(19) 中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 113015799 A (43)申请公布日 2021.06.22

- (21)申请号 201980075266.3
- (22)申请日 2019.08.07
- (30)优先权数据 2018-215588 2018.11.16 JP
- (85) PCT国际申请进入国家阶段日 2021.05.14
- (86) PCT国际申请的申请数据 PCT/JP2019/031117 2019.08.07
- (87) PCT国际申请的公布数据 W02020/100361 JA 2020.05.22
- (71) 申请人 国立大学法人大阪大学 地址 日本大阪府
- (72)发明人 中田慎一郎 富田亚希子

经基因组编辑的细胞的制造方法

发现了通过使成为受者的染色体上的作为

修正对象的核苷酸的附近DNA区域的多个位置产

生切口,并且对于成为供者的染色体,使与受者 的染色体中产生切口的位置对应的位置的至少1

个位置产生切口,从而非同源末端接合被显著抑

制,靶标位点的同源染色体之间的重组被特异性

(54) 发明名称

(57) 摘要

地诱导。

- (43) 申请公布日 2021.06.22 (74) 专利代理机构 北京市中咨律师事务所 11247
 - 代理人 曾祯 段承恩
- (51) Int.CI.

C12N 15/09 (2006.01)

权利要求书1页 说明书18页 序列表11页 附图28页

模式1 5′侧切割位点 3' 侧切割位点 突变 V 安变等位基因 (等位基因 A) 健常等位基因(等位基因 B) 模式2 5′侧切割位点 3'侧切割位点 (a) Δ 突变等位基因 (等位基因 A) V 健常等位基因 (等位基因 B) (b) 5′侧切割位点 突变 3'侧切割位点 V Π 突变等位基因(等位基因A) 健常等位基因(等位基因 B)

CN 113015799 A

1.经基因组编辑的细胞的制造方法,

该方法包括对同源染色体的特定位点具有在同源染色体之间不同的碱基的细胞,导入 在该特定位点的附近DNA区域进行单链切割的位点特异性切口酶的组合,诱导以该同源染 色体的一方为受者、另一方为供者的同源重组,将该特定位点的受者的碱基置换成供者的 碱基,

该位点特异性切口酶的组合对于该受者的染色体,在该特定位点的附近DNA区域的多 个位置进行单链切割,对于该供者的染色体,在与受者的染色体中被单链切割的位置对应 的至少1个位置进行单链切割。

2.根据权利要求1所述的方法,被置换的受者的碱基是突变碱基,供者的碱基是正常碱基。

3.根据权利要求1或2所述的方法,位点特异性切口酶是CRISPR-Cas系统。

4.用于在权利要求1~3的任一项所述的方法中使用的试剂盒,

该试剂盒包含对于同源染色体的特定位点具有在同源染色体之间不同的碱基的细胞, 在该特定位点的附近DNA区域进行单链切割的位点特异性切口酶的组合,

该位点特异性切口酶的组合对于该受者的染色体,在该特定位点的附近DNA区域的多 个位置进行单链切割,对于该供者的染色体,在与受者的染色体中被单链切割的位置对应 的至少1个位置进行单链切割。

经基因组编辑的细胞的制造方法

技术领域

[0001] 本发明涉及经基因组编辑的细胞的制造方法,主要涉及通过同源染色体之间的同源重组,从而杂合突变被置换成正常序列的细胞的制造方法。

背景技术

[0002] 随着TALENs、CRISPR-Cas系统等可编程的核酸酶的出现,现在,基因组编辑技术正在呈现迅速的发展。Cas蛋白质与指导RNA形成复合体,该复合体与具有指导RNA的互补序列的基因组上的靶标位点结合,切割DNA双链的双方。作为上一代的基因组编辑技术的TALENs是以DNA为靶标的TALE蛋白质与切割DNA的核酸酶(主要为FokI)的融合蛋白质,但与CRISPR-Cas系统同样地,在基因组上的靶标位点产生DNA的双链切割。

[0003] 该DNA的双链切割在通过非同源末端接合而被修复时,产生核苷酸的插入/缺失 (insertion/deletion:indel(得失位)),通过移码等而可以进行基因敲除。另一方面,在从 细胞外导入成为修复模板的供者DNA的情况下,通过基因组与供者DNA之间的同源重组,可 以进行基因敲入。在该基因敲入中,不仅可以产生DNA的插入,还可以产生1~数核苷酸的置 换、缺失。

[0004] 然而,从基因组稳定性的观点考虑,使用可编程的核酸酶的基因组编辑存在大问题。其一是由DNA的双链切割造成的目的外的基因突变的发生。在体细胞中,与利用同源重组的修复相比,利用非同源末端接合的修复是优势的,因而在被基因组编辑系统进行了双链切割的靶标位点,与利用修复模板的敲入相比,更容易产生目的外的突变(indel,得失位)。因此,在实施了基因组编辑的细胞集团中,除了实现了按照目的的敲入的细胞、完全没有发生基因序列的变化的细胞之外,还包含不少发生了由非同源末端接合引起的目的外的突变的细胞。另外,如果从单细胞水平来看,则即使常染色体的等位基因中的1个按照计划被敲入,另一个也有可能发生了目的外的突变。另外,有可编程的核酸酶在与靶标序列类似性高的DNA序列(脱靶)中也产生DNA双链切割,从而产生基因组突变的报告。

[0005] 于是,本发明者们通过使用使Cas9的2个核酸酶部位中的一个失活了的切口酶型 Cas9,利用DNA的单链切割来诱导同源重组,从而开发了与现有的利用DNA的双链切割的方 法相比,能够抑制由非同源末端接合造成的目的外的突变(indel,得失位)的发生的方法。 其一是通过使用切口酶,在作为靶标的基因组导入2个位置的切口、在包含修复模板的供者 质粒导入1个位置的切口,从而利用随机切口法的基因组编辑法(非专利文献1、专利文献 1)。另外,本发明者们使该方法进一步发展,还开发了在作为靶标的基因组导入1个位置的 切口、在包含修复模板的供者质粒导入1个位置的切口的SNGD法(a combination of single nicks in the target gene and donor plasmid)(专利文献1)。

[0006] 另一方面,在基因组编辑中,还存在向作为修复模板使用的供者DNA的基因组中的随机整合这样的问题。即,如果在细胞中导入大量的DNA,则DNA的一部分整合到基因组的任意位点的现象(随机整合)高频率地发生。然而,鉴定发生了随机整合的位点是困难的,在进行医疗应用等时,在安全性方面成为问题。

[0007]	现有技术文献
--------	--------

[0008] 专利文献

[0009] 专利文献1:日本特开2018-11525号公报

[0010] 非专利文献

[0011] 非专利文献1:Nakajima K, et al., Genome Res. 28, 223-230, 2018

发明内容

[0012] 发明要解决的课题

[0013] 本发明是鉴于这样的上述现有技术存在的问题而做出的,其目的在于,不使用外来的供者DNA,特异性且高效地进行利用同源重组的基因组编辑的方法。

[0014] 用于解决课题的手段

[0015] 本发明者们为了实现上述目的而反复进行了深入研究,结果首先构思了,通过不从细胞外导入供者DNA,而是以细胞中本来存在的同源染色体作为修复模板进行基因组编辑,从而能够避免供者DNA的随机整合这样的问题。

[0016] 在细胞内的染色体中存在杂合子突变或者复合杂合子突变的情况下,一方的等位 基因(将此称为"等位基因A")中存在的基因突变,在另一方的等位基因(将此称为"等位基 因B")中不存在。这里,假如能够在等位基因A与等位基因B之间诱导同源重组,则可以以等 位基因B作为修复模板将等位基因A的突变修复成正常序列,或者相反以等位基因A作为模 板在等位基因B的正常序列中导入突变。此时,现有法中作为模板使用的外来的供者DNA(人 工合成DNA链、质粒等)变得不需要。然而,体细胞中发生同源重组修复的是姐妹染色单体之 间,同源染色体之间的同源重组非常不易发生。

[0017] 于是,本发明者们尝试了通过在同源染色体的靶标位点周围导入DNA切割来诱导 同源染色体之间的同源重组的诱导。研究了各种切割模式,结果通过使成为受者的染色体 上的作为修正对象的核苷酸的附近DNA区域的多个位置产生切口,并且对于成为供者的染 色体,使与受者的染色体上产生切口的位置对应的位置的至少1个位置产生切口,从而成功 地显著抑制非同源末端接合,特异性地诱导靶标位点的同源染色体之间的重组(将切口的 导入例示于图1A~H)。并且,由此,成功地不产生目的外的突变地、高效地修复靶标的突变。 进而,本发明者们根据该方法的原理发现,能够广泛地以在同源染色体之间不同的碱基作 为靶标,统一成任一方的碱基,从而完成了本发明。

[0018] 本发明涉及利用同源染色体之间的同源重组的基因组编辑,更详细地提供以下发明。

[0019] (1) 经基因组编辑的细胞的制造方法,

[0020] 该方法包括对同源染色体的特定位点具有在同源染色体之间不同的碱基的细胞, 导入在该特定位点的附近DNA区域进行单链切割的位点特异性切口酶的组合,诱导以该同 源染色体的一方为受者、另一方为供者的同源重组,将该特定位点的受者的碱基置换成供 者的碱基,

[0021] 该位点特异性切口酶的组合对于该受者的染色体,在该特定位点的附近DNA区域的多个位置进行单链切割,对于该供者的染色体,在与受者的染色体中被单链切割的位置对应的至少1个位置进行单链切割。

[0022] (2) 根据(1) 所述的方法, 被置换的受者的碱基是突变碱基, 供者的碱基是正常碱基。

[0023] (3) 根据(1) 或(2) 所述的方法,位点特异性切口酶是CRISPR-Cas系统。

[0024] (4) 用于在(1)~(3) 的任一项所述的方法中使用的试剂盒,

[0025] 该试剂盒包含对于同源染色体的特定位点具有在同源染色体之间不同的碱基的 细胞,在该特定位点的附近DNA区域进行单链切割的位点特异性切口酶的组合,

[0026] 该位点特异性切口酶的组合对于该受者的染色体,在该特定位点的附近DNA区域的多个位置进行单链切割,对于该供者的染色体,在与受者的染色体中被单链切割的位置对应的至少1个位置进行单链切割。

[0027] 发明的效果

[0028] 根据本发明,能够在显著地抑制由非同源末端接合造成的目的外的突变的发生的同时,通过同源染色体之间的同源重组而特异性且高效地进行基因组编辑。另外,由于同源 重组中不利用外来的供者DNA,也不产生供者DNA的随机整合这样的问题,因而即使在进行 基因治疗等医疗应用的情况下,也能够以高安全性进行基因组编辑。

附图说明

[0029] 图1A显示本发明的方法中的、由位点特异性切口酶产生的同源染色体的单链切割的模式的例子。

[0030] 图1B是图1A的继续的图。

[0031] 图1C是图1B的继续的图。

[0032] 图1D是图1C的继续的图。

[0033] 图1E是图1D的继续的图。

[0034] 图1F是图1E的继续的图。

[0035] 图1G是图1F的继续的图。

[0036] 图1H是图1G的继续的图。

[0037] 图2A显示作为同源重组的供者的染色体的胸苷激酶1基因中的、本实施例中设计的crRNA(相当于sgRNA的5'侧区域)的靶标位点。大写字母表示外显子,小写字母表示内含子。用方框包围的碱基序列是PAM序列(以下、对于图2B~H也同样)。下划线自上起依次表示TSCER2_TK1(ex4)-322s的靶标位点、TSCER2_TK1(ex4)21s、TSCER2_TK1(ex4)29s的靶标位点。

[0038] 图2B显示作为同源重组的受者的染色体的胸苷激酶1基因中的、本实施例中设计的crRNA(相当于sgRNA的5'侧区域)的靶标位点。下划线自上起依次表示TSCER2_TK1(ex4)-322s的靶标位点、TSCER2_TK1(ex4)21s的靶标位点、TSCER2_TK1(ex4)20s、TSCER2_TK1(ex4)29s的靶标位点。

[0039] 图2C显示作为同源重组的受者的染色体的胸苷激酶1基因中的、本实施例中设计的crRNA(相当于sgRNA的5'侧区域)的靶标位点。下划线分别表示TSCER2_TK1(ex4)-S1(上图)和TSCER2_TK1(ex4)-S2(下图)的crRNA的靶标位点。

[0040] 图2D显示作为同源重组的受者的染色体的胸苷激酶1基因中的、本实施例中设计的crRNA(相当于sgRNA的5'侧区域)的靶标位点。下划线分别表示TSCER2_TK1(ex4)-S3(上

图)和TSCER2_TK1(ex4)-S4(下图)的crRNA的靶标位点。

[0041] 图2E显示作为同源重组的受者的染色体的胸苷激酶1基因中的、本实施例中设计的crRNA(相当于sgRNA的5'侧区域)的靶标位点。下划线分别表示TSCER2_TK1(ex4)-S5(上图)和TSCER2_TK1(ex4)-S6(下图)的crRNA的靶标位点。

[0042] 图2F显示作为同源重组的受者的染色体的胸苷激酶1基因中的、本实施例中设计的crRNA(相当于sgRNA的5'侧区域)的靶标位点。下划线分别表示TSCER2_TK1(ex4)-S7(上图)和TSCER2_TK1(ex4)-S8(下图)的crRNA的靶标位点。

[0043] 图2G显示作为同源重组的受者的染色体的胸苷激酶1基因中的、本实施例中设计的crRNA(相当于sgRNA的5'侧区域)的靶标位点。下划线分别表示TSCER2_TK1(ex4)-S9(上图)和TSCER2_TK1(ex4)-S10(下图)的crRNA的靶标位点。

[0044] 图2H显示作为同源重组的受者的染色体的胸苷激酶1基因中的、本实施例中设计的crRNA(相当于sgRNA的5'侧区域)的靶标位点。下划线分别表示TSCER2_TK1(ex4)-S11(上图)和TSCER2_TK1(ex4)-S12(下图)的crRNA的靶标位点。

[0045] 图21显示作为crRNA使用TSCER2_TK1 (ex4) - 322s 与TSCER2_TK1 (ex4) 20s的组合的 情况下的、靶标位点的单链切割。

[0046] 图3显示本实施例的各样品中DNA的单链切割或双链切割发生的位置。

[0047] 图4A显示对于图3所示的本实施例的样品以胸苷激酶活性的恢复为指标检测发生 基因组编辑的细胞而得的结果。图下是将图上的样品#1~6的图放大而得的。

[0048] 图4B是显示对于图3所示的本实施例的样品以胸苷激酶活性的恢复为指标检测发 生基因组编辑的细胞而得的结果。与图4A在将表达切口酶型CRISPR-Cas系统的质粒导入细 胞时的电穿孔的条件是不同的。

[0049] 图5显示对于图3和4所示的本实施例的样品#2和#7分析基因组编辑后的靶标位点的碱基序列而得的结果。

[0050] 图6显示图7所示的本实施例的样品中的DNA的单链切割发生的位置(图上)、和以 胸苷激酶活性的恢复为指标检测发生基因组编辑的细胞而得的结果(图下)。

[0051] 图7显示本实施例的各样品中DNA的单链切割发生的位置。

[0052] 图8显示对于图6和7所示的本实施例的样品S3/20s和S12/20s分析基因组编辑后的靶标位点的碱基序列而得的结果。

[0053] 图9显示图10所示的本实施例的各样品中的、DNA的单链切割发生的位置(图上)、和以胸苷激酶活性的恢复为指标检测发生基因组编辑的细胞而得的结果(图下)。

[0054] 图10显示本实施例的各样品中DNA的单链切割发生的位置。

[0055] 图11显示图12所示的本实施例的各样品中的DNA的单链切割发生的位置(图上)、和以胸苷激酶活性的恢复为指标检测发生基因组编辑的细胞而得的结果(图下)。

[0056] 图12显示本实施例的各样品中DNA的单链切割发生的位置。

具体实施方式

[0057] 本发明中的经基因组编辑的细胞的制造方法的原理是,利用通过由位点特异性切口酶产生的单链切割而被诱导的同源染色体之间的同源重组,将在同源染色体之间不同的碱基统一成任一方的碱基。

[0058] 具体地,对同源染色体的特定位点具有在同源染色体之间不同的碱基的细胞,导入在该特定位点的附近DNA区域进行单链切割的位点特异性切口酶的组合,诱导以该同源 染色体的一方为受者、以另一方为供者的同源重组,从而将该特定位点中的受者的碱基置 换成供者的碱基。

[0059] 作为成为本发明中的基因组编辑的对象的"细胞",只要具有同源染色体,就不特别限定,可以以各种真核细胞作为对象。作为"真核细胞",可列举例如,动物细胞、植物细胞、藻类细胞、真菌细胞。另外作为动物细胞,可列举例如,哺乳动物细胞,以及鱼类、鸟类、爬行类、两栖类、昆虫类的细胞。

[0060] "动物细胞"包括例如,构成动物的个体的细胞、构成由动物摘出的器官或组织的 细胞、来源于动物的组织的培养细胞等。具体地,可列举例如,各阶段的胚的胚细胞(例如,1 细胞期胚、2细胞期胚、4细胞期胚、8细胞期胚、16细胞期胚、桑葚期胚等);诱导多能性干 (iPS)细胞、胚胎干(ES)细胞、造血干细胞等干细胞;成纤维细胞、造血细胞、神经元、肌肉细 胞、骨细胞、肝细胞、胰脏细胞、脑细胞、肾细胞等体细胞等。基因组编辑动物的制成中可以 使用受精后的卵母细胞、即受精卵。特别优选受精卵为原核期胚的。受精前的卵母细胞可以 将冷冻保存的解冻使用。

[0061] 本发明中"哺乳动物"是包含人和非人哺乳动物的概念。作为非人哺乳动物的例 子,可列举牛、野猪、家猪、绵羊、山羊等偶蹄类、马等奇蹄类、小鼠、大鼠、豚鼠、仓鼠、松鼠等 啮齿类、兔等兔目、狗、猫、鼬等食肉类等。上述非人哺乳动物可以是家畜或伴侣动物(宠物),也可以是野生动物。

[0062] 作为"植物细胞",可列举例如,谷物类、油料作物、饲料作物、水果、蔬菜类的细胞。 "植物细胞"包含例如,构成植物的个体的细胞、构成从植物分离的器官或组织的细胞、来源 于植物的组织的培养细胞等。作为植物的器官或组织,可列举例如,叶、茎、茎尖(生长点)、 根、块茎、块根、种子、愈伤组织等。作为植物的例子,可列举稻、玉米、香蕉、花生、向日葵、番 茄、拟南芥、烟草、小麦、大麦、马铃薯、大豆、棉花、康乃馨等。

[0063] 同源染色体的特定位点中的"在同源染色体之间不同的碱基"可以是一个碱基,也可以是多个碱基(碱基序列)。另外,可以是突变,也可以是多态性。作为突变,可列举例如, 置换、缺失、插入、或它们的组合,多态性可列举例如,单碱基多态性、微卫星多态性。

[0064] 本发明中,同源染色体中在特定位点具有突变、多态性的染色体可以作为同源重组中的受者,也可以作为供者。即,通过本发明中的基因组编辑,可以使构成同源染色体的2 条染色体的特定位点的碱基双方都成为正常序列,另外,也可以使双方都成为特定的突变 序列、多态性序列。例如,对于HLA,也可以使杂合子的HLA变成纯合子HLA。

[0065] 从医疗上的有用性的观点考虑的典型的本发明的利用方案是为了治疗或预防由 杂合子突变引起的人的疾病,而将人细胞中的该突变修复成正常序列。这里作为"由杂合子 突变引起的疾病",是除了通过该杂合突变而直接产生的疾病(显性遗传疾病)之外,还包含 通过2种不同的突变的组合(复合杂合子)产生的疾病(隐性遗传疾病)的含义。作为对象疾 病,可列举例如,先天性免疫缺陷症中的OAS1异常症等采取常染色体显性遗传形式的通过 常染色体杂合子突变而发病的疾病、ADA缺损症等采取常染色体隐性遗传形式的遗传性疾 病、和女性的第VIII因子•第IX因子缺损的血友病等在女性中以X连锁伴性遗传形式发病 的疾病,但不限于这些。

[0066] 作为本发明中使用的"位点特异性切口酶",只要是能够在基因组上位点特异性地对DNA进行单链切割的就不限制,但优选以切口酶型Cas蛋白质作为构成要素的CRISPR-Cas系统。Cas蛋白质通常包含参与靶标链的切割的结构域(RuvC结构域)和参与非靶标链的切割的结构域(HNH结构域),但切口酶型Cas蛋白质典型地通过这2个结构域的任一结构域的突变而丧失其切割活性。作为这样的突变,在spCas9蛋白质(酿脓链球菌(S.pyogenes)来源的Cas9蛋白质)的情况下,可列举例如,N末端起第10位的氨基酸(天冬氨酸)向丙氨酸的突变(D10A:RuvC结构域内的突变)、N末端起第840位的氨基酸(天冬氨酸)向丙氨酸的突变(H840A:HNH结构域内的突变)、N末端起第863位的氨基酸(天冬酰胺)向丙氨酸的突变(N863A:HNH结构域内的突变)、N末端起第762位的氨基酸(谷氨酸)向丙氨酸的突变(E762A:RuvCIII结构域内的突变)。N末端起第986位的氨基酸(天冬氨酸)向丙氨酸的突变(D986A:RuvCIII结构域内的突变)。此外,各种来源的Cas9蛋白质是公知的(例如,W02014/131833),可以利用它们的切口酶型。此外,Cas9蛋白质的氨基酸序列和碱基序列在公开的数据库、例如GenBank(http://www.ncbi.nlm.nih.gov)中登记(例如,登记号:Q99ZW2.1等),本发明中可以利用这些序列。

[0067] 另外,本发明中还可以利用除Cas9以外的Cas蛋白质,例如,Cpf1(Cas12a)、Cas12b、CasX(Cas12e)、Cas14等。作为切口酶型Cpf1蛋白质中的突变,例如,在AsCpf1(Cas12)中,可列举N末端起第1226位的氨基酸(精氨酸)向丙氨酸的突变(R1226A:Nuc结构域内的突变)。Cpf1的氨基酸序列在公开的数据库、例如GenBank(http://www.ncbi.nlm.nih.gov)中登记(例如,登记号:WP_021736722、WP_035635841等)。

[0068] 作为构成CRISPR-Cas系统的蛋白质,可以使用添加了核定位信号的。

[0069] 在以切口酶型Cas蛋白质为构成要素的CRISPR-Cas系统中,切口酶型Cas蛋白质与指导RNA结合而形成复合体,以靶标DNA序列为靶标而将DNA单链切割。在CRISPR-Cas9系统中,指导RNA包含crRNA和tracrRNA,但在CRISPR-Cpf1系统中不需要tracrRNA。CRISPR-Cas9系统中的指导RNA可以是包含crRNA和tracrRNA的单分子指导RNA,也可以是由crRNA片段和tracrRNA片段组成的双分子指导RNA。

[0070] crRNA包含相对于靶标DNA序列互补的碱基序列。靶标DNA序列通常是由12~50碱基、优选17~30碱基、更优选17~25碱基组成的碱基序列,优选从与PAM (proto-spacer adjacent motif,前间区序列临近基序)序列邻接的区域选择。典型地,DNA的位点特异性切割在由crRNA与靶标DNA序列的之间的碱基对形成的互补性、和与其邻接而存在的PAM双方决定的位置产生。

[0071] 在大量的CRISPR-Cas系统中,crRNA进一步在3'侧包含能与tracrRNA片段相互作用(杂交)的碱基序列。另一方面,tracrRNA在5'侧包含能与crRNA的一部分碱基序列相互作用(杂交)的碱基序列。通过这些碱基序列的相互作用,crRNA/tracrRNA(单分子或双分子)形成双链RNA,所形成的双链RNA与Cas蛋白质相互作用。

[0072] PAM根据Cas蛋白质的种类、来源不同而不同。典型的PAM序列例如,酿脓链球菌 (S.pyogenes)来源的Cas9蛋白质 (II型)中为"5′-NGG",在硫矿硫化叶菌 (S.solfataricus) 来源的Cas9蛋白质 (I-A1型)中为"5′-CCN",在硫矿硫化叶菌 (S.solfataricus)来源的Cas9蛋白质 (I-A2型)中为"5′-TCN",在H.walsbyl来源的Cas9蛋白质 (I-B型)中为"5′-TTC",在 大肠杆菌 (E.coli)来源的Cas9蛋白质 (I-E型)中为"5′-AWG",在大肠杆菌 (E.coli)来源的

Cas9蛋白质(I-F型)中为"5′-CC",在绿脓杆菌(p.aeruginosa)来源的Cas9蛋白质(I-F型)中为"5′-CC",在嗜热乳链球菌(S.Thermophilus)来源的Cas9蛋白质(II-A型)中为"5′-NNAGAA",在无乳链球菌(S.agalactiae)来源的Cas9蛋白质(II-A型)中为"5′-NGG",在金黄色葡萄球菌(S.aureus)来源的Cas9蛋白质中为"5′-NGRRT"或"5′-NGRRN",在脑膜炎奈瑟菌(N.meningitidis)来源的Cas9蛋白质中为"5′-NNNNGATT",在龋垢密螺旋体(T.denticola)来源的Cas9蛋白质中为"5′-NAAAAC"。在Cpf1中典型地为"5′-TTN"或"5′-TTTN"。此外,也可以通过改变蛋白质(例如,突变的导入),来改变PAM识别(Benjamin,P.等,Nature 523,481-485(2015)、Hirano,S.等,Molecular Cell 61,886-894(2016))。

[0073] 本发明中,也可以利用除了CRISPR-Cas系统以外的位点特异性切口酶。作为这样的位点特异性切口酶,可列举例如,与具有切口酶活性的酶融合而成的人工核酸酶。作为人工核酸酶,可以利用例如,TALE(转录激活因子样效应物,transcription activator-like effector)、ZF(锌指,zinc finger)、PPR(三角状五肽重复,pentatricopeptide repeat)。作为能够通过与这些人工核酸酶的融合而发挥切口酶活性的酶,可列举例如,TevI(Nat Commun.2013;4:1762.doi:10.1038/ncomms2782)。这些人工核酸酶通过与识别特定的碱基(或者特定的碱基序列)的模件(肽)连接而构建的DNA结合结构域,从而以靶标DNA序列作为靶标,通过融合于该DNA结合结构域的切口酶,将DNA单链切割。也可以在人工核酸酶中的DNA结合结构域与切口酶的之间导入适当的间隔肽。

[0074] 本发明中,利用对于受者的染色体,在上述特定位点(在同源染色体之间不同的碱基)的附近DNA区域的多个位置进行单链切割,对于供者的染色体,在与受者的染色体中被 单链切割的位置对应的位置的至少1个位置进行单链切割的位点特异性切口酶的组合。

[0075] 这里"附近DNA区域"是指距离特定位点通常100000碱基以内、10000碱基以内、 5000碱基以内、2000碱基以内、优选为1000碱基以内(例如,500碱基以内、400碱基以内、300 碱基以内、200碱基以内、100碱基以内、50碱基以内、20碱基以内、10碱基以内)的区域。另 外,"附近DNA区域的多个位置"可以在同一DNA链上,也可以在不同的DNA链上。

[0076] 作为具体的方案的例子,可列举上述特定位点的5′侧附近DNA区域和3′侧附近DNA 区域的各1个位置(图1A的模式1和模式2、图1C的模式1′和2(a)′、图1D的模式2(b)′)、上述 特定位点的5′侧附近DNA区域的2个位置(图1B的模式3(a)、模式4(a)、图1D的模式3(a)′、图 1E的模式4(a)′)、上述特定位点的3′侧附近DNA区域的2个位置(图1B的模式3(b)、模式4 (b)、图1E的模式3(b)′、图1F的模式4(b)′)、以及上述特定位点的5′侧附近DNA区域和3′侧 附近DNA区域的各至少1个位置的共计3个位置(图1G的模式5和模式6)。被切割的位置也可 以是4个位置以上。另外,1个特定位点的附近DNA区域中也可以存在其他特定位点(在同源 染色体之间不同的碱基)(图1H的模式7)。

[0077] 在供者的染色体与受者的染色体被单链切割的位置的全部对应的方案(图1A的模式1、图1B的模式3、图1C的模式1′、图1D的模式3(a)′、图1E的模式3(b)′、图1G的模式6、图1H的模式7(d))中,与受者的染色体的靶标DNA序列结合的位点特异性切口酶可以设计成与供者的染色体的对应DNA序列也结合那样。该情况下,受者的染色体的靶标DNA序列与供者的染色体的对应DNA序列典型地为同一DNA序列。

[0078] 另一方面,在供者的染色体与受者的染色体中被单链切割的位置的一部分不对应的方案(图1A的模式2、图1B的模式4、图1C的模式2(a)′、图1D的模式2(b)′、图1E的模式4

(a)′、图1F的模式4(b)′、图1G的模式5、图1H的模式7(a)~(c))中,可以以与受者的染色体的靶标DNA序列结合的位点特异性切口酶的组合的一部分不与供者的染色体的对应DNA序列结合的方式进行设计。在该情况下、受者的染色体的靶标DNA序列和供者的染色体的对应DNA序列是不同的DNA序列。例如,如果以包含通过基因组编辑而进行置换的碱基(在同源染色体之间不同的碱基)的方式设定位点特异性切口酶的靶标DNA序列,则受者的染色体的靶标DNA序列与供者的染色体的对应DNA序列变成不同的DNA序列。在位点特异性切口酶是CRISPR-Cas系统的情况下,以对受者的靶标DNA序列具有结合特异性的方式设计指导RNA即可。另外,在位点特异性切口酶是与具有切口酶活性的酶融合而成的人工核酸酶的情况下,以对受者的靶标DNA序列具有结合特异性的方式设计DNA结合结构域即可。在该方案中,在位点特异性切口酶的设计上,被单链切割的位点距离上述特定位点(在同源染色体之间不同的碱基)通常为约100碱基位内、更优选为50碱基以内(例如,40碱基以内、30碱基以内、20碱基以内、10碱基以内)。

[0079] 本发明中,在不同的DNA链上进行单链切割的情况下,如果单链切割的距离过近则 会产生双链切割。因此,位于不同的DNA链上的单链切割位置的距离通常为100碱基以上、优 选为200碱基以上,并且通常为2000碱基以内、优选为1000碱基以内、进一步优选为500碱基 以内。

[0080] 在本发明中,将上述位点特异性切口酶的组合导入细胞。在被导入细胞的"位点特异性切口酶"是CRISPR-Cas系统的情况下,例如,可以是指导RNA与Cas蛋白质的组合的方式,也可以是指导RNA与被翻译成Cas蛋白质的信使RNA的组合的方式,也可以是表达它们的载体的组合。指导RNA也可以进行用于抑制分解的修饰(化学修饰等)。在被导入细胞的"位点特异性切口酶"是与具有切口酶活性的酶融合而成的人工核酸酶的情况下,例如,可以是蛋白质的方式,也可以是被翻译成该蛋白质的信使RNA,也可以是表达该蛋白质的载体的方式。

[0081] 在采用表达载体的方式的情况下,包含与要表达的DNA可工作地结合的1种以上的 调节元件。这里,"可工作地结合"是指上述DNA能够表达地与调节元件结合。作为"调节元 件",可列举启动子、增强子、内部核糖体进入位点(IRES)、和其他表达控制元件(例如,转录 终止信号、例如,多聚腺苷化信号和多聚U序列)。作为调节元件,根据目的,例如,可以是指 向多样的宿主细胞中的DNA的结构性表达的,也可以是仅指向特定的细胞、组织、或者器官 中的DNA的表达的。另外,可以是仅在特定的时期指向DNA的表达的,也可以是指向能人工地 诱导的DNA的表达的。作为启动子,可列举例如,polIII启动子(例如,U6和H1启动子)、polII 启动子(例如,作为反转录病毒的劳斯肉瘤病毒(RSV)LTR启动子、巨细胞病毒(CMV)启动子、 SV40启动子、二氢叶酸还原酶启动子、B-肌动蛋白启动子、磷酸甘油酸激酶(PGK)启动子、和 EF1a启动子)、polII启动子、或它们的组合。只要是本领域技术人员,就能够根据要导入的细 胞的种类等选择适当的表达载体。

[0082] 位点特异性切口酶向细胞的导入可以通过例如,电穿孔、显微注射、DEAE-葡聚糖处理、脂质体转染、纳米颗粒介导的转染、病毒介导的核酸递送等公知的方法来进行。

[0083] 在向细胞的导入之后,位点特异性切口酶的组合对于受者的染色体,在靶标碱基的附近DNA区域的多个位置进行单链切割,对于供者的染色体,在与受者的染色体中被单链切割的位置对应的位置的至少1个位置进行单链切割。由此在显著抑制由非同源末端接合

造成的目的外的突变的发生的同时,同源染色体之间的同源重组被诱导,靶标碱基特异性 且高效地被置换成供者中的对应碱基。根据本发明,可以将由非同源末端接合造成的目的 外的突变的发生抑制90%以上、优选为95%以上(例如,96%以上、97%以上、98%以上、 99%以上、100%)。

[0084] 另外,本发明提供用于在上述本发明的方法中使用的试剂盒,该试剂盒包含上述 位点特异性切口酶的组合。有时该试剂盒进一步包含一种或多种追加的试剂,作为追加的 试剂,可列举例如,稀释缓冲液、再构成溶液、洗涤缓冲液、核酸导入试剂、蛋白质导入试剂、 对照试剂(例如,对照的指导RNA),但不限于这些。该试剂盒还可以包含用于实施本发明的 方法的使用说明书。

[0085] 实施例

[0086] 以下,基于实施例更具体地说明本发明,但本发明不限于以下实施例。

[0087] [实施例1]多切口法的有效性

[0088] A.材料

[0089] (1) TSCER2细胞

[0090] 是具有Thymidine Kinase (胸苷激酶)1基因 (TK1)的杂合子突变的1ymphoblast (淋巴母细胞) TK6细胞 (第4外显子中单核苷酸插入。移码)来源的细胞。在健常等位基因的 第4内含子中插入31碱基对 (该插入自身与TK1基因功能的丧失无关)并在第5外显子的导入 突变,改变成复合杂合子突变,使TK1基因的功能丧失。由于依赖于胸苷激酶的DNA合成补救 (salvage)途径不发挥功能,因而如果通过氨基蝶呤阻断DNA从头(de novo)合成途径,则即 使供给2-脱氧胞苷、次黄嘌呤、和胸苷也不能进行细胞增殖。在通过基因组编辑而胸苷激酶 活性恢复了的情况下,在CHAT培养基(10µM 2-脱氧胞苷[Sigma]、200µM次黄嘌呤[Sigma], 100nM氨基蝶呤[Sigma]、和17.5µM胸苷[Sigma])中也能够进行细胞增殖。

[0091] (2) 切口酶型CRISPR-Cas9系统和靶标区域的结构

[0092] 将成为供者的野生型的靶标区域(TK1第3内含子~第4外显子~第4内含子的序列)示于图2A(序列号:1)。大写字母表示外显子,小写字母表示内含子。用方框包围的碱基序列是PAM序列。下划线自上起依次表示TSCER2_TK1(ex4)-322s的靶标位点、TSCER2_TK1(ex4)21s的靶标位点、TSCER2_TK1(ex4)29s的靶标位点。

[0093] 另外,将成为受者的突变型的靶标区域示于图2B(序列号:2)。大写字母表示外显子,小写字母表示内含子。用方框包围的碱基序列是PAM序列。下划线自上起依次表示 TSCER2_TK1(ex4)-322s的靶标位点、TSCER2_TK1(ex4)21s的靶标位点、TSCER2_TK1(ex4) 20s、TSCER2_TK1(ex4)29s的靶标位点。

[0094] 另外,S1~S12的靶标区域示于图2C~2H(序列号:3~14)。大写字母表示外显子, 小写字母表示其他序列。用方框包围的碱基序列是PAM序列。将靶标序列位点用下划线表 示。

[0095] sgRNA中相当于crRNA的序列如下。此外,下划线是针对PAM的序列。

[0096] TSCER2_TK1 (ex4) 20s

[0097] CGTCTCGGAGCAGGCAGGCGGGG(序列号:15)

[0098] TSCER2_TK1 (ex4) 21s

[0099] ACGTCTCGGAGCAGGCAGGCGGG(序列号:16)

[0100]	TSCER2_TK1 (ex4) -322s
[0101]	CCTCAGCCACAAGAGTAGCTGGG(序列号:17)
[0102]	TSCER2_TK1 (ex4) 29s
[0103]	CCTGGGCCACGTCTCGGAGCAGG(序列号:18)
[0104]	TSCER2_TK1_S1
[0105]	ACCTCTAGACCATGGATCTGAGG(序列号:19)
[0106]	TSCER2_TK1_S2
[0107]	CTGACAAAGAGCTCCTTCACTGG(序列号:20)
[0108]	TSCER2_TK1_S3
[0109]	ATTCAAGGGAGGAGCACCCCAGG(序列号:21)
[0110]	TSCER2_TK1_S4
[0111]	CTTGTGATTTTCCACTGGACAGG(序列号:22)
[0112]	TSCER2_TK1_S5
[0113]	GAAGTTGTACTTCCAACAGCTGG(序列号:23)
[0114]	TSCER2_TK1_S6
[0115]	CAGACTAGGCCAACTTCATCAGG(序列号:24)
[0116]	TSCER2_TK1_S7
[0117]	GATAACTTCCAAGTCAGCGAGGG(序列号:25)
[0118]	TSCER2_TK1_S8
[0119]	AGCTTCCCATCTATACCTCCTGG(序列号:26)
[0120]	TSCER2_TK1_S9
[0121]	CAACCGGCCTGGAACCACGTAGG(序列号:27)
[0122]	TSCER2_TK1_S10
[0123]	GATCTAGAACTGCTTGCAATGGG(序列号:28)
[0124]	TSCER2_TK1_S11
[0125]	TCAATCATATCACTCTTAGCTGG(序列号:29)
[0126]	TSCER2_TK1_S12

[0127] GGAGCTGTCCATGAGACCCAGGG(序列号:30)

[0128] 预计在使用TSCER2_TK1 (ex4) 20s的情况下,在[CCCGC]与[CTGCCTGCTCCGAGACG] 之间产生DNA双链切割或者切口,在使用TSCER2_TK1 (ex4) 21s的情况下,在[CCCGCC]与 [TGCCTGCTCCGAGACGT]之间产生DNA双链切割或者切口,在使用TSCER2_TK1 (ex4) -322s的情 况下,在[cccagc]与[tactcttgtggctgagg]之间产生DNA双链切割或者切口,在使用TSCER2_ TK1 (ex4) 29s的情况下,在[CCTGCT]与[CCGAGACGTGGCCCAGG]之间产生DNA双链切割或者切 口,在使用TSCER2_TK1_S1的情况下,在[CCTCAG]与[ATCCATGGTCTAGAGGT]之间产生DNA双链 切割或者切口,在使用TSCER2_TK1_S2的情况下,在[CCAGTG]与[AAGGAGCTCTTTGTCAG]之间 产生DNA双链切割或者切口,在使用TSCER2_TK1_S3的情况下,在[CCTGGG]与 [GTGCTCCTCCCTTGAAT]之间产生DNA双链切割或者切口,在使用TSCER2_TK1_S5 的情况下,在[CCAGCT]与[GTTGGAAGTACAACTTC]之间产生DNA双链切割或者切口,在使用 TSCER2_TK1_S6的情况下,在[CCTGAT]与[GAAGTTGGCCTAGTCTG]之间产生DNA双链切割或者 切口,在使用TSCER2_TK1_S7的情况下,在[CCCTCG]与[CTGACTTGGAAGTTATC]之间产生DNA双 链切割或者切口,在使用TSCER2_TK1_S8的情况下,在[CCAGGA]与[GGTATAGATGGGAAGCT]之 间产生DNA双链切割或者切口,在使用TSCER2_TK1_S9的情况下,在[CCTACG]与 [TGGTTCCAGGCCGGTTG]之间产生DNA双链切割或者切口,在使用TSCER2_TK1_S10的情况下, 在[CCCATT]与[GCAAGCAGTTCTAGATC]之间产生DNA双链切割或者切口,在使用TSCER2_TK1_ S11的情况下,在[CCAGCT]与[AAGAGTGATATGATTGA]之间产生DNA双链切割或者切口,在使用 TSCER2_TK1_S12的情况下,在[CCCTGG]与[GTCTCATGGACAGCTCC]之间产生DNA双链切割或者 切口(请参照图2A~H和序列号:1~14)。

[0129] 突变阵列上的[CCCCGCCTGCCTGCTCCGAGACG]序列(下划线表示单核苷酸插入突变) 以健常等位基因的野生型序列作为模板通过同源染色体之间重组而被修正,在被修正为 [CCCGCCTGCCTGCTCCGAGACG]的情况下,胸苷激酶活性恢复。另外,对于 [CCCCGCTGCCTGCTCCGAGACG]、[CCCCGCCGCCTGCTCCGAGACG]这样的、由Cas9产生的DNA切割位 点周围的单核苷酸缺失(核苷酸缺失型),胸苷激酶活性也恢复(非专利文献1)。

[0130] 使用表达Cas9和sgRNA两者的载体,使Cas9和sgRNA表达。将所利用的载体在以下显示。

- [0131] V1:PX461 (Cas9D10A-P2A-GFP) -TSCER2_TK1 (ex4) 20s
- [0132] V2:PX461 (Cas9D10A-P2A-GFP) -TSCER2_TK1 (ex4) 21s
- [0133] V3:PX461 (Cas9D10A-P2A-GFP) empty
- [0134] V4:PX462 (Cas9D10A-P2A-PuroR) -TSCER2_TK1 (ex4) -322s
- [0135] V5:PX462 (Cas9D10A-P2A-PuroR) empty
- [0136] V6:PX462 (Cas9D10A-P2A-PuroR) empty
- [0137] V7:PX458 (Cas9-P2A-GFP) -TSCER2_TK1 (ex4) 20s
- [0138] V8:PX458 (Cas9-P2A-GFP) empty
- [0139] V9:PX459(Cas9-P2A-PuroR)-empty
- [0140] 将上述的载体如下组合而导入TSCER2细胞。
- [0141] 样品#1:V1+V5
- [0142] 样品#2:V1+V4
- [0143] 样品#3:V2+V5
- [0144] 样品#4:V2+V4
- [0145] 样品#5:V3+V4
- [0146] 样品#6:V3+V5
- [0147] 样品#7:V7+V9
- [0148] 样品#8:V8+V9
- [0149] 将各样品中切口或者DNA双链切割产生的位置示于图3。
- [0150] B.方法和结果

[0151] 将2种质粒分别8µg与600×10⁴个TSCER2细胞在120µL的Rbuffer(Invitrogen Neon Transfection Kit)中混合,将其中的100µL以1350V 10ms 3次的条件通过Neon Transfection System进行电穿孔(电穿孔条件1)。作为别的方法,在维持细胞浓度和质粒

浓度不变的条件下,将10µL以1300V 20ms 2次的条件通过Neon Transfection System进行 电穿孔电(穿孔条件2)。在10%马血清/RPMI1640培养基中以37℃5%C02过夜培养,然后,使 用FACSAriaII或FACSAriaIII分拣EGFP阳性细胞(成功地转染了PX461或PX458载体的细 胞)。分拣后的细胞在10%马血清/RPMI1640培养基中培养1天、在5%马血清/RPMI1640培养 基中培养5天。自电穿孔起1周后,将细胞的一部分转移到CHAT培养基(10µM 2-脱氧胞苷 [Sigma]、200µM次黄嘌呤[Sigma]、100nM氨基蝶呤[Sigma]、和17.5µM胸苷[Sigma]))中,在 96孔板的每1孔中分注10、20、100、或200个细胞,继续培养。另外,为了测定成斑效率,将5% 马血清-RPMI1640培养基中的细胞在96孔板的每1孔中分注0.5、或1个细胞,进行培养。2周 后,测定形成了集落的孔的比例。

[0152] 在CHAT培养基中每1孔接种A个细胞的情况下,将能够形成集落的孔的比例(%)设为B,将在通常培养基中每1孔接种C个细胞的情况下能够形成集落的孔的比例(%)设为D时,如下计算出编辑成功率。

[0153] (B/A) / (D/C) × 100 (%)

[0154] 将结果示于图4A(电穿孔条件1)和图4B(电穿孔条件2)。在Cas9或Cas9切口酶不识别靶标基因的情况下,基因组编辑未发生(图3,4A,4B、样品#6,#8)。在作为修正对象的核苷酸附近发生了DNA双链切割的情况下,恢复胸苷激酶活性的细胞的比例达到5.43±0.77%, 但其中由同源染色体之间重组带来的止于3.66%,96.3%是由核苷酸缺失造成的(图3,4A、样品#7和表1)。

[0155] 表1

[0156]

	#2(多切口法)	#7(双链切割法)
野生型(正确)	111/111 (100%)	3/82(3.66%)
突变型	0/111 (0%)	79/82 (96.3%)

[0157] 另一方面,如果使突变等位基因的作为修正对象的核苷酸附近(位点A)和远离的 位点(位点B)的2个位置和健常等位基因的位点B的1个位置发生切口,则细胞的胸苷激酶活 性以0.460±0.050%的比例恢复(图3,4A、样品#2)。如果改变电穿孔的条件,则该比例提高 到1.04±0.105%(图4B)。这些与在突变等位基因的位点A加入1个位置切口的情况(0.0502 ±0.0113%、图3,4A、样品#1)相比修正效率高。在突变等位基因、健常等位基因均在位点A 和位点B的2个位置发生切口的情况下,基因修正也以0.522±0.035%的比例进行(图3,4A、 样品#4)。

[0158] 接着,在样品#2和#7中,通过直接(direct)PCR扩增形成了集落的细胞中的TK1基因的第3内含子~第4内含子区域的DNA片段。直接PCR使用MightyAmp DNA Polymerase Ver.2(タカラバイオ)。作为引物使用[TCCTGAACAGTGGAAGAGTTTTTAG(序列号:31)] [AACTTACAAACTGCCCCTCGTC(序列号:32)]。PCR片段以[TGAACACTGAGCCTGCTT(序列号:33)] 作为引物利用Sanger测序法进行DNA序列分析。将编辑前的DNA测序结果示于图5A,将进行 了利用同源染色体之间重组的修正的细胞的DNA测序结果示于图5B,变成了核苷酸缺失的 DNA测序的例子示于图5C、D。突变等位基因被修正成野生型的细胞的比例在样品#2中为 100%(111克隆/111克隆)(表1)。

[0159] [实施例2]切口之间的距离对基因组编辑效率的影响的检验

[0160] A.材料

[0161] 本实施例中利用的载体在以下显示。 [0162] VN1:PX461 (Cas9D10A-P2A-GFP) -TSCER2 TK1 (ex4) 20s [0163] VN2:PX462 (Cas9D10A-P2A-PuroR) -TSCER2 TK1 (ex4) 20s [0164] VN3:PX462 (Cas9D10A-P2A-PuroR) -TSCER2 TK1 (ex4) -322s [0165] VN4:PX461 (Cas9D10A-P2A-GFP) - empty [0166] VN5:PX462 (Cas9D10A-P2A-PuroR) - empty [0167] VS1:PX462 (Cas9D10A-P2A-PuroR) -TSCER2 TK1-S1 [0168] VS2:PX462 (Cas9D10A-P2A-PuroR) -TSCER2 TK1-S2 [0169] VS3:PX462 (Cas9D10A-P2A-PuroR) -TSCER2_TK1-S3 [0170] VS4:PX462 (Cas9D10A-P2A-PuroR) -TSCER2 TK1-S4 [0171] VS5:PX462 (Cas9D10A-P2A-PuroR) -TSCER2 TK1-S5 [0172] VS6:PX462 (Cas9D10A-P2A-PuroR) -TSCER2_TK1-S6 [0173] VS7:PX462 (Cas9D10A-P2A-PuroR) -TSCER2 TK1-S7 [0174] VS8:PX462 (Cas9D10A-P2A-PuroR) -TSCER2_TK1-S8 [0175] VS9:PX462 (Cas9D10A-P2A-PuroR) -TSCER2 TK1-S9 [0176] VS10:PX462 (Cas9D10A-P2A-PuroR) -TSCER2 TK1-S10 [0177] VS11:PX462 (Cas9D10A-P2A-PuroR) -TSCER2 TK1-S11 [0178] VS12:PX462 (Cas9D10A-P2A-PuroR) -TSCER2 TK1-S12 [0179] 将上述载体如下组合而导入TSCER2细胞。 [0180] -322s/20s:VN1 (1.5µg) +VN2 (1.5µg) +VN3 (3.0µg) [0181] S1/20s:VN1 (1.5µg) +VN2 (1.5µg) +VS1 (3.0µg) [0182] S2/20s:VN1 (1.5µg) +VN2 (1.5µg) +VS2 (3.0µg) [0183] S3/20s:VN1 (1.5µg) +VN2 (1.5µg) +VS3 (3.0µg) [0184] S4/20s:VN1 (1.5µg) +VN2 (1.5µg) +VS4 (3.0µg) [0185] S5/20s:VN1 (1.5µg) +VN2 (1.5µg) +VS5 (3.0µg) [0186] S6/20s:VN1 (1.5µg) +VN2 (1.5µg) +VS6 (3.0µg) [0187] S7/20s:VN1 (1.5µg) +VN2 (1.5µg) +VS7 (3.0µg) [0188] S8/20s:VN1 (1.5µg) +VN2 (1.5µg) +VS8 (3.0µg) [0189] S9/20s:VN1 (1.5µg) +VN2 (1.5µg) +VS9 (3.0µg) [0190] S10/20s:VN1 (1.5µg) +VN2 (1.5µg) +VS10 (3.0µg) [0191] S11/20s:VN1 (1.5µg) +VN2 (1.5µg) +VS11 (3.0µg) [0192] S12/20s:VN1 (1.5µg) +VN2 (1.5µg) +VS12 (3.0µg) [0193] 20s/emp:VN1 (1.5µg) +VN2 (1.5µg) +VN5 (3.0µg) [0194] $emp/emp:VN4 (1.5\mu g) + VN5 (4.5\mu g)$ [0195]

[0195] 此外,将成为各载体来源的指导RNA (gRNA)的靶标的基因组上的位置示于图6。另外,将各样品中切口产生的位置示于图7。在各样品中,预计的切口之间的距离(图7中的位 点A与位点B之间的距离)和切割模式(参照图1A~H)如下。

[0196] -322s/20s:341nt、模式2(a)

[0197] S1/20s:8173nt、模式2(a)

[0198] S2/20s:5678nt、模式2(a)

[0199] S3/20s:3964nt、模式2(a) [0200] S4/20s:2369nt、模式2(a)

[0201] S5/20s:1367nt、模式2(a)

[0202] S6/20s:608nt、模式2(a)

[0203] S7/20s:136nt、模式4(b)

[0204] S8/20s:1004nt、模式4(b)

[0205] S9/20s:2353nt、模式4(b)

[0206] S10/20s:4041nt、模式4(b)

[0207] S11/20s:6333nt、模式4(b)

[0208] S12/20s:8612nt、模式4(b)、模式7(a)

[0209] 20s/emp.:切口仅在一个位置

[0210] emp./emp.:切口不产生

[0211] B.方法和结果

[0212] 将上述列表中所示的量的各质粒、与150×10⁴个TSCER2细胞在30µL的R buffer (Invitrogen Neon Transfection Kit)中混合,将其中的10µL以1300V 20ms 2次的条件通 过Neon Transfection System进行电穿孔电(穿孔条件2)。在10%马血清/RPMI1640培养基 中以37℃5%C02过夜培养,然后,使用FACSAriaII或FACSAriaIII分拣EGFP阳性细胞(成功 地转染了PX461载体的细胞))。分拣后的细胞在10%马血清/RPMI1640培养基中培养1天,然 后,在5%马血清/RPMI1640培养基中进行培养。自电穿孔起1-2周后,将细胞的一部分转移 到CHAT培养基(10µM 2-脱氧胞苷[Sigma]、200µM次黄嘌呤[Sigma]、100nM氨基蝶呤 [Sigma]、和17.5µM胸苷[Sigma]))中,在96孔板的每1孔中分注40、或100个细胞,继续培养。 另外,为了测定成斑效率,将5%马血清-RPMI1640培养基中的细胞在96孔板的每1孔中分注 1个细胞,进行培养。2-3周后,测定形成了集落的孔的比例。

[0213] 将结果示于图6。在Cas9切口酶不识别靶标基因的情况下,基因组编辑未发生(图6 和7的样品emp/emp)。如果使突变等位基因的作为修正对象的核苷酸附近(位点A)和远离的 位点(位点B)的2个位置和健常等位基因的位点B的1个位置发生切口,则细胞的胸苷激酶活 性以0.294±0.098%~2.82±0.010%的比例恢复(图6和7的样品-322s/20s、S1/20s、S2/ 20s、S3/20s、S4/20s、S5/20s、S6/20s、S7/20s、S8/20s、S9/20s、S10/20s、S11/20s、S12/ 20s),在全部样品中,都比仅在突变等位基因的作为修正对象的核苷酸附近(位点A)产生切 口的情况(图6和7的样品20s/emp:细胞的胸苷激酶活性以0.0916±0.0498%的比例恢复) 修正效率高。

[0214] 接着,在样品S3/20s和S12/20s中,通过直接(direct)PCR或以提取出的基因组DNA 作为模板的PCR,扩增形成了集落的细胞中的TK1基因的第3内含子~第4内含子区域的DNA 片段和第4内含子~第5内含子区域的DNA片段。基因组DNA提取使用カネカ简易DNA提取试剂盒Version 2(Kaneka)。直接PCR使用MightyAmp DNA Polymerase Ver.2(タカラバイオ)。以基因组DNA作为模板的PCR使用KOD plus neo(TOYOBO)。作为第3内含子~第4内含子区域用的引物使用[TCCTGAACAGTGGAAGAGTTTTTAG(序列号:31)][AACTTACAAACTGCCCCTCGTC(序列号:32)]。作为第4内含子~第5内含子区域用的引物使用[AGTTGTGGATGTACCTGTCGTCT

(序列号:34)][ATGCCCGGCTCTGTCCCTTT(序列号:35)]。第3内含子~第4内含子区域的PCR片段以[TGAACACTGAGCCTGCTT(序列号:33)]作为引物利用Sanger测序法进行DNA序列分析,第4内含子~第5内含子区域的PCR片段以[TAACCCTGTGGTGGCTGA(序列号:36)]作为引物利用Sanger测序法进行DNA序列分析。将第4内含子~第5内含子区域的编辑前的DNA测序结果示于图8(a),将通过同源染色体之间重组而两等位基因变成野生型的细胞中的DNA测序结果示于图8(b)。

[0215] 样品S3/20s、S12/20s均没有在第4外显子和第5外显子中确认到伴随基因组编辑的新的突变的发生。在样品S3/20s中,第4外显子98.9%被修正,第5外显子1.06%被修正。没有第4外显子、第5外显子均被修正的细胞。样品S12/20s中,第4外显子83.2%被修正,第5 外显子30.5%被修正。第4外显子、第5外显子均被修正的细胞为13.7%(表2)。在第5外显子 被修正的全部细胞中,第4内含子中存在的31核苷酸的插入突变也被修正。

[0216] 表2

[0217]		第4外显子被修正 第5外显子未修正	第4外显子未修正 第5外显子被修正	第4外显子被修正 第5外显子被修正	其他
	S3/20s	93/94 (98.9%)	1/94 (1.06%)	0/0 (0.0%)	0/0 (0.0%)
	S12/20s	66/95 (69.5%)	16/95 (16.8%)	13/95 (13.7%)	0/0 (0.0%)

[0218] 通过S12/20s那样的模式(模式7(a)),能够同时修正第4外显子的单核苷酸插入、 第4内含子的31核苷酸插入、第5外显子的单碱基置换和3个位置的突变。

[0219] [实施例3]追加的单链切割的导入对基因组编辑效率的影响的检验

[0220] A.材料

[0221] 本实施例中利用的载体在以下显示。本实施例中,将载体如下组合而导入TSCER2 细胞。

 $[0222] \qquad S3/20s/S8:VN1 (1.5\mu g) + VN2 (1.5\mu g) + VS3 (3.0\mu g) + VS8 (3.0\mu g)$

 $[0223] \qquad S3/20s/S11:VN1 (1.5\mu g) + VN2 (1.5\mu g) + VS3 (3.0\mu g) + VS11 (3.0\mu g)$

 $[0224] \qquad S6/20s/S8:VN1 (1.5\mu g) + VN2 (1.5\mu g) + VS6 (3.0\mu g) + VS8 (3.0\mu g)$

 $[0225] \qquad S6/20s/S11:VN1 (1.5\mu g) + VN2 (1.5\mu g) + VS6 (3.0\mu g) + VS11 (3.0\mu g)$

 $[0226] S3/20s/emp:VN1 (1.5\mu g) + VN2 (1.5\mu g) + VS3 (3.0\mu g) + VN5 (3.0\mu g)$

 $[0227] S6/20s/emp:VN1 (1.5\mu g) + VN2 (1.5\mu g) + VS6 (3.0\mu g) + VN5 (3.0\mu g)$

 $[0228] \quad 20s/S8/emp:VN1 (1.5\mu g) + VN2 (1.5\mu g) + VS8 (3.0\mu g) + VN5 (3.0\mu g)$

[0229] 20s/S11/emp:VN1 (1.5µg) +VN2 (1.5µg) +VS11 (3.0µg) +VN5 (3.0µg)

[0230] 20s/emp/emp:VN1 (1.5µg) +VN2 (1.5µg) +VN5 (6.0µg)

[0231] emp/emp:VN4 (1.5µg) +VN5 (7.5µg)

[0232] 此外,将作为各载体来源的指导RNA (gRNA)的靶标的基因组上的位置示于图9。另外,将各样品中切口产生的位置示于图10。各样品中的切割模式 (参照图1A~H) 如下。

[0233]	S3/20s/S8:模式5

[0234] S3/20s/S11:模式5 [0235] S6/20s/S8:模式5

[0236] S6/20s/S11:模式5

[0237] S3/20s/emp:模式2(a)

[0238] S6/20s/emp:模式2(a)

[0239] 20s/S8/emp:模式4(b)

[0240] 20s/S11/emp:模式4(b)

[0241] 20s/emp/emp:切口仅在一个位置

[0242] emp/emp:切口不产生

[0243] B.方法和结果

[0244] 将上述列表中所示的量的各质粒、与150×10⁴个TSCER2细胞在30µL的R buffer (Invitrogen Neon Transfection Kit)中混合,将其中的10µL以1300V 20ms 2次的条件通 过Neon Transfection System进行电穿孔电(穿孔条件2)。在10%马血清/RPMI1640培养基 中以37℃5%C02过夜培养,然后,使用FACSAriaII或FACSAriaIII分拣EGFP阳性细胞(成功 地转染了PX461载体的细胞))。分拣后的细胞在10%马血清/RPMI1640培养基中培养1天,然 后,在5%马血清/RPMI1640培养基中培养5天。自电穿孔起1-2周后,将细胞的一部分转移到 CHAT培养基(10µM 2-脱氧胞苷[Sigma]、200µM次黄嘌呤[Sigma]、100nM氨基蝶呤[Sigma]、 和17.5µM胸苷[Sigma]))中,在96孔板的每1孔中分注20、或200个细胞,继续培养。另外,为 了测定成斑效率,将5%马血清-RPMI1640培养基中的细胞在96孔板的每1孔中分注1个细 胞,进行培养。2-3周后,测定形成了集落的孔的比例。

[0245] 将结果示于图9。与在受者等位基因的2个位置、供者等位基因的1个位置产生切口的样品S3/20s/emp(2.68±0.37%)、样品20s/S8/emp(2.59±0.17%)相比,在受者等位基因的3个位置、供者等位基因的2个位置产生切口的样品S3/20s/S8中,是恢复胸苷激酶活性的细胞的比例为5.07±1.47%的高效率。显示样品S3/20s/S11中恢复胸苷激酶活性的细胞的比例也比样品S3/20s/emp和样品20s/S11/emp高,样品S6/20s/S8中恢复胸苷激酶活性的细胞的比例也比样品S6/20s/emp和样品20s/S8/emp高,另外,样品S6/20s/S11中恢复胸苷激酶活性的细胞的比例也比样品S6/20s/emp和样品20s/S8/emp高,另外,样品S6/20s/S11中恢复胸苷激酶活性的细胞

[0246] [实施例4]不利用外来性DNA的多切口法的基因组编辑效率的检验A.材料

[0247] 将以图11所示的区域(S3、20s、29s、S8)作为靶标的sgRNA或人基因组中不存在靶标序列的sgRNA(no)如下组合,与Cas9D10A mRNA一起导入TSCER2细胞。

[0248] S3/20s/S8:分别100µM各0.3µL

[0249] S3/29s/S8:分别100µM各0.3µL

[0250] S3/20s:分别100µM各0.45µL

[0251] 20s/S8:分别100µM各0.45µL

[0252] S3/S8:分别100µM各0.45µL

[0253] S3:100µM 0.9µL

[0254] 20s:100µM 0.9µL

[0255] 29s:100µM 0.9µL

[0256] S8:100µM 0.9µL

[0257] no:100µM 0.9µL

[0258] 另外,将各样品中切口产生的位置示于图12。各样品中的切割模式(参照图1A~H) 如下。

911 I`o

[0259] S3/20s/S8:模式5

[0260] S3/29s/S8:模式6

[0261] S3/20s:模式2(a)

[0262] 20s/S8:模式4(b)

[0263] S3/S8:模式1

[0264] S3:切口在供者等位基因的碱基和受者等位基因的对应碱基中各一处

[0265] 20s:切口仅为一处

[0266] 29s:切口在供者等位基因的碱基和受者等位基因的对应碱基各一处

[0267] S8:切口在供者等位基因的碱基和受者等位基因的对应碱基各一处

[0268] no:切口不产生

[0269] B.方法和结果

[0270] 在70×10⁴个TSCER2细胞中分别加入上述列表中所示的量各sgRNA、1.8µL的Cas9 mRNA(500ng/µL),加入R buffer(Invitrogen Neon Transfection Kit),使得总量为14µL。将其中的10µL以1500V 10ms 3次的条件通过Neon Transfection System进行电穿孔(电穿孔条件3)。在10%马血清/RPMI1640培养基中以37℃5%C02过夜培养,然后,在5%马血清/RPMI1640培养基中进行培养。自电穿孔起1周后,将细胞的一部分转移到CHAT培养基(10µM 2-脱氧胞苷[Sigma]、200µM次黄嘌呤[Sigma]、100nM氨基蝶呤[Sigma]、和17.5µM胸苷[Sigma]))中,在96孔板的每1孔中分注10、30、100或200个细胞,继续培养。另外,为了测定成斑效率,将5%马血清-RPMI1640培养基中的细胞在96孔板的每1孔中分注1个细胞,进行培养。2-3周后,测定形成了集落的孔的比例。

[0271] 将结果示于图11。在不使用一切外来性DNA、并且不进行利用细胞分选仪的细胞选择的条件下,在受者等位基因的3个位置、供者等位基因的2个位置产生切口的样品S3/20s/S8(图16模式5)中,胸苷激酶活性以3.46±0.34%的高效率恢复。在受者等位基因的3个位置、供者等位基因的3个位置产生切口的样品S3/29s/S8(图16模式6)中,也在2.64±0.58%的细胞中胸苷激酶活性恢复。另外,在切口在距离靶标核苷酸1000bp以上的位置的情况下,在受者等位基因的2个位置、供者等位基因的2个位置产生切口的样品S3/S8(图1A模式1)中胸苷激酶活性以1.54±0.40%恢复,与在受者等位基因的1个位置、供者等位基因的1个位置产生切口的样品S3(0.133±0.026%)、29s(0.844±0.305%)、S8(0.773±0.221%)、在受者等位基因的1个位置产生切口的样品S3(0.147±0.022%)相比,胸苷激酶活性以高效率恢复。

[0272] 产业可利用性

[0273] 如以上说明的那样,根据本发明,利用通过由位点特异性切口酶产生的单链切割 而被诱导的同源染色体之间的同源重组,能够将在同源染色体之间不同的碱基统一成任一 方的碱基。不使用外来的供者DNA的本发明由于其安全性高,因而能够特别大地贡献于对由 杂合突变引起的疾病的基因治疗。

[0274] 序列表自由文本 [0275] 序列号:15~36 [0276] •人工序列

序列表

	<110> 国立	立大学法人大	阪大学				
	<120> 经表	基因组编辑的:	细胞的制造方	法			
	<130> G20	190076					
	<150> JP	2018-215588					
	<151> 201	8-11-16					
	<160> 36						
	<170> Pat	entIn 版本:	3. 5				
	<210> 1						
	<211> 154	0					
	<212> DNA	L					
	〈213〉 人(Homo sapiens	5)				
	<400> 1						
	gtgtctcgct	gtgttaccca	ggctggtctc	gaactcctga	gttcaagtga	tcctcccgtc	60
	ttggcctccc	caaagattac	gggcatgagc	tgctgtgtct	ggccagaata	caggatttta	120
	aaaatttatg	g ttttgcaaca	taattaatat	aaagacaaat	ataacccagg	cccagttcta	180
	gttattcatt	cttctgaatt	ttaaaaggaa	acatttggct	ggcccctaat	ggtatcatgg	240
	gccctggtad	ctgatgaagt	tggcctagtc	tgccccagc	tcctgaacag	tggaagagtt	300
	tttagtctca	ı ttgagctttg	tactggacat	tactaatttc	taatccaaag	catcaagtga	360
	agtggcttgt	ataaataact	ggttttcctc	tgggaggcta	aggcgggtgg	atcacttaaa	420
[0001]	agttaggagt	ctgagaccag	cctggccaac	atggtgaaac	cccatgtctg	ctaaaaatac	480
[0001]	aaaaattago	tgggtgtgat	ggtgtgtgcc	agtagtccca	gctactcttg	tggctgaggt	540
	gggagaatcg	g cttgagaccc	ttgagaattg	ggaggtagag	attgcaggga	gccgagatgg	600
	cgccactgca	t ctccagcctg	ggtgacagag	caagactctg	tttcataaaa	aataaataaa	660
	taactggttt	tctggacgag	ggcctttccc	ataggtgcta	acttctcaaa	gcccggctgg	720
	gtgaacactg	g agcctgcttt	gcaggtagca	ggtggtcacg	acagtgccat	tccctggccc	780
	ctgcattgtg	g gcttctggcc	tccctggccc	tgctcacgct	ctggctttct	cttcccagga	840
	acaccatgga	ggcactgccc	gcctgcctgc	tccgagacgt	ggcccaggag	gccctgggcg	900
	tggctgtcat	aggcatcgac	gaggggcagt	ttgtaagttg	gcttgtcttg	gcatcactct	960
	tcctgccage	ttccgctctg	tcctcccgtt	ttccctcgct	gacttggaag	ttatctgatc	1020
	ttttagtaaa	ataacaaggt	taaatagcta	caactagtgt	tggaataccc	tctgaaggcc	1080
	cctttctagt	ttccctgtca	tagtgtcata	gtcttgtagg	attcgtttta	ctttttttt	1140
	tttttttt	g agacggagtt	ttgctcttgt	tgcccaggcc	ggagtacgat	ggcacaatct	1200
	caccgcaaad	tttgcttcct	gggttcaagc	aattctctcc	tgtctcagcc	tcccgagtag	1260
	ctgggattac	aggcatgcgc	caccacgccc	agctaatttt	atattttag	tagagatggg	1320
	gtttctccat	gttggtcaag	ctggtctcaa	actcccaacc	tcaggtgatc	cgccccgcct	1380
	tgaactccca	aagcgctggg	attacaggca	tgagctacca	cacctggcca	ttgtaccttt	1440
	ttaaaaatac	atatatctat	ttactggcaa	gatgcagtga	ctcacacctg	taatctcagc	1500
	ctgtgggagg	g ccaaggtgga	cagatcactt	gagcccagga			1540

<210> 2 <211> 1541

60

120 180

240

300

323

(212)DNA $\langle 213 \rangle$ 人(Homo sapiens) <400> 2 60 gtgteteget gtgttaccca ggetggtete gaacteetga gtteaagtga teeteegte 120 ttggcctccc caaagattac gggcatgagc tgctgtgtct ggccagaata caggattta aaaatttatg ttttgcaaca taattaatat aaagacaaat ataacccagg cccagttcta 180 240gttattcatt cttctgaatt ttaaaaggaa acatttggct ggcccctaat ggtatcatgg gccctggtac ctgatgaagt tggcctagtc tgccccagc tcctgaacag tggaagagtt 300 tttagtctca ttgagctttg tactggacat tactaatttc taatccaaag catcaagtga 360 420 agtggcttgt ataaataact ggttttcctc tgggaggcta aggcgggtgg atcacttaaa 480 agttaggagt ctgagaccag cctggccaac atggtgaaac cccatgtctg ctaaaaatac 540aaaaattagc tgggtgtgat ggtgtgtgcc agtagtccca gctactcttg tggctgaggt 600 gggagaatcg cttgagaccc ttgagaattg ggaggtagag attgcaggga gccgagatgg 660 cgccactgca ctccagcctg ggtgacagag caagactctg tttcataaaa aataaataaa 720 taactggttt tctggacgag ggcctttccc ataggtgcta acttctcaaa gcccggctgg 780 gtgaacactg agcctgcttt gcaggtagca ggtggtcacg acagtgccat tccctggccc 840 ctgcattgtg gcttctggcc tccctggccc tgctcacgct ctggctttct cttcccagga 900 acaccatgga ggcactgccc cgcctgcctg ctccgagacg tggcccagga ggccctgggc gtggctgtca taggcatcga cgaggggcag tttgtaagtt ggcttgtctt ggcatcactc 960 tteetgecag etteegetet gteeteegt ttteeetege tgaettggaa gttatetgat 1020 1080 cttttagtaa aataacaagg ttaaatagct acaactagtg ttggaatacc ctctgaaggc [0002] ccctttctag tttccctgtc atagtgtcat agtcttgtag gattcgtttt acttttttt 1140 1200 tttttttttt gagacggagt tttgctcttg ttgcccagge cggagtacga tggcacaate 1260 tcaccgcaaa ctttgcttcc tgggttcaag caattetete ctgtetcage cteecgagta 1320 gctgggatta caggcatgcg ccaccacgcc cagctaattt tatattttta gtagagatgg ggttteteca tgttggteaa getggtetea aacteecaac eteaggtgat eegeeegee 1380 1440 ttgaacteec aaagegetgg gattacagge atgagetace acacetggee attgtacett 1500 tttaaaaata catatatcta tttactggca agatgcagtg actcacacct gtaatctcag cctgtgggag gccaaggtgg acagatcact tgagcccagg a 1541

(210)3 (211)323 (212)DNA (213)人(Homo sapiens) <400> 3 tactgattct ccagctcctg cagggcacaa acatgaggct ccgtaagact ttccttctca acagagtgtg eccetecece tegeceatge eeggetgete etetetgeet tagaageeet cgccccagta tcccagggtc tccaagatgc cctcagatcc atggtctaga ggtataccag cgaccgctgt gcctttagcc agctggcagc cttaagggga gatgaggtcc cccaaacgaa ttcagttaat gccatcatgg gcaccactcc cacagcagtt acgaccaggg gaggccaggt ggcccggtgg ctcacgcctg taa

[0003]

<210> 4						
<211> 324						
<212> DNA						
<213> 人()	Homo sapiens	5)				
<400> 4	1	- /				
agccgagatc	atgccactgc	actccagcct	gggtgactga	gcgagactgt	gtctcaaaaa	60
aagaaggcat	gtatccaaat	cacaaggtta	aaagagataa	agcatgcgag	taaaataaag	120
caagccagtc	agtgtgggtt	gcttcttcct	cccagtgaag	gagctctttg	tcagaggtcc	180
ttggatctgt	ccaatctgta	cctggaaagg	ttattacctg	taggatcctt	acagccacac	240
ctggcacact	ctgtgatcac	taccaccatc	tttgttgcta	ttatttatga	tcatgattat	300
acaatgggtt	tcttttcttt	cttt				324
<210> 5						
<211> 324						
<212> DNA						
<213> 人(lomo sapiens	5)				
<400> 5						
ttcgcggggc	tggggtggag	ctccttcctc	ttctccgggg	accccttgtc	ccgtccctcc	60
cctccccttc	cctccctcc	cctccctcc	ccttcccttc	cctccccttc	ccttccccta	120
gaaggaccag	cacagcctcc	tacageteec	gcctggggtg	ctcctccctt	gaattcagtc	180
caggaggaag	tctctgccct	cttctgccca	ggccaagccc	ctcgtcctgt	gtggacgcca	240
ctccctcctg	gagctggtga	cagctgctta	cagettaget	gtcttcccca	ccaagtcctc	300
tgagaaggtg	gcaaccagtt	gtgt				324
<210> 6						
<211> 324						
<212> DNA						
〈213〉 人(日	lomo sapiens	5)				
<400> 6						
cctctctcct	cttgcagcac	agagttgatg	agacgcgtcc	gtcgcttcca	gattgctcag	60
tacaagtgcc	tggtgatcaa	gtatgccaaa	gacactcgct	acagcagcag	cttctgcaca	120
catgaccggt	cagtccctgc	cccctgcagt	cctgtccagt	ggaaaatcac	aaggcacagg	180
acacactgtt	aggactctct	ttaatgggga	tggttaatca	tttgaacatt	gaatgattca	240
aatcagcaca	ctttccaagg	tgcttggcaa	ggtagcgcac	actctccact	ccctgggctg	300
gagccagtgg	ttctccactg	aggg				324
<210> 7						
<211> 324						
<212> DNA						

- <213> 人(Homo sapiens)
- <400> 7

序列表

	gggaatttaa	ccgcacttcg	tgaccatgct	gtctgatgta	ggtcatttac	ttttccaaat	60
	ttgcttcctc	attcctaaga	tgcgatgtcc	acggcacagg	gtggtgttac	acctggtggg	120
	gacagggaaa	gcagaggagg	tcacttcgtt	ccagctgttg	gaagtacaac	ttctggagtc	180
	agtcagatcc	gggattaaat	atgagttctg	cccgtgtgtc	acaagtcatc	tctaacacgg	240
	gccacagagg	ccaaggctgg	gccagcagca	ttgatggctc	gagaggctgc	ccttgcaggg	300
	gccacagctg	gcctcccacc	tgcc				324
	<210> 8						
	<211> 325						
	<212> DNA						
	〈213〉 人(日	Homo sapiens	5)				
	<400> 8						
	ctggccagaa	tacaggattt	taaaaattta	tgttttgcaa	cataattaat	ataaagacaa	60
	atataaccca	ggcccagttc	tagttattca	ttcttctgaa	ttttaaaagg	aaacatttgg	120
	ctggccccta	atggtatcat	gggccctggt	acctgatgaa	gttggcctag	tctgccccca	180
	gctcctgaac	agtggaagag	tttttagtct	cattgagctt	tgtactggac	attactaatt	240
	tctaatccaa	agcatcaagt	gaagtggctt	gtataaataa	ctggttttcc	tctgggaggc	300
	taaggcgggt	ggatcactta	aaagt				325
	(210) 9						
[0004]	(210) 3						
	<212> DNA						
	<213> 人(F	Homo sapiens	3)				
	<400> 9	iomo bapion					
	accatggagg	cactgccccg	cctgcctgct	ccgagacgtg	gcccaggagg	ccctgggcgt	60
	ggctgtcata	ggcatcgacg	aggggcagtt	tgtaagttgg	cttgtcttgg	catcactctt	120
	cctgccagct	tccgctctgt	cctcccgttt	tccctcgctg	acttggaagt	tatctgatct	180
	tttagtaaaa	taacaaggtt	aaatagctac	aactagtgtt	ggaataccct	ctgaaggccc	240
	ctttctagtt	tccctgtcat	agtgtcatag	tcttgtagga	ttcgttttac	ttttttttt	300
	tttttttga	gacggagttt	tgct				324
	<210> 10						
	<211> 324						
	<212> DNA						
	〈213〉 人()	lomo sapiens	5)				
	<400> 10						0.0
	actccagccc	gggcgacaag	gccagaccct	gtctcaaaaa	aaaaaggggg	aggtggggag	100
	taatgtttgg	tttgcctcat	ggttcctttt	gcttgtttct	tatacgttta	ttttcttgtt	120
	gttgaagtac	ctttttagt	agtittigca	gccaggaggt	atagatggga	agetgecagt	180
	ctttgtatgg	aaatetttet	tttgtcatct	agtttaaget	gggcagcaag	aggtaggttg	240
	atcitgtgtg	ggtttgggtt	tttttttt	ttttgagacg	gagtettact	ctgtcgccca	300

[0005]

324 ggctggagtg caatggcgtg atct <210> 11 (211)324 <212> DNA <213> 人(Homo sapiens) <400> 11 60 tttgttagtt tatcacaaag aatgaaactg aaactctctc caaggggttt agcagacttg 120 acctcttagg tacttttagg gttgcctcga agtacacaat gtggtggttt gatataaaca taacaggaat ttatttctcg ctcacagacc ccctacgtgg ttccaggccg gttgatgggg 180 aggccgccca cgaggcggct taggtcgccc tggctggctg tatacagaca cggagggaa 240 300 gagacgtggc ggagcccctg ggtgtgaggt tttcatgggc ctgaccagaa gctgcaaacg 324 tcacttctgc tgatctttca aaga <210> 12 <211> 324 <212> DNA 人(Homo sapiens) (213)<400> 12 60 tacttgggag gctgaggcag gagaatcgct tgaacccggt aggcgaaggt tgcagtgagc 120 caagategee ceattgeact ceaageetgg geaacaacaa gageaaaact cagteteaaa 180 acaaaacaaa acaaaagaag ttcagggtct tcccattgca agcagttcta gatcgaggag 240 aggggtteet ageatgggae ceageagaag gaetgteett egeteettea ttgtetaegt ggacagtgga tgaagcccag ccgaacctgc cttgttcccg ttttctgggt cagcagggaa 300 324 agcettteac agagtageea eegt <210> 13 <211> 324 <212> DNA <213> 人(Homo sapiens) <400> 13 accttgctaa gccctcacgt ctcaataacc tcaaacctca gtacctgggc tgagaaagcc 60 120 tgagtggccc tgggagagag accctgcacc caaggacaag gacatccctg cttcacccaa 180 cccaaaggcc agtctggaca tatgaactca accagctaag agtgatatga ttgattgatg 240 agaatcacca gagcacttgc cagagtttca gcttctccct gggccaaagt gaagtttgct ttacacagta aatgtgctct gtgcaggtcc tgaatttaga aggctgtgct gtgtcatcct 300 324 gctctgtaaa tggccagtag gacc

<210> 14 <211> 324

[0006]

<21**0**> 18 <211> 23

<212>	DNA	
<213>	人(Homo sapiens)	
<400>	14	
ggtggca	acca accttgctgg gacttggatc ccagggggtt atctcttcaa gtgtggagag	60
ggcaggg	tee acgeetetge tgtagettat gaaattaact aattgaaaat teactggttg	120
gtggacg	cac atttctcttt cacctgggtt tccctgggtc tcatggacag ctccaacttg	180
atttggg	tgg ggattttctt ccagatettt ttttcttttg ttttgagaca gggtetetgt	240
cgcccag	get ggagtgcagt gacgcaatee etgeteactg cageetetge tteececagtt	300
gaagtga	atte tecceegtea geet	324
<210>	15	
<211>	23	
<212>	DNA	
<213>	人工序列	
<220>		
<223>	TSCER2_TK1(ex4)20s 的 crRNA	
<400>	15	
cgtctcg	gag caggcaggcg ggg	23
<210>	16	
<211>	23	
<212>	DNA	
<213>	人工序列	
<220>		
<223>	TSCER2_TK1(ex4)21s 的 crRNA	
<400>	16	
acgtctc	gga gcaggcaggc ggg	23
<210>	17	
<211>	23	
<212>	DNA	
<213>	人工序列	
<220>		
<223>	TSCER2_TK1(ex4)-322s 的 crRNA	
<400>	17	
cctcage	cac aagagtagct ggg	23

[0007]

<212>	DNA
<213>	人工序列
<220>	
<223>	TSCER2_TK1(ex4)29s 的 crRNA
<400>	18
cctggg	ccac gtctcggagc agg
<210>	19
<211>	23
<212>	DNA
<213>	人工序列
<220>	
<223>	TSCER2_TK1_S1 的 crRNA
<400>	19
acctct	agac catggatctg agg
(010)	20
<210>	20
<211>	23
<212>	
<213>	人上序列
<220>	
<223>	TSCER2_TK1_S2 BJ crRNA
<400>	20
ctgaca	aaga geteetteae tgg
(210)	21
(210)	23
(212)	DNA
<213>	人工序列
<220>	
<223>	TSCER2 TK1 S3 的 crRNA
<400>	21
attcaa	ggga ggagcacccc agg
<210>	22
<211>	23
<212>	DNA
<213>	人工序列
<220>	

<223> TSCER2_TK1_S4 的 crRNA

23

23

23

CN 11301	13799 A			0/
	<400>	22		
	cttgtg	attt tccactggac agg		23
	2910	0.0		
	(210)	20		
	(211)	ZO		
	(212)	DNA 人工 序列		
	(213/	八工厅列		
	<2207 (999)	TSCEDS TV1 S5 64 amDNA		
	(400)	130ER2_1R1_55 E9 CIRNA		
	(400/	20		93
	gaagti	gtat titeaacage igg		20
	<210>	24		
	<211>	23		
	<212>	DNA		
	<213>	人工序列		
	<220>			
	<223>	TSCER2_TK1_S6 的 crRNA	L	
[0000]	<400>	24		
[0008]	cagact	aggc caacttcatc agg		23
	(210)	25		
	(210)	23		
	(211)	DNA		
	(212)	人工序列		
	(220)	/(1/1/1		
	<223>	TSCER2 TK1 S7 的 crRNA		
	<400>	25	L	
	gataac	ettec aagteagega ggg		23
	<210>	26		
	(211)	23		
	(212)	DNA		
	<213>	人工序列		
	<220>	// /		

23

<223> TSCER2_TK1_S8 的 crRNA

agetteccat ctatacetec tgg

<400> 26

	<210>	27
	<211>	23
	<212>	DNA
	<213>	人工序列
	<220>	
	<223>	TSCER2_TK1_S9 的 crRNA
	<400>	27
	caaccg	gcct ggaaccacgt agg
	(01.0)	
	<210>	28
	<211>	23
	<212>	DNA
	<213>	人工序列
	<220>	TOOPDO THE GLO the DVI
	<223>	TSCER2_TK1_S10 F9 crRNA
	<400>	28
	gatcta	gaac tgcttgcaat ggg
	<210>	29
[0000]	<211>	23
[0009]	<212>	DNA
	<213>	人工序列
	<220>	
	<223>	TSCER2_TK1_S11 的 crRNA
	<400>	29
	tcaatc	atat cactettage tgg
	(910)	20
	(210)	93
	(211)	DNA
	(213)	人工序列
	<220>	
	<223>	TSCER2 TK1 S12 的 crRNA
	<400>	30
	ggagct	gtcc atgagaccca ggg
	<210>	31
	<211>	25
	$\langle 212 \rangle$	DNA
	(213)	人工序列

<220>

23

23

23

[0010]

<223>	引物序列	
<400>	31	
tcctgaa	acag tggaagagtt tttag	25
<210>	32	
<211>	22	
<212>	DNA	
<213>	人工序列	
<220>		
<223>	引物序列	
<400>	32	
aactta	caaa ctgcccctcg tc	22
1010		
<210>	33	
<211>	18	
<212>	DNA	
<213>	人工序列	
<220>		
<223>	引物序列	
<400>	33	
tgaaca	etga geetgett	18
(01.0)		
<210>	34	
<211>	23	
<212>		
(213)	入上序列	
(220)	리바르지	
<223>	引物序列 	
<400>	34	0.0
agttgt	ggat gtacetgteg tet	23
(910)	25	
<pre><2102</pre>	20 20	
(2112)		
(212)	UNA 人工序列	
(213)	八上厅列	
<220>	卫生合对	
<223>	51物序列	

<400> 35

atgcccggct ctgtcccttt

	<210>	36
	<211>	18
	<212>	DNA
[0044]	<213>	人工序列
[0011]	<220>	
	<223>	引物序列
	<400>	36
	taaccc	tgtg gtggctga

CN 113015799 A

模式1

图1A

图1B

图1D

图1E

图1F

图1G

图1H

(序列号 :1)
${\tt gtgtctcgctgttgttacccaggctggtctcgaactcctgagttccagtgatcctcccgtcttggcctcc}$
${\tt ccaaagattacgggcatgagctgctgtgtctggccagaatacaggattttaaaaatttattatgttttgcaa$
cataattaataaagacaaatataacccaggcccagttctagttattcattc
${\tt gaaacatttggctggcccctaatggtatcatgggccctggtacctgatgaagttggcctagtctgcccc}$
${\tt cagctcctgaacagtggaagagttttttagtctcattgagctttgtactggacattactaatttctaatc$
${\tt caaagcatcaagtgaagtggcttgtataaataactggttttcctctgggaggctaaggcgggtggatca}$
${\tt cttaaaagttaggagtctgagaccagcctggccgac}$ atggtgaaaccccatgtctgctaaaaatacaaa
a attagctgggtgtgtgatggtgtgtgccagtagt ccc agctacttactcttgtggctggggggggagaatcgct
tgagacccttgagaattgggaggtagagattgcagggagccgagatggcgccactgcactccagcctgg
${\tt gtgacagagcaagactctgtttcataaaaaataaataaat$
$\verb ataggtgctaacttctcaaagcccggctgggtgaacactgagcctgctttgcaggtagcaggtggtcac$
${\tt gacagtgccattccctggcccctgcattgtggcttctggcctccctggccctgctcacgctctggcttt$
ctcttcccagGAACACCATGGAGGCACTGCCCGCCTGCCTGCTCCGAGACGTGGCCCAGGAGGCCCTGG
GCGTGGCTGTCATAGGCATCGACGAGGGGGCAGTTTgtaagttggcttgtcttggcatcactcttcctgc
cagcttccgctctgtcctcccgttttccctcgctgacttggaagttatctgatctttagtaaaataac
$\tt a a g g t t a a a t a g c t a c a a c t a g t g t t g g a a t a c c c t c t g a a g g c c c c t t t c t a g t t t c c c t g t c a t a g t$
${\tt gtcatagtcttgtaggattcgttttactttttttttttt$
${\tt ccaggccggagtacgatgcacaatctcaccgcaaactttgcttcctgggttcaagcaattctcctgg$
${\tt tctcagcctcccgagtagctgggattacaggcatgcgccaccaccgcccagctaattttatattttagt$
$\verb agagatggggtttcccatgttggtcaagctggtctcaaactcccaacctcaggtgatccgccccgcct$
tgaactcccaaagcgctgggattacaggcatgagctaccaccacctggccattgtacctttttaaaaata
${\tt catatatctatttact} ggcaagatgcagtgactcaccacctgtaatctcagcctgtgggggggg$
gacagatcacttgagcccagga

图2A

(序列号:2)
gtgtctcgctgtgttacccaggctggtctcgaactcctgagttcaagtgatcctcccgtcttggcctcc
ccaa a gatta cggg catgag ctg ctg tctgg ccag a ata cagga tt tt a a a a a tt tt tt construct tt c caa a construct tt construct the construction of
cataattaataaagacaaatataacccaggcccagttctagttattcattc
gaaacatttggctggcccctaatggtatcatgggccctggtacctgatgaagttggcctagtctgcccc
cagctcctgaacagtggaagagttttttagtctcattgagctttgtactggacattactaattactaatc
${\tt caaagcatcaagtgaagtggcttgtataaataactggttttcctctgggaggctaaggcgggtggatcaaggcgggtggatcaaggcgggtggatcaaggcgggtggatcaaggcgggtggatcaaggcgggtggatcaaggcgggtggatcaaggcgggtggatcaaggcgggtggatcaaggcgggtggatcaaggcgggtggatcaaggcgggtggatcaaggcgggtggatcaaggcgggtgggt$
cttaaaagttaggagtctgagaccagcctggcc <u>aac</u> atggtgaaaccccatgtctgctaaaaatacaaa
$\verb aattagctgggtgtgtgtgtgtgtgtgtgccagtagtbcccestcctcttgtggctgggtgggggggggggggggggg$
tgagacccttgagaattgggaggtagagattgcagggagccgagattggcgccactgcactccagcctgg
$\tt gtgacagagcaagactctgtttcataaaaaaaaaaaaaa$
ataggtgctaacttctcaaagcccggctgggtgaacactgagcctgctttgcaggtagcaggtggtcac
gacagtgccattccctggcccctgcattgtggcttctggcctccctggccctgctcacgctctggcttt
ctcttcccagGAACACCATGGAGGCACTGCCCGGCCTGCCTGCTCCGAGACGTGGCCCAGGAGGCCCTG
GGCGTGGCTGTCATAGGCATCGACGAGGGGCAGTTTgtaagttggcttgtcttggcatcactctcctg
ccagcttccgctctgtcctcccgttttccctcgctgacttggaagttatctgatctttagtaaaataa
caaggttaaatagctacaactagtgttggaataccctctgaaggcccctttctagtttccctgtcatag
tgtcatagtcttgtaggattcgttttacttttttttttt
$\verb cccaggccggagtacgatggcacaatctcaccgcaaactttgcttcctgggttcaagcaattctcctctctct$
${\tt gtctcagcctcccgagtagctgggattacaggcatgcgccaccaccacgcccagctaattttatattttag}$
tagagatgggggtttctccatgttggtcaagctggtctcaaactcccaacctcaggtgatccgccccgcc
${\tt ttgaactcccaaagcgctgggattacaggcatgagctaccacacctggccattgtaccttttaaaaat$
$\verb acatatatctatttactggcaagatgcagtgactcaccctgtaatctcagcctgtgggggggg$
ggacagatcacttgagcccagga

图2B

 S1(序列号:3) TACTGAITTCTCCAGCTCCTGCAGGGGCACAACATGAGGCTCCGTAAGAC TTTCCTTCTCCAGCTCCTCCCAGGGCCCCCGCCATGCCCGGCTGC TTTCCTTCTCCTCCAGGGTGTGTGCCCCCCCCCGCCAGGGCTCCCAAGA TCCTCTCTGCCTTAGAGCCCTCGCCCCCCCCCGGGGGGGG
S 2 (序列号: 4) AGCCGAGATCATGCCACTGCACTCCAGCCTGGGTGAGGGTGAGGTGCGGGGTCACAGGATCATGCCAGGGGTGAGGGTTAAAGGAGGCATGTATCCAAATCACAGGGTTGGGGTTGGGGTTGGGGTTGGGGTTGGGGTTGGGGTTGGGG

图2C

S3 (序列号:5)	
ttegeggggggggggggggggggggggggggggggggg	
ccct ccct ccct tccct tccct tccct tccct tccct a gaaggac cag gac cag cct cct a cag ctcccg cct g gac cag cct cct a cag ctcccg cct g gac cag cct cct cct cct cct cct cct cct cct cc	
$\underline{gggtgetcetccttgaat} \\ tcagtccaggaggaagtetctgccctcttctgcccaggccaagccctcgtcctgt$	
gtggacgccactccctcctggagctggtgacagctgcttacagcttagctgtcttccccaccaagtcctctgag	
aaggtggcaaccagttgtgt	
S 4 (序列号:6)	
cetetetetetgeagCACAGAGTTGATGAGACGCGTCCGTCGCTTCCAGATTG	
CTCAGTACAAGTGCCTGGTGATCAAGTATGCCAAAGACACTCGCTACAG	
CAGCAGCTTCTGCACACATGACCGgtcagtccctgcccccgcagtcctgccgtggaaa	
$\underline{atcacaag} ccaagg cacagg accact g ttagg act ct ct ttaat gg gg at gg ttaat cat tt gaacatt gaat gat ttagg at gg ttagg at gg ttagg accatt gaat gat gat ttagg gat gg ttagg at gg ttagg accatt gaat gat ttagg at gg ttagg at gg ttagg accatt gat gat gat ttagg at gg ttagg at gg ttagg accatt gat gat gat ttagg at gg ttagg at gg ttagg accatt gat gat gat gat gg ttagg at gg ttagg accatt gat gat gat gat gat gat gg ttagg accat gat gat gat gat gg ttagg accatt gat gat gat gg ttagg accatt gat gat gg ttagg at gg ttagg accatt gat gat gat gat gg ttagg accatt gat gat gat gat gat gat gat gat gg ttagg accatt gat gat gat gat gat gg ttagg accatt gat gat gat gat gat gat gat gat gat $	
caa a t cag ca a cattic caa g g t g c t t g g caa g g t a g c g ca a c c c c c c c c g g g c t g g g c c g g g c t g g g c t g g g c c g g g g	
tetecaetgaggg	

CN 113015799 A

图2D

S 5 (序列号:7)	
${\tt ggg}$ a at the accelerate the transformation of trans	
a a gatgegatgeceaeggeae aggetgetget acceetegetgggggg accaggga a ageaggagg aggeggesette gtt <u>ecagetsttggaagta caactte</u> tggagteagteagteagateegggattaaatatgagttetgeeegtgtgte	
acaagtcatctctaacacgggccacagggccaaggctgggccagcagcattgatggctcgagaggctgcc	
${\it cttgcaggggccacagctggcctcccacctgcc}$	
S 6 (序列号: 8)	
ctggccagaatacaggattttaaaaatttatgttttgcaacataattaat	
cccagttctagttattcattcttctgaattttaaaaggaaacatttggctggc	
$\operatorname{ggta}\operatorname{cct} \operatorname{gat}\operatorname{gat}\operatorname{gat}\operatorname{gat}\operatorname{gat}\operatorname{cta}\operatorname{gcccc}\operatorname{gat}\operatorname{cct}\operatorname{gaa}\operatorname{ca}\operatorname{gaaa}\operatorname{gaa}\operatorname{gaa}\operatorname{gaa}\operatorname{gaa}\operatorname{gaa}\operatorname{gaa}\operatorname{gaa}\operatorname{gaa}\operatorname{gaa}\operatorname{gaa}\operatorname{gaa}\operatorname{gaaa}\operatorname{gaaa}\operatorname{gaaa}\operatorname{gaaa}\operatorname{gaaa}\operatorname{gaaa}\operatorname{gaaa}\operatorname{gaaa}\operatorname{gaaaaa}\operatorname{gaaa}gaaaaaaaaaa$	
${\it gtactggacattactaattctaatccaaagcatcaagtgaagtgggcttgtataaataa$	
${\tt gaggctaaggcgggtggatcacttaaaagt}$	

图2E

S 7 (序列号: 9) ACCATGGAGGCACTGCCCGGCCTGCCTGCTCCGAGACGTGGCCCAGGA GGCCCTGGGCGTGGCTGCTCGCCGCGCGAGGGGGCAGTTTTgtaagttg gGCCCTGGGCGTGGCTGTCATAGGCATCGACGAGGGGGGGG
S 8 (序列号: 10) actocageceggegagaggeggggggggggggggggggggggg

CN 113015799 A

14/28 页

图2F

59(底刷号・11)
tttgttagtttatcacaaagaatgaaactgaaactgcaagggggtttagcagacttgacctcttaggtact
ttt agggtt gcctcg ag ta ca ca at gtggtggtt gg ttt ga ta ta a a ca ta a ca gg a at tta ttt ctcgctca ca gg ttt gg ttg gg tg gg tgg tg gg tg gg tg gg tg gg tg gg tg gg tg
$accccct \underline{acgtggttccaggccggttg}$ $atgggggggggggggggccgcccacgaggcggcttaggtcgccctggctgg$
tatacaga cacga agga ga
ctgcaaacgtcacttctgctgatctttcaaaga
S10 (序列号:12)
tacttgggaggctgaggcaggaggaggaggaggcggaggcgaaggttgcagtgggccaagatcgccc
cattge acte construction and construct a set of the s
$tcagggtctt {\color{black} ccc} attgcaagcagttctagatcgaggagggggggggttcctagcatggggacccagcaggagggag$
ctgtccttcgctccttcattgtctacgtggacagtggatgaagcccagccgaacctgccttgttcccgttttctgg
${\it gtcagcagggaaagcctttcacagagtagccaccgt}$

冬

说

图2G

S11 (序列号:13)	
accttgctaagccctcacgtctcaataacctcaaacctcagtacctgggctgagaaagcctgagtggccctgg	
gagagagaccetgcacceaaggacaaggacatccetgcttcacccaaacceaaaggccagtctggacatatg	
$aact caa \underline{c} c caa \underline{g} c t a \underline{a} \underline{g} \underline{d} \underline{f} \underline{g} \underline{d} t \underline{f} \underline{g} \underline{d} t \underline{f} \underline{g} \underline{d} t \underline{f} \underline{g} \underline{g} a \underline{f} \underline{g} \underline{g} a \underline{f} \underline{g} \underline{g} \underline{g} \underline{g} \underline{g} \underline{g} \underline{g} g$	
cctgggccaaagtgaagtttgctttacacagtaaatgtgctctgtgcaggtcctgaatttagaaggctgtgct	
${f gtgtcatcctgctcat}$	
S12 (序列号:14)	
GGTGGCACCAACCTTGCTGGGACTTGGATCCCAGGGGCTTATCTCTTCA	
AGTGTGGAGAGGGCAGGGTCCACGCCTCTGCTGTAGCTTATGAAATTAA	
$CTAATTgaaaattcactggttggtggacgcacatttctctttcacctgggttt\ ccc\ tgggtctcatggacgacgcacg\ the second sec$	
$\underline{ctcc}aacttgatttgggtgggggattttcttccagatctttttttt$	
gctggagtgcagtgcagtgacgcaatccctgctcactgcagcctctgcttccccagttgaagtgattctcccccgtcagc	
ct	

明书附

冬

说

47

图2H

图2I

说

明

书

附

冬

图3

图4A

图4B

	TGCCCCGCCTGCTGCTCCGAGACGTGGCCCAGGAGGCCC TGCCCGCCTGCTGCTCCGAGACGTGGCCCCAGGAGGCCC
A. 编辑前	MULLANAMANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	с тесссясстесстестсседедсетседесссдедессс тесссесстесстестсседедсетседесссо
B. 由同源染色体 之间的重组产生 的基因修正	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
	с тесссес ^И тесстестсседедсетессаебаебссс тесссесстестсседедсетессаебаебссс
C. 由得失位产生的 单核苷酸除去 (1)	M.N. A.N. M.N. N.N. A. N. M.
D. 由得失位产生的 单核苷酸除去(2)	

图5

图6

53

LEI '

113013799 A	98 <u>33</u> 15		23/26 页
S1/20s, S2/20s, S3/20s, S4/20s, S5/20s, S6/20s, -322s/20s	.B S7/20s, S8/20s, S9/20s, S10/20s, S11/20s, S12/20s	20s/emp	emp/emp
	位, (b) 位, 位, (b)	(c) (c)	(p)
	图7		

降前(红色字母为突变部分)从下渉向上渉測序 CATGGCCTCGTAGAACTCCACGATGTCAGGGAACtggaaagggcacgtggagaaagggtggggagaaggtgggggagaaggtgggggagaaggttcca CATGGCCTCGCAGAACTCCACGATGTCAGGGAActggaaagggcacgtgggggaaggaaggtgggggaggaaggtgggggaggaaggtgggggagga	cagcagctccctggagccccagcgaagacgctgccagatcttgagagtaatggatctg cagcagctccctggaggcccggagggagggagggagggag	等位基因被修正为野生型的例子 CATGGCCTCGCAGAACTCCACGATGTCAGGGAACtggaaagggcacgtgggagaaagggtggggggggggggg	cagcagctccctggagccccagcgaagacgctgccagatctgacaactccggccatttggcccggagtaactc cagcagctccctggagccccagcgaagacgctgccagatctgacaactccggccatttggcccggagtaactc MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
(a)编辑前(红 GTTGGCCATGGCC GTTGGCCATGGCC GTTGGCCATGGCC	ccccagcagcagc	(a) 两等位基因 GTTGGCCATGGCCT GTTGGCCATGGCCT GTTGGCCATGGCCT	ccccagcagcagc ccccagcagcagc

55

图8

图9

说

明

书

附

冬

图10

图11

