
(12)
(19)

PATENT
AUSTRALIAN PATENT OFFICE

(11) Application No. AU 200050461 B2
(10) Patent No. 779250

(54) Title
Method and apparatus for populating multiple data marts in a single aggregation
process

(51)7 International Patent Classification(s)
G06F 015/00 G06F 017/30

(21) Application No: 200050461 (22) Application Date: 2000.05.24

(87) WIPO No: WOOO/72165

(30) Priority Data

(31) Number (32) Date
09/317773 1999.05.24

(33) Country
US

(43)
(43)
(44)

Publication Date : 2000.12.12
Publication Journal Date : 2001.02.15
Accepted Journal Date : 2005.01.13

(71) Applicant(s)
Platinum Technology IP, Inc

(72) Inventor(s)
Eva Man-Yan Tse; Michael Dean Lore; James Daniel Attaway

(74) Agent/Attorney
Smoorenburg.PO Box 9,Kangaroo Ground,VIC 3097

(56) Related Art
US 5794246
US 5832475
US 5905985

AU 200050461

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 November 2000 (30.11.2000)

2

PCT
(10) International Publication Number

WO 00/72165 Al
(51) International Patent Classification7: GO6F 15/00,

17/30

(21) International Application Number: PCT/USOO/14497

(22) International Filing Date: 24 May 2000 (24.05,2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/317,773 24 May 1999 (24.05.1999) US

(71) Applicant: PLATINUM TECHNOLOGY IP, INC.
[US/US]; One Computer Associates Plaza, Islandia, NY
11749 (US).

(72) Inventors: MAN-YAN TSE, Eva; 1835 American Him
Court, Sugar Land, TX 77479 (US). LORE, Michael,
Dean; 22714 Hockaday Drive. Katly, TX 77450 (US).

ATTAWAY, James, Daniel; 24715 County Down Court,
Katy, TX 77494 (US).

(74) Agent: JOHNSTON, R., Blake; Piper Marbury Rudnick
& Wolfe, P.O. Box 64807, Chicago, IL 60664-0807 (US).

(81) Designated States (national): AE, AL, AM, AT, AU, AZ,
BA, BB, BG, BR. BY, CA, CH, CN, CU, CZ, DE, DK, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL. IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR. LS. LT, LU, LV. MD,
MG, MK. MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN,
YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE.
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ. CF, CG,
CI, CM, GA, GN, GW, MU MR, NE, SN, TD, TG).

Published:
— With international search report.

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR POPULATING MULTIPLE DATA MARTS IN A SINGLE AGGREGATION
PROCESS

DMENSION TABLES
FOR MOATA MARTS

W
O

 00
/7

21
65

 Al PRE-PROCESSING STEP
REQUIRES WFORMATION FROM
DATA MART STRUCTURE. FT
READS THE LIST OF FACT
AGGREGATE RECORDS AND
GENERATES ONE LIST OF 0ΑΤΑ
MART BIT VECTORS FOR EACH
DIMENSION

N DWENSIOH WRTTERS

EACH DIMENSION WRITER
GENERATES ALL U TARGET

TABLES FOR ONE DIMENSION

WITHIN EACH DIMENSION. MULTIPLE TABLES
CAN BE MERGED WTO ONE TABLE.

LIST Of
,- /'DIMENSIONAL

/ RECORDS

DATA MART B
VECTORS

oata data
MARTI MART 2

r~\ /6lMN\ /6mn\

FACT TABLES
FORM DATA MARTS

DATA DATA
MARTI UART2

MULTIPLE FACT TABLES CAN BE MERGED
FACT WRITER GENERATES WTO ONE TABLE
U FACT TABLES (ONE FOR

EACH DATA MARTL

(57) Abstract: A method of populating multiple data marts in a single operation from a set of transactional data held in a database
in a single aggregation process, in which aggregate values are calculated only once, a determination is made as to which output data
marts required the aggregate value, and the aggregate values are output to the appropriate data marts. Dimension data associated
with the output aggregate records is also output to the appropriate data marts.

WO 00/72165 Al ΙΜΜΜΙΙ»

For two-letter codes and other abbreviations, refer to the “Guid­
ance Notes on Codes and Abbreviations “ appearing at the begin­
ning of each regular issue of the PCT Gazette.

WO 00/72165 PCT/US00/14497

METHOD AND APPARATUS FOR POPULATING MULTIPLE DATA

MARTS IN A SINGLE AGGREGATION PROCESS

BACKGROUND OF THE INVENTION

This patent application relates to a methodology for populating data marts.

A data mart is a database, or collection of databases, designed to help

managers make strategic decisions about their business. Whereas a data

warehouse combines databases across an entire enterprise, data mans are usually

smaller and focus on a particular subject or department. Often, data marts are

subsets of larger data warehouses. Planning and Designing The Data Warehouse

edited by Ramon Barquin and Herb Edelstein. Prentice Hall PTR. ISBN 0-13-

255746-0 describes definitions and the usage of data marts. The Data Warehouse

Toolkit by Ralph Kimball. John Wiley & Sons, Inc. ISBN 0-471-15337-0

provides a good description of the background and concepts of data warehousing.

One of the first steps in building a successful data mart is to correctly

identify the different dimensions and the fact set within a business structure. This

is often known as dimension modeling. Each dimension represents a collection

of unique entities that participate in the fact set independent of entities from

another dimension. The fact set usually contains transactional data where each

transaction (or record) is identified by a combination of entities one from each

dimension. FIGURE 1 shows a star schema for a supermarket business where the

star schema is the outcome of the dimension modeling process.

Each dimension is a table where each record contains a key (or a

composite key) that uniquely identifies each entity and a list of attributes to

qualify or describe the corresponding entity (or key). Each fact record in the fact

WO 00/72165 PCT/US00/14497

table would contain a foreign key to allow it to join to each dimension and a list

of measures which represents the transactional data. The dimension table is

usually not further normalized because the size of a dimension is usually much

smaller than that of the fact table; thus, the space saved by normalizing would not

be that significant. Also, it is not time-effective for an OLAP query tool to join

the normalized dimension tables at query run-time.

Theoretically, an OLAP tool could directly query against a data mart

which contains transactional data in the above star schema layout. However, in

order to allow fast response time on high level queries, for instance, a query to get

the monthly sales volume of a particular brand product for each state, pre­

aggregation of data in a data warehouse is required.

Levels of data are specified in each dimension for the purpose of

aggregation. Each level defines a grouping of dimension entries based on a

condition. For instance, in the store dimension of Figure 1, a state level could be

specified which would contain one aggregated dimension record for each state

having at least one store. In other words, each aggregated dimension record for

a particular state would represent the aggregation of data from all stores that are

in that state. Similarly, we could specify a city level in the store dimension to

allow the creation of aggregated dimension records where each entry represents

the aggregation of all stores in a particular city.

A level referred to as the input (or detail) level is the lowest level and

contains the same number of records as the input dimensional data. Levels

specified by users for aggregation purpose are referred to as aggregate levels.

Each aggregate level will contain a different number of records depending on the

level condition. For instance, the state level will probably contain less records

2

WO 00/72165 PCT/USOO/14497

than the city level. Each (input and aggregated) level is uniquely identified by a

level code. The level code is generally represented as an integer for efficiency.

The aggregation required in the output fact data is specified by a

combination of levels, one from each dimension. The combination of levels used

to specify aggregation is also referred as a cross product of levels. To do a month

by brand by state query in the above star schema example, the corresponding

level would need to be defined in each of the dimensions and it would need to be

specified that aggregation is required of the transactional data based on the cross

product of the three specified levels. Users may specify a list of cross products for

which they desire aggregation. The cross product of input levels represent the

input or detail fact data. There could be one or more aggregation expressions

associated with each input fact measure to be aggregated. Some common

aggregation expressions includes: max, min, average, sum, count, weighted

average, and fill with constant value for aggregated data.

An "all values" level is normally also provided in each dimension which

has a single member containing all dimension entries. This level is used in cross

products when the corresponding dimension is not involved in the cross product,

so that a single format for cross products can be defined each containing a level

from every dimension. Adding an “all entries” level into a cross product has no

effect on the result of the aggregation and acts as a dummy entry in the cross

product. For example, if the star schema of FIGURE 1 were being used, and a city

by month cross product was required, the product “all entries” level would be

incorporated in the cross product. Effectively, the data for all products is

aggregated into a city by month aggregate record.

3

WO 00/72165 PCT/US00/14497

After the process of aggregation, a data mart is generated. Each data mart

contains a set of dimension and fact tables. Each dimension in a data mart

corresponds to one dimension in the source star schema. The fact table in a data

mart contains aggregated data for a list of specified cross products.

A previous product provided by the present assignee is a consulting

service which does recognition of containment relationships between detail

dimension records and aggregated dimension records, aggregation of fact data,

and distribution of the aggregated dimension and fact data.

The aforementioned product has a basic mechanism of output distribution.

It can distribute different levels of detail and aggregated dimension records to

different output dimension files/tables and distribute different aggregate level

cross products to different output fact files/tables. However, it does not truly

support the concept of populating multiple data marts.

Only one target (output) star schema configuration is allowed. It does not

support the concept of having data marts that are of different star schema

configurations. Thus, the different output dimension or fact tables generated are

bound to the same output target star schema configuration.

Likewise, the aforementioned product doesn’t allow the generation of

different aggregates in different target fact tables. All fact tables have to have the

same type of aggregates. However, aggregates that are of interest to one group of

users may not be of interest to another group of users. Thus, allowing different

aggregates can both save resources wasted on processing unnecessary data and

limit the scope of data accessible by users.

4

WO 00/72165 PCT/US00/14497

Furthermore, dimension tables are not tied to any particular fact table.

Although the product can generate multiple dimension and fact tables, the

concept of a data mart is not enforced to ensure that the correct dimension tables

are joined to the correct fact table. In addition, users can specify a dimension

table to contain levels that are not related to the cross products of its

corresponding fact table. This could be very error prone on database systems that

check for referential integrity between dimension and fact tables.

Many techniques exist today that do not have enough flexibility and

efficiency to generate multiple data marts in a single aggregation generation

process. The following are the reasons why such flexibility and capability is

required:

1) It is often not desirable to generate a single data mart that has all

the aggregates needed by all user groups because it would contain

unnecessary data to other user groups. Moreover, the set of

generated aggregates could be too large to be duplicated or shared

among different user groups at different physical locations.

2) Small and specialized data marts contain smaller amounts of data

and a less complex view of the data to the targeted user group.

Querying against specialized data marts is also more efficient

because of the smaller or scoped set of aggregated data.

3) Data marts are often required to have different target star schema

configurations and aggregates because different user groups are

interested in a different set of dimension attributes or fact

5

WO 00/72165 PCT/USOO/14497

aggregates. Moreover, different user groups often look at the data

in different ways.

4) Data partitioning is very essential in saving storage resource. The

ability to have different fact tables sharing the same dimension

tables is commonly needed. An example is having two data marts:

one for actual sales and one for predicted sales. Both data mans

could share the same dimension tables; however, each data mart

will need to have its own fact table containing its own view of the

fact data.

5) Running aggregation generation multiple times to generate

specialized data marts is too expensive. The overhead of doing

aggregation multiple times is prohibitively high because it

involves reading the input fact file and analyzing the input fact

containment in different aggregation buckets multiple times.

Data marts contain published data used by OLAP tools for effective high-

level queries. Aggregated data in data marts is mainly used for decision support

for effective business management. However, different user groups may require

different sets of aggregated data from the same set of transactional data. For

instance, the west region marketing group may only care about data for the west

region; thus, it would be effective to build different data mans for different

geographic subsets from one set of national sales data. On the other hand, users

may also require data that is of interest among all regions like the sum of

nationwide sales Figures. In this case, data marts may also contain some

overlapped aggregated data.

6

23 Nov 2004 15:27 Smoorenburg Patent & Trad 03 9712 0159 P-6

7

SUMMARY OF THE INVENTION
The present invention provides a method of generating a plurality of output

data marts from a first data mart, said first data mart including input fact data and

at least one dimension table, said method including the steps of:

5 a) generating aggregated fact data including a plurality of records

representative of said fact data summarised at one or more levels other than the

level of the input fact data; and

b) distributing said aggregated fact data to said plurality of output data

marts, wherein certain aggregated fact data records are distributed to more than

10 one of said data marts, and wherein the set of fact data records distributed to at

least some of the output data marts are not identical.

Preferably, in order to effectively resolve the above describe needs, a

methodology is provided to populate multiple data marts from one set of

transactional data in a single aggregation process. In other words, this

15 methodology partitions aggregated data from the same operational data source.

It is much more resource effective to populate multiple data marts in one

aggregation run than to have multiple runs, one for each data mart or partition.

Multiple runs require reading the input fact data multiple times and generation

similar (if not the same) aggregate buckets on each run. The needs and the

20 benefits of multiple data mart population (or data partitioning) will be further

described in the following sections.

Preferably, the system involves three main processing steps: dimension

processing, aggregation processing, and data mart distribution. As the invention

relates primarily to multiple data mart population, the two earlier steps of the

25 aggregation process are assumed to be finished before the execution of the

described technique. The techniques for achieving dimension and aggregation

processing are well-known and available. In one embodiment, a technique is

provided for the population of multiple data marts given user-specified data mart

information, a list of fact aggregates, and one list of dimensional data for each

30 dimension.

COMS ID No: SBMI-01009525 Received by IP Australia: Time (H:m) 16:32 Date (Y-M-d) 2004-11-23

WO 00/72165 PCT/USOO/14497

BRIEF DESCRIPTION OF THE DRAWINGS

A specific embodiment of the invention is hereinafter described with

reference to the following drawing in which

FIGURE 1 shows an example star schema of a simple supermarket

business.

FIGURE 2 shows definition containment relationships wherein arrow

lines indicate a containment relationship and the value next to each arrow line

indicates the number of instances.

FIGURE 3 shows a data mart structure, wherein dotted arrow lines

indicate how dimensions, data marts and measures are indexed in the data

structure.

FIGURE 4 shows an example of fact aggregate record mapping to the

output target fact table. This example shows three dimensions and five measures

mapping to one target fact table only.

FIGURE 5 shows the overall dataflow and operations of the multiple data

man population technique.

DETAILED DESCRIPTION OF THE INVENTION

A specific embodiment of the invention will hereinafter be described.

8

WO 00/72165 PCT/USOO/14497

There follows a description of each component that is required as input

to this process for a specific embodiment of the invention.

Users have to specify both dimension and data mart information for data

mart population. This is called dimension definition and data mart definition

respectively. Thus, users have to specify a list of dimension definitions (one for

each dimension) and a list of data mart definitions (one for each data mart to be

generated.)

In each dimension definition, users have to specify the following

information. This does not include the information required for dimension and

aggregation processing.

1. Dimension name.
A unique name to identify the dimension.

2. Level conditions and level codes.

List of aggregated levels that are available for aggregation. Each level is

uniquely identified by a level code. The level condition determines the

grouping of dimensional records within each level.

3. Dimension output filtering flag (optional).

The dimension output filtering flag controls the dimension records to be

outputted in each data mart. One filtering option is specified for each

dimension. This flag is not a requirement for the data mart population

technique described. In other words, the technique could be implemented

without using this flag; however, it is included as part of the described

9

WO 00/72165 PCT/US00/14497

implementation because it has been found to be very useful in some

scenarios. The following are the four output filtering options:

a) No output. No dimension records will be outputted in the

dimension tables for all data marts. This is useful if users do not

have new records in the input dimension table. For instance, in a

supermarket schema, if there are no new products in the product

dimension and users did not specify new levels for new

aggregates to be generated, then there is no need to generate the

dimension records because they should already exist in the

database in previous aggregation generation.

b) All records. Any dimension record that has a level code that is in

the output cross products of a particular data mart will be

outputted to the dimension table of the data mart. For instance, in

the supermarket schema, if the brand by month by state aggregates

are to be outputted to a data mart and this output option is selected

for the product dimension, then all brand records will be outputted

to the product dimension table for the data mart. This would

include brands that have not occurred in the current fact table.

c) Active in data marts. This is a subset of records from the ‘All

records’ option. Dimension records must also be active in a data

mart in order to be outputted to its dimension table. Like the

example given in the previous option, a brand must also be active

in the current aggregation process (input fact table) in order for

the dimension record to be outputted to the dimension table.

10

WO 00/72165 PCT/US00/14497

d) Ever active in any data marts. This is a subset of records from the

‘All records’ option. Dimension records must also be active in the

current or any previous aggregations of a data mart in order to be

outputted to its dimension table. Like the example given in the

‘All records’ option, brand records that are active in the current or

any previous aggregations will be outputted to the dimension

table. For brands that have never participated in the output fact

data for that data mart, they will not be outputted to the dimension

table.

For each data mart definition, users have to specify the following

information:

4. Data mart name.

A unique name to identify the data mart.

5. Level cross product list.
This is a list of all of the combinations of levels that should have

aggregates computed in the current data mart. If the current data mart

requires outputting input fact data, the list of level combinations would

contain an entry of input level cross products. In the simplest case (one

dimension), this is simply a list of the levels to create aggregates for. Each

level cross product has one level code entry corresponds to each

dimension. The order of level codes in the cross product should

correspond to the order of the dimensions specified in the dimension

definition list. (This is not a requirement, but makes things simpler if

true.)

11

WO 00/72165 PCT/US00/14497

6. Dimension table definition list.

The dimension table definition list contains one dimension table

definition entry for each dimension. Each dimension table definition

contains column information like column position, data types, default

values, and other database related information. Moreover, for each

column, the user also needs to identify whether it is a key column or

attribute column. For attribute columns, each column corresponds to an

input attribute column.

Instead of specifying a new table definition for a dimension, users may

specify a dimension table definition to be the same as another table

definition for the same dimension in another data mart. In this case, the

two data marts will share the same target dimension table. Output records

for the dimension from both of the data marts will be merged into the

same target dimension table. Indeed, one or more data marts could output

their dimensional data to the same target table.

7. Fact table definition (including list of measures to be generated.)

Each data mart definition will contain one fact table definition. A fact

table definition contains column information like column position, data

types, default values, and other database related information. Moreover,

the user also needs to identify which are the key columns and which are

the measure columns.

There should be one key column to correspond to each dimension. The

data type of the key column must be coherent with the data type of the key

column specified in the dimension table definition.

12

WO 00/72165 PCT/US00/14497

Each measure column should correspond to a measure definition. Each

measure definition specifies an aggregation type and some measure column(s)

from the input fact table depending on the aggregation type. In the presently

preferred implementation, these aggregation types are supported: maximum,

minimum, sum, average, weighted average (which involves the column to be

averaged and a "weight” column), count, and fill (places a given value into the

aggregate). Other types of aggregation could easily be incorporated into the

implementation.

Instead of specifying a new fact table definition for the current data mart,

users may specify a fact table definition from another data mart. In this case, the

two data marts will share the same target fact table. Output aggregate records

from both of the data marts will be merged into the same target fact table. Indeed,

one or more data marts could output their fact data to the same target table.

A list of fact aggregates is the output of the aggregation generation

process. It contains fact data in both input and aggregated levels. The list of fact

aggregates serves as one of the inputs to the data mart distribution algorithm of

the invention. Each fact aggregate record contains a key to join to each

dimension, a cross product level code combination, and a list of aggregated

measures. The record has the following logical representation:

Key, | ... | KeyN | Level, | ... | Levels | Measure, | ... | Measure^

There should be one foreign key for each dimension. The foreign keys are

best represented as integral numbers (as they are in the presently preferred

implementation) because they are faster to compare, but other data types could

be chosen. The keys in the record are ideally listed in the same order as the

13

WO 00/72165 PCT/US00/14497

dimension definition list in the data mart structure. However, this is not a

requirement. They could be remapped into the desired order as will be described

later.

The level code combination represents the cross product level

combination that the current aggregate record corresponds to. Each level code

represents an aggregation or detail level from each dimension. It would be

simpler if the level codes are in the same order as the dimension definition list

specified in the data man structure. However, this is not a requirement. Based on

the level code combination, a determination is made of whether an aggregate

record needs to be written to a panicular data man. The level code combination

may also contain detail level codes from all dimensions. In this case, the record

is a detail level fact record and the measures may contain the same values as the

input fact record depending on the aggregation types. Some data mans may

require detail level aggregates to be written out.

Measures arc the aggregates generated for the record. The list of measures

must be a superset of all measures required by all data marts. The measures could

be listed in any order. As will be described in a later section, the order of the

measures could be remapped to the desired order for data mart population.

Since the fields in the fact aggregate record are not listed in any pre­

assumed order, users also need to define a fact aggregate record definition. The

definition would contain a list of fact record field definitions. Each field

definition contains an enumeration to indicate whether the field is a key, level

code, or measure. If the field is a key or level code, its field definition would

contain a reference to the dimension definition. If the field is a measure, its field

definition would contain a measure definition. The fact record definition allows

14

WO 00/72165 PCT/USOO/14497

the distribution process to know what each field is referring to and remap each

field accordingly.

There is one list of dimension records for each dimension. It contains both

input level and aggregated level dimensional records. Each dimension record

contains : a key, a level code, a list of attributes, and an optional ever active

switch. The list of dimension records also serves as an input to the data mart

distribution algorithm of the invention. The following table shows the logical

picture of a dimension record:

Key | Level code | Attributes, ~~|~ | Attributes, | Ever active switch

The key field contains the key of the current dimension record. It is an

integral value in the presently preferred implementation for fast comparison.

Level code is a unique level identifier that indicates the (detail or

aggregated) level of the current record. Level code is an integer in the presently

preferred implementation for fast comparison.

Attribute, to Attribute., represent the attri bute Values of a record. For detai 1

records, they contain the same values as the input dimension records. For

aggregate records, some attributes may contain empty values because they are the

attributes over which the record is aggregated.

For instance, a brand level dimension record may not have the product

name attribute filled in because each brand record is an aggregation over many

individual product names.

15

WO 00/72165 PCT/USOO/14497

The optional ever active switch is a boolean value which indicates

whether the current record has ever been active in any data mart or in any

previous aggregation generation process. The switch is used together with the

optional dimension output filtering flag to filter dimensional output. As

mentioned before, the output filtering capability is not required for the multiple

data mart population technique, but it is found useful to be part of the population

process by some users. If the ever active switch is not used, the list of

dimensional records will not need to be persistent. If the ever active switch is

used, then the dimension record together with the switch will need to be

persistent so that the “ever active in data marts” output filtering option could

function properly. In the presently preferred implementation, a master database

is provided for each dimension to maintain the dimension records ever seen. This

flag is maintained as a book-keeping activity during data mart population. Further

description is provided later in this description.

Since the fields in the dimension record are not listed in any pre-assumed

order, users also need to create a dimension record definition. The definition

contains a list of dimension record field definitions. The field definition contains

an enumeration to indicate whether the field is a key , attribute, or ever-active

switch. If the field is an attribute value, its field definition would contain a

reference to its input dimension column. No additional information is required for

a key field or the ever-active switch. The dimension record definition allows the

distribution process to know what each field is referring to and remap each field

accordingly.

FIGURE 2 shows the containment relationship among different table or

column definitions that have been mentioned above.

16

WO 00/72165 PCT/USOO/14497

The data mart population technique of the invention is very'different from

previous population techniques in that it closely ties the dimension tables with the

fact table in each data mart. In a single aggregation generation process, it allows

multiple data marts to be populated. Each data mart can represent a different star

schema, contain different dimension attributes and different aggregates.

Furthermore, data partitioning is allowed so that data marts may share the same

dimension or same fact tables. Thus, dimension or fact tables generated from

more than one data mart will contain merged data from those data marts.

The system of the specific embodiment of the invention described

involves the following components: a data mart structure, a fact writer, and

dimension writers (one writer per dimension). The following subsections describe

the design and major operations of each the three main system components.

Based on the above user-specified information, the information could be

analyzed and structured internally as depicted in FIGURE 3. This is referred to

as the data mart structure. The structure mainly provides access methods for other

system components to get the data mart attributes specified by users.

The above data mart structure is constructed by analyzing the user

specified information. The cross product table in the data mart structure contains

a list of cross product level code and data mart bit vector pairs. The level codes

in each cross product are listed in the same order as specified by the dimension

definition list. The bits of the data mart bit vector are listed in the same order as

specified by the data mart definition list.

The cross product table contains a distinct set of cross product level codes

required by all data marts. It is obtained by merging the cross product level codes

17

WO 00/72165 PCT/USOO/14497

specified in each data mart. The table is sorted by the level code combination to

speed up searching. Level codes are integer values in the presently preferred

implementation for fast comparison. Associated with each level code

combination is a bit vector which indicates the data marts in which the cross

product is participating. The values in the cross product table are constructed by

parsing the list of level cross products in each data mart, adding each new level

cross product entry to the table, and setting the current data mart bit to 1 in the

new or found entry .

The measure definition list and list of measure bit vectors are generated

by further analyzing the data man definitions. The measure definition list

contains the distinct set of measure definitions that are required by all data mans.

The vector is obtained by finding the unique measures required by each fact table

of each data man. Each measure definition is uniquely identified by its

aggregated input measure column(s) and its aggregation type (e.g., SUM, MAX,

MIN, etc.). The list of measure bit vectors contains one entry per data mart. Each

measure bit vector indicates the measures that are required for its corresponding

data mart. The two lists are initialized by looping through each measure definition

of the fact table from each data mart. The major steps required are indicated in the

following pseudo-code:

// martDefList, measureDefList, and measureBitVectorList

// are the data mart definition list, measure definition

// list, and list of measure bit vectors respectively that

// are maintained in the data mart structure.

InitializeMeasuresInfo () {

/ / initialize the list

measureDefList. clear ():

18

WO 00/72165 PCT/USOO/14497

// first find the unique set of measure definitions

for (i = 0: i < martDefList.size (); i++) I

vColumns =

martDefList(i|.factTableDef.GetColumns ():

// loop through each column in target table

for (j = 0: j < vColumns.size 0: j ++) (

if (vColumns(j).IsMeasure ()) (

/ / check if the measure def is already in the

// current measure definition list,

foundlndex = HndMeasureDef (measureDefList,

vColumnsljl.GetMeasureDef ());

// if new measure

if (foundlndex ==-1)

measureDefList .Append Entry

(vColumnsljl.GetMeasureDef ()):

1

)

// add measure bit vector to the list: one per data mart

for (i = 0: i < martDefList.size (): i++) (

vColumns =

martDefList[i|.factTableDef.GetColumns 0:

// initialize measure bit vector

bitVector = 0:

19

WO 00/72165 PCT/US00/14497

// loop through each column in target table

for (j = 0: j < vColumns.size 0: j ++) I

if (vColumns(j|.IsMeasure ()) {

// find the measure definition from the list;

// the measure definition should be found

foundlndex = findMeasureDef (measureDefList.

vColumns(j].GetMeasureDef ()):

measureBit = 1 « foundlndex:

bitVector = bitVector | measureBit:

)

// add the bit vector of required measures to the

// list

measureBitVectorList.AppendEntry (bitVector);

Once the data mart structure is constructed, it is available for other system

components to query user-specified parameters. The following list contains all the

access methods required for the data distribution technique.

1) Get All Measure Definitions

vMeasuresDef = GetMeasureDefinitions () const

Get a constant reference to the measure definition list. The vector

contains all distinct measures required by all data mans. Each measure

definition contains information of the aggregation type and its input

measure column(s).

20

WO 00/72165 PCT/USOO/14497

numMeasures = GetNumMeasures () const

Get the total no. of measures in the data mart structure. It is the same as

the size of the measure definition list.

2) Get Measure Definition Index

index - GetMeasurelndex (const measureDefinition& def) const

Find the specified measure definition in the measure definition list of the

data mart structure. It returns a 0-based index of the measure found in the

list. If the specified measure definition is not found, the method returns

-1.

3) Get All Dimension Definitions

vDimensionsDef = GetDimensionsDefinitions () const

Get a constant reference to the dimension definition list. The vector

contains all dimension definitions. Each dimension definition contains the

dimension output filtering flag and level codes and conditions.

numDimensions = GetNumDimensions () const

Get the total no. of dimensions in the data mart structure. It is the same

as the size of the dimension definition list.

3) Get Dimension Definition Index

index = GetDimensionlndex (const dimensionDef& def) const

21

WO 00/72165 PCT/US00/14497

Find the specified dimension definition in the dimension definition list of

the data mart structure. It returns a 0-based index of the dimension found

in the list. If the specified dimension definition is not found, the method

returns -1.

4) Get All Data Mart Definitions

vDataMartsDef = GetDataMartDefinitions () const

Get a constant reference to the data mart definition list. The vector

contains the definition of all data marts. Each data man definition

contains the dimension and fact table definitions as described in section

1.1.4

5) Get Active Data Mans for a Cross Product

vManBits = GetActiveMarts (const crossProductLevelCode& xprod)

const

Given a cross product level combination, it determines which data marts

will need to generate the specified cross product in its fact output. It

basically searches the cross product table and finds the specified cross

product. The returning bit vector is indexed the same way as the data man

definition list. A bit set to 1 indicates the corresponding data mart needs

to generate/output the specified cross product.

6) Get Active Measures for a Data Mart

vMeasBits = GetActiveMeasures (const dataMartDefinition& rMart)

const

22

WO 00/72165 PCT/US00/14497

vMeasBits = GetActiveMeasures (int iMart) const

Given a data mart definition or a data mart index, it obtains the measure

bit vector for the specified data mart. The returning bi, vector is indexed

the same way as the measure definition list. A bit set to 1 indicates the

corresponding measure is required for the data mart.

7) Get Active Data Marts for a Level Code

vMartBits = GetActiveMarts (const dimensionDefinition& rDim, const

levelCode& code)const

vMartBits = GetActiveMarts (int iDim, const levelCode& code)const

Get the data marts that need to output dimensional records of the

specified level in the specified dimension. This function basically loops

through the cross product table and matches the specified level code of

the specified dimension in each cross product combination. It then bitwise

ORs the data mart bit vector from each found entry. The returned bit

vector is indexed the same way as the data mart definition list. A bit set

to I indicates the corresponding data mart needs to generate/output the

input level cross product.

8) Get Active Level Codes Given a Dimension and a Data Mart

vLevelCodes = GetActiveLevels (const dimensionDefinition& rDim,

const

dataMartDefintion& rMart) const

vLevelCodes = GetActiveLevels (int iDim, int iMart) const

23

WO 00/72165 PCT/US00/14497

Given a dimension and a data mart definition or their corresponding

indexes, these methods obtain a list of distinct level codes from the

specified dimension where the levels are in the list of cross products of

the specified data mart. For a particular data mart, whether a dimension

record is outputted to a target table depends on whether its level has

participated in any cross product combinations of its fact table and the

value of the dimension output filtering flag.

The “Fact writer” is a functional component responsible for generating the

fact tables for all data marts. It takes the list of fact aggregates and its record

definition as input, queries the data mart structure for other user-specified

parameters, and outputs a fact table for each data mart. Note that a fact table may

correspond to more than one data mart if multiple data marts have specified to

merge its records to the same fact table.

As mentioned previously, each fact aggregate record contains a list of

keys, level codes, and measures. However, the keys, level codes, and measures

are not required to be in the same order as the dimension definition list and

measure definition list in the data mart structure. Their orders are specified in the

fact aggregate record definition. Thus, the “fact writer” will need to setup a

mapping scheme to re-position the columns from the aggregates record based on

the dimension and measure order in the data mart structure.

Internally, the fact writer will need to setup a key position vector, a level

code position vector, and a measure position vector. The size of the key and level

code position vector is the same as the number of dimensions. The size of the

measure position vector is the same as the size of the measure definition list in

the data mart structure. These vectors basically contain the column positions of

24

WO 00/72165 PCT/US00/14497

the keys, level codes, and measures from the fact aggregate records. They are

used for re-mapping the columns so that the fact writer could process the

aggregate records in the same dimension or measure order as specified in the data

mart structure. The following pseudo-code depicts the major steps of how the

different position vectors are set up. The input to the function described therein

is the data mart structure.

// After execution of the function, the keyPosVect,

// xProdPosVect, and measurePosVect vectors are setup for

// remapping columns from fact aggregate records. Each item

/ / in the vectors wall contain the corresponding column

// position from the fact aggregate record.

ConstructRemappingVectors 0

{

// initialize size of position vectors.

keyPosVect.resize

(dataMartStructure. GetNumDimensions ());

xProdPosVect. resize

(dataMartStructure. GetNumDimensions 0):

measurePosVect.resize

(dataMartStructure.GetNumMeasures 0):

/1 loop through each field definition of the fact

// aggregate record

for (i = 0; i < factAggrRecordDef.size (); i++) (

if (factAggrRecordDefli).IsKey 0) (

dimDef =

factAggrRecordDeflil-GetDimensionDef 0:

25

WO 00/72165 PCT/USOO/14497

// find the index of dimension definition from

// the dimension definition list

foundlndex =

da taMartStructure. GetDimensionlndex (dimDef):

keyPosVectifoundlndex) = i;

}

else

if (factAggrRecordDeflil.lsLevelCode ()) {

dimDef =

factAggrRecordDefli|.GetDimensionDef 0:

// find the index of dimension definition from

// the dimension definition list

foundlndex =

dataMartStructure.GetDimensionlndex (dimDef):

xProdPosVect(foundIndex] = i:

)

else (// measure columns

measureDef =

factAggrRecordDefiil.GetMeasureDef ();

// find the index of measure definition from the

// measure definition list in data mart structure

foundlndex =

dataMartStructure.GetMeasurelndex

(measureDef);

/ / ignore measure that is not active in any data

// marts

if (foundlndex != -1)

measurePosVect(foundlndex) = i:

1

26

WO 00/72165 PCT/US00/14497

}
1

The “fact writer” also needs to analyze the fact table definition specified

in each data mart definition. It needs to maintain a list of distinct target table

definitions required by all data marts. Associated with each target table definition

is a data mart bit vector, a boolean vector, and a position vector for re-positioning

the keys and measures to the position desirable by the target table. The

information needed for each distinct fact target table is listed in the structure

represented in the following pseudo-code:

fat 'ablelnfo {
factTableDef;

dataMartBltVector;

isKeyVector:

positionVector:

// fact target table definition

// from data mart structure.

// list of data marts merged

// into this target table.

// boolean vector to indicate

// key or measure.

// integer vector to indicate

// mapping position.

):

The following pseudo-code indicates how to construct the above

described information:

27

WO 00/72165 PCT/USOO/14497

// A fact table information list will be initialized with

// distinct target table information.

InitializeFactTablesInfo ()

(

// clear the list of target table info stored in fact

// writer

factTablelnfoList.clear ():

// obtain data mart info from data mart structure.

martDefList =

dataMartStructure.GetDataMartDefinitions ():

// for each data mart

for (i = 0: i < martDefList.size 0: 1 ++) I

// check if fact table of current data mart has

// already appeared in the factTablelnfoList

foundlndex = findTableDefintion

(martDefList(i|.factTableDef,

factTablelnfoList):

martBit = 1 « i:

if (foundlndex >= 0) (// if found

// mark the current data mart also active in the

// same target table.

factTablelnfoListlfoundlndexJ.dataMartBitVector =

factTablelnfoListffoundlndexI.dataMartBitVector (

martBit:

)

else (

28

WO 00/72165 PCT/US00/14497

// construct a new target table entry

factTablelnfo.factTableDef =

martDefList[i|.factTableDef:

factTablelnfo.dataMartBilVector = martBit:

// get the list of column definitions from

// the table

vColumns =

martDefList|i].factTableDef.GetColumnDefs ():

// set the size of key vector to no. of columns

fac tTable Info. is Key Vector. resize

(vColumns.size ()):

factTablelnfo.positionVector.resize

(vColumns.size ()):

I / loop through each column in target table

for (j = 0: j < vColumns. size (): j ++) {

if (vColumns(j].IsKey ()) (

factTableInfo.isKevVector(jI = true;

/ / find index of dimDef in data mart

// structure

dimlndex =

dataMartStruc ture. GetDimensionlndcx

(vColumns(j] .dimensionDef):

factTableInfo.positionVector(jJ =

dimlndex:

29

WO 00/72165 PCT/USOO/14497

I
else (// if column is a measure

factTablelnfo.isKeyVectory] = false;

//find index ofvColumns(jl.measureDef

// in the data mart structure

measurelndex =

dataMartStructure.GetMeasurelndex

(vColumns(j 1. measureDef);

factTablelnfo.positionVector(j| =

measurelndex;

}
factTablelnfoList.AppendEntry (factTablelnfo);

1 // else

I // for

This pseudo-code populates a list of distinct fact target table information

inside the fact writer based on the information from the data mart structure. It

loops through each data man and inspects its fact target table definition. First, it

finds if the target table definition is already in the current target table list. If

found, that means another data man is already outputting its results to the same

fact target table. Thus, the bit of the current data mart will be set into the data

mart bit vector of the found target table information entry. If the data mart is

outputting to a new fact target table, a new target table information entry will be

added to the list. The bit of the current data mart will be set in the empty data

mart bit vector. Also, a boolean and a position vectors will be populated for re­

positioning target column purposes.

30

WO 00/72165 PCT/USOO/14497

The size of the boolean and position vectors are the same as the no. of

columns in the target table. Each entry in the boolean vector indicates whether the

output column is a key or a measure. If the column is a key, the corresponding

value in the position vector would indicate the dimension index of where the key

is from. If the column is a measure, the corresponding value in the position vector

would indicate the measure index from the measure definition list in the data mart

structure. These indexes are used to re-position the columns when the “fact

writer” is given a list of keys and measures in the same order as the dimension

and measure definition lists respectively. FIGURE 4 describes an example of

how the overall mapping mechanism works.

After the internal data structure of the fact writer is initialized, the “fact

writer” can start reading the list of fact aggregates and distribute the aggregates

to different target fact tables.

The “fact writer” will only need to read the list of aggregates once. For

each record, it would re-map and distribute the mapped record(s) to each

participating target table. The following pseudo-code function describes the

process of multiple target table distribution given one aggregate record:

WriteAggregateRecord (aggrRecord)

I
// fill up pre-allocated (or data members) keys, xprod,

// and measures lists based on re-mapping columns from

// aggrRecord.

for (i = 0; 1 < dataMartStructure.GetNumDimensions ();

1++)1

31

WO 00/72165 PCT/USOO/14497

keys(i| = aggrRecord(keyPosVect|ill:

xProd[i| = aggrRecord[xProdPosVect[i]l;

J

for (i = 0: i < dataMartStructure.GetNumMeasures 0:

i ++)

measures[i] = aggrRecord(measurePosVect[i|l:

// get active data marts for the current cross product

activeMarts = dataMartStructure.GetActiveMarts (xProd);

/ j loop through each distinct target table

for (i = 0: i < factTablelnfoList.size (): i++) (

// if the record is active in the current

// target table

if (activeMarts &

facfTableInfoList|i].dataMartBitVeetor) {

/ / loop through each column

for (j = 0: j <

factTableInfoList(i].isKeyVector.size 0:

j ++)(

position =

factTableInfoList[i|.positionVector(j];

/ / re-position key and measure columns in the

// pre-allocated outputRecord

if (factTablelnfoListli).isKeyVector(j]

== true)

32

WO 00/72165 PCT/US00/14497

outputRecordyi = keyslposition);

else

outputReeord(j] = measures[position];

}

// output record to the target table

writeRecordToTable (outputRecord):

There should be an outer loop to read each aggregate record and call this

function to write the record to each participating target table. Thus, the above

function is executed as many times as the number of records in the input list of

aggregate records.

The function first re-positions the input aggregate records into three lists:

key, cross product, and measure list. The mapped key and cross product lists

should have the same order as the dimension definition list in the data mart

structure. The mapped measure list should have the same order as the measure

definition list. Then, the function determines the active data marts for the cross

product of the current aggregate record. For each target table that participates in

at least one of the active data marts, the key and measure list will be re-mapped

to the desirable column position of the target table.

Note that the first step of re-positioning the columns from the input

aggregate records is unnecessary if the record is pre-ordered as expected by the

data mart structure. This is achievable by utilizing the data mart structure during

aggregation generation as explained at the end of this document. Since it is not

33

WO 00/72165 PCT/USOO/14497

a requirement for the data mart population technique, a more generic approach

has been adopted and this assumption is not put as a pre-condition.

“Dimension writer” is a functional component responsible for generating

dimension target tables of one dimension for all data marts. It takes a list of

dimensional records as input, queries the data mart structure for user-specified

parameters, and outputs a dimension table for each data mart. Note that a

dimension table may correspond to more than one data mart if multiple data marts

have specified to merge its records to the same dimension table.

The “dimension writer” needs to set up some internal information before

it can start data distribution. First, it needs to find the key, level code, and ever-

active switch position based on its input dimension record definition. This could

be performed by looping through each field in the dimension record definition as

depicted in the pseudo-code shown below. It saves the found key, level code, and

active switch position into an internal variable of the dimension writer:

// dimKeyPos - key position from input dimension record.

/ / dimCodePos - level code position from input dimension

// record.

// dimSwitchPos - active switch position from input

// dimension record.

GetDimPositions 0

1
dimKeyPos = -1:

dimCodePos = -1:

dimSwitchPos = -1;

34

WO 00/72165 PCT/USOO/14497

for (int i =0 ; i < dimRecordDef.size (): i++) {

if (dimRecordDeflil.IsKey ())

dimKeyPos = i:

else if (dimRecordDeflfl.IsLevelCode 0)

dimCodePos = i;

else If (dimReeordDeflil.IsActiveSwitch 0)

dimSwitchPos = i;

1
)

Before doing multiple dimension tables distribution, a pre-processing step

is required to obtain an active data mart bit vector for each dimensional record.

The bit vector is used to aid the output filtering option described with respect to

the input requirements. Thus, if output filtering is not implemented, this pre­

processing step could also be eliminated. The output of the pre-processing step

is a list of data mart bit vectors for each dimension where each data mart bit

vector corresponds to one dimensional record.

The pre-processing step could populate the lists of data mart bit vectors

for all dimensions at the same time by reading the list of fact aggregate records

once. Initially, the lists of data mart bit vectors of all dimensions are set to 0.

Then, for each fact aggregate record, the key and level code pair are found for

each dimension. The data mart bit vector associated with the cross products of the

levels for each dimension are found using the “Get active marts for a cross

product” method. For each key, the dimensional record is found from the

corresponding dimensional record list by matching the key. Finally, the data mart

bit vector of the found dimensional record will be ORed with the data mart bit

vector just obtained from the data man structure. The found dimensional record

is accordingly considered active in the data marts specified in the data mart bit

35

WO 00/72165 PCT/US00/14497

vector as well as any data mans it was already associated with due to appearing

in other cross products.

Thus, by reading the list of fact aggregates once, the data mart bit vectors

of all dimensions will be populated. The pre-processing step can be optimized to

be performed during aggregation generation. However, since the initialization of

the data mart bit vector list is part of the preferred data mart population technique,

the pre-processing step is divided out to provide a more general approach.

The “dimension writer” also needs to query the data mart structure and

analyze the dimension table definition information for the current dimension

specified in each data mart. Internally, the dimension writer needs to maintain a

list of distinct dimension target table definitions required by all data marts.

Associated with each dimension table definition is an active data mart bit vector,

a list of active level codes, and a position vector for re-positioning the keys and

attributes to the position desirable by the target table. The information needed for

each dimension target table is listed in the following structure:

dimTablelnfo {
dimTableDef; H dimension target table

// definition from data mart

dataMartBitVector;

levelCodeVector

// structure.

// list of data marts merged

// into this target table,

//contains list of active

positionVector;

// level codes for the table

// integer vector to indicate

36

WO 00/72165 PCT/USOO/14497

// mapping position.

};

The following pseudo-code indicates how to construct the above

described information:

// A dimension table information list will be initialized

// with distinct target table information.

InitializeDimTablesInfo ()

I

/ / clear the list of target table info stored in

// dimension writer

dimTablelnfoList.clear 0:

martDefList =

dataMartStructure.GetDataMartDefinitions ():

// curDimDef is the current dimension definition

curDimlndex =

dataMartStructure.GetDimensionlndex (curDimDef):

for (i = 0; i < martDefList.size (): i ++) {

// check if dimension table of current data mart has

// already appeared in the dimTablelnfoList

foundlndex = findTableDefintion

(martDefListlil .dimTableDeflcurDimlndex].

dimTablelnfoList):

martBit = 1 « i;

37

WO 00/72165 PCT/USOO/14497

if (foundlndex >= 0) (// if found

// add current data mart to data mart bit vector

dimTableInfoList[foundIndex).dataMartBitVector =

dimTableInfoList[foundIndex).dataMartBitVector |

martBit.·

// merge current list of active level codes

/ / into the found entry

vCodes - GetActiveLevels (curDimlndex, i):

mergeDistinctLevelCodes

(dimTableInfoList|foundlndex].levelCodeVector,

vCodes);

}

else (

// construct a new target table entry

dimTablelnfo.dimTableDef =

martDefListJi].dimTableDeflcurDlmlndex]:

dimTablelnfo.dataMartBitVector = martBit:

dimTablelnfo.levelCodeVector =

GetActiveLevels (curDimlndex. i):

I/ get the list of columns from the table

vColumns =

martDefListli] .dimTableDef.GetColumnDefs 0:

for (j = 0: j < vColumns.size 0: j++) 1

if (vColumns(j|.IsKey 0) (

38

WO 00/72165 PCT/USOO/14497

// key position from input dimension

// record

dimTablelnfo.positionVectorljJ =

dimKeyPos:

1
else (// attribute cok;:nn

// key position from input dimension

// record

dimTablelnfo.positionVectorljJ =

dimRecordDef.FindlnputColumn

(vColumns(j|.GetInputColumnO):

J

J // for

)
J // for

}

This pseudo-code populates a list of distinct dimension target table

information inside the writer based on the information from the data mart

structure. It loops through each data mart and inspects its target table definition

of the current dimension. First, it finds if the target table definition is already in

the target table list. If found, that means another data mart is already outputting

its results to the same dimension target table. Thus, the bit of the current data

mart will be set into the data mart bit vector of the found table information entry.

Also, the list of active level codes for the current data mart will be merged into

the level code vector of the found entry. If the data mart is outputting to a new

dimension target table, a new target table information entry will be added to the

list. The bit of the current data mart will be set in the initial empty data mart bit

vector. The level code vector entry will be populated with the list of active level

39

WO 00/72165 PCT/USOO/14497

codes for the current data mart. Finally, the position vector will contain indexes

or column positions from the dimension record. The vector is used for re­

positioning the columns from the dimension records to be outputted into the

target table.

After the internal data structure of the dimension writer is initialized, it

can start reading the list of dimensional records and distribute the records to

different target tables.

The dimension writer will only need to read the list of dimensional

records once. For each record, it would re-map and distribute the mapped

record(s) to each participating target table. The following pseudo-code function

describes the process of multiple target table distribution given one dimensional

record and its corresponding active data mart bit vector.

WriteDimensionRecord (dimRecord. activeMartBitVector)

I
for (i = 0: i < dimTablelnfoList.size (): 1++) {

activelnTable =

activeMartBitVector &

dimTableInfoList|i].dataMartBitVector:

levellnTable = findLevelCode

(dimTablelnfoListlil.activeLevelCodes,

dimRecordldimCodePos]);

outputRecordFlag = false;

40

WO 00/72165 PCT/US00/14497

// update the ever active switch

if (activelnTable)

dimRecord|dimSwitchPos] = true:

// determine whether to output the record depending

// on output filtering option

if (filterOption == AllRecords) {

if (levellnTable)

outputRecordFlag = true:

}

else

if (filterOption == ActivelnDataMarts) (

if (levellnTable && activelnTable)

outputRecordFlag = true:

)

else

if (filterOption == EverActivelnDataMarts) {

if (levellnTable &&

dimRecordldimSwitchPos] == true)

outputRecordFlag = true:

)

if (outputRecordFlag == true) (

for (j = 0; j <

dimTableInfoList[il.positionVector.size 0:

j ++)(

position =

dimTableInfoList(i].posltionVectorlj];

outputRecord(il = dimRecord [position] :

41

WO 00/72165 PCT/USOO/14497

writeOutputRecord (outputRecord):

}
} // for

}

The active data mart bit vector is the output of the pre-processing step. There

should be an outer loop to read each dimensional record and call this function to

write the record to each participating target table. Thus, this function is executed

as many times as the no. of records in the input list of dimensional records.

The function loops through its list of dimension target table information.

It first initializes two flags: activelnTable and levellnTable. activelnTable

indicates whether the current dimension record is active in the fact. levellnTable

indicates whether the level code of the current dimension record is in the level

code list of the current target table. It then updates the persistent ever active

switch. The switch is set to true if the activelnTable flag is true. Based on the

filtering option, the logic determines whether the current dimension record should

be outputted to the target table. If the record is to be outputted, the key and

attribute columns will be re-mapped to the desirable column position of the target

table.

It should be noted that the “Ever Active” flag associated with each input

dimension record could be replaced with an “Ever Active in Data Marts” bit

vector. This would allow dimension records to be output to target data marts if

those data marts have ever received fact data corresponding to the data mart in

question. However, this would require maintaining persistent data relating to the

output data marts, preferably in the input dimension tables, between

aggregations. This causes problems keeping the input fact data synchronized with

42

WO 00/72165 PCT/USOO/14497

the output data mart definitions and for this reason isn’t implemented in the

preferred embodiment described herein. The “Ever Active” flag implemented in

the preferred embodiment doesn’t contain any data dependent on the

configuration of the output data marts.

The operation of the system components and the flow therebetween are

hereinafter described. FIGURE 5 depicts an overview of data flow given the input

requirements and the system components described in previous sections.

As depicted in the diagram, the data mart structure has to be constructed

before distribution can start. Once the data mart structure is initialized, the pre­

processing step for dimensional records can take place. The pre-processing step

establishes the field positions of keys and level codes from all dimension record

definitions and fact aggregate record definitions. After that, reading of the list of

fact aggregate records is commenced. For each fact aggregate record, the data

mart bit vectors of all the fact aggregate record’s corresponding dimension

records (one from each dimension) will be updated. Details of the pre-processing

step were described earlier with reference to the “Dimension Writer”.

When pre-processing is complete, the operations of the “fact writer” and

the “dimension writers” can proceed in parallel. The “fact writer” takes the list

of fact aggregate records as input, queries the data mart structure, and generates

a fact table for each data mart. Each “dimension writer" takes a list of

dimensional records and its corresponding list of data mart bit vectors generated

from the pre-processing step as input, queries the data mart structure, and

generates a dimension table for each data mart. Thus, the writers do not have any

interdependency and they could perform their tasks independently. However, if

the data marts are being loaded onto a database into tables in which referential

43

WO 00/72165 PCT/USOO/14497

integrity is enforced, at any particular instant, all key values in the fact data must

have corresponding values in the dimension data. If the fact writer writes an entry

before all its corresponding key values have been written by the dimension writer,

there will be a breakdown in referential integrity. If the writers are being used in

such an environment, referential integrity enforcement must be disabled before

commencing the process and re-enabled when the process finishes. Alternatively,

the fact writer could be set to commence only when the dimension writer has

finished processing.

The following is a summary of the major benefits and advantages of the

data mart population technique of the invention:

1) Allow population of multiple data marts in a single aggregation

generation process.

2) Much more resource effecti ve to generate multiple data marts in one shot

since data marts can have overlapped aggregates requirements or even

same levels of aggregations. It eliminates the overhead of reading input

fact file and generating the same aggregation buckets multiple times.

3) Allow data marts to have different star schema configurations and

different aggregates. The configuration of each data mart is tailored or

targeted to the needs of different user groups.

4) Records in dimension table are closely tied to the aggregated records in

the fact table. A record is in the dimension table only if the record level

participates in the list of output cross products for the corresponding fact

table. The data marts generated are much less error prone.

5) Allow data partitioning for large data sets. Logically separated data marts

may merge and share dimension tables to avoid unnecessary duplication

of dimensional data while having different fact tables. With the flexible

44

WO 00/72165 PCT/US00/14497

scheme of data mart distribution, data could be partitioned or merged in

different dimensions or fact tables.

6) Flexible dimension output filtering scheme allows users to choose the

right set of dimension records to be outputted to dimension tables.

The technique provided in this document is intended to cover a more

general scenario. Additional and reasonable assumptions could be applied to the

technique for optimizations. This section describes a few variations of possible

optimizations.

As mentioned before, the dimension output filtering flag is not a

requirement for the data mart population technique of the invention. It is provided

to enhance the capability of dimension records distribution. The logic has been

provided to enable four output filtering options which are: no dimension output,

all dimension records, active in data mart, and ever active in data marts.

Additional output filtering option could be added based on other combinations

of active data mart or level code criteria. The “ever active in data mart” output

filtering capability requires dimension records ever seen to be kept persistent

because each dimension record needs to maintain an “ever active” flag over time.

If the “ever active in data mart” filtering capability is not needed to be supported,

then dimension records are also not required to be persistent.

In the described technique, no assumptions were made about the measures

in a fact aggregate record except that it should be a superset of all measures

required. Also, no assumptions were made about the field position of the fact

aggregate records and the dimensional records. In the preferred implementation,

some reasonable assumptions were made because the data mart structure is

45

WO 00/72165 PCT/US00/14497

constructed before aggregation generation. It is fairly common that users would

have all the dimension and data mart definitions before aggregation generation.

Given the data mart structure before aggregation generation, the set of

required measures is known. The order of dimensions and measures in the data

mart structure is also known. In this case, only the required measures are

generated during aggregation generation. The keys, level codes, and measures

listed in each fact aggregate record could also be in some pre-assumed order. For

instance, the first N fields in the record would be key fields in the same order of

dimensions as specified in the data mart structure, the next N fields would be

level code fields also in the same order of dimensions as specified in the data

mart structure, the last M fields would be the measures in the same order as

specified in the data mart structure. In this case, the initial re-positioning step

from the fact aggregate record could be eliminated. For dimensional records, the

key, level code and ever active switch could be assumed to be placed in the first

three fields for optimization purposes.

If the data mart structure is constructed before aggregation generation, the

pre-processing step for populating data mart bit vectors could also be eliminated.

The task could be achieved during the same time as aggregation generation. Then

there is no need to read the list of fact aggregates once just for the purpose of

populating data mart bit vectors.

In the preferred implementation, when an input fact record gets

aggregated into all its participating aggregation buckets, the data mart bit vectors

of all dimensional records related to the input fact record and its aggregation

buckets will be updated. The logic in updating the bit vectors is the same as

described in the “Dimension Writer” section. However, in this case, it eliminates

46

23 Nov 2004 15:27 Smoorenburg Patent t< Trad 03 9712 0159 p.7

47

the need of reading the fact aggregate records one more time. Again, the data

mart bit vectors in each dimension are used for output filtering purpose. If no

output filtering is supported or the filtering options supported do not require the

data mart bit vectors, then the step for populating the data mart bit vectors could

5 be eliminated.

While the preferred embodiment of the invention has been shown and

described, It will be apparent to those skilled in the art that changes and

modifications may be made therein without departing from the spirit of the

invention, the scope of which is defined by the appended claims.

10 "Comprises/oomprising" when used in this specification is taken tc specify

the presence of stated features, integers, steps or components but does not

preclude the presence or addition of one or more other features, integers, steps,

components or groups thereof.

•X

COMS ID No: SBMI-01009525 Received by IP Australia: Time (H:m) 16:32 Date (Y-M-d) 2004-11-23

23 Mov 2004 15:27 Smoorenburg Patent & Trad 03 9712 0159 p . 9

48

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method of generating a plurality of output data marts from a first data

mart, said first data mart including input fact data and at least one dimension

5 table, said method including the steps of:

a) generating aggregated fact data including a plurality of records

representative of said fact data summarised at one or more levels other than the

level of the input fact data; and

b) distributing said aggregated fact data to said plurality of output data

10 marts, wherein certain aggregated fact data records are distributed to more than

one of said data marts, and wherein the set of fact data records distributed to at

least some of the output data marts are not identical.

• ·

2. A method as claimed in claim 1, wherein each aggregated fact data record

15 is generated only once and then output to the output data marts requiring said

aggregate fact data record.

3. A method as claimed in claim 1, further including the steps of:

providing at least one data structure specifying levels or level cross

20 products required by each output data mart;

establishing the aggregate fact data records which need to be generated

from said input fact data;

generating each required aggregate fact data record, and for each

generated aggregate fact data record:

25 1) establishing from said at least one data structure which of said

output data marts requires said aggregated fact data record; and

2) providing each of said output data marts which requires said

aggregate fact data record with said aggregated fact data record.

COMS ID No: SBMI-01009525 Received by IP Australia: Time (H:m) 16:32 Date (Y-M-d) 2004-11-23

23 Nov 2004 15:27 Smoorenburg Patent & Trad 03 9712 0159 p. 9

49

4. A method as claimed in claim 3, wherein said data structure includes a list

of levels or level cross products from said at least one dimension, and wherein

each element in said list is associated with one more output data marts, thereby

allowing each aggregate fact data record to be associated with appropriate output

5 data marts based on the level or level cross product with which the record is

associated.

5. A method as claimed in any one of claims 1 to 4, wherein aggregated fact

data is shared by different data marts.

10

6. A method as claimed in any one of claim 1 to 5, further including a step of

generating dimension tables for each of the output data marts from an input

dimension table wherein each generated target dimension table contains only

dimension records associated with levels requested by the associated data marts.

15

7. A method as claimed in claim 6, wherein at least one or the generated

dimension tables is shared by two or more of the output data marts.

8. A method as claimed in claim 6, wherein the step of generating target

20 dimension tables for a particular dimension is carried out by generating a list of

levels associated with said target dimension tables and outputting dimension

records into a target dimension table only if the level associated with said

dimension record is in the list of levels associated with said target dimension

table.

25

9. A method as claimed in claim 8, wherein

said list of levels for a particular target dimension table is generated by

merging lists of levels In the appropriate dimension associated with each of the

data marts to which the target dimension table corresponds, and wherein

30 each list of levels associated with a particular data mart includes the set of

levels in the corresponding dimension of all the cross products with which the

data mart is associated.

COMS ID No: SBMI-01009525 Received by IP Australia: lime (H:m) 16:32 Date (Y-M-d) 2004-11-23

23 Nov 2004 15:28 Smoorenburg Patent 8. Trad 03 9712 0159 p . 1 0

50

10. A method as claimed in claim 9, wherein generated dimension tables in

each data mart contain only records from said input dimension tables which

appear in the aggregated output fact data output to that data mart.

5 11. A method as claimed in claim 10, wherein the step of generating dimension

tables for each data mart in a particular dimension is carried out by

a) providing storing means for associating dimension records with

each data mart, and initially associating each dimension record with no data

marts;

10 b) performing the following steps for each fact data entry, wherein

each fact data entry includes a set of dimension entries corresponding to a

specific dimension record in each dimension:

1) establishing the level associated with the dimension entry in each

dimension,

15 2) establishing the data marts associated with said fact data entry

based on the cross product of said levels, and for each dimension, associating

each of said data marts with the dimension record corresponding to the

dimension entry In said storing means if the data mart is not already associated

with said dimension entry;

20 c) outputting each dimension record to each output dimension table if

the dimension record is associated in said storing means with a data mart with

which said output dimension table is associated.

12. A method as claimed in claim 6, wherein generated dimension tables are

25 shared by different output data marts.

COMS ID No: SBMI-01009525 Received by IP Australia: Time (H:m) 16:32 Date (Y-M-d) 2004-11-23

23 Nov 2004 15:28 Smoorenburg Patent & Trad 03 9712 0159 p.ll

51

13. A method of generating a plurality of output data marts from a first data

mart substantially as herein described with reference to any of the accompanying

drawings.

5 DATED this 23rd day of November 2004
COMPUTER ASSOCIATES THINK, INC

SMOORENBURG PATENT & TRADE MARK ATTORNEYS
PO BOX 9

10 KANGAROO GROUND VIC 3097
AUSTRALIA

COMS ID No: SBMI-01009525 Received by IP Australia: Time (H:m) 16:32 Date (Y-M-d) 2004-11-23

<

WO 00/72165 PCT/USOO/14497

1 / 4

Cross product table sorted by cross product level code

Cross product level code
Data Mart Bit Vector

Level 1 Level N

1 1 1 1 1 1 1

3 5 1 1 1 1

3 11 1 1 1 1

6 7 1 1 1

7 9 1 1 1

FIG 3

I I

Dimension definition list
Each dimension defintion
contains: dimension name,
list of level conditions and
codes, and optional output
filtering flag.

I----- L.

List of measure bit vector

Measure Bit Vector

1 1 1 1

1 1 1 1

1 1

» 1 1 1

. 1 1 1 1

1 1 1

1 1 1 1 1

. 1 1 1

j

i T T i i XJL
Data mart definition list
Each data mart defintion
contains: data mart name, list
of level cross products, list of
dimension table definitions,
and fact table definition.

Measures definition list.
Each entry contains:
aggregation type and input
fact measure column(s).

<

WO 00/72165 PCT/USOO/14497

2 / 4

FIG 2

User specified data mart definition (one for each data mart)

User specified fact aggregate record definition
for the input list of fact aggregate records.

User specified dimension record
definition for the input list of dimensional

records (one for each dimension).

KEYPOS
VECTOR

SU
BSTITU

TE SH
EET (R

U
LE 26)

FACT AGGREGATE
RECORD

INDEX 0
1
2
3
4
5
6
7
8
9
10

*1
K2
K3

l2
1-1
M1
M3
m5
m2
m4

FIG.4

XPRODPOS
VECTOR

—►T’t

MEASUREPOS
VECTOR

10

TABLES INFORMATION

ISKEY
VECTOR

POSITION
VECTOR

0 0
0 2
0 4
1 2
1 1
1 0
0 3

-CONTAINS INDEX TO
KEYPOS AND
MEASUREPOSVECOTRS
M1
M3
m5
K3
K2
Ki
m4

W
O

 00/72165

PC
T/USO

O
/14497

N DIMENSION WRITERS

DIMENSION TABLES
FOR M DATA MARTS

SU
BSTITU

T
E SH

EET (R
U

LE 26)

FIG. 5

LIST OF
DIMENSIONAL

RECORDS

EACH DIMENSION WRITER
GENERATES ALL M TARGET

TABLES FOR ONE DIMENSION DATA
MARTI

DATA
MART 2

DATA
MARTM

LIST OF
DIMENSIONAL
RECORDS +

DATA MART BIT/
VECTORS

WITHIN EACH DIMENSION, MULTIPLE TABLES
CAN BE MERGED INTO ONE TABLE.

PRE- fc- DATA MART
PROCESSING STRUCTURE

STEP

-U

PRE-PROCESSING STEP
REQUIRES INFORMATION FROM
DATAMARTSTRUCTURE. IT
READS THE LIST OF FACT
AGGREGATE RECORDS AND
GENERATES ONE LIST OF DATA
MART BIT VECTORS FOR EACH
DIMENSION.

LIST OF FACT
AGGREGATE

RECORDS

Ο

FACT TABLES
FOR M DATA MARTS

DATA
MARTI

DATA
MART 2

DATA
MARTM

FACT WRITER GENERATES
M FACT TABLES (ONE FOR

EACH DATA MART).

MULTIPLE FACT TABLES CAN BE MERGED
INTO ONE TABLE

W
O

 00/72165
PC

T/U
SO

O
/14497

