
US 20200084086A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0084086 A1

Gupta et al . (43) Pub . Date : Mar. 12 , 2020

Publication Classification (54) MANAGEMENT OF COMPUTING SYSTEM
ALERTS

(71) Applicant : ServiceNow , Inc. , Santa Clara , CA
(US)

(72) Inventors : Sachin Gupta , Bellevue , WA (US) ;
Scott Tucker , Kirkland , WA (US) ;
James Crotinger , Kirkland , WA (US) ;
Kanwaldeep Kaur Dang , Sammamish ,
WA (US) ; Eugen Ardeleanu , Bellevue ,
WA (US) ; Purushottam Amradkar ,
Sammamish , WA (US) ; Chinna Babu
Polinati , Snoqualmie , WA (US)

(51) Int . Ci .
H04L 12/24 (2006.01)
H04L 29/06 (2006.01)
H04L 29/08 (2006.01)

(52) U.S. Cl .
CPC H04L 41/065 (2013.01) ; H04L 67/10

(2013.01) ; H04L 67/42 (2013.01) ; H04L 41/22
(2013.01)

(57) ABSTRACT
An apparatus for grouping alerts generated by automated
monitoring of at least an operating condition of a machine ,
represented as a configuration item in a configuration man
agement database , in a computer network . A first event
pattern is identified based on configuration items associated
with an alert avalanche identified from received historical
alert data stored in memory . A second event pattern is
identified based on co - occurrences of configuration item
pairs in the historical alert data and on at least one condi
tional probability parameter . At least one alert group is
determined by comparing at least one configuration item
associated with a current alert to the plurality of configura
tion items of the first event pattern and of the second event
pattern stored in memory . A graphical display region for
displaying the alert group is generated .

(21) Appl . No .: 16 / 574,999

(22) Filed : Sep. 18 , 2019

Related U.S. Application Data
(63) Continuation of application No. 15 / 141,395 , filed on

Apr. 28 , 2016 , now Pat . No. 10,469,309 .

100

110 110 120 CUSTOMER DATACENTER
CUSTOMER

112 112 122 122

CLIENT CLIENT 120 SERVER SERVER
DATACENTER

1
116 130

NETWORK
118

L

119

100

Patent Application Publication

110

110

120

CUSTOMER

DATACENTER

CUSTOMER

112

112

122

122

CLIENT
CLIENT

120

SERVER

SERVER

DATACENTER
116

130

Mar. 12 , 2020 Sheet 1 of 11

NETWORK

118

119

FIG . 1

US 2020/0084086 A1

Patent Application Publication Mar. 12 , 2020 Sheet 2 of 11 US 2020/0084086 A1

290

230

200

208
212 NETWORK

COMMUNICATION
UNIT

260

LOCATION /
SENSORS 220

CACHE
202

204A
PROCESSOR

MEMORY
EXECUTABLE
INSTRUCTIONS

204

204B MEMORY
STORAGE

APPLICATION DATA

206A

STORAGE
EXECUTABLE
INSTRUCTIONS

206

206B STORAGE

STORAGE
APPLICATION DATA 210

USER INTERFACE

270

POWER SOURCE

FIG . 2

Patent Application Publication Mar. 12 , 2020 Sheet 3 of 11 US 2020/0084086 A1

300
302 312

HISTORICAL
ALERT DATA

PARAMETERS

314
304 AVALANCHE PATTERN

DETECTION
CONDITIONAL

PROBABILITY PATTERN
DETECTION

316
306 CO - OCCURRENCE

DETECTION TIME WINDOW
GENERATION 318

PROBABALISTIC
GRAPH 308

319 . AVALANCHE
WINDOW PARAMETRIC GRAPH

320

PATTERN MERGING 301
EVENT PATTERN
DETECTION

332 322

ALERT
STREAM ALERT GROUPING

324 326

PRESENTATION ALERT GROUP
OUTPUT

FIG . 3

Patent Application Publication Mar. 12 , 2020 Sheet 4 of 11 US 2020/0084086 A1

DATA STORAGE 402

ALERT TABLE 404

412 414 416 418

ALERT ID TIME STAMP CI ID METRIC
521 - A 001 2015-14-04 1015 : 36 CI - 26 HI MEM UTILIZ .

A_002 2015-14-04 1015 : 38 CI - 26 HI CPU UTILIZ .

522 A 003 2015-14-04 1016 : 02 CI - 27 HI CPU UTILIZ .

A 004 2015-14-04 1016 : 11 CI - 43 HI CPU UTILIZ .

.. : ..

523 - A_389 2015-14-09 1615 : 21 CI - 26 HI MEM UTILIZ .

524 ? A_390 2015-14-09 1616 : 18 CI - 27 HI CPU UTILIZ .

A_391 2015-14-09 1616 : 21 CI - 36 HI CPU UTILIZ .

A 392 2015-14-09 1616 : 22 CI - 58 HI CPU UTILIZ .

: .. • • ?

525 ? A 689 2015-14-09 1615 : 21 CI - 43 HI MEM UTILIZ .

FIG . 4

502

ALERT CLUSTER 504

Patent Application Publication

ALERT
COUNT

AVALANCHE THRESHOLD
523

506

otel

na -

522

524

525

521

F

TIME

513

Ti

517

519

Mar. 12 , 2020 Sheet 5 of 11

TW

TW

TW

TW

TW

TW

TW

TW

TW

TW

ALERT HISTORY

503

515

505

501

512 514 518 AVALANCHE WINDOWS

US 2020/0084086 A1

FIG . 5

600

610

622

Patent Application Publication

631

0.4

621

613

0.3

602

631

0.25

0.3

0.25

0.3

0.2

614

615

0.07

0.25

601

603

608

0.05

0.6

Mar. 12 , 2020 Sheet 6 of 11

0.8

0.7

0.07

1.0

609

606

605

612

0.3

0.8

0.15

1.0

0.8

1.0

607

611

604

0.3

0.1

US 2020/0084086 A1

FIG . 6A

600

610

622

Patent Application Publication

0.4

631

623

613

0.3

602

0.25

0.3

0.25

0.3

614

615

0.25

601

603

608

0.6

624

Mar. 12 , 2020 Sheet 7 of 11

0.8

0.7

1.0

609

606

605

612

0.3

0.8

0.8

1.0

1.0

607

611

604

0.3

US 2020/0084086 A1

FIG . 6B

600

610

625

622

Patent Application Publication

0.4

613

602

0.25

0.25
614

615

626

627

0.25

9'0

601

603

608

624

Mar. 12 , 2020 Sheet 8 of 11

0.8

0.7

1.0

609

606

605

612

0.8

0.8

1.0

1.0

607

611

604

US 2020/0084086 A1

FIG . 6C

702

705

706

704

703

SEVERITY
RELATED ALERTS

IMPACTED SERVICES

ALERT GROUP 2

MAJOR

0 2 II 00

1

Patent Application Publication

ALERT GROUP 3

RO II 12

2

ALERT GROUP 5

MI CRITICAL

10 TI100

1

1 W100

1

ALERT GROUP 6

Mar. 12 , 2020 Sheet 9 of 11

ALERT GROUP 1

* 1 o 2

2

O MINOR

ALERT GROUP 4

U11

EO III 103

2

US 2020/0084086 A1

FIG . 7

802

804

806

< ALERT GROUP 2

IMPACTED SERVCES

WAS THIS GROUP HELPFUL ?

Y

Patent Application Publication

N

810

812

814

816

ALERT ID

SEVERITY

CI

METRIC NAME

ALERT_343

H : CRITICAL

CI 26

HI MEM UTILIZ .

ALERT_379

!!! CRITICAL

CI_26

HI MEM UTILIZ .

ALERT_395

E CRITICAL

CI_27

HI CPU UTILIZ .

Mar. 12 , 2020 Sheet 10 of 11

808

ADD ALERT DELETE ALERT

809

US 2020/0084086 A1

FIG . 8

Patent Application Publication Mar. 12 , 2020 Sheet 11 of 11 US 2020/0084086 A1

900

902

OBTAIN HISTORICAL
ALERT DATA

904 914

DEFINE TIME WINDOW FOR
ALERT AVALANCHES

DETERMINE PROBABILISTIC
GRAPH CANDIDATES BASED
ON CO - OCCURRENCES

906 916

DETERMINE AVALANCHE
WINDOWS

GENERATE GRAPH BASED ON
PARAMETRIC PROBABILITY

908 918

IDENTIFY EVENT PATTERNS
ASSOCIATED WITH
AVALANCHES

IDENTIFY EVENT PATTERNS
BASED ON CONDITIONAL

PROBABILITY

920

MERGE PATTERNS

922
MATCH CURRENT ALERT

TO PATTERNS

924

ASSIGN CURRENT ALERT
TO ALERT GROUP (S)

926

GENERATE GRAPHICAL DISPLAY
REGIONS FOR ALERT GROUPS

FIG . 9

US 2020/0084086 A1 Mar. 12 , 2020
1

MANAGEMENT OF COMPUTING SYSTEM
ALERTS

CROSS REFERENCE TO RELATED
APPLICATION

[0001] The present disclosure is a continuation of and
claims priority to U.S. patent application Ser . No. 15/141 ,
395 , filed on Apr. 28 , 2016 , the entire contents of which are
herein incorporated by reference .

TECHNICAL FIELD

[0002] The present disclosure relates to systems and meth
ods for processing alerts indicative of conditions of a
computing system . More generally , the present disclosure
relates to a data processing system for error or fault han
dling , namely , by aggregating data used for and generated in
response to performing impact calculation on resources of a
computing system . Implementations of the present disclo
sure can be used to enhance the ability of a server pro
grammed for organizing and manipulating data for respond
ing to planned or unplanned conditions identified with
respect to hardware or software resources included within
the computing system .

conditional probability parameter . The second event pattern
is stored in the memory . The alert grouping module may
determine at least one alert group by comparing at least one
configuration item associated with a current alert to the
plurality of configuration items of the first event pattern and
of the second event pattern stored in the memory . The
presentation module may generate a graphical display region
for displaying the at least one alert group .
[0005] Another implementation of the disclosure is an
apparatus for grouping alerts generated by automated moni
toring of at least an operating condition of a machine in a
computing system , the machine represented as a configura
tion item in a configuration management database , the
apparatus comprising a processor configured to execute
instructions stored in a memory , the instructions including a
pattern detection module , an alert grouping module , and a
presentation module . The pattern detection module may
identify an event pattern from historical alert data associated
with a plurality of configuration items . The event pattern is
based on an intersection of configuration items identified in
an avalanche of alerts with configuration items identified in
the historical alerts . The pattern detection module may
identify the avalanche of alerts based on at least one ava
lanche parameter , and store the event pattern in the memory .
The alert grouping module may determine at least one alert
group by comparing at least one configuration item associ
ated with a current alert to the plurality of configuration
items of the pattern stored in the memory . The presentation
module may generate a graphical display region for display
ing the alert group .

BACKGROUND

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] A computing system , such as a cloud computing
system , providing software based services to a customer ,
uses a network of one or more servers configured to execute
various programs for delivering services to client computing
devices . A system operator may receive hundreds of alerts
daily , such as notifications that a hardware or software
component in the cloud computing system requires a change
or modification . To address the alerts in a timely and efficient
manner , alerts can be triaged for dispositioning . Appropriate
assignments need to be identified for dispositioning each
alert , with consideration to both technical and security
qualifications . Monitoring tools allow detection of health
and status of network resources , and enable a variety of
network maintenance functions .

SUMMARY

[0004] One implementation of the disclosure is an appa
ratus for grouping alerts generated by automated monitoring
of an operating condition of a machine in a computing
system , the machine represented as a configuration item in
a configuration management database , the apparatus com
prising a processor configured to execute instructions stored
in a memory , the instructions including an avalanche pattern
detection module , a conditional probability pattern detection
module , an alert grouping module , and a presentation mod
ule . The avalanche pattern detection module may receive
historical alert data , and identify a first event pattern of alert
information based on at least one avalanche of alerts iden
tified from the historical alert data . The historical alert data
includes a time stamp , a configuration item identifier , and an
alert metric associated with each alert stored in the memory
prior to the alert history time marker . The first event pattern
of alert information is stored in the memory . The conditional
probability pattern detection module may receive the his
torical alert data and at least one conditional probability
parameter , and identify a second event pattern of alert
information based on co - occurrences of configuration item
pairs in the historical alert data and on the at least one

[0006] The description herein makes reference to the
accompanying drawings wherein like reference numerals
refer to like parts throughout the several views .
[0007] FIG . 1 is a block diagram of a computing network
in which the teachings herein may be implemented .
[0008] FIG . 2 is a block diagram of an example internal
configuration of a computing device , such as a computing
device of the computing network as shown in FIG . 1 .
[0009] FIG . 3 is a block diagram of an example modular
configuration of a computing device , such as the computing
device as shown in FIG . 2 , in accordance with the present
disclosure .
[0010] FIG . 4 is a block diagram of an example alert table
in accordance with the present disclosure .
[0011] FIG . 5 is a diagram of an example time window
size determination and avalanche window determination
based on an alert history in accordance with the present
disclosure .
[0012] FIGS . 6A - 6C are diagrams of an example condi
tional probabilistic graphing sequence in accordance with
the present disclosure .
[0013] FIG . 7 is a diagram of an example display region
generated for displaying alert groups in accordance with the
present disclosure .
[0014] FIG . 8 is a diagram of example display region
generated for enabling user feedback and supervision of
alert grouping in accordance with the present disclosure .
[0015] FIG . 9 is a flow chart of an example method of
aggregating alerts for management of computer system
alerts in accordance with the present disclosure .

US 2020/0084086 A1 Mar. 12 , 2020
2

DETAILED DESCRIPTION

[0016] A distributed computing system , such as a cloud
computing system , may include multiple computing devices
at a customer end and multiple computer servers at a service
provider end , which may be interconnected by a cloud
network . As customer devices request services and use
resources provided by the server devices , the flow of infor
mation must be controlled and monitored to maintain quality
of service . At times of higher demand for services and
resources , nodes , such as servers , along the interconnected
network may encounter overload conditions and traffic may
need to be rerouted to other available nodes that are cur
rently not overloaded . Alerts may be triggered upon detec
tion of conditions or events that relate to nodes being
overloaded . Other examples of alerts that may be triggered
may include when a customer or server device is down due
to a hardware or software error or failure .
[0017] When a significant condition or event occurs that
affects multiple devices in the cloud computing system , a
cluster or “ avalanche ” of alerts may be triggered within a
short time period . Over time , as avalanches of alerts are
detected , patterns of affected nodes may emerge , which can
be stored and used as a template during real time monitoring
of alerts . As a current alert is detected , it may be matched to
learned patterns for aggregating the alert into one or more
alert groups to more efficiently manage and dispatch the
alert . Conditional probability patterns may also be devel
oped based on stored alert information , which may further
refine the learned patterns for the alert grouping . By aggre
gating alerts , system operators may more efficiently triage
alerts for disposition .
[0018] FIG . 1 is a block diagram of a distributed (e.g. ,
client - server , networked , or cloud) computing system 100 .
Use of the phrase “ cloud computing system ” herein is a
proxy for any form of a distributed computing system , and
this phrase is used simply for ease of reference . Cloud
computing system 100 can have any number of customers ,
including customer 110. Each customer 110 may have
clients , such as clients 112. Each of clients 112 can be in the
form of a computing system comprising multiple computing
devices , or in the form of a single computing device , for
example , a mobile phone , a tablet computer , a laptop com
puter , a notebook computer , a desktop computer , and the
like . Customer 110 and clients 112 are examples only , and a
cloud computing system may have a different number of
customers or clients or may have a different configuration of
customers or clients . For example , there may be hundreds or
thousands of customers and each customer may have any
number of clients .
[0019] Cloud computing system 100 can include any
number of datacenters , including datacenter 120. Each data
center 120 may have servers , such as servers 122. Each
datacenter 120 may represent a facility in a different geo
graphic location where servers are located . Each of servers
122 can be in the form of a computing system including
multiple computing devices , or in the form of a single
computing device , for example , a desktop computer , a server
computer and the like . The datacenter 120 and servers 122
are examples only , and a cloud computing system may have
a different number of datacenters and servers or may have a
different configuration of datacenters and servers . For
example , there may be tens of data centers and each data
center may have hundreds or any number of servers .

[0020] Clients 112 and servers 122 may be configured to
connect to network 130. The clients for a particular customer
may connect to network 130 via a common connection point
116 or different connection points , e.g. , a wireless connec
tion point 118 and a wired connection point 119. Any
combination of common or different connections points may
be present , and any combination of wired and wireless
connection points may be present as well . Network 130 can
be , for example , the Internet . Network 130 can also be or
include a local area network (LAN) , wide area network
(WAN) , virtual private network (VPN) , or any other means
of transferring data between any of clients 112 and servers
122. Network 130 , datacenter 120 and / or blocks not shown
may include network hardware such as routers , switches ,
load balancers and / or other network devices .
[0021] Other implementations of the cloud computing
system 100 are also possible . For example , devices other
than the clients and servers shown may be included in
system 100. In an implementation , one or more additional
servers may operate as a cloud infrastructure control , from
which servers and / or clients of the cloud infrastructure are
monitored , controlled and / or configured . For example , some
or all of the techniques described herein may operate on said
cloud infrastructure control servers . Alternatively , or in
addition , some or all of the techniques described herein may
operate on servers such as servers 122 .
[0022] FIG . 2 is a block diagram of an example internal
configuration of a computing device 200 , such as a client
112 or server device 122 of the computing system 100 as
shown in FIG . 1 , including an infrastructure control server ,
of a computing system . As previously described , clients 112
or servers 122 may take the form of a computing system
including multiple computing units , or in the form of a
single computing unit , for example , a mobile phone , a tablet
computer , a laptop computer , a notebook computer , a desk
top computer , a server computer and the like .
[0023] The computing device 200 can comprise a number
of components , as illustrated in FIG . 2. CPU (or processor)
202 can be a central processing unit , such as a micropro
cessor , and can include single or multiple processors , each
having single or multiple processing cores . Alternatively ,
CPU 202 can include another type of device , or multiple
devices , capable of manipulating or processing information
now - existing or hereafter developed . When multiple pro
cessing devices are present , they may be interconnected in
any manner , including hardwired or networked , including
wirelessly networked . Thus , the operations of CPU 202 can
be distributed across multiple machines that can be coupled
directly or across a local area or other network . The CPU
202 can be a general purpose processor or a special purpose
processor .
[0024] Memory 204 , such as Random Access Memory
(RAM) , can be any suitable non - permanent storage device
that is used as memory . RAM 204 can include executable
instructions and data for immediate access by CPU 202 .
RAM 204 typically includes one or more DRAM modules
such as DDR SDRAM . Alternatively , RAM 204 can include
another type of device , or multiple devices , capable of
storing data for processing by CPU 202 now - existing or
hereafter developed . CPU 202 can access and manipulate
data in RAM 204 via bus 212. The CPU 202 may utilize a
cache 220 as a form of localized fast memory for operating
on data and instructions .

US 2020/0084086 A1 Mar. 12 , 2020
3

[0025) Storage 206 can be in the form of read only
memory (ROM) , a disk drive , a solid state drive , flash
memory , Phase - Change Memory (PCM) , or any form of
non - volatile memory designed to maintain data for some
duration of time , and preferably in the event of a power loss .
Storage 206 can comprise executable instructions 206A and
application files / data 206B along with other data . The
executable instructions 206A can include , for example , an
operating system and one or more application programs for
loading in whole or part into RAM 204 (with RAM - based
executable instructions 204A and application files / data
204B) and to be executed by CPU 202. The executable
instructions 206A may be organized into programmable
modules or algorithms , functional programs , codes , and
code segments designed to perform various functions
described herein . The operating system can be , for example ,
Microsoft Windows , Mac OS X® , or Linux® , or other
operating system , or it can be an operating system for a small
device , such as a smart phone or tablet device , or a large
device , such as a mainframe computer . The application
program can include , for example , a web browser , web
server and / or database server . Application files 206B can , for
example , include user files , database catalogs and configu
ration information . In an implementation , storage 206 com
prises instructions to perform the discovery techniques
described herein . Storage 206 may comprise one or multiple
devices and may utilize one or more types of storage , such
as solid state or magnetic .
[0026] The computing device 200 can also include one or
more input / output devices , such as a network communica
tion unit 208 and interface 230 that may have a wired
communication component or a wireless communications
component 290 , which can be coupled to CPU 202 via bus
212. The network communication unit 208 can utilized any
of a variety of standardized network protocols , such as
Ethernet , TCP / IP , to name a few of many protocols , to effect
communications between devices . The interface 230 can
include one or more transceiver (s) that utilize the Ethernet ,
power line communication (PLC) , WiFi , infrared , GPRS /
GSM , CDMA , etc.
[0027] A user interface can be broken down into the
hardware user interface portion and the software user inter
face portion . A hardware user interface 210 can include a
display , positional input device (such as a mouse , touchpad ,
touchscreen , or the like) , keyboard , or other forms of user
input and output devices and hardware . The hardware user
interface 210 can be coupled to the processor 202 via the bus
212. Other output devices that permit a user to program or
otherwise use the client or server can be provided in addition
to or as an alternative to display 210. When the output device
is or comprises a hardware display , this display can be
implemented in various ways , including by a liquid crystal
display (LCD) or a cathode - ray tube (CRT) or light emitting
diode (LED) display , such as an OLED display .
[0028] The software graphical user interface constitutes
programs and data that reflect information ultimately des
tined for display on a hardware device . For example , the data
can contain rendering instructions for bounded graphical
display regions , such as windows , or pixel information
representative of controls , such as buttons and drop - down
menus . The rendering instructions can , for example , be in
the form of HTML , SGML , JavaScript , Jelly , AngularJS , or
other text or binary instructions for generating a graphical
user interface on a display that can be used to generate pixel

information . A structured data output of one device can be
provided to an input of the hardware display so that the
elements provided on the hardware display screen represent
the underlying structure of the output data .
[0029] Other implementations of the internal configura
tion or architecture of clients and servers 200 are also
possible . For example , servers may omit display 210. RAM
204 or storage 206 can be distributed across multiple
machines such as network - based memory or memory in
multiple machines performing the operations of clients or
servers . Although depicted here as a single bus , bus 212 can
be composed of multiple buses , that may be connected to
each other through various bridges , controllers , and / or
adapters . The computing device 200 may also contain a
power source 270 , such as a battery , so that the unit can
operate in a self - contained manner . Computing device 200
may contain any number of sensors and detectors 260 that
monitor physical conditions of the device 200 itself or the
environment around the device 200. For example , sensors
260 may trigger alerts that provide indications of the physi
cal conditions . Such alerts may indicate conditions that may
include temperature of the processor 202 , utilization of the
processor 202 or memory 204 , utilization of the storage 206 ,
and utilization of the power source 270. Such alerts of
conditions detected by sensors 260 may safeguard against
exceeding operational capacity or operational limits , such as
hard drive rpm for storage 206 , maximum temperature of
processor 202 or power source 270 , or any other physical
health states of the computing device 200. Sensors 260 may
include a location identification unit , such as a GPS or other
type of location device . These may communicate with the
CPU / processor 202 via the bus 212 .
[0030] FIG . 3 is a block diagram of an example modular
configuration of a computing device , such as the computing
device as shown in FIG . 2 , in accordance with this disclo
sure . A modular configuration 300 may include an event
pattern detection module 301 , an alert grouping module 322 ,
a presentation module 324 , or any combination thereof . The
event pattern detection module 301 may include an ava
lanche pattern detection module 304 , a conditional prob
ability pattern detection module 314 , a pattern merging
module 320 , or a combination thereof .
[0031] The event pattern detection module 301 may
receive inputs including historical alert data 302 and param
eters 312. Historical alert data 302 may include information
related to alerts prior to a selected time marker . For example ,
in the cloud computing system 100 , an alert history period
may be selected between a first time marker and a second
time marker , which may be hours , days , weeks or months
apart . The alert information for the historical alert data 302
may be stored as a table of alerts in one or more databases
or data storage units , at one or more locations such as
datacenter 120. Parameters 312 may include control values
set by a user or system administrator for setting control
limits or adjustments for various modules to execute func
tions related to pattern detection and alert grouping as
described herein .
[0032] FIG . 4 is a block diagram of an example alert table
in accordance with the present disclosure . The alert infor
mation for the historical alert data 302 may be stored as an
alert table 404 as shown in FIG . 4 , in a data storage unit 402 .
For each alert , the alert table 404 may include an alert ID
412 , a time stamp 414 , a configuration item (CI) ID 416 , and
an alert metric 418. For example , when an event triggers an

US 2020/0084086 A1 Mar. 12 , 2020
4

alert , each alert may be recorded and stored in the data
storage 402 with alert information including the time stamp
412 of when the alert was triggered , a CI ID 416 for the
identity of the CI affected by the event , and the metric 418
that triggered the alert , which may include for example , high
memory utilization or high CPU utilization . In some appli
cations , an alert metric 418 for high memory utilization may
be an indication that an additional server is needed to handle
the current traffic or demand for services by clients 112 in
the cloud computing system 100 .
[0033] Returning to FIG . 3 , an avalanche pattern module
304 may receive the historical alert data 302 and parameters
312 for processing to determine avalanche patterns . The
avalanche pattern module 304 may include a time window
generation module 306 and an avalanche window module
308. Parameters 312 used for avalanche detection may
include values set by a user or system administrator to
control the avalanche detection , including but not limited to ,
a factor value C1 used to determine a window size for
counting alerts and a factor value C2 used to determine an
avalanche threshold . In some applications , the time window
generation module 306 may determine a fixed time window
size based on inter - arrival times of consecutive alerts . The
avalanche window module 308 may determine which time
windows contain an avalanche of alerts based on a number
of alerts observed in each time window compared to an
avalanche threshold .
[0034] FIG . 5 is a diagram of an example of time window
size determination and avalanche window determination in
accordance with the present disclosure . An alert history 501
may be defined between time markers 503 , 505 where an
alert 521 and an alert 525 may correspond with the first alert
A_001 and last alert A_689 , respectively , of an alert table
such as alert table 404 shown in FIG . 4. An alert count 502
is shown for the alert history 501 , including numerous alert
clusters 504. An inter - arrival time Ti exists between alerts or
alert clusters 504. The time window generation module 306
may divide the alert history into fixed time windows TW of
the same size . The fixed time window size may be based on
an average or a median of the inter - arrival times Ti for the
alert history 501. For example , the time window size WS
may be calculated according to the following equation .

in the time windows 513 and 515 to form a merged ava
lanche of alerts , so that a more comprehensive set of alerts
are considered for the avalanche pattern detection . Similarly ,
adjacent time windows 517 and 519 may be merged with
avalanche window 518 , and the alerts from the time win
dows 517/518/519 form a merged avalanche of alerts .
[0037] The avalanche pattern module 304 may compare
each expanded avalanche window to each non - avalanche
time window TW in the alert history 501 to locate intersec
tions of alert information using parameters 312 that may
include minimum frequency of intersections . Intersections
of time windows may be identified by comparing the alert
information between two time windows , and finding com
mon alert information . For example , if an avalanche window
has alerts of alert types A , B , C , D , E , F , and another window
has alerts of alert types A , X , C , Z , E , G , then the intersection
would be the set A , C , E. As an example , an alert type may
be defined as a CI ID , alert metric combination . In a broader
example , an alert type may be defined by the CI ID alone .
In some applications , an intersection between an avalanche
window and another window may produce the following set :
[CI_30 # CPU Utilization , CI_68 # Memory , CI_72 # CPU
Utilization) . While alert type examples including CI ID
and / or alert metric have been presented here , other mappings
to different alert information types are possible .
[0038] In some applications , an intersection may be deter
mined by matching a CI ID , such as CI - 26 in expanded
avalanche window 512/513/514/515 to another alert occur
rence in another time window TW related to CI - 26 . Param
eters 312 may include , for example , a parameter Fi for
minimum frequency of intersections , which may be set to a
value , such as Fi = 3 , by a user or system administrator . On
a condition that three or more unique alert intersections ,
such as alerts for CI - 26 , are identified by the comparison at
the avalanche pattern module 304 , the intersections may be
stored as a pattern . In some applications , where an intersec
tion for alert types A , C , E exceed the minimum frequency
parameter Fi , where A , C and E are each defined by a
different CI ID and an alert metric combination , the inter
section may be stored as a pattern .
[0039] The avalanche pattern module 304 may assign a
score to each of the alert intersections based on the total
number of alert intersections identified by the time window
comparison for the entire alert history and based on the size
of the expanded avalanche window . For example , an inter
section score may be determined according to the following
equation .

Int_Score = Ni * (1 + Int_size) Equation (3)

where Int_Score is the score for the i'th intersection
Ni is frequency of i’th intersection
Int_size is number of CI , alert type in an intersection
Intersection scores may be defined by variations to the
Equation (3) above .
[0040] Based on the intersection scores , avalanche pat
terns may be identified as follows . A list of intersections may
be sorted in descending order according to intersection
score . This sorted list of intersections may be sequentially
processed one intersection at a time using an overlap test . As
each intersection is considered , the aggregate set of event
types for this avalanche list may be accumulated by taking
the union of the event types in the current intersection with
the event types in previous intersections that have been
added to the pattern list . Given the set of alert types for the

WS = C1 * IAT Equation (1)

where
C1 is a constant value
IAT is a median of inter - arrival times Ti
[0035] The avalanche window module 308 may determine
the avalanche windows 512/514/518 based on a total alert
count 502 within each time window TW that meets or
exceeds the avalanche threshold 506. For example , the
avalanche threshold (AV_th) 506 may be calculated accord
ing to the following equation .

AV_th = C2 * Acnt / TW Equation (2)

where
C2 is a constant value
Acnt / TW is a median of alert counts per time window
[0036] The avalanche pattern module 304 may merge time
windows TW that are adjacent and consecutive to an ava
lanche window 512/514/518 so that any alerts in the adja
cent windows may also be included for the avalanche pattern
detection . For example , time windows 513 and 515 are
adjacent to avalanche windows 512 and 514 , and an
expanded avalanche window is defined to include the alerts

US 2020/0084086 A1 Mar. 12 , 2020
5

current intersection , if one or more of alert types in the
current intersection which have already been seen in other
intersections from this avalanche is a sufficiently small
aggregate compared to a group overlap percentage threshold
parameter , which may be one of input parameters 312 , then
that intersection is considered for addition to the pattern list .
If the current intersection does not already exist in the
pattern list , or is not contained in a pattern already in the
pattern list , then this intersection may be added to the pattern
list as a pattern . If the pattern list already contains a pattern
that is a sub - set of the current intersection , then this inter
section may replace that pattern in the list .
[0041] The following example illustrates identifying an
avalanche pattern according to the above description . For an
avalanche window containing event types A - G , the ava
lanche window may be compared with the other windows ,
generating the following list of intersections with their
scores : (AG , 90) , (ABC , 40) , (CDG , 20) , (DEF , 8) . These
intersections may be considered in the given order for
addition to the pattern list . The first intersection AG passes
the overlap test by default , leaving [“ AG ”] in the pattern list
and A , G in the aggregate set of event types . Next , consid
ering intersection ABC , its overlap with the aggregate set of
event types A , G is 1 (i.e. , “ A ”) , which yields an aggregate
percentage of 33.3 % (i.e. , A / ABC) . If the group overlap
percentage threshold is 40 % , then the aggregate percentage
is below the threshold , and the intersection may be added to
the pattern list , which now contains [“ AG ” , “ ABC ”] and the
aggregate set of event types becomes A , B , C , G. Next ,
intersection CDG may be compared to the aggregate set of
event types A , B , C , G , yielding an aggregate percentage of
66 % (i.e. , CD / CDG) . Since this aggregate percentage is
greater than the group overlap percentage threshold of 40 % ,
intersection CDG is not added to the pattern list . Finally ,
intersection DEF is considered . Since DEF yields an overlap
percentage of 0 compared to the aggregate set of event types ,
DEF may be added to the pattern list , which then becomes
[“ AG ” , “ ABC ” , “ DEF ”] , with an aggregate set of event
types A , B , C , D , E , F , G. Note that if ABC had scored higher
than AG , then AG would not be included in the pattern list .
By developing avalanche patterns according to descending
intersection scores for identified intersections of CI's and / or
alert metrics , the avalanche pattern can be a useful tool for
predicting specific health and status changes to the network
resources , as will be described below in greater detail .
[0042] The avalanche pattern detection module 304 may
validate patterns based on configuration management data
base (CMDB) information . For example , computing devices
related to the candidate nodes may be interconnected in a
cloud computing system , such as cloud computing system
100 shown in FIG . 1 , and the interconnected dependencies
may be tracked and updated in the CMDB . The CI's may
also have dependency relationships based on instances of
software modules , such as service applications for example ,
which reside on interconnected servers , such as servers 122
shown in FIG . 1. Using the CI dependency information from
the CMDB , the avalanche pattern detection module 304 may
compare the identified avalanche patterns to actual CI
dependency information from the CMDB to determine if
any patterns are invalid . For example , if one of the identified
avalanche patterns consists of CI's that bear no intercon
nected relationship , then that pattern may be deleted from
the avalanche patterns .

[0043] Returning to FIG . 3 , the event pattern detection
module 301 may include a conditional probability pattern
detection module 314 for performing a pattern detection in
parallel with the avalanche pattern module 304. The condi
tional probability pattern detection module 314 may include
a co - occurrence detection module 316 , a probabilistic graph
module 318 , and a parametric graph component module 319 .
The co - occurrence detection module 316 may determine a
number of time windows TW of size WS according to
Equation (2) above . Alternatively , the co - occurrence detec
tion module 316 may receive the time window information
and time window size WS from the avalanche pattern
detection module 304. The co - occurrence detection module
316 may detect co - occurrences of CI pairs or groups in the
time windows TW , which may or may not be avalanche
windows . For example , as shown in FIGS . 4 and 5 , alerts
521 and 522 occur within time window 512 and relate to
CI - 26 and C1-27 . The same pair of CI's , CI - 26 and CI - 27
appear in alerts 523 and 524 in time window 514. In some
applications , the co - occurrence detection module 316 may
detect co - occurrences of CI ID , alert metric combination
pairs or groups in the time windows TW .
[0044] FIGS . 6A - 6C are diagrams of an example condi
tional probabilistic graphing sequence in accordance with
the present disclosure . The probabilistic graph module 318
may generate a conditional probabilistic graph , such as the
probabilistic graph components 621 and 622 shown in FIG .
6A , based on parameters 312. For example , candidate nodes
601-612 of candidate graph component 621 may be identi
fied based on parameters 312 set by a user or system
administrator to include a minimum frequency of CI co
occurrences f_CI in the alert history 501 .
[0045] The conditional probabilistic graph components
621 and 622 may be generated by probabilistic graph
module 318 based on the results of the co - occurrence
detection module 316 , which may use pairwise probability .
For example , each node on graph components 621 , 622 may
represent a CI or alert metric with a probability that meets
or exceeds the f_CI parameter . A first count of how many
co - occurrences of CI's and / or alert metrics occur in time
window comparisons may be determined , and the first count
may be compared to a second count of individual alerts to
calculate a probability for each node . In some applications ,
a frequentist probability may be determined to establish the
conditional probabilistic graph components 621 , 622. In
some applications , the probability may be calculated on a
condition that the first count and the second count is not less
than the f_CI parameter . For example , the probability of an
alert A , such as at node 610 for a CI - 26 alert may be
determined given an alert B , such as at node 601 for a CI - 27
alert , according to the following equation .

P (A | B) = NAB / NB Equation (4a)

NAB

where
P (A / B) is probability of A given B
A is alert A
B is alert B

is number of time windows TW in which both alert A
and B appear
Ng is number of time windows TW in which alert B appears
Similarly , the probability of an alert B , given and alert A may
be determined according to the following equation :

P (B \ A) = NAB NA Equation (4b)

US 2020/0084086 A1 Mar. 12 , 2020
6

[0046] where
NA is number of time windows TW in which alert A appears
In some applications , the probability P (AIB) may not be
calculated if the number of A alerts or B alerts is less than
the minimum frequency parameter value f_CI , and nodes for
such low frequency alerts are omitted from the graph
component .
[0047] The probabilistic graph components 621 , 623 may
be generated in some applications by the probabilistic graph
module 318 based on parameters adjusted by para tric
graph module 319. For example , probabilistic graph com
ponents 621 , 623 may be generated by defining the nodes
according to the alert types A and B as nodes 601-615 and
by adding edges 631 to the graph component if one of the
pairwise conditional probabilities P (AIB) or P (BIA) exceeds
an initial threshold CP_in , which may be one of parameters
312. For example , graph component 622 may be generated
where alerts represented by nodes 613-615 have pairwise
probability of 0.25 as shown by the edge value 631 , which
exceeds an initial threshold CP_in value of 0.04 .
[0048] FIG . 6B shows an example of conditional prob
ability graph components 621 and 622 after applying an
adjusted threshold CP_in value in order to identify smaller
subgraph components that represent stronger alert correla
tions . In this example , an edge count threshold EC may be
established from the input parameters 312. In this example ,
the edge count parameter EC is set to EC = 3 based on a
determination that graph components having three edges
provide optimum alert correlation . Since graph component
622 has three edges , only graph component 621 may be
considered for reduction into subgraph components accord
ing to the following iterative process . A conditional prob
ability threshold CP_in may be set to CP_in = 0.2 . Any edges
having a value less than 0.2 are removed , which results in a
two subgraph components 623 and 624 from the original
graph component 621 shown in FIG . 6A . Since subgraph
component 623 has an edge count exceeding edge count
parameter EC = 3 , further reduction of the graph component
is achieved as shown in FIG . 6C .
[0049] FIG . 6C shows an example of subgraph compo
nents 625-627 formed by eliminating edges of subgraph
component 623 after raising the conditional probability
threshold to 0.3 With the remaining graph components 622 ,
624-627 satisfying the edge count parameter EC = 3 , these
graphs may be considered as having a critical size for
conditional probability , and as such are potential patterns
and may be stored by the conditional probability pattern
detection module 314. While the above example applied
iterations of conditional probability threshold increments of
0.1 , other fixed - size or variable - size increments may be
applied to accommodate different edge count EC thresholds
and for more or less rapid approach to reach critical size
graph components .
[0050] The conditional probability pattern detection mod
ule 314 may validate patterns based on an alert coverage
parameter taken from parameters 312. For example , a per
centage of alerts in alert history 501 that appear in a pattern
from probabilistic graph components can be determined , and
if the percentage is greater than the alert coverage parameter ,
the pattern is stored as a conditional probability pattern . If
one or more patterns fail to meet the alert coverage param
eter , the probabilistic graph components can be reformed
based on adjustment to the parameters 312 .

[0051] The conditional probability pattern detection mod
ule 314 may validate patterns based on CMDB information .
For example , computing devices related to the candidate
nodes may be interconnected in a cloud computing system ,
such as cloud computing system 100 shown in FIG . 1 , and
the interconnected dependencies may be tracked and
updated in the CMDB . The CI's may also have dependency
relationships based on instances of software modules , such
as service applications for example , which reside on inter
connected servers , such as servers 122 shown in FIG . 1 .
Using the CI dependency information from the CMDB , the
probabilistic graph module 318 may compare the graph
components , such as graph components 622 , 624-627 shown
in FIG . 6C , to actual CI dependency information from the
CMDB to determine if any patterns are invalid . For
example , if one of the graph components consists of CI's
that bear no interconnected relationship , then a pattern based
on that graph component may be deleted from the candidate
patterns .
[0052] Returning to FIG . 3 , a pattern merging module 320
may merge the patterns determined by the avalanche pattern
module 304 with the patterns determined by the conditional
probability pattern detection module 314. In some applica
tions , the pattern merging module 320 may combine the
avalanche patterns with the conditional probability patterns
and store the union of patterns as learned patterns from the
event pattern detection module 301. For example , the
merged pattern information may be stored in alert tables
with pattern IDs , each row consisting of a CI_ID , alert
metric combination and pattern ID . In some applications , the
merged pattern information may be stored as a hash map
with key as pattern ID and value as set of entities repre
senting the pattern .
[0053] An alert grouping module 322 may perform a
matching function to compare an alert stream 332 to the
stored patterns and assign an alert to an alert group if there
is a match to one or more patterns . In some applications , the
alert grouping module 322 may receive a current alert from
alert stream 332 and compare the CI and / or the alert metric
for the current alert to the learned patterns stored by the
pattern merging module 320 , and determine which one or
more patterns include the same CI and / or alert metric .
[0054] An alert group may be formed by applying a
sliding window . For example , a ten minute window may be
defined according to parameters 312. The matching process
starts with a first alert group AB , which may be kept active
for maximum group lifetime , which may be an input param
eter 312 based on a fixed time window , such as for example ,
a ten minute window . For example , the alert group AB may
be compared to all alerts received from the alert stream 332
in the past ten minute window . The alert group AB may
include a list of associated pattern IDs . If no match is made
to pattern IDs associated with the alerts monitored in the
alert stream , then the lifetime of alert group AB is expired ,
and no further comparisons are made to that alert group . If
a pattern ID match is made for a current alert , such as an alert
C , then alert group C is grouped with alert group AB , to form
alert group ABC . For example , if alert C includes an alert
type found within alert group AB , then alert C is added to the
group . The list of pattern IDs for the group AB may be
updated by keeping only those pattern IDs that contains C.
The time is maintained for the updated list of pattern IDs
whenever any new alert is grouped using that list . If a the
time window elapses , the pattern IDs in that list has not been

US 2020/0084086 A1 Mar. 12 , 2020
7

used to group alerts , the alert group may be finalized and no
further comparison for future alerts is made .
[0055] In some applications , the alert group may include
a set of alert types , such as a CI_ID , alert metric pairs , a list
of patterns that match this set of alert types , a first alert time
(i.e. the alert time for the earliest alert in the group) and a
latest alert time (i.e. , the alert time for the most recent alert
added to the group) . When processing a new set of alerts , all
groups may be examined and if the current time minus the
latest time for the group exceeds the time window , then the
group is removed from the active list . If the current time
minus the first alert time exceeds the maximum group
lifetime parameter , then the group may be removed from the
active list .
[0056] A presentation module 324 may generate a display
region for displaying the alert groups for monitoring by a
user or system administrator .
[0057] FIG . 7 is a diagram of an example display region
generated for displaying alert groups in accordance with the
present disclosure . The display region 702 may include a
presentation of the alert groups 703 , the severity type 704 of
the alerts in the alert group , the severity of related alerts 705 ,
and a count of impacted services 706. For example , an alert
group 703 , such as alert group 5 , may have a critical severity
704 , and related alerts 705 , such as 1 related alert having
critical severity , O related alerts having major or minor
severity , and 1 impacted service 706. Three severity types
704 are shown in FIG . 7 for illustrative purposes , however
there may be more or less severity types . The alert groups
703 may be sorted by severity 704 as shown in FIG . 7. Other
presentations of the alert groups 703 may be presented by
sorting according to other information shown in FIG . 7 .
[0058] Alert groups determined by alert grouping module
322 may be evaluated based on a compression rate param
eter and an alert coverage parameter from parameters 312 .
For example , the compression rate may be determined
according to the following equation .

Comp = 1- (Ngip + Rem) / NTOT Equation (5)

[0059] where
[0060] Ngrp is the number of alert groups
[0061] Rem is the number of remaining ungrouped

alerts
[0062] Ntor is the number of total alerts

For example , a compression rate of 70 % may be determined ,
meaning that the alert aggregation may reduce the number of
raw alerts by 30 % . Accordingly , the alert pattern detection
and alert grouping is a useful tool to enable a user or system
administrator to more efficiently manage alert dispositions
by reducing the number of alerts , which may have been
inflated due to redundancy of alerts . The compression rate
may be compared to a compression parameter to determine
if the number of alert groups are satisfactory .
[0063] The alert coverage may be determined according to
the following equation .

Acov = N_Agrpd / NTOT Equation (6)

[0064] where
[0065] N_Agrpd is the number of alerts assigned to a

group
[0066] Noor is the number of total alerts

For example , an alert coverage of 50 % may be determined
and compared to an alert coverage parameter to determine if
the alert groups are satisfactory . If the alert coverage is
insufficient , the alert groups may be modified , such as by

adding new alert groups to capture more alerts that were
omitted from the alert aggregation .
[0067] FIG . 8 is a diagram of an example display region
generated for enabling user feedback and supervision of
alert grouping in accordance with the present disclosure . In
some applications , if the compression rate Comp or alert
coverage Acov values do not meet the parameter thresholds ,
the user or system administrator may delete a group using a
graphical user interface , such as the delete alert button 809 .
The display region 802 may include various alert informa
tion for an alert group 803 , as shown in FIG . 8. For example ,
impacted services may be visually accessed by clicking on
the impacted services button 804. Feedback 806 from the
user may be submitted to a system administrator regarding
whether the alert group is representative or related to new
alerts . For example , due to irregularities in the pattern
detection , some alert groups may be determined to be
invalid , in which case the user has the ability to delete the
alert group using interface button 809. The display region
802 may also include the alert ID 810 , severity of each alert
812 , the CI_ID 814 , the metric name 816 , or a combination
thereof , for the alerts in the displayed alert group . In some
applications , if an erroneous group repeatedly appears , the
user or system administrator may set a rule to prevent
particular patterns from being developed by the avalanche
pattern detection module 304 or the conditional probability
pattern detection module 314. In some applications , the user
or system administrator may define patterns and can set a
high priority of those patterns if so desired . For instance , a
particular alert or entity may be flagged as significant or
critical and an associated pattern may be assigned a high
priority .
[0068] FIG . 9 is a flowchart of an example method for
aggregating alerts for management of computer system
alerts in accordance with this disclosure . Grouping alerts
generated by automated monitoring of at least an operating
condition change of a machine in a computer network in
response to an event , may be implemented in a computing
system , such as the cloud computing system 100 shown in
FIG . 1. For example , grouping alerts may be implemented
on a server , such as one or more of the servers 122 shown
in FIG . 1 , a computing device , such as a client 112 shown
in FIG . 1 , or by a combination thereof communicating via a
network , such as the network 130 shown in FIG . 1 .
[0069] Grouping alerts may include obtaining historical
alert data at 902 , identifying event patterns associated with
avalanches at 908 , identifying event patterns based on
conditional probability at 918 , merging patterns at 920 ,
matching alerts to patterns at 922 , assigning current alert to
alert group (s) at 924 , generating graphical display regions
for alert groups at 926 , or a combination thereof .
[0070] In an implementation , event pattern detection mod
ule 301 obtains available historical alert data that may be
stored in a data storage unit . The historical alert data may
include information for each alert , including an alert ID , a
time stamp , a configuration item ID , an alert metric , or a
combination thereof . The alert data may be associated with
alerts received in recent hours , days , weeks or months for
computing system 100 .
[0071] Avalanche patterns may identified at steps 904
908. At 904 , time windows may be defined for avalanche
detection based on a fixed window size determined by a
parameter C1 and inter - arrival time of alerts . Avalanche
windows may be determined at 906 based on an avalanche

US 2020/0084086 A1 Mar. 12 , 2020
8

threshold and a parameter C2 . At 906 , avalanche windows
may be determined based on an alert count for a time
window meeting or exceeding the avalanche threshold . At
908 , event patterns associated with avalanches may be
identified based on intersections of avalanche alerts with
alerts in each other time window . Avalanche patterns may be
based on intersections that have an intersection score that
meets or exceeds an avalanche pattern threshold . Intersec
tion scores may be determined based on number of inter
sections and number of avalanche window alerts .
[0072] Conditional probability patterns may be identified
at steps 914-918 . At 914 , probabilistic graph candidates may
be determined based on co - occurrences of alert information
in the time windows meeting or exceeding a parametric
threshold . At 916 , a probabilistic graph maybe generated
using the probabilistic graph candidates having a probability
that satisfies a threshold . Event patterns may be identified
based on conditional probability determined from the proba
bilistic graph , at 918 , where conditional probability is based
on co - occurrences of CI's for alerts in two or more time
windows . The conditional probability may also be super
vised by rule based parameters set by a user .
[0073] At 920 , event patterns identified by avalanche
detection may be merged with event patterns identified by
conditional probability and stored for alert grouping . At 922 ,
an alert stream is monitored and each alert is compared to
the stored patterns . A current alert may be assigned to one or
more groups for each match found to a stored pattern at 924 .
[0074] A graphical display region may be generated for
displaying of alert groups at 926 based on the alert groups
identified at 924. The graphical display region can include ,
for example , information relating to the alert groups for
monitoring by a user or system administrator , for manage
ment of computer system alerts and to enable user feedback
and supervision . A graphical display region may be gener
ated in response to a user intervention , such as interface with
a graphical user interface . However , in certain circum
stances and implementations , the graphical display region
may be triggered automatically .
[0075] The alert groups displayed in step 926 can include
information about associated alerts , including severity type ,
related alerts and impacted services . Steps 922 through 926
can be repeated multiple times over numerous client
instances , server instances , or a combination of both as alerts
from an alert stream are received . The alert groups can be
ordered in priority order based on severity type .
[0076] Steps 902-926 may be performed periodically . For
example , a task can be scheduled on an hourly , daily , or
weekly basis during which the steps are performed . The
steps can be performed on the same or different periodic
schedules for each of the database server instances in the
cloud infrastructure , such as by physical server or datacen
ter . Certain database server instances or physical servers
may not be included based on user configuration . Upon each
iteration , the graphical display regions generated by step 926
can be updated and / or regenerated .
[0077] Some or all of the steps of FIG . 9 can be imple
mented in a pattern detection module and alert grouping
module . In one implementation , the pattern detection mod
ule and alert grouping module can take the form of one or
more Java classes with executable or human - readable code
for performing some or all of the steps 902-924 described
above . The pattern detection module and alert grouping
module can , for example , be located on one or more servers

used to manage other servers (management servers) in the
cloud computing system , including but not limited to servers
122. The management servers can , for example , include the
same or similar platform application and included on some
of servers 122. In one implementation , the one or more Java
classes can be plugged into or connected to an instance or
installation of the platform application to extend the plat
form functionality to include the functionality of the pattern
detection module and alert grouping module . In an imple
mentation , functionality of the pattern detection module and
alert grouping module may be accessed via the platform , for
example , by using script calls stored in an associated data
base that are configured to invoke the desired functionality .
In one example , the platform can be configured to periodi
cally execute techniques similar to steps 902-924 included in
the pattern detection module and alert grouping module
without user intervention . In another example , the graphical
display regions generated by the presentation module 324
can include one or more links or buttons that when clicked
cause the platform to execute other platform functionality
for invoking a move operation for an associated database
server instance .
[0078] Input parameters 312 used in any of the above
embodiments may be based on various types of information ,
included but not limited to value - based information , event
based information , environment - based information , or a
combination thereof . For example , value - based information
may include business models , service catalog information ,
customer impact feeds information , or the like . As another
example , events - based information may include change
management information , alerts , incidents , or the like . As
another example , environment - based information may
include configuration management database (CMDB) infor
mation , business rules , workflows , or the like . All or a
portion of implementations of the invention described herein
can be implemented using a general purpose computer /
processor with a computer program that , when executed ,
carries out any of the respective techniques , algorithms
and / or instructions described herein . In addition , or alterna
tively , for example , a special purpose computer / processor
can be utilized which can contain specialized hardware for
carrying out any of the techniques , algorithms , or instruc
tions described herein .
[0079] The implementations of computing devices as
described herein (and the algorithms , methods , instructions ,
etc. , stored thereon and / or executed thereby) can be realized
in hardware , software , or any combination thereof . The
hardware can include , for example , computers , intellectual
property (IP) cores , application - specific integrated circuits
(ASICs) , programmable logic arrays , optical processors ,
programmable logic controllers , microcode , microcon
trollers , servers , microprocessors , digital signal processors
or any other suitable circuit . In the claims , the term “ pro
cessor ” should be understood as encompassing any of the
foregoing hardware , either singly or in combination .
[0080] For example , one or more computing devices can
include an ASIC or programmable logic array such as a
field - programmable gate array (FPGA) configured as a
special - purpose processor to perform one or more of the
operations or operations described or claimed herein . An
example FPGA can include a collection of logic blocks and
random access memory (RAM) blocks that can be individu
ally configured and / or configurably interconnected in order
to cause the FPGA to perform certain functions . Certain

US 2020/0084086 A1 Mar. 12 , 2020
9

context to be directed to a singular form . Moreover , use of
the term “ an implementation ” or “ one implementation ”
throughout is not intended to mean the same embodiment or
implementation unless described as such .
[0084] The particular implementations shown and
described herein are illustrative examples of the invention
and are not intended to otherwise limit the scope of the
invention in any way . For the sake of brevity , conventional
electronics , control systems , software development and
other functional implementations of the systems (and com
ponents of the individual operating components of the
systems) may not be described in detail . Furthermore , the
connecting lines , or connectors shown in the various figures
presented are intended to represent exemplary functional
relationships and / or physical or logical couplings between
the various elements . Many alternative or additional func
tional relationships , physical connections or logical connec
tions may be present in a practical device . Moreover , no item
or component is essential to the practice of the invention
unless the element is specifically described as “ essential " or
" critical ” .

FPGA's may contain other general or special purpose blocks
as well . An example FPGA can be programmed based on a
hardware definition language (HDL) design , such as VHSIC
Hardware Description Language or Verilog .
[0081] The embodiments herein may be described in terms
of functional block components and various processing
steps . Such functional blocks may be realized by any num
ber of hardware and / or software components that perform
the specified functions . For example , the described embodi
ments may employ various integrated circuit components ,
e.g. , memory elements , processing elements , logic elements ,
look - up tables , and the like , which may carry out a variety
of functions under the control of one or more microproces
sors or other control devices . Similarly , where the elements
of the described embodiments are implemented using soft
ware programming or software elements the invention may
be implemented with any programming or scripting lan
guage such as C , C ++ , Java , assembler , or the like , with the
various algorithms being implemented with any combina
tion of data structures , objects , processes , routines or other
programming elements . Functional implementations may be
implemented in algorithms that execute on one or more
processors . Furthermore , the embodiments of the invention
could employ any number of conventional techniques for
electronics configuration , signal processing and / or control ,
data processing and the like . The words “ mechanism ” and
" element ” are used broadly and are not limited to mechani
cal or physical embodiments , but can include software
routines in conjunction with processors , etc.
[0082] Implementations or portions of implementations of
the above disclosure can take the form of a computer
program product accessible from , for example , a computer
usable or computer - readable medium . A computer - usable or
computer - readable medium can be any device that can , for
example , tangibly contain , store , communicate , or transport
a program or data structure for use by or in connection with
any processor . The medium can be , for example , an elec
tronic , magnetic , optical , electromagnetic , or a semiconduc
tor device . Other suitable mediums are also available . Such
computer - usable or computer - readable media
referred to as non - transitory memory or media , and may
include RAM or other volatile memory or storage devices
that may change over time . A memory of an apparatus
described herein , unless otherwise specified , does not have
to be physically contained by the apparatus , but is one that
can be accessed remotely by the apparatus , and does not
have to be contiguous with other memory that might be
physically contained by the apparatus .
[0083] The word " example ” is used herein to mean serv
ing as an example , instance , or illustration . Any implemen
tation or design described herein as “ example ” is not nec
essarily to be construed as preferred or advantageous over
other implementations or designs . Rather , use of the word
“ example ” is intended to present concepts in a concrete
fashion . As used in this application , the term “ or ” is intended
to mean an inclusive “ or ” rather than an exclusive “ or ” . That
is , unless specified otherwise , or clear from context , “ X
includes A or B ” is intended to mean any of the natural
inclusive permutations . In other words , if X includes A ; X
includes B ; or X includes both A and B , then “ X includes A
or B ” is satisfied under any of the foregoing instances . In
addition , the articles “ a ” and “ an ” as used in this application
and the appended claims should generally be construed to
mean “ one or more ” unless specified otherwise or clear from

[0085] The use of “ including ” or “ having ” and variations
thereof herein is meant to encompass the items listed there
after and equivalents thereof as well as additional items .
Unless specified or limited otherwise , the terms “ mounted , ”
“ connected , ” “ supported , ” and “ coupled ” and variations
thereof are used broadly and encompass both direct and
indirect mountings , connections , supports , and couplings .
Further , “ connected ” and “ coupled ” are not restricted to
physical or mechanical connections or couplings .
[0086] The use of the terms “ a ” and " an ” and “ the ” and
similar referents in the context of describing the invention
(especially in the context of the following claims) should be
construed to cover both the singular and the plural . Further
more , recitation of ranges of values herein are merely
intended to serve as a shorthand method of referring indi
vidually to each separate value falling within the range ,
unless otherwise indicated herein , and each separate value is
incorporated into the specification as if it were individually
recited herein . Finally , the steps of all methods described
herein are performable in any suitable order unless other
wise indicated herein or otherwise clearly contradicted by
context . The use of any and all examples , or exemplary
language (e.g. , “ such as ”) provided herein , is intended
merely to better illuminate the invention and does not pose
a limitation on the scope of the invention unless otherwise
claimed .

[0087] All references , including publications , patent appli
cations , and patents , cited herein are hereby incorporated by
reference to the same extent as if each reference were
individually and specifically indicated as incorporated by
reference and were set forth in its entirety herein .
[0088] The above - described embodiments have been
described in order to allow easy understanding of the present
invention and do not limit the present invention . To the
contrary , the invention is intended to cover various modifi
cations and equivalent arrangements included within the
scope of the appended claims , which scope is to be accorded
the broadest interpretation so as to encompass all such
modifications and equivalent structure as is permitted under
the law .

US 2020/0084086 A1 Mar. 12 , 2020
10

1-19 . (canceled)
20. A method , comprising :
dividing a historical alert dataset into subsets of alert data ,

wherein the historical alert dataset comprises alert data
indicative of a plurality of types of alerts generated by
a computing system ;

determining a first amount of overlap in the historical alert
dataset in which a first alert type and a second alert type
both occur ;

determining a total amount of the historical alert dataset
in which the first alert type occurs ; and

determining a pairwise probability based at least in part
on a ratio between the first amount and the total
amount ;

identifying a relationship between the first alert type and
the second alert type based at least in part on the
pairwise probability being greater than a probability
threshold ; and

updating a visualization of the historical alert dataset to
indicate the relationship .

21. The method of claim 20 , comprising :
receiving data corresponding to an alert stream ; and
using the relationship to group a subset of alerts from the

alert stream in an alert group .
22. The method of claim 21 , comprising :
maintaining a time window corresponding to a duration of

time ;
receiving a first alert comprising the first alert type at a

time within the time window ;
in response to receiving the first alert , determining to

group the first alert in the alert group based at least in
part on the relationship ; and

receiving a second alert comprising the first alert type at
a time after the time window ; and

in response to receiving the second alert , not grouping the
second alert into the alert group .

23. The method of claim 20 , comprising :
determining an additional relationship when an amount of

alerts comprising the first alert type , the second alert
type , or both , is greater than an avalanche threshold ;

receiving data corresponding to an alert stream ; and
using the relationship and the additional relationship to

group a subset of alerts from the alert stream into an

type of the respective alert or a pattern of the respective
alert matching that of the relationship ;

in response to the relationship matching the respective
alert of the alert stream , determining that a time win
dow associated with the respective alert is active ; and

in response to determining that the time window is active ,
adding the respective alert to an alert group correspond
ing to the relationship and the time window .

27. The method of claim 26 , comprising in response to
determining that the time window is expired , finalizing the
alert group without adding the respective alert .

28. The method of claim 20 , wherein identifying the
relationship between the first alert type and the second alert
type based at least in part on the pairwise probability being
greater than the probability threshold comprises :

setting the probability threshold to a first value to generate
a first probability threshold ;

identifying a first relationship using the first probability
threshold ;

setting the probability threshold to a second value to
generate a second probability threshold , wherein the
second value is greater than the first value ;

identifying a second relationship using the second prob
ability threshold ; and

identifying the relationship between the first alert type and
the second alert type to correspond to the second
relationship

29. The method of claim 28 , wherein identifying the first relationship using the first probability threshold comprises :
filtering a plurality of pairwise probabilities associated

with the first alert type , the second alert type , and a
third alert type ; and

using the first probably threshold to identify a relationship
between the first alert type and the third alert type as the
first relationship without identifying the relationship
between the first alert type and the second alert type .

30. A tangible , non - transitory , computer - readable medium
having stored thereon program instructions that , upon
execution by a computing device , cause the computing
device to perform operations comprising :

receiving a historical alert dataset comprising a plurality
of indications of a plurality of alerts , wherein each
indication of the plurality of indications corresponds to
a configuration item and a timestamp ;

dividing the historical alert dataset to form subsets of alert
data having equal time windows ;

determining an amount of co - occurrence of a first alert
type and a second alert type over the historical alert
dataset , wherein the amount of co - occurrence corre
sponds to a respective number of the subsets of alert
data that respectively comprise the first alert type and
the second alert type ;

determining a total number of the subsets of alert data in
which the first alert type occurs ; and

determining a frequency parameter value based at least in
part on the amount of co - occurrence and the total
number of the subsets of alert data in which the first
alert type occurs ;

determining a relationship between the first alert type and
the second alert type based at least in part on the
frequency parameter value being greater than a fre
quency parameter threshold value ; and

alert group
24. The method of claim 23 , comprising :
determining the amount of alerts over a duration of time ,

wherein the duration of time is based at least in part on
a product of a value associated with arrival times of
consecutive historical alerts and a factor value .

25. The method of claim 23 , comprising :
identifying a configuration item identifier and an alert

pattern identifier for a first alert of the alert group ,
wherein the configuration item identifier is associated
with the first alert , and wherein the alert pattern iden
tifier is associated with the relationship , the additional
relationship , or any combination thereof ;

storing the configuration item identifier and the alert
pattern identifier in a data table ; and

updating the visualization of the historical alert dataset
based at least in part on the data table .

26. The method of claim 20 , comprising :
receiving data corresponding to an alert stream ;
determining that the relationship matches a respective

alert of the alert stream based at least in part on an alert

US 2020/0084086 A1 Mar. 12 , 2020
11

updating a visualization of the historical alert dataset to
indicate the relationship .

31. The tangible , non - transitory , computer - readable
medium of claim 30 , wherein the frequency parameter value
is configured to indicate a likelihood of the first alert type
being related to the second alert type .

32. The tangible , non - transitory , computer - readable
medium of claim 30 , wherein the frequency parameter value
is configured to indicate a likelihood of the first alert type
being related to the second alert type .

33. The tangible , non - transitory , computer - readable
medium of claim 30 , wherein the historical alert dataset is
associated with a plurality of configuration items .

34. The tangible , non - transitory , computer - readable
medium of claim 30 , comprising instructions that , upon
execution by the computing device , cause the computing
device to :

identifying the first alert type as corresponding to a first
configuration item ;

identifying the second alert type as corresponding to a
second configuration item ; and

determining the relationship between the first configura
tion item and the second configuration item in response
to determining the relationship between the first alert
type and the second alert type .

35. A system for grouping alerts generated by monitoring
of a device in a computer network , the system comprising :

a processor ; and
a memory configured to store instructions executable by

the processor that , when executed by the processor ,
cause the system to perform operations comprising :

identifying an event pattern within historical alert data
independent of known dependency relationships
between devices of the computer network , wherein the
event pattern is based on a likelihood of a relationship
between alert types of the historical alert data , and
wherein the likelihood is determined based at least in
part on a ratio of a total number of occurrences of a
respective alert pair with respect to a total number of
occurrences of a given alert of the respective alert pair ;
and

assigning a current alert to an alert group by matching the
current alert to the event pattern ; and

generating , via a presentation module , a graphical display
region configured to present the alert group .

36. The system of claim 35 , wherein the instructions
executable by the processor comprise additional instructions
executable by the processor that , when executed by the
processor , cause the system to perform operations compris
ing :

prioritizing the alert group with respect to an additional
alert group in a visualization rendered on a graphical
user interface based at least in part on respective
severities of alerts associated with the alert group .

37. The system of claim 35 , wherein the instructions
executable by the processor comprise additional instructions
executable by the processor that , when executed by the
processor , cause the system to perform operations compris
ing :

determining the event pattern based at least in part on an
intersection of a first subset of the alerts identified in an
avalanche of alerts with a second subset of the alerts
identified based at least in part on the likelihood ;

determining a plurality of time windows at least in part by
dividing a duration of the historical alert data into fixed
intervals equal to a fixed time window size ; and

determining the likelihood of the respective alert pair
based at least in part on identifying a number of time
windows that the respective alert pair occurs within
with respect to a total number of time windows that the
given alert of the respective alert pair occurs within .

38. The system of claim 37 , wherein the instructions
executable by the processor comprise additional instructions
executable by the processor that , when executed by the
processor , cause the system to perform operations compris
ing :

identifying the avalanche of alerts at least in part by
assigning a score to an additional intersection of a total
number of alert intersections and of a total number of
alerts in the avalanche of alerts .

39. The system of claim 38 , wherein the instructions
executable by the processor comprise additional instructions
executable by the processor that , when executed by the
processor , cause the system to perform operations compris
ing :

identifying the event pattern when the score of the addi
tional intersection is greater than an avalanche pattern
threshold parameter .

