in FIG. 9. Such decompositions are not unique. 
After doing the trivial optimization of removing all factors A 
6 for which the rotation angle is Zero, the 33 operations in 
FIG.9 reduce to 25 operations in FIG. 10. 

Qubiter starts by looking for a parameter file entitled 
“qbtr-params.in’. FIG. 11 is an example of such a file. Lines 
labelled 111, 113, 115 and 117 are ignored by the program. 
Lines labelled 112, 114, 116, 118 are not. 
The user should enter into line 112 the name of a matrix. 

In FIG. 11, we have used “DiscFourier2bits”. 
If the user enters “yes” into line 114 as an answer to “Do 

compilation?', then Qubiter will look for a file named 
“DiscFourier2bits.in'. In other words, it will look for a file 
whose name is the string in line 112 plus the suffix ".in'. 
Qubiter expects to find in this file the entries of the unitary 
matrix U, to be decomposed. The file should be of the 
form exemplified by FIG. 8. 

If the user enters “yes” into line 116 as an answer to “Do 
decompilation?', then Qubiter will look for a file named 
“DiscFourier2bits-cmind...out. In other words, it will look for 
a file whose name is the string in line 112 plus the suffix 
“-cmnd.out. Qubiter expects to find in this file a SEO. The 
file should be of the form exemplified by FIGS. 9 and 10. 

If the user enters “yes” into line 118 as an answer to “Do 
Zero angle optimization?', then Qubiter will produce a file of 
the type exemplified by FIG. 10 instead of the type exempli 
fied by FIG. 9. Thus, it will omit those gates arising from a 
rotation by a Zero angle. 

Qubiter has 2 main modes of operation. 
The first mode of operation is when the user enters “yes” 

in line 114 as an answer to “Do compilation?', and “yes” in 
line 116 as an answer to “Do decompilation?” In this mode, 
the user must provide 2 input files entitled “qbtr-params.in 
and “mat.in, where “mat' is the string in line 112. Qubiter 
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will output a file called “mat-cmnd.out. Then it will use 
mat-cmnd.out as input, multiply the SEO listed in this file, 
arrive at a unitary matrix U, and output a file called “mat 
check.out” which lists the entries of Ur. If everything goes 
well, the matrix U specified by file “mat.in' and the 
matrix U specified by file “mat-check.out” will be the 
same matrix, within machine precision. 
The second mode of operation is when the user enters 

“no” in line 114 as an answer to “Do compilation?', and 
“yes” in line 116 as an answer to “Do decompilation?” In 
this mode, the user must provide 2 input files entitled “qbtr 
params.in' and “mat-cmnd.out. Qubiter will multiply the 
SEO listed in “mat-cmnd.out', arrive at a unitary matrix 
U, and output a file called “mat-check.out” which lists 
the entries of U. 
We should also mention a small frill to the first mode of 

operation. At the same time that Qubiter outputs the file 
“mat-cmnd.out', it also outputs a file called “mat-pict.out 
which is a translation of “mat-cmnd.out to a pictorial lan 
guage. Each elementary gate is represented by a line in 
“mat-pict.out. Consider a single line of the file. There is a 1 
to 1 correspondence between the characters in the line and 
the qubits of an array of qubits. The rightmost character 
represents bit 0. The next to rightmost character in the line 
represents bit 1. And so on. A bit that is not operated on is 
represented by a “” character. A bit that is rotated about the 
Z axis (ditto, Y axis) is represented by a “Z” character (ditto, 
“Y” character). If the gate is a c-not that flips a bit when the 
control bit is true (ditto, false), then the control bit is repre 
sented by a “(a) character (ditto, "O' character). The bit to 
be flipped is represented by an “X” character. If the gate is a 
pure phase acting on all bits, all bits are represented by the - 
character. 
The CS Decomposition is intimately related to the Gener 

alized Singular Value Decomposition (GSVD). In fact, 
Qubiter1.0 does CS decompositions by means of a Clapack 
subroutine for doing GSVD. For more information about the 
GSVD and its connection to the CS Decomposition, see 
Pai94 and references therein. See also the Clapack documen 
tation that comes with the Subroutine ZggSVd.c 

So far, we have described version 1.0 of Qubiter. Future 
versions of Qubiter are planned that will: (1)Take as input an 
arbitrary QB net (not just 2 connected nodes), and return as 
output a SEO. (2) Add quantum error correction code to the 
input QB net. (3) Include optimizations enabling it to pro 
duce SEOs with fewer steps. 

In classical computation, the basic set of elementary 
operators is not unique. For example, instead of using AND, 
NOT and OR gates, one can just use NAND gates. The same 
is true in quantum computation: the basic set of elementary 
operators is not unique. In this preferred embodiment of the 
invention, we use the set {CONTROLLED-NOT, QUBIT 
ROTATION} of elementary operators, but the invention also 
applies to other sets of elementary operators. 

So far, we have described what are at present the preferred 
embodiments of this invention. Those skilled in the art will 
be able to come up with many modifications to the given 
embodiments without departing from the present invention. 
It is therefore desired that the scope of the invention be deter 
mined by the appended claims rather than by the given 
embodiments. 

I claim: 
1. A method of operating a classical computer, wherein 

said method must be stored in a computer readable medium 
which said classical computer can read, wherein said 
method must be stored in the external or internal memory 
units of said classical computer; to calculate a sequence of 
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18 
operations with the purpose of applying said sequence of 
operations to a quantum computer comprising an array of 
qubits, to induce said quantum computer to execute a desired 
calculation, said method comprising the steps of: 

storing in said classical computer a QB net (Ouantum 
Bayesian net) data-set comprising: 
(a) graph information comprising a node label for each 
node of a plurality of N nodes, and also comprising a 
plurality of directed lines, wherein a directed line 
comprises an ordered pair of said node labels, 
wherein one member of the label pair labels the 
source node and the other member labels the destina 
tion node of the directed line, 

(b) state information comprising, for each je 1, 2, . . . 
N}, a finite set X, containing labels for the states that 
the jth nodex, (may assume assumes, and 

(c) amplitude information comprising, for eachje 1, 2, 
... N, a representation of a complex number 

for each vector 

(xj. Xkl Xk2 . . . . *s, 

such that XeX, XeX, XeX. . . . . and 

*::seks: 

wherein 

(&l $2, ... sys) 

are the IS, nodes connected to x, by directed lines entering 
X, wherein said directed lines entering x, transmit the state 
of their source node, wherein said S, is an integer greater or 
equal to Zero, 

composing with said classical computer and using said 
QB net data-set, a data-set that specifies yields a uni 
tary matrix V, wherein V, is equivalent to the unitary 
matrix U... USU, of Eq. (20), and V, describes the 
quantum-State evolution for the situation described by 
said OB net data-set, 

calculating said sequence of operations using said classi 
cal computer, wherein said sequence of operations and 
said V, both would, if applied to an said array of 
qubits, produce equivalent transformations of the array 
of qubits. 

2. The method of claim 1, wherein said sequence of opera 
tions comprises c-not operations elementary operations on 
said array of qubits. 

3. The method of claim 1, wherein said sequence of opera 
tions comprises qubit rotation operations is a sequence of 
elementary operations on said array of qubits. 

4. The method of claim 1, further also utilizing a quan 
tum computer, comprising the additional step of: 

manipulating said quantum computer largely according to 
said sequence of operations. 

5. The method of claim 1, wherein said classical computer 
includes a unitary matrix decomposer which is used in the 
calculation of said sequence of operations, wherein if the 
decomposer is given data that fairly directly specifies a 
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specifies a represetation of an initial unitary matrix U, then 
the decomposer will calculate a data-set that fairly directly 
specifies specifies a represetation of three unitary matrices: 
L. D. R. Such that the following matrix equation holds: 
U-LDR 

6. The method of claim 1, wherein said classical computer 
includes a unitary matrix decomposer which is used in the 
calculation of said sequence of operations, wherein if the 
decomposer is given data that fairly directly specifies a 
specifies a represetation of an initial unitary matrix U, then 
the decomposer will calculate a data-set that fairly directly 
specifies eight unitary matrices: specifies a represetation of 
four matrices Doo Do, Do. D1, and four unitary matrices 
Lo, L. R. R. Such that if one partitions said U into four 
blocks Uco, U, Uo. U, then the following four matrix 
equations hold: U=L.D.R, for ieBool andje Bool. 

7. The method of claim 1, comprising the additional step 
of: 

calculating with said classical computer and using said 
QB net data-set, a tree data-set that comprises data that 
can be represented as a tree-node matrix for each node 
contained in a subset of the nodes of a tree, wherein the 
product, in some order defined by the determined in 
accordance with said tree, of all said tree-node matrices 
is equivalent to said V. 

8. A method of operating a classical computer having 
display, storage and calculation means, wherein said 
method must be stored in a computer readable medium 
which said classical computer can read, wherein said 
method must be stored in the external or internal memory 
units of said classical computer; to analyze a quantum 
physical system that exhibits quantum mechanical behav 
ior comprising an array of qubits, said method comprising 
the steps of: 

displaying on said display means a graph comprising a 
plurality of N nodes, and a plurality of directed lines 
connecting certain pairs of said nodes, 

storing in said storage means a QB net (Ouantum Baye 
sian net) data-set comprising: 
(a) graph information comprising a node label for each 
of said N nodes, and also comprising, for each said 
directed line, said node label for the source node and 
for the destination node of the directed line, 

(b) state information comprising, for each je 1, 2, . . . 
N}, a finite set X, containing labels for the states that 
the jth nodex, may assume assumes, and 

(c) amplitude information comprising, for eachje 1, 2, 
... N, a representation of a complex number 

for each vector 

Such that XeX, XceX XeX. . . . . and 
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20 
wherein 

(8:1. Sk2, ..., 8s) 

are the IS, nodes connected to x, by directed lines entering 
X, wherein said directed lines entering x, transmit the state 
of their source node, wherein said S, is an integer greater or 
equal to Zero, 

composing with said calculation means and using said QB 
net data-set, a data-set that specifies yields a unitary 
matrix V, wherein V, is equivalent to the unitary 
matrix U... U, U. of Eq. (20), and V, describes the 
quantum-State evolution for the situation described by 
said OB net data-set, 

calculating with said calculation means and using said QB 
net data-set, a sequence of operations on said array of 
qubits, wherein said sequence of operations and said 
V, both would, if applied to an said array of qubits, 
produce equivalent transformations of the array of 
qubits. 

9. The method of claim 8, wherein said sequence of opera 
tions comprises c-not operations elementary operations on 
said array of qubits. 

10. The method of claim 8, wherein said sequence of 
operations comprises qubit rotation operations is a 
sequence of elementary operations on said array of qubits. 

11. The method of claim 8, further also utilizing a quan 
tum computer, comprising the additional step of: 

manipulating said quantum computer largely according to 
said sequence of operations. 

12. The method of claim 8, wherein said classical com 
puter includes a unitary matrix decomposer which is used in 
the calculation of said sequence of operations, wherein if the 
decomposer is given data that fairly directly specifies a 
specifies a represetation of an initial unitary matrix U, then 
the decomposer will calculate a data-set that fairly directly 
specifies specifies a represetation of three unitary matrices: 
L. D. R. Such that the following matrix equation holds: 
U-LDR 

13. The method of claim 8, wherein said classical com 
puter includes a unitary matrix decomposer which is used in 
the calculation of said sequences sequence of operations, 
wherein if the decomposer is given data that fairly directly 
specifies a specifies a represetation of an initial unitary 
matrix U, then the decomposer will calculate a data-set that 
fairly directly specifies eight unitary matrices specifies a 
represetation of four matrices Doo Do, Do. D1, and four 
unitary matrices Lo, L. R. R. Such that if one partitions 
said U into four blocks U, U, U. U, then the follow 
ing four matrix equations hold: U=L.D.R, for ieBool and 
jeBool. 

14. The method of claim 8, comprising the additional step 
of: 

calculating with said classical computer and using said 
QB net data-set, a tree data-set that comprises data that 
can be represented as a tree-node matrix for each node 
contained in a subset of the nodes of a tree, wherein the 
product, in some order defined by the determined in 
accordance with said tree, of all said tree-node matrices 
is equivalent to said V. 

15. A method of operating a classical computer, wherein 
said method must be stored in a computer readable medium 
which said classical computer can read, wherein said 
method must be stored in the external or internal memory 
units of said classical computer; to calculate a sequence of 
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operations with the purpose of applying said sequence of 
operations to a quantum computer comprising an array of 
qubits, to induce said quantum computer to execute a desired 
calculation, wherein said classical computer comprises a 
unitary matrix decomposer, wherein if said unitary matrix 
decomposer is given data that fairly directly specifies a 
specifies a represetation of an initial unitary matrix U of 
dimension greater than 2, then the decomposer will calculate 
a data-set that fairly directly specifies specifies a represeta 
tion of three unitary matrices: L, D, R, such that the follow 
ing matrix equation holds: U=LDR, wherein L and Reach 
yields unitary matrices whose dimension is Smaller than that 
of U, said method comprising the steps of: 

storing in said classical computer an input data-set that 
fairly directly specifies specifies a represetation of a 

unitary matrix V, wherein at least one row of V has 3 
or more non-zero entries and at least one column of V, 
has 3 or more non-Zero entries, 

applying said unitary matrix decomposer to decompose 
the initial unitary matrix U= V. 

applying said unitary matrix decomposer repeatedly to 
decompose initial unitary matrices obtained from the 
output of a previous application of said unitary matrix 
decomposer, 

calculating with said classical computer, using said input 
data-set and data obtained by applying said unitary 
matrix decomposer, said sequence of operations on said 
array of qubits, wherein said sequence of operations 
and said V, both would, if applied to an said array of 
qubits, produce equivalent transformations of the array 
of qubits. 

16. The method of claim 15, wherein if said unitary matrix 
decomposer is given data that fairly directly specifies a uni 
tary matrix U of dimension greater than 2 species a represe 
tation of said initial unitary matrix U, then the decomposer 
will calculate a data-set that fairly directly specifies eight 
unitary matrices: specifies a represetation of four matrices 
Doo Do, Do. D1, and four unitary matrices Lo. L. Ro, R. 
Such that if one partitions said U into four blocks Uco, Uo. 
Uo, U, then the following four matrix equations hold: 
U=L.D.R, for ieBool and jeBool. 

17. The method of claim 15, wherein said sequence of 
operations comprises c-not operations. 

18. The method of claim 15, wherein said sequence of 
operations comprises qubit rotation operations elementary 
operations on said array of qubits. 

19. The method of claim 15, wherein some of said 
sequences of operations comprise qubit rotations and c-nots 
said sequence of operations is a sequence of elementary 
operations on said array of qubits. 

20. The method of claim 15, further also utilizing a 
quantum computer, comprising the additional step of 

manipulating said quantum computer largely according to 
said sequence of operations. 

21. A method of operating a classical computer, wherein 
said method must be stored in a computer readable medium 
which said classical computer can read, wherein said 
method must be stored in the external or internal memory 
units of said classical computer; to calculate a sequence of 
operations with the purpose of applying said sequence of 
operations to a quantum computer comprising an array of 
qubits, to induce said quantum computer to execute a desired 
calculation, said method comprising the steps of: 

storing in said classical computer an input data-set that 
fairly directly specifies specifies a represetation of a 

unitary matrix V, wherein at least one row of V has 3 i 
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or more non-Zero entries and at least one column of V, 
has 3 or more non-zero entries, 

calculating with said classical computer and using said 
input data-set, a tree data-set that comprises data that 
can be represented as a node matrix M, for each nodej 
contained in a subset J of the nodes of a tree, wherein 
the product, in some order defined by the determined 
in accordance with said tree, of all said node matrices is 
equivalent to said V. 

calculating with said classical computer and using said 
tree data-set, for each of the node matrices M, a string 
of operations on qubits, wherein said string of opera 
tions and said M both would for each je.J. a product , 
of operations on said array of qubits, wherein M, and , 
both would, if applied to an said array of qubits, pro 
duce equivalent transformations of the array of qubits. 

22. The method of claim 21, wherein some of said 
sequences of operations comprise for some je.J. J., com 
prises c-not operations. 

23. The method of claim 21, wherein some of said 
sequences of operations comprise for some je.J. J., com 
prises qubit rotation operations. 

24. The method of claim 21, wherein some of said 
sequences of operations comprise qubit rotations and c-nots 
for some je.J. J., comprises elementary operations on said 
array of qubits. 

25. The method of claim 21, wherein said sequences of 
operations are sequences of elementary operations for all 
je.J. T., is a sequence of elementary operations on said array 
of qubits. 

26. The method of claim 21, further also utilizing a 
quantum computer, comprising the additional Step of 

manipulating said quantum computer largely according to 
said sequence of operations. 

27. The method of claim 21, wherein if said V is a square 
matrix with N rows, then said node matrices are also square 
matrices with N rows and with at most two non-zero entries 
in each row and in each column. 

28. The method of claim 21, wherein if said V is a square 
matrix with N rows, then said node matrices are also square 
matrices with N rows and with about two non-zero entries in 
each row and in each column. 

29. The method of claim 21, wherein if said V is a square 
matrix with N rows, then said node matrices have theoreti 
cally a number of nonzero real parameters which grows 
linearly with N or slower, for large Ngrows, for large N. 
linearly with N or slower. 

30. The method of claim 21, wherein said classical com 
puter includes a unitary matrix decomposer which is used in 
the calculation of said sequences sequence of operations, 
wherein if said unitary matrix decomposer is given data that 
fairly directly specifies a specifies a represetation of an 

initial unitary matrix U, then the decomposer will calculate a 
data-set that fairly directly specifies specifies a represeta 
tion of three unitary matrices: L, D, R, such that the follow 
ing matrix equation holds: U=LDR. 

31. The method of claim 21, wherein said tree is a binary 
tree in which each node branches out into two nodes. 

32. The method of claim 31 21, wherein said classical 
computer includes a unitary matrix decomposer which is 
used in the calculation of said sequences sequence of 
operations, wherein if the decomposer is given data that 
fairly directly specifies a specifies a represetation of an 

initial unitary matrix U, then the decomposer will calculate a 
data-set that fairly directly specifies eight unitary matrices: 
Specifies a represetation of four matrices Doo Do, Do. D1. 
and four unitary matrices Lo, L. R. R. Such that if one 
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partitions said U into four blocks Uco, Uo, Ulo, U, then 
the following four matrix equations hold: U=L.D.R, for 
ieBool and jeBool. 

33. The method of claim 32, wherein some of said 
sequences of operations comprise for some je.J. J., com 
prises c-not operations. 

34. The method of claim 32, wherein some of said 
sequences of operations comprise for some je J, T, Com 
prises qubit rotation operations. 

35. The method of claim 32, wherein some of said 
sequences of operations comprise qubit rotations and c-nots 
for some je J. J., comprises elementary operations on said 
array of qubits. 

10 

24 
36. The method of claim 32, wherein said sequences of 

operations are sequences of elementary operations for all 
je.J. J., is a sequence of elementary operations on said array 
of qubits. 

37. The method of claim 32, further also utilizing a 
quantum computer, comprising the additional step of 

manipulating said quantum computer largely according to 
said sequence of operations. 


