(11) Application No. AU 199747363 B2 (12) PATENT (19) AUSTRALIAN PATENT OFFICE (10) Patent No. 723666 (54)N-({1,2,4} triazoloazinyl)benzenesulfonamide and ${\tt pyridine sulfonamide}$ compounds their use as herbicides (51) ⁶ International Patent Classification(s) CO7D 487/04 CO7D 213/71 A01N 043/90 Application No: 199747363 (21)(22) Application Date: 1997 .09 .23 WIPO No: w098/13367 (87) (30)Priority Data (31)Number (32) Date (33)Country US 60/026556 1996 .09 .24 (43)Publication Date : 1998 .04 .17 Publication Journal Date : 1998 .06 .11 (43)(44) Accepted Journal Date : 2000 .08 .31 (71)Applicant(s) Dow AgroSciences LLC (72)Inventor(s) Timothy C. Johnson; Mary L. Ash; Robert J. Ehr; Richard D. Johnston; William A. Kleschick; Timothy P. Martin; Richard K. Mann; Mark A. Pobanz; John C. Van Heertum (74)Agent/Attorney PHILLIPS ORMONDE and FITZPATRICK, 367 Collins Street, MELBOURNE VIC 3000 (56)Related Art US 3787573

US 5459138

L	(51)	International	Patent	Classification	6	;
---	------	---------------	--------	----------------	---	---

C07D 47 /04, A01N 43 /90, C07D 487/04, 213/71 // (C07D 471/04, 249:00, 221:00) (C07P-487/94-249:49-499-49)SURANCE (11) International Publication Number:

WO 98/13367

(43) International Publication Date:

2 April 1998 (02.04,98)

(21) International Application Number:

PCT/US97/16867

A1

(22) International Filing Date:

23 September 1997 (23.09.97)

(30) Priority Data:

60/026,556

24 September 1996 (24.09.96) US

(71) Applicant: DOW AGROSCIENCES LLC [US/US]; 9330 Zionsville Road, Indianapolis, IN 46268 (US).

(72) Inventors: JOHNSON, Timothy, C.; 8092 Lieber Road, Indianapolis, IN 46260 (US). ASH, Mary, L.; 762 Franklin Trace, Zionsville, IN 46077 (US). EHR, Robert, J.; 8693 Highwoods Lane, Indianapolis, IN 46278 (US). JOHNSTON, Richard, D.; Apartment H, 2035 N. East Bay Drive, Greenfield, IN 46140 (US). KLESCHICK, William, A.; 8521 Williams Cove Court, Indianapolis, IN 46260 (US). MARTIN, Timothy, P.; 40 E. 87th Street, Indianapolis, IN 46240 (US). MANN, Richard, K.; 1828 South 550 East, Franklin, IN 46131 (US). POBANZ, Mark, A.; 4539 Eagle Creek Parkway #104, Indianapolis, IN 46254 (US). VAN HEERTUM, John, C.; 7533 Chablis Circle, Indianapolis, IN 46278 (US).

(74) Agent: OSBORNE, David, Wendell; Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, ID, IL, IS, JP, KE, KG, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Guranean patent (AT, BE, CH, DE, DK, ES, FI, FR, GR European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: N-([1,2,4] TRIAZOLOAZINYL)BENZENESULFONAMIDE AND PYRIDINESULFONAMIDE COMPOUNDS AND THEIR USE AS HERBICIDES

(57) Abstract

N-(Triazoloazinyl)arylsulfonamide

compounds, such

2,6-dimethoxy-N-(8-chloro-5-methoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)benzenesulfonamide,

2,0-untertoxy=4-(trifluoromethyl)-N-(5,8-di-methoxy[1,2,4]triazolo[1,5-e]pyrimidin=2-yl)peridin=3-sulfonamide, and 2-methoxy=4-(trifluoromethyl)-N-(5,8-di-methoxy[1,2,4]triazolo=[1,5-a]pyridin=2-yl)peridin=2-sulfonamide were prepared from appropriately substituted 2-amino[1,2,4]triazolo=[1,5-a]pyridin=2-yl)perizenesulfonamide were prepared from appropriately substituted 2-amino[1,2,4]triazolo=[1,5-a]pyridin=2-sulfonyl chloride and pyridin=3-sulfonyl chloride compounds. The compounds were found to be useful as herbicides.

N-([1,2,4]TRIAZOLOAZINYL) BENZENESULFONAMIDE AND PYRIDINESULFONAMIDE COMPOUNDS AND THEIR USE AS HERBICIDES

The present invention relates to substituted benzenesulfonamide and pyridinesulfonamide compounds, to herbicidal compositions containing the compounds, and to the utility of the compounds for the control of unwanted vegetation.

The control of unwanted vegetation by means of chemical agents, i.e., herbicides, is an important aspect of modern agriculture and land management. While many chemicals that are useful for the control of unwanted vegetation are known, new compounds that are more effective generally, are more effective for specific plant species, are less damaging to desirable vegetation, are safer to man or the environment, are less expensive to use, or have other advantageous attributes are desirable.

Many substituted benzenesulfonamide compounds are known and certain of them are known to possess herbicidal activity. For example, certain N-({1,2,4}triazolo[1,5-a]pyrimidin-2-yl})benzenesulfonamide compounds and their herbicidal utility were disclosed in U.S. Patent 4,638,075 and certain N-([1,2,4]triazolo[1,3,5]triazin-2-yl)benzenesulfonamide compounds were disclosed in U.S. Patent 4,685,958. Certain N-phenyl arylsulfonamide compounds are also known and are known to possess herbicidal activity. For example, certain N-(substituted phenyl)[1,2,4]triazolo[1,5-c]pyrimidin-2-sulfonamide compounds were disclosed in U.S. Patent 5,163,995 and certain N-(substituted phenyl)[1,2,4]triazolo[1,5-a]pyridin-2-sulfonamide compounds were disclosed in U.S. Patent 5,571,775, issued November 5,

15

1996.

The above discussion of documents, acts, materials, devices, articles and the like is included in this specification solely for the purpose of providing a context for the present invention. It is not suggested or represented that any or all of these matters formed part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed in Australia before the priority date of each claim of this application.

It has now been found that a class of novel N-(triazolo-azinyl) arylsulfonamide compounds comprising N-([1,2,4]triazolo-[1,5-c]pyrimidin-2-yl) benzenesulfonamide, N-([1,2,4]triazolo[1,5-c]-pyrimidin-2-yl) pyridinesulfonamide, N-([1,2,4]triazolo[1,5-a]pyridin-2-yl)benzenesulfonamide, and N-([1,2,4]triazolo[1,5-a]pyridin-2-yl)-pyridinesulfonamide compounds are potent herbicides for the control of unwanted vegetation by either preemergence or postemergence application. Many of the compounds have desirable selectivity to valuable crops and have favourable toxicological and environmental attributes.

10

15

 $\label{eq:compounds} The \ invention \ includes \ N-(triazoloazinyl) ary lsulfon a mide compounds of Formula I:$

$$X \longrightarrow N \longrightarrow N \longrightarrow N$$

$$NTSO_2 \longrightarrow D$$

wherein

5

10

X represents N or C-Y;

W represents $O(C_1-C_3 \text{ alkyl})$, Cl, Br, F, or H;

Y represents H, OCH3, F, Cl, Br, I, or CH3 optionally substituted with up to three fluorine atoms;

Z represents $O(C_1-C_3 \text{ alkyl})$, H, F, Cl, Br, I, $S(C_1-C_3 \text{ alkyl})$, or CH3 optionally substituted with up to three fluorine atoms; with the proviso that at least one of W and Z represents $O(C_1-C_3 \text{ alkyl})$;

Q represents C-H or N;

A represents F, Cl, Br, or I, or $CO_2(C_1-C_4 \text{ alkyl})$ or represents $C_1-C_3 \text{ alkyl}$, $O(C_1-C_4 \text{ alkyl})$, $O(C_3-C_4 \text{ alkenyl})$, $O(C_3-C_4 \text{ alkynyl})$, or $S(C_1-C_3 \text{ alkyl})$ each optionally substituted with one $O(C_1-C_3 \text{ alkyl})$, $S(C_1-C_3 \text{ alkyl})$, chloro, bromo, or cyano substituent or with up to the maximum possible number of fluorine atoms, or represents a 2-methyl-1,3-dioxolan-2-yl moiety, and, when Q represents N, H;

B represents H, F, Cl, Br, I, NO₂, CN, CO₂(C₁-C₄ alkyl),

NH(C₁-C₃ alkyl), or N(C₁-C₃ alkyl)₂ or represents O(C₁-C₄ alkyl),

O(C₃-C₄ alkenyl), O(C₃-C₄ alkynyl), C₁-C₃ alkyl, S(C₁-C₃ alkyl),

SO(C₁-C₃ alkyl), SO₂(C₁-C₃ alkyl), S(C₃-C₄ alkenyl), SO(C₃-C₄

alkenyl), SO₂(C₃-C₄ alkenyl), S(C₃-C₄ alkynyl), SO(C₃-C₄ alkynyl), or

SO₂(C₃-C₄ alkynyl) each optionally substituted with one O(C₁-C₃

alkyl), S(C₁-C₃ alkyl), chloro, bromo, or cyano substituent or with up to the maximum possible number of fluorine atoms; with the proviso that A and B do not simultaneously represent H;

D represents H, F, Cl, Br, I, C_1 - C_3 alkyl, OCH₃, OC₂H₅, CH₂F, CHF₂, or CF₃; or B and D together represent a fragment of the formula O-CH₂-O, optionally substituted with one or two F or CH₃;

25

T represents H, SO₂R, C(O)R, C(O)OR, C(O)NR'₂, or CH₂CH₂C(O)OR; R represents C_1 - C_4 alkyl, C_3 - C_4 alkenyl, or C_3 - C_4 alkynyl each optionally possessing up to two chloro, bromo, $O(C_1$ - C_4)alkyl, or phenyl substituents and up to the maximum possible number of fluoro substituents; and R' represents H, C_1 - C_4 alkyl, C_3 - C_4 alkenyl, or C_3 - C_4 alkynyl;

and, when T represents H, the agriculturally acceptable salts thereof.

Compounds wherein X represents each of N and C-H and

compounds wherein Q represents each of N and C-H are among the
preferred compounds of the invention. Many of the preferred
compounds of the invention possess a methoxy substituent in the
5-position (W) and a methoxy or halogen substituent in the 8-position
(2) of the triazoloazine ring. Some of the preferred compounds

further possess an ortho methoxy substituent (A or B) in combination
with a variety of substituents in the other ortho postition (A or B)
and hydrogen in the meta position; an ortho methoxy substituent
(A)
in combination with hydrogen or a meta methyl or chloro substituent
(D) and no substituent in the other ortho position (B); or an ortho

trifluoromethyl substituent (B) in combination with a variety of
substituents in the other ortho position (A) and hydrogen in the meta
position.

The invention further includes compositions containing herbicidal amounts of compounds of Formula I in combination with one or more agriculturally acceptable adjuvants or carriers and the use of the compounds of Formula I as herbicides. The use of suitable compounds of the invention to achieve either total vegetation control or the selective control of weeds in wheat, rice and oil-seed rape crops is generally preferred. Both grassy and broadleaf weeds can be controlled. Postemergence application of the compounds to undesirable vegetation is generally preferred.

The N-(triazoloazinyl)arylsulfonamide compounds of the invention can generally be described as substituted N-([1,2,4]-triazolo[1,5-c]pyrimidin-2-yl)benzenesulfonamide, N-([1,2,4]triazolo-[1,5-c]pyrimidin-2-yl)pyridine-3-sulfonamide, N-([1,2,4]triazolo-[1,5-a]pyridin-2-yl)benzenesulfonamide, and N-([1,2,4]triazolo-[1,5-a]pyridin-2-yl)pyridine-3-sulfonamide compounds. They can be

characterized as substituted benzenesulfonamide and pyridine-3-sulfonamide compounds possessing, on the amide nitrogen atom, a substituted [1,2,4]triazolo[1,5-c]pyrimidin-2-yl or substituted [1,2,4]triazolo[1,5-a]pyridin-2-yl moiety.

The herbicidal compounds of the invention are N-(triazoloazinyl)arylsulfonamide compounds of generic Formula I:

$$X \xrightarrow{N} N \xrightarrow{N} N \xrightarrow{N} NTSO_2 \xrightarrow{B} Q$$

Such compounds in which X represents N contain a substituted N-([1,2,4]triazolo[1,5-c]pyrimidin-2-yl) moiety and those in which X represents C-Y contain a substituted N-([1,2,4]triazolo[1,5-a]-pyridin-2-yl) moiety. Compounds in which Q represents N are pyridinesulfonamide compounds and compounds in which Q represents C-H are benzenesulfonamide compounds. The compounds are further characterized by possessing a C1-C3 alkoxy substituent in one or both of the 5- and 8-positions (W and Z, respectively) of the triazolo-azine ring and by possessing at least one ortho substituent (A) on the phenyl or pyridine ring.

The compounds of the invention include compounds of
Formula I wherein X represents N or C-Y (wherein Y represents

20 hydrogen, a halogen, methoxy, or methyl optionally substituted with
up to three fluorine atoms). Compounds wherein X represents N are
often preferred. Compounds wherein X represents C-H, however, are
sometimes preferred. The compounds of the invention include
compounds of Formula I wherein Q represents N or C-H. Each of these

25 two options is sometimes preferred. Under many circumstances,
compounds wherein X represents N and Q represents C-H are preferred
but, under other circumstances, compounds wherein both X and Q
represent N are preferred. On the other hand, under some
circumstances, compounds wherein X represents C-Y and Q represents

30 C-H are preferred.

The triazoloazine ring of the compounds of Formula I is at least mono substituted. The compounds of the invention include those wherein W represents methoxy, ethoxy, propoxy, 1-methylethoxy, cyclopropoxy, fluoro, chloro, bromo, or hydrogen and wherein $\ensuremath{\mathtt{Z}}$ represents methoxy, ethoxy, propoxy, 1-methylethoxy, cyclopropoxy, methylthio, ethylthio, 1-methylethylthio, cyclopropylthio, hydrogen, fluoro, chloro, bromo, iodo, or methyl optionally substituted with up to three fluorine atoms, with the proviso that at least one of $\ensuremath{\mathtt{W}}$ and $\ensuremath{\mathbf{Z}}$ represents one of the specified alkoxy moieties. Compounds wherein one of W and Z represents alkoxy, the other represents fluoro, chloro, bromo, methyl, methoxy, or ethoxy, and X represents N or C-Hare often preferred. Such compounds wherein one or both of W and $\ensuremath{\mathtt{Z}}$ represents methoxy are often more preferred. Compounds of Formula I wherein $\ensuremath{\mathtt{W}}$ represents methoxy and $\ensuremath{\mathtt{Z}}$ represents methoxy, chloro, or bromo are often most preferred. Such compounds wherein X represents N are sometimes of special interest as are such compounds wherein \boldsymbol{X} represents C-H and Z represents specifically methoxy.

The compounds of Formula I wherein Q represents C-H include those wherein A represents a halogen or (C_1-C_4) alkoxy)carbonyl or represents C_1 - C_3 alkyl, C_1 - C_4 alkoxy, C_3 - C_4 alkenoxy, C_3 - C_4 alkynoxy, or C_1 - C_3 alkylthio each of which is optionally substituted with one C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, chloro, bromo, or cyano substituent or with up to the maximum possible number of fluorine atoms. A may also represent a 2-methyl-1,3-dioxolan-2-yl moiety. When Q represents N, the compounds of Formula I also include those wherein A represents hydrogen. Methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy, 1-(fluoromethyl)-2-fluoroethoxy, trifluoromethoxy, chloro, and fluoro are often preferred. Methoxy, ethoxy, propoxy, or 1-methylethoxy, methoxymethoxy, methoxyethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy, and 1-(fluoromethyl)-2--fluoroethoxy are often more preferred. Methoxy is sometimes of special interest.

The compounds of Formula I further include those wherein
B represents hydrogen, a halogen, nitro, cyano, (C₁-C₄ alkoxy)carbonyl, C₁-C₃ alkylamino, or di(C₁-C₃ alkyl)amino or represents
C₁-C₃ alkyl, C₁-C₄ alkoxy, C₃-C₄ alkenoxy, C₃-C₄ alkynoxy, C₁-C₃
alkylthic, C₁-C₃ alkanesulfinyl, C₁-C₃ alkanesulfonyl, C₃-C₄ alkenyl-

thio, C₃-C₄ alkenesulfinyl, C₃-C₄ alkenesulfonyl, C₃-C₄ alkynylthio, $\text{C}_3\text{-}\text{C}_4$ alkynesulfinyl, or $\text{C}_3\text{-}\text{C}_4$ alkynesulfonyl each of which is optionally substituted with one C_1-C_3 alkoxy, C_1-C_3 alkylthio, chloro, bromo, or cyano substituent or with up to the maximum possible number of fluorine atoms. Such compounds wherein $\ensuremath{\mathtt{Q}}$ represents N and both A and B represent hydrogen are, however, excluded. Thus, whether Q represents N or C-H, at least one of A and B represents a substituent other than hydrogen. Hydrogen, methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethyl, methylthio, methyl, trifluoromethyl, trifluoromethoxy, fluoro, chloro, and methoxycarbonyl, are often preferred B substituents. Hydrogen, methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethyl, trifluoromethyl, fluoro, chloro, or methoxycarbonyl are typically more preferred when Q represents C-H and hydrogen, methoxy, ethoxy, propoxy, 1-methylethoxy, trifluoromethyl, and methoxycarbonyl are more preferred when Q represents N. Methoxy and trifluoromethyl are often, independently, B substituents of special interest.

The compounds of the invention still further include those wherein D represents hydrogen, a halogen, methyl, ethyl, 1-methylethyl, propyl, methoxy, ethoxy, fluoromethyl, difluoromethyl, or trifluoromethyl. They further include compounds wherein B and D together represent a methylenedioxy fragment optionally substituted with one or two fluorine or methyl groups. Compounds wherein D represents hydrogen, fluoro, bromo, chloro, or methyl are typically preferred. Compounds wherein D represents hydrogen, chloro, or methyl are often more preferred when Q represents C-H while those wherein D represents hydrogen or methyl more typically more preferred when Q represents N.

Compounds of Formula I wherein A represents methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethoxy, methoxyethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy, 1-(fluoromethyl)--2-fluoroethoxy, trifluoromethoxy, chloro, or fluoro; B represents hydrogen, methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethyl, methylthio, methyl, trifluoromethyl, trifluoromethoxy, fluoro, chloro, or methoxycarbonyl; and D represents hydrogen, fluoro, chloro, bromo, or methyl are often preferred. Such compounds wherein B represents methoxy and D represents hydrogen; wherein A represents methoxy and D represents hydrogen, methyl, or chloro; and wherein B

WO 98/13367 PCT/US97/16867

-7-

represents trifluoromethyl and D represents hydrogen are often of special interest.

Compounds of Formula I wherein Q represents C-H and one or both of B and D represent hydrogen are often preferred. Compounds wherein Q represents C-H and A represents methoxy, ethoxy, propoxy, or 1-methylethoxy, methoxymethoxy, methoxyethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy, or 1-(fluoromethyl)-2-fluoroethoxy; B represents hydrogen, methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethyl, trifluoromethyl, fluoro, chloro, or methoxycarbonyl; and D represents hydrogen, chloro, or mothyl are often more preferred. Such compounds wherein D represents hydrogen and either A and B each represent methoxy or A represents methoxy and B represents trifluoromethyl or methoxycarbonyl and are sometimes independently of interest. Compounds wherein Q represents C-H and A represents methoxy, ethoxy, propoxy, or 1-methylethoxy, B represents hydrogen; and D represents chloro or methyl are sometimes preferred.

Compounds of Formula I wherein Q represents N and A represents methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethoxy, or 1-(fluoromethyl)-2-fluoroethoxy; B represents hydrogen, methoxy, ethoxy, propoxy, 1-methylethoxy, trifluoromethyl, or methoxycarbonyl; and D represents hydrogen or methyl are typically preferred. Compounds wherein B represents trifluoromethyl and A represents methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethoxy, methoxy-ethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy, or 1-(fluoromethyl)-2-fluoroethoxy; and D represent hydrogen are typically more preferred.

The compounds of Formula I include those wherein T represents hydrogen, an alkylsulfonyl group (SO_2R), an acyl group (C(0)R), an alkoxycarbonyl group (C(0)CR), an aminocarbonyl group ($C(0)NR^*_2$), or a 2-(alkoxycarbonyl)ethyl group ($CH_2CH_2C(0)CR$), wherein R represents C_1 - C_4 alkyl, C_3 - C_4 alkenyl, or C_3 - C_4 alkynyl each optionally possessing up to two chloro, brome, C_1 - C_4 alkoxy, or phenyl substituents and up to the maximum possible number of fluoro substituents and R' represents H, C_1 - C_4 alkyl, C_3 - C_4 alkenyl, or C_3 - C_4 alkynyl. Such compounds wherein T represents hydrogen are preferred. The invention further includes the agriculturally

30

acceptable salts of compounds of the Formula I wherein ${\tt T}$ represents hydrogen.

Compounds of Formula I which possess each possible combination of preferred, more preferred, most preferred, desirable, and special interest substituents are, further, considered to be important embodiments of the invention.

The terms alkyl, alkenyl, and alkynyl (including when modified as in haloalkyl and alkoxy) as used herein include straight chain, branched chain, and cyclic groups. Thus, typical alkyl groups are methyl, ethyl, 1-methylethyl, propyl, 1,1-dimethylethyl, and cyclopropyl. Methyl and ethyl are often preferred. Alkyl groups are sometimes referred to herein as normal (n), iso (i), or secondary (s). Typical alkyl with up to the maximum possible number of fluoro substituents include trifluoromethyl, monofluoromethyl, 2,2,2-trifluoroethyl, 2,3-difluoropropyl, and the like; trifluoromethyl is often preferred. The term halogen includes fluorine, chlorine, bromine, and iodine.

The term "agriculturally acceptable salts" is employed herein to denote compounds wherein the acidic sulfonamide proton of the compound of Formula I is replaced by a cation which itself is neither herbicidal to crop plants being treated nor significantly deleterious to the applicator, the environment, or the ultimate user of any crop being treated. Suitable cations include, for example, those derived from alkali or alkaline earth metals and those derived from ammonia and amines. Preferred cations include sodium, potassium, magnesium, and aminium cations of the formula:

R6R7R8NH+

wherein R⁶, R⁷, and R⁸ each, independently represents hydrogen or (C₁-C₁₂)alkyl, (C₃-C₁₂)cycloalkyl, or (C₃-C₁₂)alkenyl, each of which is optionally substituted by one or more hydroxy, (C₁-C₈)alkoxy, (C₁-C₈)alkylthio or phenyl groups; provided that R⁶, R⁷, and R⁸ are sterically compatible. Additionally, any two of R⁶, R⁷, and R⁸ together may represent an aliphatic difunctional moiety containing 1 to 12 carbon atoms and up to two oxygen or sulfur atoms. Salts of the compounds of Formula I can be prepared by treatment of compounds of Formula I wherein V represents hydrogen with a metal hydroxide,

such as sodium hydroxide, potassium hydroxide, or magnesium hydroxide, or an amine, such as ammonia, trimethylamine, hydroxyethylamine, bisallylamine, 2-butoxyethylamine, morpholine, cyclododecylamine, or benzylamine.

The compounds of Table I are examples of the compounds of the invention. Some of the specifically preferred compounds of Formula I, which vary depending on the weed species to be controlled, the crop present (if any), and other factors, include the following compounds of Table 1: 1, 2, 10, 13, 14, 15, 18, 21, 23, 26, 27, 28, 32, 34, 36, 37, 38, 39, 41, 43, 46, 50, 52, 53, 54, 55, 60, 63, 65, 77, 80, 81, 92, 95, 96, 98, 105, 106, 109, 120, 122, 126, 139, 142, 167, 177, 184, 185, 187, 188, 190, 194, 195, 203, 208, 210, and 220. The following compounds are sometimes more preferred: 2-methoxy-6--(trifluoromethyl)-N-(8-chloro-5-methoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)benzenesulfonamide (cpd. 34), 2,6-dimethoxy-N-(5,8- $-\mathtt{dimethoxy} [1,2,4] \\ \mathtt{triazolo} [1,5-c] \\ \mathtt{pyrimidin-2-yl}) \\ \mathtt{benzenesulfonamide}$ (cpd. 36), 2-methoxy-6-methoxycarbonyl-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-a]pyridin-2-yl)benzenesulfonamide (cpd. 98), 2-methoxy-5--methyl-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)benzenesulfonamide (cpd. 105), 5-chloro-2-methoxy-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)benzenesulfonamide (cpd. 106), and 2-methoxy-6-(trifluoromethyl)-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]-1-(5,8-dimethoxy[1,2,4]-1-(5,8-dimethoxy[1,2,4pyrimidin-2-yl)pyridine-3-sulfonamide (cpd. 142), 2-(2-fluoroethoxy)- $-6-(\texttt{trifluoromethyl})-N-(5,8-\texttt{dimethoxy}[1,2,4]\\\texttt{triazolo}[1,5-\texttt{c}]\\ \texttt{pyrimidin-dimethyl})$ -2-yl)benzenesulfonamide (cpd. 167), 2-(2-chloroethoxy)-6-(trifluoro- $\tt methyl)-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-\\$ benzenesulfonamide (cpd. 203), 2-(2,2-difluoroethoxy)-6-(trifluoromethyl) - N - (5, 8 - dimethoxy[1, 2, 4] triazolo[1, 5 - c] pyrimidin - 2 - yl) benzenesulfonamide (cpd. 190), and 2-(1-fluoromethyl-2-fluoroethoxy)-6- $- (\texttt{trifluoromethyl}) - \texttt{N-} (5, 8-\texttt{dimethoxy} \texttt{[1,2,4]} \\ \texttt{triazolo} \texttt{[1,5-c]} \\ \texttt{pyrimidin-2-c} \\ \texttt{-2-c} \\ \texttt{-2-c} \\ \texttt{-3-c} \\ \texttt{-3-c}$ -yl)benzenesulfonamide (cpd. 187).

		Melting Elem. Anal. Point, Calc./Found °C &C %H %N	40.3 2.54 1	226-228 42.2 2.66 20.5	175-177 44.1 3.17 18.4	185-187 39.9 2.32 17.9	197-198 44.2 3.42 19.8 43.9 3.67 19.8	211-214 42.2 3.27 18.9 42.0 3.23 18.4	240-241 44.2 3.42 19.8 (d) 43.7 3.30 19.2	17
		Form	white	white	white powder	white powder	tan	white solid	white powder	white powder
DS		o o	Œ.	H	H	H	H	II.	E	H
TABLE 1 SULFONAMIDE COMPOUNDS	B NTSO ₂ —	В	Н	н	H	æ	E	Н	H	н
TAE ULFONAMII		Æ	CI	[T.4	с-н со2сн3	CF3	с-н оснз	C1	Įzų	с-н со2сн3
∝ ≱-	~ \\	o	C-H	C-H	С-Н	C-H CF3	H-O	C-H	C-H	C-H
	×//	EH	Н	Ĥ	H	H	H	H	Н	н
		27	Ŀ	[14_	Íц	ĹŦĸ	EZ.	оснз	оснз	оснз
		W	оснз	оснз	оснз	оснз	оснз	оснз	осн3	осн3
		×	z	z_	z	z	Z	Z	z	z
		Cpd. No.	Н	7	m	4	2	9	7	ω

	_		_		ļ				_								_				_		_				_			_
17.9 16.5	19.2	19.0	20.1	19.3	16.7		18.5	18.5	17.8	17.6	17.8	17.6	15.5	15.2	18.4	18.1	15.2	14.6	16.9	17.0			17.9	17.2	16.6	17.0	17.3	17.4	18.3	18.0
3.09	4.14	4.00	4.33	4.28	88.	2.65	4.52	4.67	4.87	.93	4.87	5.09	06.	2.73		4.17	_	2.71	2.92	2.91			2.06	2.08	2.63	.95	74	81	89	7.2
39.9 43.3	46.04	46.2 4		49.0 4	l	m	47.54	47.1 4	48.94	48.8 4	6	g	39.9 2.	39.8 2	44.13	43.8 4	0	O.		37.8 2	-				9 2	40.3 2		.62.	m	<u>რ</u>
	_	46	_	49	_	39		47		48	_	48.	_	39	-	43		33.	37.7	-			36.7	34.8	39.9	40		38.6	_	43.
189-191	231-233		188-191		179-181		224-226		222-224		172-174		155-157		213-215		219-220	(p)	217-219	(p)	225-226		211-515	(q)	220-223		219-221	(d)	221-223	(q)
white powder	tan	powder	white	powder	white	powder	white	powder	tan	powder	tan	powder	white	powder	white	powder	white	_repwod	мртее	powder	tan	powder	tan	powder	tan	powder	tan	powder	white	powder
Ħ	H		Н		Н		H		Н		H		Ĥ		Ħ		ı		н		Н		Н		Н		H		Н	_
H	Н		н		н		H		H		н		Н		Н		H		H		CI		Cl		CF3		Cl		CH3	
CF3	оснз		снз		OCF3	ı	OC2H5		OC3H7 (n)		OC3H7(i)		OCF2CF2H		SCH3		OCH3		OCH3		CI		cı		снз		C1		C1	
C-H	C-H		С-Н		C-H		C-H		C-H		C-H		C-H		C-H		C-H		С-н		C-H		C-H		C-H		C-H		H-O	
н	Н		Н		Н		H	-1	Н		н		H		H		Н		x		エ		н		Н		H		н	
OCH3	OCH3		OCH3		OCH3		оснз	l	OCH3		оснз		OCH3		осн3		I		Br		H		بدآ		<u>بتا</u> :		оснз		оснз	
0C H 3	OCH3		OCH3		OCH3	,	OCH3		OCH3		OCH3		OCH3		OCH3		OCH3		OCH3		OCH3		OCH3		OCH3		оснз		оснз	
z	z		N		Z		N		Z		z		22		N		N		N		N		N		N		z		N	
ത	10		11		12		13		14		15		16	Ī	17		18		19		20		21		22		23		24	

_										_																					
18.9	18.6	17.5	17.5	18.3	16.4	16.2	16.3	16.7	16.8	14.0	13,9	15.5	15.3	18.0	16.3	17.1	16.8	16.0	16.0	18.5	18.4	7.7	16.6	17.5	17.1	17.0	16.4	2.30	2.17	6.0	15.7
	3.08	. 53	3.18		4.05	3.26	3.20	3.13	3.13	1.61	1.51	78	74	2.86	3.22	1.97	1.93	2.53 1	2.82	4.52 1	4.72 1	.33 1	4.19 1		3.62 1	4.16 1	4.11 1	14.5 2	14.3 2	53 1	2.51 1
7		<u>ო</u>		9	4		ω ω	8	<u>ო</u>	1		Ţ	Н	2	3		<u>~</u>	4 2	2	4		4	4							2.	2
42.	42.2	42.	42.0	43.	43.4	41.6	41.5	40.2	40.1	28.8	28.8	31.8	32.0	40.2	40.0	35.3	35.3	38.4	38.3	47.5	47.2	45.6 4.33	45.7	42.1	42.2	43.8	43.0	34.9	34.6	38.4 2.53	38.5
214-215 42.1 2.99	(d)	223-225		239-240	(q)	238-240	(d)	217-218		210-212	(g)	224-225	(q)	218-220		214-216	(g)	214-215		237-238		239-241		216-218		232-234		231-233	(a)	228-230	
white	powder	white	powder		solid	white	powder	white	powder		powder		powder		powder	white	powder		powder	pink	powder		solid	3	solid	tan	solid	white 2	powder		solid
æ		н	:	Ή		Ŧ		H		Н		Н		H		Н		Н		H		Н		Н		H		н		Н	
Ĺ		C1		Ŧ.		CF3		C1		CI		[C]		C1		CI		CF3		H		оснз		(осн3		SCH3		CF3		CF3	
냰		OCH3		осн3		оснз		CI		CI		CJ		CJ		CJ		оснз		OCH3		оснз		оснз	_	OCH3		OCH3	•	CI	
C-H		C-H		C-H		C-H		C-H		H-O		C-H		C-H		H-O		C-H		C-H		C-H		C-H		C-H		C-H		C-H	
Н		н		н		H		н		Н		H		H		Н		н		H		н		Н		Н		Н		Н	
осн3		оснз		OCH3		OCH3		OC2H5		₽H		Br		CH3		C1		C]		оснз	'	OCH3		C1		6нро		Br		OCH3	
осн3		OCH3		OCH3		оснз	'	OCH3		оснз		OCH3		оснз		оснз		OCH3		OC2H5		OCH3		оснз		OCH3		OCH3		OCH3	
Z		z		z		N		Z		z		Z		Z		2		z		z		Z		Z		N		N		N	
25		97		27		28		29		30		31		32		33		34		35		36		37		38		39		40	

41	Z	OCH3	OCH3	Н	C-H	C-H OCH3	CH3	H	purple	235-237	47.5 14	4.52	18.5
						•	,		solid		47.1	5.03	18.4
42	N	OCH3	CI	Н	C-H	OCH2CH2F	CF3	н	white	208-210	38.5		15.0
									powder		38.6	2.36	14.8
43	z	OCH3	CI	Н	C-H	OC3H7 (1)	CF3	Н	tan	210-213	41.3		15.0
	_								powder	(g)	41.1	3.57	14.7
44	z	OCH3	CI	I	C-H	OC2H5	CF3	н	white	212-213	39.9	2.90	15.5
									powder		39.9		15.4
45	z	OCH3	C]	н	C-H	OC3H7 (n)	CF3	H	yellow	182-184	41.3	3.25	15.0
									powder		40.7	3.25	14.8
46	z	OCH3	C1	Н	H-D	OCH2CF3	CF3	Ŧ	tan	202-203		1.99	13.9
									powder	_	35.7 1	1.94	13.1
47	N	ОСНЗ	OCH3	Н	H-D	Ŧ	CF3	Н	tan	201-203	39.9 2	2.63 16.6	16.6
									solid		39.8	2.46	16.3
48	Z	оснз	OCH3	H	С-Н	SCH3	CF3	Н	white	127-129	40.1 3	3.14	15.6
									solid		40.1 3	3.11	15.2
49	N	OCH3	OCH3	æ	C-H	C1	Ĺij	Œ	gray	111-113	70.3 2	2.86	18.1
									solid	•	40.1 2	2.96	17.9
20	z	OCH3	OCH3	Н	C-H	OCH3	OC2H5	H	pink	233-234	46.9 4.68	. 68	17.1
									solid	(d)	46.54	4.87	15.9
15	M	OCH3	OCH3	H	C-H	оснз	NO2	Н	tan	225-228	41.0 3.33	3.33	20.5
									solid	(g)	38.8	3.60	19.1
25	N	OCH3	OCH3	H	C-H	OC2H5	CF3	Н	white	232-234	43.0	9.60	15.7
									powder	(d)	42.9 3	3.51	15.7
53	2	OCH3	OCH3	Ξ	C-H	оснз	CO2CH3	I	white	215-217	-	4.05	16.5
_									needles		44.7 3	3.96	16.2
54	z	OCH3	[±4	н	C-H	OCH3	OCH3	H	tan	219-220	43.93		18.3
									solid		44.1 3	3.92	18.0
55	z	OCH3	OCH3	н	C-H	och3	Br	Н	tan	226-228	37.9 3		15.8
									solid		37.8 3	3.39	
56	z	OCH3	ប	H	유민	OCH3	CO2CH3	H	tan	220-222	42.1 3	3.30 16	6.4
									solid		42.1 3	3.28	15.9
												١	

500
OCH3 H C-H
ОСНЗ Н С-Н
оснз н с-н
осиз и с-и
ОСН3 (Н С-Н
OC2H5 H C-H
OCH3 H C-H
H C-H
H C-H
OC2H5 H C-H
н с-н
OCH3 H C-H
осиз и с-н
оснз н с-н
OCH ₃ H C-H

	Τ.			_				-		_				_				_		_		_				_			
17.2 17.1	16.5	13.2	12.4			15.8	15.5	15.4	15.0	17.0	16.9	15.6	15.6	16.5	16.0	16.3	15.7	14.6	14.5	13.6	12.9	13.7	13.1	14.8	14.9	15.4	15.3	13.9	14.0
. 95		100	2.06			.18	3.38	. 65	58	3.43	3.43	3.14	3.54	4.50	4.49	.75	08.	.73	.83	34.9 2.54	.74	2.97		50.8 4.79 14	4.90	4.43	4.42 15		1 CC E
47.2 4		~ l ~	31.62			0	37.8 3	44.8 4.65	44.3 4.	43.8 3	3.9	0.13	.93	45.2 4	45.3 4	41.9 3.75	. 7	1.12	.12	.9	.42	40.12	39.3 2.99	. 8	50.3 4	49.5 4	49.44	44.8 3	5 7 P
	+			7		1 37	'n	-	44		4	5 40	8		4,		4 1	5.40	40	2 34	35	2 40	33		S S		49		44
188-190	204-205	235-236	(g)	215-217	(q)	229-231	(q)	148-150	(p)	209-211		213-215 40.1	g	201-203	(g)	152 - 155	(p)	224-225 40.1 2.73 14.6		241-242	(p)	230-232	(q)	274-276	(q)	279-281	(q	257-259	()
white solid	white	tan	powder	white	solid	white	solid	tan	solid	white	solid	white	solid	white	solid	tan	solid	white	powder	white	powder	white	powder	white	solid	white	solid	lt brn	Solid
Ħ	H	in		H		Н		H		н		Н		H		H		m;		H		H		H		н		Н	
CH3	OC3H7(1)	CF3	1	CO2CH3		оснз		осн2осн3		CO2CH3		OCF3		осн2осн3		осн2осн3	1	CF3		CF3		CF3		осн3		OCH3		CF3	
со2сн3	оснз	OCH 3		осн3		6н20	•	осн2осн3		F		OCH3		OCH3		OCH3 (OCH3		OCH3		OCH3 (осн3 (OCH3 (
C-H	С-Н	C-H		C-H		C-H		C-H		C-H	-	C-H		C-H		C-H		с-н осн3		C-H				C-H		C-H		C-H (_
-	H	н		H		Н		Н		Ä		н		н		Н		COCH3		SO2CH3		CO2C2H5 C-H		н		Н		н	
оснз	оснз	H		I		Br		оснз		OCH3		OCH3		OCH3		C]		C]		C1		CJ		оснз		OCH3		OCH3	
ОСНЗ	оснз	OCH 3)	OCH3		OCH3		оснз		OCH3		OCH3		OCH3		OCH3	,	OCH3		OCH3		оснз		H		Ŧ		I	_
z	z	Z	<u></u> _	N		Z		z		z		Z		z		z		Ñ		N		2		C-CH3		C-H		C-H	
73	74	75		26		77		78		79		80		81		82		83	_	84		85	-	98		87	-	88	_

								_			_		1		_		_				_				 -		_	_	
13.5		14.4	13.8	13.6	14.2	14.2	14.1	13.7	14.1	14.0	12.8	13.0	13.0	12.9	13.1	12.8	13.3	13.1			13.4	14.6	15.0	14.7	15.0	15.2	7.27	7.30	
3.63	3.5/ 13.	48.8 4.06 14.	1.46	4.37	48.7 4.60 14.2	1.57	3.79	3.58			1.77	3.81		4 5	54	39	.30	1.26			2.23	1.99	. 70	2.58	2.70	.77		2.05	
6.2	46.3 3.57	8.8	50.2 4.46	50.2	8.7	48.8 4.57	N	44.3	45.2	45.2 3.80	1.3 2	41.1 2.81	44.5 3.50	44.5	45.0 3.	44.9	8.34	48.6 4.26			38.3 2	3737 1	41.8 2	41.5 2	41.8 2	41.9 2	38.1 2	38.2 2	
53 4	_			<u></u>		4	_	ሻ	_	4		לי		4	_	4			98	_	3	'n.	_	7		ব		ñ	<u>თ</u>
261-263 46.2 3.63 13	(d)	(p)	255-257	g	233-235	(Q	248-249	(q	252-254	(q)	263-264	g	256-258	g	218-219	(q)	274-276	(q)	235-236	(q)	>270		242-244	(q	278-280	(p)	247-248	(q)	266-269
off-wht	Solid	solid	white	solid	purple	solid	off-wht	solid	white	solid	white	solid	off-wht	solid	white	solid	ff-wht	solid	lt tan	powder		solid	purple	solid		solid	white	solid	off-wht
	07	,	ľ	01	. =	0,7	·	- 0,	1	01	4	0)	0	01	2		U	01		14	5	(1)	14	(I)	25.	U	ک.	a)	0 0
田	- =	-	Ξ		H		표		x	_	H		Ξ		工		н		Η.		H		I		Ξ		Ξ	_	Ξ
CF3	CHOCOD	C	CO2CH3	·	осн3	1	OCH3	ı	оснз		CF3	ı	CF3		CO2CH3		CO2CH3)	C1		CI		CI		C1		CI		C]
с-н оснз	OCH	5113	OCH3	i	оснз		оснз		оснз	١.	OCH3	ı	OCH3		оснз		оснз)	CI		CI		C1		C1		Cl		c1
С-Н	11.0		C-H		C-H		C-H		C-H		C-H		C-H		H-O		C-H		C-H		C-H		C-H		C-H		C-H		H-0
н		:	н		H		н		H		H		н		Н		н		Н		Н		H		I		Н		.
оснз	¢11.00	51170	оснз		OCH3	,	<u>C</u>]		OCH3		OCH3	,	оснз		OCH3	,	OCH3)	оснз		C1		н		OCH3		OCH3		оснз
н	1	<u> </u>	Ξ		OCH3		OCH3	'	<u>C1</u>		C1		OCH3	,	CI		OCH3	>	OCH3		OCH3		OCH3		Н		Н		Н
с-снз	5	;	C-CH3	,	C-H		C-H		C-H		C-H		H-7		C-H		C-H		C-H		H-D		C-H		C-H		C-CF3		C-C1
89	C	ζ	91		92		93		94		95		96		97		98		66		100		101		102		103		104

_	_	_						_		_												_		_							
47.5 4.52 18.5	18.3	17.5	17.2	17.7	17.5	15.8	15.3	17.	16.6	19.1	18.8	17.8	17.6	17.8	17.9	17.2	17.4	17.6	16.8	16.2	16.0	17.8	18.0	15.6	15.6	16.2	16.0	14.1	13.1	17.3	16.7
.52		3.53	3.75	33	4.57	3.18	3.38		2.85		3.92		5,65	.87	.81		5.69	4.06	4.08	3.26	.51	4.87	.91	47	2.95	57	64		2.45	74	85
7.5	47.7	42.1	42.2	9	45.7 4	37.9	38.1	38.6 2.74	38.6 2		46.0 3	48.9 4	50.8 5	48.9 4	48.7 4	50.15	50.0	45.3 4	43.7 4	ω.	1.3 3	<u>ر</u>		_	36.4 2	36.1 2	36.1 2.	31.5 2	32.8 2		3838 2.
	\neg		4	_	4		ñ		ñ	_	4 (2(48	_	2($\overline{}$	4	16 41	41		49.		36	_	36		32		38
217-219	(g	205-207		233-235	(q)	225-227		219-221	(d)	184-186	(d)	197-200		200-202		199-201		217-219		215-216		211-213		204-205		221-223		223-225		203-205	
9	der	E C	der	re l	ler		der	ė	der	e	ler	e .	der	e	ler	a)	ler		ler		ler		ler		ō.		ler		ler		ler
white	powder	white	powder	OCH3 white	powder	white	powder	white	powder	white	powder	white	powder	C2H5 white	powder	white	powder	white	powder	white	powder	white	powder	pink	solid	white	powder	pink	powder	white	powder
СНЗ		CI		ОСНЗ		Br		CJ		F		CH3		C2H5		C3H7	(i)	J		CF3		CH3		C]		F		C]		C]	
H		Ξ		Н		н		н		H		H		Ξ		H		Н		H		Ŧ,		I		Ή		H		H	
осн3		OCH3		٤нэо		εнэο		CI		CH3		OC2H5		OCH3		OCH3		OC2H5		OCH3		OCH3		OCH3		осн3		٤нэо		осн3	
с-н осн3	- 1	C-H		н-э.		C-H		C-H		C-H		C-H		C-H		C-H		H-D		C-H		C-H		CLE		C-H		H-0		C-H	
프		Н		Ξ		Ξ		Ξ		ェ		H		Н		Н		田		H		H		H		Ξ		Н		Ή	_
оснз		оснз		осн3		OCH3	·	OCH3		осн3		OCH3		OCH3		6СН3		OCH3		OCH3		OC2H5		Br		Br		I		CI	
оснз	- 1	OCH3		OCH3		OCH3		оснз		OCH3		OCH3		OCH3		OCH3		OCH3		оснз		OCH3		OCH3		оснз		оснз		OCH3	
Ť				Ť	_			J	-	Ĭ		Ĭ		<u> </u>)	-	J		J		۲		0		<u> </u>	
z		z		z		z		z		z		z		z		z		z		z		z		z		z		z		N	
105		106		107	_	108		109		110		111		112		113		114		115		116		117		118		119		120	

_	,		-		_	-		-			-,									_		_	_					_			
18.1	17.9	18.3	18.0	18.3	16.8	7.7	7.8	16.8	16.7		19.0	7.0	15.9		15.5		16.5	17.0	17.0	14.7	14.3	17.2	7.2	7.1	16.2	16.3	16.1	16.7	15.4	16.1	15.9
2.86	2.54	-	• •	3.68	57 1	4.33	12		3.39		. 65 1						_			_		21 1	35 1	68 1	51 1			13 1	.50 1	72 1	
2.		-	4.61	_	m		J.	3.39		₽.	4		4.72	3.60	3.86		[4.51	_	3.54	2.97	3.06		4.35	4.	4.51	3.75	3.91	3.	<u>ب</u>		3.25
40.3	39.7	43.8	43.0	43.9	42.8	45.6	46.0	40.4	40.5		49.6	46.7	44.9		43.0		43.5	43.8	43.9	35.4	35.6	47.2	47.2	47.0 4.68 17.1	46.7	41.9	41.7	40.2 3.13	38.3	38.7	38.6
	_	_	•		_		-		7		_						7	$\overline{}$	- 7		(-,	-195 4		-165 4	7	-	4				(;)
217-219		195-196		205-207	÷	217-219		216-218		218-220		117-119	()	202-204		233-234	<u> </u>	196-198		230-232	•	3-1	<u> </u>	3-1	~	233-234		180-182		227-228	
21	_	15		20	<u>g</u>	2.1		21	_	21	_	11	(g)	20		23	(q)	119	_	23	(d)	193	g	163.	(q	23	_	18	_	22	-
te	der	te	der	ᅶ	der		der	re Le	der	e e	der	re Le	der	e e	der	0	der	e L	id	e C	id		ק.		פ	:e	der	Φ	ler	φ	ler
white	powder	white	powder	pink	powder	tan	powder	white	powder	white	powder	white	powder	white	powder	white	powder	white	solid	white	solid	tan	solid	tan	solid	white	powder	white	powder	white	powder
		CH3				CH3		1		снз		CH3		CH3		7				СНЗ		CH3		CH3							
ш		C	-	됴	-	O		CI		Ü		Ü		U	_	CI		F		S		Q		ΰ		CI	-	C1	_	CJ	\dashv
_				_																						OCH3		снз		Н	
田		H		工		H		田		H		H		표		H		H		正	_	H		H E		0		2		딩	\dashv
ا س		m		<u>_</u> _		_س	ı	<u>س</u>				2^{CH_2}		2CF3		15		3H3		m		CH3		тоо₹						~	
OCH		осн3		OCH3		SCH3		SCH3		CH3		OCH2CH2F		OCH2CF3		OC2H5		CO2CH3		OCH3		CO2CH3		осн2осн3		оснз		c_1		OCH	
С-Н ОСН3		C-H		C-H		C-H		H-O		C-H		C-H		С-н	-	C-H		C-H		C-H		C-H		C-H		C-H		C-H		C-H OCH3	
		9		۲		U				,		0)	_	0		0		O		0		0				<u> </u>	-	O	
H		I	_	Ξ		Ξ		프		H		Н	_	Ξ		Ξ		Н		H		H		H		Ξ		Ξ	_	田	
		CI		OCH3	1	оснз	,	OCH3		OCH3		OCH3		OCH3		OCH3		OCH3				оснз		OCH3		OCH3		OCH3		OCH3	
C1								1					_		-		_			I	_										
OCH3	'	оснз		OCH3	1	OCH3)	OCH3		оснз		OCH3		осн3		OCH3		осн3		OCH3		OCH3		OCH3		OCH3		оснз		оснз	
Ť	_	Ť		Ť		Ť		Ĭ	_	ř		ř		Ĭ			_	٦		J	-	۲	_	۲		٦				J	\dashv
2		z		z		z		z		z		z		,		_		,-		z				_		_		_			
121		122		123 1		124		125		126		127 N		128 N		129 N		130 N	_	\Box		132 N		133 N		34 N		25		136 N	\dashv
Ë		1,		덛		1,		占		H		1,		17		12		1		131	_	13		H	_	134		135		13	

)		Ę	5	C-H OCH	COVCHA	U	white	236-238 42.0 3.52	42.0	3.52	15.3
		>))		powder	(q)	42.0 3.52	3.52	15.0
	оснз	OCH3	щ	C-H	OCH3	оснз	СНЗ	tan	228-230	46.9	4.68	17.1
			,					solid	(d)	47.0	47.0 4.60	17.1
IO.	OCH3	OCH3	н	C-H	оснз	F	CH3	tan	205-208	45.3	4.06	17.6
)	1			,			solid	(d)	45.4	4.07	17.3
ľ	оснз	[]	出	C-H	оснз	оснз	снз	tan	223-225	43.5	3.90	16.9
)					,		solid	(d)	43.3	3.90	16.6
ĮΟ	OCH3	OCH3	I	z	оснз	Н	н	tan	242-244	42.6 3.85		22.9
)	•			•			powder ,	(d)	42.6	3.82 21	21.6
U	OCH3	OCH3	н	Ż	OCH3	CF3	H	white	214-216	38.7	3.02	19.4
	,	1			•			powder		38.5	3.15	19.4
I		OCH3	H	G-H	оснз	н	H	lt tan	249-250	50.3	4.22	16.8
		1						powder	(d)	50.4 4.10	4.10	16.8
О	оснз	H	H	C-H	оснз	Н	Н	off-wht	249-250	50.3	4.22	16.8
	,							powder	(d)	50.4	3.93	16.8
О	OC2H5	五	Н	H-0	оснз	н	н	lt tan	250-251	51.7	4.63	16.1
_ :								powder	(d)	51.8	4.65	16.2
10	OCH3	CI	н	C-H	OCH3	ш	СНЗ	tan	196-198	41.9	3.26	17.4
								solid		41.6	3,39	17.6
0	OCH3	оснз	Н	H-0	Ĺτι	оснз	CH3	lt red	165-168	45.3	3 4.06	17.6
								solid		45.3	4.06	17.6
<u> </u>	OCH3	Cl	Н	C-H	F	OCH3	СНЗ	tan	176-178	41.9	3.26	17.4
	,							solid		41.5	3.27	17.3
10	OCH3	оснз	H	C-H	CF3	осн3	СНЗ	tan	183-185			
								solid				
0	OCH3	OCH3	I	C-H	оснз	OCH2CH2-	Ľ	white	173-175 46.5			6.6
						OCH3		solid		46.5	4.87	15.9
0	OCH3	c1	H	C-H	С-н оснз	CH2OC3H7	H	white	224-226		4.56	15.9
					-	(i)		solid		45.9	4.46]	15.5

tan
solid
CH3 tan
white
powder
tan
powder
white
solid
white
solid
white
solid
CH3 white
solid
CH3 white
solid
white
solid
white
solid
white
solid
white
solid
tan
powder
white
powder

		_		_	_	_		_				_		_				_				r				Γ.	_		_		_
15.1	15.0	12.3	12,3	17.0	16.8	16.9	16.7	16.2	15.9	19.2	19.2	21.0	21.7	12.8	12.6	14.6	14.4	15.2	15.0			17.6	17.3	11.9	11.9	14.2	14.1	15.4	15.3	13.3	12.9
41.5 3.48	3.42	. 75 12.	3.68	43	.33	3.90 16.9	3.87	.26	3.24 15.9	2.07	2.22	3.26	3.13	4.62	4.53	6.10	6.08		3.81			4.05	3.86	4.06	3.90 11.	4.60 14.2	. 50	4.86	4.90		5.11
5 3		7.3			n m	5	2 3	9	7 3	7 2	9.2	0 (3	8	5 4	3					-		3.4				7 4	Γ,		5	2 5	2
	41.6	44	44.5	43.8	43.	43.5	43.2	41.6	41.7	35.7	35.9	39.0	38.8	49.5	49.3	52.6	52.5	44.3	44.1			45.	45.0	43.3	43.3	48.7	48.	47.4	47.5	51.2	50.2
181-183	(d)	224-226		174-176		199-201		226-227		white	powder	white	powder	204-206	(d)	145-147		202-204		>250		214-216 45.3		244-246	•	274-276		174-176		243-245	
white	solid	white	solid	off-wht	solid	off-wht	solid	white	solid	238-240		228-229	(d)	tan	solid	tan	solid	white	solid	tan	powder	tan	powder	white	solid	white	powder	tan	solid	purple	solid
H		I		CH3		CH3		Ξ		H		Н		Н		工		H		н		CH3		Ή		H.		Н		Н	
CF3		CO2CH3		Н		Н		CF3		CF3		оснз		CO2C2H5		OC4H9(i)		CF3		C]		H		OC2H5		осиз		OC3H7(1)		OC2H5	
C-H OCH2OCH3 CF3		осн3		СО2СН3		OCH2OCH3		OCH3		OCH3		c1		оснз		OC4H9(i)		OC3H7 (n)		OCH3		0C2H5		OC2H5		OCH3		С-н (осзн7 (і)		C-H OC2H5	
C-H		C-H		д <u>-</u>		C-H		Z		N.		z		C-H		С-Н		C-H		C-H		C-H		H-D		H-D		н-э		C-H	
н		н		н		Ħ		н		Н		н		Н		Н		Н		三		H		#		н		н		H	
осн3		OCH3		[C]		CJ		OCH3		C1		OCH3		OCH3		OCH3		OCH3		ت ت		C]		OCH3		OCH3		T)		5н20	
осн3		OCH3		OCH3		OCH3		оснз		OCH3		OCH3		OCH3		оснз		(осн3		OCH3		OCH3		Br				Енро		OCH3	
Z		C-H		z		z		C-H		Z		N		н-э		H-D		N		Z		Z		C-H		C-OCH3 H		Z		C-H	
168		169		170		171		172		173		174		175		176		177	-	178		179		180		181		182		183	

OCH3 OCH3 CH3 C-H OCH2CF3 CF3 H White 211-213 38.3 2.61 OCH3 OCH3 H C-H OCH2CF3 CF3 H White 211-213 38.3 2.59 OCH3 OCH3 H C-H OCH2CN CF3 H White 229-231 41.9 2.86 OCH3 OCH3 C-H OCH2- CF3 H White 229-231 41.9 3.24 OCH3 OCH3 H C-H OCH2- CF3 H White 152-157 42.8 3.80 OCH3 OCH3 H C-H OCH2- CF3 H White 152-157 42.8 3.80 OCH3 OCH3 H C-H OCH2- CF3 H White 152-157 42.8 3.80 OCH3 OCH3 H C-H OCH2CH2 CF3 H White 152-157 42.8 3.80 OCH3 OCH3 H C-H OCH2CH2 H F White 155-159 41.9 3.72 OCH3 OCH3 H C-H OCH2CH3 H F OFF-WH 155-169 OCH3 OCH3 H C-H OCH2CH3 H F SOLID 41.9 3.72 OCH3 OCH3 H C-H OCH2CH3 H F SOLID 41.9 3.72 OCH3 OCH3 H C-H OCH2CH3 H F SOLID 41.9 3.72 OCH3 OCH3 H C-H OCH2CH3 H F SOLID 41.9 3.72 OCH3 OCH3 H C-H OCH2CH3 H F SOLID 41.9 3.72 OCH3 OCH3 H C-H OCH2CH3 H WHITE 165-167 45.8 4.24 OCH3 OCH3 H C-H OCH2CH3 H WHITE 167-169 45.8 4.24 OCH3 OCH3 H C-H OCH2CH3 H WHITE 167-169 45.8 4.24 OCH3 OCH3 H C-H OCH2CH3 H WHITE 167-169 45.8 4.24 OCH3 OCH3 H C-H OCH2CH3 H WHITE 167-169 45.8 4.24 OCH3 OCH3 H C-H OCH2CH3 H WHITE 167-169 45.8 4.24 OCH3 OCH3 H C-H OCH2CH2 H WHITE 203-205 45.8 4.28 OCH3 OCH3 H C-H OCH2CH2 H WHITE 203-205 45.8 4.28 OCH3 OCH3 H C-H OCH2CH2 H WHITE 203-205 45.8 4.28 OCH3 OCH3 H C-H OCH2CH2 H WHITE 203-205 45.8 4.28 OCH3 OCH3 H C-H OCH2CH2 H WHITE 203-205 45.8 4.28 OCH3 OCH3 H C-H OCH2CH2 H WHITE 203-205 45.8 4.28 OCH3 OCH3 H C-H OCH2CH2 H WHITE 203-205 45.8 4.28 OCH3 OCH3 H C-H OCH2CH2 H WHITE 203-205 45.8 4.28 OCH3 OCH3 H C-H OCH2CH2 H WHITE 203-205 45.8 4.28 OCH3 OCH3 H C-H OCH2CH2 H WHITE 203-205 45.8 4.28 OCH3 OCH3 H C-H OCH2CH2 H WHITE 203-205 45.8 4.28 OCH3 OCH3 H C-H OCH2CH2 H WHITE 203-205 45.8 4.28 OCH3 OCH3 H C-H OCH2CH3 H WHITE 203-205 45.8 4.28 OCH3 OCH3 H C-H OCH2CH3 H WHITE 203-205 45.8 4.28 OCH3 OCH3 OCH3 H C-H OCH2CH3 H WHITE 203-205 45.8 4.28 OCH3 OCH3 OCH3 H C-H OCH2CH3 H WHITE 203-205 45.8 4.28 OCH3 OCH3 OCH3 H C-H OCH2CH3 H WHITE 203-205 45.8 4.28 OCH3 OCH3 OCH3 H C-H OCH2CH3 H WHITE 203-205 45.8 4.28 OCH3 OCH3 OCH3 H C-H OCH2CH3 H WHITE 203-201 41.8	2	CHJO	OCHO	н	L-T	C-H OCHOCHOL	CF2	I	0 f f - wh +	233-235	42 8 3	80 14	1
OCH3 H C-H OCH2CF3 CF3 H white 211-213 38.3 2.61 OCH3 H C-H OCH2CN CF3 H white 211-213 41.6 2.85 OCH3 H CCH OCH2F)2 CF3 H white 229-231 40.1 3.24 OCH3 H CCH OCCH2F)2 CF3 H white 152-157 42.6 3.70 OCH3 H CCH OCCH2CF3 CF3 H tan 229-231 40.1 3.24 3.80 OCH3 H CCH OCCH2CF3 CF3 H white 152-157 42.6 3.70 OCH3 H CCH OCH2CH2CF CF3 H tan 223-224 39.5 2.74 OCH3 H CCH OCH2CH2CF H F Off-wht 155-165 H 41.9 3.72 OCH3 H CCH OCH2CH2CF		2	?: }	:	;	OCH3	7	·	solid	 	42.7 3.	69 14.7	
OCH3 H C-H OCH2CN CF3 H off-wht 211-213 41.9 2.86 OCH3 H C-H OCH2F)2 CF3 H white 229-231 40.1 3.24 OCH3 H C-H OCH2F)2 CF3 H white 152-157 42.6 3.70 OCH3 H C-H OCH2C CF3 H white 209-211 37.0 2.38 OCH3 H C-H OCH2CHF2 CF3 H tan 223-224 39.8 2.93 OCH3 H C-H OCH2CHF2 CF3 H tan 223-224 39.8 2.93 OCH3 H C-H OCH2CHF2 H F white 195-199 195-199 OCH3 H C-H OCH2CH2F H F white 195-199 195-199 OCH3 H C-H OCH2OCH3 H CH CH CH		ОСНЗ	оснз	E	C-H	OCH2CF3	CF3	H	white solid	211-213	38.32.	13	0 0
OCH3 H C-H OCH- CF3 H white 229-231 40.1 3.24 OCH3 H C-H OCC45- CF3 H white 152-157 42.8 3.80 OCH3 H C-H OCC45- CF3 H white 209-211 37.0 2.38 OCH3 H C-H OCH2CHF2 CF3 H white 209-211 37.0 2.38 OCH3 H C-H OCH2CHF2 CF3 H white 195-199 36.8 2.23 OCH3 H C-H OCH2CHF H F white 195-199 41.9 3.70 OCH3 H C-H OCH2CHF H F off-wht 185-199 41.9 3.72 OCH3 H C-H OCH2CCH3 H F off-wht 185-190 41.9 3.73 OCH3 H C-H OCH2CCH3 H C-H		осн3	оснз	エ	C-H		CF3	H	off-wht		41.9 2.	86 18.3 88 17.6	mω
OCH3 H C-H OCK2- CF3 H white 152-157 42.8 3.80 OCH3 H C-H OCK2- CF3 H white 209-211 37.0 2.38 OCH3 H C-H OCH2CHF2 CF3 H tan 223-224 39.8 2.23 OCH3 H C-H OCH2CHF2 CF3 H white 195-199 2.74 OCH3 H C-H OCH2CH2F H F white 195-199 2.74 OCH3 H C-H OCH2CCH3 H F white 195-199 41.9 3.70 OCH3 H C-H OCH2CCH3 H F off-wht 185-185 41.9 3.70 OCH3 H C-H OCH2CCH3 H F off-wht 185-180 41.9 3.93 OCH3 H C-H OCH2CCH3 H H white 203-203 45.2		оснз	осн3	æ	С-Н	2F)	CF3	æ	white solid	229-231		24 14.1 12 14.0	40
OCH3 H C-H OCH2- CF2CF3 H white 209-211 37.0 2.38 OCH3 H C-H OCH2CHF2 CF3 H tan 223-224 39.8 2.93 OCH3 H C-H OCH2CH2F H F white 195-199 7.74 OCH3 H C-H OCH2OCH3 H F off-wht 185-165 7.74 OCH3 H C-H OCH2OCH3 H C CH CH2OCH3 H CH CH1.9 3.70 OCH3 H C-H OCH2OCH3 H CH CH1.9 3.70 41.9 3.70 OCH3 H C-H OCH2OCH3 H CH CH1.9 41.9 3.70 OCH3 H C-H OCH2OCH3 H White 203-20 45.2 4.2 OCH3 H C-H OCH2CCH2F H H White 209-211 41		осн3	оснз	H	C-H	OCH2- OC2H5	CF3	æ	white solid			80 14.7 70 13.4	L 4
OCCH3 H C-H OCH2CHF2 CF3 H tan 223-224 39.8 2.94 OCCH3 H C-H OCH2CH2F H F white 195-199 R 2.74 OCCH3 H C-H OCH2OCH3 H F Off-wht 185-190 41.9 3.72 OCCH3 H C-H OCH2OCH3 H CH 61-wht 185-190 41.9 3.70 OCCH3 H C-H OCH2OCH3 H tan 232-234 44.3 3.93 OCCH3 H C-H OCH4O(n) CF3 H white 185-187 45.2 4.24 OCCH3 H C-H OCH2OCH3 H white 203-205 45.2 4.27 OCCH3 H C-H OCH2CCH2F H H white 203-205 45.2 4.20 OCCH3 H C-H OCH2CCF2F H H white 209-		осн3	оснз	н	C-H	۲. ا	CF3	Œ	white solid		37.0 2. 36.8 2.	38 12. 23 12.	L 2
OCH3 H C-H OCH2CH2F H F solid solid		осн3	оснз	田	С-Н		CF3	æ	tan solid		5 2	92 14. 74 14.	ωm
OCH3 H C-H OCH2OCH3 H F off-wht 155-165 A OCH3 H C-H OCH2OCH3 H C1 off-wht 185-190 41.9 3.72 OCH3 H C-H OCH9(n) CF3 H tan 232-234 44.3 3.93 OCH3 H C-H OC4H9(n) CF3 H white 185-187 45.2 4.27 OCH3 H C-H OCH2OCH3 H tan 167-169 45.2 4.27 OCH3 H C-H OCH2CH2F H H white 203-205 45.0 45.2 4.20 OCH3 H C-H OCH2CH2F H H white 203-205 45.0<		оснз	оснз	Н	С-Н		Н	(IL)	white solid	195-199			
OCH3 H C-H OCH2OCH3 H CI off-wht 185-190 41.9 3.72 OCH3 H C-H OC3H7(i) CF3 H tan 232-234 44.3 3.93 OCH3 H C-H OC4H9(n) CF3 H white 185-187 45.5 4.24 3.93 OCH3 H C-H OCH2OCH3 H tan 167-169 45.2 4.27 OCH3 H C-H OCH2CH2F H H white 203-205 45.3 4.06 OCH3 H C-H OCH2CFF H H white 203-205 45.3 4.06 OCH3 H C-H OCH2CFF H H white 209-211 41.4 3.93 OCH3 H C-H OCH2CFF3 H H White 209-211 41.6 3.26		оснз	оснз	н	C-H			E.		155-165	<u> </u>		
OCH3 H C-H OCGH7(i) CF3 H tan 232-234 44.3 3.93 OCH3 H C-H OC4H9(n) CF3 H white 185-187 45.5 4.24 3.93 OCH3 H C-H OCH2OCH3 H tan 167-169 45.6 4.37 OCH3 H C-H OCH2CH2F H H white 203-205 45.3 4.06 OCH3 H C-H OCH2CFF H H white 209-211 41.4 3.93 OCH3 H C-H OCH2CFF H H white 209-211 41.6 3.26		ОСНЗ	оснз	Н	C-H		Ŧ	CI			ي م	72 16.3 70 15.9	m 0
OCH3 H C-H OC449(n) CF3 H white OCH3 H C-H OCH2CCH3 H H tan OCH3 H C-H OCH2CH2F H H white OCH3 H C-H OCH2CF3 H H white		оснз	осн3	н	C-H	осзн7(і)	CF3	Н	tan solid		2 3	93 15.2 93 15.0	0 0
OCH3 H C-H OCH2OCH3 H H tan OCH3 H C-H OCH2CH2F H H white OCH3 H C-H OCH2CF3 H H white	1	осн3	оснз	H			CF3	Н	white solid			24 14. 27 14.	7
OCH3 H C-H OCH2CH2F H H white OCH3 H C-H OCH2CF3 H H white Solid Solid Solid Solid Solid		оснз	осн3	н	C-H		Н	Н	tan solid	_		33 17.7 20 16.9	r 0)
OCH3 H C-H OCH2CF3 H White 209-211 solid	1	0СН3	осн3	I		-	#	н		203-205	45.3 4.4.4 3.	06 17. 93 17.	9 7
		оснз	оснз	н	C-H		н	H		209-211	41.6 3.	26 16.2 28 16.0	0 2

100	N	OCHO	CHO	12	H L	C-H OCAHO(1)	CF3	H	tan	217-219	45.4 4.	24 14	7.
		7				,)	•	solid		45.2 4.	4.17 14	. 5
200	N	осн3	осн3	н	С-Н	CF3	осн20		white	193-195	40.3 2.	70 15. 74 15.	r 4
201	Z	OCH3	OCH3	E	C-H	OCH-	Н	н	white	203-204	8	-	m
)			(CH2E)2			solid		44.9 3.	3.91 16	2.
202	Z	OCH3	OCH3	н	H-D	OC4H9(S)	CF3	Н	tan	186-188	r.	4.24 14.7	7
)				1			solid		45.4 4.	4.20 14	
203	Z	OCH3	OCH3	Н	C-H	OCH2-	CF3	Н	off-wht	230-231		3.14 14	٠.
))						solid		39.8 3.	3.07 14.	4.
204	Z	OCH 3	CH3	T,	C-H	ОСНЗ	CF3	Н	white	135-137			ω,
		1)		powder	j	43.0 3.	3.33 16.	5
205	Z	OCH3	Br	H	C-H	осноосна	CF3) H	white	197-199	N		٠.
						3)		powder		35.3 2.	2.46 13	13.6
206	Z	OCH 3	OC2H5	H	C-H	осн2осн3	CF3	Н	white	175-176	3	15	0.
							1		powder		42.5 3.	3.63 14	4.
207	z	OCH 3	OCH3	H	C-H	OCH2OCH3 CF3		H	white	181-183	41.5 3.48		٠.
_)						solid	(d)	41.6 3.	3.42 15.	0.
208	Z	OCH 3	OCH3	H	z	OC2H5	CF3	н	off-wht	211-213	40.2 3.		۲.
)	-						solid		40.4 3.	3.33 18.	ι.
209	Z	OCH 3	OCH3	н	z	OCH2CH2F	CF3	Н	tan	226-228	38.6 3.	3.03 18.	0.
									solid		38.5 2.88		o.
210	z	OCH3	OCH3	H	z	OCH2-	CF3	H	white	166-168	41.7 3.28	28 18.3	m.
))			Н2	•		solid		41.6 3.	3.22 18	0.
211	Z	OCH3	OCH3	H	z	OC3H7 (1)	CF3	Ξ	white	219-221	41.63.	3.71 18.2	.2
		1	_				•		solid		41.6 3.	3.66 18.	
212	z	OCH3	OCH3	н	z	OCH3	H	CH3	white	141-142	44.2 4.		
)	,		•				powder		43.5 4.	4.07 21	0
213	Z	оснз	Br	H	Z	OCH3	CF3	Н		-237	က၊	06 17	4.
									powder	(d)	32.3 2.	2.06 17	7

ιΩ	m	œ	7	m	m	_		5	m	0	00	0	9					_						_		
14.	14.	12.8	12.	14.	13.			16.	16.	15.	13.	15.0	13.	_		_										
2.30	2.20	4.62	4.83	3.91	3.76			1.89	1.80 16.	2.80	2.67	3.38	3.33													
34.9	35.0 2.20 14	49.5 4.62	50.0	39.3 3.91	40.3			36.7	36.7	38.5	38.0	42.6 3.38	42.2													
241-243 34.9 2.30 14.		197-198		230-231		248-249	(g)	191-193		161-163 38.5 2.80 15.0	(q)	217-220														
white	solid	yellow	solid	tan	powder	tan	powder	tan	solid	1t tan	solid	tan	powder													
王		H		Ξ		н		H		Ξ		H		н	Н	н	Н		Œ	н	н	H	H	Œ	Ή	н
CF3	,	СО2СН3		CO2CH3	,	CO2CH3		CF3	;	CF3	,	CE3	,	CF3	CF3	CF3	CF3		CE3	CF3	CH2CF3	OCF20CH3	CF3	CO2CH3	осн2сн2 F	OCH-
ОСНЗ		OC2H5				оснз		댼		с-н оснуоснз)	OCHOCHOE		согснз			с-н осн2-	CH=CH2	OCH2SCH3 CF3	сн2осн3	OC3H7(i)	оснз	C-H O(CH2)3F CF3	C-H OCH2CH2F CO2CH3	OCF3	
Z		C-H		C-H OCH3		C-H		C-H		C-H		C-H		C-H	C-H OCF3	C-H Br	C-H		Н-2	C-H	н-э	C-H	C-H	C-H	C-H	C-H OCF3
H		H		SOCHS		SO2CH3		Н		H		COCH3		H	H	H	H		Н	Н	Н	н	H	H	н	Н
OCH 3)	ОСНЗ)	OCH3		OCH3		[]		[]		OCH 3	,	оснз	оснз	оснз	оснз		OCH3	OCH3	OCH3	OCH3	OCH3	оснз	оснз	OCH 3
Br	!	OCH3	•	OCH3)	OCH3)	OCH 3		OCH 3)	OCH3)	0CH3	OCH3	осн3	OCH3		OCH3	OCH3	осн3	оснз	OCH3	OCH3	OCH3	OCH3
С-н	:	-H-O		Z	· . <u>-</u>	C-H		Z		z	i	z	i	Z	Z	Z	Z		z	Z	z	z	Z	z	z	z
214 IC-H	: 	215		216		217		218	, 	219	! !	220	! !	221	222	223	224		225	226	227	228	229	230	231	232

					 T														
																L			
			-								Ð.		3						
H		Ξ		田	 H	Ħ	н		CJ	ប	CH2F	CI	OCH3	н	Н	CI	н	H	Ħ
CF3		CF3		CF3	CF3	CF3	CF3		Б	Н	н	CF3	CF3	оснз	со2сн3	Н	CF3	CH2F	SCF3
-HOC	Α.	CH2-	CHC12	H,C, OT	 SO2CH3 C-H OCH2CH2F CF3	C-H OCH2CH2F CF3	CH2CH2- C-H OCH2CH2F CF3		с-н оснасная	CF3				CF3 (оснз	OCH2OCH3 CF3	оснз	
) H-D		C-H (C-H) H-D	C-H	C-H () H-D	C-H C	с-н оснз	с-н оснз	C-H C1	N	N	N	N	C-H	C-H OCH3
H		Н		H	so ₂ сн ₃	COCH3	CH2CH2-	соссиз	Н	Ħ	Н	H	æ	H	Н	H	Н	H	Н
OCH3		оснз		оснз	оснз	оснз	OCH3		оснз	осн3	оснз	оснз	осн3	оснз	OCH3	оснз	осн3	осн3	ОСНЗ
OCH3		осиз		5сн3	 оснз	оснз	оснз		OCH3	OCH3	оснз		OCH3	оснз	OCH3	оснз	OCH3	оснз	оснз
N		z		z	z	z	z		N	z	Z	Z	Z	2	N	Z	z	z	Z
233 N		234		235	 236	237	238		239	240	241	242	243	244	245	246	247	248	249

The compounds of Formula I wherein T represents hydrogen can be prepared by the reaction of a substituted $2-amino\{1,2,4\}-triazoloazine$ compound of Formula II:

$$\underset{Z}{\overset{W}{\bigvee}} \underset{N}{\overset{N}{\bigvee}} \underset{NH_{2}}{\overset{N}{\bigvee}}$$

with a benzenesulfonyl chloride or pyridine~3-sulfonyl chloride compound of Formula III:

$$\bigcup_{Q}^{\mathsf{B}} \mathsf{So}_{2}\mathsf{Cl}$$

wherein A, B, D, Q, W, X, and Z are as defined hereinabove for compounds of Formula I. The reaction can be carried out by combining approximately equal molar amounts of the two compounds in a polar, aprotic solvent, such as acetonitrile, and adding pyridine and a catalytic amount (5 to 25 molar percent of the sulfonyl chloride compound) of dimethyl sulfoxide at room temperature. Additional sulfonyl chloride compound, pyridine, and dimethyl sulfoxide are added, if necessary, to complete the reaction. The reactions take from a few hours to several days to go to completion. Means to exclude moisture, such as a dry nitrogen blanket, are employed. The compounds of Formula I obtained, which are solids with low solubility in many common organic solvents and in water, can be recovered using conventional means.

The condensation reaction of sulfonyl chloride compounds of Formula III and 2-amino[1,2,4]triazoloazine compounds of Formula II can be carried out advantageously by first converting the 2-amino-[1,2,4]triazoloazine compound of Formula II into an N-trialkylsilyl derivative of Formula IV:

WO 98/13367 PCT/US97/16867

-27-

wherein W, X, and Z are as defined for compounds of Formula I and R" represents C_1 - C_4 alkyl. N-Trimethylsilyl and N-triethylsilyl derivatives are typical. The method is related to those disclosed in U.S. Patent Nos. 4,910,306 and 4,666,501, but differs in that it generally requires a fluoride ion facilitator.

The conversion of a 2-amino[1,2,4]triazoloazine compound of Formula II to an N-trialkylsilyl derivative of Formula IV can be carried out by preparing a mixture of a chlorotrialkylsilane compound with sodium or potassium iodide in a solvent, such as acetonitrile, under anhydrous conditions and then adding the 2-amino[1,2,4]triazoloazine compound and a trialkylamine compound, such as triethylamine, typically at ambient temperatures and with agitation. Approximately equimolar amounts of the chlorotrialkylsilane and 2-amino[1,2,4]triazoloazine compounds are generally employed. The reaction requires from a few hours to a day depending on the specific trialkylamine and 2-amino[1,2,4]triazoloazine compounds involved. The N-trialkylsilyl derivatives prepared can be recovered by diluting the resulting mixture with a non-polar solvent, such as ether or 1,2-dichloroethane, removing the insoluble salts by filtration, and removing the volatile components by evaporation under reduced pressure. Compounds of Formula IV are unstable in the presence of water and must be kept dry.

The 2-(trialkylsilylamino)[1,2,4]triazoloazine

derivatives of Formula IV obtained as described above or in other ways can be condensed, with or without further purification, with a sulfonyl chloride compound of Formula III. The condensation is typically carried out in a solvent, such as acetonitrile, in the presence of an approximately equimolar amount of a pyridine or methylpyridine base, an approximately equimolar amount of a fluoride ion facilitator, such as cesium fluoride or a tetraalkylammonium fluoride, and a catalytic amount (3 to 20 percent of the sulfonyl

chloride compound) of dimethyl sulfoxide. The condensation, which is typically carried out at temperatures of from 10°C to 60°C under anhydrous conditions with agitation, is generally complete in 2 to 18 hours. The N-(triazoloazinyl)arylsulfonamide compounds of Formula I obtained can be recovered by conventional means, such as by filtration to collect the solids and extraction of the solids obtained to remove the water-soluble salts and/or soluble organic components.

N-(triazoloazinyl)arylsulfonamide compounds of Formula I
wherein T represents other than hydrogen can be prepared from the
corresponding compounds of Formula I wherein T represents hydrogen by
acylation under reaction conditions known in the art for related
sulfonamide acylation reactions. Suitable acylating agents include
alkanoyl chloride compounds, such as propionyl chloride or trifluoroacetyl chloride; chloroformate ester compounds, such as 2-methoxyethyl chloroformate; carbamoyl chloride compounds, such as
N',N'-diallylcarbamoyl chloride, and alkyl isocyanate compounds, such
as 2-chloroethyl isocyanate.

Compounds of Formula I wherein W represents chloro can be converted into corresponding compounds of Formula I whereby W represents fluoro, bromo, iodo, O(C1-C3 alkyl), or S(C1-C3 alkyl) by treatment with an appropriate nucleophile using the general methods for such replacements known in the art. Chloro substituents in the 5-position (X) are generally more easily replaced than are chloro substituents in the 6-position (Y) or the 8-position (Z) and can be selectively replaced.

Many 2-amino[1,2,4]triazolo[1,5-a]pyridine compounds of Formula II (X represents C-Y) can be prepared by the reaction of appropriately substituted N-(2-pyridinyl)-N'-carboethoxythiourea compounds of the formula:

$$\begin{array}{c|c} Y & Z & O \\ \hline W & NH-C & O-C_2H_5 \end{array}$$

with hydroxylamine. The reaction is typically carried out in a solvent such as ethanol and requires heating for a few hours. The hydroxylamine is typically generated by neutralization of the hydrochloride with a hindered tertiary amine, such as diisopropylethylamine, or an alkali metal alkoxide, such as sodium ethoxide. The desired compounds of Formula II can be recovered by conventional means, such as by removal of the volatile components of the reaction mixture by evaporation, and can be purified by conventional means, such as by extraction with water and/or other solvents in which they are sparingly soluble. The N-(2-pyridinyl)-N'-carboethoxythiourea compound starting materials for this method can be obtained by treatment of appropriately substituted 2-aminopyridine compounds with ethoxycarbonyl isothiocyanate. The reaction is generally carried out in an inert organic solvent at ambient temperatures. The overall method is further described in U.S. Patent 5,571,775.

The substituted 2-aminopyridine compound starting materials for the method described above are known in the art or can be prepared by the methods disclosed herein or by general methods known in the art.

15

Compounds of Formula II wherein X represents C-Y can also be prepared from appropriately substituted 2-cyanoaminopyridine compounds by the method disclosed by B. Vercek et al. in Monatshefte fur Chemie, 114, 789-798 (1983). Additional methods of preparation of such compounds were disclosed by K. T. Potts et al. in Journal of Organic Chemistry, 31, 265-273 (1966).

Compounds of Formula I wherein X represents N (2-amino- [1,2,4]triazolo[1,5-c]pyrimidine compounds) can be prepared from 4-hydrazinopyrimidine compounds of the formula:

wherein % represents methylthio, hydrogen, or chloro and 2 represents hydrogen, halogen, alkoxy, or alkylthio. The hydrazinopyrimidine

compound is first treated with cyanogen bromide to produce the hydrobromide of a 3-amino-8-substituted-5-substituted[1,2,4]triazolo-[4,3-c]pyrimidine compound of the formula:

$$N = N + N + 2$$

$$N = N + 2$$

$$N = N + 2$$

$$N = N + 2$$

wherein W represents methylthio, hydrogen, or chloro and Z represents hydrogen, halogen, alkoxy, or alkylthio. The reaction is generally carried out in an organic solvent, such as isopropyl alcohol, at ambient temperature. The products can be recovered by conventional means, such as by adding a non-polar solvent, for example diethyl ether, and collecting the solid that forms by filtration. The above intermediates wherein W represents methylthic can then be converted into the desired compounds of Formula II wherein $\ensuremath{\mathbf{W}}$ represents an alkoxy group by treatment with an alkali metal alcoholate, such as sodium methylate or potassium ethylate, and ethyl acrylate in the 15 corresponding alcohol as a solvent. The compound rearranges and the methylthic moiety is replaced by the alkoxy moiety derived from the alcohol of the medium. The reaction is generally carried out at temperatures below 25°C. The desired compounds of Formula II can be recovered by neutralizing with acetic acid and collecting the solids that form by filtration or other conventional means. Compounds of Formula II wherein X represents N and W represents hydrogen or chloro can be obtained from the corresponding [4,3-c] intermediate wherein \mbox{W} represents hydrogen or chloro by isomerization with a trialkylamine base. The 4-hydrazinopyrimidine compound starting materials for these methods can be prepared from the corresponding 4-chloropyrimidine compounds, which are well-known in the art, by reaction with hydrazine.

Other methods of preparation of compounds of Formula II wherein X represents N are disclosed by G. W. Miller, et al., <u>J. Chemical Society</u>, <u>1965</u>, page 3357 and <u>1963</u>, page 5642.

WO 98/13367 PCT/US97/16867

-31-

Compounds of Formula II wherein X represents N are a further embodiment of the invention. Thus, the invention includes $2-\min\{1,2,4\}$ triazolo $\{1,5-c\}$ pyrimidine compounds of the formula:

$$\bigvee_{N}^{N}\bigvee_{N}^{N}\bigvee_{NH_{2}}$$

wherein W represents O(C1-C3 alkyl), C1, Br, F, or fl and Z represents O(C1-C3 alkyl), H, F, C1, Br, I, S(C1-C3 alkyl), or CH3 optionally substituted with up to three fluorine atoms; with the proviso that at least one of W and Z represents O(C1-C3 alkyl). Compounds of this type wherein one of W and Z represents methoxy and the other represents fluoro, chloro, bromo, methyl, methoxy, or ethoxy are often preferred and such compounds wherein W repesents methoxy and Z represents methoxy, fluoro, chloro, or bromo are often more preferred.

The substituted benzenesulfonyl chloride and pyridinesulfonyl chloride starting materials of Formula III can be prepared by the methods disclosed herein or by general or specific methods known in the art. Many such compounds, such as 2-methoxy-6-(trifluoromethyl)benzenesulfonyl chloride and 2-methoxy-4-(trifluoromethyl)-3-pyridinesulfonyl chloride, can be prepared by lithiation of the corresponding benzene or pyridine compound (e.g., 3-{trifluoromethyl)anisole or 2-methoxy-4-(trifluoromethyl)pyridine with butyl lithium, reaction of the phenyl or pyridinyl lithium compound obtained with dipropyl disulfide, and then chloroxidation of the resulting propylthic compound. In each of these reaction steps conditions generally known for such processes were used. Many propyl or benzylthiobenzenes and pyridines can also be prepared by alkylation of the corresponding thiophenol or 3-pyridinethiol compound using standard methods and subsequent chloroxidation. Phenyl and pyridinyl lithium compounds, such as that derived from 1,3-dimethoxy-30 benzene can be converted directly to the corresponding desired sulfonyl chloride compounds by reaction with sulfur dioxide and sulfuryl chloride in the presence of N,N,N',N'-tetramethylethylene15

diamine. Other of the required sulfonyl chloride compounds, such as 2-(1,1,2,2-tetrafluoroethoxy) benzenesulfonyl chloride, can be prepared by diazotization of the corresponding aniline or 3-amino-pyridine compounds in the presence of sulfur dioxide, copper chlorides, and concentrated aqueous hydrochloric acid. Benzenesulfonyl chloride compounds, such as 2-methoxy-5-methylbenzenesulfonyl chloride, can be prepared by direct chlorosulfonation of appropriate benzene compounds. 3-Alkylthiopyridine compounds having chloro substituents in the 2- and/or 4-positions can be converted to the corresponding compounds having other halo or alkoxy substituents by conventional nucleophilic displacement processes before chloroxidation to produce other pyridine-3-sulfonyl chloride compounds.

Compounds of Formula III wherein Q represents N, including substituted pyridine-3-sulfonyl chloride compounds of the formula:

$$\bigcup_{N=0}^{\mathbb{D}} \operatorname{SO}_{2} \operatorname{Cl}$$

wherein A represents H, F, Cl, Br, or I, or $CO_2(C_1-C_4 \text{ alkyl})$ or represents C_1-C_3 alkyl, $O(C_1-C_4$ alkyl), $O(C_3-C_4$ alkenyl), $O(C_3-C_4)$ alkynyl), or S(C1-C3 alkyl) each optionally substituted with one O(C1-C3 alkyl), S(C1-C3 alkyl), chloro, bromo, or cyano substituent or with up to the maximum possible number of fluorine atoms, or represents a 2-methyl-1,3-dioxolan-2-yl moiety; B represents H, F, Cl, Br, I, NO₂, CN, CO₂(C₁-C₄ alkyl), NH(C₁-C₃ alkyl), or N(C₁-C₃ alkyl)₂ or represents $O(C_1-C_4 \text{ alkyl})$, $O(C_3-C_4 \text{ alkenyl})$, $O(C_3-C_4 \text{ alkenyl})$ alkynyl), C_1 - C_3 alkyl, $S(C_1$ - C_3 alkyl), $SO(C_1$ - C_3 alkyl), $SO_2(C_1$ - C_3 alkyl), $S(C_3-C_4 \text{ alkenyl})$, $SO(C_3-C_4 \text{ alkenyl})$, $SO_2(C_3-C_4 \text{ alkenyl})$, $S(C_3-C_4 \text{ alkynyl})$, $SO(C_3-C_4 \text{ alkynyl})$, or $SO_2(C_3-C_4 \text{ alkynyl})$ each optionally substituted with one O(C $_1$ -C $_3$ alkyl), S(C $_1$ -C $_3$ alkyl), chloro, bromo, or cyano substituent or with up to the maximum possible number of fluorine atoms; with the proviso that at least one of A and B represents $O(C_1-C_4 \text{ alkyl})$, $O(C_3-C_4 \text{ alkenyl})$, or $O(C_3-C_4$ alkynyl) each optionally substituted with one $O(C_1-C_3 \text{ alkyl})$, $S(C_1-C_3 \text{ alkyl})$

25

alkyl), chloro, or bromo substituent or with up to the maximum possible number of fluorine atoms; with the proviso that A and B do not simultaneously represent H; and D represents H, F, Cl, Br, I, $\text{C}_1\text{-C}_3$ alkyl, OC_4H_5 , OC_2H_5 , or CF_3 ; or B and D together represent a fragment of the formula O-CH2-O, optionally substituted with one or two F or CH3, are further embodiments of the invention. Pyridine-3--sulfonyl chloride compounds of Formula III wherein A represents methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethoxy, methoxyethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy, 1-(fluoromethyl)-2-fluoroethoxy, trifluoromethoxy, chloro, or fluoro; B represents hydrogen, methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethyl, methylthio, methyl, trifluoromethyl, trifluoromethoxy, fluoro, chloro, or methoxycarbonyl; and D represents hydrogen, fluoro, chloro, bromo, or methyl are typically preferred. Such compounds wherein B represents methoxy and D represents hydrogen; wherein A represents methoxy and D represents hydrogen, methyl, or chloro; or wherein B represents trifluoromethyl and D represents hydrogen are often more preferred. Compounds of Formula III wherein Q represents N and A represents methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethoxy, methoxyethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy, or 1-(fluoromethyl)-2-fluoroethoxy; B represents hydrogen, methoxy, ethoxy, propoxy, 1-methylethoxy, trifluoromethyl, or methoxycarbonyl; and D represents hydrogen or methyl are usually most preferred.

While it is possible to utilize the N-(triazoloazinyl)arylsulfonamide compounds of Formula I directly as herbicides, it is
preferable to use them in mixtures containing an herbicidally
effective amount of the compound along with at least one agriculturally acceptable adjuvant or carrier. Suitable adjuvants or carriers
should not be phytotoxic to valuable crops, particularly at the
concentrations employed in applying the compositions for selective
weed control in the presence of crops, and should not react
chemically with the compounds of Formula I or other composition
ingredients. Such mixtures can be designed for application directly
to weeds or their locus or can be concentrates or formulations which
are normally diluted with additional carriers and adjuvants before
application. They can be solids, such as, for example, dusts,
granules, water dispersible granules, or wettable powders, or

-34-

liquids, such as, for example, emulsifiable concentrates, solutions, emulsions or suspensions.

Suitable agricultural adjuvants and carriers that are useful in preparing the herbicidal mixtures of the invention are well known to those skilled in the art.

Liquid carriers that can be employed include water, toluene, xylene, petroleum naphtha, crop oil, acetone, methyl ethyl ketone, cyclohexanone, trichloroethylene, perchloroethylene, ethyl acetate, amyl acetate, butyl acetate, propylene glycol monomethyl ether and diethylene glycol monomethyl ether, methanol, ethanol, isopropanol, amyl alcohol, ethylene glycol, propylene glycol, glycerine, N-methyl-2-pyrrolidinone, and the like. Water is generally the carrier of choice for the dilution of concentrates.

Suitable solid carriers include talc, pyrophyllite clay, silica, attapulgus clay, kieselguhr, chalk, diatomaceous earth, lime, calcium carbonate, bentonite clay, Fuller's earth, cotton seed hulls, wheat flour, soybean flour, pumice, wood flour, walnut shell flour, lignin, and the like.

It is frequently desirable to incorporate one or more surface-active agents into the compositions of the present invention. Such surface-active agents are advantageously employed in both solid and liquid compositions, especially those designed to be diluted with carrier before application. The surface-active agents can be anionic, cationic or nonionic in character and can be employed as emulsifying agents, wetting agents, suspending agents, or for other purposes. Typical surface active agents include salts of alkyl sulfates, such as diethanolammonium lauryl sulfate; alkylarylsulfonate salts, such as calcium dodecylbenzenesulfonate; alkyl- ${\tt phenol-alkylene} \ \, {\tt oxide} \ \, {\tt addition} \ \, {\tt products}, \ \, {\tt such} \ \, {\tt as} \ \, {\tt nonylphenol-C}_{18}$ ethoxylate; alcohol-alkylene oxide addition products, such as tridecyl alcohol-C16 ethoxylate; soaps, such as sodium stearate; alkylnaphthalenesulfonate salts, such as sodium dibutylnaphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2-ethylhexyl) sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryl trimethylammonium chloride; polyethylene glycol esters of fatty acids, such as polyethylene

-35-

glycol stearate; block copolymers of ethylene oxide and propylene oxide; and salts of mono and dialkyl phosphate esters.

Other adjuvants commonly utilized in agricultural compositions include compatibilizing agents, antifoam agents, sequestering agents, neutralizing agents and buffers, corrosion inhibitors, dyes, odorants, spreading agents, penetration aids, sticking agents, dispersing agents, thickening agents, freezing point depressants, antimicrobial agents, and the like. The compositions can also contain other compatible components, for example, other herbicides, herbicide safeners, plant growth regulants, fungicides, insecticides, and the like and can be formulated with liquid fertilizers or solid, particulate fertilizer carriers such as ammonium nitrate, urea and the like.

The concentration of the active ingredients in the

herbicidal compositions of this invention is generally from about

0.001 to about 98 percent by weight. Concentrations from about 0.01

to about 90 percent by weight are often employed. In compositions

designed to be employed as concentrates, the active ingredient is

generally present in a concentration from about 5 to about 98 weight

percent, preferably about 10 to about 90 weight percent. Such

compositions are typically diluted with an inert carrier, such as

water, before application. The diluted compositions usually applied

to weeds or the locus of weeds generally contain about 0.001 to about

weight percent active ingredient and preferably contain about 0.01

to about 0.5 percent.

The present compositions can be applied to weeds or their locus by the use of conventional ground or aerial dusters, sprayers, and granule applicators, by addition to irrigation water, and by other conventional means known to those skilled in the art.

The compounds of Formula I have been found to be useful preemergence (including pre-plant) and postemergence herbicides. Postemergence applications are generally preferred. The compounds are effective in the control of both broadleaf and grassy weeds. While each of the N-(triazoloazinyl)arylsulfonamide compounds encompassed by Formula I is within the scope of the invention, the degree of herbicidal activity, the crop selectivity, and the spectrum of weed control obtained varies depending upon the substituents and other features present. The compounds can be employed at higher,

30

non-selective rates of application to control essentially all of the vegetation in an area. Compounds 10, 13, 14, 15, 18, 23, 26, 27, 28, 36, 37, 38, 39. 41, 50, 53, 54, 60, 63, 65, 77, 80, 81, 92, 105, 106, and 139 are among the compounds that are of special interest for this purpose. In many cases, the compounds can also be employed at lower, selective rates of application for the control of undesirable vegetation in grass crops, such as corn, sorghum, wheat, barley, and rice as well as in broadleaf crops, such as oil-seed rape, soybeans, and cotton. Their use in the control of selective grassy weeds, such as blackgrass and wild oats, and some broadleaf weeds in small grain crops, such as wheat and barley, is of special interest. Compounds 28, 34, 53, 96, 98, 105, and 142 are among the better compounds for this purpose. Many of the compounds can be used to remove broadleaf weeds from small grain crops, such as wheat. Compounds of special interest for this purpose include compounds 1, 2, 21, 32, 43, 46, 52, 95, 109, 120, 122, and 126. Many of the compounds are also useful for the control of many broadleaf and grassy weeds in rice. Compounds of special interest for this purpose include compounds 167, 177, 184, 185, 187, 188, 190, 194, 195, 203, 209, 210, 220, 229, & 233. Undesirable vegetation can be removed from rice that is either direct seeded or transplanted and is grown either in paddies or upland. The selectity to rice can often be improved by the use of safeners. Some of the compounds, such as compounds 55 and 106, can be employed to remove broadleaf and grassy weeds from oil-seed rape.

25 The term herbicide is used herein to mean an active ingredient which controls or adversely modifies the growth of plants. An herbicidally effective or vegetation controlling amount is an amount of active ingredient which causes an adversely modifying effect and includes deviations from natural development, killing, 30 regulation, desiccation, retardation, and the like. The terms plants and vegetation are meant to include germinant seeds, emerging seedlings and established vegetation.

Herbicidal activity is exhibited by the compounds of the present invention when they are applied directly to the plant or to the locus of the plant at any stage of growth or before planting or emergence. The effect observed depends upon the plant species to be controlled, the stage of growth of the plant, the application parameters of dilution and spray drop size, the particle size of solid components, the environmental conditions at the time of use,

-37-

the specific compound employed, the specific adjuvants and carriers employed, the soil type, and the like, as well as the amount of chemical applied. These and other factors can be adjusted as is known in the art to promote non-selective or selective herbicidal action. Generally, it is preferred to apply the compounds of Formula I postemergence to relatively immature plants to achieve the maximum control of weeds.

Application rates of about 0.001 to about 1 Kg/Ha are generally employed in postemergence operations; for preemergence applications, rates of about 0.01 to about 2 Kg/Ha are generally employed. The higher rates designated generally give non-selective control of a broad variety of undesirable vegetation. The lower rates typically give selective control and, by judicious election of compounds, timing, and rates of application, can be employed in the locus of crops.

15

30

The compounds of the present invention (Formula I) are often applied in conjunction with one or more other herbicides to obtain control of a wider variety of undesirable vegetation. When used in conjunction with other herbicides, the presently claimed compounds can be formulated with the other herbicide or herbicides, tank mixed with the other herbicide or herbicides, or applied sequentially with the other herbicide or herbicides. Some of the herbicides that can be employed beneficially in combination with the compounds of the present invention include substituted triazolopyrimidinesulfonamide compounds, such as N-(2,6-dichlorophenyl)-5--ethoxy-7-fluoro[1,2,4]triazolo[1,5-c]pyrimidine-2-sulfonamide (diclosulam), N-(2-methoxycarbonyl-6-chlorophenyl)-5-ethoxy-7-fluoro- ${\tt [1,2,4]triazolo[1,5-c]pyrimidine-2-sulfonamide (cloransulam-methyl),}\\$ and N-(2,6-difluorophenyl)-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine--2-sulfonamide (flumetsulam). Other herbicides such as acifluorfen, bentazon, chlorimuron, clomazone, lactofen, carfentrazone-methyl, fumiclorac, fluometuron, fomesafen, imazaquin, imazethapyr, linuron, metribuzir, fluazifop, haloxyfop, glyphosate, glufosinate, 2,4-D, acetochlor, metolachlor, sethoxydim, nicosulfuron, clopyralid, fluroxypyr, metsulfuron-methyl, amidosulfuron, tribenuron, and others can also be employed. It is generally preferred to use the compounds in conjunction with other herbicides that have a similar crop selectivity. It is further usually preferred to apply the herbicides at the same time, either as a combination formulation or as a tank mix.

Throughout the description and claims of the specification the word "comprise" and variations of the word, such as "comprising" and "comprises", is not intended to exclude other additives, components, integers or steps.

-38-

The compounds of the present invention can generally be employed in combination with a wide variety of known herbicide safeners, such as cloquintocet, mefenpyr, furilazole, dichlormid, benoxacor, flurazole, fluxofenim, daimuron, dimepiperate, thiobencarb, and fenclorim to enhance their selectivity. Herbicide safeners that act by modifying the metabolism of herbicides in plants by enhancing the activity of cytochrome P-450 oxidases are usually especially effective. This is often a preferred embodiment of the invention. The compounds can additionally be employed to control undesirable vegetation in many crops that have been made tolerant to or resistant to herbicides by genetic manipulation or by mutation and selection. For example, corn, wheat, rice, soybean, sugarbeet, cotton, canola, and other crops that have been made tolerant or resistant to herbicides in general or to herbicides that inhibit the enzyme acetolactate synthase in sensitive plants can be treated.

EXAMPLES

The following Examples are presented to illustrate the various aspects of this invention and should not be construed as limitations to the claims.

1. Preparation of 2-Propylthio-3-(trifluoromethyl)anisole A solution of 30 mL (milliliter) (208 mmol) (millimole). of 3-(trifluoromethyl)anisole in 500 mL of dry tetrahydrofuran was cooled to $-70\,^{\circ}\text{C}$ under a nitrogen blanket and 100 mL (250 mmol) of 2.5 M butyl lithium in hexane was added slowly with stirring and cooling. The reddish solution was stirred at $-70\,^{\circ}\text{C}$ for 1 hour and then 42 mL (270 mmol) of dipropyl disulfide was added slowly with stirring and cooling. The resulting mixture was allowed to warm to ambient temperature over an 18-hour period. The mixture was quenched with 250 mL of saturated aqueous ammonium chloride. The organic phase was recovered, dried over magnesium sulfate, and concentrated by evaporation under reduced pressure. The yellow oil residue was fractionally distilled in a Vigreux column at 0.2 mm Hg (millimeters of mercury) (27 Pascals) to obtain 37 g (gram) (71 percent of theory) of a clear liquid product fraction boiling at 92°C. This fraction was found to be 82 percent the title compound, 10 percent the isomer 2-propylthio-5-(trifluoromethyl)anisole.

-39-

Elemental Analysis C11H13F3OS

Calc.: %C, 52.8; %H, 5.24; %S, 12.8 Found: %C, 52.7; %H, 5.11; %S, 11.9

NMR: 1 H (CDCl₃): 7.02(m, 3H), 3.96(s, 3H), 2.83(t, 2H, J=7.4), 1.54-5 1.04(m, 2H), 0.93(t, 3H, J=7.4).

2. Preparation of 2-(Benzylthio)anisole

A solution of 25.0 g (178 mmol) of 2-methoxythiophenol in 50 mL of dry tetrahydrofuran was added dropwise to a mixture of 22.0 g (196 mmol) of potassium t-butoxide and 100 mL of

10 tetrahydrofuran at 0°C with stirring. A solution of 25 mL (214 mmol) of benzyl chloride in 50 mL of tetrahydrofuran was added to this with stirring and cooling and the mixture was then allowed to warm to ambient temperature and was stirred for 18 hours. The resulting mixture was concentrated by evaporation under reduced pressure and

15 the residue was diluted with 300 mL of dichloromethane. The solution obtained was washed with water, dried over magnesium sulfate, and concentrated by evaporation under reduced pressure. The residue was the title compound, a white solid melting at 69-70°C.

Elemental Analysis C14H14OS

20 Calc.: %C, 73.0; %H, 6.13; %S, 13.9 Found: %C, 73.0; %H, 6.13; %S, 13.7

NMR: 1 H (CDC1₃): 7.2(m, 7H), 6.8(m, 2H), 4.1(s, 2H), 3.90(s, 3H).

3. Preparation of Methyl 2-Propylthio-3-methoxybenzoate

A solution of 65.3 g (318 mmol) of 3-(4,4-dimethyl-oxazolin-2-yl)anisole in 400 mL of dry tetrahydrofuran was cooled to -70°C and then 165.5 mL (414 mmol) of 2.5 M butyl lithium was added with cooling and stirring. The burgundy solution was warmed to -40°C with stirring for 90 min. It was then cooled to -70°C and a solution of 62.2 g (414 mmol) of dipropyl disulfide in 100 mL of dry tetra-hydrofuran was added dropwise with stirring and cooling. The resulting mixture was allowed to warm to ambient temperature over a 90-min period and the pink, milky suspension obtained was neutralized with 300 mL of saturated aqueous ammonium chloride. The phases were separated and the organic phase was dried over magnesium sulfate, filtered, and concentrated by evaporation under reduced pressure. The residual gold oil was fractionally distilled at 0.6 mm Hg (80 Pascals) in a 2x10 cm (centimeter) Vigreux column to obtain 76.0 g

(86 percent of theory) of 2-propylthio-3-(4,4-dimethyloxazolin-2-

-40-

-yl)anisole as a light yellow oil boiling at $155-157^{\circ}C$ (0.6 mm Hg). NMR: ^{1}H (CDCl₃): 7.25(t, 1H, J=7.8), 7.06(dd, 1H, J=7.6, 1.3), 6.90(dd, 1H, J=8.3, 1.2), 4.09(s, 2H), 3.87(s, 3H), 2.76(t, 2H, J=7.2), 1.44(m, 2H), 1.37(s, 6H), 0.89(t, 3H, J=7.4).

A suspension of 58.2 g (209 mmol) of 2-propylthio-3-(4,4-dimethyloxazolin-2-yl)anisole in 6N aqueous hydrochloric acid
was heated at reflux with stirring for 18 hours. The resulting
homogeneous solution was extracted with 3x100 mL of diethyl ether and
the combined extracts were dried over magnesium sulfate, filtered,
and concentrated by evaporation under reduced pressure. The
resulting amber oil was purified by flash chromatography on a silica
gel column eluting with mixtures of hexane and ethyl acetate. The
product-containing fractions were combined and concentrated by
evaporation under reduced pressure to obtain 38.7 g (82 percent of
theory of 2-propylthio-3-methoxybenzoic acid as a viscous gold oil.
NMR: ¹H (CDCl₃): 12.3(brs, 1H), 7.55(dd, 1H, J=7.8, 1.1), 7.33(t, 1H,
J=8.1), 7.01(dd, 1H, J=8.3, 0.9), 3.88(s, 3H), 2.80(t, 2H, J=7.5),
1.49(m, 2H), 0.90(t, 3H, J=7.3).

A suspension of 38.1 g (169 mmol) of 2-propylthio-3--methoxybenzoic acid in 100 g (843 mmol) of thionyl chloride was 20 prepared and stirred at ambient temperature for 18 hours. The resulting solution was concentrated by evaporation under reduced pressure to obtain 39.7 g of crude acid chloride. A 8.7 g (36 mmol) portion of this was dissolved in 100 mL of dry methanol, the solution was cooled to $0\,^{\circ}\text{C}$, and 4.7~g (46 mmol) of triethylamine was added with stirring and cooling. The mixture was allowed to warm to ambient temperature over 18 hours with stirring. The resulting mixture was concentrated by evaporation under reduced pressure and the dark, oily residue was dissolved in 250 mL of diethyl ether. The ethereal solution was washed with 2x200 mL of water, dried over magnesium sulfate, filtered, and concentrated by evaporation under reduced pressure to obtain 8.4 g (99 percent of theory) of the title compound as a dark oil.

NMR: ¹H (CDCl₃): 7.26(t, 1H, J=8.2), 7.03(d, 1H, J=8.4), 6.92(d, 1H, J=8.2), 3.87(s, 3H), 2.77(t, 2H, J=7.4), 1.45(m, 2H), 0.89(t, 3H, J=7.4).

4. Preparation of 2-Methoxy-3-propylthio-4-(trifluoromethyl)pyridine

A solution prepared by adding 110 mL (154 mmol) of 1.4 M methyl lithium in diethyl ether to 70 mL of dry tetrahydrofuran under a nitrogen blanket was cooled with a dry ice/acetone bath and to it was added with cooling and stirring 12.4 g (70 mmol) of 2-methoxy-4-(trifluoromethyl)pyridine and 0.92 mL (7 mmol) of diisopropylamine. The mixture was allowed to warm to -40°C was then recooled in a dry ice/acctone bath. Dipropyl disulfide (33 mL, 210 mmol) was added dropwise with stirring and cooling. The resulting mixture was allowed to warm to ambient temperature and was then diluted with 150 mL of water and extracted with diethyl ether. The ethereal extract was dried over magnesium sulfate and concentrated by evaporation under reduced pressure. The tan oil residue was purified by chromatography on silica gel eluting with a mixture of hexane and ethyl acetate to obtain 14.1 g (80 percent of theory) of the title compound as a light yellow oil.

Elemental Analysis C10H12NF3OS

15

Calc.: %C, 47.8; %H, 4.81; %N, 5.57; %S, 12.8 Found: %C, 48.1; %H, 5.33; %N, 5.33; %S, 12.7

20 NMR: 1 H (CDCl₃): 8.18(d, 1H, J=5.7), 7.12(d, 1H, J=5.7), 4.00(s, 3H), 2.85(t, 2H, J=7.4), 1.47-1.46(m, 2H), 0.93(t, 3H, J=7.2).

The following 3-propylthiopyridine compounds were prepared similarly:

2-Methoxy-3-propylthiopyridine - a colorless oil boiling at 80° C under 0.3 mm Hg (40 Pascals) pressure; Elemental Analysis $C9H_{13}OS$

25 Calc.: %C, 59.0; %H, 7.15 Found: %C, 59.1; %H, 7.12;

2-Chloro-4-methoxy-3-propylthiopyridine - a clear oil; NMR: 1 H (CDCl₃): 8.21(d, 1H, J=5.6), 6.77(d, 1H, J=5.6), 3.97(s, 3H), 2.85(t, 2H, J=7.5), 1.57-1.50(m, 2H), 0.99(t, 3H, J=7.3); and

- 30 4-Chloro-2-methoxy-3-propylthiopyridine a yellow oil; NMR: ¹H (CDCl₃): 7.96(d, 1H, J=5.2), 6.98(d, 1H, J=5.6), 4.02(s, 3H), 2.88(t, 2H, J=7.3), 1.54-1.51(m, 2H), 0.96(t, 3H, J=7.8).
 - $\begin{tabular}{ll} 5. & \underline{ \mbox{Preparation of 2-Methoxy-6-(trifluoromethyl)benzenesulfonyl} \\ \underline{ \mbox{Chloride}} \end{tabular}$
- A mixture containing 20.0 g (80 mmol) of an 82:10:8 mixture of 2-propylthio-3-(trifluoromethyl)anisole: 2-propylthio-5-

-42-

-(trifluoromethyl)anisole: unknown, 250 mL of chloroform, and 125 mL of water was cooled to 0°C with an ice bath and 21.6 g (305 mmol) of chlorine gas was added slowly with stirring. After 2.5 hours the organic phase was separated, dried over magnesium sulfate, and concentrated by evaporation under reduced pressure. The residual clear oil was mixed with 100 mL of pentane and the mixture was allowed to stand at ambient temperature for 18 hours and under refrigeration for 3 hours to crystallize the oil. The solids were collected by filtration to obtain 11.9 g (54 percent of theory) of the title compound as white crystals melting at 86-88°C.

NMR: ¹H (CDCl₃): 7.8(dd, 1H, J=7.9, 8.6), 7.53(d, 1H, J=7.9), 7.46(d, 1H, J=8.6), 4.1(s, 3H).

6. Preparation of 2-Methoxybenzenesulfonyl Chloride

A solution of 34.1 g (149 mmol) of 2-(benzylthio)anisole in 300 mL of chloroform was combined with 150 mL of water and the mixture cooled with an ice bath. Chlorine gas (39 g, 550 mmol) was added to this with cooling and stirring at a rate such that the temperature remained below 5°C. The ice bath was then removed and the yellow mixture was allowed to warm to ambient temperature and stir for 18 hours. The layers were then separated and the chloroform layer was dried over magnesium sulfate and concentrated by evaporation under reduced pressure. The residue was an oil that on standing formed 21.3 g (69 percent of theory) of white crystals of the title compound melting at 52-53°C.

5 NMR: 1 H (CDCl₃): 7.93-7.76(m, 1H), 7.70-7.65(m, 1H), 7.13-7.06(m, 1H), 4.0(s, 3H).

7. Preparation of Methyl 2-Chlorosulfonyl-3-methoxybenzoate

30

A mixture of 7.8 g (32 mmol) of methyl 3-methoxy-2-propylthiobenzoate, 2.3 g (130 mmol) of water, and 30 mL of glacial acetic acid was prepared and warmed to 45°C. Chlorine gas (7.6 g, 107 mmol) was added with stirring. The dark mixture turned light orange and the temperature rose to 75°C. After 1 hour the mixture was poured into 600 mL of ice and water and stirred until all of the ice melted. The solids present were recovered by filtration and dissolved in 500 mL of diethyl ether. The ether solution was dried over magnesium sulfate, filtered, and concentrated by evaporation under reduced pressure. The tan solid residue was flash chromatographed on silica gel eluting with a mixture of hexane and

ethyl acetate. The product-containing fractions were combined and concentrated by evaporation under reduced pressure to obtain 5.32~g (62 percent of theory) of the title compound as a light pink solid melting at $106.5\text{--}108.5^{\circ}\text{C}$.

5 Elemental Analysis C9H9ClO5S

30

Calc.: %C, 40.8; %H, 3.43; %S, 12.1 Found: %C, 40.7; %H, 3.62; %S, 11.8

NMR: 1 H (CDCl₃): 7.68(t, 1H, J=8.0), 7.21(d, 1H, J=8.7), 7.03(d, 1H, J=7.5), 4.05(s, 3H), 3.90(s, 3H).

10 8. Preparation of 2,6-Dimethoxybenzenesulfonyl Chloride

A solution of 15.0 g (108 mmol) of 1,3-dimethoxybenzene and 13.8 g (119 mmol) of N,N,N',N'-tetramethylethylenediamine in 225 mL of dry petroleum ether was prepared and cooled to 0°C and then 47.5 mL (119 mmol) of 2.5 M butyl lithium in hexane was added with cooling and stirring. After 1 hour the mixture was cooled to about $-72\,^{\circ}\text{C}$ and about 70 g (1 mol) of sulfur dioxide was added with stirring as a saturated solution in 100 mL of dry diethyl ether. The resulting light yellow mixture was warmed to 10°C over a 2-hour period and then the sticky yellow solids present were collected by filtration and washed with several portions of dry diethyl ether. The solids were suspended in 400 mL of dry hexane, the suspension cooled to $0\,^{\circ}\text{C}$, and 14.6~g (108 mmol) of sulfuryl chloride as a solution in 200 mL of dry hexane was added with stirring and cooling. After 45 min at 0°C the resulting pink solids were collected by filtration, washed with cold hexane, and dissolved in diethyl ether. The resulting solution was washed with 3x150 mL of cold water, dried over magnesium sulfate, filtered, and concentrated by evaporation under reduced pressure to obtain 19.4 g (76 percent of theory) of the

title compound as a light yellow crystalline solid melting at

The following compound was prepared similarly: 2,4-Dimethoxypyridine-3-sulfonyl chloride - a tan solid melting at 118-120°C;

35 NMR: 1 H (CDCl₃): 8.26(d, 1H, J=5.9), 6.66(d, 1H, J=5.9), 4.11(s, 3H), 4.05(s, 3H).

-44-

9. Preparation of 2-Ethoxy-5-methylbenzenesulfonyl Chloride

A solution of 6.8 g (50 mmol) of 4-ethoxytoluene in 20 mL of dichloromethane was added to a solution of 10 mL (150 mmol) of chlorosulfonic acid in 10 mL of dichloromethane at 0°C with cooling and stirring. The mixture was stirred 1 hour at 0°C and was then warmed to ambient temperature and stirred another hour. The resulting tan solution was poured into 200 mL of ice water and the mixture was extracted with dichloromethane. The extract was dried over magnesium sulfate and concentrated by evaporation under reduced pressure. The residual 7.9 g (68 percent of theory) of light tan solid melting at 59-61°C was the title compound.

NMR: ¹H (CDC13): 7.71(d, 1H, J=2.2), 7.4 (dd, 1H, J=8.5, 2.2), 6.95(d,

NMR: 1 H (CDCl₃): 7.71(d, 1H, J=2.2), 7.4(dd, 1H, J=8.5, 2.2), 6.95(d, 1H, J=8.5), 4.23(q, 2H, J=7.0), 1.49(t, 3H, J=7.0).

10. <u>Preparation of 2-Methoxy-4-(trifluoromethyl) pyridine-3-sulfonyl</u> 15 <u>Chloride</u>

Fifty mL of water was combined with a solution of 7.0 g (28 mmol) of 2-methoxy-3-propylthio-4-(trifluoromethyl)pyridine in 100 mL of dichloromethane and the mixture was cooled with an ice bath. Chlorine gas (5.1 mL, 112 mmol) was added slowly with stirring and cooling. The mixture was then allowed to warm to ambient temperature and stir for 3 hours. The layers were separated and the organic layer was dried over magnesium sulfate and concentrated by evaporation under reduced pressure. The yellow oil residue was purified by chromatography on silica gel eluting with a mixture of hexane and ethyl acetate. The fractions containing product were combined and concentrated by evaporation under reduced pressure to obtain 4.9 g (64 percent of theory of the title compound as a light yellow oil.

NMR: ^{1}H (CDCl₃): 8.6(d, 1H, J=5.4), 7.4(d, 1H, J=5.4), 4.2(s, 3H).

30 The mass spectrum had a parent peak M^{+} 275.

The following pyridine-3-sulfonyl chloride compounds were prepared similarly:

4-Chloro-2-methoxypyridine-3-sulfonyl chloride; NMR: 1 H (CDCl₃): 8.23(d, 1H, J=5.6), 7.11(d, 1H, J=5.2), 4.17(s, 3H);

35 mass spectrum parent peak M+ 275;

2-Chloro-4-methoxypyridine-3-sulfonyl chloride - a tan crystalline solid:

NMR: 1 H (CDC13): 8.47(d, 1H, J=5.9), 7.03(d, 1H, J=5.9), 4.13(s, 3H);

2-Methoxypyridine-3-sulfonyl chloride - a clear oil; NMR: 1 H (CDCl₃): 8.46-8.44(dd, 1H, J=1.9, 4.9), 8.22-8.19(dd, 1H, J=1.9, 7.8), 7.08-7.04(dd, 1H, J=4.9, 7.8), 4.16(s, 3H).

11. Preparation of 2-(1,1,2,2-Tetrafluoroethoxy)benzenesulfonyl Chloride

10

30

A solution containing $3.8\ g\ (55\ mmol)$ of sodium nitrite in 6 mL of water was added slowly with cooling and stirring to a mixture of 12.3 g (50 mmol) of 2-(1,1,2,2-tetrafluoroethoxy)aniline, 18 mL of concentrated aqueous hydrochloric acid, and 5 mL of acetic $\,$ acid that was precooled to -10°C. After 45 min, the resulting mixture was added in portions to a -10°C solution of 1.3 q (18 mmol) of cuprous chloride and 0.5 g (4 mmol) of cupric chloride in 50 mL of acetic acid saturated with sulfur dioxide (more than 12 g). The mixture was then warmed to ambient temperature and stirred for 90 min after which it was poured onto ice. The mixture obtained was extracted with diethyl ether and the extract was washed with water, dried over magnesium sulfate, and concentrated by evaporation under reduced pressure. The residue was chromatographed on silica gel eluting with a mixture of hexane and ethyl acetate. The fractions containing product were combined and concentrated by evaporation

title compound as a yellow oil. NMR: 1 H (CDCl₃): 8.07(dd, 1H, J=1.7, 8.0), 7.76(ddd, 1H, J=1.7, 7.8, 8.1), 7.59(dd, 1H, J=1.2, 8.1), 7.45(ddd, 1H, J=1.2, 7.8, 8.0), 6.05(tt, 1H, J=4.0, 53.0). The mass spectrum had a parent peak M⁺ 292.

under reduced pressure to obtain 11.0 g (75 percent of theory) of the

12. Preparation of 3-Amino-8-chloro-5-methylthio{1,2,4}triazolo-[4,3-c]pyrimidine Hydrobromide

A solution of 40 mL (120 mmol) of 3 molar cyanogen bromide in dichloromethane was combined with 19.0 g (100 mmol) of 5-chloro-4-hydrazino-2-methylthiopyrimidine and 200 mL of dry isopropyl alcohol at ambient temperature with stirring. The resulting mixture was stirred for 18 hours and then diluted with 500

-46-

mL of diethyl ether. The solids that formed were recovered by filtration and dried to obtain the theoretical amount of the title compound as a yellow solid melting above 250°C .

Elemental Analysis C6H7N5BrClS

20

Calc.: %C, 24.3; %H, 2.38; %N, 23.6; %S, 10.8 Found: %C, 26.1; %H, 2.69; %N, 24.0; %S, 12.2;

NMR: 1 H (DMSO-d6): 7.80(s, 1H), 2.67(s, 3H); 13 C: 150.96, 147.90, 143.10, 138.38, 113.16, 14.22.

The following 3-amino[1,2,4]triazolo[4,3-c]pyrimidine compounds were prepared similarly:

3-Amino-8-fluoro-5-methylthio[1,2,4]triazolo[4,3-c]pyrimidine hydrobromide - a yellow solid melting at $168-170^{\circ}\text{C}$; Elemental Analysis $C_6H_7N_5BrFS$

Calc.: %C, 25.7; %H, 2.51; %N, 25.0; %S, 11.4

Found: %C, 25.7; %H, 2.52; %N, 25.0; %S, 11.5;

3-Amino-8-methoxy-5-methylthio[1,2,4]triazolo[4,3-c]pyrimidine hydrobromide ~ a tan solid melting at $\cdot 180-182^{\circ}C$; Elemental Analysis $C_7H_{10}N_5BrOS$

Calc.: %C, 28.8; %H, 3.45; %N, 24.0; %S, 11.0 Found: %C, 29.0; %H, 3.44; %N, 23.9; %S, 11.1;

3-Amino-8-iodo-5-methylthio[1,2,4]triazolo[4,3-c]pyrimidine hydrobromide - a yellow solid melting at $197-199^{\circ}$ C; Elemental Analysis C6H7N5BrIS

Calc.: %C, 18.6; %H, 1.82; %N, 18.1; %S, 8.26 Found: %C, 19.0; %H, 2.28; %N, 18.0; %S, 8.54;

3-Amino-8-bromo-5-methylthio[1,2,4]triazolo[4,3-c]pyrimidine hydrobromide - a yellow solid melting at 193-195°C; Elemental Analysis $C_6H_7N_5Br_2S$

Calc.: %C, 21.1; %H, 2.07; %N, 20.5; %S, 9.40 30 Found: %C, 21.3; %H, 2.14; %N, 20.6; %S, 9.33;

3-Amino-8-methyl-5-methylthio[1,2,4]triazolo[4,3-c]pyrimidine hydrobromide - a yellow solid melting at 234-236°C; Elemental Analysis C7H10N5BrS

Calc.: %C, 30.6; %H, 3.30; %N, 25.5; %S, 11.7 Found: %C, 30.7; %H, 3.52; %N, 25.3; %S, 11.5; 3-Amino-8-ethoxy-5-methylthio[1,2,4]triazolo[4,3-c]pyrimidine hydrobromide - a yellow powder melting at $160-163^{\circ}C$; and

3-Amino-5-methylthio[1,2,4]triazolo[4,3-c]pyrimidine hydrobromide - a tan solid;

5 NMR: 1 H (DMSO-d6): 7.52(d, 1H, J=6.6), 7.13(d, 1H, J=6.7), 6.08(s, 2H), 2.61(s, 3H).

13. Preparation of 2-Amino-8-chloro-5-methoxy[1,2,4]triazolo[1,5-c]-pyrimidine

A mixture of 15.0 g (51 mmol) of 3-amino-8-chloro-5
-methylthio{1,2,4]triazolo[4,3-c]pyrimidine hydrobromide, 8.2 mL (76 mmol) of ethyl acrylate, and 150 mL of methanol was prepared and cooled in an ice bath. A solution of 17 mL (76 mmol) of 4.5 molar sodium methoxide in methanol was added to this slowly with cooling and stirring. When the addition was complete, the mixture was allowed to warm to ambient temperature and was stirred for 18 hours.

It was then neutralized with 2.0 mL of acetic acid. The solids that formed were recovered by filtration, washed with diethyl ether, and dried to obtain 7.7 g (75 percent of theory) of the title compound as a tan powder melting above 250°C.

20 Elemental Analysis C6H6N5ClO

Calc.: %C, 36.1; %H, 3.03; %N, 35.1% Found: %C, 36.1; %H, 3.19; %N, 34.8%

NMR: 1 H (DMSO-d6): 8.0(s, 1H), 6.6(brs, 2H), 4.1 (s, 3H); 13 C 166.40, 151.65, 147.73, 140.95, 108.57, 56.12.

25 The following 2-amino[1,2,4]triazolo[1,5~c]pyrimidine compounds were prepared similarly:

2-Amino-8-fluoro-5-methoxy[1,2,4]triazolo[1,5-c]pyrimidine - tan needles melting above 230°C;

Elemental Analysis C6H6N5FO

30 Calc.: %C, 39.4; %H, 3.30; %N, 38.2% Found: %C, 39.5; %H, 3.28; %N, 37.7%;

2-Amino-5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidine ~ a tan powder melting at 201-203°C;

Elemental Analysis C7H9N5O2

35 Calc.: %C, 43.1; %H, 4.65; %N, 35.9% Found: %C, 43.2; %H, 4.67; %N, 35.6%;

-48-

2-Amino-7-fluoro-5-methoxy[1,2,4]triazolo[1,5-c]pyrimidine - a tan powder melting above 250°C;

Elemental Analysis C₆H₆N₅FO

Calc.: %C, 39.4; %H, 3.30; %N, 38.2% Found: %C, 39.6; %H, 3.31; %N, 38.2%;

2-Amino-8-iodo-5-methoxy[1,2,4]triazolo[1,5-c]pyrimidine - a tan solid melting above $250^{\circ}C$;

Elemental Analysis C6H6N5IO

Calc.: %C, 24.8; %H, 2.08; %N, 24.1% Found: %C, 25.0; %H, 1.96; %N, 23.8%;

2-Amino-8-methyl-5-methoxy[1,2,4]triazolo[1,5-c]pyrimidine - a tan solid melting above 250°C;

Elemental Analysis C7H9N5O

10

Calc.: %C, 46.9; %H, 5.06; %N, 39.1% Found: %C, 46.7; %H, 4.84; %N, 39.1%;

2-Amino-8-ethoxy-5-methoxy[1,2,4]triazolo[1,5-c]pyrimidine - a light tan solid melting at $190-191^{\circ}C$; and

2-Amino-5-methoxy[1,2,4]triazolo[1,5-c]pyrimidine - a tan solid melting above 250°C;

20 NMR: 1 H (DMSO-d6): 7.82(d, 1H, J=6.3), 7.03(d, 1H, J=6.1), 6.31(s, 2H), and 4.12(s, 3H).

14. Preparation of 2-(N-Trimethylsilylamino)-8-chloro-5-methoxy-[1,2,4]triazolo[1,5-c]pyrimidine

A mixture of 12.7 g (85 mmol) of sodium iodide in 425 mL
of dry acetonitrile was prepared under nitrogen in a predried 2 L
flask and to this mixture 9.25 g (10.8 mL, 85 mmol) of chlorotrimethylsilane was added by means of a syringe at ambient temperature with stirring. After 10 min, 17.0 g (85 mmol) of 2-amino-8-chloro-5-methoxy[1,2,4]triazolo[1,5-c]pyrimidine and 8.62 g (11.9 mL, 85
mmol) of triethylamine were added with stirring. The mixture was allowed to react for 12 hours at ambient temperature with stirring and was then diluted with 500 mL of dry diethyl ether. The salts that precipitated were removed by filtration on a dry scintered glass filter and the filtrate was concentrated by evaporation under reduced pressure. The residue was diluted with another 500 mL of dry diethyl ether the salt removal procedure was repeated. The title compound

-49-

was obtained as the solid residue and amounted to $19.5~\mathrm{g}$ (84 percent of theory).

15. Preparation of (N-(8-Chloro-5-methoxy[1,2,4]triazolo[1,5-c]-pyrimidin-2-yl)-2-methoxy-6-(trifluoromethyl) benzenesul fonamide

A solution of 19.5 g (72 mmol) of 2-(N-trimethylsilyl-amino)-8-chloro-5-methoxy[1,2,4]triazolo[1,5-c]pyrimidine dissolved in 150 mL of dry acetonitrile was prepared and 27.5 g (100 mmol) of 2-methoxy-6-(trifluoromethyl)benzenesulfonyl chloride was added at ambient temperature under nitrogen with stirring. To this was added sequentially with stirring 6.7 g (6.9 mL, 85 mmol) of dry pyridine, 0.66 g (0.60 mL, 8.5 mmol) of dry dimethyl sulfoxide, and 13.7 g (85 mmol) of cesium fluoride. The mixture was allowed to react for 8 hours and then the solids present were recovered by filtration. These solids were slurried in 100 mL of 0.38 percent aqueous hydrochloric acid and recovered by filtration and then slurried in 100 mL of methanol and recovered by filtration. The white solid recovered was dried to obtain 21.3 g (68 percent of theory) of the title compound melting at 216-217°C.

Elemental Analysis C14H11N5ClF3O4S

5

20

Calc.: %C, 38.4; %H, 2.53; %N, 16.0 Found: %C, 38.6; %H, 2.50; %N, 16.1

16. Preparation of (N-(8-Chloro-5-methoxy[1,2,4]triazolo[1,5-c]-pyrimidin-2-yl)-2,6-dimethoxybenzenesulfonamide

A suspension of 0.80 g (4.0 mmol) of 2-amino-8-chloro-5-methoxy[1,2,4]triazolo[1,5-c]pyrimidine in 15 mL of dry acetonitrile was prepared and 1.90 g (8.0 mmol of 2,6-dimethoxybenzenesulfonyl chloride, 0.63 g (8.0 mmol) of dry pyridine, and 0.08 g (1 mmol) of dry dimethyl sulfoxide were added with stirring at ambient temperature, keeping the system dry. After 18 hours another 0.32 g of dry pyridine was added and after another 18 hours another 0.08 g of dry dimethyl sulfoxide was added. After 1 more hour the mixture was diluted with 350 mL of dichloromethane and the resulting mixture was washed with 3x150 mL of water, dried over magnesium sulfate, filtered, and concentrated by evaporation under reduced pressure. The orange oil residue was triturated with diethyl ether to obtain the title compound as a light yellow solid which, after drying, amounted to 1.41 g (88 percent of theory) and melted at 215.5-217.5.

Elemental Analysis C14H14N5ClO5S

Calc.: %C, 42.1; %H, 3.53; %N, 17.5; %S, 8.02 Found: %C, 42.2; %H, 3.62; %N, 17.1; %S, 7.70

NMR: 1 H (DMSO-d6): 11.74(S, 1H), 8.10(s, 1H), 7.44(t, 1H, J=8.5), 6.75(d, 2H, J=8.4), 4.11(s, 3H), 3.88(s, 3H), 3.77(s, 6H).

17. Preparation of 2-Carbomethoxy-6-methoxy-(N-(5,8-dimethoxy-[1,2,4]triazolo[1,5-c)pyrimidin-2-yl)benzenesulfonamide

A suspension of 0.70 g (3.5 mmol) of 2-amino-5,8--dimethoxy[1,2,4]triazolo[1,5-c]pyrimidine in 15 mL of dry 10 acetonitrile was prepared and 1.84 g (7.0 mmol of methyl 2-chlorosulfonyl-3-methoxybenzoate, 0.55 g (7.0 mmol) of dry pyridine, and 0.07 g (0.9 mmol) of dry dimethyl sulfoxide were added with stirring at ambient temperature, keeping the system dry. After 18 hours another 0.92 g of dry pyridine and 0.07 g of dry dimethyl sulfoxide were added, after another 36 hours another 0.92 g of dry pyridine was 15 added, and after another 18 hours another 0.92 g of dry pyridine and another 0.07 g of dry dimethyl sulfoxide were added. After 18 more hours the mixture was diluted with 300 mL of dichloromethane. The organic phase was recovered and washed with 2x200 mL of water and $2x200\ \text{mL}$ of 2 N aqueous hydrochloric acid, dried over magnesium sulfate, filtered, and concentrated by evaporation under reduced pressure. The tan solid residue was triturated with diethyl ether to obtain the title compound as an 80 percent purity white solid. This solid was chromatographed twice on a silica gel column, eluting with a dichloromethane/ethanol/acetic acid mobile phase (which was largely unsuccessful) and was then recrystallized from hot methanol. The product obtained was 0.274 g (19 percent of theory) of shiny white needles melting at 215-217°C.

Elemental Analysis C₁₆H₁₇N₅O₇S

Calc : %C 45 4: %H

Calc.: %C, 45.4; %H, 4.05; %N, 16.5; %S, 7.57
Found: %C, 44.7; %H, 3.96; %N, 16.2; %S, 7.93

NMR: ¹H (DMSO-d6): 11.76(s, 1H), 7.60(t, 1H, J=8.3), 7.28(d, 1H, J=8.3), 7.05(d, 1H, J=7.6), 4.07(s, 3H), 3.88(s, 3H), 3.81(s, 3H), 3.78(s, 3H).

35 18. Preparation of 2,6-Dimethoxy-(N-(5,8-Dimethoxy{1,2,4]triazolo-(1,5-c)pyrimidin-2-yl)benzenesulfonamide

A suspension of 0.80 g (4.1 mmol) of 2-amino-5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidine in 15 mL of dry acetonitrile

-51-

was prepared and 1.94 g (8.2 mmol of 2,6-dimethoxybenzenesulfonyl chloride, 0.65 g (8.2 mmol) of dry pyridine, and 0.08 g (1 mmol) of dry dimethyl sulfoxide were added at ambient temperature with stirring, keeping the system dry. After 24 hours the mixture was diluted with 200 mL of dichloromethane. The organic phase was recovered and washed with 2x200 mL of water and 2x200 mL of 2 N aqueous hydrochloric acid, dried over magnesium sulfate, filtered, and concentrated by evaporation under reduced pressure. The orange solid residue was dissolved in 5 mL of dichloromethane and then diethyl ether was added dropwise with stirring. The gray solid that formed was recovered by filtration, washed with ether, and dried at 50°C under reduced pressure to obtain 1.11 g (68 percent of theory) of title compound as an off-white solid melting at $239\text{-}240.5^{\circ}\text{C}$. Elemental Analysis $C15\text{H}_{17}\text{N}506\text{S}$

Calc.: %C, 45.6; %H, 4.33; %N, 17.7% Found: %C, 45.7; %H, 4.19; %N, 17.6%

15

NMR: 1 H (DMSO-d6): 11.54(s, 1H), 7.55(s, 1H), 7.44(t, 1H, J=8.4), 6.74(d, 2H, J=8.4), 4.06(s, 3H), 3.88(s, 3H), 3.76(s, 6H).

19. Preparation of 2-Methoxy-5-methyl-(N-(5,8-Dimethoxy[1,2,4]-triazolo[1,5-c]) benzenesulfonamide

A mixture of 1.0 g (5.1 mmol) of 2-amino-5,8-dimethoxy-[1,2,4]triazolo[1,5-c]pyrimidine, 2.1 g (10 mmol) of 2-methoxy-5--methylbenzenesulfonyl chloride, and 15 mL of dry acetonitrile was prepared and to this was added at ambient temperature with stirring and means to keep the system dry 0.8 mL (10 mmol) of dry pyridine and 71 microliters (1.0 mmol) of dry dimethyl sulfoxide. The mixture was allowed to stir for 18 hours and then another 1.0 g (5.0 mmol) of 2-methoxy-5-methylbenzenesulfonyl chloride was added. Stirring was continued another 24 hours at which time another 0.4 mL of dry pyridine and 35 microliters of dry dimethyl sulfoxide were added. After stirring another 9 days, the volatiles were removed by evaporation under reduced pressure. The dark residue was diluted with 50 mL of water and 50 mL of diethyl ether and the solids were recovered by filtration. The solids were slurried in dichloromethane and after 2 hours of stirring were recovered by filtration to obtain 1.2 g (63 percent of theory) of the title compound as a white powder melting at 217-219°C.

-52-

Elemental Analysis C15H17N5O5S

Calc.: %C, 47.5; %H, 4.52; %N, 18.5; %S, 8.45 Found: %C, 47.7; %H, 4.61; %N, 18.3; %S, 8.80

NMR: 1 H (DMSO-d6): 12.0(brs, 1H), 8.1(s, 1H), 7.7(t, 1H, J=8.2), 7.56-7.52(m, 2H), 4.06(s, 3H), 4.1(s, 3H), 3.9(s, 3H).

20. Preparation of N-(5,8-Dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-2-methoxy-4-(trifluoromethyl)pyridine-3-sulfonamide

A mixture of 0.75 g (93.8 mmol) of 2-amino-5,8-dimethoxy-{1,2,4}triazolo[1,5-c]pyrimidine, 2.1 g (7.6 mmol) of 2-methoxy-4-(trifluoromethyl)pyridine-3-sulfonyl chloride, and 10 mL of dry acetonitrile was prepared and to this was added at ambient temperature with stirring and means to exclude moisture from the system 0.61 mL (7.6 mmol) of dry pyridine, 43 microliters (0.6 mmol) of dry dimethyl sulfoxide, and a small quantity of dry 4A molecular sieves.

The mixture was stirred for 5 days. Another 1.0 g (3.4 mmol) of

2-methoxy-4-(trifluoromethyl)pyridine-3-sulfonyl chloride and 0.30 mL (3.5 mmol) of dry pyridine were added and the mixture stirred another 2 days. Another 0.30 mL (3.5 mmol) of dry pyridine was added and stirring continued for 4 more days. The mixture was then diluted with 100 mL of dichloromethane and the resulting mixture was washed with 2x100 mL of 2N agueous hydrochloric acid, dried over magnesium

with 100 mL of dichloromethane and the resulting mixture was washed with 2x100 mL of 2N aqueous hydrochloric acid, dried over magnesium sulfate, and concentrated by evaporation under reduced pressure. The tan solid residue was chromatographed on silica gel eluting with a mixture of dichloromethane and ethanol to obtain 0.90 g (54 percent

of theory) of the title compound as a white solid melting at $214-216\,^{\circ}\mathrm{C}$.

Elemental Analysis C14H13N6F3O5S

30

Calc.: %C, 38.7; %H, 3.02; %N, 19.4; %S, 7.38 Found: %C, 38.5; %H, 3.15; %N, 19.4; %S, 7.43

NMR: 1 H (DMSO-d6): 12.3(brs, 1H), 8.64(d, 1H, J=5.3), 7.60-7.58(m, 2H), 4.06(s, 3H), 3.95(s, 3H), 3.86(s, 3H).

21. Preparation of 2-Methoxycarbonyl-6-methoxy-(N-(5-chloro-8-methoxy[1,2,4]triazolo[1,5-a]pyridin-2-yl)benzenesulfonamide

A mixture of 0.90 g (4.5 mmol) of 2-amino-5-chloro-8-methoxy[1,2,4]triazolo[1,5-a]pyridine and 35 mL of dry acetonitrile
was prepared and 2.39 g (9.06 mmol) of methyl 2-chlorosulfonyl-3-methoxybenzoate, 0.72 g (9.1 mmol) of dry pyridine, and 0.071 g
(0.91 mmol) of dimethyl sulfoxide were added with stirring at ambient

-53-

temperature keeping the system dry. After 16 hours another 0.35 g (4.5 mmol) of dry pyridine was added and after an additional 48 hours the volatile components of the mixture were removed by evaporation under reduced pressure. The residue obtained was diluted with 50 mL of dichloromethane and 50 mL of 2N aqueous hydrochloric acid and the mixture was stirred vigorously for 72 hours. The solids present were recovered by filtration and washed with $3x25\ mL$ of water, $3x10\ mL$ of dichloromethane, and 3x10 mL of diethyl ether to obtain the title compound as a white solid. The total filtrate and washes were combined and were diluted with 25 mL of dichloromethane and 25 mL of 2N aqueous hydrochloric acid in a separatory funnel. The phases were separated and the organic phase was washed with $3x50\ \mathrm{mL}$ of 2N aqueous hydrochloric acid. It was then dried over sodium sulfate, filtered, and concentrated by evaporation under reduced pressure to obtain a yellow solid. This was suspended in 5.0 mL of dichloromethane and the solids were recovered by filtration and washed quickly with 2x5.0 mL of dichloromethane and 2x15 mL of diethyl ether to obtain additional title compound as a white solid. The combined title compound amounted to 1.09 g (56 percent of theory) and melted at 290-292°C with decomposition.

Elemental Analysis $C_{16}H_{15}N_4Clo_6S$

30

Calc.: %C, 45.0; %H, 3.45; %N, 13.1; %S, 7.51 Found: %C, 44.9; %H, 3.39; %N, 12.8; %S, 7.79

NMR: 1 H (DMSO-d6): 11.60(s, 1H), 7.62(t, 1H, J=7.69), 7.24(m, 2H), 7.05(m, 2H), 3.92(s, 3H), 3.83(s, 3H), 3.77(s, 3H).

22. <u>Preparation of 2-Methoxycarbonyl-6-methoxy-(N-(5,8-dimethoxy-[1,2,4]triazolo[1,5-a]pyridin-2-yl)benzenesulfonamide</u>

A 0.871 g (2.04 mmol) sample of 2-methoxycarbonyl-6-methoxy-(N-(5-chloro-8-methoxy[1,2,4]triazolo[1,5-a]pyridin-2-yl)-benzenesulfonamide was placed in a dry, closed flask with rubber and glass stoppers. This was dissolved in 20 mL of dry dimethyl sulfoxide added by means of a cannula and 1.39 mL of 6.12 M sodium methoxide in methanol was added by means of a syringe with stirring at ambient temperature. After 16 hours another 0.050 mL of sodium methoxide solution was added and the reaction was allowed to proceed another 18 hours. Sufficient glacial acetic acid was added to make the mixture acidic and then the mixture was poured into 250 mL of dichloromethane. The resulting mixture was washed with 6x200 mL of water, dried over sodium sulfate, filtered, and concentrated by

-54-

evaporation under reduced pressure. The white solid residue obtained was dissolved in 600 mL of dichloromethane and purified by silica gel column chromatography, eluting with mixtures of dichloromethane and ethanol starting with a 99:1 v/v mixture and increasing the amount of ethanol with time. The fractions containing product were combined and concentrated by evaporation under reduced pressure to obtain 496 mg (57 percent of theory) of the title compound as an off-white solid melting at $274-276^{\circ}\mathrm{C}$ with decomposition.

Elemental Analysis C17H18N4O7S

10 Calc.: %C, 48.3; %H, 4.30; %N, 13.3; %S, 7.59 Found: %C, 48.6; %H, 4.26; %N, 13.1; %S, 7.83

NMR: 1 H (DMSO-d6): 11.33(s, 1H), 7.61(t, 1H, J=8.06), 7.28(d, 1H, J=8.51), 7.02(d, 2H, J=7.94), 6.42(d, 1H, J=8.55), 3.98(s, 3H), 3.82(s, 3H), 3.75(s, 3H).

15 23. Evaluation of Postemergence Herbicidal Activity

Seeds of the desired test plant species were planted in Grace-Sierra MetroMix® 306 planting mixture, which typically has a pH of 6.0 to 6.8 and an organic matter content of about 30 percent, in plastic pots with a surface area of 64 square centimeters. When required to ensure good germination and healthy plants, a fungicide treatment and/or other chemical or physical treatment was applied. The plants were grown for 7-21 days in a greenhouse with an approximately 15 hr photoperiod which was maintained at about 23-29°C during the day and 22-28°C during the night. Nutrients and water were added on a regular basis and supplemental lighting was provided with overhead metal halide 1000 Watt lamps as necessary. The plants were employed for testing when they reached the first or second true leaf stage.

A weighed amount of each test compound, determined by the highest rate to be tested, was placed in a 20 mL glass vial and was dissolved in 4 mL of a 97:3 v/v (volume/volume) mixture of acetone and dimethyl sulfoxide to obtain concentrated stock solutions. If the test compound did not dissolve readily, the mixture was warmed and/or sonicated. The concentrated stock solutions obtained were diluted with an aqueous mixture containing acetons, water, isopropyl alcohol, dimethyl sulfoxide, Atplus 411F crop oil concentrate, and Triton X-155 surfactant in a 48.5:39:10:1.5:1.0:0.02 v/v ratio to obtain spray solutions of known concentration. The solutions containing the highest concentration to be tested were prepared by

-55-

diluting 2 mL aliquots of the stock solution with 13 mL of the mixture and lower concentrations were prepared by dilution of appropriate smaller portions of the stock solution. Approximately 1.5 mL aliquots of each solution of known concentration were sprayed evenly onto each of the test plant pots using a DeVilbiss atomizer driven by compressed air pressure of 2 to 4 psi (140 to 280 kiloPascals) to obtain thorough coverage of each plant. Control plants were sprayed in the same manner with the aqueous mixture. In this test an application rate of 1 ppm results in the application of approximately 1 g/Ha.

The treated plants and control plants were placed in a greenhouse as described above and watered by sub-irrigation to prevent wash-off of the test compounds. After 2 weeks the condition of the test plants as compared with that of the untreated plants was determined visually and scored on a scale of 0 to 100 percent where 0 corresponds to no injury and 100 corresponds to complete kill. Some of the compounds tested, application rates employed, plant species tested, and results are given in Table 2.

POSTMERGENCE HERBICIDAL ACTIVITY

					_																				
GWWOT	55	7.0	0	0	75	7.0	99	90	75	98	50	85	06	90	90	0	78	88	98	20	60	78	95	80	80
GWROX				:	1		1		1	90	78	85	90	06	06	78	93	90	85	- 1	1	96		09	06
GWGFT	85	93	70	93	75	20	50	78	7.5	7.5	75	85	85	06	7.5	0	80	85	. 09	0	7.0	40	95	90	75
GWBLG	50	80	20	10	60	7:0	75	85	09	80	30	85	7.5	06	7.5	15	95	7.5	7.0	30	20	50	7.5	50	65
BWWBK	83	83	80	70	80	90	1	8.0			85	85	85	90	80	88	65	06	80	80	66	80	90	90	82
BWVIO	l I)	1	1	80	1	i	1	!	80	7.5	8.5	80	85	85	09	7.5	85	7.5	1		90	!	85	7.5
BWVEL	99	75	7.0	80	80	90	95	95	85	85	06	90	90	75	55	86	1	85	65	100	75	95	66	90	75
BWPIG	95	95	95	96	100	100	80	80	06	100	06	85	80	95	100	100	86	95	100	85	97	100	7.6	06	96
BWMGL	100	100	66	83	85	85	06	86	90	70	96	80	88	90	88	96	7.5	88	80	75	75	98	97	90	80
BWLMQ	66	95	85	97	80	98	98	95	06	95	88	06	65	85	75	1	100	85	65	95	66	1	66	7.0	85
BWCKB	100	100	96	16	85	98	100	98	100	98	95	100	100	96	100	98	100	100	100	90	100	90	100	100	100
ВМСНК	1	-	1		90	1	¦	-		100	80	90	85	100	75	98	90	85	100	-1	- 1	90		86	75
Rate, ppm	125	62.5	125	125	31.3	15.6	62.5		125	1.95	31.3	31.3	3.9	15.6	7.8	125	15.6		7.8	250	31.3	7.8	15.6	31.3	31.3
g g		2	m	4	2	v	7	- C	σ	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

TABLE 2

_	_				_					_	- 1					_	_	-		_		_		_						_
06	90	75	50	80	98	0	78	95	95	90	90	98	78	7.8	80	75	55	60	٥	52	80	30	90	82	100	7.0	95	95	80	90
95	98	70	85	85	80	30	85	80	80	90	95	98	80	78	98	20	30	35	30	45	80	90	70	95	95	0	95	95	75	95
50	78	-	40	80	40	0	80	50	30	95	98	60	60	80	90	40	7.5	20	50	70	90	20	30	40	100	45	95	80	09	78
7.5	85	63	50	40	7.5	0	09	90	09	60	78	85	7.0	65	85	7.5	50	45	35	70	55	90	65	1	90	78	90	100	45	80
75	93	8.0	20	80	80	09	85	100	100	7.5	80	90	80	78	90	78	90	78	80	95	85	50	06	85	90	95	78	90	80	90
78	70	08	7.5	58	85	95	85	85	70	78	95	78	80	78	06	50	95	09	75	95	-09	95	9.0	06	85	78	90	06	7.0	85
80	95	80	90	85	90	90	<u>ω</u>	96	86	7.0	90	90	7.0	06	90	06	95	78	9	100	80	86	06	7.0	50	95	90	55	75	90
100	95	86	100	06	08	95	95	95	95	100	100	100	90	95	95	95	95	06	86	100	95	95	06	100	95	95	100	100	86	95
78	80	78	80	95	95	85	06	7.5	86	78	95	80	90	06	85	96	95	06	95	90	80	06	80	90	78	75	85	78	7.5	85
100	100	100	ŀ	80	80	1	95	65	95	100	100	100	100	100	95	78	30	55	55	75	100	78	100	7.0	7.0	65	9	80	100	80
98	100	100	98	100	100	96	95	100	100	06	78	95	100	100	90	100	100	100	100	100	95	100	95	06	06	100	95	06	100	100
90	88	80	85	7.0	100	95	06	100	90	90	95	98	95	9.5	86	100	95	95	90	100	85	95	95	100	95	100	1	100	85	06
2.0	7.8	1.0	125	7.8	15.6	31.3	7.8	7.8	125	3.9	15.6	3.9	3.9	15.6	8.7	15.6	31.3		7.8		7.8	62.5	15.6	2.0	62.5	7.8	31.3	15.6	0.5	62.5
26	27	28	29	30	33	33	33	34	35	36	37	86	36	40	41	42	43	44	45	46	47	48	49	20	51	3	23	54	55	56

																														_
55	95	06	7.0	20	90	90	80	100	90	85	82	9	80	60	78	7.5	78	7.5	90	95	90	90	70	95	78	0	78	80	78	90
80	95	95	08	30	90	95	70	95	90	90	90	65	90	90	95	90	85	70	100	95	80	85	60	80	78	10	60	30	78	7.5
50	78	25	80	2.0	06	06	85	90	80	70	06	09	70	09	80	. 65	75	20	20	98	30	100	06	80	0	20	45	30	0	70
85	95	95	70	7.0	78	90	7.0	90	90	85	8.0	65	95	80	06	. 07	78	7.0	85	95	78	80	70	78	80	0	10	78	65	80
80	80	95	78	85	85	96	80	90	90	80	78	90	70	70	96	90	78	90	85	95	95	90	06	90	80	80	90	80	90	90
4.5	06	95	09	85	80	90	80	0.6	85	9.0	85	40	06	80	7.5	75	7.0	7.5	85	95	90	80	18	7.5	90	20	78	7.0	85	80
80	90	90	90	85	95	78	65	95	90	96	85	70	95	96	78	80	80	95	96	85	95	75	80	90	90	35	85	06	70	90
85	100	100	06	7.0	100	100	06	100	90	85	100	85	95	90	06	7.0	100	90	100	95	100	95	100	100	100	50	100	80	85	96
80	85	80	60	78	. 06	90	80	06	7.8	06	06	55	90	90	50	7.0	85	06	90	78	06	78	85	95	06	80	85	75	80	78
65	7.8	7.8	65	90	95	95	95	100	85	95	100	09	78	95	95	100	95	100	95	7.0	80	80	100	95	7.5	80	95	9	95	80
90	85	100	100	95	06	90	85	95	09	70	7.0	55	100	95	95	80	80	100	06	06	78	80	95	06	85	98	95	95	08	85
95	95	100	95	80	8.0	95	65	95	95	100	90	65	80	75	06	95	90	7.5	78	95	90	65	95	90	95	90	80	95	06	95
125	62.5	7.8	2.0	250	31.3	31.3	31.3	15.6	62.5	31.3	62.5	31.3	80	2 6	15.6	15.6	2.0	2.0	31.3	15.6	15.6	250	1.0	9.8	31.3	15.6	7.8	7.8	31.3	31.3
57	285	59	9	19	6	63	64	65	99	67	89	69	70	71	75	73	74	7.5	76	77	78	79	80	81	82	83	84	85	86	87

									_																			_		
40	70	7.5	90	78	78	7.5	45	80	95	78	40	0	20	25	20	90	90	85	90	0	30	83	90	7.5	88	88	60	90	80	96
09	80	80	96	96	85	90	30	78	95	80	50	0	55	75	40	90	90	88	88	85	55	90	90	80	85	90	90	88	85	96
40	80	20	65	70	. 08	9.0	40	09	95	06	9	0	50	20	30	90	85	50	70	20	0	50	50	30	8.5	20	25	25	15	20
75	85	7.5	80	2.0	09	18	78	90	90	78	50	0	0	0	0	88	90	70	85	10	20	06	90	70	88	88	65	80	85	09
95	90	06	06	80	8.5	06	90	90	90	85	18	85	78	06	95	82	80	80	80	75	7.0	85	80	50	95	88	7.0	80	95	90
80	06	7.8	90	70	70	78	80	7.8	90	80	7.0	50	9	09	09	88	85	75	80	7.0	55	96	88	83	75	88	96	88	65	90
80	85	80	80	7.5	65	85	95	90	90	80	9	7.0	80	65	95	06	7.5	40	85	85	80	80	88	60	50	83	75	75	93	80
95	90	90	95	06	95	95	95	100	95	100	78	96	96	78	06	100	06	95	85	06	70	100	100	95	100	100	100	95	86	80
06	90	65	78	90	90	90	95	90	85	80	06	78	06	78	78	88	70	09	65	85	90	40	50	7.0	75	50	85	80	78	7.0
09	80	95	70	96	95	95	30	09	9	100	100	70	90	85	95	100	80	88	90	75	40		1	06		1	-	86	100	
70	90	06	78	85	85	85	100	95	7.0	100	100	20	90	7.5	100	100	95	95	100	100	98	100	100	100	100	100	90	100	100	100
95	85	06	90	06	95	85	06	95	95	100	96	90	85	45	95	06	90	80	90	06	95	85	83	78	80	88	78	06	90	90
125	125	62.5	125	3.9	31.3	15.6	31.3	31.3	62.5	62.5	15.6	250	62.5	125	125	15.6	15.6	250	62.5	31.3	31.3	15.6	250	250	15.6	250	250	7.8	15.6	125
88	89	6	5	6	3 8	26	95	96	86	66	100	101	102	103	104	105	106	101	108	109	110	E	112	113	114	115	116	117	118	119

																		_									,			
80	7.5	25	95	65	40	10	75	30	78	7.5	9	90	90	95	0	60	80	65	90	90	85	7.5	80	7.5	70	0	9	0	15	7.8
85	7.8	85	90	85	85	55	06	70	65	85	90	85	90	95	7.0	78	95	90	90	80	90	50	80	80	78	70	90	0	50	70
50	40	0	95	30	30	0	09	0	50	55	20 .	50	30	50	0	2.0	55	7.5	50	40	88	50	06	80	75	10	40	٥	0	90
80	55	50	75	50	30	0	80	78	78	78	75	90	78	95	0	35	95	55	80	85	78	7.5	85	80	78	20	0	0	20	90
06	78	80	85	7.0	80	78	90	7.0	80	85	90	95	78	96	7.5	90	85	90	06	90	78	80	06	75	80	85	80	7.0	85	75
85	70	95	90	09	50	7.0	75	50	50	80	7.5	90	7.5	85	88	78	85	85	95	85	85	95	78	09	l	06	85	90	85	90
85	7.8	80	85	50	20	75	55	25	50	85	95	95	80	66	1	7.0	65	96	06	95	7.8	95	95	78	80	90	06	90	90	90
100	95	100	95	90	90	100	95	95	95	95	95	95	100	06	100	100	95	95	95	100	100	95	100	100	100	80	7.0	70	30	90
80	70	70	70	50	50	80	35	0	0	08	7.5	78	70	78	100	96	7.5	06	06	95	90	80	96	7.8	06	78	85	80	80	85
95	100		-	90	80	100	95	95	65	100	95	100	95	86		ı	09	06	100	80	95	100	90	95	80	40	50	50	20	09
95	100	100	100	-	100	100	06	90	95	06	95	100	85	100	90	100	80	06	70	06	88	95	90	40	50	40	85	06	90	80
85	96	85	95	78	85	200	100	100	95	95	08	95	95	86	100	85	06	95	100	95	85	95	06	06	09	95	06	06	70	100
31.3	7.8		15.6	250	125	15.6	7.8	15.6	60	62.5	15.6	31.3	15.6	, œ	31.3	3 0	125	15.6	3.9	125	31.3	9.8	62.5	62.5	250	7.8	31.3	31.3	31.3	3.9
120	121	122	123	124	125	126	127	128	129	130	131	135	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150

9	20	0	0	95	95	60	60	85	20	80	0	90	90	80	10	80	45	90	25	20	75	7.5	0	0	30	0	20	0	30	90
78	0	50	30	90	100	80	55	95	80	90	70	06	90	95	0	90	70	70	50	75	65	95	0	ọ	70	0	40	0	10	96
60	20	7.0	0	100	100	70	40	100	50	30	20	7.8	70	30	30	30	80	30		80	0	7.0	 	0	45	65	30	20	80	75
78	10	40	0	7.0	9 5	50	55	78	99	70	50	90	75	70	60	80	06	95	7.5	7.0	65	8.0	70	30	90	0	30	0	40	90
75	20	80	80	100	06	09	95	90	06	80	g S	80	80	85	95	70	06	06	100	7.5	40	85	90	80	55	75	75	100	90	90
55	0	0	50	95	08	7.0	75	70	7.0	90	7.8	70	85	75	80	70	80	80	95	75	70	40	95	80	7.0	0	80	7.5	75	75
70	20	85	65	90	80	20	85	96	06	50	65	70	75	78	90	7.0	80	55	90	7.0	85	06	100	75	45	1	100	70	85	20
65	9	80	80	95	95	80	80	100	90	09	80	95	100	90	85	90	85	85	100	95	30	100	100	06	75	75	95	78	85	95
55	20	80	7.0	78	78	7.0	80	78	40	30	20	20	80	9	7.0	40	75	75	90	7.5	85	85	90	75	75	80	7.5	7.5	09	8.0
20	20	!	45	96	75	50	09	75	50	80	9	90	85	09	09	09	90	85	l	85	0	85	95	95	7.0	96	55	95	85	80
80	09	45	06	85	90	0 0	06	06	90	70	85	80	80	95	06	70	8.5	85	100	85	95	95	100	100	85	100	100	100	96	95
06	80	1	80	95	80	S G	200	95	200	85	06	95	06	06	2 2	30	96	2 1	86	7.0	7.0	06	95	85	75	95	80		7.0	08
62.5	125	250	125	31.3	7 8	31.5	15.0	15.6	62.5	31.3	62 5	62.5	31.3	313	7 2 2	125	15.6	1 2 2	15.6	31.3	16.5	31.3	7.8	2.0	125	1.0	313	31.3	31.3	7.8
151	152	153	154	155	156	157	150	159	160	161	12	163	182	165	3 2	1 69	172	175	177	181	182	183	184	185	186	187	188	189	190	191

								_	_					_	_		_								
10	7.5	0	0	90	95	80	0	90	90	35	0	45	0	15	15	0	52	0	90	95	85	80		i) vulus)	
7	7.5	0	30	95	95	80	0	95	95	0	0	45	15	9	25	0	55	0	100	100	90	85	arium)	hederacea) theophrast num convol taberi)	
200	30	25	7.5	7.0	100	30	20	80	75	40	0	55	20	0	7.0	!			7.0	80	85	86	n strumarium,	oea hedi lon the Lygonum ria fai	
00	45	30	0	80	95	85	20	09	90	25	25	06	40	50	7.0	4.0	70	0	100	70	90	90	BWCKB=cocklebur (Xanthium	<pre>BWMGL=morningglory(Ipomoea hederacea) BWVEL=velvetleaf(Abutilion theophrasti) BWWBK=wild buckwheat(Polygonum convolvulus) GWGFT=giant foxtail(Setaria faberi) GWWOT=wild oats(Avena fatua)</pre>	
y ⊃	80	7.5	06	95	95	80	08	06	8.5	06	100	65	100	85	100	9.0	06	06	85	85	80	85	lebur (X	ingglor etleaf(buckwh t foxta oats(A	
07	20	75	80	85	75	09	80	92	75	8.5	25	80	80	85	100	85	100	06	06	7.5	7.5	45	KB=cock	SL=morn. SL=velvi SK=wild ST=gian OT=wild	
<u>د</u>	25	65	85	7.0	65	0	10	80	45	90	09	100	95	100	06	80	95	70	7.0	80	7.0	85	BWCI	BWWC BWWI GWGI GWGI	
007	95	85	100	100	100	100	100	100	100	95	95	75	100	100	100	95	100	06	06	100	7.0	95		es) les) lor)	
U C	25	80	06	7.5	80	70	80	06	09	100	55	80	95	85	85	7.0	90	80	40	95	7.0	80	a)	BWIMQ=lambsquarters(Chenopodium album) BWPIG=pigweed(Amaranthus retroflexus) BWVIO=viola(Viola tricolor) GWBLG=blackgrass(Alopecurus myosuroides) GWROX=Rox orange sorghum(Sorghum bicolor)	
8/	100	80	90	75	7.5	95	80	100	100	100	75	95	95	40	100	1	100	90	100	;	40	95	ia medi	nopodiu. s retro lor) urus my n(Sorgh	
202	95	100	100	95	95	100	100	95	95	100	95	100	95	100	100	06	95	06	85	95	40	95	BWCHK=chickweed(Stellaria media)	BWIMQ=lambsquarters(<i>Chenopo</i> BWPIG=pigweed(<i>Amaranthus re</i> BWVIO=viola(<i>Viola tricolor</i>) GWBLG=blackgrass(<i>Alopecurue</i> GWROX=Rox orange sorghum(<i>S</i>	
		80	75	100	90	06	75	100	-	95	95	100	95	95	100	100	95	95	100	90	09	95	kweed (BWIMO=lambsquarte BWPIG=pigweed(Ama BWVIO=viola(Viola GWBLG=blackgrass(GWROX=Rox orange	
31,3	62.5	2.0	7.8	7.8	2.0	3.9	2.0	3.9	15.6	15.6	3.9	7.8	15.6	62.5	15.6	31.3	62.5	7 8	3.9	31.3	250	31.3	HK=chic	AQ=lamb IG=pigw IO=viol IG=blac	
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	208	209	210	211	212	215	216	218	BWC	BWLI BWP: BWV; GWBI	

-63-

24. Evaluation of Preemergence Herbicidal Activity

Seeds of the desired test plant species were planted in a soil matrix prepared by mixing a loam soil which was composed of about 43 percent silt, 19 percent clay, and 38 percent sand and had a pH of about 8.1 and an organic matter content of about 1.5 percent and sand in a 70 to 30 ratio. The soil matrix was contained in plastic pots with a surface area of 161 square centimeters. When required to ensure good germination and healthy plants, a fungicide treatment and/or other chemical or physical treatment was applied.

A weighed amount, determined by the highest rate to be 10 tested, of each test compound was placed in a 20 mL glass vial and was dissolved in 8 mL of a 97:3 v/v (volume/volume) mixture of acetone and dimethyl sulfoxide to obtain concentrated stock solutions. If the test compound did not dissolve readily, the mixture was warmed and/or sonicated. The stock solutions obtained were diluted with a 99.9:0.1 mixture of water and Tween® 155 surfactant to obtain application solutions of known concentration. The solutions containing the highest concentration to be tested were prepared by diluting 4 mL aliquots of the stock solution with $8.5\ mL$ of the mixture and lower concentrations were prepared by dilution of appropriate smaller portions of the stock solution. A 2.5 mL aliquot of each solution of known concentration was sprayed evenly onto the soil of each seeded pot using a Cornwall 5.0 mL glass syringe fitted with a TeeJet TN-3 hollow cone nozzle to obtain thorough coverage of the soil in each pot. Control pots were sprayed in the same manner with the aqueous mixture. A highest application rate of 4.48 Kg/Ha is achieved when 50 mg of test compound is employed. The treated pots and control pots were placed in a greenhouse with an approximately 15 hr photoperiod which was maintained at about 23-29°C during the day and 22-28°C during the night. Nutrients and water were added on a regular basis and supplemental lighting was provided with overhead metal halide 1000 Watt lamps as necessary. The water was added by top-irrigation. After 3 weeks the condition of the test plants that germinated and grew as compared with that of the untreated plants that germinated and grew was determined visually and scored on a scale of 0 to 100 percent where 0 corresponds to no injury and 100 corresponds to complete kill or no germination. Some of the compounds tested, application rates employed, plant species tested, and results are given in Table 3.

TABLE 3
PREEMERGENCE HERBICIDAL ACTIVITY

											_								,	_	_					
GWWOT	Ç	7.0	09	30	0	80	09	20	50	20	85	20	70	06	98	95	50	85	75	80	90	80	98	80	90	90
GWROX			1			95		-	1		100	98	95	100	98	Q L)	90	100	98	95		100		99	100	100
GWGFT		95	95	50	90	95	90	09	30	80	95	80	98	86	95	90	75	92	06	85	95	90	95	85	90	90
GWCRB			1			85	1			1	100	56	06	100	95	95	50	86	56	- 06		86		85	80	95
GWBRN		40	100	70	09	90	06	70	70	90	100	06	90	98	98	95	80	86	66	78	95	9.0	86	06	80	95
GWBLG		60	70	0	0	75	90	80	40	7.0	100	70	90	. 95	98	86	75	80	95	92	90	95	95	85	85	90
BWWPT			1	1 -	l I			1	1	1	1	-					1		1		1	l			1	
BWVEL		50	40	0	40	90	95	85	9	85	06	90	80	80	80	80	80	85	06	85	96	86	85	85	70	85
BWPIG		100	95	100	95	86	98	9.6	06	95	95	95	100	86	95	66	90	100	90	95	98	95	66	90	86	85
BWMGL		70	09	30	40	90	80	80	9	90	90	90	70	85	85	80	80	75	06	7.0	95	96	06	90	85	80
BWLMQ		1	1			98	1		1		90	95	100	86	98	98	!		66	-	1 1	90	-	98	98	95
BWCKB		1	1	1	1	95	1		1		06		80	85	06	88	06	80	85	7.0	-	06	1	75	80	75
Rate,	Кд/на	0.28	0.28	0.28	0.28	0.14	0.14	0.14	0.14	0.14	0.018	0.070	0.035	0.018	0.018	0.035	0.28	0.28	0.035	0.009	0.28	0.14	0.035	0.035	0.14	0.018
opd.	٠ ا	1	2	m	4	5	٥	7	8	6	10		12	13	14	15	16	17	18	19	21	22	23	24	25	26

																										_				
80	85	55	80	95	80	90	80	80	80	90	90	98	90	98	78	7.0	80	80	78	90	80	90	06	78	95	82	80	09	95	90
100	90	90	95	100	95	95	90	95	100	100	100	7.0	100	100	7.0	78	85	85	7.0	98	98	85	100	78	100	95	100	60	100	100
95	78	55	85	95	80	85	78	75	06	86	70	65	90	95	80	90	9.0	92	80	90	7.8	65	90	09	7.5	95	09	55	75	90
95	06	55	95	100	09	95	98	7.0	100	78	7.0	55	80	100	65	55	65	7.0	7.0	95	65	78	7.0	09	45	06	65	0	20	78
98	96	78	80	95	7.0	90	70	85	06	86	65	65	100	100	95	78	80	95	98	06	75	85	85	95	95	100	95	40	95	90
06	06	7.8	90	100		1	90	80	90	06	95	95	95	85	90	65	80	80	78	85	7.5	95	100	95	100	100	95	7.0	100	90
	1	-	-	;	-		1	1		1	80		-	1	1	1		I.	1			78	L	80	1		80	7.5	80	85
90	80	85	90	85	80	78	85	96	80	85	96	78	95	06	06	95	95	90	90	78	85	78	78	100	55	90	75	50	85	95
95	80	85	98	100	95	95	80	90	06	7.5	85	80	95	06	90	95	100	100	75	90	75	65	7.0	95	65	06	95	30	65	100
80	75	06	90	75	95	85	90	80	96	80	90	80	90	06	90	06	96	06	90	06	75	80	75	80	50	90	90	50	75	85
100	100	90	95	100		100	78	86	100	06	85	ട	98	100	90	100	06	100	85	80	80	95	87		7.5	100	06	85	100	100
8.5	09	78	30	65	7.0	70	75	95	50	65	75	78	85	75	80	06	06	9.5	70	7.0	80	75	7.0	06	10 10 10 10 10 10 10 10 10 10 10 10 10 1	75	70	20	65	96
0.070	• •	0.28	0.070	0 14	0.28	710	0.018	0.28	0.14	0.035	0 14	0.009	0.14	0.00	0.035	0.14	0.14	300	0.14	0.035	n 28	0.005	0.070	0.070	0.070	0.070	0.14	0.28	0.28	0.035
27	28	200	3 8	3 12	33	3 6	34	35	36	25	38	30	404	21/2	42	43	44	45	46	47	AR.	202	515	52	53	5.4	5,5	57	228	59

-66-

																										_				
85	50	06	80	7.0	80	06	80	80	20	75	82	90	85	85	90	80	85	7.0	0	20	75	90	88	85	85	20	80	85	80	0
100	06	100	95	95	66	95	100	95	60	90	90	100	95	100	95	95	90	90	0	80	75	98	90	85	95	95	90	98	90	99
80	35	85	85	55	06	7.0	90	95	55	7.5	65	90	78	06	06	55	85	80	20	90		95	09	7.5	70	60	78	78	4.0	20
65	35	55	65	20	100	100	65	100	40	7.0	09	100	7.5	95	80	80	78	80	0	7.0	60	92	90	50	85	7.0	7.5	7.0	20	0
100	20	100	7.0	55	86	90	95	75	45	100	80	85	95	95	95	85	95	80	0	55	65	06	63	80	95	95	8.5	06	9.0	0
90	65	80	06	09	95	85	95	95	20	95	06	95	95	85	86	06	95	78	40	75	45	95	86	96	06	75	75	06	85	50
06	20	95	85	78	80	7.0	90	80	50	78	85	- 06	88		1	85	1				85	;	ļ	i.		1	i		-	1
80	90	85	7.5	65	85	90	06	85	65	7.5	96	80	80	06	06	06	80	78	40	7.5	80	95	65	20	75	85	96	78	50	20
90	65	85	85	9	86	100	100	95	09	80	95	06	98	95	100	95	85	85	65	95		86	86	95	100	95	86	95	95	70
78	85	80	90	95	70	50	06	85	20	85	90	09	80	06	06	85	06	90	Ó	78	7.0	85	65	75	75	85	85	65	50	0
100	78	100	78	09	06	9	100	95	50	80	96	90	95	100	85	. 80	95	100	90	95	;	66	95	90	100	86	86	86	100	50
85	45	85	50	100	7.0	10	80	10	100	7.0	80	09	75	100	78	75	78	80	0	45	65	90	7.5	7.0	7.5	85	7.5	06	70	0
0.035	0.28	0.070	0.070	0.14	0.035	0.14	0.28	0.070	0.14	0.035	0.14	0.070	0.018	0.070	0.070	0.070	0.14	0.28	0.28	0.28	0.28	0.070	0.018	0.28	0.070	0.28	0.28	0.035	0.070	0.28
09	19	29	63	64	65	99	67	89	69	70	71	72	74	83	84	85	66	100	101	102	104	105	106	107	108	109	110	111	112	113

																		_												
80	40	85	80	90	80	85	85	80	90	50	78	50	80	90	70	85	65	80	80	95	90	70	70	9	75	85	55	75	85	85
95	90	95	95	98	95	95	98	100	98	100	100	100	100	100	95	95	100	95	100	95	100	85	80	95	100	100	70	90	100	100
95	50	78	85	85	40	78	90	80	90	09	20	7.0	06	55	09	06	78	95	80	90	86	78	60	98	100	100	40	85	100	90
95	20	40	78	95	45	8.0	95	90	95	30	09	80	95	7.0	30	85	65	95	30	95	95	80	20	80	95	86	55	7.5	8.5	75
95	70	7.8	06	90	78	85	90	86	98	06	65	95	95	95	78	06	95	06	7.5	95	85	65	65	65	100	85	75	80	100	7.5
90	85	95	-	06		1	90	06	1	80	85	78	100	100	90	06	50	06	95	90	90	09	55	95	100	100	75	85	100	95
+ 1	1		1	-	1	ı		!	;	1	1		06	80	80	1		-	1	80	1	1	-	65	85	06	55	85	85	5
80	50	78	90	96	09	100	85	85	90	70	80	85	85	7.0	80	78	90	06	7.5	80	06	78	75	70	85	85	80	65	85	758
95	95	06	95	100	90	95	95	100	95	100	95	100	06	95	06	98	100	95	78	06	95	06	7.8	70	100	95	100	100	100	90
80	0	70	80	7.5	50	80	90	90	85	65	50	06	9.0	78	75	78	90	85	20	40	06	35	50	45	80	8.0	50	50	80	7.5
95	100	90	!	100	-	100	100	100		100	80	100	100	1	95	100	-	66	55	06	!		70	90	100	86	. 06	100	95	85
06	55	07	80	30	78	80	70	80	80	70	75	78	06	78	52	65	85	80	55	7.8	06	30	20	55	85	80	96	100	80	96
0.070	0.28	0.28	0.28	0.070	0.28	0.28	0.14	0.28	0.070	0.29	0.28	0.28	0.14	0.035	0.28	0.035	0.28	0.14	0.28	0.14	0.28	0.28	0.28	0.28	0.14	0.14	0.28	0.070	0.14	0.14
114	115	116	117	118	119	120	121	122	123	124	125	126	127	129	130	134	135	136	137	141	143	144	145	151	158	159	162	163	164	165

55	ŀ	70	7.0	1			75	55	70	30	45	50	100	80	95	45	70	95	100	90	55	86	95	7.0	80	100	70	70	65	55
75	7.5	100	7.0	8.5	85	100	65	70	100	70	85	09	100	90	100	80	60	8.5	100	100	7.0	98	100	50	90	95	7.5	80	70	70
85	100	50	90	09	65	100	85	100	100	85	09	65	100	35	09	7.5	100	100	100	100	7.5	80	100	50	85	100	7.0	55	7.5	45
20	7.5	40	80	09	50	100	9	70	65	65	65	30	95	30	45	09	20	70	100	7.5	09	95	75	60	7.0		0	0	7.0	50
06	8.5	09	100	40	85	100	90	75	75	06	7.5	55	100	70	70	08	100	7.5	86	85	75	85	100	06	06	95	7.5	09	100	70
95	85	100	7.5	85	95	100	7.0	75	85	7.0	80	09	100	85	100	45	7.0	100	100	100	7.5	90	100	90	95	1	80	75	80	45
95	80	78	80	75	80	40	85	80	7.5	80	80	50	85	09	78	85	70	75	80	06	80	80	78	70	09	06	80	75	95	80
100	80	70	90	65	80	7.5	85	95	80	80	95	75	75	65	70	06	7.5	7.5	80	80	06	80	80	06	70	70	85	80	85	75
100	06	100	100	35	06	98	95	100	100	100	100	100	86	100	100	100	95	80	06	100	100	95	100	100	100	95	96	80	100	80
75	75	09	80	70	06	30	80	7.5	75	75	75	70	85	45	55	80	70	45	75	80	80	78	7.0	7.0	70	96	85	70	75	80
86	85	45	100	80	85	100	86	100	90	06	100	85	100	09	85	95	06	7.5	80	100	06	95	80	100	100	100	95	95	100	90
95	80	70	95	80	06	80	80	06	75	80	95	75	85	7.5	75	95	80	80	78	75	80	75	75	90	70	95	86	80	100	06
0.070	0.070	0.14	0.070	0.14	0.070	0.14	0.035	0.035	0.14	0.035	0.028	0.14	0.07	0.14	0.14	0.070	0.070	0.018	0.00	0.035	0.070	0.035	0.070	0.14	0.070	0.14	0.14	0.14	0.070	0.14
168	172	175	177	181	182	183	184	185	186	187	188	189	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	208	210

30	7.5	98	1	ohylla) 2[11]
60	100	100	100	BWIMQ=:lambsquarters(Chenopodium album) BWPIG=pigweed(Amaranthus retroflexus) BWWPT=wild poinsettia(Euphorbia heterophylla) GWBRN=:barnyardgrass(Echinochloa crus-galli) GWGFT=giant foxtail(Setaria faberi) GWWOT=wild oats(Avena fatua)
8.5	100	100	100	
80 75 60 80 50	86	80	86	
80	75	85	7.0	
09	l 1	100	95	
75	80	80	85	BWLM BWPI BWWF GWBR GWGR
80	7.5	70	. 75	i) (es))
100	100		100	narium) heracea) sophrast rosuroic guinalia
80	65	65	06	BWCKB=cocklebur(Xanthium strumarium) BWMGL=morningglory(Ipomoea hederacea) BWVEL=velvetleaf(Abutilion theophrasti) GWBLG=blackgrass(Alopecurus myosuroides) GBCRB=crapgrass(Digitaria sanguinalis) GWBCXB-pox orange sorchum (Sorchum bicolor)
95	100	85	06	
75	75	75	80	klebur (inngglo retleaf rkgrass
211 0.14 75 95 80 100	0.035 75	216 0.035 75	218 0.070 80	KB=cock KB=cock GL=morr EL=velv KLG=black RB=crak
211	212	216	218	BWC BWM BWW GWB GBC

-70-

WHAT IS CLAIMED IS:

1. An N-(triazoloazinyl)arylsulfonamide compound of the

5 formula:

$$X \xrightarrow{N} N \xrightarrow{N} N \xrightarrow{NTSO_2} \xrightarrow{B} Q$$

wherein

15

X represents N or C-Y;

W represents $O(C_1-C_3 \text{ alkyl})$, Cl, Br, F, or H;

10 Y represents H, OCH3, F, Cl, Br, I, or CH3 optionally substituted with up to three fluorine atoms;

Z represents $O(C_1-C_3 \text{ alkyl})$, H, F, Cl, Br, I, $S(C_1-C_3 \text{ alkyl})$, or CH $_3$ optionally substituted with up to three fluorine atoms; with the proviso that at least one of W and Z represents $O(C_1-C_3 \text{ alkyl})$;

Q represents C-H or N;

A represents F, Cl, Br, or I, or $CO_2(C_1-C_4 \text{ alkyl})$ or represents $C_1-C_3 \text{ alkyl}$, $O(C_1-C_4 \text{ alkyl})$, $O(C_3-C_4 \text{ alkenyl})$, $O(C_3-C_4 \text{ alkynyl})$, or $S(C_1-C_3 \text{ alkyl})$ each optionally substituted with one $O(C_1-C_3 \text{ alkyl})$, $S(C_1-C_3 \text{ alkyl})$, chloro, bromo, or cyano substituent or with up to the maximum possible number of fluorine atoms, or represents a 2-methyl-1,3-dioxolan-2-yl moiety, and, when Q represents N, H;

B represents H, F, Cl, Br, I, NO₂, CN, CO₂(C₁-C₄ alkyl),

NH(C₁-C₃ alkyl), or N(C₁-C₃ alkyl)₂ or represents O(C₁-C₄ alkyl),

O(C₃-C₄ alkenyl), O(C₃-C₄ alkynyl), C₁-C₃ alkyl, S(C₁-C₃ alkyl),

SO(C₁-C₃ alkyl), SO₂(C₁-C₃ alkyl), S(C₃-C₄ alkenyl), SO(C₃-C₄

alkenyl), $SO_2(C_3-C_4$ alkenyl), $S(C_3-C_4$ alkynyl), $SO(C_3-C_4$ alkynyl), or $SO_2(C_3-C_4$ alkynyl) each optionally substituted with one $O(C_1-C_3)$

alkyl), $S(C_1-C_3 \text{ alkyl})$, chloro, bromo, or cyano substituent or with up to the maximum possible number of fluorine atoms; with the proviso that A and B do not simultaneously represent H;

D represents H, F, Cl, Br, I, C_1 - C_3 alkyl, OCH₃, OC₂H₅, CH_2F , CH₂F, or CF₃; or B and D together represent a fragment of the formula O-CH₂-O, optionally substituted with one or two F or CH₃;

T represents H, SO₂R, C(O)R, C(O)OR, C(O)NR'2, or CH₂CH₂C(O)OR; R represents C_1 - C_4 alkyl, C_3 - C_4 alkenyl, or C_3 - C_4 alkynyl each optionally possessing up to two chloro, bromo, $O(C_1$ - C_4)alkyl, or phenyl substituents and up to the maximum possible number of fluoro substituents; and R' represents H, C_1 - C_4 alkyl, C_3 - C_4 alkenyl, or C_3 - C_4 alkynyl; and,

 $\mbox{2. A compound according to Claim 1 wherein T represents } \\ \mbox{15} \quad \mbox{hydrogen.}$

when T represents H, the agriculturally acceptable salts thereof.

- 3. A compound according to Claim 1 wherein X represents N and Q represents C-H.
- 4. A compound according to Claim 1 wherein W represents methoxy and Z represents methoxy, fluoro, chloro, or bromo.
- 5. A compound according to Claim 1 wherein A represents methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethoxy, methoxymethoxy, ethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy, 1-(fluoromethyl)-2-fluoroethoxy, trifluoromethoxy, chloro, or fluoro; B represents hydrogen, methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethyl, methylthio, methyl, trifluoromethyl, trifluoromethoxy, fluoro, chloro, or methoxycarbonyl; and D represents hydrogen,

fluoro, chloro, bromo, or methyl.

30

- 6. A compound according to Claim 5 wherein B represents methoxy and D represents hydrogen; wherein A represents methoxy and D represents hydrogen, methyl, or chloro; or wherein B represents trifluoromethyl and D represents hydrogen.
- 7. A compound according to Claim 1 wherein Q represents C-H and A represents methoxy, ethoxy, propoxy, or 1-methylethoxy, methoxymethoxy, methoxyethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy, or 1-(fluoromethyl)-2-fluoroethoxy; B represents

hydrogen, methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethyl, trifluoromethyl, fluoro, chloro, or methoxycarbonyl; and D represents hydrogen, chloro, or methyl; or wherein Q represents N and A represents methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethoxy, or 1-(fluoromethyl)-2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy, or 1-(fluoromethyl)-2-fluoroethoxy; B represents hydrogen, methoxy, ethoxy, propoxy, 1-methylethoxy, trifluoromethyl, or methoxycarbonyl; and D represents hydrogen or methyl.

- 8. A compound according to Claim 1 which is selected 10 from 2-methoxy-6-(trifluoromethyl)-N-(8-chloro-5-methoxy(1,2,4)triazolo[1,5-c]pyrimidin-2-yl)benzenesulfonamide, 2,6-dimethoxy-N--(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)benzenesulfonamide, 2-methoxy-6-methoxycarbonyl-N-(5,8-dimethoxy[1,2,4]triazolo-[1,5-a]pyridin-2-yl)benzenesulfonamide, 2-methoxy-5-methyl-N-(5,8--dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)benzenesulfonamide, 5-chloro-2-methoxy-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2--yl)benzenesulfonamide, 2-methoxy-4-(trifluoromethyl)-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)pyridine-3-sulfonamide, $2-(2-fluoroethoxy)-6-(trifluoromethyl)-N-(5,8-dimethoxy{1,2,4}$ triazolo[1,5-c]pyrimidin-2-yl)benzenesulfonamide, 2-(2-chloroethoxy)--6-(trifluoromethyl)-N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin--2-y1) benzenesulfonamide, 2-(2,2-difluoroethoxy)-6-(trifluoromethyl)--N-(5, 8-dimethoxy[1, 2, 4]triazolo[1, 5-c]pyrimidin-2-yl)benzenesulfonamide, and 2-(1-fluoromethyl-2-fluoroethoxy)-6-(trifluoromethyl)-N-25 -(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)benzenesulfonamide.
 - 9. A composition characterized by comprising an herbicidal amount of an N-(triazoloazinyl)arylsulfonamide compound of any one of Claims 1 to 8 in admixture with an agriculturally acceptable adjuvant or carrier.
 - 10. A method of controlling undesirable vegetation which is characterized by applying to the vegetation or to the locus thereof an herbicidally effective amount of an N-(triazoloazinyl)-arylsulfonamide compound of any one of Claims 1 to 8.
 - 11. A pyridine-3-sulfonyl chloride compound of the formula:

30

$$\bigcup_{N=-\infty}^{D} SO_2CI$$

wherein

5

10

15

20

25

A represents F, Cl, Br, or I, or $CO_2(C_1\text{-}C_4 \text{ alkyl})$ or represents $C_1\text{-}C_3 \text{ alkyl}$, $O(C_1\text{-}C_4 \text{ alkyl})$, $O(C_3\text{-}C_4)$ alkenyl), $O(C_3\text{-}C_4 \text{ alkynyl})$, or $S(C_1\text{-}C_3 \text{ alkyl})$ each optionally substituted with one $O(C_1\text{-}C_3 \text{ alkyl})$, $S(C_1\text{-}C_3 \text{ alkyl})$, chloro, bromo, or cyano substituent or with up to the maximum possible number of fluorine atoms, or presents a 2-methyl-1,3-dioxolan-2-yl moiety;

B represents H, F, Cl, Br, I, NO₂, CN, CO₂(C₁-C₄ alkyl), NH(C₁-C₃ alkyl), or N(C₁-C₃ alkyl)₂ or represents O(C₁-C₄ alkyl), O(C₃-C₄ alkenyl), O(C₃-C₄ alkynyl), C₁-C₃ alkyl, S(C₁-C₃ alkyl), SO(C₁-C₃ alkyl), SO₂(C₁-C₃ alkyl), SO₂(C₁-C₃ alkynyl), SO(C₃-C₄ alkenyl), SO(C₃-C₄ alkenyl), SO(C₃-C₄ alkynyl), or SO₂(C₃-C₄ alkynyl) each optionally substituted with one O(C₁-C₃ alkyl), S(C₁-C₃ alkyl), chloro, bromo, or cyano substituent or with up to the maximum possible number of fluorine atoms; with the proviso that at least one of A and B represent O(C₁-C₄ alkyl), O(C₃-C₄ alkenyl), or O(C₃-C₄ alkynyl) each optionally substituted with one O(C₁-C₃ alkyl), S(C₁-C₃ alkyl), chloro, bromo or cyano substituent or with up to the maximum possible number of fluorine atoms; and

D represents H, F, Cl, Br, I, C₁-C₃ alkyl, OCH₃, OC₂H₅, CH₂F, CHF₂, or CF₃; or B and D together represent a fragment of the formula O-CH₂-O, optionally substituted with one or two F or CH₃.

12. A compound according to Claim 11 wherein A represents methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethoxy, methoxyethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy, 1-(fluoromethyl)-2-fluoroethoxy, trifluoromethoxy, chloro, or fluoro; B represents hydrogen, methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethyl, methylthio, methyl, trifluoromethyl, trifluoromethoxy, fluoro, chloro, or methoxycarbonyl; and D represents hydrogen, fluoro, chloro, bromo, or methyl.

MarloWODELETE/DJT\SPECIM7363-97.doc

13. A compound according to Claim 12 wherein A represents methoxy, ethoxy, propoxy, 1-methylethoxy, methoxymethoxy, methoxyethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy, or

1-(fluoromethyl)~2-fluoroethoxy; B represents hydrogen, methoxy, ethoxy, propoxy, 1-methylethoxy, trifluoromethyl, or methoxycarbonyl; and D represents hydrogen or methyl.

14. A 2-amino[1,2,4]triazolo[1,5-c]pyrimidine compound
6 of the formula:

wherein

15

W represents $O(C_1-C_3 \text{ alkyl})$, C1, Br, F, or H; and Z represents $O(C_1-C_3 \text{ alkyl})$, H, F, C1, Br, I, $S\{C_1-C_3 \text{ alkyl}\}$, or CH_3 optionally substituted with up to three fluorine atoms; with the proviso that at least one of W and Z represents $O\{C_1-C_3 \text{ alkyl}\}$.

 $\,$ 15. A compound according to Claim 14 wherein W represents methoxy and Z represents methoxy, fluoro, chloro, or bromo.

 $16.\,$ A compound according to any one of claims 1 to 8 or 11 to 15 substantially as hereinbefore described with reference to any of the examples.

