(51) M_ПK **E21B** 36/00 (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ

(21)(22) Заявка: 2011119086/03, 09.10.2009

Приоритет(ы):

(30) Конвенционный приоритет:

13.10.2008 US 61/104,974 10.04.2009 US 61/168,498

- (43) Дата публикации заявки: 20.11.2012 Бюл. № 32
- (85) Дата начала рассмотрения заявки РСТ на национальной фазе: 13.05.2011
- (86) Заявка РСТ: US 2009/060097 (09.10.2009)
- (87) Публикация заявки РСТ: WO 2010/045101 (22.04.2010)

Адрес для переписки:

109012, Москва, ул. Ильинка, 5/2, ООО "Союзпатент", Ю.Б.Перегудовой

(71) Заявитель(и):

ШЕЛЛ ИНТЕРНЭШНЛ РИСЕРЧ МААТСХАППИЙ Б.В. (NL)

ဖ

 ∞

(72) Автор(ы):

НГУЙЭН Скотт Винх (US), ВИНИГАР Харолд Дж. (US)

(54) ИСПОЛЬЗОВАНИЕ САМОРЕГУЛИРУЮЩИХСЯ ЯДЕРНЫХ РЕАКТОРОВ ПРИ ОБРАБОТКЕ ПОДЗЕМНОГО ПЛАСТА

(57) Формула изобретения

1. Система тепловой обработки внутри пласта для добычи углеводородов из подземного пласта, содержащая:

множество стволов скважин в пласте;

по меньшей мере один нагреватель, расположенный по меньшей мере в двух стволах скважин; и

саморегулирующийся ядерный реактор, выполненный с возможностью обеспечения энергией по меньшей мере одного из нагревателей для увеличения температуры пласта до температуры, позволяющей осуществлять добычу углеводорода из пласта;

при этом саморегулирующийся ядерный реактор выполнен с возможностью регулирования его температуры путем регулировки давления водорода, подаваемого в саморегулирующийся ядерный реактор, причем указанное давление регулируется на основе пластовых условий.

- 2. Система по п.1, в которой саморегулирующийся ядерный реактор содержит активную зону, причем активная зона содержит порошкообразный гидрид делящегося
- 3. Система по п.1, в которой саморегулирующийся ядерный реактор выполнен с возможностью понижения температуры при введении поглощающего нейтроны

 ∞ 0

0

2

4

9

материала.

4

2 0

- 4. Система по п.1, в которой саморегулирующийся ядерный реактор выполнен с возможностью понижения температуры при введении поглощающего нейтроны газа.
- 5. Система по п.1, в которой температура саморегулирующегося ядерного реактора составляет примерно от 500° C до примерно 650° C.
- 6. Система по п.1, в которой саморегулирующийся ядерный реактор расположен под землей в пласте.
- 7. Система по п.1, в которой саморегулирующийся ядерный реактор расположен под землей в пласте ниже покрывающего слоя.
- 8. Система по п.1, в которой энергия, обеспечиваемая саморегулирующимся ядерным реактором, составляет энергию теплообменной среды, циркулирующей с помощью системы циркуляции по меньшей мере через один нагреватель.
 - 9. Система по п.8, в которой теплообменная среда является солевым расплавом.
- 10. Система по п.8, в которой по меньшей мере часть теплообменной среды циркулирует непосредственно через саморегулирующийся ядерный реактор.
- 11. Способ добычи углеводородов из подземного пласта, характеризующийся тем, что используют систему по любому из пп.1-10.

U 2011119086 A