»UK Patent .,GB

2043492

(45)Date of B Publication

(13)B

10.11.2021

(54) Title of the Invention: Data Compression

(51) INT CL: HO4N 19/119 (2014.01) HO4N 19/12 (2014.01) HO4N 19/13 (2014.01) HO4N 19/15 (2014.01)
HO4N 19/154 (2014.01) HO4N 19/172 (2014.01) HO4N 19/176 (2014.01) HO4N 19/192 (2014.01)
HO4N 19/50 (2014.01) HO4N 19/60 (2014.01) HO4N 19/94 (2014.01)
(21) Application No: 1518290.0 (72) Inventor(s):
Robert Lambert
(22) Date of Filing: 16.10.2015
(73) Proprietor(s):
(43) Date of A Publication 26.04.2017 Digital Barriers Services Ltd

(Incorporated in the United Kingdom)

(56) Documents Cited:
GB 2306840 A WO 1998/034398 A2
(58) Field of Search:
As for published application 2543492 Aviz:
INT CL GO6T, HO3M, HO4N
Other: EPODOC; WPI
updated as appropriate

Additional Fields
Other: None

Cargo Works, 1-2 Hatfields, London, SE1 9PG,
United Kingdom

(74) Agent and/or Address for Service:

CSY London
10 Fetter Lane, London, EC4A 1BR, United Kingdom

g ¢ovevrad 89

10

L

13

174

! SENSORS ‘__ 12

16
COMPRESSOR r CPU . .
| 8 T & CELWULAR > —
— | S LINK -1
MUX 14
|
6 8
BANDWIDTH | ENCODER
MONITOR 20
| SERVER
2
4
e Y Y o
e)
7 7
24
Y \/
— . S
_/v

22

FIG.1

nJaxsriesnalisnan!

[TECTTTT T T L
T CIT LI ITTTTIT]
b JI I T TTTTTTT L
MEESEEASMEERS
£ L1

2/4

Level 4 el 3 tovel 2
g — P —— oy e PR o s g SO VORI SP—
) BN
/1 R
Macro
Black

re. 2

et o iy

ievel 1

3
N

S
A

jeveld

B —

™

L3

L2

LO|LO

3/4

Ll

L1

e

Lo

L1
LO

— L1
Lo

L3

4/4

Receive video frame — 40

Partition frame into macro blocks |— 42

Partition macro blocks into regions |— 44
Calculate T compressed representations for each 46

macro block region

Calculate reconstruction error and data size for

different combinations of macro block regions 48
Provide an initial compressed encoding for the | 50
frame, which has the smallest data size

— 52

Select one of the combinations of macro block regions

which provides the largest relative improvement in
reconstruction error per unit increase in data size

Update compressed encoding with selected combination |— 54

Yes

Y

Is date size < budget?

— 56

No

END

FIG. 4

10

15

20

25

30

Data Compression

The invention relates to a method and apparatus for compressing an array of data
entries in the form of digital electronic signals.

Digital video is a sequence of visual images or frames that convey the impression of
motion when viewed in temporal order. Each frame is coded as an orthogonal
bitmap comprised of individual pixels where each row has an equal number of pixels
defining the frame width and similarly each column has an equal number of pixels
defining the frame height. Each pixel encodes colour where more subtle variations
in colour can be represented by increasing the number of bits used to encode each
pixel (sometimes referred to as pixel depth). Hence the number of bits required to
represent a single video frame is width multiplied by height multiplied by pixel depth.

To provide the impression of motion it is necessary to display these frames in rapid
succession at a constant frame rate where frame rate is defined as frames per
second (fps). A video frame rate of 24 fps is generally considered the minimum to

convey the impression of continuous motion.

The need for video compression can be appreciated when the volume of data
required to transmit or store raw digital video is considered. A full colour high
definition (1920x1080) video frame with a pixel depth of 16 bits per pixel corresponds
to 33 million bits or 4 Mbytes. A 1920x1080 video at 25 frames per second is 99
Mbytes of data every second meaning a one minute high definition video clip requires
approximately 5.8 Gbytes of data to transmit or store. This would involve lengthy

download times, and may exceed data allowances for many cellular customers.

The compression techniques used for text are lossless where decompression must
reproduce exactly the same text. Video compression by contrast exploits spatial and
temporal redundancy within and between video frames to significantly reduce the
amount of data required to transmit or store video by approximating rather than
reproducing the original pixel values. Video compression is hence a lossy
compression process where the quality of the decompressed video (how well it

10

15

20

25

30

approximates the original video) depends on the compression ratio and complexity of
the video.

source size

Compression ratio is generally expressed as () : 1 where size is

compressed size
measured in bits. A compression ratio of 100:1 is easily achievable by most video
compression algorithms allowing the 1 minute high definition video clip to be
compressed down to 59 Mbytes. This compression means that the video clip can be
downloaded in minutes rather than hours.

Video is compressed either to minimise storage, reduce transmission costs, or to
enable live streaming, and these objectives typically involve different approaches.
Compression to minimise storage typically involves setting an acceptable quality
threshold for the compression of each frame such that there are few or no visible
differences between the source and compressed video. The compressed size of
each video frame is irrelevant allowing the video compression process to allocate
more bits to those segments of the video that have the most complex spatial detail or
rapid motion between frames. Such techniques are sometimes referred to as
“variable rate” where the size of the compressed video will depend on the video

content.

Where transmission is involved it is normal to target a bandwidth, defined as bits per
second, rather than quality. This ensures that the compressed video is of a
predictable size and hence bandwidth usage can be controlled. Most compression
algorithms employ a rate control that adjusts the target quality on a frame by frame
basis such that a target bandwidth is achieved. To hit the target bandwidth the
compression algorithm may have to “drop” frames if the quality drops too low. This
results in a variable frame rate where frame rate drops as the motion being captured

by the video becomes more rapid or complex.

Real-time low latency streaming at a constant frame rate can only be achieved
through the use of fixed rate coding. Unlike the previous approaches that compress
each video frame to a target quality that may be fixed or variable, fixed rate coding
requires that the compression process target the number of bits used to compress

04 05 21

each individual frame. This ensures that the compressed size of each frame is
matched to the actual capacity of a communications channel where the channel will
be able to transmit data up to a defined maximum bandwidth. The trade-off is visual
quality which will vary according to the complexity of the video sequence and the

amount of scene motion.

One technique for providing fixed rate video coding is described in WO97/16026
whereby each frame can be approximated as a collection of variable sized blocks
where the pixels in each block approximate the equivalent source pixel values using
an established image coding technique. The algorithm successively adds
compressed encodings corresponding to individual blocks until the resultant frame
coding reaches the target compressed frame size. In WO97/16026 the algorithm
adds new compressed encodings that deliver the greatest improvement in the
uncompressed representation of the video frame. In other words, the algorithm adds
blocks that offer the lowest reconstruction error, where this is a measure of the
difference between the source frame and the frame that would be generated from a
decoding of the compressed frame.

One limitation with the approach in WO97/16026 is that the algorithm focuses only on
improving the reconstruction error. One difficulty is that the lowest reconstruction
error is sometimes achieved by providing encodings with a relatively large data size.
Therefore, this compression algorithm may not always make the most efficient use of
the available bandwidth.

Another limitation with the approach in WO97/16026 is that smaller blocks can be
added in such a way that they partially occlude a previously selected patch.
Although this can deliver reduced reconstruction error it can also be problematic
because it can lead to sub-optimal approximations.

According to one aspect of the present invention there is provided a method of
compressing an array of data entries in the form of digital electronic signals, the
method comprising the steps of: (a) providing an original data array to be
compressed; (b) dividing the original data array into blocks of one or more sizes; (c)
determining a respective plurality of possible compressed encodings for each block
of the original data array using a respective different compression technique for each
encoding of the respective block, wherein each possible compressed encoding has a
respective data size and a respective reconstruction error; (d) initialising a

04 05 21

compressed encoding of the original data array which when uncompressed
corresponds to a reference data array which is an initial approximation to the original
data array, wherein the compressed encoding has a first data size and a first
reconstruction error, representing a quantitative difference between the original data
array and the reference data array; (e) selecting that one of the plurality of
compressed encodings which, when uncompressed and added to the reference data
array, provides the largest relative improvement in reconstruction error per unit
increase in data size; (f) updating the compressed encoding of the original data array
by adding the selected compressed encoding, and updating the reference data array
by adding the selected encoding in uncompressed form; and (g) recursively repeating
steps (e) and (f) until a maximum data size is achieved for the compressed encoding
of the original data array.

In this way an efficient compression technique is provided that balances competing
desires for a high quality uncompressed representation of the original data array (i.e.
low reconstruction error values) and a low data size for the compressed data array.
This is achieved by iteratively updating the compressed representation by adding
compressed encodings that offer the largest relative improvement in reconstruction
error per unit increase in data size. This can gradually increase the data size of the
compressed representation, and gradually decrease the reconstruction error until a
maximum data size is achieved. This technique can permit creation of a compressed

representation with an optimal reconstruction error within a specific data size budget.

This technique is particularly useful in the compression of live video over variable
bandwidth channels. The technique can permit optimised compression with minimal
reconstruction error within the constraints of channel bandwidth. Thus, live video can

be transmitted with minimal latency by making best use of the available bandwidth.

Difficulties relating to partial occlusions are also overcome. In the present method a
previous patch may be replaced only if it is fully occluded by smaller blocks. This can
lead to improved encoding optimisation.

Further, compressed encodings may be provided for various sub-divisions of the
original array. A complete compressed representation of the underlying array may
be formed by combining compressed encodings for the various sub-divisions. In
general, larger sized blocks can be encoded with a smaller data size, but with a
larger reconstruction error. Thus, it is advantageous to provide a plurality of tiers of
division for the original data array with increasing granularity (i.e. the blocks with

04 05 21

reducing size). In this way an effective iteration can be achieved where the
reconstruction error is reduced as data size is increased for the compressed

representation.

The optimal compression technique for a block generally depends on the properties
of the data in the block. By providing a plurality of possible compression techniques
it is possible to select the most effective technique for compressing the underlying
data (i.e. the technique that can compress data with the optimal data size and
reconstruction error). For video coding, for example, motion estimation may be used
as a compression technique to remove temporally redundant information between
video frame sequences. Motion estimation may be an effective compression
technique for video frames where there is some movement occurring, such that there
are significant similarities between successive frames. In another example, run
length coding is effective for video frames which have large numbers of ‘zero’ data
entries, interspersed with non-zero values. By determining compressed encodings
using a number of techniques the method has flexibility to select the most efficient
compressed encodings (i.e. the compressed encoding which, when uncompressed
and added to the reference data array, provides the largest relative improvement in

reconstruction error per unit increase in data size).

Non-limiting examples of possible compression techniques for video coding include

motion estimation, transform coding, vector quantisation and residual coding.

The plurality of possible compressed encodings of the array preferably comprises a
plurality of permutations for different ways that encodings for different areas can be
combined. Any valid combination of encodings should preferably cover the full area
or all of the elements of the underlying array.

The plurality of possible compressed encodings of the array preferably comprises
only those compressed encodings that can be provided in a sequence which has
both increasing data size and decreasing reconstruction error. Thus, it is possible to
omit any compressed encoding that does not offer a reduced reconstruction error for
any increase in data size. In this way it is possible to omit a large number of sub-
optimal encodings from the list of possible selections. This can significantly decrease
processing time, and facilitate real-time compression. This is particularly useful in

live video applications where it is important to minimise any latency.

04 05 21

The method may comprise a step of de-duplicating the plurality of possible
compressed encodings of the array to identify compressed encodings that have the
same data size, and to omit any of those identified compressed encodings that have
a larger reconstruction error. Additionally, the plurality of possible compressed
encodings of the array preferably comprises only those compressed encodings that
can be provided in a list having a data size that is smaller than the data size of the

original array.

According to another aspect of the present invention there is provided a video
encoder configured to send video data over a channel, the encoder comprising: a
compressor configured to compress video data using an adjustable compression
factor, and a transmitter configured to transmit constructed data packets over the
channel, wherein the compressor is configured to: (a) receive an original data array
to be compressed; (b) divide the original data array into blocks of one or more sizes;
(c) determine a respective plurality of possible compressed encodings for each block
of the original data array using a respective different compression technique for each
encoding of the respective bock, wherein each possible compressed encoding has a
respective data size and a respective reconstruction error; (d) provide an initial
compressed encoding of the original data array which when uncompressed
corresponds to a reference data array which is an initial approximation to the original
data array, wherein the initial compressed encoding has a first data size and a first
reconstruction error, representing a quantitative difference between the original data
array and the reference data array; (e) select that one of the plurality of compressed
encodings which, when uncompressed and added to the reference data array,
provides the largest relative improvement in reconstruction error per unit increase in
data size;

(f) update the initial compressed encoding of the original data array by adding the
selected compressed encoding, and updating the reference data array by adding the
selected encoding in uncompressed form; and (g) recursively repeat steps (e) and (f)
until a maximum data size is achieved for the compressed encoding of the original

data array.

According to yet another aspect of the present invention there is provided a non-
transitory computer readable storage medium having a computer program stored
thereon, the computer program comprising processor readable instructions that,
when executed, direct a device to perform actions comprising: (a) providing an
original data array to be compressed; (b) dividing the original data array into blocks of

04 05 21

one or more sizes;(c) determining a respective plurality of possible compressed
encodings for each block of the original data array using a respective different
compression technique for each encoding of the respective block, wherein each
possible compressed encoding has a respective data size and a respective
reconstruction error;(d) initialising a compressed encoding of the original data array
which when uncompressed corresponds to a reference data array which is an initial
approximation to the original data array, wherein the compressed encoding has a first
data size and a first reconstruction error, representing a quantitative difference
between the original data array and the reference data array; (e) selecting that one of
the plurality of compressed encodings which, when uncompressed and added to the
reference data array, provides the largest relative improvement in reconstruction
error per unit increase in data size; (f) updating the compressed encoding of the
original data array by adding the selected compressed encoding, and updating the
reference data array by adding the selected encoding in uncompressed form; and (g)
recursively repeating steps (e) and (f) until a maximum data size is achieved for the
compressed encoding of the original data array.

Method features may be provided as corresponding apparatus features and vice-

versa.

Embodiments of the present invention will now be described, by way of example
only, with reference to the accompanying drawings in which:

10

15

20

25

30

Figure 1 is a schematic view of a transmission system in an embodiment of the

present invention;

Figure 2 is a diagram showing a possible hierarchical sub-division of a macro block in

an embodiment of the present invention;

Figure 3 is a diagram showing possible combinations of regions for use in the
creation of a macro block coding; and

Figure 4 is a flow diagram showing method steps for use in an embodiment of the

present invention.

Figure 1 is a schematic view of a transmission system including a video encoder 2
and a server 4 with respective cellular transceivers 6, 8. The encoder 2 is operable
to send video data, time-critical data and non-time critical data to the server 4 over
the cellular link. The server 4 is operable to send time-critical data and non-time
critical data to the encoder 2 over the cellular link.

The server 4 is connected to user devices 22 over a conventional network 24, such
as the internet. A number of alternative connections may be used between the server
4 and the user devices 22, including low bandwidth channels. The server 4 is
configured to relay video and/or other data received from the encoder 2 to user
devices 22 over the internet. In general a higher capacity connection is provided
between the server 4 and user devices 22 than is possible in the cellular link between
the server 4 and the encoder 2.

The video camera 10 is configured to capture video from a scene and provide it to a
compressor 16 in the encoder 2. The compressor 16 is operable to compress video
frames using an adjustable compression factor in order to produce compressed video
frames with a predetermined data size. A multiplexer 18 receives compressed video
from the video compressor 16 and also receives time-critical and non-time critical
data from the CPU 14. These data are multiplexed into a single channel and
transmitted to the server 4 over the cellular link. The compressor 16 may be

04 05 21

implemented as dedicated hardware or as a computer program running on a

processor.

The encoder includes a bandwidth monitor 20 which is configured to monitor the
behaviour of data packets that have been transmitted in the channel. The bandwidth
monitor 20 is also operable to instruct the video compressor 16 to change the
adjustable compression factor in response to changing conditions in the channel.
For each video frame an adjustable compression factor is calculated so that the

compressed representation of the video frame has a predictable data size.

In operation, the compressor 16 receives an uncompressed video frame from the
camera 10. The compressor 16 partitions the received frame into a plurality of macro
blocks, which are used as the base unit for coding. The video frame is partitioned
into non-overlapping macro blocks where each macro block codes a unique array of
pixel elements. The macro blocks may be any size and shape, but are typically

square.

Generally, the reconstruction error that can be achieved decreases as the size of the
macro blocks is decreased. However, the data size of the compressed
representation of the video frame is generally increased as macro blocks decrease in
size. If macro blocks were the only level of division in the frame then there would be
a trade-off between the chosen size of the macro block, the data size of the
compressed representation, and the resultant video quality or reconstruction error.
For this reason macro block partitioning is used to support a trade-off between high
compression and reconstruction quality that can be matched to the complexity of the
pixel detail represented by each macro block.

One example of macro block partitioning is shown in Figure 2. In this example, level
4 represents the full size of the macro block. The other levels are created using

successive horizontal or vertical division of the higher level blocks, and the level 0
blocks each provide for the approximation of %x% pixels from the original N x M

pixel macro block. It should be noted that in this example there are four levels of

10

15

20

25

30

10

division, but any number could potentially be used where fractional representation of
pixels is viable.

The actual partitioning of each macro block used for video compression should
normally be based on the complexity of the pixel detail being approximated where a
compressed encoding of any combination of blocks can be used to represent the
underlying pixels. Figure 3 shows four examples of valid macro block partitioning. In
each of these examples, a compressed encoding is calculated for each of the
partitioned blocks, and these are added together to create a macro block coding
(MBC) which is a compressed representation for the macro block. A good
compression algorithm uses larger blocks for areas with simpler pixel detail (low
frequency surfaces) and small blocks for areas representing highly complex pixel
detail (high frequency edges or texture).

A macro block coding (MBC) provides a compressed representation of the original
source pixels, with contributions from a number of possible partitions within the
macro block. The quality of the approximation of the MBC to the original source
pixels is quantified by the reconstruction error which is based on the sum of the
difference between the source pixels and the equivalent pixel approximation of the
uncompressed MBC.

A common reconstruction error metric used for video compression is sum of absolute

differences (SAD) which is calculated as;

N M N M
SAD = > MIsGn—A@H! | & Y > JE@hH - 4G

i=1j=1 i=1j=1

Where S(i, j) is the source pixel value at offset i, j within the macro block, and A(i, j)
is the reconstructed pixel value at offset i,j based on applying the MBC of pixel size
NxM.

Video compression that employs macro block partitioning has the challenge of
determining an optimal partitioning as a trade-off between compression ratio and
reconstruction quality based on sub-block size. This challenge is compounded when

10

15

20

25

30

11

multiple techniques are available to approximate the source pixels represented by
each sub-block.

The scale of the challenge can be appreciated when we consider the number of
possible macro block coding permutations. For the macro block partitioning detailed
in Figure 2 there are T distinct block coding techniques that can be used to
approximate the pixels represented by each of the macro block sub-blocks. Three
examples of coding techniques include motion compensation, transform coding and
spatial vector quantisation, although many others would naturally occur to a person

skilled in the art of video compression.

e Atlevel 0, each block has T possible codings where each will offer a different
reconstruction error for a given bit cost.

e At level 1 we have the option of T possible codings for each vertical or
horizontal block plus the option to sub-divide each block into two level O
blocks where each has T possible codings. This gives us T + T? coding
permutations for each level 1 block.

e At level 2 we have the option of T possible codings for each level 2 block, or
the option to sub-divide each level 2 block into two horizontal or two vertical
level 1 blocks where these level 1 blocks can again be sub-divided into level O
blocks. This gives us T + 2T2 + 4T3 + T* coding permutations for each level
2 block.

Following this logic, the total number of unique coding permutations for the full macro
block illustrated in Figure 2 with T distinct block coding techniques is;
T+ 2T% + AT(T + 2T2 + 4T3 + T*) + (T + 2T? + 4T3 + TH)*

For T = 4, there are approximately 9 x 10'° unique coding permutations. In the
present method the objective is to determine at least some of these 9 x 10° coding
permutations, and to add these together in an iterative fashion until a specific data
size is achieved for the video frame, according to the adjustable compression factor.

Figure 4 is a flow chart illustrating the iterative technique that can be deployed for
encoding a video frame. At step 40 the compressor 16 receives a video frame from

10

15

20

25

30

12

the camera 10. At step 42 the video frame is partitioned into a plurality of macro
blocks; typically around 1,000 macro blocks are created at step 42 for each frame.
At step 44 each macro block is further partitioned into regions, as described above
with reference to Figure 2. In the example shown in Figure 2, forty-one possible
regions are created when a macro block is partitioned; this number is determined by
adding all of the sub-divisions from level 0 to 3, plus the full macro block (level 4). At
step 46 four compressed encodings are calculated for each of these forty-one
regions, using four compression techniques or algorithms. The output from step 46
is 164 compressed encodings.

As discussed, these 164 compressed encodings can be combined in a very large
number of ways. At step 48 the compressor 16 calculates the data size for a number
of different permutations, together with the reconstruction error. These permutations
can then be filtered and sorted to retain only those that can be ranked in terms of

increasing data size and decreasing reconstruction error.

In practice, it may not be feasible to compute and sort all 9 x 10° coding
permutations and also to provide real-time transmission of compressed data.
Therefore, a number of techniques may be deployed for reducing the number of
calculations at step 48, as will be discussed later.

At step 50 the compressor 16 determines an initial compressed encoding for the
video frame. The initial compressed encoding comprises a compressed encoding for
each macro block so that a compressed representation is determined for the whole
frame. To provide an initial compressed encoding the selected encoding for each
macro block is the one with the lowest data size, irrespective of its reconstruction
error. This provides an initial compressed representation that has the smallest
possible data size, but may offer a poor approximation to the original video frame

when uncompressed.

At step 52 the compressor 16 selects one of the compressed encodings calculated at
step 48, across all macro blocks in the frame, to be added to the initial compressed
encoding. The selected compressed encoding is the one that offers the largest

relative improvement in reconstruction error per unit increase in data size. It has

10

15

20

25

30

13

been determined that this provides an efficient mechanism for improving
reconstruction error, while balancing demands for a compressed encoding with a low

data size.

The relative improvement per bit (RIPB) is calculated at step 52, as follows:

Th—1— T

RIPB, = -
Where: r, is the reconstruction error for the video frame, updated with a new
compressed encoding, added to the initial compressed encoding; r,; is the
reconstruction error for the previous iteration of the compressed encoding (in the first
iteration this will correspond to the reconstruction error for the initial compressed
encoding); b, is the bit cost or data size when the new compressed encoding is
added to the initial compressed encoding; b1 is the bit cost for the previous iteration
of the compressed encoding.

Thus, at step 52, RIPB is calculated for a plurality of possible encodings which could
potentially be used to update the compressed representation of the video frame.
One compressed encoding is selected at step 52, which is the compressed encoding
that offers the highest RIPB.

At step 54 the initial compressed encoding is updated by adding the compressed
encoding selected at step 52. This updated compressed encoding provides an

improved reconstruction error for an increased data size.

At step 56 the compressor 16 analyses whether the data size of the updated
compressed encoding is lower than the data budget associated with the adjustable
compression factor. If the answer is ‘yes’, then it may still be possible to decrease
the reconstruction error within the data budget. Therefore, steps 52 and 54 are
repeated iteratively. In this way, the reconstruction error is gradually reduced and the
data size of the compressed encoding is gradually increased by adding compressed
encodings one-by-one that offer the largest relative improvement in reconstruction
error per unit increase in data size. This iteration continues until the data size of the

10

15

20

25

30

14

updated compressed encoding is equal to the data budget. In another arrangement
the compressed encoding is not updated at step 54 if that update would increase the
size of the compressed encoding beyond the budget. At this point the process ends
and the output is a compressed representation of the video frame having a data size
that is less than or equal to the data budget, as determined by the adjustable
compression factor. The compressed representation of the video frame can then be
combined with other data by the multiplexer 18 and transmitted to the server 4 over
the variable bandwidth channel.

It should be noted that successive encodings selected during the iteration at step 52
may differ from one another only in the compression technique used to represent a
sub-block. Thus, each block approximation technique can offer a way of further
reducing reconstruction error at the expense of larger data size. This allows the
process to start with the technique that gives a larger reconstruction errar, but with a
very low bit cost, and to replace it with an alternative block coding later in the

compression process.

As discussed, it may not be feasible at step 48 to compute and sort all possible
coding permutations for a video frame and also to provide real-time transmission of
compressed data. This can be achieved in part by recognising that the list of
possible coding permutations can be filtered so that it can be ordered in terms of
increasing data size and decreasing reconstruction error. There is no advantage in
calculating compressed encoding options if they cannot offer an improved
reconstruction error in comparison to another encoding option that has a smaller data

size.

In one example, the level 2 sub-division in Figure 2 comprises four regions within a
macro block. Each of these four regions can be encoded using four compression
algorithms. Thus, there are 16 possible encodings for the underlying data, and 4 for
each region. Each encoding has an associated data size and reconstruction error.
Thus, the four encodings for each region can be ranked in order of increasing data
size. Encodings can then be omitted if any fail to yield a decrease in reconstruction
error for an increase in data size. These encodings can be omitted because they
would be redundant selections at step 52. These encodings would never be viable

10

15

20

25

30

15

selections: they could not offer the largest RIPB because there exists an alternative
encoding (produced with a different compression algorithm) that would yield a larger
RIPB. By identifying and omitting such encodings it is possible to make a drastic
reduction in the total number of permutations since any permutation including an
omitted encoding is automatically excluded.

Additionally, for compression to be achieved the data size of the compressed
representation must be smaller than the original array. Thus, an upper limit can be
set for the cardinality of the set of coding permutations, which means that coding
permutations can be omitted from further consideration.

Using these techniques it is possible to reduce the number of calculations at step 48
very significantly. As discussed, if four possible compression algorithms could be
used together with 1,000 macro blocks sub-divided in the manner of Figure 2 then
there would be around 9 x 10° coding permutations to calculate at step 48. This
number can be reduced to around 1,000 using the techniques described above.
Thus, it is possible to derive the best possible compressed encodings without having
to derive all possible compressed encodings.

These techniques also support the compression of a video frame to a pre-determined
number of bits. This allows for the compression of a sequence of video frames to a
constant bit rate that is independent of the frame size and source frame content.
This can enable low latency transmission of video over low bandwidth or variable
bandwidth communication channels. This technique is therefore ideal for transmitting
video frames with the optimal reconstruction error possible within specific bandwidth

limits.

For a frame represented by a single macro block, compression to a target number of
bits is achieved by first determining this optimal set of ordered MBCs and then
extracting each MBC in turn until an entry is extracted that requires more bits to
transmit than the target for the compression of the frame. The MBC used to
approximate the macro block pixels in this instance would be the last MBC extracted
from the ordered set that had a bit cost less than or equal to the frame bit cost target.

10

15

16

For a frame represented by multiple macro blocks, an ordered set of sets is
constructed such that the MBCs for all macro blocks are collectively ordered by
relative improvement per bit and increasing bit cost. Compression of the video frame
to a target number of bits is achieved by extracting MBCs from the ordered set of
sets where we record the bit cost of the last entry extracted from each individual
MBC set. The bit cost sum corresponds to the number of bits needed to transmit the
last MBC extracted from each of the MBC sets and hence the cost of coding the
video frame. Hence as with the single macro block example, the compression
completes where the next best MBC extracted from the ordered set of sets has a bit
cost that would result in a frame bit cost that exceeds the target frame bit cost.

This process provides for an optimal coding to a fixed number of bits, but is only
viable if the process of ordering the set of MBC sets is computable in real time on
practical processing hardware. Ciritical to this process is the use of a distinct set that
provides for the ordering of the individual sets of macro block MBCs where this set of
sets is reordered following the extraction of each MBC based on best RIPB. This
gives a significant reduction in complexity as the MBCs for each macro block can be
ordered in parallel.

04 05 21

10

15

20

25

30

-17 -

Claims

1. A method of compressing an array of data entries in the form of digital electronic
signals, the method comprising the steps of:

(a) providing an original data array to be compressed;

(b) dividing the original data array into blocks of one or more sizes;

(c) determining a respective plurality of possible compressed encodings for each
block of the original data array using a respective different compression technique for
each encoding of the respective block, wherein each possible compressed encoding has
a respective data size and a respective reconstruction error;

(d) initialising a compressed encoding of the original data array which when
uncompressed corresponds to a reference data array which is an initial approximation to
the original data array, wherein the compressed encoding has a first data size and a first
reconstruction error, representing a quantitative difference between the original data
array and the reference data array;

(e) selecting that one of the plurality of compressed encodings which, when
uncompressed and added to the reference data array, provides the largest relative
improvement in reconstruction error per unit increase in data size;

(f) updating the compressed encoding of the original data array by adding the
selected compressed encoding, and updating the reference data array by adding the
selected encoding in uncompressed form; and

(g) recursively repeating steps (e) and (f) until a maximum data size is achieved
for the compressed encoding of the original data array.

2. The method claim 1 wherein the plurality of possible compressed encodings of
the array comprises only those compressed encodings that can be provided in a
sequence which has both increasing data size and decreasing reconstruction error.

3. The method of any of the preceding claims comprising a step of de-duplicating
the plurality of possible compressed encodings of the array to identify compressed
encodings that have the same data size, and to omit any of those identified compressed

encodings that have a larger reconstruction error.

04 05 21

10

15

20

25

30

- 18 -

4. The method of any of the preceding claims wherein the plurality of possible
compressed encodings of the array comprises only those compressed encodings that
can be provided in a list having a data size that is smaller than the data size of the
original array.

5. The method of any of the preceding claims wherein the array of data entries is
part of a video stream.

6. The method of any of the preceding claims further comprising the step of
transmitting the compressed encoding over a variable bandwidth channel once the

maximum data size has been achieved.

7. A video encoder configured to send video data over a channel, the encoder
comprising: a compressor configured to compress video data using an adjustable
compression factor, and a transmitter configured to transmit constructed data packets
over the channel, wherein the compressor is configured to:

(a) receive an original data array to be compressed;

(b) divide the original data array into blocks of one or more sizes;

(c) determine a respective plurality of possible compressed encodings for each
block of the original data array using a respective different compression technique for
each encoding of the respective bock, wherein each possible compressed encoding has
a respective data size and a respective reconstruction error;

(d) initialise a compressed encoding of the original data array which when
uncompressed corresponds to a reference data array which is an initial approximation to
the original data array, wherein the compressed encoding has a first data size and a first
reconstruction error, representing a quantitative difference between the original data
array and the reference data array;

(e) select that one of the plurality of compressed encodings which, when
uncompressed and added to the reference data array, provides the largest relative
improvement in reconstruction error per unit increase in data size;

(f) update the compressed encoding of the original data array by adding the
selected compressed encoding, and updating the reference data array by adding the
selected encoding in uncompressed form; and

04 05 21

10

15

20

25

-19-

(9) recursively repeat steps (e) and (f) until a maximum data size is achieved for
the compressed encoding of the original data array.

8. A non-transitory computer readable storage medium having a computer program
stored thereon, the computer program comprising processor readable instructions that,
when executed, direct a device to perform actions comprising:

(a) providing an original data array to be compressed;

(b) dividing the original data array into blocks of one or more sizes;

(c) determining a respective plurality of possible compressed encodings for each
block of the original data array using a respective different compression technique for
each encoding of the respective block, wherein each possible compressed encoding has
a respective data size and a respective reconstruction error;

(d) initialising a compressed encoding of the original data array which when
uncompressed corresponds to a reference data array which is an initial approximation to
the original data array, wherein the compressed encoding has a first data size and a first
reconstruction error, representing a quantitative difference between the original data
array and the reference data array;

(e) selecting that one of the plurality of compressed encodings which, when
uncompressed and added to the reference data array, provides the largest relative
improvement in reconstruction error per unit increase in data size;

(f) updating the compressed encoding of the original data array by adding the
selected compressed encoding, and updating the reference data array by adding the
selected encoding in uncompressed form; and

(g) recursively repeating steps (e) and (f) until a maximum data size is achieved
for the compressed encoding of the original data array.

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - CLAIMS
	Page 23 - CLAIMS
	Page 24 - CLAIMS

