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(57) Abstract: Systems and methods are disclosed for monitoring anatomic position of a human subject for a radiotherapy treatment
session, and optionally modifying a radiotherapy treatment based on anatomic position changes. Example operations for movement
monitoring and therapy control include: obtaining 3D image data for a subject, which provides a reference volume and at least one
defined region of interest; obtaining real-time 2D image data corresponding to the subject, captured during the radiotherapy treatment
session; extracting features from the 2D image data; producing a relative motion estimation of a region of interest with a machine
learning regression model, the model trained to estimate a spatial transformation from the 2D image data based on training from the
reference volume; and controlling a radiotherapy beam of a. radiotherapy machine used in the radiotherapy session, based on the relative
motion estimation.
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REAL-TIME ANATOMIC POSITION MONITORING FOR
RADIOTHERAPY TREATMENT

PRIORITY CLAIM

{0061} This application claims the benefit of priority to: United States
Patent Application No. 17/302,254, filed April 28, 2021, and titled “REAL-TIME
5 ANATOMIC POSITION MONITORING IN RADIOTHERAPY USING
MACHINE LEARNING REGRESSION”; and United States Patent Application
No. 17/302,254, tiled April 28, 2021, and uded “REAL-TIME ANATOMIC
POSITION  MONITORING FOR  RADIOTHERAPY TREATMENT
CONTROL; each of which is incorporated herein by reference in its entirety.
10
TECHNICAL FIELD

0082} Embodiments of the present disclosure pertain generally to medical
image and artificial intelligence processing techniques used in connection with a

radiation therapy planning and ireatment system. In particular, the present

o
L

disclosure pertains to using machine learning technologies to estimate anatomic
position and movement of a human subject during a radiation therapy session, and
provide a control of a radiotherapy machine based on such estirmnated position and

movement.
BACKGROUND

20 00683} Radiation therapy (or “radiotherapy”) can be used to treat cancers
or other ailments v mammalian {e.g., human and animal} tissue. Une such
radiotherapy technique is provided using a Gamma Knife, by which a patient is
irradiated by a large mumber of low-intensity gamma rays that converge with high
intensity and high precision at a target {e.g., a tumor). Another such radiotherapy

25 technique is provided using a hinear accelerator (LINAC), whereby a tumor i3
irradiated by high-energy particles {e.g., electrons, protons, ions, high-energy
photons, and the like}. The placement and dose of the radiation beam must be

accurately controlled to ensure the tumor receives the prescribed radiation, and
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the placement of the beam should be such as to minimize damage to the
surrounding healthy tissue, often called the organ(s) at risk (QGARs).
(6044} in radiotherapy, treatment planning is typically performed based
on medical images of a patient and requires the delineation of target volumes and
5 normal critical organs in the medical images. One challenge occurs with
accurately tracking the various objects, such as a tumor, healthy tissue, or other
aspects of patient anatormny when the patient 1s moving {e.g., breathing}. This
challenge arises because full three-dirnensional patient motion occurring during
radictherapy treatment cannot be directly measured in real-time with current

10 imaging hardware. On both conventional LINAC and MR-LINAC systems, the
scan time for acquiring volumetric 3D images (e g, 3D CBCT or 3D MRI images)
is too long to capture respiratory motion of a human subject with sufficient
temporal resolution, even with recent advances in artificial intelligence (Al
processing and compressed sensing.

15 [0085] Some tmaging technigues have been developed to estimate the
relative motion of an object contained in a specified region of interest, 1.e. relative
to a reference volume, which contains auxiliary information such as contoured
regions of interest or the dose plan. For instance, the underlying 3D patient motion
may be estimated {inferred) from instantaneous partial measurements, using from

20 2D images acquired in real-time. Some of these estimation techniques use 2D kV
projections or 2D MRI slices to determine an estimate of movement in two-
dimensional planes, but are limited because 2D images are not able to fully track
the movement of the various objects in three dimensions.

{0086} Other motion estimation techniques used with radiotherapy rely on

25 detecting surface information that is indicative of patient movement, such as with
sensors that are placed directly on a patient, or by tracking markers on a vest or a
box affixed to the patient. However, these techniques assume that the surface
information 1s correlated fo internal patient state, which often 15 not accurate. As
a result, some anatomic position monitoring and motion estimates may be

30  incomplete or incorrect.

[\
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OVERVIEW

{0087} In some embodiments, methods, systems, and computer-readable
mediums are provided for monitoring anatomic position and movement of a
human subject during a radiotherapy treatment session, and adapting a
5  radictherapy treatment based on such position and movement. For instance, a
radiotherapy treatment performed by a radiotherapy machine may be adapted or
modified, using a relative motion estimation of a region of interest. Adapting or
modifying the radiotherapy treatment may include one or more of: providing a
command to control a radiotherapy beam that is being provided or is planned 1o
10 be provided by the radiotherapy machine; changing a position of a radiotherapy
beam from the radiotherapy machine, based on the relative motion estimation;
changing a shape of a radiotherapy beam from the radiotherapy machine, based
on the relative motion estimation; gating a radiotherapy beam (e.g., stopping an
output of the radiotherapy beam, or starting an output of the radiotherapy beam),
15 based on the relative motion estimation. Other variations or operations for
radiotherapy treatment control may also be triggered or affected by the resulting

rmotion estimation.
{0088} In various examples, operations for moniforing anatomic position
include: obtaining three-dimensional image data corresponding to the subject, the
20 three-dimensional image data including: a reference volume that represents the
patient anatomy in three dimensions, and at least one region of interest defined
within the three dimensions; obtaining two-dimensional image data corresponding
to the subject, the two-dimensional image data captured during the radiotherapy
ireatment session, and the two-dirnensional image data capturing at least a portion
25  of'the region of interest; extracting features from the two-dimensional image data;
providing the extracted features as input {o a machine learning regression model,
the machine learning regression model trained to estimate a spatial transformation
in the three dimensions of the reference volume from features extracted from two-
dimensional image data; and obtaining, from ocutput of the machine learning
30 regression model, a relative motion estimation of the at least one region of interest,
with the relative motion estimation indicating motion of the at least one region of

interest relative to the reference volume, as estimated from the extracted features.
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[0009] In further examples, the two-dimensional image data (eg.,
captured in real time} comprises a first two-dimensional image captured at a first
orientation and a second two-dimensional image captured at a second orientation.
For instance, the first two-dimensional timage is captured from a first plane, and
5  the second two-dimensional image is captured from a second plane that is
orthogonal to the first plane. Also, the first two-dimensional image may be
captured at a first time during the radiotherapy treatment session and the second
two-dimensional image may be captured at a second time during the radiotherapy
treatment session. For instance, the second time may occur within 300
10 milliseconds after the first time.
{0610} Alse in further examples, features extracted from the two-
dimenstonal image data include a first set of features extracted from the first two-
dimensional image and a second set of features extracted from the second two-
dimensional image. The first set of features and the second set of features may be
15 combined into a mulii-dimensional feature vector, and the machine learmning
regression model 1s trained to process the multi-dimensional feature vector as
input. Further, the extracting of the first set of features and the second set of
features may include extracting respective features within the at teast one region
of interest. Additionally, the extracting of the respective features within the at least
20 oneregion of interest may include performing deformable image registration, and
performing dimensionality reduction techniques.
{0011 Also in further examples, the three-dimensional image data is
captured prior to the radiotherapy treatment session, and the three-dimensional
image data cornprises a three-dimensional maguetic resonance (MR volume or a
25  three-dimensional computed tomography (CT) volume. Additionally, the first and
second two-dimensional images may be kilovoltage (V) x-ray projection images,
and extracting the first set of features and the second set of features comprises
extracting fiducial positions from the respective kY x-ray projection images. With
either of these examples, a training process may include training the machine
30 learning regression model prior to the radictherapy treatment session, with the
training further including fitting the regression model with a mapping identified

between pairs of image transformation parameters and corresponding multi-
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orientation features {e.g., extracted from the volumes captured prior to the
radiotherapy treatment session}.
{8012} in a specific example, the two-dimensional image data includes
maguoetic resonance (MR) imaging data, as the reference volume 18 acquired with
5 a first MR pulse acquisition sequence and the two-dimensional tmage data is
acquired with a second MR pulse acquisition sequence. For instance, use of
multiple 1maging contrasis may include capturing an intermediate three-
dimensional reference volume using the second MR pulse acquisition sequence,
prior 1o the radiotherapy treatment sesstion; and performing a regisiration of the

10 intermediate three-dimensional reference volume to the reference volume; the
relevant training of the machine learning regression model includes use of this
registration, and analysis of the extracted features includes use this registration. In
another example, use of multiple imaging contrasts includes obtaining image
templates from additional two-dimensional image data corresponding to the

15 subiject, the additional two-dimensional image data obtaived using the second MR
pulse acquisition sequence prior to the radiotherapy treatment session; performing
a registration of the image templates to the reference volume, to determine an
offset between the image templates and the reference volume; and modifying the
three-dimensional image data based on the offset, such that the machine learning

20 regression model is trained to use regression with the modified three-dimensional
image data. Then, extracting features from the two-dimensional image data may
include use of the image templates as registration targets for feature extraction;
further, the relative motion estimation of the at least one region of interest may
include use of the offset.

25 {0013} Based on the results of the motion estimation, tfurther operations may
include performing a radiotherapy treatment with a radiotherapy machine, using
the relative motion estimation of the region of interest. Performing the
radiotherapy treatment may include one or more of: changing a position of a
radiotherapy beam from the radiotherapy machine, based on the relative motion

30 estimation;, changing a shape of a radiotherapy beam from the radiotherapy
machine, based on the relative motion estimation; gating a radiotherapy beam

(e.g.. stopping an output of the radiotherapy beam, or starting an output of the

W
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rachotherapy beam}, based on the relative motion estimation. Other variations or
operations may also be triggered or affected by the resulting motion estimation.
{8014} The above overview is intended to provide an overview of subject
matter of the present patent application. It i3 not intended to provide an exclusive
5 orexhaustive explanation of the inventive subject matter. The detailed description

is included to provide further information about the present patent application,

BRIEF DESCRIPTION OF THE DRAWINGS
{0015} In the drawings, which are not necessarily drawn io scale, like
10 numerals describe substantially similar components throughout the several views,
Like numerals having different letter suffixes represent different instances of
substantially simtlar components. The drawings illustrate generally, by way of
example but not by way of himitation, various embodiments discussed in the

present document.

15 [o816] FIG. 1 illustrates a radiotherapy system, according to some
examples.
{0017} FIG. 2A illustrates a radiation therapy system having radiation

therapy output configured {0 provide a therapy beam, according to some examples.
0018} FIG. 2B illustrates a system including a combined radiation
20 therapy system and an imaging system, such as a cone beam computed
tomography (CBCT) imaging system, according to some examples.
{0019] FIG. 3 lustrates a partially cut-away view of a system including
a combined radiation therapy system and an imaging system, such as a nuclear
magnetic resonance (MR} imaging (MR1) system, according to some examples.
25 {0020} FiG. 4 illustratgs anatomic position monitoring operations,
according to some examples.
{8021} FIG, 8 illustrates a treatment workflow for performing anatomic
position monitoring, using results of a trained machine learning regression model,
according {o some examples.
30 {00223 FIG. 6 illustrates a training workflow for an anatomic position
monitoring algonthm, implemented with a machine feaming regression model,

according to some examples.
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10023} FIG. 7 illustrates feature extraction using deformable registration
and principal component analysis, according to some examples.

{8024} ¥iG. & iliustrates a corrective procedure using registration for
feature extraction, to account for offsets due to different conirast images,

5 according to some exaniples.

[0025] FIG. 9 illustrates a regression machine learning wotkflow for use
in estimating patient motion during a radiotherapy session, according to some
examples.

0026} ¥, 10 illustrates a flowchart for a method of iraining & regression

10 machine learning model for generating estimated motion 1n a region of interest,
according to some examples,

{0027} FIG. 11 illustrates a fliowchart for a method of using a trained
regression machine learning model for estimating movement in a region of
interest, according to some examples.

15 [o028] FIG. 12 illustrates a flowchart for a method performed by animage
processing computing system in performing training and treatment workflows,
according to some examples.

100629} FIG. 13 illustrates an exemplary block diagram of a machine oo

which one or more of the methods as discussed herein can be implemented.
20 DETAILED DESCRIPTION

{0030} In the following detailed description, reference is made to the
accompanying drawings which form a part hereof, and which is shown by way of
tlustration-specific embodiments in which the present disclosure may be
practiced. These embodiments, which are also referred to herein as “examples,”
25  are described in sufficient detail to enable those skilled in the art to practice the
disclosure, and it is to be understood that the embodiments may be combined, or
that other embodiments may be utilized and that structural, logical and elecirical
changes may be made without departing from the scope of the present disclosure.
The following detatled description is, therefore, not to be taken in a limiting sense,
30 and the scope of the present disclosure s defined by the appended claims and their

equivalents.

wd
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{00311 The following discusses various implementations of an anatomic
position monitoring {APM)} technique usable in radiotherapy or radicsurgery
applications. In an example, this APM technique may be used to track, in real-
time, the motion of an object contained wn a specified region of interest. This APM
5  technique includes the analysis of 2D images, captured on an ongoing basis, with
a trained regression model. This frained regression model generates estimated
transformation parameters that are used to infer the true 31 motion of a specified
region of interest (and related anatomical structure).
{0032} In the examples discussed herein, features are extracied from one
10 ormore 2D tmages captured of a patient, and analyzed with the trained regression
model. This machine learning regression model is trained on different types and
characteristics of image transformation and image features, generated from a 3D
reference volume of imaging data captured from the same patient. In turn, the
extracted features are used to estimate an image transformation describe the
15 movement of a region of interest within the 3D volume. The movement of this
region of interest, within a 3D space, may be used for a variety of radiotherapy
treatment adaptations.
{0033} In conventional radiotherapy techniques, larger margins are often
used to account for motion due to breathing, etc. With image guided radiation
20 therapy (IGRT) it is possible to obtain more accurate targeting, therefore margins
can be reduced. IGRT may use computed tomography (CT) imaging, cone beam
CT (CBCT), magnetic resonance (MR) imaging, positron~-emission tomography
(PET) imaging, or the like to obtain a 3D or 4D image of a patient prior to
irradiation. For example, a CBCT-enabled LINAC (linear accelerator) may
25  consist of a kV source/detector affixed to the gantry at a 90 degree angle to a
radiation beam, or a MR-LINAC device may consist of a LINAC integrated
directly with a magnetic resonance (MR} scanner. Localizing the motion of the
human subject dunng the actual irradiation treatment delivery (intrafraction
motion) may allow reduction of additional treatment margins that would otherwise
30 beused to encompass motion.
{0034 Conventional methods for APM have involved limited analvsis of
2D images when generating real-time relative motion estimates during

radiotherapy treatment. Some of these methods have attempted to use 2D-10-2D
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or 2D-t0-3D image registrations in order to estimate movement in three
dimensions. However, conventional methods which rely on 2 images often
suffer from one of the following limitations. First, conventional optimization-
based registration methods can easily become trapped into local minima,
5  especially if images from 2D planes are registered directly to a 3D reference
dataset. Secound, if a siogle 2D plane of acquisition is used, the through-plane
motion (e.g., motion which occurs in a direction perpendicular to the 2D plane of
acquisition) cannot be identified and modelled. Third, even if more than one 2D
plane of acquisition is used, the information is often considered independently,

10 leading to notsy and/or inaccurate tracking when attempting to reconcile data from
the different planes.

{0035} In contrast to these technical limitations, the following APM
methods and implementations provide use of a machine learning regressor model
to analyze movement from 2D images captured from one or multiple planes.

15 Specifically, aregressor medel i3 trained to learmn the relationship between features
of the mstantaneous 2D image(s) and the relative motion parameters—relative to
a 3D reference volume. If more than one 2D plane of acquisition is used, the model
can straightforwardly learn to map the multi-view information o such relative
motion parameters.

20 j0036] The technical benefits of the following APM techniques include
improved accuracy in the delivery of radiotherapy treatment dosage from a
radictherapy machine, and the evaluation of less data or user inputs to produce or
perform more accurate radiotherapy machine treatment plans. Such technical
benefits may result in mwaoy apparent medical treatment benefits, including

25  improved accuracy of radiotherapy treatment, reduced exposure to unintended
radiation, reduction of side-effects, more accurate compliance with a radiology
treatment plan, and the like.

{0037} The following paragraphs provide an overview of example
radiotherapy system implementations and treatment use cases {with reference fo

30 FIGS. 24, 2B, and 3), including with the use of computing systems and hardware
implementations {with reference to F1GS. 1 and 13). The following then continues
with a discussion of a workflow using a machine learning regression model to

perform APM (with reference to FIGS. 4 and §), a workflow for training 2

O
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machine learning regression model to perform APM {(with reference to FIGS, 6
and 73, and processing workflows to perform APM with input data having varying
image contrast (with reference to FiG. 8). Finally, a discussion of machine
fearning techniques (with reference to FIG. 9) is provided, along with further
5  processing details of training and using a machine learning model, including
tratoing and use in a radiotherapy therapy session for a particular patient (FIGS,
1610 12}
{0038} FIG. 1 illustrates a radiotherapy system 100 adapted for using
machine leaming models for assisting anatomic position monitoring. The
10 anatomic position monitoring may be used to determine a patient state to enable
the radiotherapy system 100 to provide radiation therapy to a patient based on
spectfic aspects of captured medical imaging data. The radiotherapy system
includes an image processing computing systern 110 which hosts patient state
processing logic 120, The image processing computing system 110 may be
15 connected to a network (not shown), and such network may be counected {o the
Internet. For instance, a network can connect the image processing computing
system 110 with one or more medical information sources {e.g., a radiology
information sysiem (RIS}, a medical record system {e.g., an electronic medical
record (EMR) / electronic health record (EHR) system), an oncology information
20 system {OIS)), one or more image data sources 150, an image acquisition device
170, and a treatment device 180 {e.g., a radiation therapy device). As an example,
the image processing computing system 110 can be configured to perform image
patient state operations by executing instructions or data from the patient state
processing logic 120, as part of operations to generate and customize radiation
25 therapy treatment plans to be used by the treatment device 180,
{0039} The image processing computing system 110 may include
processing circutiry 112, memory 114, a storage device 116, and other hardware
and software-operable features such as a user wnterface 140, communication
interface, and the like. The storage device 116 may store computer-executable
30 instructions, such as an operating system, radiation therapy treatment plans {(e.g.,
original treatment plans, adapted treatment plans, or the like), software programs
(e.g., radiotherapy treatment plan software, artificial intelligence implementations

such as machine learsing models, deep learning models, and neural networks,

10
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etc), and any other computer-executable instructions to be executed by the
processing circuitry 112,

{8040} in an example, the processing circutry 112 may include a

processing device, such as one or more general-purpose processing devices such

5 as a microprocessor, a central processing unit (CPU), a graphics processing unit

(GPU}, an accelerated processing unit {APU), or the like More particularly, the

processing circuitry 112 may be a complex instruction set computing {CISC)

microprocessor, a reduced instruction set computing (RISC) microprocessor, a

very long instruction Word (VLIW) microprocessor, a processor implementing

10 other instruction sets, or processors implementing a combination of instruction

sets. The processing circuitry 112 may also be implemented by one or more

special-purpose processing devices such ag an application specific integrated

cireuit {ASIC), a field programmable gate array (FPGA), a digital signal processor

(DSP), a System: on a Chip (8SoC), or the like. As would be appreciated by those

15 skilled in the art, in some examples, the processing circuitry 112 may be a special-

purpose processor, rather than a general-purpose processor. The processing

circuitty 112 may include one or more known processing devices, such as a

microprocessor from the Pentium™ Core™, Xeon™, gr ltanium® family

manufactured by Intel™ the Turion™ Athlon™, Sempron™, Opteron™ FX™,

20 Phenom™ family manufactured by AMD™ or any of varnious processors

manufactured by Sun Microsystems. The processing circuitry 112 may also

include graphical processing units such as a GPU from the GeForce®, Quadro®,

Tesla® family manufactured by Nvidia™, GMA, Iris™ family manufactured by

Intel™, or the Radeon™ family manufactured by AMD™, The processing

25 crcuttry 112 may also include accelerated processing units such as the Xeon Phi™

family manufactured by Intel™. The disclosed embodiments are not limited to

any type of processor(s} otherwise configured to meet the computing demands of

identifying, analyzing, maintaining, generating, and/or providing large amounts

of data or manipulating such data to perform the methods disclosed herein. In

30 addition, the term “processor” may include more than one processor, for example,

a muiti-core design or a plurality of processors each having a multi-core design.

The processing circuitry 112 can execute sequences of computer program

instructions, stored in memory 114, and accessed from the storage device 116, to

11
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perform various operations, processes, methods that will be explained in greater
detail below.
{6041} The memory 114 may comprise read-only memory (ROM), a
phase-change random access memory (PRAM), a static random access memory
5  (SRAM}, a flash memory, a randon access memory (RAM), a dynamic random
access memory {DRAM) such as synchronous DRAM (SDRAM), an electrically
erasable programmable read-only memory (EEPROM}, a static memory {e.g.,
flash memory, flash disk, static random access memory ) as well as other types of
random access memories, a cache, a register, a compact disc read-only memory
10 (CD-ROM), adigital versatile disc (DVD) or other optical storage, a cassette tape,
other magnetic storage device, or any other non~transitory medium that may be
used to store information including image, data, or computer executable
instructions {e.g., stored in any format) capable of being accessed by the
processing circuitry 112, or any other type of computer device. For instance, the
1S computer program instructions can be accessed by the processing circutiry 112,
read from the ROM, or any other suitable memory location, and loaded into the
RAM for execution by the processing circuitry 112
{0042} The storage device 116 may constitute a drive unit that includes a
machine-readable medium on which is stored one or more sets of instructions and
20 data structures (e.g., software) embodying or utilized by any one or more of the
methodologies or functions described herein (including, in various examples, the
patient state processing logic 120 and the user interface 140). The instructions may
also reside, completely or at least partially, within the memory 114 and/or within
the processing cireuttry 112 during execution thereof by the image processing
25  computing system [ 10, with the memory 114 and the processing circuitry 112 also
constituting machine-readable media.
{0043} The memory 114 or the storage device 116 may constitute a non-
transitory computer-readable mediurn. For example, the memory 114 or the
storage device 116 may store or load instructions for one or more software
30 applications on the computer-readable medium. Software applications stored or
ioaded with the memory 114 or the storage device 116 may include, for example,
an operating system for common computer systems as well as for software-

controlled devices. The image processing computing system 110 may also operate
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a variety of software programs comprising software code for implementing the
patient state processing logic 120 and the user interface 140. Further, the memory
114 and the storage device 116 may store or load an entire software application,
part of a software application, or code or data that is associated with a software
5  application, which s executable by the processing circuitry 112, In a further
exarople, the memory 114 or the storage device 116 may store, load, or manipulate
one or more radiation therapy treatment plans, imaging data, patient state data,
dictionary entries, artificial inteiligence model data, labels, and mapping data, etc.
It is contemplated that software programs may be stored not only on the storage
10 device 116 and the memory 114 but also on a removable computer medium, such
as a hard drive, a computer disk, a CD-ROM, a DV, a HD-DVD, a Blu-Ray
DVD, USB flash drive, a 3D card, a memory stick, or any other suitable medinm;
such software programs may also be communicated or recetved over a network.
0044} Although not depicted, the image processing computing system
1S 110 way include a communication interface, network inferface card, and
communications circuitry. An example communication interface may include, for
example, a network adaptor, a cable connector, a serial connector, a USB
connector, a parallel connector, a high-speed data transmission adaptor {e.g., such
as fiber optic, USB 3.0, thunderbelt, and the like), a wireless network adaptor {e.g.,
20 such as a [HEE 802 11/Wi-Fi adapter), a telecommunication adapter (e.g, to
communicate with 3G, 4G/LTE, and 5G, networks and the like), and the like. Such
a communication interface may include one or more digital and/or analog
communication devices that permit a machine to communicate with other
machives and devices, such as remotely located components, via a network. The
25  network may provide the functionality of a local area network (LAN), a wireless
network, a cloud computing environment (e.g , software as a service, platform as
a service, infrastructure as a service, etc.), a client-server, a2 wide area network
(WAN), and the like. For example, network may be a LAN or a WAN that may
include other systems (including additional image processing computing systems
30 or image-based components associated with medical imaging or radiotherapy
operations).
10045} In an example, the image processing computing system 110 may

obtain image data 160 from the image data source 150, for hosting on the storage
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device 116 and the memory 114, In an example, the software programs operating

on the image processing computing system 110 may convert or transform medical

images of one format {e.g., MRI) to another format {eg., CT}, such as by

producing synthetic images, such as a pseudo-CT image. In another example, the

5 software programs may register or associate a patient medical image (e.g., a CT

image or an MR umage) with that patient’s dose distribution of radiotherapy

treatment {e.g., also represented as an image) so that corresponding image voxels

and dose voxels are appropriately associated. In another example, the software

programs may visualize, hide, emphasize, or de-emphasize some aspect of

10 anatomical features, patient measurements, patient state information, or dose or

treatment information, within medical images. The storage device 116 and

memory 114 may store and host data to perform these purposes, including the

image data 160, patient data, and other data required to create and implement a

radiation therapy treatment plan and associated patient state estimation operations.

15 [0046] The processing circuitty 112 may be communicatively coupled to

the memory 114 and the storage device 110, and the processing circuitry 112 may

be configured to execute computer executable instructions stored thereon from

either the memory 114 or the storage device 116. The processing circuitry 112

may execute instructions to cause medical images from the image data 160 to be

20 received or obtained in memory 114, and processed using the patient state

processing logic 120. For example, the image processing computing system 110

may receive image data 160 from the image acquisition device 170 or image data

sources 150 via a communication interface and network to be stored or cached in

the storage device 116. The processing cireuitry 112 may also send or update

25  medical images stored in memory 114 or the storage device 116 via a

communication interface to another database or data store (e.g., a medical faciity

database). In some examples, one or more of the systems may form a distributed

computing/sirnulation environment that uses a network to collaboratively perform

the embodiments described herein (such as in an edge computing environment).

30 In addition, such network may be connected to the Internet to communicate with
servers and clients that reside remotely on the Internet.

10047} In further examples, the processing circuitry 112 may utilize

software programs {e.g., a treatment planning software) along with the image data

14



WO 2022/232749 PCT/US2022/071772

160 and other patient data to create a radiation therapy treatment plan. In an
example, the image data 160 may include 2D or 3D volume imaging, such as from
a CT or MR In addition, the processing circuitry 112 may utilize aspects of Al
such as machine leamning, deep learning, and neural networks to generate or
5 control various aspects of the treatment plan, including in respense to an estimated
patient state or patient movement as discussed in the foliowing examples.
{0048} For instance, such software programs may uiilize patient state
processing logic 120 to implement a patient state determination workflow 130,
using the techniques further discussed herein. The processing circuitry 112 may
10 subseqguently then modify and transmit the executable radiation therapy treatment
plan via a communication interface and the network to the treatment device 180,
where the radiation therapy plan will be used to treat a patient with radiation via
the treatment device, consistent with results of the patient state determination
workflow 130. Gther outputs and uses of the software programs and the patient
15 state determination workflow 130 may occur with use of the image processing
computing system 110. As discussed further below, the processing circuitry 112
may execute a software program that invokes the patient state processing logic
126 to implement functions including aspects of image processing and
registration, feature extraction, machine learning model processing, and the hike.
20 {6049) In an example, the image data 160 may include one or more MRI
images (e.g., 2D MR, 3D MR], 2D streaming MRI, 4D MRI 4D volumetric MR,
4D cine MRI, etc.), functional MRI images (e.g., IMRI, BCE-MRI, diffusion
MRI}, Computed Tomography (CT)images (e.g, 2D CT, Cone beam CT, 3D CT,
4D CT), ultrasound images (e.g., 2D ultrasound, 3D ultrasound, 4D ultrasound),
25  Positron Emission Tomography (PET) images, X-ray images, fluoroscopic
images, radiotherapy portal images, Single-Photo Emission Computed
Tomography {(SPECT} images, computer generated synthetic images {e.g.,
pseudo-CT 1mages) and the like. Further, the tmage data 160 may also mclude or
be associated with auxiliary information, such as segmentations/contoured
30 images, or dose images. In an exampie, the image data 160 may be received from
the image acquisition device 170 and stored in ong or more of the image data
sources 150 {e.g., a Picture Archiving and Communication System (PACS), a

Vendor Neutral Archive (YNA), a medical record or information system, a data
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warchouse, etc.}. Accordingly, the image acquisition device 170 may comprise a
MRI imaging device, a CT imaging device, a PET imaging device, an ultrasound
imaging device, a fluoroscopic device, a SPECT imaging device, an integrated
Linear Accelerator and MRIimaging device, or other medical imaging devices for

5  obtaining the medical images of the patient. The image data 160 may be received
and stored in any type of data or any type of format {e.g., in a Digital Imaging and
Communications in Medicine (DICOM) format) that the tmage acquisition device
170 and the image processing computing system [10 may use to perform
operations consistent with the disclosed emboduments,

10 [0050] In an example, the image acquisition device 170 may be integrated
with the treatment device 180 as a single apparatus {(e.g., an MRIdevice combined
with a linear accelerator, also referred to as an “MR-LINAC”, as shown and
described 1n FIG. 3 below). Such an MR-LINAC can be used, for example, to
precisely determine a location of a target organ or a target tumor in the patient, so

15 as to direct radiation therapy accurately according to the radiation therapy
treatment plan to a predetermined target. For instance, a radiation therapy
treatment plan may provide information about a particular radiation dose to be
applied to each patient. The radiation therapy treatment plan may also include
other radiotherapy information, such as beam angles, dose-histogram-volume

20 information, the number of radiation beams to be used during therapy, the dose
per beam, and the like.

{0051} The image processing computing system 110 may communicaie
with an external database through a network to send/receive a plurality of various
types of data related to image processing and radiotherapy operations. For

25  example, an external database may include machine data that is information
associated with the treatment device 180, the image acquisition device 170, or
other machines relevant to radictherapy or medical procedures. Machine data
information may include radiation beam size, arc placement, beam on and off time
duration, machine parameters, segments, multi-leaf collimator (MLC)

30 configuration, gantry speed, MRI pulse sequence, and the like. The external
database may be a storage device and may be equipped with appropriate database

administration software programs. Further, such databases or data sources may

16
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include a plurality of devices or systems located either 1n a central or a distributed
manner.
{8052} The image processing computing system 110 can collect and
obtain data, and coromunicate with other systerus, via a network using one or ruore
5 communication interfaces, which are communicatively coupled to the processing
circuttry 112 and the memory 114, For jnstance, a conununication interface may
provide communication connections between the image processing computing
system 110 and radiotherapy system components {e.g., permitting the exchange
of data with external devices). For instance, the communication interface may in
10 some examples have appropriate interfacing circuitry from an output device 142
or an input device 144 to connect to the user interface 140, which may be a
hardware keyboard, a keypad, or a touch screen through which a user may input
information into the radiotherapy system 100,
0053} As an example, the output device 142 may include a display device
15 which outputs a representation of the user wnterface 140 and one ot more aspects,
visualizations, or representations of the medical images. The ocutput device 142
may include one or more display screens that display medical images, interface
information, treatment planning parameters (e g., contours, dosages, beam angles,
tabels, maps, etc ) treatment plans, a target, localizing a target or tracking a target,
20 patient state estimations (.2, a 3D volume), or any related information to the user.
The input device 144 connected to the user interface 140 may be a kevboard, a
keypad, a touch screen or any type of device that a user may input information to
the radiotherapy system 160, Altematively, the output device 142, the input device
144, and features of the user interface 140 may be integrated into a stogle device
25 such as a smartphone or tablet computer, e.g., Apple iPad®, Lenovo Thinkpad®,
Samsung Galaxv®, etc.
{00354 Furthermore, many components of the radiotherapy system 100
may be implemented with a virtual machine {e.g., via VMWare, Hyper-V, and the
like virtualization platforms). For instance, a virtual machine can be software that
30 functions as hardware. Therefore, a virtual machine can include at least one or
more virtual processors, one or more virtual memories, and ong or more viriual
communication interfaces that together function as hardware. For example, the

image processing computing system 110, the image data sources 150, or like

oy
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components, may be implemented as a virtual machine or within a cloud-based
virmalization environment.
{8055} The patient state processing logic 120 or other software programs
may cause the computing system to communicate with the irnage data sources 150
5 1o read images into memory 114 and the storage device 116, or store images or
associated data from the memory 114 or the storage device 116 to and from the
image data sources 150. For example, the image data scurce 150 may be
configured to store and provide a plurality of images (e g, 3D MR, 4D MR 2D
MRI slice images, UT images, 213 Fluorcscopy images, X-ray images, raw daia
10 from MR scans or CT scans, Digital Imaging and Commununications in Medicine
{(DICOM) metadata, etc.) that the image data source 150 hosts, from image sefs in
image data 160 obtained from one or more patients via the image acquisition
device 170, including in real-time settings, defined further below. The image data
source 150 or other databases may also store data to be used by the patient state
15 processing logic 120 when executing a software program that performs patient
state estimation operations, of when creating, monitoring, or modifying radiation
therapy treatment plans. Further, various databases may store machine learning or
other Al meodels, including the algorithm parameters, weights, or other data
constituting the model learned by the network and the resulting predicted or
20 estimated data. The image processing computing system 110 thus may obtain
and/or receive the image data 160 (e.g., 2D MRI slice images, CT images, 2D
Fluoroscopy tmages, X-ray images, 3D MRI images, 403 MRI images, etc.) from
the image data source 150, the image acquisition device 170, the treatment device
180 (e.g, a MR-LINAC), or other information systems, i convection with
25  performing image patient state estimation as part of treatment or diagnostic
operations.
{0036} The image acquisition device 170 can be configured to acquire one
or more images of the patient’s anatomy relevant to a region of interest {e.g, a
target organ, a target tumor or both). Each image, typically a 2D image or slice,
30 caninclude one or more parameters {e.g., a 2D slice thickness, an orientation, an
origin and field of view, etc). In an example, the image acquisition device 170
can acquire a 2D slice in any orientation. For example, an orientation of the 2D

slice can include a sagittal orientation, a corounal orientation, or an axial
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orientation. The processing circuitry 112 can adjust one or more parameters, such
as the thickness and/or orientation of the 2D slice, to include the target organ
and/or target tumor. In an example, 2 slices can be determined from information
such as a 3D MRI volume Such 2D slices can be acquired by the umage
5 acquisition device 170 in “real-time” while a patient is undergoing radiation
therapy treatment, for exaruple, when using the treatment device 180 {with “real-
time” meaning, in an example, acquiring the data in 10 mlliseconds or less). In
another example for some applications, real-time may include a timeframe within
{e.g., up to} 300 milliseconds. In an example, real-time may include a time period
10 fast enough for a climcal problem being solved by techniques described herein. In
this example, real-time may vary depending on target speed, radictherapy
margins, lag, response time of a treatment device, eic.
{00587} The patient state processing logic 120 in the imnage processing
computing system 110 is depicted as implementing a patient state determination
15 workflow 130 with various aspects of monitoring and estirnation of a patient siate
provided by models or algorithms. In an example, the patient state determination
workflow 130 uses a real-ime image input stream 132 (eg, 2D partial
measurements, such as from a CT or MR), which is analyzed by anatomic position
monitoring 136 functions to estimate a patient state. In a further example, the
20 patient state determination workflow 130 uses a real-time sensor data stream 134
{c.g., breathing belt measurements, other external, non-image sensor
measurements) which is analyzed by anatomic position monitoring 136 functions
to estimate or refine the patient state.
{0058} The patient state determination workflow 130 further involves
25  aspects of anatomic position monitoring 136, such as determined within the
trained regression model discussed in further examples below. The data provided
from anatomic position monitoring 136 may be used for producing or controlling
a patient state estimation 138, The patient state estimation 138 may produce data
that is used to control the treatment device 180 or other aspects of the radictherapy
30 session.
{0059] ¥ 2A illustrates a radiation therapy device 202 that may include
a radiation source, such as an X-ray source or a linear accelerator, a couch 216, an

imaging detector 214, and a radiation therapy output 204. The radiation therapy

19
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device 202 may be configured to emit a radiation beam 208 to provide therapy to

a patient. The radiation therapy output 204 can include one or more attenuators or

collimators, such as an MLC. A MLC may be used for shaping, directing, or

modulating an intensity of a radiation therapy beam to the specified target tocus

5  within the patient. The leaves of the MLC, for instance, can be automatically

positioned to define an aperture approamating 4 tumor cross-section or

projection, and cause modulation of the radiation therapy beam. For example, the

feaves can include metallic plates, such as comprising tungsten, with a long axis

of the plates oriented parallel to a beam direction and having ends ortented

10 orthogonally to the beam direction. Further, a “state” of the MLC can be adjusted

adaptively during a course of radiation therapy treatment, such as to establish a

therapy beam that better approximates a shape or location of the tumor or other
target locus.

{0060} Referring back to FIG. 2A| a patient can be positioned in a region

15 212 and supported by the treatment couch 216 to receive a radiation therapy dose,

according to a radiation therapy treatment plan. The radiation therapy output 204

can be mounted or attached to a gantry 206 or other mechanical support. One or

more chassis motors (not shown} may rotate the gantry 200 and the radiation

therapy output 204 around couch 216 when the couch 216 i1s inserted into the

20 treatment area. In an example, gantry 206 may be continuously rotatable around

couch 216 when the couch 216 is inserted into the treatruent area. In another

example, gantry 206 may rotate to a predetermined position when the couch 216

is inserted into the treatment area. For example, the gantry 206 can be configured

to rotate the therapy output 204 around an axis {°47). Both the couch 216 and the

25 radiation therapy output 204 can be independently moveable to other positions

around the patient, such as moveable in transverse direction {“77), moveable in a

lateral direction ("7}, or as rotation about one or more other axes, such as rotation

about a transverse axis (indicated as “K7). A countroller communicatively

connected to one or more actuators {not shown} may control the couch 216

30 movements or rotations in order to properly position the patient in or out of the

radiation beam 208 according to a radiation therapy treatment plan. Both the couch

216 and the gantry 2006 are independently moveable from one another in multiple

degrees of freedom, which allows the patient to be positioned such that the

20
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radiation beam 208 can target the tumor precisely. The MLC may be integrated
and included within gantry 206 to deliver the radiation beam 208 of a certain
shape.
{00611 The coordinate systern (including axes 4, 7, and /) shown 1o FIG.
5  2A can have an origin located at an isocenter 210. The isocenter can be defined as
a location where the central axis of the radiation beam 208 intersects the origin of
a coordinate axis, such as to deliver a prescribed radiation dose to a location on or
within a patient. Alternatively, the isocenter 210 can be defined as a location
where the central axis of the radiation beam 208 intersects the patient for various
10 rotational positions of the radiation therapy output 204 as positioned by the gantry
206 arcund the axis 4. As discussed herein, the ganiry angle corresponds to the
position of gantry 206 relative 1o axis A, although any other axis or combination
of axes can be referenced and used to determine the gantry angle.
0062 Gantry 206 may also have an attached imaging detector 214. The
1S imaging detector 214 is preferably located opposite to the radiation source, and in
an example, the imaging detector 214 can be located within a field of the radiation
beam 208
8663} The imaging detector 214 can be mounted on the ganiry 206
{preferably opposite the radiation therapy output 204}, such as to maintain
20 alignment with the radiation beam 208. The imaging detector 214 rotates about
the rotational axis as the gantry 206 rotates. In an example, the imaging detector
214 can be a flat panel detector (e.g., a direct detector or a scintillator detector).
In this manner, the imaging detector 214 can be used to monitor the radiation beam
208 or the imagiog detector 214 can be used for imaging the patient’s anatomy,
25 such as portal imaging. The control circuitry of the radiation therapy device 202
may be iniegrated within the radiotherapy system 100 or remote [rom it
0064} In an illustrative example, one or more of the couch 216, the
therapy output 204, or the gantry 206 can be automatically positioned, and the
therapy output 204 can establish the radiation beam 208 according to a specified
30 dose for a particular therapy delivery instance. A sequence of therapy deliveries
can be specitied according to a radiation therapy treatment plan, suchk as using one
or more different ortentations or locations of the gantry 206, couch 216, or therapy

output 204. The therapy deliveries can occur sequentially, but can intersect in a
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desired therapy locus on or within the patient, such as at the isocenter 210 A
prescribed cumulative dose of radiation therapy can thereby be delivered to the
therapy locus while damage to tissue near the therapy locus can be reduced or
avoided.

5 j0065; FIG. 2B iliustrates a radiation therapy device 202 that may include
a cornbined LINAC and an tmaging system, such as a CT imaging system. The
radiation therapy device 202 can include an MLC (not shown). The CT imaging
system can include an imaging X-ray source 218, such as providing X-ray energy
in a kiloelectron-Volt (keV) energy range. The imaging X-ray source 218 can

10 provide a fan-shaped and/or a conical radiation beam 208 directed to an imaging
detector 222, such as a flat panel detector. The radiation therapy device 202 can
be similar to the system described in relation to FIG. 2A, such as including a
racdiation therapy output 204, a gantry 206, a couch 216, and another imaging
detector 214 (such as a flat panel detector). The X-ray source 218 can provide a
15 comparatively-lower-energy X-ray diagnostic beam, for imaging,
{0066} in the illustrative example of FIG. 2B, the radiation therapy output
204 and the X-ray source 218 can be mounted on the same rotating gantry 206,
rotationally separated from each other by 90 degrees. In another example, two or
more X-ray sources can be mounted along the aircumference of the gantry 206,
20 such as each having its own detector arrangement to provide multiple angles of
diagnostic imaging concurrently. Similarly, multiple radiation therapy outputs 204
can be provided.
{0067} FIG. 3 depicts a radiation therapy system 300 that can include
combining a radiation therapy device 202 and an imaging system, such as a
25  magnetic resonance (MR) imaging system {(e.g., known in the art as an MR-
LINAC)H consistent with the disclosed examples. As shown, system 300 may
include a couch 216, an image acquisition device 320, and a radiation delivery
device 330, System 300 delivers radiation therapy to a patient in accordance with
a radiotherapy treatment plan. In some examples, image acquisition device 320
30 may correspond to image acquisition device 170 in FIG. 1 that may acquire origin
images of a first modality {e.g., an MRI image) or destination images of a second

modality (e.g., an CT image).
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[0068] Couch 216 may suppost a patient {(not shown) during a treatment
session. In some implementations, couch 216 may move along a horizontal
transiation axis (1abelled “T7), such that couch 216 can move the patient resting on
couch 216 into and/or out of system 300. Couch 216 may also rotate around a

S central vertical axis of rotation, transverse to the translation axis. To allow such
movement or rotation, couch 216 may bave motors (not shown} enabling the
couch 216 to move in various directions and to rotate along various axes. A
controller (not shown) may control these movements or rotations in order o
properly position the patient according 1o a treatment plas.

10 [006%9] In some examples, image acquisition device 320 may include an
MRI machine used to acquire 2D or 3D MRI images of the patient before, during,
and/or after a treatruent session. Image acguisition device 320 may include a
magoet 321 for generating a primary magnetic field for magnetic resonance
imaging. The magnetic field lines generated by operation of magnet 321 may run

15 substantially parallel to the ceniral trapslation axis I. Magoet 321 may include one
or more coils with an axis that runs parallel to the translation axis [ In some
examples, the one or more cotls in magnet 321 may be spaced such that a central
window 323 of magnet 321 1s free of coils. In other examples, the cotls in magnet
321 may be thin encugh or of a reduced density such that they are substantially

20 transparent to radiation of the wavelength generated by radiotherapy device 330
Image acquisition device 320 may also include one or more shielding coils, which
may generate a magnetic field outside magnet 321 of approximately equal
magnitude and opposite polarity in order to cancel or reduce any magnetic field
outside of magnet 321. As described below, radiation source 331 of radiation

25  delivery device 330 may be positioned in the region where the magnetic field is
cancelled, at least to a first order, or reduced.

10670} Image acquisition device 320 may also include two gradient coils
325 and 326, which may generate a gradient magnetic field that is superposed on
the primary magnetic field. Coils 325 and 326 may generate a gradient in the

30 resultant magnetic field that allows spatial encoding of the protons so that their
position can be determined. Gradient coils 325 and 326 may be positioned arcund
a common central axis with the magnet 321 and may be displaced along that

central axis. The displacement may create a gap, or window, between coils 325
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and 326. In examples where magnet 321 can also include a central window 323
between coils, the two windows may be aligned with each other.
{8071} In some examples, image acquisition device 320 may be an
imaging device other than an MR, such as an X-ray, a CT, a CBCT, a spiral CT,
5 a PET, a SPECT, an optical tomography, a flucrescence imaging, ultrascund
imaging, radictherapy portal irmnaging device, or the like. As would be recognized
by one of ordinary skill in the art, the above description of image acquisition
device 320 concerns certain examples and is not intended to be limiting.
{8672} Radiation delivery device 330 may include the radiation source
10 331, such as an X-ray source or a LINAC, and an MLC 332 Radiation delivery
device 330 may be mounted on a chassis 335. One or more chassis motors {not
shown} may rotate the chassis 335 arcund the couch 216 when the couch 216 s
inserted into the treatment area. In an example, the chassis 335 may be
continuously rotatable around the couch 216, when the couch 216 is inserted into
15 the treatment area. Chassis 335 may also have an attached radiation detector (not
shown), preferably located opposite to radiation source 331 and with the rotational
axis of the chassis 335 positioned between the radiation source 331 and the
detector. Further, the device 330 may include control circuitry (not shown) used
to control, for example, one or more of the couch 216, image acquisition device
20 320, and radiotherapy device 330. The control circuitry of the radiation delivery
device 330 may be integrated within the systemt 300 or remote from it.
{0073} During a radiotherapy treatment session, a patient may be
positioned on couch 216, System 300 may then move couch 216 into the treatment
area defined by the magnet 321, coils 325, 326, and chassis 335, Control circuttry
25  may then control radiation source 331, MLC 332, and the chassis motor(s) to
deliver radiation to the patient through the window between coils 325 and 326
according to a radictherapy treatment plan.
18074} FIG. 2A, FIG, 2B, and FIG, 3 generally illustrate examples of a
radiation therapy device configured to provide radiotherapy treatment to a patient,
30  including a configuration where a radiation therapy output can be rotated around
a central axis {e.g., an axis “47). Other radiation therapy cutput configurations can
be used. For example, a radiation therapy output can be mounted to a robotic arm

or manipulator baving multiple degrees of freedom. In yet another example, the

24



WO 2022/232749 PCT/US2022/071772

therapy output can be fixed, such as located in a region laterally separated from
the patient, and a platform supporting the patient can be used to align a radiation
therapy isocenter with a specified target locus within the patient.
{0075} Asnoted above, when performing radiation therapy, underlying 3D
5  patient motion must be estimated and tracked in order to accurately deliver
radiation therapy treatment at a correct location. To do this, radiotherapy treatment
techniques involve an estimation of the relative motion of a specific object
contained in a specified region of interest, relative to a reference volume which
contains auxiliary information such as contoured regions of interest or the dose
10 plan. Thus estimation and monitoring of a location for a specific object is referred
to herein as anatomic position monitoring {APM).
{8676} FIG. 4 provides a high-level view of APM operations. The goal
of APM is to produce a real-time relative motion estimation 440 of an object
contained in a region of interest, relative to its position in a known 3D reference
15 space. The relative motion estimation 440 then can be used to adjust the
radiotherapy treatment and cause radiotherapy treatment changes 450 that are
directed to one or more regions of interest within the 3D reference space. It will
be understood that a variety of techniques for adjusting or modifying the location,
type, amount, or characteristics of radiotherapy treatment based on motion may
20 beutlized, based upon the identification of the anatomic position and an estimate
of relative motion.
10077% The operations in FIG. 4, in more detail, iHlustrate how reference
information 410 for a human subject may be correlated to movement changes that
are identified from real-time nformation 420 for the human subject. The reference
25  information 410 may include imaging data from a 3D reference volume 412 (e g,
produced from an MRI or CT scan), and a definition of a region of interest 414
(e.g., a mask or area defining a target organ, a target tumor or both). The real-time
information 420 may include 2D imaging data 422 {¢.g., produced from 2D MR
images or KV projection imaging), collected over time from a single or multiple
30 orientations {e.g., a first image captured at a coronal plane, and a second image
captured at a sagittal plane). Other forms of real-time information 420, not
depicted, may include position monitoring signals (e.g., a signal from a breathing

belt, sensor data, etc.) captured from observed patient body movement,
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10078} Based on input data of the 3D reference volume 412, an
accompanying tracking region of interest 414, and real-time information 420 (e.g.,
instantaneous, ongoing) relating to the patient (e.g., 2D imaging data 422 captured
on an ongoing basis), an APM algorithm 430 analyzes the real-time information

5 420 1o determine movement relative 1o the reference information 410. The APM
algorithm 430 roay be provided by a tratned machine learning model 435, such as
a tramned regression model or other artificial intelligence algonithm
implementation, which estimates motion in a 3D space based on analysis of the
real-time information 420.

10 (0079 In an example, the APM algorithm 430 uses the trained model 435
to generate a relative motion estimation 440 in the form of transformation
parameters that describe the motion of the tracked region relative to the reference
volume 412, The relative motion estimation 440 may be processed to produce
radictherapy treatment changes 450 that dynamically gate the radiotherapy beam

15 {e.g., turn the beam on or off tu real-time), or dynamically effect a change in
direction, shape, position, intensity, amount, or type of a beam in the radiotherapy
treatment. As a simple example, radiotherapy treatment changes 450 may include
control of a radiotherapy beam, such as starting or stopping radictherapy treatment
output, or turning a radiotherapy beam on or off, based on movement caused by

20 patient breathing.

{0080} The following paragraphs provide examples of a treatment
workflow adapted for performing APM 430 with use of the trained model 435,
including a specific example of a regression model which can analyze individual
2D images captured in real-tirne during a radiotherapy treatment session. The

25 following paragraphs also provide examples of a training workflow adapted for
developing the trained model 435 It will be understood that the following
treatment workflow process may be perfermed and repeated many times {e.g., on
an ongolng, real-time basis, to monitor for patient movement) as part of a
radiotherapy treatment session for a single patient. It will also be understood that

30 the following training worktlow process may be performed a single time or
multiple times {(e.g, a single time in an offline training setting, although the
training workflow may be modified for online training as additional reference

information is obtained}. The following training and treatment workflows may

26



WO 2022/232749 PCT/US2022/071772

also be adapted for use of multiple treatment sessions for a particular patient, or
for multiple patients.
{0081} FIG. 5 provides a high-level illustration of a treatment workflow
for performing APM 430, using resuits of a trained machine learning regression
5 model 540. This treatment workflow includes the capture and processing of real-
time data to the form of multiple real-tirne 2D images, feature extraction from the
multiple real-time 2D images, and analvsis of the extracted features with the
machine learning regression model 540, The machine learning regression model
540 is trained o produce a data output, in the form of spatial transformation
10 parameters which describe relative motion estimation 550.
{0082} In the example of FIG. 5, the real-time data includes 2D images
captured in real-time from a patient, using two different planes of acquisition (2D
image 501 captured at a first orientation or plane, and 23 image 502 captured at a
second orientation or plane). Using these two 2D images of respective
1S onientations, feature extraction is performed on each image independently,
including feature extraction operations 511 within the region of interest performed
on the first orientation image and feature extraction operations 512 within the
region of interest performed on the second orientation image. Although images
from multiple planes of acquisition are illustrated in this example, it will be
20 understood that the techniques are also applicable to ong or more images obtained
from one plane of acquisition, or one or more images obtained from more than
two planes of acquisition.
[0083] In the following discussed examples, reference is made to a
scenario whete the real-time irnage measurements are provided from a 2D MR
25  imaging modality, which is used to obtain instantaneous 2D images from two
different planes of acquisition (e.g, orthogonal sagittal and coronal planes)
continuously throughout treatment. In another example, kV prejection imaging
may be used instead of MR imaging to obtain instantancous 2D images. Still other
forms of instantaneous, non-image movement measurements 560 {partial
30 measurements), such as a signal from a breathing belt or body sensor, may also be
used insiead of some image measurements, or in combination with image-based
measurements. Thus, it will be understood that the presently described treatment

and training methods are not limited to use of 2D MR images.
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{0084} As shown, the real-time acquired 2D images 501, 502—each
acquired from a different plane of acquisiticn, such as from coronal and sagittal
planes—is followed by separate instances of feature extraction. Such feature
extraction is performed on each image independently with extraction operations
5 511, 512. Feature extraction may involve performing image processing steps (not
shown in FIG. 3}, such as deformable image registration, and may additionally be
followed by dimensionality reduction technigues (such as principal component
analysis) for algorithmic and/or computational efficiency (e.g., to reduce the
number of features before regression analysis). In an example using ¥V projection

10 imaging as the input 2D images 501, 502, fiducial positions could be extracted
and used as features. In addition, feature extraction may be performed within
and/or extracted from a limited region of interest {(ROI) provided alongside the 3D
reference volume. Other types of feature identification and extraction may be
used.

15 [0085] Following feature exiraction {extraction operations 511, 512) on
each 2D image {(images 501, 502), the extracted features are concatenated or
combined into multi-orientation features 530 (e.g., a multi-dimensional vector,
representing features in multiple orientations). The machine learning regression
model 540 then analyzes the multi-orientation features 530 as input, to estimate

20 the motion relative to some reference {e g, relative to 3D reference volume of the
patient, provided in reference information 410 used to train the model 540). The
output of the machine learning regression model 540 may include estimated
spatial transformation parameters which represent relative motion estimation 550
{relative to the anatomy depicted in the 3D reference volume, indicating motion

25 provided from transtation and/or rotation in the three dimensions).

{0086} In further examples, the workflow referenced within FIG. 5 can be
performed independently for different structures, using different regions of
interest for the tumors and/or organs at risk. Thus, in some examples, ditferent
features may be extracted for different anatomical structures; likewise, different

30 trained regression models may be trained and used to analyze motion of different
anatomical structures.

{0087} In practice, 2 images with different planes of acquisition may be

acguired sequentially and not in parallel at the same time, which may result in

28
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relative shifts in the observed anatomy between the 2D tmages acquired in
different planes. With sequential rather than parallel acquisition, the discrepancy
may be ignored if the discrepancy is sufticiently small. In other examples, only
the most recent 213 image may be used, or suitable prediction algorithms can be
5  used to synchronize (in time) the content of multiple 2D feature vectors. For
example, feature synchronization 532 may be applied using a lovg short-term
memory {LSTM} model, to forecast the features describing the contents of one
imaging plane such that it coincides with features of the other imaging plane (e.g.,
obtained 200 ms later). Such feature synchronization 532 may vield a
10 synchronized multi-orientation feature vector that 1s used in the set of mulu-
orientation features 530 and provided as input to the mode] 540.
{0038} FIG. 6 provides a high-level overview of an example training
workflow for the APM algorithm 430, implemented with a machine learmng
regression model. Within FIG. 6, the generation of a training data pair 660 is
15 depicted for a partticular image transformation, which s repeated for a range of
image transformations to produce a training data set 670. In an example, a training
data pair 660 includes (1) a known set of spatial transformation parameters 625
{(defining a transformation 620 applied to reference information 610 including a
reference volume 612 and region of interest 614), and (2) a set of multi-orientation
20 features 650 summarizing the joint appearance of the patient anatomy as observed
from the two 2D images 631, 632 given the known set of spatial transformation
parameters 625 This process is repeaied to obtain the training data set 670 (a
collection of training pairs), from which a machine learning regressor will be
iratned with a tratning process 680, This training process 680 enables the model
25  to analyze a multi-orientation feature set (as model input} and generaie a
corresponding motion parameter set {as model output).
{0089} To generate a respective training pair 660, image data in the 3D
reference volume 612 {e g., image data which includes and designates the region
of interest 614) is first transformed with a specified set of transformation
30 parameters 625. The image data is then resarpled to the particular specifications

3

of each plane of 2D image acquistiion ("sliced”), vielding two 21} images 631,
632 in different orientations. Features are then independently extracted 641, 642

from each of the two 213 images 631, 632, and are combined to form a joint
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representation of both views. This is repeated by sampling over a range of
transformation parameters, generating a training data set 670 providing a plurality
of training pairs for varicus types of transformations. This range of iransformation
parameters may be determined hewuristically, or informed by a prior set of
5  examples on similar radiotherapy treatiment cases. From this training data set 670,
the traintog process 680 applied to a machine learning regressor can be performed
to map input multi-orientation feature sets to their corresponding output motion
parameters.
0090} The training workflow depicted in FIG. 6 1s compatible with a
10 range of different motion parameterizations. For example, a particular instance of
motion may be parameterized by a particular translation vector, a rigid or affine
transformation, or even a full deformation vector field. The training workflow is
also compatible with a wide range of choices concerning the particular machine
learning algorithm used for regression (e.g., both linear and non-linear models).
15 (0031} In an example, the local motion of the tracked structure is
characterized using a 3D translation vector {e.g., providing the x- y- and z-
components of the translation relative to the 3D reference volume 612). For
feature extraction, for each slice orientation independently {e.g., feature extraction
operations 641, 642), the 2D image is deformably registered to a common 2D
20 target image, followed by principal component analysis (PCA) on the resultant 2D
deformation vector field (DVF} within the provided in-plane 2D region of interest
to extract a minimal set of informative features. The 21D target images {e.g., images
631, 632), which serve as the target images for each slice orientation during 2D
deformable registration, can be obtained by slicing the 3D reference volume 612
25 using the specifications of each imaging plane of acquisition. In a further example,
two PCA models may be used, one per imaging plane of acquisition. Each of the
PCA models maps DVFs extracted from the respective in-plane ROIs to 2 minimal
set of informative features, and can be trained on the sets of DVFs produced during
the training phase. Feature extraction using this approach is discussed further
30 below.
{0092} FiG. 7 depicts additional detail of feature extraction using
deformable registration and principal component analysis (operation 640

corresponding to operations 641, 642 depicted in FIG. 6). Given an input 2D
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tmage 630, the 2D image 630 13 deformably registered 643 to its corresponding
20 target image {e.g., registered to an image in the same imaging plane of
acquisition}. The resuliing deformation vector field 644 within the in-plane 2D
region of interest is extracted and reduced n dimensionality using PCA 645,
5  vyielding a minimal set of informative features 646,
{8093} In further examples, the present technique may be adapted to
support differences in image contrast between the reference volume and the real-
time images. As will be understoed, the 3D reference volume that is obtained at
the time of radiotherapy treatment may be acquired using any one of a multitude
10 of MR pulse acquisition sequences, ¢.g., Tl-weighted, T2-weighted, proton
density or contrast-agent eshaunced images, depending on the specific clinical
requirements. On the other hand, there may be considerably less flexability
concerning the choice of a necessarily fast pulse sequence used to acquire the
instantaneous 2D images throughout treatment. In such cases, the set of 2D images
15 used for training {e.g. obtained by slicing the 3D reference volume) may have
different characteristics compared to the instantaneous 2D images acquired
throughout treatment, and a naitve application of the treatment workflow (e.g.,
portrayed in FIG. §) may result in poor tracking,
0094} To accommodate images using different types of contrast, one of
20 the following approaches may be applied.
{0095} In a first approach, robust contrast-invariant registration algorithms
can be used for feature extraction {(e.g., feature extraction operations 640, 641, 642
as discussed within FIGS 6 and 7. This ensures that the deformation vector fields
computed for feature extraction during the training workflow (in which
25 registration is between same-contrast images) are qualitatively similar to those
computed during the treatment workflow (in which registration may be between
different-contrast images). However, developing an accurate real-time
implementation of contrast-invariant deformable registration technigue can be
challenging and may be beyond the technical limitations of some image
30 processing approaches. For this reason, the next two approaches listed below
avoid such a requirement,
10096} In a second approach, an intermediate 3D reference volume, with

the same contrast as the instantaneous 2D images, can be acquired. This
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intermediate reference volume can then be registered to the primary 3D reference
volume {either automatically using a registration algorithm of choice, or with user
guidance), and subsequently used in the training and test workflows. The
acquisition of such an intermediate 3D reference volume may increase the pre-
5  treatment setup time, limiting clinical efficiency.
{0097} In a third approach, a preparation step that includes the acquisition
of wnstantaneous 2D images can be used to create 2D template images with the
sarme contrast as those acquired during the test-time workflow. In this approach,
standard mono-contrast deformable registration can be used for feature extraction.

10 Such 2D templates may be created using a variety of template-building
approaches.

{0098} Due to possible patient motion between the time of acquisition of
the 3D reference volume and that of the pre-treatment set of instantancous 2D
images, there may be an offset between the two sets of images that must be

15 accounted for. To this end, the primary 3D reference volume can be registered
{either automatically using a registration algorithm of choice, or with user
guidance) to the two 2D templates, yielding an offset and an updated 3D reference
volume and RO (as discussed below with reference to FIG 8). Then, during the
training workflow, the updated 3D reference volume and RO can be used. During

20 the treatment workflow, the same-contrast 2D templates can be used as the
registration targets for feature extraction. Finally, the concatenation of the
previously estimated offset with the relative motion estimates {1.¢. the output of
the machine learning regressor) vields the desired motion estimates, 1.¢. relative
to the primary (nov-updated) reference volume.

25 {0099} ¥FiG. 8 depicts a corrective procedure using registration for feature
extraction, to account for possible offsets between the 3D reference volume 810
and 2D templates 822 having the same contrast. The 3D reference volume 810 is
{automatically or with user guidance) registered 820 to the two same-contrast 2D
templates, yiglding an offset 830 that is resampled 840 into an updated 3D

30 reference volume 850, The updated 3D reference volume 850 is then used in &
training workflow 800 (e.g., the training workflow discussed with reference to

FIG 6).

[
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10160} Additionally, in a treatment workflow 870 (e.g., the treatment
workflow discussed with reference to FIG. 5), the same-contrast 2D templates 822
can be used as registration targets for feature extraction from the 2D images. The
calculated offset 830, provided from the registration results, 1s used within the
5 treatment workflow 870 to compute the true relative motion parameters (relative
to the primary {(nov-updated) 3D reference volume 810},
{0181} FEG. 9 llustrates a regression machine learning worktlow 900 for
use in estimating patient motion during a radiotherapy session. The machine
fearning workflow 900 includes a fraining workflow 901 and an estimation
10 workflow 911 to perform training and estimation operations, respectively. The
workflow 900 provides another view of data processing occurring with the
training and treatment aspects depicted in FIG. 8. It will be understood that the
training worktlow 901 may 1ncorporate the training aspects discussed with FIGS,
6 and 7, above, and the estimation workflow may incorporate the motion
1S estimation aspects discussed with FIG. 5, above.
{0162} In the training workflow 901, training engine 904 generates
training inputs from transformed image data (e.g., motion-transformed reference
image data 902}, to produce features 908 for training. Feature transformation and
determination 906 determines one or more image and motion features 908 from
20 the reference data input, such as with use of the transformation workflow depicted
in FIG. 6. Stated generally, the image and motion features 908 provide a set of the
information input and include information determined to be indicative of a
particular outcome. The machine learming algorithm 910 {(eg. a regression
algorithm) produces a trained model 920 {e.g., a regression model } based upon the
25  image and motion features 908 and the correspondence between image
characteristics and the known image transformation (motion). The regression
model 920 thus learns the relationship between features of the simulated image
data (2D image(s)) and the relative motion parameters (relative to a 3D reference
volume).
30 (0103} In the estimation workflow 911, newly captured data 912 {eg., a
2D image of a patient captured in real time} may be input (o the estimation engine
914. The estimation engine 914 operates to identity a region of interest (if

applicable} and use a feature determination engine 916 to determine image

[
53



WO 2022/232749 PCT/US2022/071772

features of the newly captured data 912 that are relevant to a corresponding patient
state. The feature determination engine 916 produces image features 918, which
are input into the regression madel 920. The training workflow 901 may operate
in an offiine manner to train the regression model 920, such that weights of the
5  regression model 920 are learned during training and fixed. Then, during the
estimation workflow 911, the image features 918 are input into the trained
regression model 920, which internally uses the fixed weights to produce the
motion estimation 930, The estimation engine 914, however, may be designed to
operate in an online manner. It should be noted that the regression model 920 may

10 be periodically updated via additional training or user feedback (¢ g., additional,
changed, or removed measurements or patient states).

{0104} The machine learning algorithmn 910 may be selected from among
many different potential supervised machine learning algorithms, Examples of
supervised learning algorithms include artificial neural networks, Bayesian

15 networks, instance-based learning, support vector machioes, decision trees {e.g.,
fterative Dichotomiser 3, C4.5, Classification and Regression Tree (CART), Chi-
squared Automatic Interaction Detector (CHAID), and the like), random forests,
finear classifiers, quadratic classifiers, k-nearest neighbor, linear regression,
fogistic regression, and hidden Markov models. A representation of the regression

20 model is illustrated in block 922, showing an example Hinear regression. If a linear
regressor is used, the model parameters {e.g., weights or coefficients) represent
the importance of each of the corresponding features. However, with use of non-
linear regressors, such as regression trees or random forests, the model parameters
are not directly related to feature importance.

25 {0165} The machine learning algorithm 910 trains the model 920 as
described herein, based on how motion represenied by image transformation
correspond to image data. In an example, the machine learning algorithm 910
implements a regression problem {e.g., Hinear, polynomial, regression trees, kernel
density estimation, support vector regression, random forests implementations, or

30 the like) The resulting training parameters define the regression model (a
generator) as a correspondence motion model for the chosen machine learning

algorithm.
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10166} In the conventional LINAC case, this training may be performed
separately for every possible gantry angle (e.g., with a one degree increment),
since X-ray acquisition origntation may be constrained to an orthogonal angle with
respect 1o the treatment beant. [n the MR-LINAC case, control may be givento a
5 clinician on the 2D acquisition plane for position or orientation. Repeating cross-
validation on tratning data with different choice of 2D planes can reveal which 2D
planes yield best surrogate information for a given patient/tumor site.
{0167} After the machine learping algorithm has performed training and
the trained regression model is aligned to the patient, instantaneous images are

10 acquired as the radiotherapy treatment beam is controlled, before and after
treatment. For each received image, the process may include identifying motion
estimation 930 of a region of interest using the model 920, and using such
estimated relative motion to provide other motion estimation of the region of
interest, the treatment area(s), and the patient.

15 [0188] FIG, 19 illustrates a flowchart 1000 of a method of training a
regression machine learning model for generating estimated motion in a region of
interest, incorporating the technigues discussed above. For instance, the following
features of flowchart 1000 may be integrated or adapted with the training
discussed with reference to FIG. 6.

20 j0189) Operation 1010 includes obtaining three-dimensional image data
corresponding to a human subject for radiotherapy treatment (e.g., the image data
including the reference volume and at feast one region of interest(s) to track). In
an example, a reference volume represents the patient anatomy in three
dimensions, and the at least one region of interest is defined within the three

25 dimensions.

{8116} Operation 1020 follows, which includes identifying image
transformation parameters defining a spatial transformation {e.g., rotation and/or
transiation). At operation 1030, the spatial transformation is applied to the
reference volume (imaging data) This 15 followed by operation 1040, which

30  includes performing slicing on the transformed reference volume and region of
interest, to produce two-dimensional synthetic images for training. Operation
1050 follows with extracting respective sets of features from the two-dimensional

synthetic images. In further examples, the feature extraction includes generating
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multi-orientation feature vectors, based on the extracted sets of features. After
operations 1020-1050, pairs of multi-orientation feature vectors and
corresponding spatial transformations are established for training.
0111} Operation 1060 includes training a machine learning regression
5 model with the pairs of image transtormation parameters and corresponding
features {e.g., patrs of multi-orientation feature vectors and corresponding spatial
transformations, that were obtained from the two-dimensional synthetic images).
Operations 1020-1050 are repeated, as necessary, for generating a set of training
data which can be used to train {or fit) the regressor model.

10 [0112] Operation 1070 concludes the flowchart 1000 by providing a
trained machine learning regression model for use with a radiotherapy treatment
session, such as is discussed with reference to the model usage examples herein.
{0113} FEG. 11 illustrates a flowchart 1100 of a method of using a trained
regression machine learning model, for estimating movement in a region of

15 interest, based oo the techniques discussed above. For instance, the following
features of flowchart 1000 may be integrated or adapted with the model usage
discussed with reference to FIG. 5.

131144 Uperation 1110 begins with obtaining three-dimensional image
data corresponding to a human subject, at a tracking region of interest {prior to

20 radiotherapy session). This is followed by operation 1120, tnvolving training 2
machine learning regression model based on the three-dimensional image data
corresponding to the subject. For instance, operations 1110, 1120 may be
expanded into further training actions as depicted with reference to flowchart 1000
or the tratning funcuions in FIG. 6.

25 {0115} Operation 1130 includes obtaining real-time, two-dimensional
image data corresponding to subject, captured on an ongoing basis during a
radiotherapy session. The twe-dimensional image data may capture at least a
portion of the region of 1nterest, and may include a first two-dimensional 1mage
captured at a first orientation and a second two-dimensional image captured at 2

30 second orientation (with additional orientations and images also possible). In some
examples, the first two-dimensional image is captured at a first time during the
rachotherapy treatment session and the second two-dimensional image 15 captured

at a second time during the radiotherapy treatment session (e.g., within 300
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nmulliseconds, or according to another time duration which enables real-time
motion processing).
{8116} Operation 1140 (optional, as applicable) includes converting two-
dimensional image data to match a contrast of three-dimensional image data. For
5  instance, this may incorporate the features of FIG. 8 or the accompanying
exaroples, which discusses technigues applicable where the three-dimensional
reference volume is acquired with a first MR pulse acquisition sequence, but the
two-dimensional image data is acquired with a second, different MR puise
acquisition sequence,

10 [0117} Operation 1150 includes extraction of the features from the real-
time, two-dimensional image data. In an example, an extracted first set of features
from a first image and a second set of features from a second image are combined
into a multi-dimensional feature vector. The features may be exiracted within a
region of interest or other designated areas of the image(s). In specific examples,

15 the extracted features are obtained after performing deformable image registration
and dimensionality reduction techniques, as discussed above.

{0118} Operation 1160 includes analysis of extracted features with the
trained machine learning regression model (e.g., trained in operation 1120}, that
has been trained to estimate transformation parameters describing the relative

20 motion of the region of interest. This relative motion is relative to the region of
interest imaged in the original three-dimensional image data. The trained machine
fearning regression model may accept the multi-dimensional feature vector as
input, and produce values indicating a spatial transformation of the extracted
features as output.

25 {0119} Operation 1170 provides the output from the trained machine
fearning regression model, the output indicating indicates a relative motion
estimation of the region of interest in the anatomy of the human subject. Based on
this output, operation 1180 may be performed to control a radiotherapy treatment
based on the relative motion estimation, using the radiotherapy control techniques

30 discussed herein.

{01206} FIG. 12 15 a flowchart 1200 illustrating example operations for
performing training and treatment workfiows (including those depicted among

FIGS. 4 1o 11), according to various examples. These operations may be
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implemented at processing hardware of the image processing computing system
110, for instance.
{6121} At operation 1210, image processing computing system 110
obtains (or captures, or causes an imaging modality to capture) three-dimensional
5 image data, including radictherapy constraints and targets, corresponding to a
human subject. As discussed above, this may be obtained prior to radiotherapy
treatment, and include three-dimensional magnetic resonance (MR} volume or a
three-dimensional computed tomography (CT) volume.
{3122} At operation 1220, the image processing computing system 110
10 obtains {or captures, or causes an imaging modality to capiure) two-dimensional
image data, on an ongoing basis, to capture movement of the subject with multi-
orientation images.
{0123} At operation 1230, the real-time two-dimensional imaging data is
pre-processed for use with the model, such as to extract features from multi-
15 orientation two-dimensional images. At operation 1240, the image processing
computing system 110 uses a trained regression model (trained such as discussed
with reference to FIG. 10) to estimate spatial transformation from extracted
features, and generate estimated real-time movement (such as discussed with
reference to FIG. 11
20 {0124} At operation 1250, the image processing computing system 110
identifies a movement state of subject, based on the estimated real-time
movement. This may be accompanied by operations (sequentially or in parallel),
such as operation 1260, which utilizes the image processing computing system
110 to locate a radiation therapy target within subject using the identified
25  movement state, or operation 1270, which utilizes the image processing
computing system 110 to track a radiation therapy target within subject in real-
time using the identified movement state.
10125} At operation 1280, image processing computing system 110 directs
or controls radiation therapy, using a treatment machine, to the radiation therapy
30 target according to the identified movement state. It will be understood that a
variety of existing approaches for moditying or adapting radictherapy treatment
may occur based on the controlied therapy or identified movement state, once

correctly estimated.
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10126} The processes depicted in flowcharts 1000, 1100, 1200 with FIGS.
1010 12 may be embodied in computer-readable instructions for execution by one
or more processors such that the operations of the process may be performed, for
instance, in part or in whole by the functional components of the timage processing
5  computing system 110, However, in other examples, at least some of the
operations of the process may be deployed on varnous other hardware
configurations. Some or all of the operations of process can be in parallel, out of
order, or entirely omitted.
{3127} FIG. 13 iHlustrates a block diagram of an example of a machine
10 1300 on which one or more of the methods as discussed herein can be
implemented. In one or more examples, one or more items of the image processing
computing system 110 can be implemented by the machine 1300. In alternative
examples, the machine 1300 operates as a standalone device or may be connected
(e.g., networked) to other machines. In one or more examples, the image
15 processing computing system 110 can include one or more of the items of the
machine 1300, In a networked deployment, the machine 1300 may operate in the
capacity of a server or a client machine in server-client network environment, or
as a peer machine in a peer-to-peer (or distributed) network environment. The
machine may be a personal computer (PC), server, a tablet, smartphone, a web
20 appliance, edge computing device, a network router, switch or bridge, or any
machine capable of executing instructions {sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a single machine s
illustrated, the term “machine” shall also be taken to include any collection of
machives that individually or jointly execute a set {or multiple sets) of instructions
25 to perform any one or more of the methodologies discussed herein.
[D128] The example machine 1300 includes processing circuitry or
processor 1302 (e.g., a CPU, a graphics processing unit (GPU), an ASIC, circuitry,
such as one or more transistors, resistors, capacitors, inductors, diedes, logic gates,
multiplexers, buffers, modulators, demodulators, radios {e.g., transmit or receive
30 radios or transceivers), sensors 1321 (e.g, a transducer that converts one form of
energy {e.g., light, heat, electrical, mechanical, or other energy} to another form
of energy), or the like, or a combination thereof), a main memory 1304 and a static

memory 1306, which communicate with each other via a bus 1308, The machine



WO 2022/232749 PCT/US2022/071772

1300 {e.g., computer system) may further include a video display device 1310
{e.g., a liquid crystal display (1.CE) or a cathode ray tube (CRT)). The machine
1300 also includes an alphanumeric input device 1312 {e.g., a keyboard), a user
interface (UT) navigation device 1314 {e.g., a mouse), a disk drive or mass storage
5 unit 1316, a signal generation device 1318 {e.g, a speaker), and a network
interface device 1320.
{0129} The disk drive unit 1316 ncludes a machine-readable medium
1322 on which is stored one or more sets of instructions and data structures (e.g.,
software} 1324 embodying or uttlized by any one or more of the methodologies
10 or functions described herein. The instructions 1324 may also reside, completely
or at least partially, within the main memory 1304 and/or within the processor
1302 during execution thereof by the machine 1300, the main memory 1304 and
the processor 1302 also constituting machine-readable media.
10136} The machine 1300 as illustrated includes an output controller 1328,
15 The output controller 1328 manages data flow to/from the wachine 1300. The
output controller 1328 is sometimes called a device controller, with software that
directly interacts with the ocutput controller 1328 being called a device driver.
10131} While the machine-readable medium 1322 {s shown in an example
to be a single medium, the term "machine-readable medium” may include a single
20 medium or multiple media (e.g, a ceniralized or distributed database, and/or
associated caches and servers) that store the one or more instructions or data
structures. The term "machine-readable medium” shall also be taken to include
any tangible medium that is capable of storing, encoding or carrying instructions
for execution by the machine and that cause the machive to perform any one or
25 more of the methodologies of the present disclosure, or that is capable of storing,
encoding or carrying data structures utilized by or associated with such
instructions. The term "machine-readable medium" shall accordingly be taken to
include, but not be limited to, solid-state memories, and optical and magnetic
media. Specific examples of machine-readable media include non-volatile
30 memory, including by way of example semiconductor memory devices, e.g.,
Erasable Programmable Read-Only Memory (EPROM), EEPROM, and flash
memory devices; magnetic disks such as internal hard disks and removable disks;

magneto-optical disks; and CID-ROM and DVD-ROM disks.
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0132} The instructions 1324 may further be transmitted or received over
a communications network 1326 using a transmission medium. The instructions
1324 may be transmitted using the network interface device 1320 and any one of
a number of well-known transfer protocols (eg, HTTP) Examples of
5 communication networks include a LAN, a WAN, the Internet, mobile telephone
networks, Plain Old Telephone (POTS) unetworks, and wireless data networks
{e.g., Wi-F1 and 40/5G data networks). The term "transmission medium” shall be
taken to include any intangible medium that 15 capable of storing, encoding or
carrying instructions for execution by the machine, and includes digital or analog
10 communications signals or other intangible media to facilitate communication of
such software.
{8133} As used herein, “communicatively coupled between” means that the
entities on either of the coupling must communicate through an item therebetween
and that those entities cannot communicate with each other without
1S communicating through the iter.

Additional Notes

{0134} The above detailed description includes references to the
accompanying drawings, which form a part of the detailed description. The
drawings show, by way of illustration but not by way of limitation, specific
20 embodiments in which the disclosure can be practiced. These embodiments are
also referred to herein as “examples.” Such examples can include elements in
addition to those shown or described. However, the present inventors also
contemplate examples in which only those elements shown or described are
provided. Moreover, the present inventors also contemplate exaruples using any
25 combination or permutation of those elements shown or described (or one or more
agspects thereof), either with respect to a particular example (or one or more aspects
thereof), or with respect to other examples {(or one or more aspects thereof) shown
or described herein.
{0135} All publications, patents, and patent documents referred to in this
30 document are incorporated by reference herein in their entirety, as though
individually incorporated by reference. In the event of inconsistent usages
between this document and those documents so incorporated by reference, the

usage in the incorporated reference(s} should be considered supplementary to that
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of this document; for irreconcilable inconsistencies, the usage in this document
controls.
j0136} in this document, the terms “a,” “an,” “the,” and “said” are used
when ntroducing elements of aspects of the disclosure or in the embodiments
5  thereof, as is common in patent documents, to include one or more than one or
more of the elements, independent of any other insiances or usages of “at least
one” or “one or more.” In this document, the term “or” is used to refer to 2
nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and
“A and B,” uniess otherwise indicated.

10 0137} In the appended claims, the terms “including” and “in which” are
used as the plain-English equivalents of the respective terms “comprising” and
“wherein.” Also, tn the following claims, the terms “comprising,” “including,”
and “having” are intended to be open-ended to mean that there may be additional
elements other than the listed elements, such that after such a term {(e.g,

1S comprising, including, having) o a claim are still deewed to fall within the scope

M s

of that claim. Moreover, in the following claims, the terms “first,” “second,” and
“third,” and so forth, are used merely as labels, and are not intended to impose
numerical requirements on their objects.
0138} Embodiments of the disclosure may be implemented with
20 computer-execuiable instructions. The computer-executable instructions {e.g.,
software code} may be organized info one of more computer-executable
components or modules. Aspects of the disclosure may be implemented with any
number and organization of such components or modules. For example, aspects
of the disclosure are not himited to the specific cormputer-executable nstructions
25 or the specific components or modules illusirated in the figures and described
herein. Other embodiments of the disclosure may include different computer-
executable instructions or compenents having more or less functionality than
tllustrated and described herein.
{0139} Method examples (e g, operations and functions} described hergin
30 can be machine or computer-implemented at least in part {e.g., implemented as
sofiware code or instructions). Some examples can include a computer-readable
medium or machine-readable medium encoded with instructions operable to

configure an electronic device to perform methods as described in the above
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examples. An implementation of such methods can include software code, such
as microcode, assembly language code, a higher-level language code, or the like
{e.g., “source code”) Such software code can include computer-readable
instructions for performing various methods (e.g., “object” or “executable code™).
5 The software code may form portions of computer program products. Software
implementations of the embodiments described herein may be provided via an
article of manufacture with the code or instructions stored thereon, or via a method
of operating a communication interface to send data via a communication interface
{e.g., wirelessly, over the internet, via satellite communications, and the like).

10 [0140] Further, the software code may be tangibly stored on one or more
volatile or non-volatile computer-readable storage media during execution or at
other ttmes. These computer-readable storage media may include any mechanism
that stores information in a form accessible by a machine (e g, computing device,
electronic system, and the like), such as, but are not limited to, floppy disks, hard

15 disks, removable magnetic disks, any form of magnetic disk storage wedia, CD-
ROMS, magnetic-optical disks, removable optical disks {(e.g., compact disks and
digital video disks), flash memory devices, magnetic cassettes, memory cards or
sticks {e.g., secure digital cards), RAMs {eg, CMOS RAM and the like),
recordable/non-recordable media (e g, read only memories (ROMs)), EPROMS,

20 EEPROMS, or any type of media suitable for storing electronic instructions, and
the like. Such computer-readable storage medium is coupled to a computer system
bus to be accessible by the processor and other parts of the OIS.

{0141} In an embodiment, the computer-readable storage medium may
have encoded a data siructure for treatment planning, wherein the treatiment plan

25 may be adaptive. The data structure for the computer-readable storage medium
may be at least one of a Digital Imaging and Communications in Medicine
(DICOM) format, an extended DICOM format, an XML format, and the like.
DICOM is an international communications standard that defines the format used
o transfer medical image-related data between various types of medical

30 equipment. DICOM RT refers to the communication standards that are specific to
radiation therapy.

10142} In various embodiments of the disclosure, the method of creating a

component or module can be implemented in software, hardware, or 2
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combination thereof. The methods provided by various embodiments of the
present disclosure, for example, can be implemented in software by using standard
programming languages such as, for exampie, C, C++, C#, Java, Python, CUDA
programming, and the like; and combinations thereof. As used herein, the terms
5  “software” and “firmware” are interchangeable, and include any computer
program stored o memory for execution by a computer.
[0143] A communication interface includes any mechanism that interfaces
to any of a hardwired, wireless, optical, and the like, medivm to communicate to
another device, such as a memory bus interface, a processor bus interface, an

10 Internet connection, a disk controller, and the like. The communication interface
can be configured by providing configuration parameters and/ or sending signals
to prepare the communication interface o provide a data signal describing the
software content. The comumunication interface can be accessed via one or more
commands or signals sent to the communication interface.

15 [0144] The present disclosure also relates to a systern for performuing the
operations herein. This system may be specially constructed for the required
purposes, or it may comprise a general purpose computer selectively activated or
reconfigured by a computer program siored in the computer. The order of
execution or performance of the operations in embodiments of the disclosure

20 illustrated and described herein is not essential, unless otherwise specified. That
is, the operations may be performed in any order, unless otherwise specified, and
embodiments of the disclosure may include additional or fewer operations than
those disclosed herein. For example, it is contemplated that executing or
performing a particular operation before, contemporavecusly with, or after

25 another operation 1s within the scope of aspects of the disclosure.

{8145} In view of the above, it will be seen that the several objects of the
disclosure are achieved and other advantageous results attained. Having described
aspects of the disclosure in detail, it will be apparent that modifications and
variations are possible without departing from the scope of aspects of the

30 disclosure as defined in the appended claims. As various changes could be made

in the above constructions, producis, and methods without departing from the

scope of aspects of the disclosure, it is intended that all matter contained in the
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above description and shown in the accompanying drawings shall be interpreted

as illustrative and not in a limiting sense.
{4146} The above description is intended to be illustrative, and not
restrictive. For example, the above-described examples {or one or more aspects
5  thereof) may be used in combination with each other. In addition, many
modifications may be made to adapt a particular sttuation or material to the
teachings of the disclosure without departing from its scope. While the
dimensions, types of materials and coatings described herein are intended to
define the parameters of the disclosure, they are by no means limiting and are
10 exemplary embodiments. Many other embodiments will be apparent to those of
skill in the art upon reviewing the above description. The scope of the disclosure
should, therefore, be determined with reference to the appended claims, along with

the full scope of equivalents to which such claims are entitled.
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CLAIMS

What is claimed is:

L. A computer-implemented method for monitoring anatomic position of a
human subject for a radictherapy treatment session, the method comprising:
obtatuing three-dimensional tmage data corresponding to the subject, the
5 three-dimensional image data including: a reference volume that represents
anatonty of the subject in three dimensions, and at least one region of interest
defined within the three dimensions;
obtaining two-dimensional image data corresponding to the subject, the
two-dimensional image data captured during the radiotherapy freatment session,
10 and the two-dimensional image data capturing at least a portion of the region of
tnterest;
extracting features from the two-dimensional image data;
providing the extracted features as input to a wachine learning regression

model, the machine learning regression model trained to estimate a spatial

[y
(93]

transformation in the three dimensions of the reference volume from features
extracted from two-dimensional image data, and
obtaining, from output of the machine learning regression model, a

relative motion estimation of the at least one region of interest, wherein the
relative motion estimation indicates motion relative to the reference volume
20 which is estimated from the extracted features.

2. The method of claim 1, wherein the two-dimensional image data

comprises a first two-dimensional image captured at a first orientation and a

second two-dimensional image captured at a second orientation, and wherein the
25 features extracted from the two-dimensional image data include a first set of
features extracted from the first two-dirmensional image and a second set of

features extracted from the second two-dimensional image.

3. The method of claim 2, wherein the first two~dimensional image is
30 captured from a first plane, and wherein the seeond

1l plane that is orthogonal to the first plane.
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4. The method of claim 2, wherein the first two-dimensional image is
captured at a first time during the radiotherapy treatment session and wherein the
second two-dimensional irnage 15 captured at a second time during the

5  radictherapy treatment session.

5. The method of claim 4, wherein the second time occurs within 300

milliseconds after the first time.

10 6 The method of claim 2, wherein the first set of features and the second
set of features are combined into a multi-dimensional feature vector, and
wherein the machine learning regression model is trained to process the multi-

dimensional feature vector as input.

s 7 The method of claim 6, wherein the extracting of the first set of features
and the second set of features comprises extracting respective features within the

at least one region of interest.

8. The method of claim 7, wherein the extracting of the respective features
20 within the at least one region of interest comprises:
performing deformable image registration; and

performing dimensionality reduction techniques.

9. The method of claim 6, wherein the first and second two-dimensional
25 images are kilovoliage (kV) x-ray projection images, and wherein extracting the
first set of features and the second set of features comprises extracting fiducial

positions from the respective kV x-ray projection images.

16, The method of claim 1, the method further comprising:

30 training the machine learning regression model prior to the radiotherapy
treatment session, the training comprising fitting the regression model with a
mapping tdentified between pairs of image transformation parameters and

corresponding multi-orientation features,
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11 The method of claim 10, wherein the training comprises:

applying spatial transformations to the reference volume according to the
image transformation parameters;

5 generating a plurality of two-dimensional synthetic images from

respective slices of the transformed reference volume,

extracting respective sets of features from the plurality of two-
dimensional synthetic images; and

generating multi-onentation feature vectors, based on the extracted sets

10 of features;

wherein the training of the machine learing regression model is

performed using a plurality of pairs of the multi-orientation feature vectors and

the corresponding spatial transformations.

51z The method of claim 11, wherein the spatial transformation includes one
or more of translation and rotation, to cause a change in appearance in the at

teast one region of interest in the reference volume.

13 The method of claim 1, wherein the three-dimensional image data is
20 captured prior to the radiotherapy treatment session, and wherein the three-
dimensional image data comprises a three-dimensional magnetic resonance

(MR volume or a three-dimensional computed tomography {CT) volume.

14 The method of claim 1, wherein the two-dimensional image data is
25  magnetic resonance (MR) imaging data, wherein the reference volume is

acquired with a first MR pulse acquisition sequence, and wherein the two-

dimensional image data is acquired with a second MR pulse acquisition

sequence.

30 1S The method of claim 14, further comprising:
capturing an intermediate three~-dimensional reference volume using the
second MR pulse acquisition sequence, prior to the radiotherapy treatment

session; and



WO 2022/232749 PCT/US2022/071772

performing a registration of the intermediate three-dimensional reference
volume 1o the reference volume,

wherein training of the machine learning regression model includes use
of the registration, and wherein analysis of the extracted features includes use of

5  registration.

16. The method of claim 14, further comprising:
obtaining image templates from additional two-dimensional image data
corresponding to the subject, the additional two-dimensional tmage data
10 obtained using the second MR pulse acquisition sequence prior to the
radiotherapy treatment session,
performing a registration of the image templates to the reference volume,
to determine an offset between the image teruplates and the reference volume;
and
15 modifying the three-dimensional image data based on the offset, wherein
the machine learning regression model is trained to use regression with the
modified three-dimensional image data;
wherein extracting features from the two-dimensional image data
includes use of the image templates as registration targets for feature extraction;
20 and
wherein the relative motion estimation of the at least one region of

interest includes use of the offset.

17. The method of claim 1, further comprising:

25 performing a radiotherapy treatment with a radiotherapy machine, using
the relative motion estimation of the region of interest, wherein performing the
radictherapy treatment comprises at least one of

changing a position of a radiotherapy beam provided in the
radiotherapy treatment, based on the relative motion esiimation;

30 changing a shape of a radiotherapy beam provided in the

radiotherapy treatment, based on the relative motion estimation; or
gating a radiotherapy beam provided in the radiotherapy

treatment, based on the relative motion estimation.
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18. At least one machine-readable storage medium comprising instructions
stored thereupon, which when executed by processing circuitry of a computing
system, cause the processing circuitry to perform the methods of any of claims 1

to 17,

19, A computing system for monitoring anatomic position of a human
subject for a radiotherapy treatment session, the computing system comprising:
one or more memory devices to store data; and
one or more processors contigured to perform the anatomic position

monitoring methods of any of claims 1 to 18, using the stored data.

20, A system, comprising

a computing system adapted to perform the anatomic position monitoring
methods of any of claims T to 18; and

a radiotherapy treatment machine operably coupled to the computing
system and adapted to perform a radiotherapy treatment, the radiotherapy
treatment machine to adapt a radiotherapy treatment session based on the

anatomic position monitoring methods.

21, A computer-implemented method of monitoring anatomic position of a
human subject for modifying a radiotherapy treatment session, the method
comprising:

obtaining three-dimensional image data corresponding to the subject, the
three~dimensional image data including: a reference volume that represents
anatomy of the subject in three dimensions, and a region of interest defined
within the three dimensions;

obtaining two-dimensional tmage data corresponding to the subject, the
two-dimensional image data captured during the radiotherapy treatment session,
and the two-dimensional image data capturing at least a portion of the region of
interest;

extracting features from the two-dimensional image data;
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producing a relative motion estimation of the region of interest with a
machine fearning regression model, based on the extracted features; and

controlling a radiotherapy beam of a radiotherapy machine used for the
radiotherapy treatroent session, based on the relative motion estimation,

22. The method of claim 21, wherein the relative motion estimation is
provided from a set of transformation parameters, and wherein producing the
relative motion estimation of the region of interest comprises:

providing the extracted features as input to a maching learning regression

10 model, the machine learning regression model trained to estimate a spatial
transformation in three dimensions from features extracted from two-
dimensional image data; and

producing the set of transformation parameters as output from the
machine learning regression model, the set of transformation parameters

15 indicating wotion of the region of interest, relative to the reference volume, that

is estimated from the extracted features.

23, The method of claim 21, wherein controlling the radiotherapy beam
comprises changing a position of the radiotherapy beam from the radiotherapy

20 machine, based on the relative motion estimation.

24, The method of claim 21, wherein conirolling the radiotherapy beam
comprises changing a shape of the radiotherapy beam from the radiotherapy

machine, based on the relative motion estimation,

25. The method of claim 21, wherein controlling the radiotherapy beam

comprises gating the radiotherapy beam, based on the relative motion estimation.

26. The method of claim 21, wherein the two-dimensional image data
30 comprises a first two-diranensional image captured at a first orientation and a
second two-dimensional image captured at a second orieniation,
wherein the features extracted from the two-dimensional image data

include a first set of features extracted from the first two-dimeunsional image and

A
ot
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a second set of features extracted from the second two-dimensional image, and

wherein the first two-dimensional image is captured at a first time during
the radiotherapy treatment session and wherein the second two-dimensional
image is captured at a second time during the radiotherapy treatment session.
27 The method of claim 26, wherein the first set of features and the second
set of features are combined into a multi-dimensional feature vector,

wherein the machine learning regression model is trained to process the
multi-dimensional feature vector as input, and

wherein the extracting of the first set of features and the second set of
features comprises extracting respective features within the at least one region of
interest by performing deformable image registration and performing

dimensionality reduction techniques.

28, At least one machine-readable storage medium comprising tnstructions
stored thereupon, which when executed by processing circuitry of a computing
system, cause the processing circuitry to perform the methods of any of claims
21 to 27.
29. A computing system for monitoring anatomic position of a human
subject for a radictherapy treatment session, the system comprising:

one or more mermory devices to store:

a three-dimensional set of image data corresponding to a subject
of radiotherapy treatment, the three-dimensional image
data including a reference volume that represents anatomy
of the subject in three dimensions, and at least ong region
of interest defined within the three dimensions; and

a two-dimensional image data corresponding to the subject, the
two-dimensional image data captured during the
radiotherapy treatment session, and the two-dimensional
image data capturing at feast a portion of the region of
interest;

one or more processors configured to perform operations to:

extract features from the two-dimensional image data;

A
3
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produce a relative motion estimation of the region of interest with
a machine learning regression model, based on the extracted features,
and

provide a command o control a radiotherapy beam of a
radiotherapy machine used for the radiotherapy treatment session, based

on the relative motion estimation.

30.  The computing system of claim 29, wherein the relative motion
estimation is provided from a set of transformation parameters, and wheretn the
operations to produce the relative motion estimation of the region of interest
comprises operations to:

provide the extracted features as input to a machine learning regression
model, the machine learning regression model trained to estimate a spatial
transformation in three dimensions from features extracted from two-
dimensional image data; and

generate the set of transformation parameters as output from the machine
fearning regression model, the set of transformation parameters indicating
motion of the region of interest, relative to the reference volume, that is

estimated from the extracted features.

31.  The computing system of claim 29, wherein the control of the
radictherapy beam is performed by causing a change to a postiion of the
raciotherapy beam provided by the radiotherapy machine, based on the relative

motion estimation.

32 The computing system of claim 29, wherein the conirol of the
radiotherapy beam is performed by causing a change to a shape of the
radiotherapy beam provided from the radiotherapy machine, based on the

relative motion estimation.

33, The computing system of claim 29, wherein the conirol of the
radiotherapy beam is performed by gating the radiotherapy beam provided from

the radiotherapy machine, based on the relative motion estimation.

A
53
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34 The computing system of claim 29, wherein the two-dimensional image
data comprises a first two-dimensional image captured at a first orientation and a
second two-dimensional image captured at a second orientation,

wherein the features extracted from the two-dimensional image data
include a first set of festures extracted from the first two-dimensional image and
a second set of features extracted from the second two-dimensional image, and

wherein the first two-dimensional image is captured at a first time during
the radiotherapy treatment session and wherein the second two-dimensional

tmage 18 captured at a second time during the radiotherapy treatment session.

3S. The computing system of claim 34, wherein the first set of features and
the second set of features are combined into & multi-dimensional feature vector,
wherein the machine learning regression model is trained to process the
multi-dimensional feature vector as input, and
wherein the extracting of the first set of features and the second set of
features comprises extracting respective features within the at least one region of
interest by performing deformable image registration and performing

dimensionality reduction technigues.
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o 1000

110~ OBTAIN THREE-DIMENSIONAL IMAGE DATA
{(REFERENCE VOLUME AND REGION OF INTEREST TO TRACK)

'

o0 IDENTIFY IMAGE TRANSFORMATION PARAMETERS
020 DEFINING SPATIAL TRANSEORMATION *

£

10307 APPLY SPATIAL TRANSFORMATION TO REFERENCE VOLUME

'

PERFORM SLICING ON TRANSFORMED
10407 REFERENCE VOLUME AND REGION OF INTEREST,
TO PRODUCE TWO-DIMENSIONAL SYNTHETIC IMAGES

L

~ EXTRACT FEATURES FROM
1050 TWO-DIMENSIONAL SYNTHETIC IMAGES

é

TRAIN MACHINE LEARNING REGRESSION MODEL WITH PAIRS OF
10807 MAGE TRANSFORMATION PARAMETERS AND FEATURES,
FROM TWO-DIMENSIONAL SYNTHETIC IMAGES

'

—~ PROVIDE TRAINED MACHINE LEARNING REGRESSION MODEL
1070 FOR USE WITH RADIOTHERAPY TREATMENT SESSION

FiG. 10
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P 1100

11104 CORRESPONDING TO SUBJECT AT TRACKING REGION OF INTEREST

OBTAIN THREE-DIMENSIONAL IMAGE DATA

(PRIOR TO RADIOTHERAPY SESSION)

é

11207 HREE-DIMENSIONAL IMAGE DATA CORRESPONDING TO SUBJECT

TRAIN MACHINE LEARNING REGRESSION MODEL BASED ON

,

OBTAIN TWO-DIMENSIONAL IMAGE DATA
CORRESPONDING TO SUBJECT
{ONGOING DURING RADIOTHERAPY SESSION;

CONVERT TWO-DIMENSIONAL IMAGE DATA
TO MATCH CONTRAST OF THREE-DIMENSIONAL IMAGE DATA

EXTRACT FEATURES FROM TWO-DIMENSIONAL IMAGE DATA

:

11607

ANALYZE EXTRACTED FEATURES WITH
MACHINE LEARNING REGRESSION MODEL,
TRAINED TO ESTIMATE TRANSFORMATION PARAMETERS

:

11707

PRODUCE RELATIVE MOTION ESTIMATION
OF REGION OF INTEREST

4

1180™

IDENTIFY RADIOTHERAPY TREATMENT CHANGES
BASED ON RELATIVE MOTION ESTIMATION

FiG. 11
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o 1200

CAPTURE THREE-DIMENSIONAL IMAGE DATA,
1210 ™\ INCLUDING RADIOTHERAPY CONGTRAINTS AND TARGETS,
CORRESPONDING TO SUBJECT

L

CAPTURE TWO-DIMENSIONAL IMAGE DATA,
1220 7 ON AN ONGOING BASIS, TO CAPTURE MOVEMENT OF SUBJECT
WITH MULTI-ORIENTATION IMAGES

L

1230 ™™ EXTRACT FEATURES FROM MULTI-ORIENTATION IMAGES

i

USE TRAINED REGRESSION MODEL
1240 ™ TO ESTIMATE SPATIAL TRANSFORMATION FROM EXTRACTED
FEATURES, AND GENERATE ESTIMATED REAL-TIME MOVEMENT

'

IDENTIFY MOVEMENT STATE OF SUBJECT,
BASED ON ESTIMATED REAL-TIME MOVEMENT

1250

’52601 £ ’}’27(}\z i

LOCATE A RADIATION THERAPRY TRACK A RADIATION THERAPY
TARGET WITHIN SUBJECT TARGET WITHIN SUBJECT IN REAL-TIME
USING THE IDENTIFIED STATE USING THE IDENTIFIED STATE

| E

DIRECT RADIATION THERAPY, USING A
12804 TREATMENT DEVICE, TO TARGET ACCORDING
TO THE IDENTIFIED STATE

FIG. 12



WO 2022/232749 PCT/US2022/071772

14114
130
~ 1308
1310
PROCESSOR -
»  DISPLAY DEVICE
INSTRUCTIONS
1312
1 4
MAIN MEMORY g | [  INPUTDEVICE
e
INSTRUCTIONS 134
106
Vil s
P —— bl Ul NAVIGATION DEVICE
P 1324
INSTRUCTIONS x 1318
-
- 7 1322
i MASS STORAGE |
= 4
B gl | MACHINE-READABLE || 1324
SENSORS T MEDUM
INSTRUCTIONS
1520
1588
NETWORK INTERFACE
DEVICE ) >
SIGNAL GENERATION
X > DEVICE
~ 1326 e 1328
\ETWORK & 43 OUTPUT CONTROLLER




INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2022/071772

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - AB1N 5/10; A61B 5/00; A61B 34/10; GO6N 3/08; GO6N 20/00; GO6T 7/00 (2022.01)
CPC - AB1N 5/103; A61B 5/7267; A61B 34/10; GO6N 3/0454; GO6N 20/00; GO6T 7/0012 (2022.05)

According to International Patent Classification (IPC) or to both national classification and IPC

B.  FIELDS SEARCHED

see Search History document

Minimum documentation searched (classification system followed by classification symbols)

see Search History document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

see Search History document

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X WO 2020/077198 A1 (KINETICOR INC) 16 April 2020 (16.04.2020) entire document 1,2,4-7,10, 13, 17, 18,
21-23, 26, 28-31, 34

Y 3,8,9,11,12, 14, 24, 25,
27,32, 33,35

Y US 2021/0046331 A1 (ELEKTA LTD) 18 February 2021 (18.02.2021) entire document 3,8,9, 11,12, 14, 24, 25,
27,32, 33,35

A US 2018/0043182 A1 (DUKE UNIVERSITY) 15 February 2018 (15.02.2018) entire document 1-18, 21-35

A US 2020/0258227 A1 (SIEMENS HEALTHCARE GMBH) 13 August 2020 (13.08.2020) entire 1-18, 21-35

document
A US 2009/0022379 A1 (TASHIRO et al) 22 January 2009 (22.01.2009) entire document 1-18, 21-356

D Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

“A™ document defining the general state of the art which is not considered
to be of particular relevance

“D" document cited by the applicant in the international application

“E” earlier application or patent but published on or after the international
filing date

“L” document which mag throw doubts on priority claim(s) or which
is cited to establish the hpubllcatlon date of another citation or other
special reason (as specified)

“O” documentreferring toanoral disclosure, use, exhibition or other means

“P”  document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be

considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“Y™ document of particular relevance; the claimed invention cannot
be considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

03 June 2022

Date of mailing of the international search report

Jun 16 2022

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.Q. Box 1450, Alexandria, VA 22313-1450

Facsimile No. 571-273-8300

Authorized officer
Taina Matos

Telephone No. PCT Helpdesk: 571-272-4300

Form PCT/ISA/210 (second sheet) (July 2019)




INTERNATIONAL SEARCH REPORT International application No.

PCT/US2022/071772

Box No. 11 Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
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