

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(45) 공고일자 2024년03월26일

(11) 등록번호 10-2651696

(24) 등록일자 2024년03월22일

(51) 국제특허분류(Int. Cl.)

H01M 4/13 (2010.01) **H01M 10/052** (2010.01) **H01M 4/02** (2006.01)

(52) CPC특허분류

HO1M 4/13 (2013.01) **HO1M 10/052** (2013.01)

(21) 출원번호 10-2020-0134979

(22) 출원일자2020년10월19일

심사청구일자 **2023년02월21일**

(65) 공개번호 10-2022-0051494

(43) 공개일자 **2022년04월26일**

(56) 선행기술조사문헌 JP5677271 B2*

(뒷면에 계속)

전체 청구항 수 : 총 12 항

(73) 특허권자

에스케이온 주식회사

서울특별시 종로구 종로 51 (종로2가, 종로타워빌 딩)

(72) 발명자

박소현

대전광역시 유성구 엑스포로 325, SK이노베이션 (원촌동)

강희경

대전광역시 유성구 엑스포로 325, SK이노베이션 (원촌동)

(뒷면에 계속)

(74) 대리인

특허법인리채

(54) 발명의 명칭 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지

심사관 : 김은진

(57) 요 약

본 발명의 리튬 이차 전지용 음극은 하부 음극 활물질 층 및 상부 음극 활물질 층을 포함하고, 상기 하부 음극 활물질 층 및 상기 상부 음극 활물질 층 각각은, 서로 경도가 상이한 복수의 음극 활물질을 포함한다.

대 표 도 - 도1

10

(52) CPC특허분류

HO1M 2004/021 (2013.01) HO1M 2004/027 (2013.01)

(72) 발명자

황해숙

대전광역시 유성구 엑스포로 325, SK이노베이션 (원촌동)

전찬영

대전광역시 유성구 엑스포로 325, SK이노베이션 (원촌동) (56) 선행기술조사문헌

KR1020080095425 A*

KR1020170031452 A*

KR1020190076706 A*

W02020031869 A1*

*는 심사관에 의하여 인용된 문헌

명 세 서

청구범위

청구항 1

음극 집전체; 및

상기 음극 집전체 상에 형성된 하부 음극 활물질 층 및 상기 하부 음극 활물질 층 상에 형성된 상부 음극 활물 질 층을 포함하는, 음극 활물질 층;을 포함하고,

상기 하부 음극 활물질 층 및 상기 상부 음극 활물질 층 각각은, 제1 음극 활물질 및 상기 제1 음극 활물질보다 낮은 경도를 갖는 제2 음극 활물질을 포함하며,

상기 음극 활물질 층은 수은 세공계에 의해 측정한 3 nm 내지 10 μ m의 직경을 갖는 기공들에 대한 총 수은 침입 량이 0.35 ml/g 이상인, 리튬 이차 전지용 음극.

청구항 2

청구항 1에서,

상기 하부 음극 활물질 층은 상기 제1 음극 활물질보다 상기 제2 음극 활물질을 더 높은 함량으로 포함하고,

상기 상부 음극 활물질 층은 상기 제2 음극 활물질보다 상기 제1 음극 활물질을 더 높은 함량으로 포함하는, 리튬 이차 전지용 음극.

청구항 3

청구항 2에서, 상기 하부 음극 활물질 층 중, 상기 제2 음극 활물질에 대한 상기 제1 음극 활물질의 중량 기준 함량 비는 0.1 내지 0.85인, 리튬 이차 전지용 음극.

청구항 4

청구항 2에서, 상기 상부 음극 활물질 층 중, 상기 제1 음극 활물질에 대한 상기 제2 음극 활물질의 중량 기준 함량 비는 0.1 내지 0.85인, 리튬 이차 전지용 음극.

청구항 5

청구항 1에서, 상기 제1 음극 활물질은 단입자 구조인, 리튬 이차 전지용 음극.

청구항 6

청구항 1에서, 상기 제2 음극 활물질은 1차 입자들이 조립된 2차 입자 구조인, 리튬 이차 전지용 음극.

청구항 7

청구항 1에서, 상기 제2 음극 활물질에 대한 상기 제1 음극 활물질의 경도 비는 1.1 내지 1.5인, 리튬 이차 전지용 음극.

청구항 8

청구항 1에서, 상기 제1 음극 활물질은 평균 입경(D₅₀)이 5 내지 10 μ m이고, 상기 제2 음극 활물질은 평균 입경(D₅₀)이 12 내지 20 μ m인, 리튬 이차 전지용 음극.

청구항 9

청구항 1에서, 상기 하부 음극 활물질 층에 대한 상기 상부 음극 활물질 층의 두께 비는 0.66 내지 1.5인, 리튬이차 전지용 음극.

청구항 10

청구항 1에서, 상기 음극 활물질 층은 하기 식 1로 표현되는 미세 기공도가 25% 이하인, 리튬 이차 전지용 음극:

[식 1]

미세 기공도 = B/A × 100(%)

식 1에서, A는 수은 세공계에 의해 측정한 3 nm 내지 10 μ m의 직경을 갖는 기공들에 대한 총 수은 침입량이며, B는 수은 세공계에 의해 측정한 3 nm 내지 100 nm의 직경을 갖는 기공들에 대한 총 수은 침입량이다.

청구항 11

청구항 1에서, 상기 하부 음극 활물질 층 및 상기 상부 음극 활물질 층 각각은, 제1 음극 활물질 및 제2 음극활물질 총 100중량부에 대하여 판상의 도전재 1 내지 5중량부를 더 포함하는, 리튬 이차 전지용 음극.

청구항 12

청구항 1의 음극, 양극 및 상기 음극 및 양극 사이 배치된 분리막을 포함하는 전극 조립체; 및 상기 전극 조립체를 함침시키는 전해질;을 포함하는 리튬 이차 전지.

발명의 설명

기술분야

[0001] 본 발명은 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지에 관한 것이다. 보다 상세하게는, 본 발명은 복수의 음극 활물질을 포함하는 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지에 관한 것이다.

배경기술

- [0002] 이차 전지는 충전 및 방전이 반복 가능한 전지로서, 휴대폰, 노트북 PC 등과 같은 휴대용 전자 기기의 동력원으로 널리 적용되고 있다.
- [0003] 리튬 이차 전지는 작동 전압 및 단위 중량당 에너지 밀도가 높고, 충전 속도 및 경량화에 유리하다는 점에서 활발히 개발 및 적용되고 있다.
- [0004] 리튬 이차 전지는, 예를 들면, 양극, 음극, 전해질 및 분리막 등으로 구성될 수 있다. 상기 음극은 음극 활물질을 포함하며, 상기 음극 활물질은 리튬 이차 전지의 충방전 용량, 수명 특성 등에 영향을 미친다.
- [0005] 상기 음극 활물질은 리튬 이온의 삽입 및 탈리가 가능한 물질로서, 예를 들면, 천연 흑연, 인조 흑연 등의 탄소계 음극 활물질일 수 있다.
- [0006] 상기 탄소계 음극 활물질은 리튬 이온의 삽입 및 탈리 시 결정 구조 변화가 적어, 지속적인 충방전이 가능하여, 우수한 수명 특성을 구현할 수 있다. 그러나, 리튬 이차 전지의 고용량화를 위해서는 음극 활물질을 보다 고밀 도화할 필요가 있다.
- [0007] 한국공개특허공보 제10-2017-0007140호는 다른 형상 및 물성을 갖는 다종의 흑연을 포함하는 리튬 이차 전지용음극을 개시하고 있다.

선행기술문헌

특허문허

[0008] (특허문헌 0001) 한국공개특허공보 제10-2017-0007140호

발명의 내용

해결하려는 과제

- [0009] 본 발명의 일 과제는 고밀도화된 음극 활물질을 포함하는 리튬 이차 전지용 음극을 제공하는 것이다.
- [0010] 본 발명의 일 과제는 고용량 특성을 갖고, 수명 특성이 우수한 리튬 이차 전지를 제공하는 것이다.

과제의 해결 수단

- [0011] 본 발명의 일 양태는, 음극 집전체; 및 상기 음극 집전체 상에 형성된 하부 음극 활물질 층 및 상기 하부 음극 활물질 층 상에 형성된 상부 음극 활물질 층을 포함하는, 음극 활물질 층;을 포함하고, 상기 하부 음극 활물질 층 및 상기 상부 음극 활물질 층 각각은, 제1 음극 활물질 및 상기 제1 음극 활물질보다 낮은 경도를 갖는 제2음극 활물질을 포함하며, 상기 음극 활물질 층은 수은 세공계에 의해 측정한 3 nm 내지 10 /m의 직경을 갖는 기공들에 대한 총 수은 침입량이 0.27 ml/g 이상인, 리튬 이차 전지용 음극이다.
- [0012] 본 발명의 일 실시예에 있어서, 상기 하부 음극 활물질 층은 상기 제1 음극 활물질보다 상기 제2 음극 활물질을 더 높은 함량으로 포함하고, 상기 상부 음극 활물질 층은 상기 제2 음극 활물질보다 상기 제1 음극 활물질을 더 높은 함량으로 포함할 수 있다.
- [0013] 일부 실시예에 있어서, 상기 하부 음극 활물질 충 중, 상기 제2 음극 활물질에 대한 상기 제1 음극 활물질의 중 량 기준 함량 비는 0.1 내지 0.85일 수 있다.
- [0014] 일부 실시예에 있어서, 상기 상부 음극 활물질 층 중, 상기 제1 음극 활물질에 대한 상기 제2 음극 활물질의 중 량 기준 함량 비는 0.1 내지 0.85일 수 있다.
- [0015] 본 발명의 일 실시예에 있어서, 상기 제1 음극 활물질은 단입자 구조일 수 있다.
- [0016] 본 발명의 일 실시예에 있어서, 상기 제2 음극 활물질은 1차 입자들이 조립된 2차 입자 구조일 수 있다.
- [0017] 본 발명의 일 실시예에 있어서, 상기 제2 음극 활물질에 대한 상기 제1 음극 활물질의 경도 비는 1.1 내지 1.5 일 수 있다.
- [0018] 본 발명의 일 실시예에 있어서, 상기 제1 음극 활물질은 평균 입경(D₅₀)이 5 내지 10 \(\mu\mi\mathrm{n}\moderap \text{이 제2 음극 활물질은 평균 입경(D₅₀)이 12 내지 20 \(\mu\mathrm{m}\mi\mathrm{Q}\mi\mathrm{n}\mi\mathrm{n}\text{ 수 있다.}
- [0019] 본 발명의 일 실시예에 있어서, 상기 하부 음극 활물질 층에 대한 상기 상부 음극 활물질 층의 두께 비는 0.66 내지 1.5일 수 있다.
- [0020] 본 발명의 일 실시예에 있어서, 상기 음극 활물질 층은 하기 식 1로 표현되는 미세 기공도가 25% 이하일 수 있다.
- [0021] [식 1]
- [0022] 미세 기공도 = B/A × 100(%)
- [0023] 식 1에서, A는 수은 세공계에 의해 측정한 3 nm 내지 10 μ m의 직경을 갖는 기공들에 대한 총 수은 침입량이며, B는 수은 세공계에 의해 측정한 3 nm 내지 100 nm의 직경을 갖는 기공들에 대한 총 수은 침입량이다.
- [0024] 본 발명의 일 실시예에 있어서, 상기 하부 음극 활물질 층 및 상기 상부 음극 활물질 층 각각은, 제1 음극 활물 질 및 제2 음극 활물질 총 100중량부에 대하여 판상의 도전재 1 내지 5중량부를 더 포함할 수 있다.
- [0025] 본 발명의 다른 양태는, 상술한 음극, 양극 및 상기 음극 및 양극 사이 배치된 분리막을 포함하는 전극 조립체; 및 상기 전극 조립체를 함침시키는 전해질;을 포함하는 리튬 이차 전지이다.

발명의 효과

- [0026] 본 발명의 리튬 이차 전지용 음극은 하부 음극 활물질 층 및 상부 음극 활물질 층의 2층 구조를 갖는 음극 활물질 층을 포함하고, 상기 하부 음극 활물질 층 및 상부 음극 활물질 층 각각은, 경도가 상이한 2종의 음극 활물질을 포함한다. 이에 따라, 음극 활물질의 고밀도화를 구현할 수 있다.
- [0027] 본 발명의 리튬 이차 전지용 음극은 상술한 음극 활물질 층을 포함함으로써, 압연 시 기공 구조의 붕괴를 효과적으로 방지할 수 있고, 이에 따라, 고립된 기공 및 미세 기공의 비율이 낮은 특징이 있다.

[0028] 본 발명의 리튬 이차 전지는 상술한 음극을 포함함으로써, 고용량, 우수한 수명 특성 및 율속 특성을 구현할 수 있다.

도면의 간단한 설명

[0029] 도 1은 본 발명의 일 실시에에 따른 리튬 이차 전지용 음극을 간략히 나타낸 그림이다.

도 2는 본 발명의 일 실시예에 따른 리튬 이차 전지용 음극의 제조 방법을 간략히 나타낸 흐름도이다.

도 3은 본 발명의 일 실시예에 따른 리튬 이차 전지를 간략히 나타낸 단면도이다.

발명을 실시하기 위한 구체적인 내용

- [0030] 본 명세서에서 어떤 구성 요소(예를 들어, ~층 등)가 다른 구성 요소 "상에 형성된다"는 의미는, 어떤 구성 요소가 다른 구성 요소 상에 직접 형성되어 있거나, 또는 그들 사이에 제3 의 구성 요소가 형성되어 있을 수 있다는 의미로 해석될 수 있다.
- [0031] 상술한 바와 같이, 고용량을 갖는 리튬 이차 전지의 개발을 위해, 음극 활물질의 고밀도화 방안의 연구 및 개발 이 지속적으로 요구되고 있다.
- [0032] 본 발명자들은 상술한 요구에 따라, 음극 활물질의 고밀도화를 위한 연구를 지속적으로 수행하였다.
- [0033] 그 과정 중, 예를 들면, 탄소계 음극 활물질은 압연 시 입자의 깨짐 등으로 음극 활물질의 고밀도화가 어렵고, 압연 시 기공 구조 붕괴로 인해 전지의 수명 특성이 저하되는 문제를 발견하였다. 특히, 음극 활물질을 고밀도 화 하더라도, 율속 특성이 열위하여 급속 충전 시, 고용량의 장점을 살리지 못하는 문제가 확인되었다.
- [0034] 본 발명자들은 상술한 문제를 해결하기 위한 방안을 모색하였고, 그 결과, 경도가 상이한 2종의 음극 활물질을 각 층마다 포함하는 2층 구조의 음극 활물질 층을 포함하고, 특정한 파라미터(후술하는 유효 기공도)를 만족하는 경우, 음극 활물질의 고밀도화 및 기공 구조의 붕괴 방지 효과가 우수하며, 율속 특성 또한 우수한 것을 확인하였다.
- [0035] 이하, 본 발명에 대해서 설명한다.
- [0036] 본 발명의 일 양태는, 음극 집전체; 및 상기 음극 집전체 상에 형성된 하부 음극 활물질 층 및 상기 하부 음극 활물질 층 상에 형성된 상부 음극 활물질 층을 포함하는, 음극 활물질 층;을 포함하고, 상기 하부 음극 활물질 층 및 상기 상부 음극 활물질 층 각각은, 제1 음극 활물질 및 상기 제1 음극 활물질보다 낮은 경도를 갖는 제2음극 활물질을 포함하며, 상기 음극 활물질 층은 유효 기공도가 0.27 ml/g 이상인, 리튬 이차 전지용 음극이다.
- [0037] 본 발명에서 "유효 기공도"란 수은 세공계(mercury porosimeter)에 의해 측정한 3 nm 내지 10 μm의 직경(pore size)을 갖는 기공들에 대한 총 수은 침입량(instrusion volume)을 의미할 수 있다.
- [0038] 수은 세공계는 다공성 샘플에 압력을 가해 다공성 샘플의 기공 내 수은을 강제로 침입시켜 침입된 수은의 양을 측정하여, 다공성 샘플이 갖는 기공의 직경(pore size, 예를 들어, Washburn's equation에 의해 산출될 수 있음), 부피, 기공률 등을 측정하는 장치이다. 상기 수은 세공계로서, 예를 들면, Micromertics USA사의 AutoPore VI 9500 등이 채용될 수 있다. 상기 수은 세공계에 대한 보다 구체적인 원리 및 측정 방법은 이미 공지되어 있는 바, 본 명세서에서 그 구체적인 설명은 생략한다.
- [0039] 본 발명은 상술한 구성을 통해 음극 활물질의 고밀도화를 구현할 수 있으며, 압연 시 음극 활물질의 깨짐 등으로 인한 기공 구조의 붕괴 또한 효과적으로 방지할 수 있다. 또한, 전지의 출력에 불리한 고립된(isolated) 기공 및 미세 기공의 형성을 감소시키고, 유효 기공도를 향상시킬 수 있다.
- [0040] 특히, 본 발명은 우수한 율속 특성(rate capability)을 갖는 전지를 제공할 수 있다. 율속 특성은 충전 속도에 따른 용량 특성으로서, 율속 특성이 우수하면 급속 충전 시에도 용량 유지율이 우수할 수 있다. 예를 들면, 음 극 활물질의 고밀도화 등으로 고용량을 확보하더라도, 율속 특성이 열위하면, 급속 충전 시 고용량의 장점을 살릴 수 없다. 본 발명의 음극을 채용한 전지는 후술하는 실시예 및 비교예에서 확인할 수 있는 바와 같이, 우수한 율속 특성을 가져 급속 충전 시에도 고용량의 장점을 살릴 수 있는 이점이 있다.
- [0041] 이하, 도면을 참조하여 본 발명의 예시적인 실시예에 따른 리튬 이차 전지용 음극에 관하여 구체적으로 설명한다.

- [0042] 도 1은 본 발명의 예시적인 실시예에 따른 리튬 이차 전지용 음극을 간략히 나타낸 그림이다.
- [0043] 도 1을 참조하면, 리튬 이차 전지용 음극(10)은 음극 집전체(100) 및 상기 음극 집전체 상에 형성된 음극 활물 질 층(130)을 포함할 수 있다.
- [0044] 일 실시예에 있어서, 음극 활물질 층(130)은 음극 집전체(100)의 일면 상 또는 양면(일면 및 타면) 상에 형성되어 있을 수 있다.
- [0045] 음극 활물질 층(130)은 음극 집전체(100) 상에 형성된 하부 음극 활물질 층(110) 및 하부 음극 활물질 층(110) 상에 형성된 상부 음극 활물질 층(120)을 포함할 수 있다.
- [0046] 일 실시예에 있어서, 음극 집전체(100), 하부 음극 활물질 층(110) 및 상부 음극 활물질 층(120) 각 층 사이에는 리튬 이차 전지용 음극에 채용될 수 있는 통상적인 물질을 포함하는 다른 층이 추가 형성되어 있을 수 있다.
- [0047] 일부 실시예에 있어서, 하부 음극 활물질 층(110) 및 상부 음극 활물질 층(120)은 서로 접하여 형성되어 있을 수 있다.
- [0048] 음극 활물질 층(130)은 제1 음극 활물질 및 상기 제1 음극 활물질보다 낮은 경도(hardness)를 갖는 제2 음극 활물질을 포함할 수 있다.
- [0049] 예를 들면, 하부 음극 활물질 충(110)은 상기 제1 음극 활물질 및 제2 음극 활물질을 포함할 수 있다. 마찬가지로, 상부 음극 활물질 충(120)은 상기 제1 음극 활물질 및 제2 음극 활물질을 포함할 수 있다.
- [0050] 즉, 하부 음극 활물질 층(110) 및 상부 음극 활물질 층(120) 각각은, 상기 제1 음극활물질 및 제2 음극활물질을 포함할 수 있다.
- [0051] 일 실시예에 있어서, 하부 음극 활물질 층(110)은 상기 제1 음극 활물질보다 상기 제2 음극 활물질을 더 높은 함량으로 포함하며, 상부 음극 활물질 층(120)은 제2 음극 활물질보다 상기 제1 음극 활물질을 더 높은 함량으로 포함할 수 있다. 이 경우, 음극 활물질의 고밀도화, 음극 활물질 층의 유효 기공도 향상 및 미세 기공 비율의 감소 등을 구현할수 있다. 이에 따라, 고용량, 우수한 수명 특성 및 율속 특성을 갖는 전지를 구현할 수 있다.
- [0052] 일 실시예에 있어서, 하부 음극 활물질 층(110) 중, 상기 제2 음극 활물질에 대한 상기 제1 음극 활물질의 함량 비(중량 기준)는 0.1 내지 0.85일 수 있다. 상기 함량 비를 만족하는 경우, 음극 활물질의 고밀도화가 보다 유리하여, 미세 기공의 비율을 보다 감소시킬 수 있다. 이에 따라, 고용량, 우수한 수명 특성 및 율속 특성을 갖는 전지를 구현할 수 있다. 보다 좋게는, 상기 함량 비는 0.15 내지 0.7일 수 있고, 보다 더 좋게는, 상기 함량 비는 0.3 내지 0.6일 수 있다.
- [0053] 일 실시예에 있어서, 상부 음극 활물질 층(120) 중, 상기 제1 음극 활물질에 대한 상기 제2 음극 활물질의 함량 비(중량 기준)는 0.1 내지 0.85일 수 있다. 상기 함량 비를 만족하는 경우, 압연 시 하부 음극 활물질 층(110)에 지나친 데미지가 전달되는 것을 방지할 수 있다. 또한, 유효 기공도 확보가 보다 유리할 수 있고, 미세 기공의 비율을 보다 감소시킬 수 있다. 따라서, 고용량, 우수한 수명 특성 및 율속 특성을 갖는 전지를 구현할 수 있다. 보다 좋게는, 상기 함량 비는 0.15 내지 0.7일 수 있고, 보다 더 좋게는, 상기 함량 비는 0.3 내지 0.6일수 있다.
- [0054] 일 실시예에 있어서, 상기 제2 음극 활물질에 대한 상기 제1 음극 활물질의 경도 비는 1 초과, 2 이하일 수 있다. 보다 좋게는, 상기 경도 비는 1 초과, 1.5 이하일 수 있고, 보다 더 좋게는 1.1 내지 1.5일 수 있다. 이 경우, 음극 활물질의 고밀도화 및 기공 붕괴 방지 효과 면에서 보다 유리할 수 있다.
- [0055] 일부 실시예에서, 상기 경도 비는 상이한 가압 세기 p1 및 p2에서 측정한 펠렛 밀도의 변화 값(즉, |p2 펠렛 밀도 p1 펠렛 밀도|)을 이용하여 산출할 수 있다. 예를 들면, 경도는 상기 펠렛 밀도의 변화 값에 반비례하므로, 상기 제2 음극 활물질에 대한 제1 음극 활물질의 경도 비는, 제2 음극 활물질의 1/펠렛 밀도의 변화 값에 대한 제1 음극 활물질의 1/펠렛 밀도의 변화 값의 비로 산출될 수 있다.
- [0056] 상기 제1 음극 활물질 및 제2 음극 활물질은 당 기술 분야에서 통상적으로 알려진 리튬 이온을 흡장 및 탈리할 수 있는 물질일 수 있다. 예를 들면, 상기 음극 활물질은 결정질 탄소, 비정질 탄소, 탄소 복합체, 탄소 섬유 등의 탄소계 물질; Si, SiO_x(0 < x < 2), Si/C, SiO/C, Si-Metal 등의 Si계 물질; 리튬 합금; 등을 포함할 수 있다.

- [0057] 상기 제1 음극 활물질 및 제2 음극 활물질은 서로 동일한 계(예를 들면, 동일한 흑연계)의 물질일 수도 있고, 서로 상이한 계의 물질일 수도 있다.
- [0058] 일 실시예에 있어서, 상기 제1 음극 활물질은 단입자(monolith) 구조일 수 있다. 예를 들면, 상기 제1 음극 활물질은 단일의 1차 입자로만 이루어질 수 있다. 보다 좋게는, 상기 제1 음극 활물질은 단입자 구조의 인조 흑연일 수 있다. 이 경우, 음극 활물질의 고밀도화 및 음극 활물질 층의 유효 기공도 확보에 보다 유리할 수 있다.
- [0059] 일 실시예에 있어서, 상기 제2 음극 활물질은 복수의 1차 입자들이 조립(응집)된 2차 입자 구조일 수 있다. 보다 좋게는, 상기 제2 음극 활물질은 1차 입자들이 조립(응집)된 2차 입자 구조의 인조 흑연일 수 있다. 이경우, 음극 활물질의 고밀도화 및 음극의 유효 기공도 확보에 보다 유리할 수 있다.
- [0060] 일 실시예에 있어서, 상기 제1 음극 활물질은 평균 입경(D₅₀)이 5 내지 10 μ m, 보다 좋게는 6 내지 9 μ m일 수 있다.
- [0061] 일 실시예에 있어서, 상기 제2 음극 활물질은 평균 입경(D₅₀)이 12 내지 20 μ m, 보다 좋게는 15 내지 19 μ m일 수 있다.
- [0062] 예를 들면, 상기 평균 입경(D₅₀)은 체적 입경 분포의 50% 기준에서의 입경으로 정의할 수 있으며, 레이저 회절법 (laser diffraction method)을 이용하여 측정할 수 있다. 예를 들면, 레이저 회절 입도 측정 장치를 이용하여 상기 평균 입경(D₅₀)을 산출할 수 있다.
- [0063] 일 실시예에 있어서, 음극 활물질 층(130)은 유효 기공도가 0.3 ml/g 이상, 보다 좋게는 0.35 ml/g 이상, 보다 더 좋게는 0.38 ml/g 이상일 수 있다. 음극 활물질 층(130)이 상술한 범위의 유효 기공도를 만족하는 경우, 고용량, 우수한 수명 특성 및 율속 특성을 갖는 전지를 제공할 수 있다.
- [0064] 일 실시예에 있어서, 음극 활물질 층(130)은 하기 식 1로 표현되는 미세 기공도가 25% 이하 일 수 있다.
- [0065] [식 1]
- [0066] 미세 기공도 = B/A × 100(%)
- [0067] 식 1에서, A는 수은 세공계에 의해 측정한 3 nm 내지 10 /m의 직경 범위를 갖는 기공들에 대한 총 수은 침입량이며, B는 수은 세공계에 의해 측정한 3 nm 내지 100 nm의 직경 범위를 갖는 기공들에 대한 총 수은 침입량이다.
- [0068] 일부 실시예에서, 음극 활물질 층(130)은 상기 미세 기공도가 23% 이하, 보다 좋게는 21% 이하일 수 있다. 음극활물질 층(130)이 상술한 범위의 미세 기공도 만족하는 경우, 고용량, 우수한 수명 특성 및 율속 특성을 갖는 전지를 제공할 수 있다.
- [0069] 일 실시예에 있어서, 하부 음극 활물질 충(110)에 대한 상부 음극 활물질 충(120)의 두께 비는 0.66 내지 1.5일 수 있다. 이 경우, 음극 활물질의 고밀도화에 보다 유리할 수 있다.
- [0070] 일 실시예에 있어서, 음극 집전체(100)는 구리, 스테인레스강, 니켈, 알루미늄, 티탄, 이들의 합금 등을 포함할 수 있고, 보다 좋게는, 구리 또는 구리 합금을 포함할 수 있다.
- [0071] 일 실시예에 있어서, 음극 활물질 충(130)은 음극 바인더를 더 포함할 수 있다. 즉, 하부 음극 활물질 충(110) 및 상부 음극 활물질 충(120)은 음극 바인더를 더 포함할 수 있다.
- [0072] 상기 음극 바인더는 음극 활물질 입자들 서로 간, 음극 활물질 및 음극 집전체 간 잘 부착되도록 하는 역할을 할 수 있다. 상기 음극 바인더는, 예를 들면, 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polywinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등의 유기계 바인더; 스티렌-부타디엔 러버(SBR) 등의 수계 바인더;를 포함할 수 있으며, 카르복시메틸 셀룰로오스(CMC)와 같은 증점제와 함께 사용될 수도 있다. 예를 들면, 탄소계 활물질과의 정합성을 위해 스티렌-부타디엔 러버(SBR) 등의 수계 바인더일 수 있으며, 카르복시메틸 셀룰로오스(CMC)와 같은 증점제와 함께 사용될 수 있다.
- [0073] 일 실시예에 있어서, 음극 활물질 층(130)은 각각 도전재를 더 포함할 수 있다. 즉, 하부 음극 활물질 층(110) 및 상부 음극 활물질 층(120)은 바인더를 더 포함할 수 있다.

- [0074] 상기 도전재는 음극 활물질 입자들 사이의 전자 이동을 촉진하는 역할을 할 수 있다. 상기 도전재는, 예를 들면, 흑연, 카본 블랙, 그래핀, 탄소 나노 튜브 등의 탄소계열 도전재; 주석, 산화주석, 산화티타늄, LaSrCoO3, LaSrMnO3 등의 페로브스카이트(perovskite) 물질 등을 포함하는 금속 계열 도전재;를 포함할 수 있다.
- [0075] 일 실시예에 있어서, 음극 활물질 층(130)은 상기 제1 음극 활물질 및 제2 음극 활물질 총 100중량부에 대하여 판상의 도전재 1 내지 5중량부를 더 포함할 수 있다. 예를 들면, 하부 음극 활물질 층(110) 및 상부 음극 활물질 층(120)은 각각 상기 제1 음극 활물질 및 제2 음극 활물질 총 100중량부에 대하여 판상의 도전재 1 내지 5중량부를 더 포함할 수 있다. 이 경우, 상기 판상의 도전재의 슬라이딩(sliding) 효과에 의해 압연 시 음극 활물질의 손상을 방지할 수 있다. 이에 따라, 음극의 유효 기공도를 보다 증가시킬 수 있고, 고용량, 우수한 수명특성 및 율속 특성을 갖는 전지를 구현할 수 있다.
- [0076] 일부 실시예에 있어서, 상기 판상의 도전재는 판상의 인조 흑연일 수 있고, 평균 입경(D₅₀)은 3 내지 5 ﷺ 수 있다.
- [0077] 본 발명의 다른 양태는, 음극 집전체 상에 제1 음극 슬러리를 도포하는 단계; 및 상기 제1 음극 슬러리 상에 제 2 음극 슬러리를 도포하는 단계;를 포함하고, 상기 제1 음극 슬러리 및 제2 음극 슬러리 각각은, 제1 음극 활물 질 및 상기 제1 음극 활물질보다 낮은 경도를 갖는 제2 음극 활물질을 포함하는, 리튬 이차 전지용 음극의 제조 방법이다.
- [0078] 일 실시예에 있어서, 상기 제1 음극 슬러리는 상기 제1 음극 활물질보다 상기 제2 음극 활물질을 더 높은 함량으로 포함하고, 상기 제2 음극 슬러리는 상기 제2 음극 활물질보다 상기 제1 음극 활물질을 더 높은 함량으로 포함할 수 있다.
- [0079] 도 2는 본 발명의 예시적인 실시예에 따른 리튬 이차 전지용 음극의 제조 방법을 간략히 나타낸 흐름도이다.
- [0080] 도 2를 참조하면, 본 발명의 일 실시예에 따른 리튬 이차 전지용 음극의 제조 방법은, 음극 집전체 상에 상기 제1 음극 슬러리를 도포하는 단계(예를 들어, S10), 및 상기 제1 음극 슬러리 상에 제2 음극 슬러리를 도포하는 단계(예를 들어, S20)를 포함할 수 있다.
- [0081] 상기 제1 음극 슬러리 및 제2 음극 슬러리는 각각 제1 음극 활물질, 제2 음극 활물질, 음극 바인더, 용매, 필요에 따라 도전재 등을 포함할 수 있다.
- [0082] 상기 음극 집전체, 제1 음극 활물질, 제2 음극 활물질, 음극 바인더 및 도전재에 대해서는 상술한 내용이 그대로 적용될 수 있는 바, 그 구체적 설명을 생략한다.
- [0083] 일 실시예에 있어서, 상기 제1 음극 슬러리 및 제2 음극 슬러리를 건조 및 압연하는 단계(예를 들어, S30)를 더 포함할 수 있다. 예를 들면, 상기 제1 음극 슬러리 및 제2 음극 슬러리를 건조하여 하부 음극 활물질 층 및 상부 음극 활물질 층을 형성하는 단계; 및 상기 하부 음극 활물질 층 및 상부 음극 활물질 층을 압연하는 단계;를 더 포함할 수 있다. 이 경우, 제1 음극 슬러리 및 제2 음극 슬러리를 각각 건조할 필요 없이, 1회의 건조 공정 만을 진행할 수 있어, 음극 제조 공정을 보다 간소화할 수 있다.
- [0084] 이와 달리, 상기 음극 집전체 상에 상기 제1 음극 슬러리를 도포, 건조하여 하부 음극 활물질 층을 형성하고, 상기 하부 음극 활물질 층 상에 상기 제2 음극 슬러리를 도포, 건조하여 상부 음극 활물질 층을 형성시키고, 압 연할 수도 있다.
- [0085] 본 발명의 또 다른 양태는, 상술한 본 발명의 음극, 양극 및 상기 음극 및 양극 사이 배치된 분리막을 포함하는 전극 조립체; 및 상기 전극 조립체를 함침시키는 전해질;을 포함하는 리튬 이차 전지이다.
- [0086] 도 3은 본 발명의 일 실시예에 따른 리튬 이차 전지를 간략히 나타낸 단면도이다.
- [0087] 도 3을 참조하면, 본 발명의 일 실시예에 따른 리튬 이차 전지는 상술한 본 발명의 음극(10), 양극(20) 및 상기음극 및 양극 사이에 배치된 분리막(30)을 포함할 수 있다.
- [0088] 상기 양극(20)은 양극 집전체(200) 및 상기 양극 집전체 상의 양극 활물질 층(230)을 포함할 수 있다.
- [0089] 양극 활물질 층(230)은 양극 활물질, 필요에 따라, 양극 바인더 및 도전재를 포함할 수 있다.
- [0090] 양극(20)은, 예를 들면, 양극 활물질, 양극 바인더, 도전재, 용매 등을 혼합 및 교반하여 양극 슬러리를 제조한

- 후, 이를 양극 집전체(200) 상에 도포, 건조 및 압연하여 제조될 수 있다.
- [0091] 양극 집전체(200)는, 예를 들면, 스테인레스 강, 니켈, 알루미늄, 티탄, 구리 또는 이들의 합금을 포함할 수 있으며, 보다 좋게는, 알루미늄 또는 알루미늄 합금을 포함할 수 있다.
- [0092] 상기 양극 활물질은 리튬 이온의 가역적인 삽입 및 탈리가 가능한 물질일 수 있다. 상기 양극 활물질은, 예를 들면, 니켈, 코발트, 망간, 알루미늄 등의 금속 원소를 포함하는 리튬 금속 산화물일 수 있다.
- [0093] 예를 들면, 상기 리튬 금속 산화물은 하기 화학식 1로 표현될 수 있다.
- [0094] [화학식 1]
- [0095] $\text{Li}_{x}\text{Ni}_{a}\text{Co}_{b}\text{M}_{c}\text{O}_{v}$
- [0096] 화학식 1에서, M은 Al, Zr, Ti, B, Mg, Mn, Ba, Si, W, 및 Sr 중 어느 하나이고, 0.9≤x≤1.1, 1.9≤y≤2.1, 0.8≤a≤1, 0≤c/(a+b)≤0.13, 0≤c≤0.11일 수 있다.
- [0097] 일부 실시예에 있어서, 상기 리튬 금속 산화물은 코팅 원소 또는 도핑 원소를 더 포함할 수 있다. 예를 들면, 상기 코팅 원소 또는 도핑 원소는 Al, Ti, Ba, Zr, Si, B, Mg, P, Sr, W, La 또는 이들의 합금 혹은 이들의 산화물을 포함할 수 있다. 이들은 단독으로 혹은 2 이상이 조합되어 사용될 수 있다. 상기 코팅 또는 도핑 원소에 의해 상기 양극 활물질 입자가 패시베이션 되어, 외부 물체의 관통에 대한 안정성 및 수명이 더욱 향상될 수 있다.
- [0098] 상기 양극 바인더는, 예를 들면, 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐 리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴 레이트(polymethylmethacrylate) 등의 유기계 바인더; 스티렌-부타디엔 러버(SBR) 등의 수계 바인더;를 포함할 수 있으며, 카르복시메틸 셀룰로오스(CMC)와 같은 증점제와 함께 사용될 수도 있다. 보다 좋게는, 양극 바인더는 PVDF 계열 바인더일 수 있다.
- [0099] 상기 도전재는, 예를 들면, 흑연, 카본 블랙, 그래핀, 탄소 나노 튜브 등의 탄소계열 도전재; 주석, 산화주석, 산화티타늄, LaSrCoO3, LaSrMnO3 등의 페로브스카이트(perovskite) 물질 등을 포함하는 금속 계열 도전재;를 포함할 수 있다.
- [0100] 양극(20) 및 음극(10) 사이에는 분리막(30)이 개재될 수 있다.
- [0101] 분리막(30)은 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체, 에틸렌/ 메타크릴레이트 공중합체 등과 같은, 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 포함할 수 있다. 또는, 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 형성된 부직포를 포함할 수도 있다.
- [0102] 양극(20), 음극(10) 및 분리막(30)을 포함하여 전극 셀이 형성될 수 있다. 또한, 복수의 전극 셀들이 적충되어, 젤리 롤 형태의 전극 조립체가 형성될 수 있다. 예를 들어, 분리막(30)의 권취(winding), 적충(lamination), 접음(folding) 등에 의해 전극 조립체가 형성될 수 있다.
- [0103] 상기 전극 조립체가 외장 케이스(40) 내에 전해질과 함께 수용되어 리튬 이차전지를 형성할 수 있다. 상기 전해 질은 리튬 염일 수 있고, 유기 용매와 함께 비수 전해액 상태로 외장 케이스 내에 포함될 수 있다.
- [0104] 상기 리튬염은, 예를 들면, Li[†]X[¯]로 표현될 수 있다. 또한, 상기 리튬염의 음이온(X¯)은, 예를 들면, F¯, Cl¯, Br¯, l¯, NO₃¯, N(CN)₂¯, BF₄¯, ClO₄¯, PF₆¯, (CF₃)₂PF₄¯, (CF₃)₃PF₃¯, (CF₃)₄PF₂¯, (CF₃)₅PF¯, (CF₃)₆P¯, CF₃SO₃¯, CF₃CF₂SO₃¯, (CF₃SO₂)₂N¯, (FSO₂)₂N¯, CF₃CF₂(CF₃)₂CO¯, (CF₃SO₂)₂CT¯, (SF₅)₃C¯, (CF₃SO₂)₃C¯, CF₃(CF₂)₇SO₃¯, CF₃CO₂¯, CH₃CO₂¯, SCN¯및 (CF₃CF₂SO₂)₂N¯ 등일 수 있다.
- [0105] 상기 유기 용매는, 예를 들면, 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸 카보네이트(diethyl carbonate, DEC), 디메틸 카보네이트(dimethyl carbonate, DMC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트, 디프로필 카보네이트, 디메틸설퍼옥사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌 카보네이트, 설포란, 감마-부티로락톤, 프로필렌 설파이트 및 테트라하이드로퓨란 등일 수 있다.

- [0106] 리튬 이차전지는, 예를 들면, 원통형, 각형, 파우치형 또는 코인형 등으로 제조될 수 있다.
- [0107] 이하 본 발명의 실시예 및 비교예를 기재한다. 그러나 하기 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.
- [0108] [물성 측정 방법]
- [0109] 1. 평균 입경(D₅₀)
- [0110] 평균 입경(D₅₀)은 체적 입경 분포 50% 기준에서의 입경으로 정의할 수 있고, 레이저 회절법(laser diffraction method, microtrac MT 3000)을 이용하여 측정하였다.
- [0111] 2. 펠렛 밀도(pellet density)
- [0112] 펠렛 밀도는 Nittoseiko Analytech사의 MCP-PD51을 이용하여 하기와 같은 방법에 따라 측정하였다.
- [0113] (1) 직경 20 mm의 빈 펠리타이저의 높이(H1, mm)를 측정하였다.
- [0114] (2) 2 g의 음극 활물질 시료를 상기 펠리타이저에 투입하고, 가압한 채 10초 동안 유지하고, 펠리타이저의 높이 (Hp, mm)를 측정하였다.
- [0115] 이때, 가압 세기는 2 kN에서 8 kN까지 변경하며 측정하였다.
- [0116] (3) 하기 식 2로부터 펠렛 밀도를 산출하였다.
- [0117] [식 2]
- [0118] $\qquad \text{ J} = 2/[\pi \times (20/2)^2 \times (\text{Hp-H1})/1000]$
- [0119] 3. 경도(hardness) 비
- [0120] 제1 음극 활물질 및 제2 음극 활물질 간의 경도 비는 가압 세기 2 kN 및 8 kN에서 측정된 펠렛 밀도의 변화 값 (즉, |8 kN 펠렛 밀도 2 kN 펠렛 밀도|, 이하, 펠렛 밀도 변화 값)을 이용하여 산출하였다.
- [0121] 즉, 경도는 펠렛 밀도의 변화 값에 반비례하므로, 제2 음극 활물질에 대한 제1 음극 활물질의 경도 비는, 제2 음극 활물질의 1/펠렛 밀도 변화 값에 대한 제1 음극 활물질의 1/펠렛 밀도 변화 값의 비로 산출하였다.
- [0122] [실시예 1]
- [0123] <음극 활물질의 준비>
- [0124] 제1 음극 활물질로서, 평균 입경(D₅₀) 8 μm, 2 kN 펠렛 밀도 1.49, 8 kN 펠렛 밀도 1.85, 및 1/펠렛 밀도 변화 값이 2.78인, 단입자 구조의 인조 흑연(이하, HH-C)을 준비하였다.
- [0125] 또한, 제2 음극 활물질로서, 평균 입경(D₅₀) 16 μm, 2 kN 펠렛 밀도 1.52, 8 kN 펠렛 밀도 1.97, 및 1/펠렛 밀도 변화 값이 2.22인, 1차 입자가 조립된 2차 입자 구조의 인조 흑연(이하, LH-C)을 준비하였다.
- [0126] 상기 LH-C에 대한 상기 HH-C의 경도의 비는 상술한 산출 방법에 따라 1.25로 산출되었다.
- [0127] <음극 슬러리의 준비>
- [0128] 상기 HH-C, 상기 LH-C, 바인더로서 SBR 및 용매로서 물을 혼합 및 교반하여, 제1 음극 슬러리를 제조하였다. 상기 HH-C, 상기 LH-C 및 상기 SBR의 혼합 중량비는 3:7:0.3으로 하였다.
- [0129] 상기 HH-C, 상기 LH-C, 바인더로서 SBR 및 용매로서 물을 혼합 및 교반하여, 제2 음극 슬러리를 제조하였다. 상기 HH-C, 상기 LH-C 및 상기 SBR의 혼합 중량비는 7:3:0.3으로 하였다.
- [0130] <음극의 제조>
- [0131] 두께가 10 μ m인 구리 박막 상에 상기 제1 음극 슬러리를 도포하고 건조하여, 하부 음극 활물질 층(구리 박막 및 하부 음극 활물질 층의 총 두께 49 μ m)을 형성하였다.
- [0132] 상기 하부 음극 활물질 층 상에 상기 제2 음극 슬러리를 도포하고 건조하여 상부 음극 활물질 층(구리 박막, 하부 음극 활물질 층 및 상부 음극 활물질 층의 총 두께 88 μ m)을 형성하고, 압연하여, 실시예 1의 음극을 제조하

였다.

[0133] [실시예 2]

[0134] 제1 음극 슬러리 제조 시 상기 HH-C 및 상기 LH-C의 혼합 중량비를 4:6으로 하고, 제2 음극 슬러리 제조 시 상기 HH-C 및 상기 LH-C의 혼합 중량비를 6:4로 한 것을 제외하고는, 실시예 1과 동일하게 실시하였다.

[0135] [실시예 3]

[0136] 제1 음극 슬러리 제조 시 상기 HH-C 및 상기 LH-C의 혼합 중량비를 2:8으로 하고, 제2 음극 슬러리 제조 시 상기 HH-C 및 상기 LH-C의 혼합 중량비를 8:2로 한 것을 제외하고는, 실시예 1과 동일하게 실시하였다.

[0137] [실시예 4]

[0138] 제1 음극 슬러리 제조 시 상기 HH-C 및 상기 LH-C의 혼합 중량비를 1.5:8.5로 하고, 제2 음극 슬러리 제조 시 상기 HH-C 및 상기 LH-C의 혼합 중량비를 8.5:1.5로 한 것을 제외하고는, 실시예 1과 동일하게 실시하였다.

[0139] [실시예 5]

[0140] 제1 음극 슬러리 제조 시 상기 HH-C 및 상기 LH-C의 혼합 중량비를 4.5:5.5로 하고, 제2 음극 슬러리 제조 시 상기 HH-C 및 상기 LH-C의 혼합 중량비를 5.5:4.5로 한 것을 제외하고는, 실시예 1과 동일하게 실시하였다.

[0141] [실시예 6]

[0142] 제1 음극 슬러리 제조 시 상기 HH-C 및 상기 LH-C의 혼합 중량비를 1:9로 하고, 제2 음극 슬러리 제조 시 상기 HH-C 및 상기 LH-C의 혼합 중량비를 9:1로 한 것을 제외하고는, 실시예 1과 동일하게 실시하였다.

[0143] [실시예 7]

[0144] 제1 음극 슬러리 및 제2 음극 슬러리 제조 시, 각각 상기 HH-C 및 상기 LH-C 총 100중량부에 대하여 판상의 인조 흑연(TIMCAL사, KS6L) 3 중량부를 추가 혼합한 것을 제외하고는, 실시예 1과 동일하게 실시하였다.

[0145] [비교예 1]

[0146] 제1 음극 슬러리 제조 시 음극 활물질로서 상기 LH-C만을 사용 하였으며, 제2 음극 슬러리 제조 시 음극 활물질로서 상기 HH-C만을 사용한 것을 제외하고는, 실시예 1과 동일하게 실시하였다.

[0147] [비교예 2]

- [0148] 상기 HH-C, 상기 LH-C, 바인더로서 SBR 및 용매로서 물을 혼합 및 교반하여 음극 슬러리를 제조하였다. 상기 HH-C, 상기 LH-C 및 상기 SBR의 혼합 중량비는 5:5:0.3으로 하였다.
- [0149] 두께가 10 戶메인 구리 박막 상에 상기 음극 슬러리를 도포, 건조하여 음극 활물질 층(구리 박막 및 음극 활물질 층의 총 두께 88 戶메)을 형성한 것을 제외하고는, 실시예 1과 동일하게 실시하였다.

[0150] [비교예 3]

- [0151] 상기 HH-C, 상기 LH-C, 바인더로서 SBR 및 용매로서 물을 혼합 및 교반하여 음극 슬러리를 제조하였다. 상기 HH-C, 상기 LH-C 및 상기 SBR의 혼합 중량비는 3:7:0.3으로 하였다.
- [0152] 두께가 10 戶메인 구리 박막 상에 상기 음극 슬러리를 도포, 건조하여 음극 활물질 층(구리 박막 및 음극 활물질 층의 총 두께 88 戶메)을 형성한 것을 제외하고는, 실시예 1과 동일하게 실시하였다.

[0153] [비교예 4]

- [0154] 상기 HH-C, 상기 LH-C, 바인더로서 SBR 및 용매로서 물을 혼합 및 교반하여 음극 슬러리를 제조하였다. 상기 HH-C, 상기 LH-C 및 상기 SBR의 혼합 중량비는 7:3:0.3으로 하였다.
- [0155] 두께가 10 戶메인 구리 박막 상에 상기 음극 슬러리를 도포, 건조하여 음극 활물질 층(구리 박막 및 음극 활물질 층의 총 두께 88 戶메)을 형성한 것을 제외하고는, 실시예 1과 동일하게 실시하였다.

[0156] [실험예 1] <u>기공 특성의 평가</u>

[0157] 1. 유효 기공도

[0158] 수은 세공계(mercury porosimeter, Micromeritics USA사, AutoPore VI 9500)를 이용하여, 실시예 및 비교예의

음극 활물질 층의 유효 기공도를 측정하여, 하기 표 1 및 2에 기재하였다.

- [0159] 유효 기공도는 하기와 같은 방법에 따라 측정되었다.
- [0160] (1) 음극 샘플에 대한 총 수은 침입량(ml/g) 측정
- [0161] 수은 세공계에 실시예 및 비교예의 음극 샘플(음극 활물질 층 및 구리 박막 포함)을 세팅하고, 0.5 psia부터 6 만 psia까지의 압력을 가해, 3 nm 내지 10 \(\text{\mun} \text{m} \text{의 작을 갖는 기공들에 대한 총 수은 침입량을 측정하였다.}
- [0162] (2) 음극 활물질 층을 기준으로 한 총 수은 침입량(m1/g) 산출
- [0163] 상기 (1)에서 측정된 총 수은 침입량에 하기 식 3을 곱하여 질량 값 환산을 함으로써, 음극 활물질 층에 대한 총 수은 침입량을 산출하였으며, 이 값을 유효 기공도라 정의하였다.
- [0164] [식 3]

음극 활물질 층의 면적당 질량 $\left(\frac{mg}{cm^2}\right)$

음극 활물질 층의 면적당질량 $\left(\frac{mg}{cm2}\right)$ + 구리 박막의 면적당질량 $\left(\frac{mg}{cm2}\right)$

- [0165]
- [0166] 2. 미세 기공도
- [0167] 수은 세공계(mercury porosimeter, Micromeritics USA사, AutoPore VI 9500)를 이용하여 미세 기공도를 산출하여, 하기 표 1 및 2에 기재하였다.
- [0168] 미세 기공도는 하기 식 1로 정의하였으며, 총 수은 침입량은 상기 1. 유효 기공도 측정 방법과 동일하게 측정하였다.
- [0169] [식 1]
- [0170] 미세 기공도 = B/A × 100(%)
- [0171] 식 1에서, A는 수은 세공계에 의해 측정한 3 nm 내지 10 μ m의 직경을 갖는 기공들에 대한 총 수은 침입량이며, B는 수은 세공계에 의해 측정한 3 nm 내지 100 nm의 직경을 갖는 기공들에 대한 총 수은 침입량이다.
- [0172] [실험예 2] <u>율속 특성 평가</u>
- [0173] 실시예 및 비교예의 음극, 리튬 호일(counter 전극), 및 다공성 폴리에틸렌 분리막(두께: 21 ﷺ)을 이용하여 전 극 조립체를 제조하였다.
- [0174] 에틸렌카보네이트(EC) 및 에틸메틸카보네이트(EMC)가 3:7의 부피비로 혼합된 용매에 LiPF₆를 첨가하여, 1.0M 농도의 LiPF₆ 전해액을 제조하였다.
- [0175] 상기 전극 조립체 및 상기 전해액을 이용하여 통상적으로 알려져 있는 제조 공정에 따라 코인형 전지를 제조하였다.
- [0176] 실시예 및 비교예의 코인형 전지에 대하여, 하기의 방법에 따라 율속 특성 평가를 진행하였다.
- [0177] 실시예 및 비교예의 코인형 전지에 대해, 충전 및 방전을 0.1C으로 진행하여 충전 용량 X를 측정하였다.
- [0178] 다음으로, 2.0C 충전 및 0.1C 방전을 진행하여, 충전 용량 Y를 측정하였다.
- [0179] 충전 용량 X에 대한 충전 용량 Y의 백분율(Y/X × 100%)을 산출하여, 표 1 및 2에 기재하였다.

丑 1

[0180] 실시예 실시예 실시예 실시예 실시예 실시예 실시예 하부 3:7 4:6 2:8 1.5:8.5 4.5:5.5 1:9 3:7 HH-C:LH-C 상부 7:3 6:4 8:2 8.5:1.5 5.5:4.5 9:1 7:3 HH-C:LH-C

유효기공도	0.38	0.32	0.35	0.32	0.27	0.27	0.40
(ml/g)							
미세기공도	19	21	22	23	25	24	20
(%)							
율속	92.5	89.0	90.4	88.5	83.2	85.2	92.4
특성							

丑 2

[0181]

	비교예1	비교예2	비교예3	비교예4
하부	0:10	5:5	3:7	7:3
HH-C:LH-C				
상부	10:0	_	_	-
HH-C:LH-C				
유효기공도	0.21	0.245	0.26	0.24
(ml/g)				
미세기공도	29	24	25	22
(%)				
율속	81.2	82.5	80.4	85.5
특성				

- [0182] 표 1 및 2를 참조하면, 실시예의 음극의 경우, 비교예의 음극에 비해 유효 기공도 및 미세 기공도에서 보다 우수한 값을 나타내는 것을 확인할 수 있다.
- [0183] 또한, 실시예의 음극을 적용한 이차 전지의 경우, 비교예의 음극을 적용한 이차 전지에 비해, 율속 특성이 보다 우수한 것을 확인할 수 있다.
- [0184] 특히, 각 음극 활물질 층에서, 특정 함량 비를 만족하는 HH-C 및 LH-C를 채용한 실시예 1 내지 3의 경우, 유효 기공도, 미세 기공도 및 율속 특성에서 보다 더 우수한 값을 나타냈다.

부호의 설명

[0185] 10: 음극

100: 음극 집전체

110: 하부 음극 활물질 층

120: 상부 음극 활물질 층

130: 음극 활물질 층

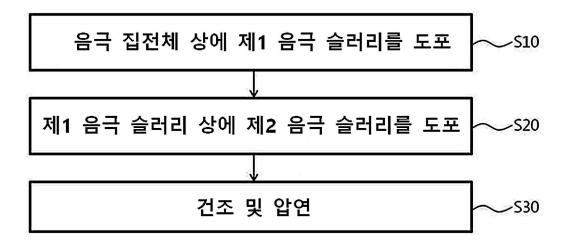
20: 양극

200: 양극 집전체

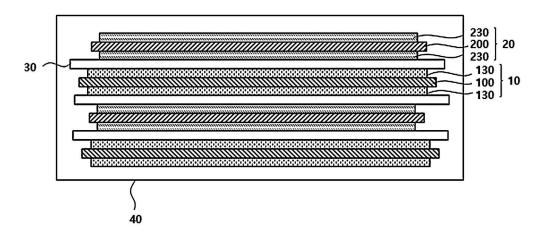
230: 양극 활물질 층

30: 분리막

40: 케이스


도면

도면1


10

도면2

도면3

