«» UK Patent Application «GB 2322719 ., A

(43) Date of A Publication 02.09.1998

(21) Application No 9726965.8
(22) Date of Filing 19.12.1997

(30) Priority Data

{31) 08780409 (32) 09.01.1997 (33) US

(71) Applicant(s)
Mitel Corporation
{Incorporated in Canada - Ontario)
P O Box 13089, Kanata, Ontario K2K 1X3, Canada

(72) Inventor(s)
Thomas A Gray
Deborah L Pinnard

(74) Agent and/or Address for Service
Brookes & Martin
High Holborn House, 52-54 High Holborn, LONDON,
WC1V 6SE, United Kingdom

(51) INTCL®
GO6F 9/44
(52) UK CL (Edition P)
G4A APX
U1S S2202
(56) Documents Cited
WO 94/23360 A1 US 5129083 A
(58) Field of Search

UK CL (Edition P } G4A APX
INT CL® GOGF 9/30 9/44 9/445 9/46
Online: COMPUTER, INSPEC, WPI

(54) Abstract Title

Establishing a process using software agent control

(67) A method of establishing a process agent comprises storing a library of first programs (resource agents)
representing system resources; storing a second program representing a service agent which includes
pointers to associated ones of the first programs represented by the service agent; storing a program for
invoking a general process, including the steps of: requesting a usage right for functional services represented
by the service agent, sending pointers to system resources required for the general process from the service
agent to the program for operating the general process and storing the pointers sent from the service agent in
association, 3, with the program for operating the general process; and executing the program for operating
the general process using the system resources identified by the stored pointers.

CUSTOMER P TN PROCESS AND | RESOURCE |
SERVICES AREA |
ENTRY FUNCTIONAL o
GROUP N~ _
NEGOTIATION NEGOTIATE
POINTERS
SERVICE SERVI
e | e
POINTERS T0 PONTERS T0
AGENTS AGENTS
o
FIG. 2 sesonce Y
| 0
N

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

V 6LL2cEC 99

1/5

A

4
N

AN

ERVER

CPU

- 1

PBX

ERVER

RAM

/3\

//

q

g

PBX

FIG.

mw OO, 3ONNOSIY 2 ‘0|4
L @ W) 1NIOV

/ 304N0S3Y

S1N39V SLN39V
308N0S3Y 304N0S3y
OL SH3LINIOd OL SH31NIOd
LN39V N3OV
301AY3S 301AY3S
SY3LNIOd
31VILO93N NOILVILO93N
N WNOLIORIN
b e _
_ v3Iyy S30IAY3S < AYIN3
| SS3004d H3W01SND
_.lm_wmlz mmlumu NV 5839044 TVNOILONNA e

e/ \y3Au3s

PROCESS
AGENT

SET UP PROCESS & POLICIES
PROCESS |(|NcL. BASIC SERVICES REQUIRED)

!

CUSTOMER
DATA ENTRY
FIG. 3
17 SERVER, (3
N) (
BASIC SERVICE 1 BS2 | __J] BSn RAM
TASK 1 TASK 2 TASK n
\
SERVICE ORDER/ COMPILED
/
BASIC
SERVICE | TASK |
1
BASIC
SERVICE | TASK 2 [>N/5
2 FIG. 4

BASIC
SERVICE | TASK n
n

SERVICE
ORDER \

\

| (COMPILED)
HI-O- -

OBJECTS -

FUNCTIONAL GROUP AGENT

FIG. 5

(SMALLTALK IMAGE

RESOURCE AREA-
A

SERVER / 3 -

FIG. 6

POINTER

AGENT | —~——7———
POINTER

BASIC SERVICE POINTER @

FIG. 7

POINTERS TO
~—— SERVANT OBJECT
NEEDED

v

PROCESS

SET | ACT AGENT

RESOURCE

SERVANT
OBJECTS

FIG. 8

10

15

20

25

30

35

2322719

FIELD OF THE INVENTION
This invention relates to methods of controlling

communication or other systems and in particular to a
method of establishing a process using software agent
control.
SUMMARY OF THE INVENTION

The present invention is an improvement and

relates to an earlier inventions described in U.S.
patent applications 08/257,917 filed June 10, 1994
invented by Deborah Pinard et al and 08/367,821 filed
January 3, 1995 invented by Thomas Gray, which is
incorporated herein by reference. In an embodiment of
the present invention, software objects for operating
resources are stored in a random access memory (RAM), in
a resource area of a functional process for carrying out
the process, which resources are identified during a
blackboard bidding process by service agents which have
pointers to resource agents controlling the resources.
In accordance with another embodiment of the
invention, a method of establishing a process agent is
comprised of: (a) storing a library of first software
programs representing system resources, (b) storing a
second software program representing a corresponding
service agent which includes pointers to associated ones
of the first software programs which are represented by
the service agent, (c) storing a software program for
invoking a general process, including the steps of:
(i)requesting a usage right for functional services
represented by the service agent required by the general
process, (ii) sending pointers to system resources
required for the general process from the service agent
to the software program for operating the general
process, and (iii) storing the pointers sent from the
service agent in association with the software program
for operating the general process, and (d) executing the

10

15

20

25

30

35

software program for operating the general process using
the system resources identified by the stored pointers.
BRIEF INTRODUCTION TO THE DRAWINGS »

A better understanding of the invention will be
obtained by considering the detailed description below,
with reference to the following drawings, in which:

Figure 1 is a block diagram of a structure in
which the present invention can be implemented,

Figure 2 is a diagram illustrating the
relationships of various software structures used in the
invention,

Figure 3 illustrates process relationships used
in a portion of the process,

Figure 4 illustrates the process relationships
of Figure 3 in more detail,

Figure 5 illustrates the process relationships
of Figure 3 in a different form,

Figure 6 illustrates a portion of the contents
of the process agent of Figure 3,

Figure 7 illustrates other process relationships
used in another portion of the process, and

Figure 8 illustrates a process agent of Figure 6
in a different form.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The aforenoted patent application describes the
nature of software agent processing in a communication
system. The present invention is a preferred method by
which a process agent can avail itself of various
resources without having knowledge of their specific
characteristics.

Figure 1 illustrates a network 1, which need not
be a local area network, and could be several networks
which communicate with each other by various well-known
structures and techniques. At least one server 3 is
connected to the network 1; several can be distributed

10

15

20

25

30

35

and connected to the network 1 at locations which are
established by e.g. traffic patterns, availability of
physical locations, etc. Each server is comprised of at
least a random access memory (RAM) 5 and at least a
central processor (CPU) 7. The central processors 7
communicate via the network 1 or via a local subnetwork,
with the associated RAM 5, and can communicate via
network 1 with other CPUs 7.

For the sake of illustration, PBXs 9 also are
connected to the network 7, and can communicate with
each other via asynchronous transfer mode (ATM) cells,
via data channels, and/or via separate trunk or datha
links (not shown). Telephones 11 are connected to the
PBXs in a well known manner. However, it should be
recognized that instead of, or in addition to, the PBXs,
various other systems could be connected to the network
1, such as video phone systems, computers, etc.

The particular equipment connected to the
network and how they communicate with each other is not
the subject of the present invention, and is believed to
be within the skill of a person skilled in the art.

A representative computer terminal 13 is also
connected to the network 1, for communication with any
of the CPUs.

Turning now also to Figures 2 and 3, a customer
enters a process into the system, using terminal 13.
This can be comprised of filling in a form on the
terminal 13, which is produced by a database program.
By filling in the form related to a service, shown on
form as "basic service", an associated database program
is executed, which relates to a particular type of
function or task, shown on the form as "task 1", "task
2", etc.

Upon execution of the database program, a
particular service task order for a service is created

10

15

20

25

30

35

by the terminal 13, which is related to the particular
task requested. For example, the task requested could
be the establishment of speech generation. The order
would include input and output parameters, such as the
monitoring of a voiced input (e.g. by a user) for "yes"
or "no", and the synthetically voiced response "you have
selected 'yes' (or 'no')". The created service order,
formed of a series of tasks is shown as reference 17.

Each of the service tasks (i.e. the output
parameters of those service tasks) is saved using an
unique name, so that it can be used as an input
parameter for other basic service tasks later in the
implementation of the service. These names are
implemented as global variables.

It is preferred that the configuration and
service setup so far described should be implemented in
an object oriented computer language, such as Smalltalk.
As is well known, a program in object oriented language
is comprised of a self-contained routine and associated
data, which can be "plugged into" various other routines
and operate relatively independently, but which can be
controlled by the other routines. Smalltalk is a
language which has objects which include methods that
can be invoked by sending the object a message.

The tasks in the configuration and setup
described above are represented by methods inside of
servant objects. The parameters (input and output) that
are programmed in the confiqguration and setup should be
translated into parameters for the methods.

As illustrated in Figure 5, once a service has
been created, i.e. the parameters are defined (and, it
is preferred, an icon representing the service drawn on
the terminal display), a script should be compiled which
preferably takes the form of smalltalk code. This
compiled script should then be loaded into a functional

10

15

20

25

30

35

group of tasks 17, which thus describe a complete
function for the service, for example, the detection of
various sounds received from a user and machine creation
of speech responses. These are shown in group 17 as
task 1, task 3... task n. The functional group is
stored in a memory at the terminal 13.

Once the functional group has been defined, then
this process and the policies which govern it (derived
from the task object programs selected via the entries
to the database) are loaded into the RAM 5 of any server
3 connected to the network 1, as a process agent, as
shown in Figures 2 and 3, and as a Smalltalk image, as
shown in Figure 5.

The servers also store service agents. Each
service agent contains pointers to resource agents.

Each resource agent is dedicated to a single resource.
A resource can be, for example, a voice synthesizer.

It is preferred that the server RAM should
contain a servant object library, which is formed of
resource programs (objects, containing circled numbers)
whose functions are to interface associated resource
agents using the correct identifier for the resource
agents with which it interfaces, as shown in Figure 6.
Thus each object in the library is able to communicate
with one particular resource.

Thus each of the service agents has pointers to
all of the objects in the servant object library which
it uses to provide the basic service, as shown in figure
7.

When a process is initialized, it must negotiate
usage rights for each basic service that is required to
fulfill the objective of the process. It does this by
establishing a blackboard bidding procedure as described
in the aforenoted patent application. The service
agents which can fulfill the requirements of the process

10

15

20

25

30

35

bid on the request, and one service agent is selected,
completing the negotiation. The selected service agent
then passes pointers to the resource agents, i.e. the
servant objects (i.e. methods), that the process agent
needs to fulfill the requirements of the process, to the
process agent.

The process agent, having received the pointers,
accesses the resource agents pointed to and copies of
these resource agents are installed in the RAM in a
resource area associated with the process agent, as
shown in Figure 8.

The process agent, now having direct access to
the process agents required to fulfill the tasks
associated with the function, can carry out the process
when required by the server.

It should be noted that the resource agents can
be invoked from any functional group agent on the
network. Thus service agents in RAM 5 of one server can
be accessed, and can bid on a blackboard process
established in another server, and the resulting
resource agents transferred to the function process
agent stored in RAM 5 of the other server.

It should be noted that once a process agent has
been initialized, and contains all of its servants
(resource agents), it then can fulfill its function (set
of tasks) for any other process. Thus it adds itself to
the object library which represents itself, and adds a
pointer to itself to one of the service agents. 1In this
way it makes itself available to other processes as a
basic service.

In a similar manner, resource brokers (service
agents) can reside in a library in RAM 5, and the
process agent can download the code for the brokers it
needs, to pick the appropriate resource for a process it
is responsible for.

10

15

20

25

30

35

With the resources coded in an object code
language, they can be easily and dynamically be added to
the agent code. Once added to the agent code, the
general procéss program can be operated upon request
from other processing programs which control the
operation of the system, such as the functioning of an
auto attendant in a PBX, or the connection of a pair of
telephones via one or plural PBXs.

As an example, when speech is to be generated,
let us assume that the service can be provided by two
different hardware devices (resources), each with a
different identifier. Two service agents (objects) are
written which translate the "generic" language of the
instruction "generate speech" to the identities of the
two resources. These objects are stored in a common
library.

An agent is written which represents the basic
service of speech generation, and which has knowledge of
the storage location of the two service agents.

When a process is created which requires speech
generation (e.g. an auto attendant), the process agent
for the auto attendant obtains the pointers to the two
service agents from the speech generation basic service
agent, and copies the servant code into its own resource
area.

Thus if a new hardware or software device which
is added can perform speech generation, the servant code
for it can be written and added to the library, the
speech generation basic service agent is informed of the
additional resource, and the next time the resource is
required, the new code is automatically available. This
facilitates availability of the various resources to
processes required by the system in an efficient manner.

A person understanding this invention may now
conceive of alternative structures and embodiments or

variations of the above. All those which fall within
the scope of the claims appended hereto are considered

to be part of the present invention.

10

15

20

25

1.0

We claim:

1. A method of establishing a process agent
comprising:

(a) storing a library of first software programs
representing system resources,

(b) storing a second software program
representing a corresponding service agent which
includes pointers to associated ones of the first
software programs which are represented by the service
agent,

(c) storing a software program for invoking a
general process, including the steps of:

(i) requesting a usage right for functional
services represented by the service agent required by
the general process,

(ii) sending pointers to system resources
required for the general process from the service agent
to the software program for operating the general
process, and

(iii) storing said pointers sent from the
service agent in association with the software program
for operating the general process, and

(d) executing the software program for operating
the general process using the system resources
identified by the stored pointers.

2. A method as defined in claim 1, including
providing plural second software programs representing
plural corresponding service agents each including
pointers to particular associated ones of said first
software programs, and in which step (c) (i) includes
requesting a usage right for functional services
represented by said plural service agents.

10

A4
=

3. A method as defined in claim 2 in which the
step of requesting a usage right is performed by posting
a service requirement to a blackboard, said second
software program bidding on the posted service
requirement, and in which step (c) (ii) includes sending
pointers from a service agent which succeeded in the
bidding.

4. A method as defined in claim 3 in which each
of the first software programs is a software object.

5. A method as defined in claim 5 in which the
step of storing a software program invoking a general
process is comprised of a user indicating a service
requirement on a user terminal, establishing a group of
tasks to fulfill the service requirement as a service
order, compiling the group of tasks in an object
oriented language code, defining objects, and loading
the objects into a.functional group agent in a server in
which said software program for invoking a general

process is to be stored.

6. A method as claimed in claim 1 substantially as hereinbefore

described with reference to the accompanying drawings.

4 11C

Patent
Ofhce

I

Application No: GB 9726965.8 Examiner: Geoffrey Western
Claims searched: 1-6 Date of search: 25 June 1998
Patents Act 1977

Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK Cl (Ed.P): G4A (APX)
Int Cl (Ed.6): GOG6F 9/30 9/44 9/445 9/46
Other: Online : COMPUTER, INSPEC, WPI

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims

A | WO 94/23360 A1 (TALIGENT)
A | US 5129083 A (CUTLER et al)

X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Document published on or after the declared priority date but before
with one or more other documents of same category. the filing date of this invention.
E Patent document published on or after, but with priority date earlier
& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

