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UNSUPERVISED LEARNING OF IMAGE DEPTH AND EGO-MOTION
PREDICTION NEURAL NETWORKS

CROSS-REFERENCE TO RELATED APPLICATION
[1] This application claims priority to U.S. Provisional Application Serial No.
62/586,611, filed on November 15, 2017. The disclosure of the prior application is

considered part of and is incorporated by reference in the disclosure of this application.

BACKGROUND
2] This specification relates to processing images using neural networks.
3] Machine learning models receive an input and generate an output, e.g., a predicted
output, based on the received input. Some machine learning models are parametric models
and generate the output based on the received input and on values of the parameters of the
model.
(4] Some machine learning models are deep models that employ multiple layers of models
to generate an output for a received input. For example, a deep neural network is a deep
machine learning model that includes an output layer and one or more hidden layers that each

apply a non-linear transformation to a received input to generate an output.

SUMMARY

[5] In general, one innovative aspect of the subject matter described in this specification
can be embodied in a system that includes a neural network implemented by one or more
computers. The neural network includes an image depth prediction neural network and a
camera motion estimation neural network. The neural network is configured to receive a
sequence of images. The neural network is configured to process each image in the sequence
of images using the image depth prediction neural network to generate, for each image, (i) a
respective depth output that characterizes a depth of the image. The neural network is
configured to process a subset of images in the sequence of images using the camera motion
estimation neural network to generate a camera motion output that characterizes the motion of
a camera between the images in the subset. The image depth prediction neural network and
the camera motion estimation neural network have been jointly trained using an unsupervised
learning technique.

[6] The foregoing and other embodiments can each optionally include one or more of the

following features, alone or in combination. The sequence of images may be frames of a video
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captured by the camera. The depth output may include an estimated depth value for each pixel
of a plurality of pixels in the image that represents a respective distance of a scene depicted at
the pixel from a focal plane of the image. The camera motion output may be a transformation
matrix that transforms the position and orientation of the camera from its point of view while
taking a first image in the subset to its point of view while taking a second image in the subset.
The image depth prediction neural network may include convolutional neural network layers.
The camera motion estimation neural network may include convolutional neural network
layers. The subset of images may include two images in the sequence of images. The subset
of images may include three or more images in the sequence of images. The unsupervised
learning technique may comprise the operations described below with respect to the method of
training the neural network.

7] Another innovative aspect of the subject matter described in this specification can be
embodied in one or more computer storage media encoded with instructions that, when
executed by one or more computers, cause the one or more computers to implement the above-
described system.

[8] Another innovative aspect of the subject matter described in this specification can be
embodied in a method of training the neural network of the above-described system. The
method includes: obtaining training data including a sequence of images and performing the
following operations for each particular image in the sequence of images.

[9] For each particular image in the sequence, the method includes processing the particular
image using the image depth prediction neural network to generate a first depth estimate that
characterizes a first depth of the particular image; processing a second image following the
particular image in the sequence using the depth prediction neural network to generate a second
depth estimate that characterizes a second depth of the second image; processing the particular
image and the second image using the camera motion estimation neural network to generate a
first transformation matrix that transforms the position and orientation of a camera from its
point of view while taking the particular image to its point of view while taking the second
image; and backpropagating an estimate of a gradient of a loss function to jointly adjust the
current values of the parameters of the depth prediction neural network and the camera motion
estimation neural network based on the first depth estimate, the second depth estimate, and the
first transformation matrix.

[10] The foregoing and other embodiments can each optionally include one or more of the

following features, alone or in combination.
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[11] The loss function may include a 3D-based point cloud alignment loss component that
minimizes point-to-point distances between two point clouds generated from the particular
image and the second image.

[12] The loss function may include an image reconstruction loss component that maintains
photometric consistency of (i) the particular image and a corresponding reconstructed image
generated from the second image, and (ii) the second image and a corresponding second
reconstructed image generated from the first image.

[13] Theloss function may include a structured similarity loss component that maintains (i)
the similarity of patches in the particular image and the reconstructed image, and (ii) the
similarity of patches in the second image and the second reconstructed image.

[14] The loss function may further include a depth smoothness loss component that allows
for (i) sharp changes in the first depth estimate at pixel coordinates where there are sharp
changes in the particular image, and (ii) sharp changes in the second depth estimate at pixel
coordinates where there are sharp changes in the second image.

[15] The loss function can be a weighted combination of respective components of the loss
function. The loss function can be a weighted combination of one or more of the following
components: (i) the 3D-based point cloud alignment loss component, (ii) the image
reconstruction loss component, (iii) the structured similarity loss component, and (iv) the depth
smoothness loss component. For example, the loss function can be weighted combination of
(1) the 3D-based point cloud alignment loss component, (ii) the image reconstruction loss
component, (iii) the structured similarity loss component, and (iv) the depth smoothness loss
component.

[16] Backpropagating the estimate of the gradient of the loss function may include:
computing the 3D-based point cloud alignment loss component by repeatedly estimating a best-
fit transformation that minimizes the point-to-point distances between points in a first point
cloud and their corresponding points in a second point cloud.

[17] Backpropagating the estimate of the gradient of the loss function may include
computing the reconstruction loss component by (i) analytically computing a validity mask that
indicates valid pixel coordinates in the first reconstructed image based on the first depth
estimate and the first transformation matrix, and (ii) analytically computing a second validity
mask that indicates valid pixel coordinates in the second reconstructed image based on the
second depth estimate and an inverse of the first transformation matrix.

[18] In some cases, the method may include adjusting the current values of the parameters

of the image depth prediction neural network and the camera motion estimation neural network
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using mini-batch stochastic optimization. In some cases, the method may include adjusting the
current values of the parameters of the image depth prediction neural network and the camera
motion estimation neural network using stochastic gradient optimization.

[19] The sequence of training images may be frames of a video captured by the camera. The
second image may immediately follow the particular image in the sequence of images. The
first depth estimate may include an estimated depth value for each pixel of a plurality of pixels
in the particular image that represents a respective distance of a scene depicted at the pixel
from a focal plane of the particular image. The second depth estimate may include an estimated
depth value for each pixel of a plurality of pixels in the second image that represents a
respective distance of a scene depicted at the pixel from a focal plane of the second image.
[20] The subject matter described in this specification can be implemented in particular
embodiments so as to realize one or more of the following advantages. The subject matter
described in this specification is generally directed to a training scheme for unsupervised
learning of depth and camera motion (or ego-motion) from a sequence of images, e.g., frames
of a video captured by a camera of a robotic agent (i.e. a monocular video). As the training
scheme only requires very few sources of information for training (e.g., a monocular video
taken by a camera), training image depth and camera motion estimation neural networks on
large and varied datasets becomes possible. Considering the fact that cameras are the most
ubiquitous sensor available and high quality cameras are inexpensive and easy to deploy, the
ability of the training scheme to train neural networks on arbitrary monocular videos taken by
a camera in an unsupervised manner, i.e., without requiring any external labelling of the
monocular videos opens up a practically infinite amount of training data, and thus eliminating
sensing artifacts (e.g., sensing noise/errors present in labeled data) or inter-sensor calibration
issues. In other words, the training method enables more data to be usable as training data
and does not require specifically labelled depth data which may be limited in quantity.

[21]  While prior approaches use pixel-wise or gradient-based losses, which only consider
pixels in small local neighborhoods and lead to predictions of deteriorated quality, the
training scheme described in this specification takes into account the 3D geometry of the
whole scene by incorporating a 3D-based point cloud alignment loss into the training loss
function. The 3D-based loss enforces the consistency of the estimated 3D point clouds and
ego-motion across consecutive frames of the video.

[22] In addition, the training scheme combines the novel 3D-based loss with a structured
similarity loss based on photometric quality of frame reconstructions using estimated depth

and ego-motion from adjacent frames.
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[23] The training scheme further incorporates validity masks in an image reconstruction
loss to avoid penalizing areas in which no useful information exists. Previous approaches
includes such areas in the loss, thus degrading performances of the neural networks (for
example, causing edge artifacts in the depth output of an image). By computing validity
masks analytically and incorporating the masks in the image reconstruction loss, the training
scheme improves performances of the depth and camera motion neural networks.

[24] In addition, the training scheme employs a depth smoothness loss to regularize a
depth estimate of an input image by taking into account the gradients of the input image. By
considering the gradients of the input image, the depth smoothness loss allows for sharp
changes in depth at pixel coordinates where there are sharp changes in the input image,
thereby enabling the trained depth prediction neural network to generate depth estimates that
are more realistic and accurate.

[25] A depth prediction neural network and a camera motion estimation neural network
that are trained using the above-described training scheme is capable of producing depth
estimates and camera ego-motion estimates with higher quality (for example, higher
accuracy, higher fidelity, and more realistic) compared to other neural networks that are
trained by using conventional methods. Such estimates may be used for control of a robotic
agent or autonomous vehicle, for example to aid in navigation. The estimates produced by the
trained neural networks do not require expensive and difficult to calibrate depth sensors to
provide input data and may be obtained using inexpensive and easy to deploy monocular
video cameras.

[26] The details of one or more embodiments of the subject matter of this specification are
set forth in the accompanying drawings and the description below. Other features, aspects, and
advantages of the subject matter will become apparent from the description, the drawings, and

the claims.

BRIEF DESCRIPTION OF THE DRAWINGS
[27] FIG. 1 shows an architecture of an example neural network system.
[28] FIG. 2 is a flow diagram of an example process for jointly training an image depth
prediction neural network and a camera motion estimation neural network.
[29] FIG. 3 is a flow diagram for generating a 3D-based point cloud alignment loss.
[30] FIG. 4 illustrates how an ICP process is used to penalize errors in a transformation

matrix and a depth estimate.



WO 2019/099684 PCT/US2018/061300

[31] Like reference numbers and designations in the various drawings indicate like

elements.

DETAILED DESCRIPTION
[32] This specification describes a neural network system implemented as computer
programs on one or more computers in one or more locations that is configured to generate
image depth and ego-motion estimates from a sequence of input images using an image depth
prediction neural network and a camera motion estimation neural network.
[33] FIG. 1 shows an example architecture of a neural network system 100. The neural
network system 100 is an example of a system implemented as computer programs on one or
more computers in one or more locations, in which the systems, components, and techniques
described below can be implemented.
[34] In general, the neural network system 100 is configured to receive a sequence of
images 106 and to process each image in the sequence to generate a depth output that
characterizes a depth of the image, and to process a subset of images in the sequence to
generate a camera motion output characterizing the motion of a camera between images in
the subset. For example, the sequence of images 106 may include frames of a monocular
video being captured by a camera of a robotic agent. As another example, the sequence of
images 106 may include frames of a monocular video captured using a camera of a mobile
device (e.g., by a camera of a hand-held commercial phone while a user of phone is riding a
bicycle). The sequence 106 does not necessarily have to include all of the frames from the
video. For example, the sequence 106 may include every other frame of the video.
[35] To generate the depth outputs and camera motion outputs, the neural network system
100 includes an image depth prediction neural network 102 (hereafter referred to as “the
depth network 102” for simplicity) and a camera motion estimation neural network 104
(hereafter referred to as “the camera motion network 104”). Each of the depth network 102
and the camera motion network 104 includes one or more convolutional neural network
layers. In some implementations, the depth network 102 and the camera motion network 104
are fully convolutional neural networks.
[36] The depth network 102 is configured to process each image in the sequence of images
106 to generate, for each image, a respective depth output that characterizes a depth of the
image in accordance with current values of depth parameters of the depth network 102. The
depth output generated for a given image includes a predicted depth value for each pixel of

multiple pixels in the given image. The depth value of a pixel is a representation of a
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perpendicular distance between (i) a plane in which the given image is recorded, and (ii) a
scene depicted at the pixel (for example, the actual or virtual location of an object or part of
an object that the pixel depicts). The plane in which the image is recorded may be a focal
plane, for example, the focal plane of a camera or virtual camera.

[37] In the example of FIG. 1, the depth network 102 processes image 110 in the sequence
of images 106 to generate a depth output 114 for the image 110. Image 110 can be denoted
as Xy, where tis the time when the image was captured by the camera. The depth output 114
is generated from the current image 110 independently of other images in the sequence 106.
[38] The camera motion network 104 is configured to process a subset of images in the
sequence of images 106 to generate a camera motion output that characterizes the motion of a
camera between the images in the subset in accordance with current values of motion
parameters of the camera motion network 104.

[39] In someimplementations, the subset of images includes two images from the
sequence of images 106. For example, as shown in FIG. 1, the subset of images includes two
consecutive images X1 (108) and X (110), which are taken by the camera at times t-1 and t,
respectively. The camera motion network 104 processes images Xt-1 and Xt to generate a
camera motion output 116 that is a transformation matrix that transforms the position and
orientation of the camera from its point of view while taking the image X1 to its point of
view while taking the image X:. In other words, the camera motion out 116 represents the
camera’s movement (position and orientation) from time t-1 to time t.

[40] In some other implementations, the subset of images includes three or more images
from the sequence of images 106. For example, the subset of images may include images Xt-
2, X1, and Xt. In this example, given the subset of images, the camera motion network 104
generates a camera motion output that represents the camera’s movement from time t-2 to
time t.

[41] To efficiently generate depth outputs and camera motion outputs for a sequence of
images, the neural network system 100 includes a training engine 118, which is a software-
based system, subsystem, or process that is programmed to jointly train the depth network
102 and the camera motion network 104 on training data using an unsupervised leaming
technique. Generally, the training engine 118 will be implemented as one or more software
modules or components, installed on one or more computers in one or more locations. In
some cases, one or more computers will be dedicated to a particular engine; in other cases,

multiple engines can be installed and running on the same computer or computers.
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[42] In particular, during training, the training engine 118 obtains training data including a
sequence of training images. The training images can be frames of a video being captured by
a camera of a robotic agent.

[43] For each particular image in the sequence of training images, the training engine 118
repeatedly perform the following operations.

[44] For each particular image, training engine 118 processes the particular image using
the depth network 102 to generate, in accordance with current values of the depth parameters
of the depth network 102, a first depth estimate that characterizes a first depth of the
particular image. The training engine 118 processes a second image following the particular
image in the sequence using the depth network 102, in accordance with the current values of
the depth parameters of the depth network 102, to generate a second depth estimate that
characterizes a second depth of the second image. The training engine 118 processes the
particular image and the second image using the camera motion network 104 to generate a
first transformation matrix that transforms the position and orientation of the camera from its
point of view while taking the particular image to its point of view while taking the second
image. The training engine 118 then backpropagates an estimate of a gradient of a loss
function to jointly adjust the current values of the parameters of the depth network 102 and
the camera motion network 104. The loss function is computed based on the first depth
estimate, the second depth estimate, and the first transformation matrix.

[45]  Generally, the loss function includes a 3D-based point cloud alignment loss
component that minimizes point-to-point distances between (i) points in a first point cloud
generated from the particular image and (i) their corresponding points in a second point
cloud generated from the second image. The processing for generating the 3D-based point
cloud alignment loss component is described in detail below with reference to FIG. 3.

[46] The loss function can further include one or more of the following loss components:
an image reconstruction loss component, a structured similarity loss component, and a depth
smoothness loss component. The image reconstruction loss component maintains
photometric consistency of (i) the particular image and a first reconstructed image generated
from the second image, and (i1) the second image and a second reconstructed image
generated from the particular image. The structured similarity loss component maintains (i)
the similarity of patches in the particular image and the first reconstructed image, and (ii) the
similarity of patches in the second image and the second reconstructed image. The depth
smoothness loss component allows for (i) sharp changes in the first depth estimate at pixel

coordinates where there are sharp changes in the particular image, and (ii) sharp changes in
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the second depth estimate at pixel coordinates where there are sharp changes in the second
image.

[47] During training, the training engine 118 can repeatedly perform the above operations
to adjust the values of the parameters of the depth network 102 and the camera motion neural
network 104 to minimize the loss function by using a mini-batch stochastic optimization or
stochastic gradient optimization method.

[48] The process for jointly training the depth network 102 and the camera motion network
104 and for computing each component in the loss function is described in more detail below
with respect to FIG. 2.

[49]  After training, the neural network system 100 can use the depth network 102 to
generate a depth output for a given input image in accordance with the trained values of depth
parameters of the depth network 102, and use the camera motion network 104 to generate a
camera motion output for multiple input images in accordance with the trained values of
motion parameters of the camera motion network 104.

[S0] In some cases, the neural network system 100 can provide the trained depth network
102 and the trained camera motion network 104 or the trained values of the parameters of the
networks to an external system. The external system can use the trained depth network 102
and the trained camera motion 104 to generate depth outputs and camera motion outputs for a
sequence of input images in the manner described above.

[S1]  As aparticular example, after training, the system 100 or the external system can use
the depth output and camera motion outputs to control a robot while the robot interacts with
an environment. By having the depth outputs and camera motion outputs available as input
to a control policy or a planner for the robot, the robot can be more effectively controlled to
complete specified tasks in the environment.

[S2] FIG. 2is aflow diagram of an example process 200 for jointly training an image depth
prediction neural network and a camera motion estimation neural network (for example, the
depth network 102 and the camera motion network 104 of FIG. 1). For convenience, the
process 200 will be described as being performed by a system of one or more computers located
in one or more locations. For example, a neural network system, e.g., the neural network
system 100 of FIG. 1, appropriately programmed, can perform the process 200.

[S3] The system can repeatedly perform the process 200 on different sequences of training
images that are included in training data in order to repeatedly update the parameter values of

the image depth prediction neural network and the camera motion estimation neural network.
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[S4] The system obtains a sequence of training images (step 201). For example, the training
images can be frames of a video being captured by a camera of a robotic agent or by a camera
of a mobile device. The sequence of training images does not necessarily include all
consecutive frames of the video. For example, the sequence of training image may include
every other frame of the video.
[S5]  For each particular image X1 in the sequence of training images, the system repeatedly
performs the following operations (steps 202-218).
[S6] The system processes the particular image X¢-1 using the depth network to generate, in
accordance with current values of depth parameters of the depth network, a first depth estimate
Dy that characterizes a first depth of the particular image X1 at time t-1 (step 202).
[S7] The system processes a second image Xt following the particular image Xt-1 in the
sequence using the depth network, in accordance with the current values of the depth
parameters of the depth network, to generate a second depth estimate D, that characterizes a
second depth of the second image X at time t (step 204).
[S8] The system processes the particular image Xt -1 and the second image X using the
camera motion network to generate a first transformation matrix 77 (step 206). The first
transformation matrix 7z, which is also referred to as ego-motion, represents the camera’s
movement (position and orientation) from time t-1 to time t. That is, the first transformation
matrix 7t transforms the position and orientation of the camera from its point of view while
taking the particular image X:-1to its point of view while taking the second image X:.
[S9] To construct a loss function for jointly training the depth and camera motion
networks, the system first constructs a 3D-based point cloud alignment loss component that
minimizes point-to-point distances between two point clouds generated from the particular
image Xt-1 and and the second image Xt (step 208).
[60] In particular, the system generates a 3D point cloud QO for the second image X¢based
on the second depth estimate D: of the second image Xt Each image pixel at coordinate (7, j)
with a corresponding estimated depth value D,fj can be projected into the structured 3D point
cloud O as follows:

;=D K7 i,j, 11", Q)
where K is a camera intrinsic matrix and the coordinates are homogeneous.
[61] Given the first transformation matrix 77, which represents the camera’s movement
from t-1 to t, the system transforms the 3D point cloud {: to obtain an estimate of the

previous image (the particular image Xe1)'s point cloud Q,_ as follows:

10



WO 2019/099684 PCT/US2018/061300

Qt—l = Tt_l- Q. (2)
where T ! represents the inverse of the camera’s movement from t to t-1.
[62] Similarly, the system generates a 3D point cloud O for the particular image X1 based

on the first depth estimate Dr; of the particular image Xt-1. Each image pixel at coordinate (7,
7) with a corresponding estimated depth value D;]_ , can be projected into the structured 3D

point cloud QO+ as follows:

Ly =Dl K T, 3)
where K is a camera intrinsic matrix and the coordinates are homogeneous.
[63] The system then transforms the 3D point cloud (:; to obtain an estimate of the
second image X¢'s point cloud Q; as follows:
Qt =Tt Qt-1 4)

where Tt represents the camera’s movement from t-1 to t.
[64] The 3D-based point cloud alignment loss component directly compares two 3D point
clouds: Q,_; to Q,_4, or O, to Q,. That is, in some cases, the 3D-based point cloud alignment
loss component can compare (i) an estimate of the particular image’s point cloud Q;_4
generated from the second image’s point cloud @, to (ii) the particular image’s point cloud
Q¢_,. In some cases, the 3D-based point cloud alignment loss component can compare (i) an
estimate of the second image’s point cloud §, generated from the particular image’s point
cloud @;_4 to (ii) the second image’s point cloud Q;.
[65] To construct the 3D-based point cloud alignment loss component, the system uses a
rigid registration method, for example, an Iterative Closest Point (ICP) process, to compute
(1) a best-fit transformation 7" that minimizes point-to-point distances between corresponding
points in the two point clouds, and (ii) a residual registration error r that represents residual
distances between corresponding points after the ICP’s best-fit transformation 7" for
minimizing point-to-point distances has been applied. The ICP process is described in detail
below with reference to FIG. 3 and FIG. 4.
[66] The system constructs the 3D-based point cloud alignment loss component Lsp as
follows:

Lyp = IT" = Il + lI7lls. (%)
where ||. ||; denotes the L /-norm, I is the identity matrix, and r is the residual registration error.
[67] Next, the system constructs an image reconstruction loss component that maintains

photometric consistency of (i) the particular image X1 and a first reconstructed image X,_;
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generated from the second image X, and of (ii) the second image Xtand a second
reconstructed image X, generated from the particular image X1 (step 210).

[68] In particular, the system projects the estimated point cloud Q,_, on to the camera at
image t-1 as KQ,_,, where K is the camera intrinsic matrix. The system then combines this
transformation and projection with Eq. (1) to establish a mapping from image coordinates at
time t to image coordinates at time t-1. Based on this mapping, the system reconstructs an

image X, by warping X1 based on the depth output D and the first transformation matrix T

X = X0, 5,507 = KTDY - K47 ©

[69] Similarly, the system reconstructs an image X,_, by warping X¢ based on the depth
output D1 and T; 1, which is the inverse of the first transformation matrix T;.

[70] Computing X, involves creating a mapping from image coordinates in X to Xe1.
However, due to the camera’s motion, some pixel coordinates in X; may be mapped to
coordinates that are outside the image boundaries in Xi1. With forward ego-motion, this
problem is usually pronounced when computing X;_; from Xt Including such pixels in the
loss function degrades performance of the depth and camera motion networks. Previous
approaches have either ignored this problem, or tried to tackle it by adding a general-purpose
mask to the network, which is expected to exclude regions that are unexplainable due to any
reason. However, this approach is not effective and often results in edge artifacts in depth
images.

[71] To solve the above problem, here the system analytically computes validity masks from
the depth outputs and the first transformation matrix (ego-motion). For every pair of images
Xt1 and Xt in the sequence of training images, the system can create a pair of validity masks
M1 and M. M1 indicates which pixel coordinates are valid when reconstructing X;_; from
Xt Mtindicates which pixel coordinates are valid when reconstructing X, from Xe1.

[72] More specifically, the system analytically computes the first validity mask M1 that
indicates valid pixel coordinates in the first reconstructed image X,_; based on the first depth
estimate D¢ and the first transformation matrix Tt. The system further analytically compute
the second validity mask M- that indicates valid pixel coordinates in the second reconstructed
image X, based on the second depth estimate D¢ and an inverse of the first transformation

matrix Tt
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[73]  After computing validity masks, the system then compares the reconstructed image X,
and X,_, to the particular and second images X¢ and X1 respectively to produce the image
reconstruction loss component that is based on photometric consistency as follows:

Lyec = Zi}'”(thj - X;])M;]” ()
where X,fj denotes an image pixel at coordinates (i, ;) of the second image X, )?,fj denote an

image pixel at coordinates (i, j) of the reconstruct image X,, and M,fj denote an image pixel at
coordinates (i, ;) of the validity mask M;. By using the validity mask, the system can avoid
spurious losses in out of view areas of the images, thus avoid penalizing areas in which no
useful information exists. As a result, the system can improve prediction/estimation quality of
the depth and camera motion networks.
[74] Subsequently, the system constructs a structured similarity loss component (step 212).
Generally, the structured similarity loss component maintains (i) the similarity of patches in
the particular image and the first reconstructed image, and (ii) the similarity of patches in the
second image and the second reconstructed image.
[75] In particular, the system aims to minimize the structured similarity loss component
Lssns defined as follows:

Lssiy = Yi;[1 — sSIM(RY, x)|M, (8)
where SSIM(x, y) measures the similarity between two images patches x and y and is defined

as follows:

. o (\gﬂxﬂ"y"i“(fl)(Qaw y”JFCQ)
SSIM(Q s y) - (lu% --}. )U%/ ..}. Cq )(ﬂ.l, "i"(}.y "’"C‘;’) . (9)

where u,, g, are the local means and variances.

[76] The system then constructs a depth smoothness loss component to regularize depth
estimates (step 214). The depth smoothness loss component allows for (i) sharp changes in
the first depth estimate D¢.1 at pixel coordinates where there are sharp changes in the
particular image X1, and (ii) sharp changes in the second depth estimate D¢ at pixel
coordinates where there are sharp changes in the second image X:. The depth smoothness

loss takes into account the gradients of a given image X and can be presented as follows:

Lsm = Zi}'”axDij” e—||6xXij|| + ”ayDij”e_”ayXij”’ (10)

where X denote an image pixel at coordinates (i, /) of the given image X, DY is the

estimated depth corresponding with X%/, and d,, d,, are the gradients. By considering the
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gradients of the image X, the depth smoothness loss allows for sharp changes in depth at
pixel coordinates where there are sharp changes in the image.
[77] The system constructs a loss function (step 216). In some implementations, the loss
function includes only on the 3D-based point cloud alignment loss components. In some
implementations, the loss function is a weighted combination of the 3D-based point cloud
alignment loss component and one or more of (i) the image reconstruction loss component,
(i1) the structured similarity loss component, or (iii) the depth smoothness loss component.
For example, the loss function can have the following form:

L=Ysalie + BLyp +vLim + wLlssm, (11)
where all loss components are applied at four different scales s ranging from an input

resolution of the input images in the obtained training data to an image having a smaller
resolution (for example, an image that is %, % or 1—10 in width and height of the input images.

a, f,y, w are predetermined hyper-parameters. For example, « = 0.85,8 = 0.1,y =
0.05,and w = 0.15. As another example, « = 0.5, = 0.3,y = 0.2,and w = 0. As
another example, « = 0.1, = 0.2,y = 0.3,and w = 0.4,

[78] The system then generates an estimate of a gradient of the loss function and
backpropagates the estimate of the gradient to jointly adjust the current values of depth
parameters of the depth network and the current values of motion parameters of the camera
motion network (step 218). The system can jointly adjust the current values of the depth
and motion parameters to minimize the loss function by using mini-batch stochastic
optimization or stochastic gradient optimization method.

[79] The system repeats the above steps 202-218 for other images in the sequence of
training images to determine trained values of depth parameters of the depth network and the
trained values of motion parameters of the camera motion network.

[80] FIG. 3 is aflow diagram of an example process 300 for generating the 3D-based point
cloud alignment loss component. For convenience, the process 300 will be described as being
performed by a system of one or more computers located in one or more locations. For
example, a neural network system or a component of a neural network system, e.g., the training
engine 118 of the neural network system 100 of FIG. 1, appropriately programmed, can
perform the process 300.

[81] As described above with reference to FIG.2, to generate the 3D-based point cloud
alignment loss component (hereafter also referred to as 3D-based loss), the system first

generates a 3D point cloud O for the second image X based on the second depth estimate D
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of the second image X (step 304). Each image pixel at coordinate (7, j) with a corresponding
estimated depth value D,fj can be projected into the structured 3D point cloud Qr using Eq. 1.
[82]  Given the inverse of the first transformation matrix T; 2, the system transforms the 3D
point cloud QO to estimate the previous image (the particular image X-1)'s point cloud Q;_;
using Eq. 2 (step 306).

[83] Similarly, the system generates a 3D point cloud O; for the particular image X1 based
on the first depth estimate Dr; of the particular image X1 (step 308). Each image pixel at
coordinate (i, j) with a corresponding estimated depth value D;]_ , can be projected into the
structured 3D point cloud QOr; based ion Eq. 3.

[84] The system then transforms the 3D point cloud Q.;, using the first transformation
matrix T¢ to obtain an estimate of the second image X:’s point cloud Q, based on Eq. 4 (step
310).

[85] To construct the 3D-based point cloud alignment loss component, the system uses an
Iterative Closest Point (ICP) process 302 to obtain a best-fit transformation 7~ that minimizes
point-to-point distances between two point clouds.

[86] In particular, the ICP process 302 takes as input two point clouds A and B, for
example, point clouds Q,_, and O, or point clouds Q, and Or. For convenience, the
following description describes the ICP process 302 when taking as input two point clouds
Q,_, and Or1, but it should be understood that the ICP process 302 is the same for both pair
of point clouds.

[87] Given the two point clouds §,_,; and Qv the ICP process 302 outputs the best-fit
transformation T~ (step 312) which minimizes the distance between the transformed points in

A and their corresponding points in B:
argminézi_j”T'.AU — Bc(ij)”2 (12)
T

where ¢(.) denotes the point to point correspondence found by ICP method (for example, by
using a simple closest point heuristic). The system further uses the ICP process 302 to
output, for each pixel coordinate (i,j), a residual ¥ = AY — T'~*. B@) (step 314). The
residual reflects the residual distances between corresponding points after the ICP’s best-fit
transformation 7" for minimizing point-to-point distances has been applied.

[88] The system constructs the 3D-based point cloud alignment loss component Lsp as
follows:

Lsp = ”Tt, —1ly + ll7ells.
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where ||. ||; denotes the L7-norm, I is the identity matrix, and  is the residual registration error
(step 316).

[89] FIG. 4 demonstrates how the system use the ICP process to penalize errors in the first
transformation matrix (ego-motion) Ttand the second depth estimate Dt. The illustration
shows a top view of a car front with side mirrors. Given the depth estimate Dt for time t, the
system creates the point cloud Qt, which is then transformed by the first transformation
matrix Ttinto a prediction of the previous image’s point cloud, §,_,. If the first
transformation matrix Tt and Dt from the depth and camera-motion networks are perfect,
Q,_, would align perfectly with Or;. When this is not the case, the system aligns Q;_; to O«
with ICP to generate a best-fit transformation matrix T{ and the residuals .. The system then
uses T{ and 7+ to adjust Tt and Dt toward a better initial alignment. More specifically, the
system uses T{ as an approximation to a negative gradient of the 3D-based loss with respect
to the ego-motion Tt and uses r; as an approximation to the negative gradient of the 3D-based
loss with respect to the depth estimate Dx.

[90] This specification uses the term “configured” in connection with systems and
computer program components. For a system of one or more computers to be configured to
perform particular operations or actions means that the system has installed on it software,
firmware, hardware, or a combination of them that in operation cause the system to perform
the operations or actions. For one or more computer programs to be configured to perform
particular operations or actions means that the one or more programs include instructions
that, when executed by data processing apparatus, cause the apparatus to perform the
operations or actions.

[91] Embodiments of the subject matter and the functional operations described in this
specification can be implemented in digital electronic circuitry, in tangibly-embodied
computer software or firmware, in computer hardware, including the structures disclosed in
this specification and their structural equivalents, or in combinations of one or more of them.
Embodiments of the subject matter described in this specification can be implemented as one
or more computer programs, i.e., one or more modules of computer program instructions
encoded on a tangible non-transitory storage medium for execution by, or to control the
operation of, data processing apparatus. The computer storage medium can be a machine-
readable storage device, a machine-readable storage substrate, a random or serial access
memory device, or a combination of one or more of them. Alternatively or in addition, the

program instructions can be encoded on an artificially-generated propagated signal, e.g., a
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machine-generated electrical, optical, or electromagnetic signal, that is generated to encode
information for transmission to suitable receiver apparatus for execution by a data processing
apparatus.

[92] The term “data processing apparatus” refers to data processing hardware and
encompasses all kinds of apparatus, devices, and machines for processing data, including by
way of example a programmable processor, a computer, or multiple processors or computers.
The apparatus can also be, or further include, special purpose logic circuitry, e.g., an FPGA
(field programmable gate array) or an ASIC (application-specific integrated circuit). The
apparatus can optionally include, in addition to hardware, code that creates an execution
environment for computer programs, e.g., code that constitutes processor firmware, a
protocol stack, a database management system, an operating system, or a combination of one
or more of them.

[93] A computer program, which may also be referred to or described as a program,
software, a software application, an app, a module, a software module, a script, or code, can
be written in any form of programming language, including compiled or interpreted
languages, or declarative or procedural languages; and it can be deployed in any form,
including as a stand-alone program or as a module, component, subroutine, or other unit
suitable for use in a computing environment. A program may, but need not, correspond to a
file in a file system. A program can be stored in a portion of a file that holds other programs
or data, e.g., one or more scripts stored in a markup language document, in a single file
dedicated to the program in question, or in multiple coordinated files, e.g., files that store one
or more modules, sub-programs, or portions of code. A computer program can be deployed to
be executed on one computer or on multiple computers that are located at one site or
distributed across multiple sites and interconnected by a data communication network.

[94] The processes and logic flows described in this specification can be performed by one
or more programmable computers executing one or more computer programs to perform
functions by operating on input data and generating output. The processes and logic flows
can also be performed by special purpose logic circuitry, e.g., an FPGA or an ASIC, or by a
combination of special purpose logic circuitry and one or more programmed computers.

[95] Computers suitable for the execution of a computer program can be based on general
or special purpose microprocessors or both, or any other kind of central processing unit.
Generally, a central processing unit will receive instructions and data from a read-only
memory or a random access memory or both. The essential elements of a computer are a

central processing unit for performing or executing instructions and one or more memory
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devices for storing instructions and data. The central processing unit and the memory can be
supplemented by, or incorporated in, special purpose logic circuitry. Generally, a computer
will also include, or be operatively coupled to receive data from or transfer data to, or both,
one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or
optical disks. However, a computer need not have such devices. Moreover, a computer can be
embedded in another device, e.g., a mobile telephone, a personal digital assistant (PDA), a
mobile audio or video player, a game console, a Global Positioning System (GPS) receiver,
or a portable storage device, e.g., a universal serial bus (USB) flash drive, to name just a few.
[96] Computer-readable media suitable for storing computer program instructions and data
include all forms of non-volatile memory, media and memory devices, including by way of
example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory
devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks;
and CD-ROM and DVD-ROM disks.

[97] To provide for interaction with a user, embodiments of the subject matter described in
this specification can be implemented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor, for displaying information to the
user and a keyboard and a pointing device, e.g., a mouse or a trackball, by which the user can
provide input to the computer. Other kinds of devices can be used to provide for interaction
with a user as well; for example, feedback provided to the user can be any form of sensory
feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the
user can be received in any form, including acoustic, speech, or tactile input. In addition, a
computer can interact with a user by sending documents to and receiving documents from a
device that is used by the user; for example, by sending web pages to a web browser on a
user’s device in response to requests received from the web browser. Also, a computer can
interact with a user by sending text messages or other forms of message to a personal device,
e.g., a smartphone that is running a messaging application, and receiving responsive
messages from the user in return.

[98] Data processing apparatus for implementing machine leaming models can also
include, for example, special-purpose hardware accelerator units for processing common and
compute-intensive parts of machine learning training or production, i.e., inference,
workloads.

[99] Machine leaming models can be implemented and deployed using a machine learning
framework, e.g., a TensorFlow framework, a Microsoft Cognitive Toolkit framework, an

Apache Singa framework, or an Apache MXNet framework.
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[100] Embodiments of the subject matter described in this specification can be implemented
in a computing system that includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server, or that includes a front-end
component, e.g., a client computer having a graphical user interface, a web browser, or an
app through which a user can interact with an implementation of the subject matter described
in this specification, or any combination of one or more such back-end, middleware, or
front-end components. The components of the system can be interconnected by any form or
medium of digital data communication, e.g., a communication network. Examples of
communication networks include a local area network (LAN) and a wide area network
(WAN), e.g., the Internet.

[101] The computing system can include clients and servers. A client and server are
generally remote from each other and typically interact through a communication network.
The relationship of client and server arises by virtue of computer programs running on the
respective computers and having a client-server relationship to each other. In some
embodiments, a server transmits data, e.g., an HTML page, to a user device, e.g., for
purposes of displaying data to and receiving user input from a user interacting with the
device, which acts as a client. Data generated at the user device, e.g., a result of the user
interaction, can be received at the server from the device.

[102] While this specification contains many specific implementation details, these should
not be construed as limitations on the scope of any invention or on the scope of what may be
claimed, but rather as descriptions of features that may be specific to particular embodiments
of particular inventions. Certain features that are described in this specification in the context
of separate embodiments can also be implemented in combination in a single embodiment.
Conversely, various features that are described in the context of a single embodiment can also
be implemented in multiple embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as acting in certain combinations and
even initially be claimed as such, one or more features from a claimed combination can in
some cases be excised from the combination, and the claimed combination may be directed to
a subcombination or variation of a subcombination.

[103] Similarly, while operations are depicted in the drawings and recited in the claims in a
particular order, this should not be understood as requiring that such operations be performed
in the particular order shown or in sequential order, or that all illustrated operations be
performed, to achieve desirable results. In certain circumstances, multitasking and parallel

processing may be advantageous. Moreover, the separation of various system modules and
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components in the embodiments described above should not be understood as requiring such
separation in all embodiments, and it should be understood that the described program
components and systems can generally be integrated together in a single software product or
packaged into multiple software products.

[104] Particular embodiments of the subject matter have been described. Other
embodiments are within the scope of the following claims. For example, the actions recited in
the claims can be performed in a different order and still achieve desirable results. As one
example, the processes depicted in the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve desirable results. In some cases,

multitasking and parallel processing may be advantageous.

20



WO 2019/099684 PCT/US2018/061300

CLAIMS

1. A system comprising:
aneural network implemented by one or more computers, wherein the neural network
comprises an image depth prediction neural network and a camera motion estimation neural
network, wherein the neural network is configured to receive a sequence of images and,
process each image in the sequence of images using the image depth
prediction neural network to generate, for each image, a respective depth output that
characterizes a depth of the image, and
process a subset of images in the sequence of images using the camera motion
estimation neural network to generate a camera motion output that characterizes the motion
of a camera between the images in the subset; and
wherein the image depth prediction neural network and the camera motion estimation

neural network have been jointly trained using an unsupervised learning technique.

2. The system of claim 1, wherein the sequence of images are frames of a video captured

by the camera.

3. The system of any one of claims 1 or 2, wherein the depth output comprises an
estimated depth value for each pixel of a plurality of pixels in the image that represents a

respective distance of a scene depicted at the pixel from a focal plane of the image.

4. The system of any one of claims 1-3, wherein the camera motion output is a
transformation matrix that transforms the position and orientation of the camera from its
point of view while taking a first image in the subset to its point of view while taking a

second image in the subset.

5. The system of any one of claims 1-4, wherein the image depth prediction neural

network includes convolutional neural network layers.

6. The system of any one of claims 1-5, wherein the camera motion estimation neural

network includes convolutional neural network layers.

7. The system of any one of claims 1-6, wherein the subset of images includes two

images in the sequence of images.
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8. The system of any one of claims 1-6, wherein the subset of images includes three or

more images in the sequence of images.

9. One or more computer storage media encoded with instructions that, when executed
by one or more computers, cause the one or more computers to implement the system of any

one of claims 1-8.

10. A method of training the neural network of any one of claims 1-8, the method
comprising:
obtaining training data comprising a sequence of images; and
for each particular image in the sequence of images:
processing the particular image using the image depth prediction neural
network to generate a first depth estimate that characterizes a first depth of the particular
image;
processing a second image following the particular image in the sequence
using the depth prediction neural network to generate a second depth estimate that
characterizes a second depth of the second image;
processing the particular image and the second image using the camera motion
estimation neural network to generate a first transformation matrix that transforms the
position and orientation of a camera from its point of view while taking the particular image
to its point of view while taking the second image; and
backpropagating an estimate of a gradient of a loss function to jointly adjust
the current values of the parameters of the depth prediction neural network and the camera
motion estimation neural network based on the first depth estimate, the second depth

estimate, and the first transformation matrix.
11. The method of claim 10, wherein the loss function comprises a 3D-based point cloud
alignment loss component that minimizes point-to-point distances between two point clouds

generated from the particular image and the second image.

12. The method of claim 11, wherein backpropagating the estimate of the gradient of the

loss function comprises:
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computing the 3D-based point cloud alignment loss component by repeatedly
estimating a best-fit transformation that minimizes the point-to-point distances between

points in a first point cloud and their corresponding points in a second point cloud.

13.  The method of any one of claims 10 to 12, wherein the loss function comprises an
image reconstruction loss component that maintains photometric consistency of (i) the
particular image and a first reconstructed image generated from the second image, and (ii) the

second image and a second reconstructed image generated from the particular image.

14, The method of claim 13, wherein backpropagating the estimate of the gradient of the
loss function comprises:

computing the reconstruction loss component by (i) analytically computing a validity
mask that indicates valid pixel coordinates in the first reconstructed image based on the first
depth estimate and the first transformation matrix, and (ii) analytically computing a second
validity mask that indicates valid pixel coordinates in the second reconstructed image based

on the second depth estimate and an inverse of the first transformation matrix.

15. The method of claim 13 or 14, wherein the loss function comprises a structured
similarity loss component that maintains (i) the similarity of patches in the particular image
and the first reconstructed image, and (ii) the similarity of patches in the second image and

the second reconstructed image.

16.  The method of any one of claims 10 to 15, wherein the loss function further comprises
a depth smoothness loss component that allows for (i) sharp changes in the first depth
estimate at pixel coordinates where there are sharp changes in the particular image, and (i1)
sharp changes in the second depth estimate at pixel coordinates where there are sharp changes

in the second image.

17.  The method of any one of claims 10 to 16, wherein the loss function is a weighted

combination of respective components of the loss function.
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18. The method of any one of claims 10-17, further comprising adjusting the current
values of the parameters of the image depth prediction neural network and the camera motion

estimation neural network using mini-batch stochastic optimization.

19. The method of any one of claims 10-17, further comprising adjusting the current
values of the parameters of the image depth prediction neural network and the camera motion

estimation neural network using stochastic gradient optimization.

20. The method of any one of claims 10-19, wherein the sequence of images are frames of

a video captured by the camera.

21. The method of any one of claims 10-20, wherein the second image immediately

follows the particular image in the sequence of images.

22. The method of any one of claims 10-21, wherein the first depth estimate comprises an
estimated depth value for each pixel of a plurality of pixels in the particular image that
represents a respective distance of a scene depicted at the pixel from a focal plane of the

particular image.

23. The method of any one of claims 10-22, wherein the second depth estimate comprises
an estimated depth value for each pixel of a plurality of pixels in the second image that
represents a respective distance of a scene depicted at the pixel from a focal plane of the

second image.

24, One or more computer storage media storing instructions that when executed by one
or more computers cause the one or more computers to perform the operations of the

respective method of any one of claims 10-23.

25. One or more computers and one or more storage devices storing instructions that
when executed by the one or more computers cause the one or more computers to perform the

operations of the respective method of any one of claims 10-23.
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