wO 2020/094601 A1 | NI 0000 KO0 0 00 O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
=

International Bureau

(43) International Publication Date
14 May 2020 (14.05.2020)

(10) International Publication Number

WO 2020/094601 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 9/30 (2018.01) GO6F 9/38 (2018.01)

(21) International Application Number:
PCT/EP2019/080161

(22) International Filing Date:
05 November 2019 (05.11.2019)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
16/182,017 06 November 2018 (06.11.2018) US

(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION [US/US]; New Orchard
Road, Armonk, New York 10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth Hampshire PO6 3AU (GB).

(72) Inventors: GIAMEI, Bruce, Conrad, IBM CORPO-
RATION, 2455 SOUTH ROAD, POUGHKEEPSIE, New

York 12601-5400 (US). RECKTENWALD, Martin; [BM
DEUTSCHLAND GMBH, SCHOENAICHER STRASSE
220, 71032 BOEBLINGEN (DE). SCHMIDT, Don-
ald, William; IBM CORPORATION, 2455 SOUTH
ROAD, POUGHKEEPSIE, New York 12601-5400 (US).
SLEGEL, Timothy;, IBM CORPORATION, 2455 SOUTH
ROAD, POUGHKEEPSIE, New York 12601-5400 (US).
PURANIK, Aditya, Nitin; [BM INDIA PVT LIMIT-
ED, INTELLECTUAL PROPERTY LAW, EMBASSY
LINKS, EMBASSY CYPRESS PT, INDIRANAGAR-KO-
RAMANGALA INTERMEDIATE RING ROAD BAN-
GALORE KARNATAKA 560071 (IN). FARRELL,
Mark; IBM CORPORATION, 2455 SOUTH ROAD,
POUGHKEEPSIE, New York 12601-5400 (US). JACOBI,
Christian; IBM CORPORATION, 2455 SOUTH ROAD,
POUGHKEEPSIE, New York 12601-5400 (US). BRAD-
BURY, Jonathan, IBM CORPORATION, 2455 SOUTH
ROAD, POUGHKEEPSIE, New York 12601-5400 (US).
ZOELLIN, Christian, Gerhard; IBM CORPORATION,
11400 BURNET ROAD, AUSTIN, Texas 78758-3493
(US).

(54) Title: SAVING AND RESTORING MACHINE STATE BETWEEN MULTIPLE EXECUTIONS OF AN INSTRUCTION

COMPLETION ~—1100

DETERMINE THAT PROCESSING QF AN OPERATION OF AN INSTRUCTION
EXECUTING ON THE PROCESSOR HAS BEEN INTERRUPTED PRIOR TO

EXTRACT METADATA OF THE PROCESSOR, BASED ON DETERMINING THAT THE
PROCESSING OF THE OPERATION HAS BEEN INTERRUPTED ~—1102 1104

THE METADATA BEING CURRENT METADATA OF THE PROCESSOR -
STORE THE METADATA IN A LOCATION ASSOCIATED WITH THE INSTRUCTION
USE THE METADATA STORED IN THE LOCATION IN RE-EXECUTING THE

INSTRUCTION TO RESUME FORWARD PROCESSING OF THE INSTRUCTION FROM
WHERE [T WAS INTERRUPTED —~—_ {108

1108

PREVIOUS COMPARISONS ~—1 118

INSTRUCTION 1S, E.G., A SORT INSTRUCTION ~_1 {10

THE METADATA INCLUDES INFORMATION ABOUT ONE OR MORE INPLUT
LISTS TO THE SORT INSTRUCTION ~—1 112

METADATA INCLUDES INFORMATION REGARDING PREVIOUS COMPARISONS

MADE OF RECORDS OF THE ONE OR MORE INPUT LISTS TO INDICATE NEXT

COMPARISONS TO BE MADE ~_11 14

NEXT COMPARISONS TC BE MADE ARE INDICATED ABSENT REPEATING THE

DETERMINING INCLUDES CHECKING A CONDITION CODE SET BASED ON
TERMINATION OF THE INSTRUCTION - THE CONDITION CODE SET TO A SELECT
VALUE INDICATING PARTIAL COMPLETION OF THE INSTRUCTION ~—_111g

FIG. 11A

(57) Abstract: Saving and restoring machine state between multiple executions of an instruction. A determination is made that pro-
cessing of an operation of an instruction executing on a processor has been interrupted prior to completion. Based on determining that
the processing of the operation has been interrupted, current metadata of the processor is extracted. The metadata is stored in a location
associated with the instruction and used to re-execute the instruction to resume forward processing of the instruction from where it

was interrupted.

[Continued on next page]

WO 2020/09460 1 A1 |10} 0000000 T 0 OO0

(74) Agent: SHAW, Anita; IBM United Kingdom Limited, In-
tellectual Property Law, Hursley Park, Winchester Hamp-
shire SO21 2JN (GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW,BY, BZ,
CA, CH, CL,CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2020/094601 PCT/EP2019/080161

1

SAVING AND RESTORING MACHINE STATE BETWEEN MULTIPLE EXECUTIONS OF AN INSTRUCTION

BACKGROUND

[0001] One or more aspects relate, in general, to facilitating processing within a computing environment, and

in particular, to facilitating instruction processing.

[0002] An instruction executing within the computing environment may require a significant number of
execution cycles to complete an operation. When an instruction requires a significant number of execution cycles
to complete, the instruction may be defined as interruptible. Therefore, to eventually complete the instruction,

additional processing is performed.

SUMMARY

[0003] Shortcomings of the prior art are overcome and additional advantages are provided through the
provision of a computer program product for facilitating processing within a computing environment. The computer
program product includes a computer readable storage medium readable by a processor and storing instructions for
performing a method. The method includes determining that processing of an operation of an instruction executing
on the processor has been interrupted prior to completion. Based on determining that the processing of the
operation has been interrupted, metadata of the processor is extracted. The metadata is current metadata of the
processor. The metadata is stored in a location associated with the instruction and used in re-executing the

instruction to resume forward processing of the instruction from where it was interrupted.

[0004] By extracting the metadata for an interrupted operation and saving that data, when the instruction is
re-executed, the saved metadata may be loaded and used, instead of repeating tasks to reproduce the metadata.

This saves time, improving performance within the processor.

[0005] In one example, the instruction is a sort instruction, and the metadata includes information about one
or more input lists to the sort instruction. For instance, the metadata includes information regarding previous
comparisons made of records of the one or more input lists to indicate next comparisons to be made. The next

comparisons to be made are indicated, for instance, absent repeating the previous comparisons.

[0006] In one example, the determining includes checking a condition code set based on termination of the

instruction, the condition code set to a select value indicates partial completion of the instruction.

WO 2020/094601 PCT/EP2019/080161

2

[0007] As an example, the location in which the metadata is stored is a parameter block in memory
designated by the instruction. The location of the parameter block in memory is designated by, for instance,
contents of an implied register of the instruction. In one particular example, the parameter block includes a
continuation state buffer to store the metadata, the metadata including internal state data of the processor. Further,

in one example, the parameter block includes a continuation indicator to indicate partial completion of the operation.

[0008] In one aspect, the using the metadata in re-executing the instruction further includes re-executing the
instruction to resume processing; extracting the metadata from the location; and loading the metadata extracted
from the location into one or more select locations of the processor, wherein the metadata is provided to the

processor absent repeating one or more tasks to produce the metadata.

[0009] Computer-implemented methods and systems relating to one or more aspects are also described and

claimed herein. Further, services relating to one or more aspects are also described and may be claimed herein.

[0010] Additional features and advantages are realized through the techniques described herein. Other

embodiments and aspects are described in detail herein and are considered a part of the claimed aspects.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] One or more aspects are particularly pointed out and distinctly claimed as examples in the claims at
the conclusion of the specification. The foregoing and objects, features, and advantages of one or more aspects
are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
FIG. 1A depicts one example of a computing environment to incorporate and use one or more aspects of the
present invention;

FIG. 1B depicts further details of a processor of FIG. 1A, in accordance with one or more aspects of the present
invention;

FIG. 2 depicts another example of a computing environment to incorporate and use one or more aspects of the
present invention;

FIG. 3A depicts one format of a Sort Lists instruction, in accordance with an aspect of the present invention;

FIG. 3B depicts one example of fields of an implied register, general register 0, used by the Sort Lists instruction, in
accordance with an aspect of the present invention;

FIG. 3C depicts one example of function codes for the Sort Lists instruction, in accordance with an aspect of the
present invention;

FIG. 3D depicts one example of a field of an implied register, general register 1, used by the Sort Lists instruction,

in accordance with an aspect of the present invention;

WO 2020/094601 PCT/EP2019/080161
3

FIG. 3E depicts one example of contents of a register, R1, specified by the Sort Lists instruction, in accordance with
an aspect of the present invention;

FIG. 3F depicts one example of contents of a register, Ry+1, used by the Sort Lists instruction, in accordance with
an aspect of the present invention;

FIG. 3G depicts one example of contents of a register, R, specified by the Sort Lists instruction, in accordance with
an aspect of the present invention;

FIG. 3H depicts one example of contents of a register, Ro+1, used by the Sort Lists instruction, in accordance with

an aspect of the present invention;

FIG. 3l depicts one example of contents of a parameter block used by the SORTL-QAF function of the Sort Lists
instruction, in accordance with an aspect of the present invention;

FIG. 3J depicts one example of a fixed-length record format used by the Sort Lists instruction, in accordance with
an aspect of the present invention;

FIG. 3K depicts one example of contents of a parameter block used by the SORTL-SFLR function of the Sort Lists
instruction, in accordance with an aspect of the present invention;

FIGS. 4A-4B depict SORTL-SFLR examples, in accordance with one or more aspects of the present invention;
FIG. 5A depicts one example of a summary of values for inputs to the SORTL-SFLR function, in accordance with an
aspect of the present invention;

FIG. 5B depicts one example of restrictions for modifications to the input list address and length fields for the
SORTL-SFLR function, in accordance with an aspect of the present invention;

FIG. 6A depicts one example of a first operand location/first operand before executing SORTL with a merge mode
indication set to zero, in accordance with an aspect of the present invention;

FIG. 6B depicts one example of a first operand location/first operand after executing SORTL with a merge mode
indication set to zero, in accordance with an aspect of the present invention;

FIG. 6C depicts one example of a second operand location/second operand before executing SORTL with a merge
mode indication set to zero, in accordance with an aspect of the present invention;

FIG. 6D depicts one example of a second operand location/second operand after executing SORTL with a merge
mode indication set to zero, in accordance with an aspect of the present invention;

FIG. 7A depicts one example of a first operand location/first operand before executing SORTL with a merge mode
indication set to one, in accordance with an aspect of the present invention;

FIG. 7B depicts one example of a first operand location/first operand after executing SORTL with a merge mode
indication set to one, in accordance with an aspect of the present invention;

FIG. 8 depicts one example of certain fields of a parameter block used in accordance with an aspect of the present
invention;

FIG. 9 depicts one example of a variable-length record format used by the Sort Lists instruction, in accordance with

an aspect of the present invention;

WO 2020/094601 PCT/EP2019/080161

4

FIGS. 10A-10B depict processing associated with interruption of an operation of an instruction and re-execution of
the instruction, in accordance with an aspect of the present invention;

FIGS. 11A-11B depict one example of facilitating processing within a computing environment, in accordance with
an aspect of the present invention;

FIG. 12A depicts another example of a computing environment to incorporate and use one or more aspects of the
present invention;

FIG. 12B depicts further details of the memory of FIG. 12A;

FIG. 13 depicts one embodiment of a cloud computing environment; and

FIG. 14 depicts one example of abstraction model layers.

DETAILED DESCRIPTION

[0012] In accordance with an aspect of the present invention, a capability is provided to facilitate processing
within a computing environment. As one example, a single instruction (e.g., a single architected hardware machine
instruction at the hardware/software interface) is provided to perform an operation, such as to sort and/or merge

data records. The instruction is executed, for instance, on a general-purpose processor.

[0013] In executing the instruction, a significant number of execution cycles may be needed to complete the
operation. Thus, in one aspect, the instruction is defined to be interruptible. When the instruction is interrupted, the
operation (e.g., sort and/or merge) is only partially completed. Execution of the instruction ends with setting a
condition code to a value that informs the program (e.g., the program issuing the instruction) of partial completion of

the operation. The program may then re-execute the instruction to resume processing.

[0014] The instruction, in one embodiment, employs a number (e.g., a significant number) of execution
cycles to prime the processor with metadata before results are produced. Priming the processor with the metadata
is performed each time the instruction is executed or re-executed. Thus, in accordance with an aspect of the
present invention, previously produced metadata is stored and used, such that the previously produced metadata

does not have to be reproduced at the time the instruction is re-executed.

[0015] In one example, the instruction is a sort instruction that sorts and/or merges records of one or more
input lists input to the instruction. For such an example, the metadata includes internal state of the processor,
including, for instance, information about the input lists, such as information regarding previous comparisons of

records of the input lists in order to determine the next comparisons to be made.

[0016] The processor extracts the metadata and stores it in a location provided by the program. Then, when

the instruction is to be re-executed after an interrupt, the metadata is extracted from the location and loaded in the

WO 2020/094601 PCT/EP2019/080161

5

processor, without using tasks to reproduce the metadata. This saves time that would have been required to

generate the metadata for the operation.

[0017] One embodiment of a computing environment to incorporate and use one or more aspects of the
present invention is described with reference to FIG. 1A. A computing environment 100 includes, for instance, a
processor 102 (e.g., a central processing unit), a memory 104 (e.g., main memory; a.k.a., system memory, main
storage, central storage, storage), and one or more input/output (I/O) devices and/or interfaces 106 coupled to one

another via, for example, one or more buses 108 and/or other connections.

[0018] In one example, processor 102 is based on the z/Architecture® hardware architecture offered by

International Business Machines Corporation, Armonk, New York, and is part of a server, such as an IBM yA

server, which is also offered by International Business Machines Corporation and implements the z/Architecture

hardware architecture. One embodiment of the z/Architecture hardware architecture is described in a publication
entitled, “z/Architecture Principles of Operation,” IBM Publication No. SA22-7832-11, 12t edition, September 2017,

which is hereby incorporated herein by reference in its entirety. The z/Architecture hardware architecture, however,
is only one example architecture; other architectures and/or other types of computing environments may include

and/or use one or more aspects of the present invention. In one example, the processor executes an operating

system, such as the 2/08® operating system, also offered by International Business Machines Corporation.

[0019] Processor 102 includes a plurality of functional components used to execute instructions. As depicted
in FIG. 1B, these functional components include, for instance, an instruction fetch component 120 to fetch
instructions to be executed; an instruction decode unit 122 to decode the fetched instructions and to obtain
operands of the decoded instructions; an instruction execute component 124 to execute the decoded instructions; a
memory access component 126 to access memory for instruction execution, if necessary; and a write back
component 130 to provide the results of the executed instructions. One or more of these components may, in
accordance with one or more aspects of the present invention, include at least a portion of or have access to one or
more other components that provide sort/merge processing (or other processing that may use one or more aspects
of the present invention). The one or more other components include, for instance, a sort/merge component (or

other component) 136. Functionality provided by component 136 is described in further detail below.

[0020] Another example of a computing environment to incorporate and use one or more aspects of the
present invention is described with reference to FIG. 2. In one example, the computing environment is based on
the z/Architecture hardware architecture; however, the computing environment may be based on other architectures

offered by International Business Machines Corporation or others.

WO 2020/094601 PCT/EP2019/080161

6

[0021] Referring to FIG. 2, in one example, the computing environment includes a central electronics
complex (CEC) 200. CEC 200 includes a plurality of components, such as, for instance, a memory 202 (a.k.a.,
system memory, main memory, main storage, central storage, storage) coupled to one or more processors (a.k.a.,

central processing units (CPUs)) 204, and to an input/output subsystem 206.

[0022] Memory 202 includes, for example, one or more logical partitions 208, a hypervisor 210 that manages

the logical partitions, and processor firmware 212. One example of hypervisor 210 is the Processor
Resource/System Manager (PR/SMTM) hypervisor, offered by International Business Machines Corporation,

Armonk, New York. As used herein, firmware includes, e.g., the microcode of the processor. It includes, for
instance, the hardware-level instructions and/or data structures used in implementation of higher level machine
code. In one embodiment, it includes, for instance, proprietary code that is typically delivered as microcode that
includes trusted software or microcode specific to the underlying hardware and controls operating system access to

the system hardware.

[0023] Each logical partition 208 is capable of functioning as a separate system. That is, each logical
partition can be independently reset, run a guest operating system 220 such as a z/OS operating system, or
another operating system, and operate with different programs 222. An operating system or application program
running in a logical partition appears to have access to a full and complete system, but in reality, only a portion of it

is available.

[0024] Memory 202 is coupled to processors (e.g., CPUs) 204, which are physical processor resources that
may be allocated to the logical partitions. For instance, a logical partition 208 includes one or more logical
processors, each of which represents all or a share of a physical processor resource 204 that may be dynamically

allocated to the logical partition.

[0025] Further, memory 202 is coupled to I/O subsystem 206. 1/0 subsystem 206 may be a part of the
central electronics complex or separate therefrom. It directs the flow of information between main storage 202 and

input/output control units 230 and input/output (I/O) devices 240 coupled to the central electronics complex.

[0026] Many types of 1/O devices may be used. One particular type is a data storage device 250. Data
storage device 250 may store one or more programs 252, one or more computer readable program instructions
254, and/or data, etc. The computer readable program instructions may be configured to carry out functions of

embodiments of aspects of the invention.

[0027] In one example, processor 204 includes a sort/merge component (or other component) 260 to perform

one or more of sorting and/or merging (or other operations that may use one or more aspects of the present

WO 2020/094601 PCT/EP2019/080161

7

invention). In various examples, there may be one or more components performing these tasks. Many variations

are possible.

[0028] Central electronics complex 200 may include and/or be coupled to removable/non-removable,
volatile/non-volatile computer system storage media. For example, it may include and/or be coupled to a non-
removable, non-volatile magnetic media (typically called a "hard drive"), a magnetic disk drive for reading from and
writing to a removable, non-volatile magnetic disk (e.g., a "floppy disk"), and/or an optical disk drive for reading from
or writing to a removable, non-volatile optical disk, such as a CD-ROM, DVD-ROM or other optical media. It should
be understood that other hardware and/or software components could be used in conjunction with central
electronics complex 200. Examples include, but are not limited to: microcode, device drivers, redundant processing

units, external disk drive arrays, RAID systems, tape drives, and data archival storage systems, etc.

[0029] Further, central electronics complex 200 may be operational with numerous other general purpose or
special purpose computing system environments or configurations. Examples of well-known computing systems,
environments, and/or configurations that may be suitable for use with central electronics complex 200 include, but
are not limited to, personal computer (PC) systems, server computer systems, thin clients, thick clients, handheld or
laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer
electronics, network PCs, minicomputer systems, mainframe computer systems, and distributed cloud computing

environments that include any of the above systems or devices, and the like.

[0030] Although various examples of computing environments are described herein, one or more aspects of
the present invention may be used with many types of environments. The computing environments provided herein
are only examples. Further, although one or more aspects of the present invention are described with reference to
a sort instruction, one or more of the aspects are applicable to other processing and/or instructions that use a

significant number of execution cycles and is interruptible. The sort instruction is only one example.

[0031] In accordance with an aspect of the present invention, a processor, such as processor 102 or 204,
employs an enhanced sort facility that provides a mechanism to sort multiple lists of unsorted input data into one or
more lists of sorted output data. In one example, the enhanced sort facility is installed in the system when a facility
indicator is set, e.g., to one. As one particular example of the z/Architecture hardware architecture, facility bit 150 is
set to, e.g., one, when the enhanced sort facility is installed in the z/Architecture architectural mode. The facility
also provides, in one embodiment, a mechanism to merge multiple lists of sorted input data into a single list of
sorted output data. The facility includes, for instance, a Sort Lists instruction, an embodiment of which is described

below.

WO 2020/094601 PCT/EP2019/080161

8

[0032] One embodiment of details relating to a Sort Lists instruction is described with reference to FIGS. 3A-
3K. This instruction is executed, in one example, on a general-purpose processor (€.g., processor 102 or 204). In
the description herein, specific locations, specific fields and/or specific sizes of the fields are indicated (e.g., specific
bytes and/or bits). However, other locations, fields and/or sizes may be provided. Further, although the setting of a
bit to a particular value, e.g., one or zero, is specified, this is only an example. The bit may be set to a different

value, such as the opposite value or to another value, in other examples. Many variations are possible.

[0033] Referring to FIG. 3A, in one example, a format of a Sort Lists (SORTL) instruction 300 is an RRE
format that denotes a register and register operation with an extended operation code (opcode). As an example,

the instruction includes an operation code field 302 (e.g., bits 0-15) having an operation code indicating a sort

and/or merge operation, a first register field (R1) 304 (e.g., bits 24-27) designating a first pair of general registers
and a second register field (Ro) 306 (e.g., bits 28-31) designating a second pair of general registers. The contents
of a register designated by R+ field 304 specify a location of the first operand (in storage), and the contents of a
register designated by Ro field 306 specify a location of the second operand (in storage). The contents of Ry + 1

specify the length of the first operand, and the contents of Rz + 1 specify the length of the second operand. In one

example, bits 16-23 of the instruction are reserved and should contain zeros; otherwise, the program may not
operate compatibly in the future. As used herein, the program is the one issuing the Sort Lists instruction. It may

be a user program, an operating system or another type of program.

[0034] In one embodiment, execution of the instruction includes the use of one or more implied general
registers (i.e., registers not explicitly designated by the instruction). For instance, general registers 0 and 1 are
used in execution of the Sort Lists instruction, as described herein. General register 0 is used, in one example, to
specify whether merging is to be performed and to specify a sort function to be performed by the instruction, and
general register 1 is used to provide a location of a parameter block used by the instruction. In another example,
general register 0 is not used to specify whether merging is to be performed; instead, merging is set/not set by the

machine (e.g., processor) and is not changeable by a mode indicator. Other variations are possible.

[0035] As an example, with reference to FIG. 3B, a general register 0 (308) includes a merge mode field 310
(described below) and a function code field 312. In one particular example, bit positions 57-63 of general register 0
contain a function code; but in other embodiments, other bits may be used to contain the function code. When bits
57-63 of general register 0 designate an unassigned or uninstalled function code, a specification exception is

recognized, in one example.

[0036] Example assigned function codes for the Sort Lists instruction are shown in FIG. 3C and include, for

instance: function code 0 (313) indicating a SORTL-QAF (query available functions) function; function code 1 (315)

WO 2020/094601 PCT/EP2019/080161

9

indicating a SORTL-SFLR (sort fixed-length records) function; and function code 2 (317) indicating a SORTL-SVLR
(sort variable-length records) function. Each code uses a parameter block and the size of the parameter block

depends, in one example, on the function. For instance, for the SORTL-QAF function, the parameter block is 32
bytes; and for SORTL-SFLR and SORTL-SVLR, the parameter block is 576 + 16 x Nis, where Njs is a number of

input lists, as specified by an interface size. Other function codes are unassigned in this example. Although

example functions and function codes are described, other functions and/or function codes may be used.

[0037] As previously indicated, general register 0 also includes a merge mode field 310. In one example, bit
56 of general register 0 specifies a mode of operation (merge mode) which applies to, for instance, the SORTL-
SFLR and SORLT-SVLR functions. Bit 56 of general register 0 is ignored, in one example, when the specified

function is SORTL-QAF. Further, in one example, bit positions 0-55 of general register 0 are ignored.

[0038] Further details regarding another implied register, general register 1, used by the Sort Lists instruction
are described with reference to FIG. 3D. The contents of general register 1 (314) specify, for instance, a logical
address 316 of the leftmost byte of a parameter block in storage. The parameter block is to be designated on a
doubleword boundary, in one example; otherwise a specification exception is recognized. Further details regarding

the parameter block are described further below.

[0039] For the specified functions (e.g., SORTL-QAF, SORTL-SFLR, SORTL-SVLR), the contents of general
registers 0 and 1 are not modified. Further, in one example, R1 field 304 designates an even-odd pair of general

registers. Itis to designate an even-numbered register and is not to designate general register 0; otherwise, a

specification exception is recognized. When the specified function is SORTL-SFLR or SORTL-SVLR, as shown in
FIGS. 3E-3F, the contents of a general register R1 318 specify, for instance, a logical address 320 of the leftmost
byte of the first operand, and the contents of a general register R, + 1 (322) specify a length 324 of the first operand
in, e.g., bytes. When the specified function is SORTL-SFLR or SORTL-SVLR, the first operand, e.g., is to be

designated on a doubleword boundary; otherwise a specification exception is recognized. Data, in the form of

records, is selected from a set of input lists and is stored at the first operand location (e.g., beginning at the address

specified using R1). When the SORTL-QAF function is specified, the contents of general registers R, and R, + 1

are ignored.

[0040] Moreover, for the specified functions (e.g., SORTL-QAF, SORTL-SFLR, SORTL-SVLR), in one

example, R, field 306 designates an even-odd pair of general registers. It is to designate an even-numbered

register and is not to designate general register 0; otherwise, a specification exception is recognized. When the
specified function is SORTL-SFLR or SORTL-SVLR, and merge mode (MM) is zero, as shown in FIGS. 3G-3H, the

WO 2020/094601 PCT/EP2019/080161

10
contents of a general register R, 326 specify, for instance, a logical address 328 of the leftmost byte of the second
operand, and the contents of a general register R, + 1 (330) specify a length 332 of the second operand in, e.g.,

bytes. When the specified function is SORTL-SFLR or SORTL-SVLR, and merge mode (MM) is zero, the second
operand is to be designated on a doubleword boundary; otherwise a specification exception is recognized, in one

example. The starting address and length of each output list, referred to as output list delineations (OLD), are

stored at the second operand location (e.g., beginning at the address specified using Ro) when MM is zero. When

the SORTL-QAF function is specified, or MM is one, the contents of general registers R, and Rz + 1 are ignored.

[0041] In execution, in one embodiment, a function specified by the function code in general register 0 is
performed. As part of the operation when the specified function is SORTL-SFLR or SORTL-SVLR, the following
oceurs, in one embodiment:

The address in general register R, is incremented by the number of bytes stored at the first operand
location, and the length in general register R, + 1 is decremented by the same number.
When MM is zero, the address in general register R, is incremented by the number of bytes stored at

the second operand location, and the length in general register R, + 1 is decremented by the same number.

[0042] In one example, the formation and updating of the addresses and lengths are dependent on the

addressing mode.

[0043] In the 24-bit addressing mode, the following apply, in one embodiment:

The contents of bit positions 40-63 of general registers 1, R, and R, constitute the addresses of the

parameter block, first operand, and second operand, respectively, and the contents of bit positions 0-39 are
ignored.
Bits 40-63 of the updated first operand and second operand addresses replace the corresponding bits

in general registers R, and R, respectively. Carries out of bit position 40 of the updated addresses are ignored,
and the contents of bit positions 32-39 of general registers R, and R, are set to zeros. The contents of bit positions
0-31 of general registers R, and R, remain unchanged.

The contents of bit positions 32-63 of general registers R, + 1 and R, + 1 form 32-bit unsigned binary

integers which specify the number of bytes in the first and second operands, respectively. The contents of bit

positions 0-31 of general registers R, + 1 and R, + 1 are ignored.

WO 2020/094601 PCT/EP2019/080161

11

Bits 32-63 of the updated first operand and second operand lengths replace the corresponding bits in

general registers R, +1.and R, + 1, respectively. The contents of bit positions 0-31 of general registers R, + 1 and

R, + 1 remain unchanged.

[0044] In the 31-bit addressing mode, the following apply, in one embodiment:

The contents of bit positions 33-63 of general registers 1, R, and R, constitute the addresses of the

parameter block, first operand, and second operand, respectively, and the contents of bit positions 0-32 are
ignored.
Bits 33-63 of the updated first operand and second operand addresses replace the corresponding bits

in general registers R, and R, respectively. Carries out of bit position 33 of the updated addresses are ignored,
and the content of bit position 32 of general registers R, and R, is set to zero. The contents of bit positions 0-31 of
general registers R, and R, remain unchanged.

The contents of bit positions 32-63 of general registers R, + 1 and R, + 1 form 32-bit unsigned binary

integers which specify the number of bytes in the first and second operands, respectively. The contents of bit

positions 0-31 of general registers R, + 1 and R, + 1 are ignored.

Bits 32-63 of the updated first operand and second operand lengths replace the corresponding bits in

general registers R, +1and R, + 1, respectively. The contents of bit positions 0-31 of general registers R, + 1 and

R, + 1 remain unchanged.

[0045] In the 64-bit addressing mode, the following apply, in one embodiment:

The contents of bit positions 0-63 of general registers 1, R,, and R, constitute the addresses of the

parameter block, first operand, and second operand, respectively.
Bits 0-63 of the updated first operand and second operand addresses replace the corresponding bits

in general registers R, and R,, respectively. Carries out of bit position 0 of the updated addresses are ignored.
The contents of bit positions 0-63 of general registers R, + 1 and R, + 1 form 64-bit unsigned binary

integers which specify the number of bytes in the first and second operands, respectively.
Bits 0-63 of the updated first operand and second operand lengths replace the corresponding bits in

general registers R, + 1and R, + 1, respectively.

[0046] In the access-register mode, access registers 1, R,, and R, specify the address spaces containing the

parameter block, first operand, and second operand, respectively.

WO 2020/094601 PCT/EP2019/080161

12

[0047] Further details regarding the various functions are described below:

Function Code 0: SORTL-QAF (Query Available Functions)

[0048] The SORTL-QAF (query) function provides a mechanism to indicate the availability of all installed
functions, installed parameter block formats, and interface sizes available. An interface size is the number of input
lists available to the program. The size of the parameter block for the SORT-SFLR and SORT-SVLR functions is

proportional to the interface size specified by the program.

[0049] One example format of the parameter block for the SORTL-QAF function is described with reference
to FIG. 3I. In one example, a parameter block 340 for the SORTL-QAF function (e.g., function code 0) includes an
installed functions vector 342, an installed interface sizes vector 344, and an installed parameter block formats
vector 346. In one particular example, these vectors are stored to bytes 0-15, byte 16, and bytes 24-25,

respectively, of the parameter block. Each of the vectors is further described below.

[0050] As an example, bits 0-127 of installed functions vector 342 correspond to function codes 0-127,
respectively, of the Sort Lists instruction. When a bit is, e.g., one, the corresponding function is installed; otherwise,

the function is not installed.

[0051] Further, in one example, bits 0-7 of installed interface sizes vector 344 indicate the interface sizes
available to the program. An interface size is the number of input lists to be specified by the program for the SORT-
SFLR and SORTL-SVLR functions. Bits 0-7 of installed interface sizes vector 344 correspond to the following
interface sizes, in one example: Bits 0, 1, 5-7 reserved; bit 2 — 32 input lists; bit 3 — 64 input lists; and bit 4 — 128

input lists. Other examples are also possible.

[0052] When a bit of installed interface sizes vector 344 is, e.g., one, the corresponding interface size is
available to the program. One or more bits may be stored as ones. For example, a value of 00101000 binary
indicates interfaces sizes of 32 and 128 input lists are available. In one example, bits 0-1 and 5-7 are reserved and
stored as zeros. Further, in one example, the interface size of 32 input lists is available when the enhance sort

facility is installed. Therefore, bit 2 is stored as a one. Other examples are also possible.

[0053] In addition to the above, in one example, bits 0-15 of installed parameter block formats vector 346
correspond to parameter block formats 0-15, respectively. When a bit is, e.g., one, the corresponding parameter
block format is installed; otherwise, the parameter block format is not installed. In one example, zeros are stored to

reserved bytes 17-23 and 26-31 of the parameter block.

WO 2020/094601 PCT/EP2019/080161

13

[0054] The contents of general registers R,, R,, R, + 1, and R, + 1 are ignored by the SORT-QAF function.

[0055] A PER (program event recording) storage alteration event is recognized, when applicable, for the

parameter block. A PER zero address detection event is recognized, when applicable, for the parameter block.

[0056] Condition code 0 is set when execution of the SORTL-QAF function completes; condition codes 1, 2,

and 3 are not applicable to the query function, in one example.

Function Code 1: SORTL-SFLR (Sort Fixed-Length Records)

[0057] In one example, a set of input lists is sorted and stored as a set of output lists at the first operand
location. Each list is a set of records, and with reference to FIG. 3J, each record 350 includes a key 352 (e.g., a

fixed-length key) and a payload 354 (e.g., a fixed-length payload).

[0058] Records from the input lists are sorted based on the values of the keys. The records may be sorted in
ascending or descending order, as specified in a sort order (SO) field of the parameter block associated with

function code 1, described below. The records of an input list may, or may not, be listed in sorted order.

[0059] The records of an output list may be sourced from multiple input lists, and are stored in sorted order.
The number of output lists stored at the first operand location depends on the input data. In one example, when
every active input list contains records listed in the same order as specified in the SO field, only one output list is

produced.

[0060] As indicated above, bit 56 of general register 0 specifies a mode of operation, referred to as merge
mode (MM), which applies to the SORTL-SFLR function. When merge mode is, e.g., zero, for each output list
stored at the first operand location, a corresponding output list delineation (OLD) is stored at the second operand
location. Each OLD includes, for instance, an 8-byte OLD-address, which designates the location of the first record
in the corresponding output list, and an 8-byte OLD-length, which specifies the length, in, e.g., bytes, of the
corresponding output list. When merge mode is one, the input lists are considered presorted. That is, every active

input list is considered to contain records in the same order as specified by the SO field of the parameter block.

[0061] When MM is one and each input list is presorted, the result stored at the first operand location is a
single output list of records in sorted order. When MM is one and each input list is not presorted, results are

unpredictable.

WO 2020/094601 PCT/EP2019/080161
14

[0062] When MM is, e.g., one, the contents of general registers Ry and Ro + 1 are ignored and no information

is stored at the second operand location. When MM is one, procedures used to distinguish separations between
output lists may not be performed, thereby potentially improving the performance of the operation. When MM is

one, data is not stored to a continuation record recall buffer, described below.

[0063] To generate a single list of records in sorted order from a set of records in random order, a program
may perform the following procedure, in one example:

1. Evenly partition the set of records among an initial set of lists, where each list contains records in
random order. Execute the Sort Lists instruction with the initial set of lists as input lists and merge mode equal to
zero, to generate an intermediate set of lists (each of which contains records in sorted order), and the storage
locations and lengths for each list of the intermediate set of lists.

2. Execute the Sort Lists instruction with the intermediate set of lists as input lists and merge mode

equal to one, to generate the final and single list, which contains the records in sorted order.

[0064] One example of the SORTL-SFLR with merge mode equal to zero is illustrated in FIG. 4A. The inputs
and resulting outputs are included in the example. As shown, there are three input lists 400: input list0, input list1
and input list2. Further, an example of a resulting first operand 402 and a second operand 404 are depicted. In
one example, there are three lists in first operand 402 (FIG. 4A), and as shown in second operand 404, one begins
at address 1000 and has a length of 18; another begins at address 1018 and has a length of 28; and a third begins
at address 1040 and has a length of 20.

[0065] In one example, when two operations perform the same SORTL-SFLR function with merge mode
equal zero on the same set of unsorted input records and the only difference between the two operations is the
number of input lists used to specify the input data, the operation with the larger number of input lists results in a
smaller number of output lists. FIG. 4B illustrates an example of using six input lists 450 to operate on the same
input data as the example in FIG. 4A, which uses three input lists. A resulting first operand 452 with two output

lists, instead of three, and a second operand 454 providing delineations of the two output lists are also depicted.

[0066] As indicated, the SORTL-SFLR function uses a parameter block, an example of which is described
with reference to FIG. 3K. In the example parameter block described herein, specific locations within the parameter
block for specific fields and specific sizes of the fields are indicated (e.g., specific bytes and/or bits). However,
other locations and/or sizes may be provided for one or more of the fields. Further, although the setting of a bit to a
particular value e.g., one or zero, is specified, this is only an example. The bit may be set to a different value, such

as the opposite value or to another value, in other examples. Many variations are possible.

WO 2020/094601 PCT/EP2019/080161

15

[0067] In one example, a parameter block 360 for the SORTL-SFLR function includes the following:
Parameter Block Version Number (PBVN) 362: Bytes 0-1 of the parameter block specify the version
and size of the parameter block. Bits 0-7 of the PBVN have the same format and definition as bits 0-7 of the

installed interface sizes list vector (byte 16) of the parameter block for the SORTL-QAF (query) function. Bits 0-7

specify the number of input lists described in the parameter block, Nis. The size of the parameter block, in bytes, is

determined by evaluating the formula (576 + 16 x Nis). One bit of bits 0-7 is to have a value of one; otherwise, a
general operand data exception is recognized. Bits 8-11 of the PBVN are reserved and should contain zeros;
otherwise, the program may not operate compatibly in the future. Bits 12-15 of the PBVN contain an unsigned
binary integer specifying the format of the parameter block. The SORTL-QAF function provides the mechanism of
indicating the parameter block formats available. When the size or format of the parameter block specified is not
supported by the model, a general operand data exception is recognized. The PBVN is specified by the program
and is not modified during execution of the instruction.

Model Version Number (MVN) 364: Byte 2 of the parameter block is an unsigned binary integer
identifying the model which executed the instruction. The MVN is updated during execution of the instruction, by,

e.g., the processor. The value stored in the MVN is model-dependent.

[0068] When the continuation flag (CF) 368, described below, is one, the MVN is an input to the operation.
When CF is one and the MVN identifies the same model as the model currently executing the instruction, data from
the continuation state buffer (CSB) 390, described below, may be used to resume the operation. When CF is one
and the MVN identifies a different model than the model currently executing the instruction, part, or all of the CSB

field may be ignored.

[0069] In one example, the program initializes the MVN to zeros. It is expected that the program does not
modify the MVN in the event the instruction is to be re-executed for the purpose of resuming the operation;

otherwise results are unpredictable.

[0070] Sort Order (SO) 366: Bit 56 of the parameter block, when zero, specifies an ascending sort order, and
when one, specifies a descending sort order. When ascending sort order is specified, each record of an output list
contains a key that is greater than, or equal to, the key of the adjacent record on, e.g., the left, in the same output
list. When descending sort order is specified, each record of an output list contains a key that is less than, or equal
to, the key of the adjacent record on, e.g., the left, in the same output list. The SO is not updated during execution

of the instruction.

[0071] Continuation Flag (CF) 368: Bit 63 of the parameter block, when one, indicates the operation is
partially complete and the contents of the continuation state buffer 390, and when merge mode (MM) is zero, the

contents of a continuation record recall buffer may be used to resume the operation. The program is to initialize the

WO 2020/094601 PCT/EP2019/080161

16

continuation flag (CF) to zero and not modify the CF in the event the instruction is to be re-executed for the purpose
of resuming the operation; otherwise results are unpredictable. The processor, in one example, modifies the CF in

the event the instruction is to be re-executed.

[0072] Record Key Length 370: Bytes 10-11 of the parameter block contain an unsigned binary integer
specifying the size, in bytes, of the keys, in the records processed during the operation. A general operand data
exception is recognized for any of the following conditions, in one example:

A key size of zero bytes is specified.

A key size which is not a multiple of 8 is specified.

A key size larger than 4096 bytes is specified.

The record key length is not updated during execution of the instruction.

[0073] Record Payload Length 372: When the SORTL-SFLR function is specified, bytes 14-15 of the
parameter block contain an unsigned binary integer specifying the size, in bytes, of the payloads, in the records
processed during the operation. A general operand data exception is recognized for any of the following conditions,
in one example:

A payload size which is not a multiple of 8 is specified.

The sum of the key and payload sizes specified is larger than 4096 bytes.

A payload size of zero is valid.

[0074] When the SORTL-SVLR function is specified, the record payload length field of the parameter block is

ignored. The record payload length is not updated during execution of the instruction.

[0075] Operand Access Intent (OAl) 374: Bits 0-1 of byte 32 of the parameter block signal future access
intent to the CPU for input lists and the first operand. Provided access intents may be used to modify cache line
installation and replacement policies for the corresponding storage locations at various levels of cache in the

storage hierarchy.

[0076] When bit 0 of the OAl field is one, storage locations designated to contain data for any active input list
will be referenced as one or more operands of subsequent instructions. When bit 0 of the OAl field is zero, storage
locations designated to contain data for any active input list will not be referenced as one or more operands of

subsequent instructions.

[0077] When bit 1 of the OAl field is one, storage locations designated to contain the first operand will be

referenced as one or more operands of subsequent instructions. When bit 1 of the OAl field is zero, storage

WO 2020/094601 PCT/EP2019/080161

17

locations designated to contain the first operand will not be referenced as one or more operands of subsequent

instructions.

[0078] It is not guaranteed that the CPU uses this information. The duration this information may be used is

undefined, but is finite.

[0079] When the next-sequential instruction after Next Instruction Access Intent (NIAI) is Sort Lists (SORTL),
the execution of SORTL is not effected by NIAL

[0080] The OAl is not updated during execution of the instruction.

[0081] Active Input Lists Count Code (AILCC) 376 : Bits 1-7 of byte 33 of the parameter block are a 7-bit
unsigned integer that specifies the number of the input list which denotes the boundary between active and inactive
input lists. Input lists with list numbers, e.g., less than or equal to the value of the AILCC field are in the active
state. Input lists with list numbers, e.g., greater than the value of the AILCC field are in the inactive state. The

number of input lists in the active state is one more than the value in the AILCC field.

[0082] Input lists in the active state participate in the operation. Input lists in the inactive state do not

participate in the operation.

[0083] Bit 0 of byte 33 of the parameter block is reserved and should contain zero; otherwise the program

may not operate compatibly in the future.

[0084] When the value of the AILCC field plus one is greater than the number of input lists described in the
parameter block, as specified by bits 0-7 of the PBVN field, a general operand data exception is recognized, in one

example.

[0085] The value specified in the AILCC field does not effect the size of the parameter block. Access
exceptions apply to references to fields of the parameter block specifying an input list address or length

corresponding to an input list in the inactive state.
[0086] The AILCC is not updated during execution of the instruction.
[0087] Empty Input Lists Control (EILCL) 378: When bit 0 of byte 40 of the parameter block is one, the

operation ends when the length of input list0 becomes zero during the operation. When bit 0 of byte 40 of the

parameter block is zero, the operation continues to proceed when the length of input list0 becomes zero during the

WO 2020/094601 PCT/EP2019/080161

18

operation. When bit 1 of byte 40 of the parameter block is one, the operation ends when the length of an active
input list, other than input list0, becomes zero during the operation. When bit 1 of byte 40 of the parameter block is
zero, the operation continues to proceed when the length of an active input list, other than input list0, becomes zero

during the operation.

[0088] When the length of an active input list is initially zero before execution of the instruction, the

corresponding bit of the EILCL does not apply.

[0089] The EILCL is not updated during execution of the instruction.

[0090] It is expected that the program does not modify the EILCL in the event the instruction is to be re-

executed for the purpose of resuming the operation; otherwise results are unpredictable.

[0091] Empty Input List Flag (EILF) 380: When the EILCL is 11 binary, and the operation ends due to the
updated length of an active input list being equal to zero, and condition code 2 is set, the value of one is stored,
e.g., by the processor, to bit 2, of byte 40, of the parameter block; otherwise the value of zero is stored to bit 2, of
byte 40, of the parameter block. When the EILF contains a value of one, the input list number of the input list which
became empty during the operation is placed in the EILN field of the parameter block. In one example, the program

initializes the EILF to zero.

[0092] The EILF may be referenced at the beginning of execution of the instruction when the operation is
being resumed. It is expected that the program does not modify the EILF in the event the instruction is to be re-

executed for the purpose of resuming the operation; otherwise results are unpredictable.

[0093] Empty Input List Number (EILN) 382: When conditions cause a value of one to be stored in the EILF
field, the input list number of the input list which became empty during the operation is stored, by, e.g., the

processor, in byte 41 of the parameter block; otherwise the value of zero is stored in byte 41 of the parameter block.

[0094] The EILN is ignored at the beginning of the operation. In one example, the program initializes the

EILN to zeros.

[0095] Incomplete Input List Flag (IILF) 384: When the operation ends as a result of attempting to process an
incomplete input list, the value of one is stored, by, e.g., the processor, to bit 0, of byte 46, of the parameter block;
otherwise the value of zero is stored to bit 0, of byte 46, of the parameter block. An active input list is considered to
be incomplete when the corresponding input list length is greater than zero and less than the number of bytes of the

record designated by the input list address. This condition may exist at the beginning of the operation, or it may be

WO 2020/094601 PCT/EP2019/080161

19

encountered during the operation. When the IILF contains a value of one, the input list number, of the incomplete
input list encountered, is placed in the IILN field of the parameter block. In one example, the program initializes the

[ILF to zero.

[0096] When the operation ends with setting condition code 2 and the resulting value in the IILF field is zero,
the operation ended due to an empty input list. When the operation ends with setting condition code 2 and the

resulting value in the IILF field is one, the operation ended due to an incomplete input list.

[0097] The IILF may be referenced at the beginning of the execution of the instruction when the operation is
being resumed. It is expected that the program does not modify the IILF in the event the instruction is to be re-

executed for the purpose of resuming the operation; otherwise results are unpredictable.

[0098] Incomplete Input List Number (IILN) 386: When conditions cause a value of one to be stored in the
IILF field, the input list number, of the incomplete input list encountered, is stored, e.g., by the processor, in byte 47
of the parameter block; otherwise the value of zero is stored in byte 47 of the parameter block. When multiple input
lists are incomplete, it is model dependent which incomplete input list number is stored to the IILN field. In one

example, the program initializes the IILN to zero.

[0099] The IILN is ignored at the beginning of the operation.

[00100] Continuation Record Recall Buffer Origin 388: A 4 K-byte buffer in storage, called the continuation
record recall buffer, is provided by the program for the CPU to store and reference data between two executions of
the same Sort Lists instruction, in case an operation ends and may be resumed later. Fifty-two bits, starting with bit
0 of byte 56, through bit 3 of byte 62, of the parameter block contain an unsigned binary integer used in the
formation of the continuation record recall address, which is aligned on a 4 K-byte boundary. The continuation

record recall address is, e.g., the logical address of the leftmost byte of the continuation record recall buffer.

[00101] In the 24-bit addressing mode, bits 40-51 of the continuation record recall buffer origin with 12 zeros
appended to the right form the continuation record recall address. In the 31-bit addressing mode, bits 33-51 of the
continuation record recall buffer origin with 12 zeros appended to the right form the continuation record recall
address. In the 64-bit addressing mode, bits 0-51 of the continuation record recall buffer origin with 12 zeros

appended to the right form the continuation record recall address.

[00102] In the access-register mode, access register 1 specifies the address space containing the

continuation record recall buffer in storage.

WO 2020/094601 PCT/EP2019/080161

20

[00103] When merge mode (MM) is zero, the operation ends after storing one or more records, and normal
completion does not occur, the key of the last record stored to the first operand is also stored to the continuation

record recall buffer. When MM is one, the continuation record recall buffer origin is ignored.

[00104] The continuation record recall buffer origin is not modified during execution of the instruction.

[00105] It is expected the program does not modify the continuation record recall buffer origin in the event the

instruction is to be re-executed for the purpose of resuming the operation; otherwise results are unpredictable.

[00106] Continuation State Buffer (CSB) 390: When conditions cause a value of one to be stored in the CF
field, internal state data is stored, e.g., by the processor, to bytes 64-575 of the parameter block; otherwise bytes
64-575 of the parameter block are undefined and may be modified. The internal state data stored is model-
dependent and may be used subsequently to resume the operation when the instruction is re-executed. In one
example, the program initializes the continuation state buffer to zeros. It is expected that the program does not
modify the continuation state buffer in the event the instruction is to be re-executed for the purpose of resuming the

operation; otherwise results are unpredictable.

[00107] As an example, the internal state data includes information relating to the input lists, such as
information regarding previous comparisons of records of the input lists to determine the next comparisons to be
made. The internal state data is model-dependent in that it may be stored or presented differently depending on

the processor model. Other variations are possible.

[00108] In one embodiment, the instruction may be partially completed by one model in a configuration and
execution may resume on a different model in the configuration. Although different models, in one embodiment,
may maintain different internal states, in one example, each model is to be capable of interpreting those contents of
the CSB, if any, which are employed to resume the operation. When an operation resumes, the MVN indicates

which contents of the CSB, if any, the machine is capable of interpreting.

[00109] Input ListN Address 392, 394, 396: The parameter block defines multiple input lists. The number of
input lists defined in the parameter block, Nis, is specified by bits 0-7 of PBVN 362. The input lists are numbered

from zero to (N\g-1). For each input list, the parameter block specifies, e.g., an 8-byte input list address. For input

list number N, the contents of bytes 576 + 16 x N through 583 + 16 x N, of the parameter block, specify, e.g., the

logical address of the leftmost byte of input list number N in storage.

WO 2020/094601 PCT/EP2019/080161

21

[00110] Each input list address corresponding to an input list in the active state, as specified by the AILCC
field, is an input to the operation and is updated by the operation. Each input list address corresponding to an input

list in the inactive state, as specified by the AILCC field, is ignored by the operation.

[00111] When an input list address is an input to the operation, the following applies, in one embodiment:

In 24-bit addressing mode, bits 40-63, of the input list address, designate the location of the leftmost
byte of the input list in storage, and the contents of bits 0-39, of the input list address are treated as zeros.

In 31-bit addressing mode, bits 33-63, of the input list address, designate the location of the leftmost
byte of the input list in storage, and the contents of bits 0-32, of the input list address are treated as zeros.

In 64-bit addressing mode, bits 0-63, of the input list address, designate the location of the leftmost

byte of the input list in storage.

[00112] In the access-register mode, access register 1 specifies the address space containing the active input

lists in storage.

[00113] For the input lists in the active state, the corresponding input list address is to be designated on a

doubleword boundary; otherwise, a general operand data exception is recognized, in one example.

[00114] When an input list address is updated by the operation, the following applies, in one embodiment:

When one or more records of the input list have been processed as part of the operation, the
corresponding input list address is incremented by the number of bytes which the processed records occupy in
storage. The formation and updating of the input list address are dependent on the addressing mode.

In 24-bit addressing mode, bits 40-63 of the updated input list address replace the corresponding bits
in the input list address field of the parameter block, a carry out of bit position 40 of the updated input list address is
ignored, and the contents of bit positions 0-39 of the input list address field of the parameter block are set to zeros.

In 31-bit addressing mode, bits 33-63 of the updated input list address replace the corresponding bits
in the input list address field of the parameter block, a carry out of bit position 33 of the updated input list address is
ignored, and the contents of bit positions 0-32 of the input list address field of the parameter block are set to zeros.

In 64-bit addressing mode, bits 0-63 of the updated input list address replace the corresponding bits in
the input list address field of the parameter block, and a carry out of bit position 0 of the updated input list address is

ignored.

[00115] In 24- and 31-bit addressing modes, when execution of the instruction ends and the instruction is not
suppressed, nullified, or terminated, each 64-bit input list address corresponding to an active input list is updated,

even when the address is not incremented.

WO 2020/094601 PCT/EP2019/080161

22

[001186] Input ListN Length 393, 395, 397: For each input list, the parameter block specifies an 8-byte input list
length. For input list number N, bytes 584 + 16 x N through 591 + 16 x N, of the parameter block, contain an

unsigned integer which specifies the number of bytes in input list number N.

[00117] Each input list length corresponding to an input list in the active state, as specified by the AILCC field,
is an input to the operation and is updated by the operation. Each input list length corresponding to an input list in

the inactive state, as specified by the AILCC field, is ignored by the operation.

[00118] In the various addressing modes, the contents of bit positions 0-63 of an input list length field specify

the length of the corresponding input list.

[00119] When one or more records of an input list have been processed as part of the operation, the
corresponding input list length is decremented by the number of bytes which the processed records occupy in
storage. In the various addressing modes, bits 0-63 of an updated input list length replace bits 0-63 in the

corresponding input list length field of the parameter block.

[00120] Reserved: There are a number of reserved fields in the parameter block (e.g., the fields that do not
include other information). As an input to the operation, reserved fields should contain zeros; otherwise, the
program may not operate compatibly in the future. When the operation ends, reserved fields may be stored as

zeros or may remain unchanged.

[00121] FIGS. 5A-5B summarize one example of the original and final values for inputs to the SORTL-SFLR

function, including fields in the parameter block.

[00122] In one embodiment, it is not required, and is not expected, for the program to modify the parameter
block between ending the operation with condition code 3 set and branching back to the instruction, to re-execute

the instruction, for the purpose of resuming the operation.

[00123] In one embodiment, the SORTL-SFLR function includes multiple comparisons between keys of
records from different input lists. When comparing keys, the following applies, in one example:

Keys are treated as unsigned-binary integers, also referred to as unstructured data.

It may not be necessary to access all bytes of each key being compared when determining which key
contains the lowest or highest value. The number of bytes of each key compared at a time, referred to as unit of key
comparison, is model dependent. The number of bytes of a key that are accessed is an integral number of units of

key comparison.

WO 2020/094601 PCT/EP2019/080161

23

When comparing keys of equal value, in one example, the key from the input list with the highest input
list number is selected to be in sort order before other keys with the same value. In this case, the corresponding
record from the input list with the highest input list number is stored to the first operand before other records with

the same key value. This applies for ascending and descending sort orders.

[00124] One implementation may maintain a history of prior comparisons between records from the active
input lists. When the history is available and applicable, in place of accessing and comparing records which were
previously compared, the history may be referenced. References to the history reduce the execution time required

to generate results, improving processing within the computing environment.

[00125] The SORTL-SFLR function includes selecting records from a set of input lists, in the sort order
specified, and placing the selected records at the first operand location. As the operation proceeds, current values
for the first operand address and addresses for the active input lists are maintained. The function proceeds in units
of operation. During each unit of operation, for each active input list, the key designated by the corresponding

current input list address is examined and one record is placed at the first operand location.

[00126] When merge mode (MM) is zero, the active input lists designate lists, each of which is treated as
containing records, from, e.g., left to right, in random order. When MM is zero, the records stored to the first
operand location constitute one or more output lists, and the starting address and length of each output list is stored
to the second operand location. When MM is zero, each unit of operation includes the following steps, in the order
specified, as one example:

1. Determine if the next record to store to the first operand location may be included in the most
recent output list (the output list which includes the record most recently stored to the first operand location), as
follows:

When the continuation flag (CF) is zero and the first unit of operation is being processed, no
records have been stored to the first operand location, and the next record to store will be the first record of an
output list.

When CF is one, the prior execution of the instruction ended with condition code 1, and the first
unit of operation is being processed for the current execution of the instruction, the next record to store will be the
first record of an output list.

When CF is one, IILF is zero, EILF is zero, the prior execution of the instruction ended with
condition code 2, and the first unit of operation is being processed for the current execution of the instruction, the
next record to store will be the first record of an output list.

When CF is one, IILF or EILF is one, the prior execution of the instruction ended with condition
code 2, and the first unit of operation is being processed for the current execution of the instruction, the next record

to store may be included in the most recent output list.

WO 2020/094601 PCT/EP2019/080161

24

When CF is one, the prior execution of the instruction ended with condition code 3, and the first
unit of operation is being processed for the current execution of the instruction, the next record to store may be
included in the most recent output list.

When the unit of operation being processed is not the first unit of operation for the current
execution of the instruction, the next record to store may be included in the most recent output list.

2. When the next record to store may be included in the most recent output list, determine the set of
records which qualify to be included in the most recent output list. For each input list which is active, not empty and
not incomplete, compare the key of the record designated by the current input list address (current input key) to the
key of the record most recently stored to the first operand location (previously stored key). For this purpose, the
reference to the previously stored key is not a reference to the first operand location. Instead, it is a reference to the
input list from which the key was selected, or it is a reference to the continuation record recall buffer. It is a
reference to the continuation record recall buffer when the operation is being resumed and the current execution of
the instruction has not yet placed any records at the first operand location.

When the sort order is ascending and the value of the current input key is greater than or equal
to the value of the previously stored key, consider the current input key as belonging to a set of keys qualifying for
inclusion in the most recent output list. When the sort order is descending and the value of the current input key is
less than or equal to the value of the previously stored key, consider the current input key as belonging to a set of
keys qualifying for inclusion in the most recent output list. When the number of keys in the set of keys qualifying for
inclusion in the most recent output list is zero, the next record to store will be the first record of an output list. When
the number of keys in the set of keys qualifying for inclusion in the most recent output list is non-zero, the next
record to store will be included in the most recent output list.

3. When the next record to store will be included in the most recent output list, compare the keys in
the set of keys qualifying for inclusion in the most recent output list. When the sort order is ascending, select the
smallest key value and corresponding record. When the sort order is descending, select the largest key value and
corresponding record.

4. When the next record to store will be the first record of an output list, compare the keys of the
records designated by the current input list addresses corresponding to input lists which are active, not empty, and
not incomplete. When the sort order is ascending, select the smallest key value and corresponding record. When
the sort order is descending, select the largest key value and corresponding record.

5. The selected record is placed at the current first operand location.

6. The current first operand address is incremented by the number of bytes equal to the length of
the selected record.

7. The current input list address, corresponding to the input list containing the selected record, is

incremented by the number of bytes equal to the length of the selected record.

WO 2020/094601 PCT/EP2019/080161

25

[00127] As part of the operation when merge mode is zero, for each output list stored at the first operand
location, a corresponding output list delineation (OLD) is stored at the second operand location. Each OLD
includes, for instance, an 8-byte OLD address, which designates the location of the first record in the corresponding
output list, and, for instance, an 8-byte OLD length, which specifies the length, in bytes, of the corresponding output
list. When the operation ends with condition code 3, condition code 2 and EILF equal to one, or condition code 2
and IILF equal to one, the most recent output list being processed at the end of the operation may be partially
processed and not completely processed. That is, the number of records in the partially processed output list is an
intermediate value and may be increased when the operation resumes. In this case, an output list delineation
(OLD), corresponding to the partially processed output list, is not placed at the second operand location, until after

the operation is resumed and the output list is completely processed.

[00128] When merge mode is zero and the operation ends after storing one or more records and normal
completion does not ocour, the key of the last record stored to the first operand location is also stored to the

continuation record recall buffer.

[00129] When merge mode is zero and the operation ends due to normal completion, one or more output lists
have been placed at the first operand location and output list delineations have been placed at the second operand
location. The program may use output list delineations as input list address and length values in a parameter block

for a subsequent SORTL operation.

[00130] FIGS. 6A-6D illustrate the first and second operands, before and after executing SORTL-SFLR with
merge mode equal zero. Referring to FIGS. 6A-6B, FOSA 600 is first operand starting address: location specified

by Ry; FOEA 602 is first operand ending address: location specified by R1 + (R1 + 1) — 1; and OL 604 is output list
(e.g., output list 1...output list N). Further, referring to FIGS. 6C-6D, SOSA 610 is second operand starting address:
location specified by Ro; SOEA 612 is second operand ending address: location specified by Rz + (R2 + 1) - 1; and
OLD 614 is output list designation (e.g., output list designation 1...output list designation N).

[00131] When merge mode (MM) is one, the active input lists designate lists, each of which is treated as
containing records, from left to right, in the sorted order, as specified by the SO field of the parameter block. When
MM is one, the records stored to the first operand location constitute a single output list. When MM is one, each unit
of operation includes, for instance, the following steps, in the order specified, as an example:

1. Compare the keys of the records designated by the current input list addresses corresponding to
input lists which are active, not empty, and not incomplete. When the sort order is ascending, select the smallest
key value and corresponding record. When the sort order is descending, select the largest key value and
corresponding record.

2. The selected record is placed at the current first operand location.

WO 2020/094601 PCT/EP2019/080161

26

3. The current first operand address is incremented by the number of bytes equal to the length of
the selected record.
4. The current input list address, corresponding to the input list containing the selected record, is

incremented by the number of bytes equal to the length of the selected record.

[00132] FIGS. 7A-7B illustrate the first operand, before and after executing SORTL-SFLR with merge mode
equals one. Referring to FIGS. 7A-7B, FOSA 700 is first operand starting address: location specified by R1; FOEA

702 is first operand ending address: location specified by R1 + (Rq + 1) - 1; and OL 704 is output list (e.g., output
list 1).

[00133] As part of the operation when merge mode is zero or one, the input list addresses and lengths for the
input lists in the active state are updated. For each input list in the active state, the input list address is incremented
by the number of bytes of the records from the input list which were selected and placed at the first operand
location during the operation, and the input list length is decremented by the same number. The formation and

updating of the input list addresses are dependent on the addressing mode.

[00134] As the operation proceeds, an incomplete input list may be encountered. An incomplete input list is
recognized during a unit of operation which attempts to reference a record from an input list which is incomplete.
Multiple units of operation may be completed prior to recognizing an incomplete input list. This applies when merge

mode is zero or one.

[00135] As the operation proceeds, an access exception for an access to an input list, the first operand, or the
second operand, when applicable, may be encountered. An access exception is recognized during a unit of
operation which attempts to access a storage location and an access exception exists for that location. Multiple
units of operation may be completed prior to recognizing an access exception. This applies when merge mode is

Zero orone.

[00136] When the operation ends with partial completion, internal state data, which may include a history of
prior comparisons between records, is stored to the continuation state buffer (CSB) field of the parameter block.
Subsequently, when the instruction is re-executed, for the purpose of resuming the operation, the contents of the
CSB may be loaded into the implementation and the history may be referenced when the operation resumes. This

applies when merge mode is zero or one.

[00137] Normal completion occurs when the records from the active input lists have been sorted and stored to

the first operand.

WO 2020/094601 PCT/EP2019/080161

[00138]

Zero.

[00139]

[00140]

ends.

[00141]

27

When the operation ends due to normal completion, the following occurs, in one embodiment:

The address and length in general registers R1 and R1 + 1, respectively, are updated.

The address and length in general registers Rz and R + 1, respectively, are updated when MM is

The input listN address and input listN length fields are updated for the input lists in the active state.
The model version number is set.

The continuation flag is set to zero.

The empty input list flag is set to zero.

The empty input list number is set to zero.

The incomplete input list flag is set to zero.

The incomplete input list number is set to zero.

Condition code 0 is set.

The formation and updating of the addresses and lengths are dependent on the addressing mode.

When normal completion occurs, the CSB field of the parameter block is undefined after the operation

When a CPU-determined number of bytes have been processed, the operation ends and the following

oceurs, in one embodiment;

Zero.

The address and length in general registers R, and R, + 1, respectively, are updated.

The address and length in general registers R, and R, + 1, respectively, are updated when MM is

The input listN address and input listN length fields are updated for the input lists in the active state.
The model version number is set.
The continuation flag is set to one.

A key value is stored to the continuation record recall buffer when MM is zero and one or more

records have been placed at the first operand location during the execution of the instruction.

The continuation state buffer is updated.

The empty input list flag is set to zero.

The empty input list number is set to zero.

The incomplete input list flag is set to zero.
The incomplete input list number is set to zero.

Condition code 3 is set.

WO 2020/094601 PCT/EP2019/080161

28

[00142] The formation and updating of the addresses and lengths are dependent on the addressing mode.

[00143] The CPU-determined number of bytes depends on the model, and may be a different number each
time the instruction is executed. The CPU-determined number of bytes is typically non-zero. Although this number
may be zero and appear as a no-progress case, the CPU protects against endless recurrence of this no-progress

case.

[00144] Subsequent to the instruction ending with, e.g., condition code 3 set, it is expected the program does
not modify any input or output specification for the instruction and branches back to re-execute the instruction to

resume the operation.

[00145] When bit 0 of the empty input lists control (EILCL) is one and the length of input list0 becomes zero
during the operation and normal completion does not apply, the operation ends and the following occurs, in one

embodiment;

The address and length in general registers R1 and R1 + 1, respectively, are updated.

The address and length in general registers Rz and Rz + 1, respectively, are updated when MM is

zero.

The input listN address and input listN length fields are updated for the input lists in the active state.

The model version number is set.

The continuation flag is set to one.

A key value may be stored to the continuation record recall buffer when EILCL is 10 binary and MM is
zero. A key value is stored to the continuation record recall buffer when EILCL is 11 binary and MM is zero. In either
case, one or more records have been placed at the first operand location during the execution of the instruction.

The continuation state buffer is updated.

The empty input list flag is set (refer to FIG. 8, which depicts various parameter block fields when an
operation ends).

The empty input list number is set (refer to FIG. 8).

The incomplete input list flag is set to zero.

The incomplete input list number is set to zero.

Condition code 2 is set.
[00146] The formation and updating of the addresses and lengths are dependent on the addressing mode.
[00147] When bit 1 of the empty input lists control (EILCL) is one and the length of an active input list, other

than input list0, becomes zero during the operation and normal completion does not apply, the operation ends and

the following occurs, in one embodiment:

WO 2020/094601 PCT/EP2019/080161

Zero.

29
The address and length in general registers R, and R, + 1, respectively, are updated.

The address and length in general registers R, and R, + 1, respectively, are updated when MM is

The input listN address and input listN length fields are updated for the input lists in the active state.
The model version number is set.
The continuation flag is set to one.

A key value may be stored to the continuation record recall buffer when EILCL is 01 binary and MM is

zero. A key value is stored to the continuation record recall buffer when EILCL is 11 binary and MM is zero. In either

case, one or more records have been placed at the first operand location during the execution of the instruction.

[00148]

[00149]

The continuation state buffer is updated.

The empty input list flag is set (refer to FIG. 8).
The empty input list number is set (refer to FIG. 8).
The incomplete input list flag is set to zero.

The incomplete input list number is set to zero.

Condition code 2 is set.

The formation and updating of the addresses and lengths are dependent on the addressing mode.

When an incomplete input list in the active state is encountered, the operation ends and the following

oceurs, in one embodiment;

Zero.

The address and length in general registers R, and R, + 1, respectively, are updated.

The address and length in general registers R, and R, + 1, respectively, are updated when MM is

The input listN address and input listN length fields are updated for the input lists in the active state.
The model version number is set.
The continuation flag is set to one.

A key value is stored to the continuation record recall buffer when MM is zero and one or more

records have been placed at the first operand location during the execution of the instruction.

The continuation state buffer is updated.

The empty input list flag is set to zero.

The empty input list number is set to zero.

The incomplete input list flag (IILF) is set to one.

The input list number of the incomplete input list encountered is placed in the incomplete input list

number (IILN) field of the parameter block.

Condition code 2 is set.

WO 2020/094601 PCT/EP2019/080161

30

[00150] The formation and updating of the addresses and lengths are dependent on the addressing mode.

[00151] When the length of the first operand is insufficient to store another record, the operation ends and the
following occurs, in one embodiment:

The address and length in general registers R, and R, + 1, respectively, are updated.

The address and length in general registers R, and R, + 1, respectively, are updated when MM is
zero.

The input listN address and input listN length fields are updated for the input lists in the active state.

The model version number is set.

The continuation flag is set to one.

A key value may be stored to the continuation record recall buffer when MM is zero and one or more
records have been placed at the first operand location during the execution of the instruction.

The continuation state buffer is updated.

The empty input list flag is set to zero.

The empty input list number is set to zero.

The incomplete input list flag is set to zero.

The incomplete input list number is set to zero

Condition code 1 is set.

[00152] The formation and updating of the addresses and lengths are dependent on the addressing mode.

[00153] When merge mode (MM) is zero and the length of the second operand is less than 16, the operation
ends and the following occurs, in one embodiment:

The address and length in general registers R, and R, + 1, respectively, are updated.

The address and length in general registers R, and R, + 1, respectively, are updated.

The input listN address and input listN length fields are updated for the input lists in the active state.

The model version number is set.

The continuation flag is set to one.

A key value may be stored to the continuation record recall buffer when one or more records have
been placed at the first operand location during the execution of the instruction.

The continuation state buffer is updated.

The empty input list flag is set to zero.

The empty input list number is set to zero.

The incomplete input list flag is set to zero.

The incomplete input list number is set to zero.

Condition code 1 is set.

WO 2020/094601 PCT/EP2019/080161

31

[00154] The formation and updating of the addresses and lengths are dependent on the addressing mode.

[00155] The operation ending condition is called partial completion when execution of the instruction ends in

completion (does not end in suppression, nullification, or termination) and normal completion does not occur.

[00156] A PER storage alteration event is recognized, when applicable, for the first operand location, the
second operand location, the continuation record recall buffer, and the portion of the parameter block that is stored.
When a PER storage alteration event is recognized, fewer than 4K additional bytes are stored to the operand

location intersecting with the designated PER storage area, before the event is reported.

[00157] A PER zero address detection event is recognized, when applicable, for the parameter block, first
operand location, and second operand location. Zero address detection does not apply to the input list addresses

and the continuation record recall buffer origin, which are specified in the parameter block.

[00158] Refer to Other Conditions below for descriptions of examples of other conditions that apply to the
SORTL-SFLR function.

[00159] When the instruction ends with condition code 1, the program may modify the first operand address,
first operand length, second operand address, second operand length, any active input list address, and any active

input list length, as appropriate, and subsequently, resume the operation.

[00160] When the instruction ends with condition code 2, IILF equal zero, and EILF equal zero, the program
may modify the first operand address, first operand length, second operand address, second operand length, any

active input list address, and any active input list length, as appropriate, and subsequently, resume the operation.

[00161] When the instruction ends with condition code 2 and EILF equal one, the program may modify the
input list address and length for the input list specified by the EILN, as appropriate, and subsequently, resume the
operation. In this case, the program may also modify the first operand address and first operand length when merge

mode (MM) is one.

[00162] When the instruction ends with condition code 2 and IILF equal one, the program may modify the
input list address and length for the input list specified by the IILN, as appropriate, and subsequently, resume the
operation. In this case, the program may also modify the first operand address and first operand length when

merge mode (MM) is one.

WO 2020/094601 PCT/EP2019/080161

32

[00163] When the instruction ends with condition code 3, and before re-executing the instruction to resume the
operation, the program modifies any active input list address or length, the first operand address or length, or the

second operand address or length, results are unpredictable.

Function Code 2: SORTL-SVLR (Sort Variable-Length Records)

[00164] The SORTL-SVLR function operates the same as the SORTL-SFLR function, except for the following:

The records include, for instance, as shown in FIG. 9, a fixed-length key 900, an 8-byte payload
length (PL) 902, and a variable-length payload 904. Therefore, the records have a variable length.

Bytes 14-15 of the parameter block for the SORTL-SVLR function are ignored.

The least significant, e.g., 2 bytes of the payload length field of each record contains an unsigned
binary integer specifying the length, in bytes, of the payload in the same record. A payload length of zero is valid.
The payload length is to be a multiple of, e.g., 8; otherwise a general operand data exception is recognized, in one
example. The most significant 6 bytes (as an example) of the payload length field are reserved and should contain
zeros; otherwise, the program may not operate compatibly in the future. The sum of the key length, eight, and the
payload length is not to be larger than, e.g., 4096; otherwise a general operand data exception is recognized, in one
example. When a general operand data exception is recognized as a result of an inappropriate payload length, the
input list address corresponding to the active input list encountering the exception specifies the logical address of
the leftmost byte of the errant record. When a variable length record is stored to the first operand location, the
reserved bytes of the payload length field are not modified.

An incomplete input list may not be recognized during a unit of operation which only attempts to
reference the key of a record from an input list with an input list length greater than the key size and less than the
record size. In this case, the incomplete input list will be recognized when attempting to store the record from the
incomplete input list, to the first operand location.

[00165] The parameter block for the SORTL-SVLR function is the same as the parameter block for the
SORTL-SFLR function, except for bytes 14-15, as indicated above.

[00166] Refer to Other Conditions below for descriptions of other conditions that apply to the SORTL-SVLR

function.
Special Conditions
[00167] A specification exception is recognized when execution of Sort Lists is attempted and any of the

following applies, in one embodiment:

Bits 57-63 of general register 0 designate an unassigned or uninstalled function code.

WO 2020/094601 PCT/EP2019/080161
33

The R4 field designates an odd-numbered register or general register 0.

The Rz field designates an odd-numbered register or general register 0. This applies when merge

mode (MM) is zero or one.

The parameter block is not designated on a doubleword boundary.

The SORTL-SFLR function or the SORTL-SVLR function is specified and the first operand is not
designated on a doubleword boundary.

The SORTL-SFLR or SORTL-SVLR function is specified and the second operand is not designated

on a doubleword boundary when MM is zero.

[00168] A general operand data exception is recognized when execution of Sort Lists is attempted and any of
the following applies, in one embodiment:

The SORTL-SFLR or SORT-SVLR function is specified and no bits, or multiple bits, of bits 0-7 of the
parameter block version number, contain a value of one, in which case the operation is suppressed.

The SORTL-SFLR or SORTL-SVLR function is specified and the size or format of the parameter
block, as specified by the parameter block version number, is not supported by the model, in which case the
operation is suppressed.

The SORTL-SFLR or SORTL-SVLR function is specified and the record key length specifies a key
size of zero, a key size which is not a multiple of 8, or a key size greater than 4096, in which case the operation is
suppressed.

The SORTL-SFLR function is specified and the record payload length specifies a payload size which
is not a multiple of 8, or a payload size, when added to the key size, is greater than 4096, in which case the
operation is suppressed.

The SORTL-SVLR function is specified and the record payload length specifies a payload size which
is not a multiple of 8, or a payload size, when added to the key size, is greater than 4088, in which case it is model
dependent whether the operation is suppressed or terminated.

The SORTL-SFLR or SORTL-SVLR function is specified and the value of the active input lists count
code (AILCC) plus one is greater than the number of input lists described by the parameter block, in which case the
operation is suppressed.

The SORTL-SFLR or SORTL-SVLR function is specified and an input list address, corresponding to

an active input list, is not designated on a doubleword boundary, in which case the operation is suppressed.

WO 2020/094601 PCT/EP2019/080161

34

Other Conditions

[00169] In one embodiment, the following conditions apply:

The execution of the instruction is interruptible. When an interruption occurs, the addresses in general
registers R1 and Ry, the lengths in general registers Ry + 1 and Ro + 1, and specific fields of the parameter block

are updated, so that the instruction, when re-executed, resumes at the point of interruption.

[00170] Access exceptions are not recognized for locations greater than 4 K-bytes to the right of the location
designated by the first operand address. Access exceptions are not recognized for locations greater than 4 K-bytes

to the right of the location designated by an input list address.

[00171] If an access exception is due to be recognized for the first operand, second operand, or any input list,
the result is that either the exception is recognized or condition code 3 is set. If condition code 3 is set, the
exception will be recognized when the instruction is executed again to continue processing the same operands,

assuming the exception condition still exists.

[00172] When the key of a record crosses a page boundary and access-exception conditions exist for both

pages, either access exception may be recognized.

[00173] When access-exception conditions exist for multiple keys being processed during a single unit of

operation, any of these conditions may be recognized.

[00174] When the parameter block crosses a page boundary and access-exception conditions exist for both

pages, the access exception for the leftmost page is recognized.

[00175] When the operation ends with partial completion, up to 4 K-bytes of data may have been stored at
locations within the first operand which are at, or to the right of, the location designated by the updated first operand
address. Such stores result in setting change bits, when applicable, and recognizing PER storage alteration events,
when applicable. Storing to these locations will be repeated when the instruction is executed again to continue

processing the same operands.

[00176] As observed by this CPU, other CPUs, and channel programs, references to the parameter block, the
first operand, the output lists delineations buffer, and the input lists in the active state may be multiple access
references, accesses to these storage locations are not necessarily block concurrent, and the sequence of these

accesses or references is undefined.

WO 2020/094601 PCT/EP2019/080161

35

[00177] Results are unpredictable when the specified function is SORTL-SFLR or SORTL-SVLR and any of
the following apply, in one embodiment:

The parameter block overlaps any active input list or the first operand.

Any active input list overlaps the first operand.

Merge mode is zero and the parameter block overlaps the second operand or the continuation record
recall buffer.

Merge mode is zero and any active input list overlaps the second operand or the continuation record
recall buffer.

Merge mode is zero and the first operand overlaps the second operand or the continuation record
recall buffer.

Merge mode is zero and the second operand overlaps the continuation record recall buffer.

Another CPU or channel program stores to a key of a record in an input list or the continuation record

recall buffer.

[00178] Example Resulting Condition Codes:

0 Normal completion

1 The length of the first operand is less than the size of a record, or merge mode is zero and the
length of the second operand is less than 16 (i.e., the first or second operand length is insufficient to continue)

2 Anincomplete input list was encountered (IILF=1), or the EILCL is non-zero and the length of an
input list became equal to zero during the operation (i.e., incomplete or empty input list encountered)

3 CPU-determined amount of data processed (i.e., CPU-determined completion)

[00179] Program Exceptions:

Access (fetch, input lists; fetch and store, parameter block and continuation record recall buffer; store,
operands 1 and 2)

Data with DXC (Data Exception Code) 0, general operand

Operation (if the enhanced-sort facility is not installed)

Specification

Transaction constraint

[00180] The priority of execution for the Sort Lists instruction is shown below. When multiple conditions which
have priority values beginning with 13 exist, the condition recognized is the one that is encountered first, as the
operation proceeds. When the operation is being resumed (the continuation flag is one at the beginning of the
execution of the instruction), a history of prior comparisons between keys may be used in place of initially accessing
the input lists which are active and not empty. As a result, an access exception for an access to a specific input list

may not be encountered at the same point of processing, as compared to when no history of prior comparisons is

WO 2020/094601 PCT/EP2019/080161

36

used. When variable-length records are processed, conditions which are a function of a record length may be
partially evaluated before the payload length is determined, and completely evaluated after the payload length is
determined. As a result, the observed priority among such conditions may differ when a condition is determined to

exist after only partially evaluating requirements, instead of after completely evaluating all requirements.

[00181] Priority of Execution (SORTL)

1.-6. Exceptions with the same priority as the priority of program interruption conditions for the
general case.

7.A Access exceptions for second instruction halfword.

7.B Operation exception.

7.C Transaction constraint.

8.A Specification exception due to invalid function code or invalid register number.

8.B Specification exception due to first operand not designated on doubleword boundary.

8.C Specification exception due to first operand not designated on doubleword boundary.

8.D Specification exception due to second operand not designated on doubleword boundary

and merge mode is zero.

9. Access exceptions for an access to bytes 0-7 of the parameter block.

10. General operand data exception due to an unsupported value of the PBVN field in the
parameter block.

1. Access exceptions for an access to bytes of the parameter block other than bytes 0-7.

12. General operand data exception due to an invalid value of a field in the parameter block
other than the PBVN.

13.A Access exceptions for an access to an active input list.

13.B Access exceptions for an access to the continuation record recall buffer when merge
mode is zero.

13.C Access exceptions for an access to the first operand.

13.D Access exceptions for an access to the second operand when merge mode is zero.

13.E Condition code 2 due to an incomplete input list.

13.F Condition code 1 due to insufficient length of first operand.

13.G Condition code 1 due to insufficient length of second operand when merge mode is zero.

13.H General operand data exception due to an invalid payload length of a variable-length
record.

13.1 Condition code 2 due to an empty input list.

14, Condition code 3.

WO 2020/094601 PCT/EP2019/080161

37

[00182] Programming Notes. In one embodiment:

1. The intended uses of the empty input lists control (EILCL) are as follows:

EILCL(0:1)

(Binary) Description

00 Stop after the records from the active input lists are sorted (e.g.,
all records from all active input lists).

10 Stop after input list0 (always active) becomes empty.

11 Stop after any active input list becomes empty.

2. When the active input lists count code (AILCC) is zero, there is, €.g., only one active input list and
the results stored at the first operand location are the same as the data fetched from input list0.

3. Models implementing separate instruction and data caches may use the instruction cache to
perform storage operand fetch references to data in active input lists.

4. When a program expects to invoke Sort Lists multiple times with merge mode equal to zero, as
part of processing a large data set, the program is to utilize, in one example, the input lists available and evenly
partition records among the input lists. This reduces the number of times the data is accessed when sorting the
entire data set.

5. Subsequent to Sort Lists with merge mode equal to zero ending with condition code 0 set and
multiple output list delineations (OLDs) in the second operand, a program intending to generate a single list of
records in sorted order is to invoke another Sort Lists operation with input lists specified to be the resulting OLDs
from the prior Sort Lists invocation. In this case, in one example, the second invocation of Sort Lists specifies merge
mode equal to one.

Similarly, in one embodiment subsequent to invoking Sort Lists with merge mode equal zero, for
as many times as necessary or desired, to generate a complete set of sorted lists from a large number of randomly
ordered records, Sort Lists is invoked, in one example, with merge mode equal one, for as many times as
necessary or desired, to generate a single sorted list.

6. Toreduce the number of times each record is accessed when merging multiple sorted lists into a
single list with ascending sort order (for example), the program performs the following process, in one embodiment:

Determine the maximum number, N, of input lists available for Sort Lists.

Compare the keys of the first record of the sorted lists which have not yet been merged into the
single list. Select the N lists which have the lowest first key values.

Execute Sort Lists with merge mode (MM) equal one, empty input lists control (EILCL) equal 10
binary, input list0 specifying only the first record of the list with the highest first key value of the selected N lists, and
the remaining input lists specifying the other N-1 selected lists.

Subsequent to Sort Lists ending with condition code 2, lILF equal zero, and EILF equal zero,

repeat the process.

WO 2020/094601 PCT/EP2019/080161

38

7. Subsequent to Sort Lists ending with condition code 1 set, the program performs the following
actions, in one example, prior to invoking Sort Lists again, to resume the operation:

If the first operand length is less than the largest record length of the records being processed,
then the first operand length or first operand address and length should be updated, as appropriate.

If merge mode (MM) is zero and the second operand length is less than 16, then the second
operand length or second operand address and length should be updated, as appropriate.

If the length of any active input list equals zero, then the corresponding input list address and
length may be updated to designate another list of records to be included in the sorting operation.

8. Subsequent to Sort Lists ending with condition code 2 set, the program performs the following
actions, in one example, prior to invoking Sort Lists again, to resume the operation:

If the incomplete input list flag (IILF) is one, then the input list length or input list address and
length of the input list identified by the incomplete input list number (IILN) should be updated, as appropriate.

If the empty input list flag (EILF) is one, then the input list length or input list address and length of
the input list identified by the empty input list number (EILN) should be updated, as appropriate.

If the IILF is zero, the EILF is zero, and the input list0 length is zero, then the input list0 length or
input list0 address and length should be updated, as appropriate. Furthermore, the input list address and length for
the active input lists may be updated, which may be the appropriate action if there was only one record designated
by input list0 originally, and the empty input lists control (EILCL) is 10 binary.

If merge mode (MM) is one and the first operand length is less than the largest record length of
the records being processed, then the first operand length or first operand address and length should be updated,
as appropriate.

If MM is zero and either IILF is one, or EILF is one, then the first operand address and length, and
the second operand address and length should not be updated.

If MM is zero, IILF is zero, EILF is zero, and the first operand length is less than the largest record
length of the records being processed, then the first operand length or first operand address and length should be
updated, as appropriate.

If MM is zero, IILF is zero, EILF is zero, and the second operand length is less than 16, then the

second operand length or second operand address and length should be updated, as appropriate.

[00183] As described herein, in one aspect, a single instruction (e.g., a single architected machine instruction,
Sort Lists) is provided to perform sort and/or merge operations on a general-purpose processor. In one example, a
program implementing sorting and/or merging operations for a database and being executed on a general-purpose
processor, is able to replace a significant subset of primitive instructions to implement the operations with a single
instruction. This instruction is, for instance, a hardware instruction defined in an Instruction Set Architecture (ISA).
As a result, the complexity of the program related to the sort and/or merge operations is reduced. Further,

performance of the operations, and thus, the processor, is improved.

WO 2020/094601 PCT/EP2019/080161

39

[00184] Advantageously, the Sort Lists instruction is executed on a general-purpose processor (e.g., a central
processing unit, referred to herein as a processor), rather than a special-purpose processor, such as a graphical

processing unit (GPU), a database engine (DBE), or other types of special-purpose processors.

[00185] Although various fields and registers are described, one or more aspects of the present invention may
use other, additional or fewer fields or registers, or other sizes of fields and registers, etc. Many variations are
possible. Forinstance, implied registers may be used instead of explicitly specified registers or fields of the
instruction and/or explicitly specified registers or fields may be used instead of implied registers or fields. Other

variations are also possible.

[00186] In one example, the Sort Lists instruction works on a large amount of data of a database (e.g., a
commercial database), such as megabytes or terabytes of data. Therefore, the instruction is interruptible and

processing may resume where interrupted.

[00187] When the instruction is interrupted, the operation (e.g., sort and/or merge) is only partially completed.
Execution of the instruction ends with setting a condition code to a value that informs the program (e.g., the
program issuing the instruction) of partial completion of the operation. The program may then re-execute the

instruction to resume processing.

[00188] The instruction, in one embodiment, employs a number (e.g., significant number) of execution cycles
to prime the processor with metadata before results are produced. Priming the processor with the metadata is
performed each time the instruction is executed or re-executed. Thus, in accordance with an aspect of the present
invention, previously produced metadata is stored and used, such that the previously produced metadata does not
have to be reproduced at the time the instruction is re-executed.

[00189] In one example, the metadata includes internal state of the processor, including, for instance,
information about the input lists, such as information regarding previous comparisons of records of the input lists in
order to determine the next comparisons to be made.

[00190] The processor extracts the metadata and stores it in a location provided by the program. Then, when
the instruction is to be re-executed after an interrupt, the metadata is extracted from the location and loaded in the
processor, without using tasks to reproduce the metadata. This saves time that would have been required to

generate the metadata for the operation.

[00191] Further details of one embodiment of resuming execution of an operation are described with reference
to FIGS. 10A-10B. For instance, FIG. 10A depicts processing associated with an instruction partially completed;

and FIG. 10B depicts processing associated with resuming execution of a partially completed instruction. In this

WO 2020/094601 PCT/EP2019/080161

40

example, the instruction is an instruction that performs sorting and/or merging, such as the Sort Lists instruction;
however, in other examples, it may be other instructions that are interruptible. The processing of FIGS. 10A-10B is

performed, for example, by a processor (e.g., processor 102 or 204).

[00192] Referring initially to FIG. 10A, an instruction executing on a processor and performing an operation,
such as sorting and/or merging, terminates prior to completing the operation, STEP 1000. Based on the partial
completion, a continuation indicator (e.g., continuation flag 368 of parameter block 360) is set, e.g., to one,
indicating partial completion, STEP 1002. Further, internal state of the processor, such as for a sort or merge
operation, information regarding previous comparisons of records of the input lists, is stored in the parameter block,
e.g., in continuation state buffer 390, STEP 1004.

[00193] Thereafter, referring to FIG. 10B, an instruction (e.g., a sort/merge instruction) is executed, STEP
1050. A determination is made as to whether the continuation indicator is set to indicate this is a re-execution of the
instruction, INQUIRY 1052. If the continuation indicator is set to indicate resumption of an operation, STEP 1053,
then the internal state of the processor saved in, for instance, continuation state buffer 390, is extracted, STEP
1054, and loaded in one or more select locations within the processor, STEP 1056. The extracted and loaded
internal state data is then used in re-execution of the instruction, STEP 1058. For instance, instead of repeating
comparisons previously performed, the internal state data is used to determine the next comparisons to be made,

thereby reducing execution time and improving performance.

[00194] Returning to INQUIRY 1052, if the continuation indicator is not set to indicate re-execution, then, in
one example, the operation is started, not resumed, STEP 1060. Thus, in one example, the operation proceeds
without using, e.g., internal state data from continuation state buffer (CSB) 390 of a parameter block in memory,

e.g., parameter block 360.

[00195] One or more aspects of the present invention are inextricably tied to computer technology and
facilitate processing within a computer, improving performance thereof. The use of extracted and saved metadata
when an instruction is re-executed after an interrupt, instead of reproducing the metadata, saves time and improves

performance within the computing environment.

[00196] In one particular example, the instruction being re-executed is a Sort Lists instruction, which is a
single architected machine instruction to perform sorting and/or merging of a large number of database records of a
database that replaces many software instructions, improving performance within the computing environment.
These sorted and/or merged records may be used in many technical fields that manage and/or use large quantities

of data, such as in computer processing, medical processing, security, etc. By providing optimizations in

WO 2020/094601 PCT/EP2019/080161

41

sorting/merging, these technical fields are improved by reducing execution time in obtaining information and using

the information, and reducing storage requirements.

[00197] Further details of one embodiment of facilitating processing within a computing environment, as it

relates to one or more aspects of the present invention, are described with reference to FIGS. 11A-11B.

[00198] Referring to FIG. 11A, in one embodiment, a determination is made that processing of an operation of
an instruction executing on the processor has been interrupted prior to completion (1100). Based on determining
that the processing of the operation has been interrupted, metadata of the processor is extracted (1102). The
metadata is, €.g., current metadata of the processor (1104). The metadata is stored in a location associated with
the instruction (1106) and used in re-executing the instruction to resume forward processing of the instruction from

where it was interrupted (1108).

[00199] In one example, the instruction is a sort instruction (1110) and the metadata includes information
about one or more input lists to the sort instruction (1112). For instance, the metadata includes information
regarding previous comparisons made of records of the one or more input lists to indicate next comparisons to be
made (1114). The next comparisons to be made are indicated, for instance, absent repeating the previous

comparisons (1116).

[00200] In one example, the determining includes checking a condition code set based on termination of the

instruction, the condition code set to a select value indicates partial completion of the instruction (1118).

[00201] As an example, referring to FIG. 11B, the location in which the metadata is stored is a parameter
block in memory designated by the instruction (1120). The location of the parameter block in memory is designated
by, for instance, contents of an implied register of the instruction (1122). In one particular example, the parameter
block includes a continuation state buffer to store the metadata (1124), the metadata including internal state data of
the processor (1126). Further, in one example, the parameter block includes a continuation indicator to indicate

partial completion of the operation (1128).

[00202] In one aspect, the using the metadata in re-executing the instruction further includes re-executing the
instruction to resume processing (1132); extracting the metadata from the location (1134); and loading the
metadata extracted from the location into one or more select locations of the processor, wherein the metadata is

provided to the processor absent repeating one or more tasks to produce the metadata (1136).

WO 2020/094601 PCT/EP2019/080161

42

[00203] Other variations and embodiments are possible.

[00204] Aspects of the present invention may be used by many types of computing environments. Another
embodiment of a computing environment to incorporate and use one or more aspects of the present invention is
described with reference to FIG. 12A. In this example, a computing environment 10 includes, for instance, a native
central processing unit (CPU) 12, a memory 14, and one or more input/output devices and/or interfaces 16 coupled

to one another via, for example, one or more buses 18 and/or other connections. As examples, computing
environment 10 may include a PowerPC® processor offered by International Business Machines Corporation,

Armonk, New York; an HP Superdome with Intel Itanium Il processors offered by Hewlett Packard Co., Palo Alto,
California; and/or other machines based on architectures offered by International Business Machines Corporation,
Hewlett Packard, Intel Corporation, Oracle, or others. IBM, z/Architecture, IBM Z, z/OS, PR/SM and PowerPC are
trademarks or registered trademarks of International Business Machines Corporation in at least one jurisdiction.
Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United

States and other countries. =

[00205] Native central processing unit 12 includes one or more native registers 20, such as one or more
general purpose registers and/or one or more special purpose registers used during processing within the
environment. These registers include information that represents the state of the environment at any particular

point in time.

[00206] Moreover, native central processing unit 12 executes instructions and code that are stored in memory
14. In one particular example, the central processing unit executes emulator code 22 stored in memory 14. This
code enables the computing environment configured in one architecture to emulate another architecture. For
instance, emulator code 22 allows machines based on architectures other than the z/Architecture hardware
architecture, such as PowerPC processors, HP Superdome servers or others, to emulate the z/Architecture
hardware architecture and to execute software and instructions developed based on the z/Architecture hardware

architecture.

[00207] Further details relating to emulator code 22 are described with reference to FIG. 12B. Guest
instructions 30 stored in memory 14 comprise software instructions (e.g., correlating to machine instructions) that
were developed to be executed in an architecture other than that of native CPU 12. For example, guest instructions
30 may have been designed to execute on a processor based on the z/Architecture hardware architecture, but
instead, are being emulated on native CPU 12, which may be, for example, an Intel ltanium Il processor. In one
example, emulator code 22 includes an instruction fetching routine 32 to obtain one or more guest instructions 30
from memory 14, and to optionally provide local buffering for the instructions obtained. It also includes an

instruction translation routine 34 to determine the type of guest instruction that has been obtained and to translate

WO 2020/094601 PCT/EP2019/080161

43

the guest instruction into one or more corresponding native instructions 36. This translation includes, for instance,
identifying the function to be performed by the guest instruction and choosing the native instruction(s) to perform

that function.

[00208] Further, emulator code 22 includes an emulation control routine 40 to cause the native instructions to
be executed. Emulation control routine 40 may cause native CPU 12 to execute a routine of native instructions that
emulate one or more previously obtained guest instructions and, at the conclusion of such execution, return control
to the instruction fetch routine to emulate the obtaining of the next guest instruction or a group of guest instructions.
Execution of the native instructions 36 may include loading data into a register from memory 14; storing data back
to memory from a register; or performing some type of arithmetic or logic operation, as determined by the

translation routine.

[00209] Each routine is, for instance, implemented in software, which is stored in memory and executed by
native central processing unit 12. In other examples, one or more of the routines or operations are implemented in
firmware, hardware, software or some combination thereof. The registers of the emulated processor may be
emulated using registers 20 of the native CPU or by using locations in memory 14. In embodiments, guest
instructions 30, native instructions 36 and emulator code 22 may reside in the same memory or may be disbursed

among different memory devices.

[00210] The computing environments described above are only examples of computing environments that can
be used. Other environments, including but not limited to, other non-partitioned environments, other partitioned
environments, and/or other emulated environments, may be used; embodiments are not limited to any one

environment,

[00211] Each computing environment is capable of being configured to include one or more aspects of the
present invention. For instance, each may be configured to provide sorting and/or merging, in accordance with one

or more aspects of the present invention

[00212] One or more aspects may relate to cloud computing.

[00213] It is to be understood that although this disclosure includes a detailed description on cloud computing,
implementation of the teachings recited herein are not limited to a cloud computing environment. Rather,
embodiments of the present invention are capable of being implemented in conjunction with any other type of

computing environment now known or later developed.

WO 2020/094601 PCT/EP2019/080161

44

[00214] Cloud computing is a model of service delivery for enabling convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, network bandwidth, servers, processing,
memory, storage, applications, virtual machines, and services) that can be rapidly provisioned and released with
minimal management effort or interaction with a provider of the service. This cloud model may include at least five

characteristics, at least three service models, and at least four deployment models.

[00215] Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally provision computing capabilities, such as
server time and network storage, as needed automatically without requiring human interaction with the service’s
provider.

Broad network access: capabilities are available over a network and accessed through standard
mechanisms that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, laptops, and
PDAs).

Resource pooling: the provider's computing resources are pooled to serve multiple consumers using a
multi-tenant model, with different physical and virtual resources dynamically assigned and reassigned according to
demand. There is a sense of location independence in that the consumer generally has no control or knowledge
over the exact location of the provided resources but may be able to specify location at a higher level of abstraction
(e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically provisioned, in some cases automatically, to
quickly scale out and rapidly released to quickly scale in. To the consumer, the capabilities available for
provisioning often appear to be unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control and optimize resource use by leveraging a
metering capability at some level of abstraction appropriate to the type of service (e.g., storage, processing,
bandwidth, and active user accounts). Resource usage can be monitored, controlled, and reported, providing

transparency for both the provider and consumer of the utilized service.

[00216] Service Models are as follows:

Software as a Service (SaaS): the capability provided to the consumer is to use the provider’s
applications running on a cloud infrastructure. The applications are accessible from various client devices through
a thin client interface such as a web browser (e.g., web-based email). The consumer does not manage or control
the underlying cloud infrastructure including network, servers, operating systems, storage, or even individual
application capabilities, with the possible exception of limited user-specific application configuration settings.

Platform as a Service (PaaS): the capability provided to the consumer is to deploy onto the cloud
infrastructure consumer-created or acquired applications created using programming languages and tools

supported by the provider. The consumer does not manage or control the underlying cloud infrastructure including

WO 2020/094601 PCT/EP2019/080161

45

networks, servers, operating systems, or storage, but has control over the deployed applications and possibly
application hosting environment configurations.

Infrastructure as a Service (laaS): the capability provided to the consumer is to provision processing,
storage, networks, and other fundamental computing resources where the consumer is able to deploy and run
arbitrary software, which can include operating systems and applications. The consumer does not manage or
control the underlying cloud infrastructure but has control over operating systems, storage, deployed applications,

and possibly limited control of select networking components (e.g., host firewalls).

[00217] Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely for an organization. It may be managed by
the organization or a third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by several organizations and supports a specific
community that has shared concemns (e.g., mission, security requirements, policy, and compliance considerations).
It may be managed by the organizations or a third party and may exist on-premises or off-premises.

Public cloud: the cloud infrastructure is made available to the general public or a large industry group
and is owned by an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of two or more clouds (private, community, or
public) that remain unique entities but are bound together by standardized or proprietary technology that enables

data and application portability (e.g., cloud bursting for load-balancing between clouds).

[00218] A cloud computing environment is service oriented with a focus on statelessness, low coupling,
modularity, and semantic interoperability. At the heart of cloud computing is an infrastructure that includes a

network of interconnected nodes.

[00219] Referring now to FIG. 13, illustrative cloud computing environment 50 is depicted. As shown, cloud
computing environment 50 includes one or more cloud computing nodes 52 with which local computing devices
used by cloud consumers, such as, for example, personal digital assistant (PDA) or cellular telephone 54A, desktop
computer 54B, laptop computer 54C, and/or automobile computer system 54N may communicate. Nodes 52 may
communicate with one another. They may be grouped (not shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as described hereinabove, or a combination thereof. This
allows cloud computing environment 50 to offer infrastructure, platforms and/or software as services for which a
cloud consumer does not need to maintain resources on a local computing device. It is understood that the types of
computing devices 54A-N shown in FIG. 13 are intended to be illustrative only and that computing nodes 52 and
cloud computing environment 50 can communicate with any type of computerized device over any type of network

and/or network addressable connection (e.g., using a web browser).

WO 2020/094601 PCT/EP2019/080161

46

[00220] Referring now to FIG. 14, a set of functional abstraction layers provided by cloud computing
environment 50 (FIG. 13) is shown. It should be understood in advance that the components, layers, and functions
shown in FIG. 14 are intended to be illustrative only and embodiments of the invention are not limited thereto. As

depicted, the following layers and corresponding functions are provided:

[00221] Hardware and software layer 60 includes hardware and software components. Examples of hardware
components include: mainframes 61; RISC (Reduced Instruction Set Computer) architecture based servers 62;
servers 63; blade servers 64; storage devices 65; and networks and networking components 66. In some

embodiments, software components include network application server software 67 and database software 68.

[00222] Virtualization layer 70 provides an abstraction layer from which the following examples of virtual
entities may be provided: virtual servers 71; virtual storage 72; virtual networks 73, including virtual private

networks; virtual applications and operating systems 74; and virtual clients 75.

[00223] In one example, management layer 80 may provide the functions described below. Resource
provisioning 81 provides dynamic procurement of computing resources and other resources that are utilized to
perform tasks within the cloud computing environment. Metering and Pricing 82 provide cost tracking as resources
are utilized within the cloud computing environment, and billing or invoicing for consumption of these resources. In
one example, these resources may include application software licenses. Security provides identity verification for
cloud consumers and tasks, as well as protection for data and other resources. User portal 83 provides access to
the cloud computing environment for consumers and system administrators. Service level management 84
provides cloud computing resource allocation and management such that required service levels are met. Service
Level Agreement (SLA) planning and fulfillment 85 provide pre-arrangement for, and procurement of, cloud

computing resources for which a future requirement is anticipated in accordance with an SLA.

[00224] Workloads layer 90 provides examples of functionality for which the cloud computing environment
may be utilized. Examples of workloads and functions which may be provided from this layer include: mapping and
navigation 91; software development and lifecycle management 92; virtual classroom education delivery 93; data

analytics processing 94; transaction processing 95; and sort and/or merge processing 96.

[00225] Aspects of the present invention may be a system, a method, andfor a computer program product at
any possible technical detail level of integration. The computer program product may include a computer readable
storage medium (or media) having computer readable program instructions thereon for causing a processor to carry

out aspects of the present invention.

WO 2020/094601 PCT/EP2019/080161

47

[00226] The computer readable storage medium can be a tangible device that can retain and store
instructions for use by an instruction execution device. The computer readable storage medium may be, for
example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an
electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A
non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable
compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded
thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is
not to be construed as being transitory signals per se, such as radio waves or other freely propagating
electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g.,

light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.

[00227] Computer readable program instructions described herein can be downloaded to respective
computing/processing devices from a computer readable storage medium or to an external computer or external
storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless
network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface
in each computing/processing device receives computer readable program instructions from the network and
forwards the computer readable program instructions for storage in a computer readable storage medium within the

respective computing/processing device.

[00228] Computer readable program instructions for carrying out operations of the present invention may be
assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent
instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either
source code or object code written in any combination of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++, or the like, and procedural programming languages, such
as the "C" programming language or similar programming languages. The computer readable program instructions
may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package,
partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the user's computer through any type of network,
including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external
computer (for example, through the Intemet using an Internet Service Provider). In some embodiments, electronic
circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or

programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state

WO 2020/094601 PCT/EP2019/080161

48

information of the computer readable program instructions to personalize the electronic circuitry, in order to perform

aspects of the present invention.

[00229] Aspects of the present invention are described herein with reference to flowchart illustrations and/or
block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the
invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and
combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer

readable program instructions.

[00230] These computer readable program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of the computer or other programmable data processing
apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block
or blocks. These computer readable program instructions may also be stored in a computer readable storage
medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in
a particular manner, such that the computer readable storage medium having instructions stored therein comprises
an article of manufacture including instructions which implement aspects of the function/act specified in the

flowchart and/or block diagram block or blocks.

[00231] The computer readable program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other device to cause a series of operational steps to be performed
on the computer, other programmable apparatus or other device to produce a computer implemented process, such
that the instructions which execute on the computer, other programmable apparatus, or other device implement the

functions/acts specified in the flowchart and/or block diagram block or blocks.

[00232] The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation
of possible implementations of systems, methods, and computer program products according to various
embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a
module, segment, or portion of instructions, which comprises one or more executable instructions for implementing
the specified logical function(s). In some alternative implementations, the functions noted in the block may occur out
of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the
functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose

hardware and computer instructions.

WO 2020/094601 PCT/EP2019/080161

49

[00233] In addition to the above, one or more aspects may be provided, offered, deployed, managed,
serviced, etc. by a service provider who offers management of customer environments. For instance, the service
provider can create, maintain, support, etc. computer code and/or a computer infrastructure that performs one or
more aspects for one or more customers. In return, the service provider may receive payment from the customer
under a subscription and/or fee agreement, as examples. Additionally, or alternatively, the service provider may

receive payment from the sale of advertising content to one or more third parties.

[00234] In one aspect, an application may be deployed for performing one or more embodiments. As one
example, the deploying of an application comprises providing computer infrastructure operable to perform one or

more embodiments.

[00235] As a further aspect, a computing infrastructure may be deployed comprising integrating computer
readable code into a computing system, in which the code in combination with the computing system is capable of

performing one or more embodiments.

[00236] As yet a further aspect, a process for integrating computing infrastructure comprising integrating
computer readable code into a computer system may be provided. The computer system comprises a computer
readable medium, in which the computer medium comprises one or more embodiments. The code in combination

with the computer system is capable of performing one or more embodiments.

[00237] Although various embodiments are described above, these are only examples. For example,
computing environments of other architectures can be used to incorporate and use one or more embodiments.
Further, different instructions or operations may be used. Additionally, different registers may be used and/or other

types of indications (other than register numbers) may be specified. Many variations are possible.

[00238] Further, other types of computing environments can benefit and be used. As an example, a data
processing system suitable for storing and/or executing program code is usable that includes at least two
processors coupled directly or indirectly to memory elements through a system bus. The memory elements include,
for instance, local memory employed during actual execution of the program code, bulk storage, and cache memory
which provide temporary storage of at least some program code in order to reduce the number of times code must

be retrieved from bulk storage during execution.

[00239] Input/Output or I/O devices (including, but not limited to, keyboards, displays, pointing devices, DASD,
tape, CDs, DVDs, thumb drives and other memory media, etc.) can be coupled to the system either directly or
through intervening 1/O controllers. Network adapters may also be coupled to the system to enable the data

processing system to become coupled to other data processing systems or remote printers or storage devices

WO 2020/094601 PCT/EP2019/080161

50

through intervening private or public networks. Modems, cable modems, and Ethernet cards are just a few of the

available types of network adapters.

[00240] The terminology used herein is for the purpose of describing particular embodiments only and is not
intended to be limiting. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises”
andfor “comprising”, when used in this specification, specify the presence of stated features, integers, steps,
operations, elements, and/or components, but do not preclude the presence or addition of one or more other

features, integers, steps, operations, elements, components and/or groups thereof.

[00241] The corresponding structures, materials, acts, and equivalents of all means or step plus function
elements in the claims below, if any, are intended to include any structure, material, or act for performing the
function in combination with other claimed elements as specifically claimed. The description of one or more
embodiments has been presented for purposes of illustration and description, but is not intended to be exhaustive
or limited to in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in
the art. The embodiment was chosen and described in order to best explain various aspects and the practical
application, and to enable others of ordinary skill in the art to understand various embodiments with various

modifications as are suited to the particular use contemplated.

WO 2020/094601 PCT/EP2019/080161

51

CLAIMS

1. A computer program product for facilitating processing within a computing environment, the computer
program product comprising:

a computer readable storage medium readable by a processor and storing instructions for performing a
method comprising:

determining that processing of an operation of an instruction executing on the processor has been
interrupted prior to completion;

extracting metadata of the processor, based on determining that the processing of the operation has been
interrupted, the metadata being current metadata of the processor;

storing the metadata in a location associated with the instruction; and

using the metadata stored in the location in re-executing the instruction to resume forward processing of

the instruction from where it was interrupted.

2. The computer program product of claim 1, wherein the instruction is a sort instruction, and the metadata

includes information about one or more input lists to the sort instruction.

3. The computer program product of claim 2, wherein the metadata comprises information regarding previous

comparisons made of records of the one or more input lists to indicate next comparisons to be made.

4. The computer program product of claim 3, wherein the next comparisons to be made are indicated absent

repeating the previous comparisons.

5. The computer program product of claim 1, wherein the determining comprises checking a condition code
set based on termination of the instruction, the condition code set to a select value indicating partial completion of

the instruction.

6. The computer program product of claim 1, wherein the location is a parameter block in memory designated

by the instruction.

7. The computer program product of claim 6, wherein the location of the parameter block in memory is

designated by contents of an implied register of the instruction.

8. The computer program product of claim 6, wherein the parameter block includes a continuation state

buffer to store the metadata, the metadata comprising internal state data of the processor.

WO 2020/094601 PCT/EP2019/080161

52
9. The computer program product of claim 8, wherein the parameter block further comprises a continuation
indicator to indicate partial completion of the operation.
10. The computer program product of claim 1, wherein the using the metadata in re-executing the instruction

further comprises:
re-executing the instruction to resume processing;
extracting the metadata from the location; and
loading the metadata extracted from the location into one or more select locations of the processor,

wherein the metadata is provided to the processor absent repeating one or more tasks to produce the metadata.

1. A computer system for facilitating processing within a computing environment, the computer system
comprising:
a memory; and

a processor in communication with the memory, wherein the computer system is configured to perform a
method comprising:

determining that processing of an operation of an instruction executing on the processor has been
interrupted prior to completion;

extracting metadata of the processor, based on determining that the processing of the operation has been
interrupted, the metadata being current metadata of the processor;

storing the metadata in a location associated with the instruction; and

using the metadata stored in the location in re-executing the instruction to resume forward processing of

the instruction from where it was interrupted.

12. The computer system of claim 11, wherein the instruction is a sort instruction, and the metadata includes
information regarding previous comparisons made of records of one or more input lists to the sort instruction to

indicate next comparisons to be made.

13. The computer system of claim 11, wherein the location is a parameter block in memory designated by the
instruction, and wherein the parameter block includes a continuation state buffer to store the metadata, the

metadata comprising internal state data of the processor.

14. The computer system of claim 13, wherein the parameter block further comprises a continuation indicator
to indicate partial completion of the operation.

15. The computer system of claim 11, wherein the using the metadata in re-executing the instruction further

comprises:

WO 2020/094601 PCT/EP2019/080161

53

re-executing the instruction to resume processing;
extracting the metadata from the location; and
loading the metadata extracted from the location into one or more select locations of the processor,

wherein the metadata is provided to the processor absent repeating one or more tasks to produce the metadata.

16. A computer-implemented method of facilitating processing within a computing environment, the computer-
implemented method comprising:

determining that processing of an operation of an instruction executing on a processor has been
interrupted prior to completion;

extracting metadata of the processor, based on determining that the processing of the operation has been
interrupted, the metadata being current metadata of the processor;

storing the metadata in a location associated with the instruction; and

using the metadata stored in the location in re-executing the instruction to resume forward processing of

the instruction from where it was interrupted.

17. The computer-implemented method of claim 16, wherein the instruction is a sort instruction, and the
metadata includes information regarding previous comparisons made of records of one or more input lists to the

sort instruction to indicate next comparisons to be made.

18. The computer-implemented method of claim 16, wherein the location is a parameter block in memory
designated by the instruction, and wherein the parameter block includes a continuation state buffer to store the

metadata, the metadata comprising interal state data of the processor.

19. The computer-implemented method of claim 18, wherein the parameter block further comprises a

continuation indicator to indicate partial completion of the operation.

20. The computer-implemented method of claim 16, wherein the using the metadata in re-executing the
instruction further comprises:

re-executing the instruction to resume processing;

extracting the metadata from the location; and

loading the metadata extracted from the location into one or more select locations of the processor,

wherein the metadata is provided to the processor absent repeating one or more tasks to produce the metadata.

WO 2020/094601

119

PCT/EP2019/080161

100
102 104 106
PROCESSOR MEMORY INPUT / OUTPUT
108
FIG. 1A
102
PROCESSOR
INSTRUCTION FETCH |~120
* 136
INSTRUCTION DECODE |~_ {55 SORT/MERGE
OPERAND FETCH
‘ —124
—#= INSTRUCTION EXECUTE
+ /—126

‘ —130

MEMORY ACCESS feg—

WRITE BACK fet————

FIG.

1B

PCT/EP2019/080161

WO 2020/094601

2/19

. ~ SNOILONYLSNI
¢ Ol NYHOO0Hd
o e ~ [| 3avavay eaLndmon
| |
| | SWYHOOH
omm\."/.- FOHIN/LHOS | lg—p A 4°ddy _ Mmm
¢2e| m— [£50}~022 30IA3Q
v [roe 2 ddv | 39VHOLS VLY
— m .
“ =
| FeYMINHI- |
092—TH FOHINLHOS | |g_pf | HOSSIO0Hd _ 0b
| zndo [¥0C zzzq [2S0l~o0ee N = ol
| 0 ddY | oee |~
| L] unn
_ w || e e [l
092~ T~} FOHINLHOS | |q_pf | HOSINEIAAH o B 30IA30
__ ol
| . 902 |
. e dav |
| | NdD voe 222 T50H~0zz [*] naisasans| | —
| ¥ ddv ol | ove
| | NOILILEYd |~g0z J/p — 3=
092 ~}| FOHINLHOS || 701907 B Bt el
| SNOILILHYd | | 10HINOD —
| ondo [¥0C WOID0T 202 | o | v
| | 30IA3Q
| AHOWIN | ol
e e e e e e e e e e e et e e ot e oo e e e s e e e e e e e e e o e e e e e e e e -
o0z

(030) X31dWOD SOINOHLOF T TVHINID

WO 2020/094601 PCT/EP2019/080161

3/19
300
SORTL —
OPCODE [111111] Ry | Ry FIG. 3A
302 304 306
308
GRO —
MERGE MODE FUNCTION CODE FIG. 3B
310 312
PARAMETER
CODE FUNCTION BLOCK SIZE (BYTES)
3134 0 SORTL - QAF 32
3154 1 SORTL - SFLR 576 + 16 X Ng
317 2 SORTL - SVLR 576 + 16 X N FIG. 3C
314
GR1 —
PARAMETER BLOCK ADDRESS FIG. 3D
(
316
318
R, —
FIRST OPERAND ADDRESS FIG. 3E
(
320
322
R1 + 1 -
FIRST OPERAND LENGTH FIG. 3F

(
324

WO 2020/094601 PCT/EP2019/080161

4/19
326
R, S22
SECOND OPERAND ADDRESS FIG. 3G
(
328
330
R, +1 -
SECOND OPERAND LENGTH FIG. 3H
(
332
340
PARAMETER BLOCK - SORTL -QAF e
INSTALLED FUNCTIONS VECTOR ~342
INSTALLED INTERFACE SIZES VEGTOR 344
INSTALLED PARAMETER BLOCK FORMATS 346
FIG. 3l
350
RECORD =2
KEY PAYLOAD FIG. 3J

2 z
352 354

WO 2020/094601 PCT/EP2019/080161
5/19
360
362 364 366 368
{ { { {
PARAMETER BLOCK | MODEL VERSION CONTINUATION
VERSION NUMBER NUMBER SORT ORDER FLAG
370 RECORD KEY LENGTH RECORD PAYLOAD LENGTH ~ 372
374 OPERAND ACCESS INTENT ACTIVE INPUT LISTS COUNT CODE ~ 376
378 EMPTYINPUT | EMPTYINPUT | EMPTYINpUT | NCOMPLETE | INCOMPLETE] o0
LISTS CONTROL LIST FLAG LIST NUMBER FLAG NUMBER
) §)
380 382 384
CONTINUATION RECORD RECALL BUFFER ORIGIN 388
CONTINUATION STATE BUFFER -390
INPUT LIST 0 ADDRESS ~ 392
INPUT LIST 0 LENGTH 393
INPUT LIST 1 ADDRESS ~ 394
INPUT LIST 1 LENGTH 395
INPUT LIST (N -1) ADDRESS 396
INPUT LIST (N -1) LENGTH 397

FIG. 3K

WO 2020/094601 PCT/EP2019/080161
6/19
T T T e
| 400 400
Byte . . A__
; (hex) input list0 input list1 input list2
0 00...05 00...10 00...99
| 8 00...01 00...08 00...06
10 00..17 00...02 00...88
| 18 00..03 00...14 00..20
I
address address
| (hex) first operand ~~ 402 (hex) second operand ~~ 404
1000 00...05 2000 1000
| 1008 00..10 2008 18
| 1010 00...99 2010 1018
1018 00...01 2018 28
| 1020 00...06 2020 1040
1028 00..08 2028 20
| 1030 00..17
| 1038 00...88
1040 00...02
| 1048 | 00..03
1050 00..14
| 1058 00..20
I Explanation:
sort order ascending
| record-key length 8 bytes
0 bytes

record-payload length
00..37

8 bytes with most significant 7 bytes being zero
and least significant byte containing value 37

FIG. 4A

WO 2020/094601 PCT/EP2019/080161
719
|— 450 450 450 —l
Byte
| (hex) input IistOA input list1 input IistQAinput list3 input Iist4/kinput lists |
| 0f 00.05 00...10 00...99 00..17 00...02 00...88
8 00...01 00..08 00...06 00..03 00..14 00...20
I
| address address
(hex) first operand —~ 452 (hex) second operand ~~ 454
I 1000 | 00..02 2000 1000 I
| 1008 00...05 2008 38 |
1010 00..10 2010 1038
| 1018 00..14 2018 28 |
1020 00..17
I 1028 | 00..88 I
1030 00...99
| 1038 00...01 I
| 1040 00...03 |
1048 00...06
| 1050 | 00..08 I
| 1058 00...20 |
Explanation:
| sortorder ascending |
record-key length 8 bytes
| record-payload length 0 bytes |
00..37 8 bytes with most significant 7 bytes being zero

and least significant byte containing value 37

L o - - - - - -

WO 2020/094601 PCT/EP2019/080161
8/19
After partially After
completing the completing the

Before the operation Before resuming the operation
Input to SORTL SFLR operation (CC=1,2,0r3) operation (CC=0)
parameter block version number | program’s choice unchanged same as before BO unchanged
model version number zeros recommended set same as after PC set
sort order program's choice unchanged same as before BO unchanged
continuation flag zero required set to one same as after PC set 1o zero
record key length program's choice unchanged same as before BO unchanged
record payload length program's choice unchanged same as before BO unchanged
operand access intent program's choice unchanged same as before BO unchanged
active input lists count program's choice unchanged same as before BO unchanged
empty input lists contral program's choice unchanged same as before BO unchanged
empty input list flag zero recommended set same as after PC set
empty input list number zeros recommended set same as after PC set
incomplete input list flag zero recommended set same as after PC set
incomplete input fist number | zeros recommended set same as after PC set
continuation record recall buffer | program’s choice unchanged same as before BO unchanged
origin
continuation state buffer zeros recommended set same as after PC undefined
input listN address program's choice modified restrictions apply - modified
refer to FIG. 5B
input fistN length program's choice modified restrictions apply - modified
refer to FIG. 5B
merge mode program's choice unchanged same as before BO unchanged
first operand address program's choice modified restrictions apply - modified
refer to FIG. 5B
first operand length program's choice modified restrictions apply - modified
refer to FIG. 5B
second operand address program's choice modified restrictions apply - modified
(when MM=0) refer to FIG. 5B
second operand length program's choice modified restrictions apply - modified
(when MM=0) refer to FIG. 5B
continuation record recall buffer | zeros recommended set same as after PC undefined
(when MM=0)
Explanation:

BO begin operation
MM Merge Mode
PC partial completion

FIG. 5A

PCT/EP2019/080161

WO 2020/094601

9/19

ds ol

SUOIIPUCD palyioads Japun pajepdn ase senjea paioads JI 8jgeioipaldun aie synsal :pajoadxs Jou sajepdn auou
$aWNSas uoneIado sy uaym pejuswbne aq Aew uoieiedo sy} Jo pus ayj 1e passacoid Bulag isiiindino ey $8nuiuoo
S8LWINSa) UoITESBdo By} Uaym pajuswbne Jou si uoifesado ay) Jo pus ayj e passascid Bulsq isi iIndino eyl $8pnjouoo
8|qeoljddy JoN N
apopy abisiy WA
NIl 01 [enba Jaquinu 3s) yiim isi) indul NI
N3 01 [enbe Jaguinu 1si| yim isi) Indul N3l
Jaquinu 1s1) Aue ynim 181 indul Aue-T|
:uoneuejdxy
= auou
mc,m_w_ ”muxx P xx suou :AuB-T) | Senunuod £=00 Jale

YN =N | yiBus) pue ssauppe :
auou :0=AIN auou

auou :sJ18y10-T|
WBue| pue sseippe NT|I-T|

(s

senunuod |indul aleidwooul ayy senoads NI

=411 pUB ¢=00 Jelje

YN ‘=N | yibus| pue ssauppe :
LiBusy pue sseippe :0=|\IN | yibus| pue SseIppe :

yiBus| pue ssauppe :Aue-T|

SOpNPUOD | 0=47I3 PUE O=41|| PUE =00 18}jE

YN =AIN | yibus) pue ssauppe :
auou :0=AIN auou

8uou :SJ1ay10-T|
LiBus| pue sseippe :N113-1|

(Adws sweoaq

$aNUNUo9 yoiym 181 Indur seipioads N713)

I=47119 pue =00 J8}je

VN : L= | yibus| pue ssauppe :

yiBus) pue sseIppe 0=/ | yBus| pue SSIPPE 0=\ Uyibue| pue ssauppe :Aue-7| | sepnjouoo 1=00) Ja)e
puesado puodss puesado s} s1s)| Indu omm% suopIpuod Buipus uoiesado
uonesado sy} Buiunsas o} Joud pajiwiad suonedlipow mm___ww%m_%

WO 2020/094601

10/19

PCT/EP2019/080161

FIRST OPERAND LOCATION BEFORE EXECUTING SORTL WITH MM = 0:

FOSA ~600

602~ FOEA

FIG. 6A

FIRST OPERAND LOCATION AFTER EXECUTING SORTL WITH MM = 0:

FOSA

FOEA

OL1

OLN

)
604

FIG. 6B

SECOND OPERAND LOCATION BEFORE EXECUTING SORTL WITH MM = 0:
612~ SOEA

SOSA ~610

FIG. 6C

SECOND OPERAND LOCATION AFTER EXECUTING SORTL WITH MM = 0:

SOSA

SOEA

OLD1

OLDN

)
614

FIG. 6D

WO 2020/094601

1119

FIRST OPERAND LOCATION BEFORE EXECUTING SORTL WITH MM = 1:

FOSA ~700

702—

FOEA

FIG. 7A

FIRST OPERAND LOCATION AFTER EXECUTING SORTL WITH MM = 1:

PCT/EP2019/080161

FOSA FOEA
OL1
)
704 FIG. 7B
EILCL results
(bin) condition causing operation to end CC | ILF | LN |EILF| EILN
normal completion 0 0 0 0 0
first or second operand length is insufficient 1 0 0 0 0
ILO determined to be incomplete 2 1 0 (IL0) 0 0
ILN determined to be incomplete 2 1 | N{LN) | 0 0
10 ILO became empty (ILN may also be empty) 2 0 0 0 0
01 ILN became empty (ILO may also be empty) 2 0 0 0 0
11 ILO became empty (only one input list became empty) 2 0 0 1 | 0(ILO)
11 ILN became empty (only one input list became empty) 2 0 0 1| N(ILN)
CPU-determined number of bytes processed 3 0 0 0 0
Explanation:
- any value
ILO input list with list number 0

ILN

input list with list number N, where N>0

FIG. 8

WO 2020/094601 PCT/EP2019/080161

12/19
KEY PL PAYLOAD
)))
900 902 904

FIG. 9

WO 2020/094601 PCT/EP2019/080161

13/19

INSTRUCTION PARTIALLY COMPLETES ~1000

;

CONTINUATION INDICATOR SET (E.G.,, TO1) TO L_1002
INDICATE PARTIALLY COMPLETED OPERATION

!

INTERNAL STATE DATE OF PROCESSOR (E.G., INFORMATION 1_1004

REGARDING PREVIOUS COMPARISONS OF RECORDS OF
INPUT LISTS OF A SORT INSTRUCTION) STORED IN A

PARAMETER BLOCK (E.G., CONTINUATION STATE BUFFER)

END

FIG. 10A

WO 2020/094601 PCT/EP2019/080161

14/19

EXECUTION OF INSTRUCTION |~1050

1052
NO
CF=17?
YES

RESUME OPERATION f—~—-1053

|
START 1060 ¢
OPERATION [~
EXTRAGT INTERNAL STATE 1054
‘ 1062 FROM PARAMETER BLOCK
~
OPERATION PROCEEDS
WITHOUT USING DATA
Eﬁ%meBEE'EBLL%SE STORE EXTRACTED STATE IN PROCESSOR 1056
USE EXTRACTED STATE IN 1058

RE-EXECUTION OF THE INSTRUCTION

END

FIG. 10B

WO 2020/094601 PCT/EP2019/080161

15/19

DETERMINE THAT PROCESSING OF AN OPERATION OF AN INSTRUCTION
EXECUTING ON THE PROCESSOR HAS BEEN INTERRUPTED PRIOR TO
COMPLETION ~—-1100

EXTRACT METADATA OF THE PROCESSOR, BASED ON DETERMINING THAT THE
PROCESSING OF THE OPERATION HAS BEEN INTERRUPTED ~-1102 1104

THE METADATA BEING CURRENT METADATA OF THE PROCESSOR _
STORE THE METADATA IN A LOCATION ASSOCIATED WITH THE INSTRUCTION
USE THE METADATA STORED IN THE LOCATION IN RE-EXECUTING THE 1106

INSTRUCTION TO RESUME FORWARD PROCESSING OF THE INSTRUCTION FROM
WHERE IT WAS INTERRUPTED ~-1108

INSTRUCTION IS, E.G., A SORT INSTRUCTION ~—-1110

THE METADATA INCLUDES INFORMATION ABOUT ONE OR MORE INPUT
LISTS TO THE SORT INSTRUCTION ~—1112

METADATA INCLUDES INFORMATION REGARDING PREVIOUS COMPARISONS
MADE OF RECORDS OF THE ONE OR MORE INPUT LISTS TO INDICATE NEXT
COMPARISONS TO BE MADE ~_1114

NEXT COMPARISONS TO BE MADE ARE INDICATED ABSENT REPEATING THE
PREVIOUS COMPARISONS ~-1116

DETERMINING INCLUDES CHECKING A CONDITION CODE SET BASED ON
TERMINATION OF THE INSTRUCTION - THE CONDITION CODE SET TO A SELECT
VALUE INDICATING PARTIAL COMPLETION OF THE INSTRUCTION ~-1118

FIG. 11A

WO 2020/094601 PCT/EP2019/080161

16/19

LOCATION IS A PARAMETER BLOCK IN MEMORY DESIGNATED BY THE
INSTRUCTION ~—1120

THE LOCATION OF THE PARAMETER BLOCK IN MEMORY IS DESIGNATED BY
CONTENTS OF AN IMPLIED REGISTER OF THE INSTRUCTION ~—1122

PARAMETER BLOCK INCLUDES A CONTINUATION STATE BUFFER TO STORE THE

METADATA INCLUDES INTERNAL STATE DATA OF THE PROCESSOR -

PARAMETER BLOCK FURTHER INCLUDES A CONTINUATION INDICATOR TO
INDICATE PARTIAL COMPLETION OF THE OPERATION—~—1128

USING THE METADATA IN RE-EXECUTING THE INSTRUCTION FURTHER INCLUDES
RE-EXECUTING THE INSTRUCTION TO RESUME PROCESSING —~—1132
EXTRACTING THE METADATA FROM THE LOCATION ~—1134
LOADING THE METADATA EXTRACTED FROM THE LOCATION INTO ONE
OR MORE SELECT LOCATIONS OF THE PROCESSOR, WHEREIN THE

METADATA IS PROVIDED TO THE PROCESSOR ABSENT REPEATING ONE
OR MORE TASKS TO PRODUCE THE METADATA ~_1136

FIG. 11B

WO 2020/094601

17/19

PCT/EP2019/080161

10
1ez 151 1§s
NATIVE CPU MEMORY
INPUT / OUTPUT
50—+~ REGISTERS n EM&L)’BEOR
22j 1?
FIG. 12A
/_14
jz MEMORY
1 30
| INSTRUCTION] |
GUEST
30— FETCHING fesl——
: FOUTINE : INSTRUCTIONS
| v | 3p
| INSTRUCTION] !
34— TRANSLATIONI— <10 CTios
 |__ROUTINE |
| Y |
| |
EMULATION
40—»/4'\ CONTROL :
| |_ROUTINE |
e e e e e e — -

FIG. 12B

WO 2020/094601 PCT/EP2019/080161

18/19

oy Hi
> 50
52
548
/
I
Qe [)

54N

—
i N
I’ ﬂ%&”’—_’
//
e .,

S =)
Py AN L —
T P —

ot P
- i g

td

54C
\\\
‘\
iy
54A

FIG. 13

PCT/EP2019/080161
19/19

WO 2020/094601

vl 9Old

09
/
19 g SIEMYOS pUE BlRMpIEH
89 OIEMOS 99 v~© w_m\m_om 19
JONOS) G9 SIONISS ainaeydly
alemjog uoneoyddy 5) €9) !
oseqeleq yomay CUPHOMRN - 56pi00 opeid ! JSid - SoEUEN
j ﬂﬂD SIONIBS
- @ | (= o
E7ASN VL~ €L . L. uoleZI[eniIA
S suofeayddy wxyéoz omwgm w@hmw
[BNYIA [ETHIA Z [ENMIA [eNMIA
O [5 o
_ /
e v8 €8 8 18 Juawebeuep

{ { ¢

{ {
\\\\\ \ Al \\ .
/
_
{ { {

SPEOPIOM
Buissao01d
BN/ oo,
{ {
)))))

96 G6 v6 €6 c6 16

fanjeq Ew&%m%_\,_ 5
Buissao0id e 8[oA%BI uonebineN
. Wooisse pue
sondjeuy eleq B O Aiowd e Buiddeyy

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2019/080161

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/30 GO6F9/38
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2014/089646 Al (DIEWALD HORST [DE] ET 1-20
AL) 27 March 2014 (2014-03-27)
paragraphs [0016], [0026], [0030]
X US 5 475 822 A (SIBIGTROTH JAMES M [US] ET 1,11,16
AL) 12 December 1995 (1995-12-12)
column 5, line 37 - line 39
column 5, line 47 - line 49
column 5, line 62 - line 65

A US 4 779 192 A (TORII SHUNICHI [JP] ET AL) 1-20
18 October 1988 (1988-10-18)
the whole document

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other

. e "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified)

considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

29 January 2020 06/02/2020

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, . .
Fax: (+31-70) 340-3016 Gratia, Romain

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2019/080161
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2014089646 Al 27-03-2014 NONE
US 5475822 A 12-12-1995 EP 0655678 Al 31-05-1995
JP 3853851 B2 06-12-2006
JP 4121527 B2 23-07-2008
JP HO7191859 A 28-07-1995
JP 2006196013 A 27-07-2006
US 5475822 A 12-12-1995
US 4779192 A 18-10-1988 DE 3484109 D1 21-03-1991
EP 0149213 A2 24-07-1985
JP HO77385 B2 30-01-1995
JP 560134973 A 18-07-1985
US 4779192 A 18-10-1988

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - wo-search-report
	Page 76 - wo-search-report

