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constraining the motion of the bodies in the model
system, and calculating in the processor the position
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system after a predetermined time step based on rigid
body dynamics, including carrying out a semi-implicit
integration step subject to the constraints, to determine
the velocity after the step, including determining
the constraint forces that act to keep the system in
compliance with the constraints by ensuring that the
first derivative of the constraint function is zero.
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IMAGE DISPLAY APPARATUS, METHOD AND PROGRAM BASED ON RIGID BODY DYNAMICS

The invention relates to an image display system and
method, and in particular to an image display system that uses
physical dynamic models to produce a realistic display of a
scene.

It is becoming increasingly useful to display scenes on
computer displays that represent the real world. Such scenes
may occur in virtual reality devices, simulators and computer
games.

One way of providing such scenes is to film images and to
display the recorded images on the display. However, this
approach requires that the content of the scene is
predetermined and appropriate film sequences created and pre-
stored in the computer. Thus, such an approach cannot be used
where the scenes are not wholly scripted, which makes the
approach unsuitable for simulations and computer games in which
the user can carry out actions not predicted by the programmer.

An alternative approach uses a simulation of rigid body
dynamics to allow scenes including such objects to be displayed
realistically. 1In order to cope with simulation applications,
the model has to be able to cope with a variable number of

simulated objects that can be created and destroyed.
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Such models should model a plurality of rigid objects that
can interact with each other, subject to constraints. For
example, if one object is hinged to another object that hinge
acts as a constraint; the two objects cannot move
independently. The existence of constraints makes the problem
much more difficult to solve than a simple application of
Newton's laws of motion.

A number of prior approaches have been presented but these
have not proven wholly successful. The most suitable for
simulation of multiple objects are so-called "extended
coordinate methods" in which the constraints are introduced
using Lagrange multipliers that correspond to forces that
maintain the constraints. However, there are difficulties with
these approaches.

Firstly, the known methods use a large number of
variables, using nearly doubling the number of variables
(because of the Lagrange multipliers) to describe the system,
which results in them being eight times more computationally
intensive than an equivalent system without constraints. Thus,
the prior art methods tend to be highly inefficient.

Secondly, the known methods use differential algebraic
equations that are numerically rather stiff. Simple methods
for solving such equations are rather unstable.

Thirdly, it is not known how to efficiently incorporate

friction into such systems. As will be appreciated, friction
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is an important property of real physical systems that has to
be modelled correctly for a realistic result. This is a
difficult problem but a working solution was reported in D.E.
Stewart and J.C. Trinkle, "An implicit time-stepping scheme for
rigid body dynamics with inelastic collisions and coulomb
friction", International for numerical methods in engineering,
volume 39 pages 2673-2691 (1996), and was improved on by Mihai
Anitescu and F.A. Potra, "Formulating dynamic multi-rigid-body
contact problems with friction as solvable linear
complementarity problems", Non-linear Dynamics, volume 14 pages
231-237 (1997). The approach described allows consistent
models in which the velocities can always be computed and are
always finite. The disadvantage of the approach is that the
model involves solving a particular class of linear
complementarity problem which has a structure such that not all
algorithms are suitable. Anitescu and Trinkle used the Lemke
algorithm but this is inefficient and prone to large errors.

A fourth difficulty with prior art approaches is that the
constraints are generated automatically; such constraints need
not be not independent of one another which results in the
system being degenerate. Geometric analysis software that
performs collision detection cannot check whether all the
constraints are truly independent of each other, and only
during simulation can it be determined that some constraints

are redundant. Such degeneracy can cause real problems for the
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simulations, especially in the case of collision detection
which checks for proximity of pairs of objects, whereas the
constraint degeneracy only appears at the system level
including all the rigid bodies in the system.

Fifthly, known systems do not cope well with stiffness,
i.e. rigid spring-like systems and compliant elements. The
only tractable solutions ignore contact and friction
altogether, which makes them unsuitable for analysis of
arbitrary physical systems.

Accordingly, there is a need for an image display system
that ameliorates or alleviates some or all of these
difficulties.

The known models require the solution of linear
complementarity problems, a particular type of constrained
equation. In general, a linear complementarity problem can be

put in the form:

Mz + g =w (1)
z; 2 0 Vi e {1,2..n} (2)
wi 2 0 Vi € {1,2..n} (3)
xXiw; = 0 Vi € {1,2..n} (4)

where M is an n by n matrix and z and w are real n-

dimensional vectors. The problem requires finding the solution

of equation (1), i.e. the values of z and w, subject to the

constraints (2) - (4).
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This is fundamentally a combinatorial problems, and

solutions generally search through two index sets, where each

index is in one of the sets. The first set o is a set of

active variables for which w; = 0 and the second set B is a set
of free variables for which z; = 0. The problem is then

partitioned as

Maa Mtz/i lizaj, qa 0
+ = (5)
Mg, My |0 9 Wp

where a and P specify indices in the first and second sets

respectively.

This is equivalent to the linear algebra problem

(6)
wﬁzzﬁlﬂaza-+qﬂ

which must be solved for z while w is calculated by
substitution. M, is known as the principal submatrix.

Various implementations are known. They differ in how the
two sets are revised. They use a computed complementarity

point which is a vector s such that

Zi Viea
Siz wl, Vie (7)

The methods go through a sequence of sets until a solution is
found, i.e. until s; 2 0 Vi € {1,2.n}.
The Murty principal pivoting algorithm is known from Murty

and Yu: "Linear Complementarily, Linear and Non Linear

programming" available at
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www.personal.engin.umich.edu/~murty/book/LCPbook/index.html,
and also in an earlier edition published by Helderman-Verlag,
Heidelberg (1988), the content of which is incorporated into
this specification by reference.

The indices are assigned to a set, and i is set to zero.
Then, the principal submatrix M,, is formed and solved for =z
using equation (6).

Then s/ = Zy + wg is calculated, where

wg = Mpy Zq (8)

If s 2 0 then the algorithm has found a solution. Otherwise,
the smallest index j for which the corresponding element of s
is found. If this index is in the first set, the index is
moved to the second, otherwise the index is in the second set
in which case it is moved to the first set. The loop parameter
i is incremented and the loop restarted until a solution is
found.

The method is illustrated in the flow chart of Fig. 1.

The method is stateless and can be started from any
initial guess for the division of the indices into first and
second sets. The matrix will work on any P matrix and in
particular on any positive definite matrix.

The method can fail where the matrix is positive semi-
definite. Such matrices arise in real physical systems, and
can be made positive definite by adding a small amount to each
element along the diagonal. Kostreva in "Generalisation of
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Murty's direct algorithm to linear and convex gquadratic
programming", Journal of optimisation theory and applications,
Vol. 62 pp 63-76 (1989)demonstrated how to solve such positive

semi-definite problems. Basically, the problem is solved for
an initial value of g, £ is then reduced until the solutions

converge; if the solutions diverge the problem is unfeasible.

SUMMARY OF THE INVENTION

According to the invention, there is provided a method, a
computer program recorded on a data carrier (e.g. a magnetic or
optical disc, a solid-state memory device such as a PROM, an
EPROM or an EEPROM, a cartridge for a gaming console or another
device), for controlling a computer (e.g. a general purpose
micro, mini or mainframe computer, a gaming console or another
device) having a display screen, a memory and a processing
unit, the computer program being operable to control the
computer to carry out the method, and a computer programmed to
carry out the method.

The method according to the invention may include the
steps of:

storing in a memory position and velocity parameters
defining an initial state of a model system having a plurality

of bodies,
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storing in the memory parameters defining at least one
constraint function constraining the motion of the bodies in
the model system, and

calculating in the processor the position and velocity
parameters defining the state of the system after a
predetermined time step based on rigid body dynamics, including

carrying out a semi-implicit integration step subject to
the constraints, to determine the velocity after the step,
including

determining the constraint forces that act to keep the
system in compliance with the constraints by ensuring that the
first derivative of the constraint function is =zero.

In known approaches, the second derivative was held to be
zero. However, the method according to the invention provides
much faster calculation.

The method may cause the computer to carry out the further
step of displaying an image of the objects at their calculated
positions on the computer display screen, so that the display
shows the objects on the screen using physical laws to simulate
their motion.

The means for determining the constraint forces may
include solving the linear complementarity problem using the
Murty algorithm.

The calculating step may include carrying out the implicit

integration by
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calculating the velocity parameters after the time
step from the external forces, the constraint forces and
the position and velocity parameters before the time step,
and

calculating the position parameters after the time
step from the external forces and constraint forces, the
calculated velocity parameters after the time step and the
position parameters before the time step; and

In prior art image display methods implementing rigid body
dynamics the accelerations have been taken as parameters. In
the method according to the invention, the parameters
calculated are position and velocity.

The means for solving the linear complementarity problem
may include solving the boxed LCP problem by the modified
Murty's method.

In order to implement maximum bounds on the constraint
forces the calculation may include the step of testing whether
the constraint forces have a magnitude greater than a
predetermined value and if so setting them to be that
predetermined value. This has not previously been done but
leads to a more efficient solution.

Preferably, the model includes a model of friction.

Static friction requires that the tangential force f. of

magnitude less than or equal to the static friction coefficient

Us times the normal force f,. The force f. due to dynamic
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friction has a magnitude equal to the dynamic friction

coefficient us; times the normal force, and a direction given by

fr ve < 0.

The dependence of the frictional force on the normal force
can be replaced by a novel approximation in which the friction,
dynamic or static, is not dependent on the normal force. This
force then corresponds to a simple bounded multiplier, i.e. a
force that can have up to a predetermined value. Thus the
force exactly fits the model used in any event in which the
constraint forces Lagrange multipliers have maximum values;
friction in the model is equivalent to another bounded
constraint force. Thus making this approximation substantially
simplifies the inclusion of friction in the model.

Accordingly, the method may include a model of friction in
which the frictional force between a pair of objects is
independent of the normal force between the objects.

The frictional force between each pair of objects may be
modelled as a bounded constraint force in which the constraint
force acts in the plane of contact between the pair of objects
to prevent sliding of one of the pair of objects over the other
of the pair, wherein the constraint force is bounded to be not
greater than a predetermined constant value to allow sliding of
the objects over one another and thus include dynamic friction

in the simulation.
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In order to implement bounded constraint forces, the
method may include the step of testing whether the constraint
forces have a magnitude greater than a predetermined value and
if so setting them to be that predetermined value.

The method may include a relaxation parameter y introduced
to determine how exactly to satisfy the constraints.

The friction model taken leads to a symmetric positive
definite linear complementarity problem, in which the only
friction conditions are simple inequalities. This allows the
use of the much more efficient Murty algorithm that the less
useful Lemke algorithm.

From further aspects, this invention provides a computer
program that is a computer game program, which game program may
be recorded within a cartridge for a computer game machine; and
a computer game programmed to generate a display by means of a

computer program according to any preceding claim.

BRIEF DESCRIPTION OF THE DRAWINGS

Specific embodiments of the invention will now be
described, purely by way of example, with reference to the
accompanying drawings in which

Figure 1 shows a flow diagram of a prior art
implementation of the Murty algorithm,

Figure 2 shows a computer running the present invention,
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Figure 3 shows a flow diagram of the implementation of the
present invention,

Figure 4 shows the friction pyramid,

Figure 5 shows the box-friction model used to approximate

to the friction pyramid,

Figure 6 is a flow chart of the method including friction,
and Figure 7 is a flow chart of the program according to the

invention.

DETAILED DESCRIPTION

The implementation of the invention that will be described
includes a computer system 1 having a display 3, a memory 5 and
a processor. The computer system has software 9 loaded into
the computer memory to allow the computer system to display a
simulation of the real physical world on the display 3. The
display 3 may be a conventional computer display screen, for
example an Liquid Crystal Display (LCD) screen or a Cathode Ray
Tube (CRT) screen, or the display 3 may be a less conventional
display type such as virtual reality goggles or multiple
screens of a coin operated video game, of the type installed in
public places.

A physical system which has n rigid bodies is modelled.
The itP body has a mass m;, and a position vector p which has

seven coordinates, three to define the position of the rigid
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body and four being the Euler parameters of the body defining
its orientation. Each body also has velocity vector v which
has six coordinates, three being the three components of linear
velocity and three being the three components of angular
velocity, each relative to the inertial frame. Further details
about the coordinates and the matrices used to convert between
coordinates in the local reference frame and those in an
inertial frame are given in sections 1 to 1.4 of Appendix 1.
The key point to note is that equations 1.36 and 1.37 of
Appendix 1 define Newton's laws for a dynamical system in a

form similar to equation (1), i.e.

Mv=f +f +f, (9)
where M is the block diagonal matrix defined in equation 1.37
of appendix 1.

A rigid body dynamics problem then becomes equivalent to
solving equation (7) subject to the dynamic constraints. This
is carried out by numerical integration. The difficult part is
calculating the constraint force.

The initial state of the system is set up in the computer
memory, and includes the above parameters.

Constraints governing the rigid bodies may also be set up.
The software 9 may include definitions of such constraints. An
example of a constraint is a hinge between two rigid body
elements so that the elements cannot move independently. The

system contains constraint initialisation routines for setting
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up such constraints. A separate routine is provided for each
type of constraint; the routine is called, defining the one,
two or three constrained elements and other information
required to specify the constraint. For example, if there are
two constrained elements in the form of two rigid bodies are
joined by a ball and socket joint, the information required is
the identity of the constrained elements and the position of
the ball and socket joint. The constraint information is
stored in the form of the Jacobian of constraint.

A simple example of a constraint would be a rigid floor at
height zero in the model. The constraint function D (px, Py,Pz)
is then chosen to be @(p) = p,, the conventional constraint

@(p) 2 0 then being a definition of the constraint.
The solution method used requires a Jacobian J of the

constraint function @(p) - this is related to the more

conventional Jacobian J, of the function @(p) with respect to
position by J = J,Q where Q is defined at equation 1.40 of
Appendix 1.

The method used does not require storing the second
derivative of the constraint function.

After the initial conditions and constraints are set up,
the routine may be called to simply step forward in time by a
predetermined time period. 1Indeed, the use of this simple

program structure in which a routine is called with a

SUBSTITUTE SHEET (RULE 26)



10

15

20

25

WO 01/67310 PCT/GB01/01020

15

matrix and outputs a like matrix of the results one time step
forward is a significant advantage over prior approaches in
which the movement forward in time has not been encapsulated in
this way.

The way in which the system moves one step forward is
based on simple Euler integration, i.e. calculating the final
positions and velocities from the initial positions and
velocities and the applied forces. Of course, some of the
forces are the constraint forces that ensure that the system
remains in accordance with the constraints; the way these are
calculated will be described below.

Euler integration can be explicit, in which the
integration is based on the values at the start of the step, or
implicit in which the values at the end of the step are used.
In the method of the invention, a semi-implicit approach is
used in which the positions after the step are calculated using
the positions at the start of the step and the velocities at
the end of the step and the velocities are calculated
explicitly. Put mathematically, the position p and velocity v
at the (i+1)% step after a time h are given by

Piv1 = pi + h Vig (10)

Vies = vi + h. M. f (11)

where M is the block diagonal matrix defined in Appendix 1
and f is the sum of the forces on the system, including the

constraint forces to maintain the constraint. Note that the
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equations for the position variables are implicit and the
equation for velocity explicit. Thus, the above equations need
to be solved subject to the constraint equations.

Of course, in order to carry out the above calculation it
is necessary to calculate f. The force f is made up of the
external force plus the effects of the external torques plus
the constraint force that keeps the system in accordance with
the constraints. Thus, the constraint forces on the system
must be calculated. Appendix 1 at 1.51 demonstrates how to do

this for an explicit Euler scheme to calculate subject to the
constraint @(p) = 0. In the conventional scheme, the
constraints are calculated by setting the second derivative of

D to zero.

In the method according to the embodiment, however, this

is not done and the first derivative %2 is set to zero.
P

The detail is set out in sections 1.5 to 1.6 of Appendix
1. The approach of using the velocity constraints rather than
the second derivative of the constraint function has both
advantages and disadvantage. The key disadvantage is that
although this approach guarantees that the velocity constraints
are satisfied it does not guarantee that the position
constraints are.

The constraint equation may be given by

$o + Jp (p' - p) =0 (12)
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where J, is the Jacobian of the constraint forces based on

od

el This is related to the J actually
P

the position, i.e. J

calculated by J = JpQ.

Rather than satisfy this exactly, the parameter y is
introduced by amending the right hand side of equation (5) so
that it reads

o + Jp (p' - p) = (1-y)¢o (13).

When y = 1 equation (6) becomes equivalent to equation (5).
A value of 0.2 has been found suitable.

A solution for the forces is given at 1.5.5. of Appendix

The result is:

(J.M-‘J’)A=:—7¢—°—£-JM-'(f +£) (14)

This is an equation in the form Ax + b = w and it can be

solved by the algorithm presented below to find the vector A.
The constraint force f; is then given by

f. = JA. (15)

The constraint forces may then be fed into the integration
step to compute the position of each object after the timestep.

It should be noted that the method uses bounded
constraints. In other words, each element of the force is not
allowed to become arbitrarily large as in previous methods but

is bounded. This is simply implemented by testing to see if

SUBSTITUTE SHEET (RULE 26)



10

15

20

WO 01/67310 PCT/GB01/01020

18

the elements of the force are larger than the bound and if so
reducing the element to the bound.

The problem posed is not directly amenable to simple
solution by the Murty algorithm. Rather, it has the slightly
different structure of a boxed linear complementarity problem,

as follows:

Az + g = w, - w. (16)
zZi; - 11‘_2 0
Wii 20

(zi . 1;) wei = O

(uj -z;) wy = 0

The w, and w. terms come from the integration step; they
correspond to forces/accelerations from upper and lower
boundaries respectively, the positions of the boundaries being
given by u and 1. The z term corresponds to the differential
of the velocity.

The result gives the constraint force which can be plugged
into the integration.

The above formalism is equivalent to a mixed

complementarity problem defined as

A -1 1| z q 0
I 0 0 w |+ —l|=|ul. (17)
-I 0 0w u v ‘
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This can be solved by partitioning the second set defined
above into two sets, y and 1, so that z; = 1; for j € y and z; =
u; for j € 1. Afterwards, the Murty algorithm is followed with

a different definition of the complementarity point, namely,

min(z; -l,,u;,~-z,) Vjea
s;= (Amza-AWh-—Anu,+qy)Vje;r (18)
Az, =41 ~ A, +q,) Ve

The least index rule is applied to the complementarity
point as follows:
j = min arg (s; <0)
10 If j € a and z; < 1; then remove j from a and put it in y
If j € a and z; > u; then remove j from a and put it in 1
If j € yadd j to a and remove it from y

If j €1 add j to a and remove it from 1t
The loop is then repeated until there is no element s; < 0.

15 Figure 3 sets out a flow chart of the Murty algorithm that
is used to model the constraints. It is based on that of
Figure 1, with amendments to cope with the bounded parameters
which are may be used to model friction.

This solution will be referred to as the Boxed LCP

20 solution, which has been developed independently by the

inventors.

The above solution may be refined by replacing the zeroes

with a tolerance parameter - ¢. This is similar to the Kostreva
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method, except here the parameter is not reduced but simply
kept at a constant value say 1073.

The parameters y and € may be chosen to model a compliant
coupling between two of the rigid bodies. In this way springs
and compliant bodies may be included in the model without any
complexity.

Appendix 4 sets out how the parameters ¢ and y already
present in the model can be used to model stiff springs. Such
parameters are very useful for modelling car suspensions, and
the like. Thus, the use of the model provides the unexpected
benefit of being usable not merely to ensure fitting of the
constraints but can also be used to model stiff springs without
any additional parameters or programming.

A key advantage provided by the approach selected is that
it allows the inclusion of friction.

The friction constraint can thus be considered to be given
by a cone which; if the contact force between two bodies is
given by a force vector the values of the dynamic friction when
the bodies slide is given by a cone in the three dimensional
space of the force (Figure 4). 1In the invention this cone is
approximated by a four sided box, in other words friction is
approximated by a model in which the transverse frictional
force is not dependent on the normal force (Figure 5).

The method thus works as follows:
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Step 1: For each contact point, apply a non-penetration
constraint and a static friction constraint.

Step 2: Estimate a normal force A; for each point

Step 3: At each point of contact, limit the Lagrange
multipliers that enforce zero relative velocity to have a

maximum value proportional to the normal force : i.e.

-uAi < PBiy < pdy

Step 4: solve with the boxed Murty algorithm
Step 5: refine estimate of normal forces and repeat if
required.

A flow chart of this procedure is presented in Figure 6.

Surprisingly, such a crude model still gives good
realistic results. The real advantage is that the model does
not involve a combination of the Lagrange multipliers
(constraint forces)as a constraint - the constraints are of the
simple form f. < a constant, whereas for more realistic model
the upper bound on f. would depend on the normal force. This
allows the use of a simpler algorithm as set out above.
Indeed, the bounded constraint force has exactly the same
bounded force as used for all of the constraints on the
objects; accordingly adding friction does not add significantly
to the difficulty of solving the problem.

Thus, the described embodiment allows much faster

processing of the simulation.
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A list of the routines used in the program implementing
the embodiment, including the many routines to set up
individual types of constraint, is provided in Appendix 2.

The program implementing the above is schematically shown
in Figure 7.

Firstly, a body data array containing the information
about each rigid object, i.e. its position, orientation and
mass is initialised. A constraint data array is likewise
initialised containing parameters defining the constraints.

In the next step, the constraint data array is
interrogated to create a list of Jacobians.

Then, a matrix A is calculated given by A = JM1JT where M
is the mass matrix as defined in Appendix 1 and J is the
Jacobian. This step is done so that A is an upper triangle
matrix (and symmetric).

The upper triangle elements of A are then copied to the
lower, and the diagonal modified. Rotational force may be
added to the bodies at this stage. The A matrix is then
complete.

Next, A is factorised to find A" by Cholesky deposition.

An intermediate result rhs is then calculated as follows:
Calculation of rhs, for each body:

tmp =0

tmp = M. f,

tmp

tmp + v/h
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ths = ¢/h - y/K? - J.tmp

Then, rhs, A, A and the lower and upper constraint
vectors 1 and u are sent to a routine which calculates A, the
Lagrange multipliers, by solving equation (16) by these
parameters by the boxed LCD method as described above.

Next, the resultant forces are calculated from A and J,
and the results passed to the semi-implicit integrator.

This outputs the velocity, force, position and
orientation, in the form of the transformation matrix and
orientation quaternion of each body.

Finally, a screen image is calculated displaying the
objects in their new locations and this is displayed on the
video display unit.

The method described works much faster than previously
known methods. Accordingly, it becomes possible to more
accurately simulate real time scenes, and provide an improved
simulation that more rapidly and accurately simulates the real

physical world.
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Appendix 1

1 Rigid Body Dynamics
1.1  Definitions

Acronyms

* COM: Center of mass.

* [F: Inerual frame of reference for the whole system.
Notation

* a (any 3 x | vector) is relative to the IF.

* a' is relative to the coordinate system of some rigid body. a and @' are related by a uni-

tary (rotational) transformation.
* [, is the identity matrix of size i x /.
* 0, is the zero matrix of size i x i.

*If a and b are 3 x | vectors then

axb = ab - (1.
where
) 0 -a; a, A
a=|a; 0 —a => aa =0 (1.2)
-a, a; 0
4 Epy=v,Fp) (13)
dp P ’

1.2 Parameters of the mechanical system

* There are n rigid bodies (“links”) numbered 1...n. The coordinate system for each body

has its origin at its center of mass.
* Link { has mass m; and 3 x 3 body-relative inertia tensor H,.

* There are m constraint equations.
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*p (7n x 1) is the system position vector, which has the structure

r
p = |:pI Py P, (1.4)

where
, T
[)i = I:-r,' _\',' :,' (],-l (lf (113 q?} (15)

where (x, v, z) is the position of the center of mass and (¢!, g2, ¢3, ¢*) is the orientation

quaternion (Euler parameters) These are both relative to the IF.
* v (6n x 1) is the system velocity vector, which has the structure
v Toiv, o]’ (1.6)
where

T
v, = [X’ )‘,i Z,‘ (‘Oil 0312 (,0[3] (L.7)

where (x, y, z) is the velocity of the center of mass and (w!, w2, 3) is the angular velocity

(both relative to the IF).

R; is the 3 x 3 unitary rotation matrix corresponding to the Euler parameters for body i.

q'q' + q2q2 - ¢3¢} - ¢ ¢ 2¢2¢% - 24'¢* 2¢'q3 + 2¢2¢*
R 2¢%¢3 +2q'¢* 7'q' - °q* + % - ¢*¢* ~2q'q2 +243¢* (1.8)
~2¢'¢3 +2¢%¢* 2¢'q2 +2¢%¢* i q'q" - g2 - g3q3 + g ¢*
Force vectors (such as f,, the external force) have the structure
T
f=1[ff 1] (1.9)
where
T

= lrnrTey T (110

where (¥, f Y, f <) is the force applied to center of mass and (7%, T¥, T?) is the applied torque

(both relative to the IF).
1.3 Equations of motion for one rigid body

1.3.1 Coordinate transformation
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R is the unitary transformation matrix for link i (3 x 3). If a is a point in the IF and &' is a

point in the link frame then a = Ra'. Also note that
R = RT (1.11)

The ith column vector of R is u;, so that

R = lu, uy uy (1.12)

The w; vectors are axis unit vectors for the body.

1.3.2 Rotating frame

If a is an IF point in the body relative to the center of mass then

a=oxa (1.13)
Thus
R = [u'l 15 113:, (1.14)
= [coxu] O XUy @ ><u3] (1.15)
= I:G)u, ®u, d)u3] (1.16)
= OR (1.17)
Note that ® = -67 and déw = 0.

1.3.3 Angular momentum

To start with we will consider just the rotational part of motion, and ignore the linear part

(which is a lot easier to deal with). The definition of angular momentum L for a rigid body

1s
LEZqixMicji (1.18)

where g; are the positions of all particles in the rigid body (w.r.t. the IF) and M; are their

masses. Now,

= — ; (. C
L= Zdr(q’ x M,q;) , (1.19)
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T i

Saxs; (.21

i

where g; is the force on particle /. Now,
&= Zgij +G;
J=i

where g, is the force between ¢; and q;.and G, 1s the external force on ¢, . It can be shown

Sij
thatif g;; = —¢ (as is the case according to Newton) then the total contribution to L from

the g;; 1S Zero, so

L=3%4,xG, (122)

Where the sum over { only includes those particle positions at which an external force is act-
ing. Introducing the effect of torque is easy - all "pure" torques applied to the rigid body

effectively works through the center of mass, so
L= Y axG+ Yy (1.23)
i i

The quantity L is effectively the external rotational force applied to the body, which is usu-

ally a combination of joint constraint forces and forces external to the rigid body system.

1.3.4 The link between o and L

It can be shown that

L' = Ho' (1.24)

where L = RL', v = Rw', and H is the 3 x 3 inertia tensor for this body. Thus

RTL = HRTw (1.25)
L = RHRTw (1.26)
from the chain rule
L= ;%(RHRT)(O + RHRT(D- — (1.27)
= (RHRTw + RHR T + RHR"®) | (1.28)
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RTo = (0R)Tw (1.29)
= RToTw (1.30)
=0 (1.31)
SO

RHRT® = L-RHRTw (132)
= L-0(RHR)w (1.33)
= L-ox ((RHR)w) (1.34)

or, schematically,
(inertia tensor in IF) x (angular acceleration) = (external force) + (coriolis force) (1.35)

which is simply a statement of Newton’s law.

1.4 Equations of motion for a rigid body system

For n rigid bodies we simple combine the equations of motion into one matrix equation:
Mv = f,+f +f, (1.36)

where M is a block diagonal matrix (with 3 x 3 blocks):

m 1y
RIHIRIT
niyls
M = R7H7R2T (1.37)

m, Iy
R H RT

n"nj

and £, is the external force (applied from "outside" the rigid body system), f. 1s an undeter-

mined constraint force, and f, 1s the rotational force:
-0, x ((R{H,RDw,)
f, = : - (1.38)

0, X ((RHHHRZ-)O)/I)
The state variables of the system are p and v. To integrate the system, the state derivatives

must be known. The above equation allows us to determine v, assuming that f. 1s known).
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p is determined by applying a transformation that allows the angular velocity to be con-

verted into Euler parameter derivatives:

b= Qv (1.39)
13
Dl
[3
0 = D, (1.40)
13
DH
where
07 -0 o}
L 4,4 3
D, = 05|79 T4 4 (1.41)
=g +q! +qf
+a? -a? +qi]

Note that DTD, = I,/4.
1.5 Integration with implicit constraint projection

1.5.1 Explicit Euler -

The explicit Euler integration step is

new p = p* = p+hQv (1.42)

new v = v¥ = v+ hM-Y(f, +f, +f,) (1.43)

As the system evolves we want to compute f, such that the following constraint is satisfied:
() =0 (1.44)

Note that ¢ (p) has size m x | . Make a first order approximation to this:

1%/
o) = oy + ¢a([f°)(p—p0) o (1.45)
= g +J,(P - py) : (1.46)
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where p, is the current position, and J, is the m x 7n Jacobian of the constraint function

with respect to position (evaluated at p,,). Find the first derivative of ¢ :

() = %%.%’ (1.47)
=J,p (1.48)
= J,Qv (1.49)
= Jv (1.50)

Where J/ is the Jacobian of the constraint function with respect to velocity (J = J,Q). Find

the second derivative of ¢ :

0% op, 3 90p

() = a4 1.51
YO =55 w T 5 o (15D
380 -- .
= — 1.52
3p 5ppp+l,,p (1.52)
2
09 -- )
= D+ Jv (]53)
—apzpl
=Jv-c (1.54)
2% . .
_51)2 1S a tensor quantity because ¢ is a vector, ¢

Note that during simulation, J is the matrix that we actually calculate, not

J,. The constraint force f, is computed as

f.= 7% - (155

where 7. is a vector of Lagrange multipliers. This ensures that the minimal amount of work

1s done to enforce the constraints. Compute f. such that § (p) = 0:

Jv = ¢ (1.56)
IM N (f,+JTL+f) = ¢ (1.57)
IM-UTN = c—IM-Y(f, +f,) (1.58)

which gives %, from which £, and v can be computed. Note that we can get the same result
M JIT ol fe+ S, (1.59)
J O]|x c
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1.5.2 Implicit Euler
The implicit Euler integration step is
p* = p+hQ(p*n* (1.60)
Vo= v+ AME () (fL(p*, v*) + f(F, v¥) + (0%, v*)) (1.61)

where the dependence of the right hand sides on the ncw state is made obvious. Performing
this fully implicit update is rather difficult. even when using low order Rosenbrock methods,

for reasons explained later.
1.5.3 Velocity projection method

Instead of trying to satisfy the acceleration constraint (§ = 0) lets try to satisfy the velocity

constraint (¢ = 0). From equation 1.50:
d)(p) =Jv=20 (1.62)

Substitute the Euler velocity update (equation 1.43) into this, and solve for A:

Jv+hM-(f,+f.+f)) =0 (1.63)

Jv

(UMYX = c- 5 IM-Y(f,+1,) (1.64)

il

which is similar to equation 1.58 except that the term -Jv/h has replaced c. f, and the new
state are computed as before. This equation ensures that the velocity constraints are met at
the new state, which reduces constraint violation compared to equation 1.58. It also means
we do not have to have a separate impulse application step-- collision constraints for exam-
ple will automatically result in a zero penetration velocity.

A further advantage is that the value ¢ does not have to be computed for each constraint.

Although this thing is relatively inexpensive to compute, it is annoying to derive.
1.5.4 Position projection as a separate step

Extra work must be done in the velocity projection method to ensure that the constraints
don’t come apart. because although the velocity constraints are guaranteed to be satisfied at
the new state, the position constraints may not be. One option is Baumgarte stabilization.
Another is direct position projection. We start with |

da+J(p-ps) =0 (1.65)
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where ¢, and J, are re-evaluated at the new position. J, is usually not square so there are
many possible p that satisfy this equation. We want to find the solution which minimizes

[P = po| - This is done by setting

p-py = JPTS (1.66)
so that
b0+ /78 = 0 (1.67)
8 = —(/,,JIZ')-’% (1.68)
P po=(, D7, (1.69)

This corresponds to one iteration of a Newton method to find the root of ¢(p) = 0. Multiple

lterations can be performed to get perfect projection, but this will usually not be necessary.
1.5.5 Position projection method

We can take this process one step further by trying to satisfy the position constraint
(¢(») = 0) at the new timestep. To do this we must first express the Euler position update in
terms of the new velocity rather than the current one, otherwise the new position will be

independent of 7.:

vE = v+ AWMV, + T+ f) (1.70)
p* = p+hQv* (.71

so that
p* = p+hQ(v+hM-(f,+JTh+f)) (1.72)

The constraint equation we want to satisfy is (to first order)
bo+J,(p*-p) = 0 (1.73)

But actually to gain more flexibility we will introduce a parameter vy which controls how

much we want to satisfy this constraint, so:

0o +J,(p* =p) = (1 -7)bg (1.74)

soif y = 0 we are assumed to already have the correct position and no position projection
will be done (7 = 1) will give us normal position projection). So

Og +J,hO( + MY (f, + ITh +£,)) = (1 -7)¢, - (1.75)
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h?(J,,QM"JT)x = Y9+ 1J,Q(v + hM~'(f, +£,)) (1.76)
UMY = —Y/—d:Q—J/—:—JM"‘(fe +f) (1L77)

3

which is similar to equation 1.64 except for the addition of the term —-y$o/ > . This equation
ensures that the position constraints are met at the new state, which reduces constraint viola-
tion compared to equation 1.64. It also means
that a separate position projection step is not required (position projection here is consider-

ably less expensive).
1.5.6 Summary

For a standard Euler update, satisfy acceleration constraints by

(M=) = c—IM-I(f, +£) (1.78)

For a standard Euler update, satisfy velocity constraints by

(M- JT)h = - szv —IM\(f, +£,) (1.79)

For a modified Euler update, satisfy position constraints by

(M- = -F_—'_/M—'(feJrf,) (1.80)

2.0 Contact with friction

The Coulomb friction model relates the normal and tangential force at each contact point
between two bodies. The distinction is made between static and dynamic friction. With
static friction there is no relative movement (sliding) between points that are in contact, and

the following equation is satisfied:

P\'Il < “;"n (2'1)

where 2, is the (scalar) normal force, %, is the 2 x | tangential force, and p is the static
friction coefficient. With dynamic friction the two surfaces are in relative motion and a dif-

ferent equation applies:

v

ni

}‘l = LL//X‘
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where v is the relative surface velocity vector (2 x 1) and p, is the dynamic friction coeffi-
cient. Equation 2.1 defines a friction cone, the boundary between static and dynamic fric-

tion.

‘With acceleration based friction models such as those used by Baraff the distinction
between static and sliding friction is made explicitly, and care must be taken to ensure that
switching between the two modes happens correctly. Baraff’s acceleration based friction
model gencrates an LCP problem that can sometimes be inconsistent, and even when it is

consistent it is not guaranteed to be solvable by his Cottle-Dantzig based LCP method.

2.1  Velocity based model

The velocity based formulation of Anitescu and Potra resolves some of these problems.
First, to allow a linear complementarity solution the friction cone is approximated by a fric-
tion pyramid (figure 2.1). The pyramid has s sides which are given by the 2 x I vectors

¢y...¢;. The conditions corresponding to equation 2.1 are:

Vi cf(h, - puk,c)<0 (2.3)
cfh,-ph,clc; <0 (2.4)
—cTh, +pd, 20 (2.5)

Each side of the friction pyramid has a scalar velocity residual o, . When the contact is slid-
ing in a direction corresponding to side i, o, is positive. When the contact is within the fric-
tion pyramid, all the o, are 0. The equation of motion is

s
Jyv+ Zciai =0

i=1

A 71\ k,_‘,
N
] AN
[ AN
!
] N6
1 N
ey ! AN
3, N 2
T ~ tx
- ~ -
Contact plane - -
/ "‘an -7
Contact point -
L
.7

Figure 2.1: The approximated friction cone.
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where J, extracts from the system velocity vector the 2 x 1 velocity vector in the contact

plane. The full system for m contact points is (as a tableau):

v )Lj }‘rl )“tm 7Lll 7"tm Ly oeee &y ®Lpy -o- Qs =
[V T = f,+f,
J; =0
J, Cpooen € =0
‘/m: Cp e G =0
‘]nl >0
* (2.6)

JIIHI > O
—cf R >0
_CST }J, > 0
—cf R >0
—cT H >0

where J; is the joint Jacobian, J; is the tangential velocity Jacobian for contact i and J,i 18

the normal velocity Jacobian for contact i. In matrix notation,

12

o -
Note that the friction model is anisotropic, and that

there is no separate value of p for static and dynamic friction.
2.1.1 How to implement this

Directly implementing an LCP solver for the above model is wasteful, as the matrix that
needs to be factorized is larger than necessary (there are 3 + s rows for every contact point).
A method that uses only 3 rows per contact point will be described below. Consider the

statement of standard LCP:

Ax = b+w (2.8)
x20 (2.9
w>0 (2.10)

X, = 0 Q2.11)
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The matrix A has size n x n. The Murty principal pivoting algorithm to solve this problem

goes like this

*Seta = {1,2,...,n}. Here o is the set of indexes of "clamped" variables.
* Loop
- Solve for x :x; = AzLbg,x, = 0.

- Find the residual w:w = Av—-b.

- If any elements of v are less than —¢ , find the first one and add its index to « .

Restart the loop.

- If any elements of w are less than —¢ . find the first one and remove its index from « .
Restart the loop.

- If we get to this point, we have a valid solution (x, w).

This procedure is guaranteed to terminate if A is a P matrix. The value € is a small toler-
ance, typically 10-5. A variant of this procedure that is more computationally efficient in
practical situations finds the value of x at each iteration by projecting from the totally
unclamped solution A-'4. At each iteration we ask for the equation Qx = 0 to be true,
where @ is a matrix with a row for every index in o, with a single 1 in the position corre-

sponding to the index (this is equivalent to asking for all the x, to be zero).

The projection is done like this:

define W such that wo= Wow, _ (2.12)
= ATh+ AW e, (2.13)
QA'b + QA "W, w, =0 (as Qx = 0) (2.14)
w, = —(QA™IW ) 1QA-1h (2.15)
wo = —(QA~IW )1 0x, (2.16)
wg =0 (2.17
where
Xy = A1b (2.18)

The value of w is substituted back to get x.

Now, in our case some of the variables in x correspond to normal forces (A, ) and some vari-

ables correspond to tangential forces (X, %,, ). If the normal force conditions are violated
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(A, <0) then the normal force can be projected back to zero as above. If the tangential force
conditions are violated, the tangential forces must be projected back to the planes that make
up the sides of the friction cone. This can be done by simply altering Q so that the appropri-
ate plane equations appear on the rows of Q corresponding to the projected tangential vari-

ables.

This 1s easiest to achieve when we have a four sided friction pyramid. because then %, and
7.,y are effectively decoupled from each other. Also this means that a tangential variable will
be projected to at most one plane at a time (if we had a many-sided friction volume then
many planes could be involved in a projection and the situation becomes more compli-

cated).

Here is the modified Murty algorithm:

* Make the matrices Q”, Q" and Q' of size n x n such that 0"x = 0 is the condition for all
normal forces to be zero, Q"x = 0 is the condition for all tangential forces to be
clamped at the "high" plane, and Q'x = 0 is the condition for all tangential forces to be

clamped at the "low" plane.

*Seto, = a, = o; = {}.Here o, is the set of clamped normal forces, o, and o, are the

sets of clamped-low and clamped-high tangential indexes.
* Loop

-Seto = o, no,Na,

-Set O

4,
0= |0, (2.19)

Q%,a,

* Solve for x :

we = —(QA"TW, )1 0x, (2.20)
wy =0 (2.21)
x = xg+ AW, (2.22)

- If any normal elements of x are less than —¢, find the first one and add its index to

a, . Restart the loop.

- If any elements of Q', are less than —¢, find the first one and add its index to a.
Restart the loop.
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- If any elements of Q" are less than —¢, find the first one and add its index to ay.
Restart the loop.

- If any normal elements of w are less than —¢, find the first one and remove its index

from «,, . Restart the loop.

- If any clamped-low tangential elements of w are less than - . find the first one and

remove 1ts index from o, . Restart the loop.
- If any clamped-high tangential elements of w are greater than ¢, find the first one
and remove its index from «, . Restart the loop.

- If we get to this point, we have a valid solution (x, w).

This algorithm simulates what happens when the full problem in the previous section’s tab-
leau is solved with the standard Murty algorithm. This problem is guaranteed to have at
least one solution, but unfortunately this algorithm is not guaranteed to find it. As p gets
larger the algorithm will start to cycle though the same index sets. In practice this rarely

happens with physically realistic values of .

There are two possible ways to fix this problem. The first is to try and add heuristics to the
projection process to restrict the possible combinations of clamped and unclamped states
(see the matlab code for some examples). This has not been successful so far. The second is
to detect when we come back on a previously encountered index set and then alter the rules
for index swapping to prevent us following the same path. This could possibly be done pre-
emptively at the level of individual friction pyramids before the global index set has

repeated. This has not been tried yet, it is difficult in matlab.

There are several simple things that improve the speed of this algorithm. The first is finding
a good starting index set, by applying the switching condition to every single index in one
go. In fact this procedure may be followed for several iterations to improve performance,
although it must be eventually abandoned for the one-at-a-time approach to ensure conver-
gence. Also re-using index sets from the previous simulation iteration is useful. We need to
investigate heuristics for choosing the switching index. For example, should we switch on

the most or least violating index?
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2.1.2 Tyres

Tyres have special friction requirements. When the tyre is under longitudinal force, the fric-
tion cone is actually scaled along one axis into a sort of friction ellipse. This can be simu-
lated by altering the friction pyramid so that it is a kind of friction "diamond", and ensuring
that the tangental x and y axes are aligned with the wheel. Tyres also have the characteris-

tics of slip and pneumatic trail. which I have not investigated yet.

3.0 More implicit integration

It is possible to perform implicit integration on only some state variables in a system. For

example, we can divide up the variables like this:

yE = explicitly integrated variables 3.1
y! = implicitly integrated variables 3.2)
yE = FEGE, Y 3.3)
Vo= fIE yl) (3.4)

And we can integrate like this (Euler first order):

YE = yE+REGE VD (3.5)

oy = v+ hfI6E vl ) (3.6)

A -1
~ yl+ /z[l- S } FUYE yD (3.7
cv

(FEh

More useful in rigid body dynamics is being implicit in some inputs to a system. Consider

the system:

y = f(y,x) (3.8)
x = g(y) 3.9

Here f is the rigid body system, y is its state variables, and x is the "external" forces pre-

sented to it. We can do implicit Euler integration only in the variables x as follows:

Yie1 S VithfOynx, ) - (3.10)

X = 80y ) (3.11)

if we make first order approximations for f and g:
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f(y, ) = f(y;, x) +Jplx—x) (3.12)
g =g(y)+Jg(y-y) (3.13)
which gives
Ji -1
Yis1 =Y +(1-1 _‘/F‘/G) f(_\'i, .l"v) (3.14)

If the external forces x are stiff, e.g. if they come from stiff springs. then this formulation
will add extra stability to the system without the overhead of making the rigid body dynam-

ics fully implicit.

To implement this scheme we need to compute /. and J; . Computing J; should be rela-

tively easy. To compute J, first define the external force f, as

fe = Qx (3.15)
then
d d .

;/.—\ﬂ') =T (3.16)

. 9. a\Of.
= | 2y IaAd R 3.17
(afe‘ T 6f)6x eI
_ M-]Q_M_IJT(jM—IJT)—lJM—IQ (3.18)

which means that for the already factored system matrix (/JM-'J7)-! we must solve for n,
extra right hand sides in the matrix /M-'Q and then do a few other cheaper operations. Thus
we should be selective about which external forces get the implicit treatment (stiff forces are

the obvious candidates).

3.1 Modular Systems
The construction of modular systems and the application of the chain rule to propagate
Jacobian information for the purposes of implicit integration are well known in the art.

An example is provided in the MATLAB reference manual.
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1. Conventions

All matrices are stored in column-major order, i.e. stored by columns.

2. Kea core

2.1. Error handling
The following three functions are used internally within Kea to generate error and warning

messages:

void kezDsbug (char *msg, ...);

void keaWarning (char *msg, ...);
Each of these functions has an interface identical to printf (), they take an error message
string and a variable number of arguments. These functions can also be called by the user.
The default behavior of these functions is as follows:

* keaFatalZrror: print the error message to the console and exit.

* keaDebugz: print the error message to the console, generate debugging information (e.g.
dump core on a unix system) and exit.

* keaWarning: print the error message to the console, and continue running,.
The default behavior can be overridden using these functions:

typedef void keaErrorFunction (char *msg, ...);

void keazSetfatalErrorHandler (keaErrorFunction *fn);

void keaSstIabugHandler (keazZrrorfunction *fn);

void keaSstiarningHandler (keszZIrrorFunction *fn);
It is useful to override the default behavior on systems without a text console (for example
the PlayStation 2) or in shipping software. Note that the fatal error and debug calls are

expected never to return, however they may perform exception handling using the C set-
jmp () /longjmp () functions.

2.2. Math stuff

The typedef keaFloat is used everywhere in Kea as the floating point type. The constant
keaInfinity is defined to correspond to the system infinity value, or if that does not exist
the largest representable floating point value.

2.2.1. Miscellaneous

void keaSetZero (int n, keaFloa:t *A):
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Set the first n elements of A to zero. For large arrays this will normally be faster than
a simple for-loop.

2.2.2. Vector and quaternion stuff

keaFloat kealot (keaFloat b[{3], keaFloat c([3]);
Return the inner product of b and c, assuming both are vectors of size 3.

void keaCross (keaFloat b[3], kezFloat c[3], keafFloat a[3]);
Set a to the cross product of b and c. assuming both are vectors of size 3.

void kezPlanz3pace (keaFloact n{2), keaFloat a[3], keaFleat [371);
Make unit length 3x1 vectors a and b such that together with the unit length 3x1 vec-
tor n they form an orthonormal basis. a and b span the plane that is normal to n, and a
X b =n. note that if n is not normalized then b will not be normalized either.

void keaQProzuct (keaFloat pld4], keaFloat g[4], keaFloat r{4]);
Multiplication of quaternions: setr = p * q.

void keaMekelnitVector (keaFloat v{3]);

Make the given size 3 vector unit length.

2.2.3. Simple matrix stuff

void keaMultiply (int p, int g, int r, keaFloat *B, keaFloat *C, keaFloat
*A);

Set A=B*C, where A is p*r, B is p*q, C is q*r.
void keaMultipnlyTl (int p, int ¢, int r, keaFloat *B, keaFloat *C, keaF-
loat *2); -

Set A=BT*C, where A is p*r, Bis g*p, C is g*r.
2.3. Rigid body dynamics core

2.3.1. Rigid body structure

The keaBody structure represents a rigid body in Kea. The coordinates of a rigid body
(X,y,z) are always with respect to the body’s center of mass.
There are a number of internal variables that are made public for ease of access. You should
not modify these directly!
struct keaBocy {

void *usercata;

keaFloat mass,I[9];

keaFloat pos[31,qrot[4],vel(6];

keaFloat R73];
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...other irternal stuff...

}

The body’s mass parameters are mass and I, a 3x3 symmetric inertia tensor matrix. The

body’s state variables are

* pos, the center of mass (COM) position (x,y,z).

* grot, the four quaternion rotation numbers.

* vel, the COM velocity (vx,vy,vz). and the angular velocity (wx,wy.wz).
R is the body 3x3 rotation matrix. It is a direct function of the grot vector, and it is updated
whenever qrot changes.

userdata is a variable that the user is free to change, this is never used by Kea.

2.3.2. Rigid body functions

All rigid body functions can be called at any time between simulation timesteps.

void keaBodyInitialize (keaBody *body);
Initialize the body. This must be the first function called on a new body.

void keaBodviztach (keaBody *body, keaWorld *world);
Attach the body to the world, making it an active part of that world. A body must be
attached to a world before it can have constraints attached to it. If the body is already
attached to another world it will be detached from that world first. If the body is
already attached to the world then nothing will be done.

void keaBodvIztach (keaBody *body); _
Detach the body from whatever world it is currently attached to. Any constraints that
are connected to this body are disconnected first. This does not destroy any body data,
it simply prevents the body from being a part of the simulation. The body can be re-
attached at any time.

Now here are some functions to set the mass distribution of the body.

void keaBodyliakeSphere (keaBody *body, keaFloat mass, keaFloat radius);
Set the mass parameters of this body to a sphere of the given mass and radius.

void keaBodyllakeBox (keaBody *body, keaFloat mass, keaFloat 1x, keaFloat

ly, keaFloat 1z);
Set the mass parameters of this body to a box of the given mass and side lengths.

Now here are some functions to set the position, rotation, and velocity of the body. If you set

values that are inconsistent with the current constraints then the simulation will attempt to

correct this in subsequent time steps.
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void keaBodySstPosition

(keaBody *kody, keaFloat x, keaFloat y, keaFloat z);
void keaBodyS=tQuaternion

(keaBody ~cody, keaFloat gl, keaFloat g2, keaFloat g3, keaFloat g4);
void keaBodySstLinearVelocity

(keaBody ~rtody, keaFloat dx, ks2aFloat dy, keaFloat dz);

void keaBocoyss

t

AngularVelocity
\xeaBody ~rzody, keabFloat wx, x2aFloat wy, keaFloat wz);
Now here are some functions to add forces to the body. After each time step the body is
assumed to have zero force acting on it. These functions accumulate force on the body for
the next time step.
void keaBodyrddForceAbs
(keaBody ~kody, keaFloat fx, keaFloat fy, keaFloat fz);
void keaBodyrddForceRel
(keaBody ~tody, keaFloat fx, keaFloat fy, keaFloat fz);
Add a force, in the absolute (inertial) frame or the relative (body) frame, to the body’s
center of mass.
void keaBodyiidTorquelbs
(keaBody ~tody, keaFloat tx, k=aFlecat ty, keaFloat tz);
void keaBocdyZidTorqueRel
(keaBody =~tcdy, keaFloat tx, keaFloat ty, keaFloat tz);

Add a torque, in the absolute (inertial) frame or the relative (body) frame, to the

body’s center of mass.

2.3.3. Abstract constraint functions
The keaConstrz:int structure represents a one, two or three body constraint. The constraint
services described below are used by all the system joint types, and allow new constraint
types to be created by the user. Note that all variables in the keaConstraint structure are
internal and should not be accessed directly.
The following constraint functions can be called at any time in the simulation.
void keaConstraintInitialize (keaConstraint *c);

Initialize the constraint. This must be the first function called on a new constraint.

void keaConstraintAttach (keaConstraint *c, keaWorld *world):
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Attach the constraint to the given world, making it an active part of that world. If the
constraint is attached to another world, it will be detached from that world first. If the
constraint is already attached to the world then nothing will be done.

void keaConstraintDetach (keaConstraint *c);
Detach the constraint from whatever world it is currently attached to. This does not
destroy any constraint data, it simply prevents the constraint from being a part of the
simulation. The constraint can be re-attached at any time.

void keaCons:tzaintSetBodies

(keaConszrzint *c, keaBody *bl, keaBody *b2, keaBody *b3);

This set the bodies that the constraint attaches. The constraint must have been
attached to a world, and the bodies must be in the same world.

xeaConstrzinzlefine (keaConstraint *c, int num_ce, keaGetInfofn *getinfo,

keaStartStepFn *startstep);

Sets the behavior of the constraint. This is only called to define new constraint types.
num_ce is the number of constraint equations. getinfo and startstep are pointers to
functions that implement the constraint behavior. getinfo gets information about this
constraint for the current state of the constrained bodies. startstep is called auto-
matically at the start of each timestep, it can set some auxiliary state-based data (such
as joint angles) which the user can read. If you change the state of the constraint or the
bodies which it connects then you may call this function yourself to update that data.

Arguments to the getinfo function are provided in a structure rather than being
passed directly, to allow for future expansion without having to rewrite all the con-
straint code. The getinfo function is free to ignore any of the arguments in this struc-

ture, except for the essential ‘J’. Each matrix/vector here has num_ce rows to fill in.
struct keaConstraintInfo {
keaFloat -7.3];
int rowskic;
keaFloat ~c;

keaFloat ~=:;

keaFloat ~lower, *upper;
keaFloat ~-s_ipfactor;
s
typedef vciz <zaGetInfofFn (keaConstraintInfo *);

The structure members are:
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: Up to 3 pointers to Jacobian matrices that must be filled in. These matrices are stored

by rows for convenience in constraint formation, in contrast to the usual Kea storage

C

°r

°cC

®* X

*
fu—

.
0

234

onvention.

owskip: How much to jump by to go between J matrix rows.
: Vector in the constraint equation J*v=c.

i: Constraint error vector.

==: Lagrange multiplier limits.

tev . uD
owex,up

]

h

lipfacter: First order constraint slipping vector.

. Worlds

The xeawWorld structure represents a simulated world in Kea. All members of this structure

are internal and should not be accessed directly.

void

void

void

void

void

void

keaWorlcinitialize (keaWorld *world);

Initialize a new world. After initialization, bodies and constraints can be attached to it.
keaWorldlestroy (keaWorld *world);

Destroy the given world. This simply detaches all bodies and constraints from the
world, emptying it.

keaWorld~ddGravity (keaWorld *world, keaFloat gravity);

Add a downwards (-z) gravity force to all bodies in the world. gravity is given in m/s2.
keaWorldStepl (keaWorld *world, keaFloat stepsize);

Evolve the world forward in time by stepsize seconds. This uses an algorithm
which will be fast, except for systems containir;g large articulated rigid body struc-
tures.

keaWorldsetEpsilon (keaWorld *world, keaFloat x);

keaWorldSetGamma (keaWorld *world, keaFloat x);

These functions set world parameters. Increasing epsilon helps to combat numerical
instability problems caused by degenerate systems. Increasing it will make the simu-
lation more “non-physical’”” but may smooth over simulation glitches. The default
value is 0.0001, increasing this to 0.1-1 will result in observable non-physical effects
for worlds where that masses are on the order of 1kg.

Gamma is the projection constant which controls constraint stabilization. If the rigid
body configuration has diverged from its constrained configuration, the next time step
it will be brought a fraction ‘gamma’ of the way back to its correct configuration. Set-

ting gamma to zero will result in articulated structures gradually coming apart. Setting
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gamma to one and higher will result in instabilities as the simulation tries to "over cor-

rect”. The default value is 0.2, and that is probably good enough for most simulations.

3. Constraints

To make a constraint, call its initialization functions, and then call the keaConstraintAt-

tach() and keaConstraintSetBodies () functions.

3.1. Contact

The keaContact constraint is a collision contact between body 1 and body 2, or a collision
contact between body 1 and the static environment. The keaContact structure has a number

of public variables that must be set before the world step function is called:
struct keaContact ({
int mode;
keaFloat cpos[3];
keaFloat normal[3};
keaFloat penetration;
keaFloat max_force;
keaFloat al[3];
keaFloat kl1;
...other internal stuff...
}i

The fields of kezContact are:

* mode: The contact mode is one of the following constants:

* 0: Zero friction.

* KEA_FRICTION_2D: Friction in two directions using automatically determined
principal directions.

* KEA_FRICTION_1D: Friction in one direction (vector a).

* KEA_FRICTION_TYREL: Friction in wheel drive direction (vector a) and first order
slip 1n the lateral (other tangential) direction. The slip factor is the value k1. The
following flags can be ORed with mode:

* KEA_FRICTION_BOX: Friction force magnitude along each principal direction is
limited to max_force.

* cpos: The contact position, in absolute coordinates. This must always be set.
* normal: The vector that is normal to the contact sliding plane, relative to body 1. This
must have unit length. This must point ‘in’ to body 1, that is body 1 motion is allowed

along the direction of +normal and body 2 motion is allowed along the direction of -nor-

mal. This must always be set.
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* penetratica: The penetration distances of the contact along the normal direction. This

must always be set.

*max_force: The maximum frictional force that can be applied. This is set when the box

friction flag is set.

* a: Parameter vector a. This is set in x=A_FRICTION 1D and KEA FRICTION TYRE1L
modes. It must have unit length.
* k1: Parameter k1. This is setin K23 _TRICTION TYRZ1 mode.
The keaContzz= functions are:
vold keaContzctlnitialize (kealontact *contact);
Initialize a new contact.

3.2. Ball-and-socket

The keaBsJo:nz structure represents a ball and socket joint.
void keaBSJointInitialize (keaBSJoint *joint);
Initialize a new ball and socket joint.

xeaBSJointSstPosition (keaBSJoint *joint, keaFloat x, keaFloat vy, keaF-

loat z);
Set the joint position (in absolute coordinates). The constraint bodies must have been

set first. and the positions of the joined bodies must have been set.
3.3. Hinge

The keaiings structure represents a hinge joint. Note that the initial position of the hinge
will be taken as the zero reference for angle determination.
void keaHingsinitialize (keaHings *joint);
Initialize a new hinge joint.
void keaHingeSetPosition
(kealinge *joint, keaFloat x, keaFloat y, keaFloat z);
vold keaHingsSetAxis
(keaHinge >joint, keaFloat x, keaFloat y, keaFloat z);
Set the position of the hinge joint and its axis (in absolute coordinates). The joint bod-
ies must have been set first, and the positions of the joined bodies must have been set.
void keaHingeSetNoLimits (keaHinge *joint); -~
void keaHingeSetLimits (keaHinge *joint, keaFloat low, keaFloat high);
Set joint limits. Low and high are in radians and are relative to the zero ref rence

determined by the initial position of the hinge.
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void keaHingeSetNoMotor (keaHinge *joint);
void keaHIngeSetLimitedForceMotor (keaHinge *joint, keaFloat

desired velocity, keaFloat force limit);
Sets a motor on the hinge.
xeaFloat ~keaXZingeGetAxisARps (keaHinge *joint);
Returns a pointer to a size 3 vector which gives the current hinge axis in absolute

coordinates.

1t}

“e¢arloat keaRlngeGetAngle (kealinge *joint);
xearloat kezairingeGetAnglelzte (keaHinge *joint);

Returns the current hinge angle and angular velocity.
3.4. Prismatic

The keaPrism structure represents a prismatic joint.
void keaPrismInitialize (keaPrism *joint);
Initialize a new prismatic joint.
vold keaPrismSetAxis (keaPrism *joint, keaFloat x, keaFloat y, keaFloat
z);
Set the sliding axis for the prismatic joint (in absolute coordinates). The joint bodies
must have been set first, and the positions of the joined bodies must have been set.
void keaPrism3etNoLimits (keaPrism *joint):
void keaPrismSetLimits (keaPrism *joint, keaFloat low, keaFloat high);
Set joint limits. 1ow and high are in meters - position zero is when the centers of mass
of the two bodies are as close to each other as possible.
void keaPrism3etNoMotor (keaPrism *joint);
void keaPrismSetLimitedForceMotor (keaPrism *joint, keaFloat
desired velocity, keaFloat force limit);
Sets a motor on the joint.
keaFloat *kea?rismGetAxisAbs (keaPrism *joint);
Returns a pointer to a size 3 vector which gives the current sliding axis in absolute
coordinates.

keaFloat keaPrismGetPosition (keaPrism *joint);
keaFloat keaPrismGetPositionRate (keaPrism *joint);

Returns the current sliding position and velocity. Position zero is when the centers of

mass of the two bodies are as close to each other as possible.
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3.5. Steering hinge (1)

be steered along a steering axis. This joint is useful on the front wheels of cars. Body 1 is
the chassis and body 2 is the wheel. The connection point for the wheel body is its center of
mass.
void keaStesringHingelInitialize (keaSteeringHinge *joint);
Initialize a new steering hinge joint.
void kezStesringHingeSetSteeringAxis
{kezStesringHinge *joint, keaFloat x, kesaFloat vy, keaFloat z);
void keeStesringhingeSetHingeAxis
(keaStesringHinge *joint, keaFloat =, keaFloat vy, keaFloat z);
These functions set the joint geometry, the steering axis and the hinge axis. The joint
bodies must have been set first, and the positions of the joined bodies must have been

set.

keaFloat -keszSteeringHingeGetHingeAxisAbs (keaSteeringHinge *joint);

1

¥earloazt ~rxzzSteeringHingeGetSteeringAxis2bs (keaSteeringHinge *joint);
Returns pointers to size 3 vectors which give the current hinge and steering axes in

absolute coordinates.

4. Collision

The Kea collision API is in a state of flux and will net be documented here yet. But check

out the source file kea collice.h if you want to know what the current story is.

5. Utilities

5.1. Kinematics

These functions allow for easy kinematic (rather than dynamic) placement of objects. They
are specific to particular kinematic situations that the author has come across in the past, so
not all common cases are covered here!

5.1.1. Telescope segment

The kezKinemz-icTelescopeSegment structure and associated functions allow kinematic
placement of an intermediate telescope segment (body 3) given the positions of the seg-

ments at the ends of the telescope (body 1 and body 2).
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volid keaKinematicTelescopeSegmentInitialize (keaKinematicTelescopeSeg-
ment *k,
keaFloat pcsl{3], keaFloat R[9], keaFloat pos2[3], keaFloat pos3[3]);

Initialize a xeaKinematicTelescopeSegment structure, giving the initial positions of

the three bodies, and the rotation matrix of body 1.

vold keaKinematicTelescopeSegmentGetPosition (keaKinematicTelescopeSeg-

ment  *k,kezF_oat posl{3!, keaFloat R[9], keaFloat pos2[3], keaFloat

[31);

[ty

£os

(%)

Given the positions of bodies 1 and 2. and the rotation matrix of body 1, return the
position of body 3.

5.1.2. Keep place

The keaKinema:icKeepPlace structure and associated functions allow kinematic place-

ment of a body (number 2) always in the same place relative to another body (number 1).
void keaKiner:zticKeepPlaceInitialize (keaKinematicKeepPlace +*k, keaFloat
posl[3], keaF_oat R[9], keaFloat pos2(3]):
Initialize a xeaKinematicXeepPlace structure, giving the initial positions of the bod-
ies, and the rotation matrix of body 1.

vold keaKinerzticKeepPlaceGetPosition (keaKinematicKeepPlace *k, keaFloat
posl(3], keaF_oat R[9}, keaFloat pos2(3]);

Given the position and rotation matrix of body 1, return the position of body 2.

6. Other B

Some parts of the Kea API are not covered here, mostly those parts that haven’t even been

designed yet! Here are notes about what is missing.

6.1. Constraints
More constraint types are needed, especially the linear-1, angular-1 stuff from the SDK.
This will be trivial to add.
Document the functions that help implement user defined constraints, e.g. getting the bodies
a constraint attaches.
For the contact constraint, we are currently missing:

* velocity dependent slip.

* the friction cone one-step-late approximation.
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* keep the physical stuff in separate structure, i.e. separate the physical quantities from the
geometrical ones.
Take a look at how well the keaConstraint functions operate on the joint types - is there an
annoying type casting issue?
6.2. Dynamics scheduler
This things hasn’t even been designed yet. It could sit outside the Kea core, in which case
we must check how to detach groups of RBs and constraints from the world without
destroying the relationships between then, so they can be attached again later.
6.3. More functions
Need more functions to compute rotations, e.g. to set body orientation. Use
functions from glowworm. Open source.
Need more functions to add force to bodies, e.g. at a non-COM position.

Again, use the functions from glowworm. Open source.

6.4. Controller layer

An open source dataflow based control layer, that allows us to easily implement ‘gadgets’
such as springs, PD controllers etc. Issues: data transfer (wiring), encapsulation of basic

Kea structures, driving of the simulation. This should be quite easy.
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Appendix 3

Stiff Spring Simulation

from notes by Russell Smith

This describes how to implement a stiff spring in Kea using constraints. The key is to allow
first order slip along the spring direction. Consider a one dimensional single particle system
(mass m):

p=v (3.1
-] -
Vo= L(F+JITh) 3.2)
m
where p is the point position, v is its velocity, f is the external force and A is the constraint

force (all scalars). We will enforce the constraint p = 0 by setting J to 1. Thus from equa-
tion 1.80 in appendix 1, A is computed as:

(lﬁ)x:_Y_P_E_i (3.3)

m

so the semi-implicit update for p and v is:

/

ot = v By »

7

2
_ \"+/1_f+ hm m gy (3.5)

om !
Y _.

€ h

= vt hf(l +me )+ T+me (3.6)
_ he me -y
- Vi+f(1 +me )+ v(l +me )+p(lz(l +me) ) (.7
and

Pivy = pithv (3.8)

Now consider removing the constraint, adding an external spring and damper force, and
integrating implicitly: -

fi = ’kp/’i—kd"i (3.9)
Ao=0 3.10)
P :[),-+/1\',-+( 3.1
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h
Vig1r = "i+’; i+l (3.12)
h, .
= vt =(kpi —kgvi) (3.13)
m
= Rk ) = Egv) (3.14)
1
hk + hk hk
(1 =) = Dy, (3.15)
m
( m ) ( _hkp ) (3.16)
o= | —————— |t .16
Vit Vi nz+/12kp+hkd TP m+h2kp+hkd

We can equate coefficients with equation (3.7) to see how to construct an "implicitly inte-
grated spring” with a constraint (take f to be zero in equation (3.7)). First equate the coeffi-
cienton v; to find

meg m 3 17)
Leme = v b2, + hk, '
8(m+112kp+hkd) = 1 +meg (3.18)

= ! (3.19)
h2k, + hk, ‘
Then equate the coefficient on p; to find v:
-y ~hk,
—_— = P 3.20
h(T+me) = 4 h2k, + hk, (320
h2k (1 + -
, = 1 p(q me) (3.21)
m+ /1'~kp +hk,
hk
- (3.22)
hkp +k,
To summarize,
. = L (3.23)
2k, + hk,
hk
y = p (3.24)
Ik, + kg
= ek, B (3.25)

The parameters ¢ and y are both dependent on the time step, but they are not dependent on
the mass, so this constraint functions as a true spring. When ¢ is 0 this corresponds to a
spring or damper constant of infinity, which results in an unmovable spring (complete con-
straint satisfaction).
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Appendix 4

4.1 Linear Complementarity Problems

Given a real square n x n matrix M and a real n-dimensional vector ¢, the complementarity
problem consists of finding the n-dimensional vectors z and w such that they satisfy the fol-
lowing conditions:

Mz+qg = w (4.20)
;20 Vie {2, ...,n} (4.27)

w; 20 Vie {l,2,..., n} (4.28)
w;z, =0 Yie {L2,...,n] (4.29)

This is fundamentally a combinatorial problem and various direct algorithms are available
where the search goes through index sets «, B such that o c {1,2,...,n} , Bc(L2,...,n,
anP =J, auP = {1,2,...,n . The set o is the set of active variables and w;=0Viea
while the set B is the set of free variables such that z; = 0 Vi e B . The problem is then par-

/Waa Mu[} ':Za} + qu — {Ojl (4.30)
MBG MBB 0 a3 g

where the subscripts o, B, are used to specify all indices that are in the sets o, f respec-

titioned as:

tively. This is equivalent to the linear algebra problem:

M =-q, " (4.31)

aacu

wp = Mﬁuzu+qﬁ (4.32)

which must be solved for z, while wp 1s computed by direct substitution. The matrix M,

is known as a principal submatrix of the matrix M. Various principal pivoting algorithms

perform the same basic computation but take different strategies to revise the sets o and £

from the computed complementarity point which is a vector s such that:
Z; Viea

{w. Viep

i

s, = (4.33)

!

All principal pivot methods go through a sequence of sets a,B,i=1,2 until a solution

- y 4

is found ie., s,>0Vie {1,2,...,n) .
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4.2 The Murty Algorithm

One important such algorithm is the Murty Principal Pivot Method which is as follows:

1. Initialize (basically, any guess for a9 is good), set i = 0.
2. form principal submatrix M_g, . and solve M i mi,o = ~d.0
3. compute s = Zu0 W0 where Woo = Mg mZen
4. if s("=0 Vv wearedone
else
find the smallest j such that s{) <0,
i N = 7 (+1) = g\t
if s 4 then‘a a3
else o+ = a® U {j}
Pe—i+1
goto step 2
This algorithm is special in that it is stateless and can be started from any initial guess for

. This method will work on any P matrix and in particular, any positive definite matrix.

The flowchart for this algorithm is given in figure 1 below.

4.3 The Kostreva Perturbation Method

In the case where the matrix M is positive semi-definite, the Murty principal pivot method
can fail. This can arise in a multi-body simulation in the case where the constraints are
degenerate, or if we work from the optimization matrix which leads to the form:

N -JT vl L |=F] 2 |0 (4.34)
J 0 |A c v
A>0 y>0 (4.35)

Alv =0 (4.36)

for a multibody problem with inequality constraints. This matrix is positive semi-definite if
the mass submatrix N is positive definite (which is always the case for physical systems).
However, given any number ¢ > 0, the matrix obtained from the original one by adding € on
the diagonal is always positive definite, 1.e., the matrix:

T
= N+ely, -J (4.37)

J el

M

is positive definite, where /, and /, are identity matrices of appropriate sizes. Kostreva

demonstrated that one can solve the sequence of complementarity problems defined by a
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sequence of positive numbers {e,}>_, suchthate, —» 0 as n — o and find an answer to the

=1
positive semi-definite problem or find that it is infeasible (i.e., there is no answer). The algo-

rithm is as follows;

1. Choose ¢ >0 (typically 10-6)

2. Solve LCPM), g)

3. seti«i+1.chooseegd<gli-1

4.  Solve LCPMD, g)

5. if [:0-z0-Y <ol Solve LCPM,q) and finish
6. elseif 20— z0-Df <max goto step 2

7. else error: problem is infeasible

We often set £(© = 106 and £(") = 0. This is often sufficient. In Kea, we even go further

and set £ = 10-3 and stop right away i.c., we don’t bother removing the perturbation.

4.4 Boxed LCPs

The boxed LCP problem starts from the definition of the standard LCP and adds two new n-
dimensional vectors ! and u, lower and upper bounds respectively, such that

l[i<u;¥ie {12, ..., n and then the problem reads:
Mz+qg = w, —w, (4.38)
=120 Vie{l,2,...,m (4.39)
w,; 20 Yie {l2,...,n (4.40)
(z;=1)w,, =0 Vie {1,2,...,n (4.41)
u;—z;20 Yie {,2,...,n} (4.42)
w20 Vie {l,2,...,n} (4.43)
(u;=z)w,; =0 Vie {1,2,...,n) (4.44)

This is equivalent to a much larger mixed linear complementarity problem defined as:

M-I}z q 0
I 0O |welH =l = |p|- (4.21)
-1 0 0}|w. u Y

w20 pw,, =0 viw. 20 viw,; =0 4.22)
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This is precisely the sort of problem that the Kostreva procedure is designed to solve. How-
ever, because of the structure of the problem, there are simplifications that can be achieved
on this. The idea is to partition the set 8 defined as above into two sets, y and v so that
=1 forjey and g = U for j e 1. Afterwards, we follow the Murty algorithm but we
change the definition of the complementarity point s as follows:

min(zj— lj, uj—zj) Vjea
s; = M.z =M =M, + q_/)j Vjievy (4.23)
(M2 =M =M 1 +‘/1)j Vj e

and then, the least index rule is applied to this new complementarity point as follows:
Jj = min arg(sj <0)

if jea and zfV</l then o+ =al\{j},y0+D =4Oy {j}, 10+ D =D

if jeal and zj(i) > u; then ali+ D = g\ {j}, 10+ D = Dy {j},y0+ D =4O

if jey® then ali*+D

a®yu {j},yi+D = YOG, D) =

if jey® then at+!

aldy {]}7 i+ 1) = l(’)\{]}, y(i'*‘ = 'Y(')

This modification of the standard Murty algorithm has not been traced in the literature by
the authors yet.

4.5 Box Friction

The Coulomb friction model specifies the tangential forces at a point of contact in terms of
the normal force at that point. The model specifies non-ideal constraint forces i.e., forces
arising from constraints that do work on the system. This is in sharp contrast to typical ideal
constraints which do no work on the system. Coulomb friction implements a maximum dis-
sipation principle i.e., when the velocity at the point of contact is non-zero, the tangential
force will be aligned against the velocity in a way that maximizes the work done; for isotro-
pic friction, this means that the force of friction is directly opposed to the velocity of the
contact point in the contact plane. One should note that Coulomb friction is a constitutive
law i.e., an empirical model which is meant to summarize experimental evidence, in con-
trast with a fundamental law which can be derived from first principles. As such, "Cou-
lomb’s Law" is not so strict: the modeler has license to alter this model to ease computation
provided the overall behaviour is still close to what is seen in an experiment.

The Coulomb friction model for a single point describes two states for the contact namely,
sticking or sliding. In stick mode or static friction mode, the tangential force vector, f,,

which lies in a plane tangential to the normal force of contact, the force that prevents two
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objects from interpenetrating, must have smaller magnitude than the friction coefficient

times the magnitude of the normal force f, i.e.,

£l = Jf3 +F5<nd, (4.24)

where f,, and f . are components of the tangential force along two perpendicular directions
in the tangential plane. In dynamic or sliding friction, the friction force must oppose the
sliding velocity vector v, and its magnitude is the kinetic friction coefficient p, times the
normal force 1.¢.

5] = wif (4.25)

fl V= frl"/l +f12"r2 <0 (4.26)

This model does not specify how to compute f, or f, at all but only states relationships
between those quantities. These conditions specify that the tangential force should lie in the

convex cone defined by the normal force, 1.e.,

Cyy = Ut | Al <ndul (427)

The first approximation we perform on this is to replace the friction cone by a friction pyra-
mid, a simple case of polygonal cone approximation found in the literature. The idea is to
introduce k linearly dependent basis vectors for the contact plane denoted d|, d», ..., d; and

to represent the tangential friction force as:

fi=2dB (4.28)

and from this definition, we get an approximation to the friction cone known as the friction

polyhedron:

Cgfn) = { n + ZdiBi i 0 < Bi < Hsllfnll} (4'29)

i

The construction is shown for the friction pyramid in figure 4 using four basis vectors with

equal angular spacing.

The final approximation is to neglect the dependence of the tangential friction forces on the
normal force by specifying an independent maximum value for the coefficients, £, . This

gives a simple approximation off the friction cone that we refer to as a ‘box friction” model.

B(f,,) = { n + Zdiﬁi I 0< Bi <_fmax} (430)

A box friction approximation to the friction cone is shown in figure 5.
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Claims

1. A computer program recorded on a data carrier for
simulating the motion of objects and displaying the results on
a display screen, the computer program being operable to
control a computer having a display screen, a memory and a
processing unit to carry out the steps of

storing in the memory position and velocity parameters
defining an initial state of a model system having a plurality
of bodies,

storing in the memory parameters defining at least one
constraint function constraining the motion of the bodies in
the model system, and

calculating in the processor the position and velocity
parameters defining the state of the system after a
predetermined time step based on rigid body dynamics, including

carrying out a semi-implicit integration step subject to
the constraints, to determine the velocity after the step,
including

determining the constraint forces that act to keep the
system in compliance with the constraints by ensuring that the

first derivative of the constraint function is zero.

2. A computer program recorded on a data carrier for
simulating the motion of objects and displaying the results on

a display screen, the computer program being operable to
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control a computer having a display screen, a memory and a
processing unit to carry out the steps of

storing in the memory position and velocity parameters
defining an initial state of a model system having a plurality
of bodies,

storing in the memory parameters defining at least one
constraint function constraining the motion of the bodies in
the model system,

storing in the memory parameters defining a bounded
constraint force to simulate the effects of friction in which
the constraint force acts in the plane of contact between a
pair of objects to prevent sliding of one of the pair of
objects over the other of the pair, wherein the constraint
force is bounded to be not greater than a predetermined
constant value to allow sliding of the objects over one another
and thus include dynamic friction in the simulation, and

calculating in the processor the position and velocity
parameters defining the state of the system after a
predetermined time step based on rigid body dynamics, including

carrying out a semi-implicit integration step subject to

the constraints, to determine the velocity after the step.

3. A computer program according to claim 1 or 2 operable
Lo cause the computer to carry out the further step of

displaying an image of the objects at their calculated
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positions on the computer display screen, so that the display
shows the objects on the screen using physical laws to simulate

their motion.

4. A computer program according to any preceding claim
wherein the calculating step includes carrying out the implicit
integration by

calculating the velocity parameters after the time
step from the external forces, the constraint forces and
the position and velocity parameters before the time step,
and

calculating the position parameters after the time
step from the external forces and constraint forces, the
calculated velocity parameters after the time step and the

position parameters before the time step.

5. A computer program according to any preceding claim,
wherein the constraint forces are determined by solving the

mixed linear complementarity problem using Murty's method.

6. A computer program according to claim 5 wherein the

means for solving the linear complementarity problem includes

solving the boxed LCP problem by the boxed Murty's method.
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7. A computer program according to claim 5 or 6 wherein
the constraints are required to be held to within a tolerance ¢

where the tolerance ¢ has a predetermined value that is small.

8. A computer program according to claim 7 where € has a

value between 107* and 1072.

9. A computer program according to any preceding claim
wherein the model includes a model of friction in which the
frictional force between a pair of objects is independent of

the normal force between the objects.

10. A computer program according to claim 9 wherein the
frictional force between a pair of objects is modelled as a
bounded constraint force in which the constraint force acts in
the plane of contact between the pair of objects to prevent
sliding of one of the pair of objects over the other of the
pair, wherein the constraint force is bounded to be not greater
than a predetermined constant value to allow sliding of the
objects over one another and thus include dynamic friction in

the simulation.

11. A computer program according to any preceding claim
wherein the bounds on the constraint forces are included by a

step of testing whether the constraint forces have a magnitude

SUBSTITUTE SHEET (RULE 26)



10

15

20

WO 01/67310 PCT/GB01/01020

65

greater than a predetermined value and if so setting them to be

that predetermined value.

12. A computer program according to any preceding claim

in which the constraints are modelled using the first order
expansion of the constraint function @

® = ¢o+ Jp (p'-p)
in the constraint equation.

bo + Jp (P' - P) = (1-Y)do

where y is a relaxation parameter.

13. A computer program according to claim 12 when

dependent on claim 6 wherein the parameters y and & are chosen

to model a compliant coupling between two of the rigid bodies.

14. A computer program according to any one of claims 1

to 13 that is a computer game program.

15. A computer game program according to claim 14

recorded within a cartridge for a computer game machine.

l6. A computer game programmed to generate a display by

means of a computer program according to any preceding claim.
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17. A method for operating a computer having a display
screen, a memory and a processing unit for simulating the
motion of objects and displaying the results on the display
screen, the method including the steps of

storing in the memory position and velocity parameters
defining an initial state of a model system having a plurality
of bodies,

storing in the memory parameters defining at least one
constraint function constraining the motion of the bodies in
the model system, and

calculating in the processor the position and velocity
parameters defining the state of the system after a
predetermined time step based on rigid body dynamics, including

carrying out a semi-implicit integration step subject to
the constraints, to determine the velocity after the step,
including

determining the constraint forces that act to keep the
system in compliance with the constraints by ensuring that the

first derivative of the constraint function is zero.

18. A method for operating a computer having a display
screen, a memory and a processing unit for simulating the
motion of objects and displaying the results on the display

screen, the method including the steps of
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storing in the memory position and velocity parameters
defining an initial state of a model system having a plurality
of bodies,

storing in the memory parameters defining at least one
constraint function constraining the motion of the bodies in
the model system

storing in the memory parameters defining a bounded
constraint force to simulate the effects of friction in which
the constraint force acts in the plane of contact between a
pair of objects to prevent sliding of one of the pair of
objects over the other of the pair, wherein the constraint
force is bounded to be not greater than a predetermined
constant value to allow sliding of the objects over one another
and thus include dynamic friction in the simulation, and

calculating in the processor the position and velocity
parameters defining the state of the system after a
predetermined time step based on rigid body dynamics, including

carrying out a semi-implicit integration step subject to

the constraints, to determine the velocity after the step.

19. A method according to claim 17 or 18 including the
further step of displaying an image of the objects at their
calculated positions on the computer display screen, so that
the display shows the objects on the screen using physical laws

to simulate their motion.
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20. A method according to any of claims 17 to 19 wherein
the calculating step includes carrying out the implicit
integration by

calculating the velocity parameters after the time
step from the external forces, the constraint forces and
the position and velocity parameters before the time step,
and

calculating the position parameters after the time
step from the external forces and constraint forces, the
calculated velocity parameters after the time step and the

position parameters before the time step.

21. A method according to of claims 17 to 20, wherein the
constraint forces are determined by solving the mixed linear

complementarity problem using a Murty algorithm

22. A method according to claim 21 wherein the linear
complementarity problem is solved by solving the boxed LCP

problem by the boxed Murty's method.

23. A method according to claim 21 or 22 wherein the
constraints are required to be held to within a tolerance ¢

where the tolerance ¢ has a predetermined value that is sm-:ll.
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24. A method according to claim 23 where & has a value

between 107* and 1072.

25. A method according to any of claims 17 to 24 wherein
the model includes a model of friction in which the frictional
force between a pair of objects is independent of the normal

force between the objects.

26. A method according to claim 25 wherein the frictional
force between a pair of objects is modelled as a bounded
constraint force in which the constraint force acts in the
plane of contact between the pair of objects to prevent sliding
of one of the pair of objects over the other of the pair,
wherein the constraint force is bounded to be not greater than
a predetermined constant value to allow sliding of the objects
over one another and thus include dynamic friction in the

simulation.

27. A method according to any of claims 17 to 26 wherein
the bounds on the constraint forces are included by a step of
testing whether the constraint forces have a magnitude greater
than a predetermined value and if so setting them to be that

predetermined value.
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28. A method according to any of claims 17 to 27 in which

the constraints are modelled using the first order expansion of

the constraint function @

D = ¢+ Jp (p'-p)

in the constraint equation.

b + Jp (D' - pP) = (1-y)¢s

where y is a relaxation parameter.

29. A method according to claim 28 when dependent on
claim 19 wherein the parameters y and ¢ are chosen to model a

compliant coupling between two of the rigid bodies.

30. A method of generating a display in a computer game

according to any one of claims 17 to 29.

31. Apparatus for simulating the motion of objects and
displaying the results on a display screen comprising

a display screen,

a memory,

a processing unit,
and a computer program stored in the memory for causing the
apparatus to carry out the steps of:

storing in the memory position and velocity parameters
defining an initial state of a model system having a plurality

of bodies,
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storing in the memory parameters defining at least one
constraint function constraining the motion of the bodies in
the model system, and

calculating in the processor the position and velocity
parameters defining the state of the system after a
predetermined time step based on rigid body dynamics, including

carrying out a semi-implicit integration step subject to
the constraints, to determine the velocity after the step,
including

determining the constraint forces that act to keep the
system in compliance with the constraints by ensuring that the

first derivative of the constraint function is zero.

32. Apparatus for simulating the motion of objects and
displaying the results on a display screen comprising

a display screen,

a memory,

a processing unit,
and a computer program stored in the memory for causing the
apparatus to carry out the steps of:

storing in the memory position and velocity parameters
defining an initial state of a model system having a plurality

of bodies,
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storing in the memory parameters defining at least one
constraint function constraining the motion of the bodies in
the model system

storing in the memory parameters defining a bounded
constraint force to simulate the effects of friction in which
the constraint force acts in the plane of contact between a
pair of objects to prevent sliding of one of the pair of
objects over the other of the pair, wherein the constraint
force is bounded to be not greater than a predetermined
constant value to allow sliding of the objects over one another
and thus include dynamic friction in the simulation, and

calculating in the processor the position and velocity
parameters defining the state of the system after a
predetermined time step based on rigid body dynamics, including

carrying out a semi-implicit integration step subject to

the constraints, to determine the velocity after the step.

33. A computer program recorded on a data carrier for
simulating the motion of objects and displaying the results on
a display screen, the computer program being operable to
control a computer having a display screen, a memory and a
processing unit to carry out the steps of

storing in the memory position and velocity parameters
defining an initial state of a model system having a plurality

of bodies,
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storing in the memory parameters defining at least one
constraint function constraining the motion of the bodies in
the model system, and
calculating in the processor the position and velocity
parameters defining the state of the system after a
predetermined time step based on rigid body dynamics, including
carrying out a semi-implicit integration step by
calculating the velocity parameters after the time
step from the external forces, the constraint forces and
the position and velocity parameters before the time step,
and
calculating the position parameters after the time
step from the external forces and constraint forces, the
calculated velocity parameters after the time step and the
position parameters before the time step;
subject to the constraints, to determine the velocity
after the step, including
determining the constraint forces that act to keep the
system in compliance with the constraints by ensuring that the

first derivative of the constraint function is zero.

34. A computer program recorded on a data carrier for

simulating the motion of objects and displaying the results on

a display screen, the computer program being operable to
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control a computer having a display screen, a memory and a
processing unit to carry out the steps of

storing in the memory position and velocity parameters
defining an initial state of a model system having a plurality
of bodies, the model including a model of friction in which the
frictional force between a pair of objects is independent of
the normal force between the objects;

storing in the memory parameters defining at least one
constraint function constraining the motion of the bodies in
the model system, and

calculating in the processor the position and velocity
parameters defining the state of the system after a
predetermined time step based on rigid body dynamics, including

carrying out a semi-implicit integration step by

calculating the velocity parameters after the time

step from the external forces, the constraint forces and

the position and velocity parameters before the time step,

and

calculating the position parameters after the time

step from the external forces and constraint forces, the

calculated velocity parameters after the time step and the

position parameters before the time step;

subject to the constraints, to determine the velocity

after the step, including
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determining the constraint forces that act to keep the
system in compliance with the constraints by ensuring that the

first derivative of the constraint function is zero.

35. A computer program recorded on a data carrier for
simulating the motion of objects and displaying the results on
a display screen substantially as herein described with

reference to the accompanying drawings.

36. A method for operating a computer having a display
screen, a memory and a processing unit for simulating the
motion of objects and displaying the results on the display
screen substantially as herein described with reference to the

accompanying drawings.

37. Apparatus for simulating the motion of objects and
displaying the results on a display screen comprising
substantially as herein described with reference to the

accompanying drawings.
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ths=c/h- y/h? - J*tmp Copy upper triangle to lower,
modify diagonal of A, add
rotational force to bodies
fe is
resultant A matrix, now complete,
force on with modified diagonal
body
factorize
- create A"!
- Cholesky

'

IN:rhs, lo,hi, A, A-!
rhs becomes A

'

Calculate resultant forces
from A andJ

'

INTEGRATOR

update velocities then F i g, 7

positions & rotations

OUTPUT DATA.:

velocity (inc. angular velocity), force,
position, orientation, for each body
transformation matrix & orientation
quaternion for each body

SUBSTITUTE SHEET (RULE 26)
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