A 0 0 OO

02/099597 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

12 December 2002 (12.12.2002) PCT

A 0 O 000000

(10) International Publication Number

WO 02/099597 A2

(51) International Patent Classification”: GO6F
(21) International Application Number: PCT/US02/18009

(22) International Filing Date: 7 June 2002 (07.06.2002)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/296,650 7 June 2001 (07.06.2001) US
60/300,457 26 June 2001 (26.06.2001) US
60/300,458 26 June 2001 (26.06.2001) US

(71) Applicant: UNWIRED EXPRESS, INC. [US/US]; 9101
Guilford Road, Columbia, MD 21046 (US).

(72) Inventors: RYNGLER, Oren; 7010 Gentle Shade Road,
#303, Columbia, MD 21046 (US). AGAM, Ronny; 26
Joice Street, San Franscico, CA 94108 (US). GAFFNEY,
Michael; 9546 Gerst Road, Perry Hall, MD 21128 (US).
BHAT, Dinesh; 21779 Cypress Valley Terrace, Ster-
ling, VA 20166 (US). BOGER, Yuval; 6726 Bonnie

(74

@8n

84

Ridge Drive, #101, Baltimore, MD 21209 (US). FISTE,
William; 6325 Golden Star Place, Columbia, MD 21044
(US).

Agents: KELBER, Steven, B. et al.; Piper Rudnick LLP,
1200 Nineteenth Street N.W., Washington, DC 20036 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, T], TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, 7ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

[Continued on next page]

(54) Titlee METHOD AND SYSTEM FOR PROVIDING CONTEXT AWARENESS

Context Packs

Mobile Context-aware Applications

Event
Field Service Healthcare ' Fleld Sales ' Governmenl' Pharma ' management More... '

Back-end Presence

Presence

Profile

Context Packs

Workgroup I Comm, I Time I
Manag: M Services
Context Engine

Presentation
Management

Task Intelligent
Automation Pre-Fetching

Device nvironmental
Information Information

(o) (s) (o) - (212

(57) Abstract: A method and system for providing context information, systems, and actions for a range of information technology
platforms and interfaces. Context includes the aggregate knowledge about a user’s siuation and intent. Included in the system are
tiers of features for enabling context awareness, including a collection tier, analysis tier, and action/effect tier. Information relating
to entities, which are the elements that are included in the system, such as users and communication devices, along with states and
relationships, is identified and accessed by a context engine, which obtains the information from sensors and interpreters for the
information. In one application tier, the context engine is used with any set of entities, and relationships. Another application tier,
referred to as "context packs"”, includes preset sets of entities, states, and relationships identified for predetermined applications.

w0 02/099597 A2 NI 000 000

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations"” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gazette.

WO 02/099597 PCT/US02/18009

10

15

20

25

TITLE OF THE INVENTION

METHOD AND SYSTEM FOR PROVIDING CONTEXT AWARENESS

This application claims priority from U.S. Provisional Applications Serial
No. 60/296,650 filed June 7, 2001, Serial No. 60/300,457 filed June 26, 2001, and
Serial No. 60/300,458 filed June 26, 2001. The entirety of each of these

provisional patent applications is incorporated herein by reference.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to methods and systems for providing context
aware information, and in particular to methods and systems for determining use,
intent, and situation speciﬁc‘information about users and any other entity, such as
devices on networks usable, among other purposes, to optimize the effectiveness of

applications and interfaces based on the context information obtained.

Background of the Technology

The introduction of mobile data networks has enabled the use of
applications even when not in the office, such as when at home or in any other
stable environment (e.g., the typical office, chair, telephone, and screen
environment, which is readily predictable). However, the mobile user is not able to
control an ever-changing environment; movement, device and network resources,
and the setting (e.g., car, customer site, meeting room), among other factors, affect
the user, while the application maintains its preordained behavior at the time of
initial development, typically without incorporating or addressing these effects.

As aresult of the ever-changing environment of many situations, the user
can face an ordeal when interacting with mobile applications via the mobile device
(e.g., size of device, limited input methods). This ordeal manifests itself in the

usability of so-called mobile applications; the amount of interaction the user is

WO 02/099597 PCT/US02/18009

10

15

20

25

30

required to go through produces an acute problem, resulting, in many cases, in the
abandonment of the mobile applications by the user.

Today, many applications are available for personal and business use. As
computing platforms and Internet use increasingly become commonplace, the
productivity of application users is on the rise. However, as discussed above, little
has changed in how applications are developed and presented to the user. A
developer, usually according to a speciﬁc;ltion, writes the application, tests are
performed, and the application is made available for the user.

Once the application has left the desk of the developer and has been tested,

it does not modify its behavior as presented to the user. While the user encounters

different situations and schedule changes throughout the day, the application is
oblivious to these adjustments, and continues to present information in an
unchanging manner. This non-flexible application behavior, while minimizing the -
efforts required of the application developer, has increased the degree of effort
required of the user, in terms of usability.

In this light, it is useful to consider the “context” of an application. Context
can be defined as the aggregate knowledge about the Users’ situation and intent.
There is an unmet need for software applications to optimize the effectiveness of
the application in view of context. Examples for such knowledge include the
following: 1) Where is the user? 2) What is the user activity? 3) Who is nearby? 4)
What is nearby? 5) What devices is the user using? 6) With whom is the user

. talking? 7) Where is the user going to be? and 8) What the user is going to do?

Some limited manifestations of context exist in the prior art. Although they
are simple and rather constant, changes to an application are possible in view of the
person that is using the application. One example is personalization engines
available in some e-commerce sites. In search of better understanding of the target
user for these applications, such personalization engines typically seek limited
information about the user. These can be accumulated across several interactions
the user has made with the engine.

To determine the situation and intent of the user, there remains an unmet

need for methods and systems that collect information about the user, such as the

2-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

user’s location, the user’s role, the user’s responsibilities, the user’s calendar, the
presence of the user, the user’s device, the situation of, for example, the user’s
peers, and the user’s preferences.

As is apparent, there is thus a further, more general need for a user-centric
approach to application development: an approach is needed that incorporates the
aggregate knowledge of the users’ situation and intent, for which a software
application could then optimize the effectiveness of the application. Such an
approach would, among other advantages, enable the system to maximize the
results to fit with each user’s preferences and needs. The usage of context could
vary. Context could be used to present the user with relevant information based on
the current context situation; it could also be used, for example, to choose the
preferred method for communicating with the user.

The major problems preventing developers in the prior art from making
context aware applications readily available include the following:

1) Sensors needed for such methods and systems typically involve one or
more complex systems, distributed over a variety of physical and logical domains.
Sensors generally are not constant in their existence; they may be unavailable or
become intermittently available. Sensors present and access data in proprietary
ways. For example, after developing access to a sensor for a location finding
service, the developer typically cannot re-use it for another system with a different
location finding service.

2) Moditying applications according to sensory information would be
complex, if possible at all. Developers would be required to build complex
analysis into the application in order to use the sensory information. This analysis
has no re-use, as it is performed per application. For example, longitude and
latitude parameters do not allow the developer to determine if the user is at the
office or at a customer site; only after analysis can this information be determined.

3) Modifying the application to match the user’s requirements would entail
an intricate task. While the analysis could be expected to discover much about the

user’s activity, actual application behavior would not be expected to be simple to

WO 02/099597 PCT/US02/18009

10

15

20

25

30

deduce. For example, some users may need sales information after a meeting with
a customer, while others require technical data.

In the prior art, there have been several methods and systems that have
considered the issue of context, but only in a cursory manner.

For example, U.S. Patent No. 5,642,303 to Small. et al. discloses a beacon

based system for use particularly with specific personal digital assistants (PDAs),
such as the Apple® Newton®. Beacons and a sensor attached to the PDA determine
the user location, and, when information, such as event locations, is linked to
particular information, this information may be provided to the user in a useful
manner.

U.S. Patent No. 6,177,905 B1 to Welch provides a location-triggered

reminder method and system for PDA users. With the invention of Welch, the user
is able to associate reminders with particular locations, and, with location sensitive
input, such as global positioning system (GPS) location information linked to the
input, a reminder or other information is generatable for the user upon reaching
each particular location.

U.S. Patent No. 5,664,133 to Malamud et al. provides a computer resource
context information provider. The system facilitates control of resources, such as
printers and servers, by providing context sensitive pop up menus for each

resource. The menus vary by the resource specific environment.

U.S. Patent No. 5,910,799 to Carpenter. et al., discloses a location motion

sensitive user interface. The device of Carpenter, et al., includes an interface

environment that provides and/or prevents access to applications based on the
location of the user (e.g., prevents user access in unsecured locations). As the user
moves, the interface changes.

Pending U.S. Patent Application S.N. 09/825,159 to Abbott, et al., includes

disclosure of methods and devices for modeling and using themes and theme-
related information, representing various types of contextual aspects or situations,
including a wearable computer and inputting and sensing devices used to
determine the user state, the user’s computing device, the surrounding physical

environment, and/or the current cyber-environment.

A-

WO 02/099597 PCT/US02/18009

10

15

20

25

However, none of the prior art discloses or suggests a broadly applicable
interface that is dynamically context sensitive based on a wide variety of user
needs and multiple context inputs. There remains an unmet need to provide
applications aware of the contextual setting of the user (Context Aware
Applications), and methods and systems for implementing and using such

applications.

Related Art
U.S. Patent No. 5,470,233 to Fruchterman, et al.
U.S. Patent No. 5,570,100 to Grube, et al.
U.S. Patent No. 5,642,303 to Small, et al.
U.S. Patent No. 5,664,133 to Malamud, et al.
U.S. Patent No. 5,699,244 to Clark, Jr., et al.

U.S. Patent No. 5,732,074 to Spaur, et al.

U.S. Patent No. 5,790,974 to_Tognazzini

U.S. Patent No. 5,910,799 to Carpenter, et al.
U.S. Patent No. 5,938,721 to Dussell, et al.
U.S. Patent No. 6,040,781 to Murray

U.S. Patent No. 6,052,563 to Macko

U.S. Patent No. 6,078,314 to Ahn

U.S. Patent No. 6,085,148 to Jamison, et al.
U.S. Patent No. 6,133,853 to Obradovich, et al.
U.S. Patent No. 6,148,261 to Obradovich, et al.

U.S. Patent No. 6,163,274 to Lindgren
U.S. Patent No. 6,177,905 to Welch

SUMMARY OF THE INVENTION
The present invention includes a method and system for providing context
information, systems, and actions for a wide range of information technology
platforms and interfaces. In embodiments of the present invention, “context”

includes the aggregate knowledge about a user’s situation and intent, which a

-5-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

software application or other method and/or system can apply, among other
factors, to optimize the effectiveness of the application. Sources of information for
determining Context include static sources, such as user roles, user responsibilities,
and user preferences, as well as dynamic sources, such as the user’s location, user’s
direction of travel, device being used, calendar, the user’s presence or absence at a
location, the user’s flight or other travel information, the application being used,
the network involved, and other impacts on the user, such as determinable impacts
on the user’s location and direction of travel, such as traffic and weather.

Context is one essential factor in improving computing in general, and
mobile computing in particular. Understanding the Context of the user -- business
and personal -- facilitates the creation and deployment of intelligent mobile
applications that are more effective, efficient, and easier to use. The Context
information is usable to optimize both the information content and its presentation
to the user in a manner that reduces the complexity of the human-machine
interaction, while increasing information processing capabilities.

One advantage of the present invention is that it provides application
developers with a development and runtime environment that enables applications
to take into account changes in the settings the user is experiencing. This results in
more streamlined applications, with minimal required user interaction, increasing
the usability and the user-adoption of applications in general, and mobile
applications in particular. These applications are herein referred to as “context-
aware applications.”

An embodiment of the present invention includes tiers of features for
enabling Context awareness. In an embodiment of the present invention, the tiers
include a collection tier, an analysis tier, and an action/effect tier.

The Context Collection Tier provides the developer with simple access to
Context Parameters (Context raw data) by way of sensors. In an embodiment of
the present invention, this tier masks the complexity of collecting Context
Parameters and using sensors, incorporating data availability and how the data are
accessed. Furthermore, new Context Sensors can be created and re-used, as long

as they conform to the defined interface. In one embodiment, two core tasks are

-6-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

included for the Collection Tier: 1) interfacing and collecting information from
various sources and services (e.g., the User’s device); and 2) providing some extent
of intelligence, by mediating between various context sources. In an embodiment
of the present invention, this tier provides a uniform method for accessing Context
Parameters within the Architecture, as well as outside of the Architecture.

The Context Analysis Tier provides the developer with Context
States—meaningful information about the environment the user is experiencing.
One objective of this tier is to “mirror” the settings and environment of the user,
including applications applicable to or accessible by the user, in an analytical way
and make information thereby produced or determined available for applications.
An example Analysis Tier task is combining several context values to generate a
more powerful understanding of the current situation. For instance, knowing the
current location and current time, together with the user’s calendar, the application
is able to determine the user’s current social situation, such as having a meeting,
sitting in a class, or waiting in the airport. In an embodiment of the present
invention, this tier provides a uniform method for accessing Context States within
the Architecture, as well as outside of the Architecture.

The Context Actions/Effects Tier merges context states, user preferences,
and application content to derive the objective and/or inferentially or otherwise
determine the intent of the user, resulting in actions that modify the application.
Actions are then applied, for example, to the presentation, navigation, or the
application logic of an existing application, or even the launch of an external
application. In an embodiment of the present invention, this tier provides a
uniform method for accessing Context Actions/Effects within the Architecture, as
well as outside of the Architecture.

In operation, in order to provide context information and services, as well
as to perform many other functions, some input data is required and the overall
context-related environment needs to be modeled. For example, for a user, the
user’s name, address, and other personal information is useful. In addition, the
relationships between a user and other aspects of their environment, such as what

meetings they are scheduled to attend or who is currently with them, is also

7-

WO 02/099597 PCT/US02/18009

10

15

20

25

valuable in determining a particular user’s situation and intent. In one embodiment
of the present invention, the input data and the various relationships are provided to
a “context engine” for processing. Since information relating to a user and the
user’s environment may reside in various sources (e.g., databases, airline
reservation system, scheduling system), each component of hardware and/or
software required to obtain the necessary information is located and placed in
direct contact with the context engine or via other hardware or software
components linked to the context engine. Each person, place, or thing that is
determined to be useful in deriving contextual information is modeled within the
current invention to form a network of components, each of which is referred to
herein as an “entity.” Entities include, for example, the user, each of the user’s
devices, any network with which the user is interfacing, along with many other
items maintained within the context engine, such as other hardware components,
and other discrete elements, such as each meeting or other event. This information
is provided to the Context Engine via, for example, an interface to the network of
locations for the information.

In embodiments of the present invention, the provision of information to
the context engine is generally referred to as being provided by “sensors.” Sensors
include, for example, sensed data, such as location information received from a
cellular telephone, as well as collected data, such as data obtained from an accessed
database by an interface for the context engine.

Another aspect of the invention that allows interconnection and use of
sensor data and other input is referred to as an “interpreter.” An “interpreter”
transforms, for example, sensed data into useful information for context. For
example, an interpreter may use raw data from a cellular telephone to determine an
address location for the cellular telephone, or for the user, if, for example, another
interpreter interprets the user as having or likely having the cellular telephone in

the uset’s possession.

Context Modeling

WO 02/099597 PCT/US02/18009

10

15

20

25

30

The context engine also maintains information relating to the entities and
the relationships among entities, which may be constantly or periodically updated.
In an embodiment of the present invention, relationships are referred to as “first
class objects” (e.g., these objects are able to have associated features referred to as
“states” and “properties”). “States” are provided for and relate to each entity or to
a relationship among two or more entities.

For example, each of the following illustrates states of objects:

1) “Tim is busy” -- Tim is the entity and busy is a state of Tim;

2) “Tim is scheduled for Flight 1043” -- Tim is an entity, Flight 1043 is an
entity, and a relationship is created between Tim and the Flight; and

3) “Tim is late for Flight 1043” -- Tim is the entity, but the state of “late” is
on the relationship between Tim and the Flight, not on the Tim entity.

The following provide a similar example:

1) “Tim has a 1:00 p.m. meeting”;

2) “Tim has a 2:00 p.m. meeting”;

3) Three entities (Tim, 1:00 p.m. meeting, 2:00 p.m. meeting);

4) Two relationships (Tim to 1:00 p.m. meeting, Tim to 2:00 p.m.
meeting); and

5) “Tim is late for the 1:00 p.m. meeting” -- the relationship between Tim
and the 1:00 p.m. meeting has the state of “late,” not the Tim entity or the 1:00
p.m. meeting entity, because Tim is not late for the 2:00 p.m. meeting, and the 1:00
p-m. meeting is on time.

As exemplified above, three types of “relationships™ exist in the context
engine in an embodiment of the present invention. These relationships include the
following: 1) the relationship of each entity to a state (e.g., Tim is busy); 2) the
relationship that may exist between the two entities (e.g., Tim is scheduled for
Flight 1043); and 3) the relationship of a state to the relationship between two
entities (e.g., Tim is late for Flight 1043).

For the context engine to maintain and provide information or other
services or actions relating to each of these components, a large amount of

information relating to entities, states, and relationships must be identified and be

-9-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

accessible for the context engine. In an embodiment of the present invention, some
state information is obtained via interfacing software connected to each component
in the system, and the state and relationship parameters are used by this interfacing
software or other software that determines state and relationship information.

In the broadest application, the context engine of the present invention
allows use of any set of entities, states, and relationships that may be input. The
context engine is thus a raw engine (something like a “blank slate™) for any such

input entity, state, and relationship.

Context Packs

Another application of an embodiment of the present invention provides
preset groups or sets of entities, states, and relationships (something like a
“template”) that are particularly useful for predetermined applications, such as a
group of workers in corporate applications. These specific implementations of the
present invention are referred to as “context packs.” For example, a context pack
may include as entities for input information, along with appropriate states and
relationships, the following: users; cellular telephones for the users; office
computers for the users; and meetiﬁgs scheduled on a network for the users. Thus,
particular entities, states, and relationships are predefined in context packs.
Another feature of each context pack includes particularly defined sensors and
interpreters for that pack.

Additional advantages and novel features of the invention are set forth in
the attachments to this summary, and in part will become more apparent to those
skilled in the art upon examination of the following or upon learning by practice of

the invention.

BRIEF DESCRIPTION OF THE FIGURES
In the drawings:
FIG. 1 provides a representative block diagram of the Context Pack build
on top of the Context Engine, in accordance with an embodiment of the present

invention;

-10-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

FIG. 2 illustrates factors and considerations involved in determining a
user’s need and intent, in accordance with an embodiment of the present invention;

FIG. 3 shows examples of the usage of context information, in accordance
with embodiments of the present invention;

FIG. 4 illustrates some of the differences between customization,
personalization, and context, as used in accordance with the present invention;

FIG. 5 shows examples of using ‘Static Context’ to determine relevant
content and services/actions, in accordance with an embodiment of the present
invention;

FIG. 6 presents an example of using ‘dynamic context’ factors and
considerations involved therein to determine context and services/actions, in
accordance with an embodiment of the present invention;

FIG. 7 is an example representative diagram of how wired and wireless
portals can leverage the Context information to determine relevancy, in accordance
with an embodiment of the present invention;

FIG. 8 provides a representative block diagram of the general operation of
one embodiment of the present invention that produces context information that is
usable to determine relevant information;

FIG. 9 presents a representative diagram of the Context Architecture,
including three tiers of abstractions to simplify the developers’ work in delivering
Context Aware Applications, in accordance with an embodiment of the present
invention;

FIGs. 10 and 11 present variations of context awareness maps for
determining context aware information and producing context aware applications,
in accordance with embodiments of the present invention;

FIG. 12 illustrates a representative diagram of how, by applying the various
context states, the available information can be filtered into relevant information,
in accordance with an embodiment of the present invention;

FIG. 13 presents an example UseCase Diagram of architecturally

significant use cases, in accordance with an embodiment of the present invention;

-11-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

FIG. 14 shows as Class diagram of a domain model, in accordance with an
embodiment of the present invention;

FIG. 15 is a Collaboration diagram of an example context state domain
model, in accordance with an embodiment of the present invention;

FIG. 16 contains a Class diagram of state hierarchy, in accordance with an
embodiment of the present invention;

FIG. 17 is a Collaboration diagram of relationships of services functions, in
accordance with an embodiment of the present invention;

FIG. 18 presents a Class diagram of entity service functions, in accordance
with an embodiment of the present invention;

FIG. 19 contains a Class diagram of notification service functions, in
accordance with an embodiment of the present invention;

FIG. 20 is a Class diagram of event hierarchy structure, in accordance with
an embodiment of the present invention;

FIG. 21 presents a Class diagram of a JiniBean mode] for use in accordance
with an embodiment of the present invention;

FIG. 22 contains a Statechart diagram of a JiniBean state model for use in
accordance with an embodiment of the present invention;

FIG. 23 is a Class diagram of a SensorBean model for use in accordance
with an embodiment of the present invention;

FIG. 24 provides a components diagram of context engine components, in
accordance with an embodiment of the present invention;

FIG. 25 provides an Activity diagram for generating an example event for
user being late for an appointment, in accordance with an embodiment of the
present invention;

FIG. 26 is a flow diagram of the flow of information to and from the
Context Pack, in accordance with an embodiment of the present invention;

FIG. 27 shows a representative diagram of how the functionality of various
Context Packs can be layered for reuse (e.g., the Workgroup Context Pack utilizes

functionality from the Basic Pack) to handle the information about the user, the

-12-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

user’s appointments, the user’s location, and the appointments location, in
accordance with an embodiment of the present invention;

FIG. 28 is a representative diagram of the high level external interfaces to
the Context Pack system;

FIG. 29 contains a table of actors involved in the process for the diagram
of FIG. 28;

FIG. 30 presents a representative diagram of the overall architectural
structure of an embodiment of the present invention;

FIG. 31 shows a representative diagram of the technology for each
component in the Context Pack for an embodiment of the present invention;

FIG. 32 is a representative block diagram of an example query service
subsystem and its dependencies, in accordance with an embodiment of the present
invention;

FIG. 33 provides a table of summary information relating to the query
service subsystem, in accordance with an embodiment of the present invention;

FIG. 34 is a representative block diagram of the event service feature of the
Context Pack, in accordance with an embodiment of the present invention;

FIG. 35 provides summary information for the ActivitySubscriber feature,
in accordance with an embodiment of the present invention;

FIG. 36 contains a representative flow diagram of a method summary for

Appointment Subscriber, in accordance with an embodiment of the present

invention;

FIG. 37 provides a method summary table for the AvailabilitySubscriber
feature, in accordance with an embodiment of the present invention;

FIG. 38 contains a table of field summary information for the
TimeProximitySubscriber feature, in accordance with an embodiment of the
present invention;

FIG. 39 contains a table of method summary information for the
TimeProximitySubscriber feature, in accordance with an embodiment of the

present invention;

-13-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

FIG. 40 contains a representative block diagram of an interpreter
subsystem, in accordance with an embodiment of the present invention;

FIG. 41 is a representative block diagram of an infrastructure subsystem, in
accordance with an embodiment of the present invention;

FIG. 42 provides a representative block diagram of a sensor subsystem, in
accordance with an embodiment of the present invention;

FIG. 43 presents a table of Topics and Queues for the messaging system for
an embodiment of the present invention;

FIG. 44 presents a diagram of an example Context model used in a Context
Pack, in accordance with an embodiment of the present invention;

FIG. 45 is a representative block diagram of a state model for use in
accordance with an embodiment of the present invention,;

FIG. 46 contains a flow diagram of an example distance proximity event, in
accordance with an embodiment of the present invention;

FIG. 47 presents a flow diagram of an example time proximity event, in
accordance with an embodiment of the present invention;

FIG. 48 is a representative ER diagram showing the database schema for an
example Context Pack, in accordance with an embodiment of the present
invention;

FIG. 49 shows a table of information for use in conjunction with the
database schema of FIG. 48;

FIG. 50 is an example user proximity event activity, in accordance with an
embodiment of the present invention;

FIG. 51 shows an example group proximity query, in accordance with an
embodiment of the present invention;

FIG. 52 contains an example user location updating activity, in accordance
with an embodiment of the present invention;

FIG. 53 is an example flow diagram for handling of sensor specified
location in the Context Pack, in accordance with an embodiment of the present

invention;

-14-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

FIG. 54 shows an example flow diagram for location handling in the event
service, in accordance with an embodiment of the present invention;

FIG. 55 contains an example flow diagram for location handling in the
query service, in accordance with an embodiment of the present invention;

FIG. 56 is a representative block diagram of a runtime view, including
processes, threads, and remote objects, in accordance with an embodiment of the
present invention;

FIG. 57 presents a representative flow diagram of a deployment view,
including JVM nodes with distributed objects model, a distributed objects model,
and mapping of development jars to deployment jars, in accordance with an
embodiment of the present invention; and

FIGs. 58 and 59 present context based information examples for a hand

held device, in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

The present invention includes a method and system for providing context
information, systems, and actions for a wide range of information technology
platforms and interfaces.

One advantage of the present invention is that it provides application
developers with a development and runtime environment that enables applications
to take into account changes in the settings the user is experiencing or the context
of other individuals or machines that are relevant to them. With regard to
machines, for example, the present invention is able to provide context information
to other software programs, such as a portal display, and to provide context
information to other machines, such as by providing an alarm system that
automatically turns itself off when nobody is detected in a building after a certain
hour. Another example is room thermostats that automatically adjust, depending
on the number of people in the room or who is in the room (e.g., a baby). Thus, the
present invention is also usable to optimize situations for users or machines.

These features of the present invention also result in more streamlined

applications, with minimal required user interaction, increasing the usability and

-15-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

the user-adoption of applications in general, and mobile applications in particular.
These applications are herein referred to as “context-aware applications.”

The present invention may be best understood by considering an illustrative
example application, and by then considering various components of the present
invention utilized to meet the features of the illustrated example.

In the illustrative example application, contextually appropriate information
is to be provided to a user who has, for example, a hand-held device, such as a
personal digital assistant (PDA), a cellular telephone, and a desktop PC located at
the user’s home, each of which is associated with the user. Among other functions,
the present invention provides methods and systems for continually or
intermittently transmitting information to and about the user in a manner consistent
with the context of the information provided and the medium by which it is
provided. For example, the present invention may remind the user via the user’s
hand-held device of the approach of a meeting, the reminder being formatted
appropriately for the hand-held device, while a similar reminder provided to the
user at the home computer is formatted quite differently. The present invention
may also automatically provide the user with directions to the meeting based on the
user’s location, which is determined, for example, by locating the user via the
location of the user’s cellular telephone, and by using the location of the meeting,
which is determined, for example, via input from a database containing the meeting
location. The present invention may also determine the likelihood of the user been
late to the meeting, and then inform each of the other meeting participants of the
user’s status in relation to the meeting (e.g., transmit to other users via their PDA’s
the fact that the user will be 5 minutes late).

In order to provide this example context-aware information and services, as
well as to perform many other functions, information relating to the user, such as
the user’s name, address, and other personal information, as well as other user
specific information, such as information in the user’s contacts database, is
provided to a “context engine” feature of the present invention. In addition, each
component of hardware and/or software relating to the user is located and placed in

contact with the context engine or other hardware or software components linked

-16-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

to the context engine. Each element making up the network of components for the
invention is referred to as an “entity.” Entities include, for example, the user, each
of the user’s devices, any network with which the user is interfacing, and other
items maintained within the context engine, such as other hardware components,
and other discrete elements, such as each meeting or other event. This information
is provided to a context engine feature of the present invention, such as by
providing an interface via a network to locations for the information (e.g.,
databases on the user’s PC or a connected server).

In embodiments of the present invention, the provision of information to
the context engine is generally referred to as occurring via “sensors.” Sensors
include, for example, sensed data, such as location information received from a
cellular telephone, as well as collected data, such as data obtained from an accessed
database by an interface for the context engine. Appendix A illustrates some
sensor examples for use in accordance with embodiments of the present invention.

Another aspect of the invention that allows interconnection and use of
sensor data and other input is referred to as an “interpréter.” An “interpreter”
transforms, for example, sensed data into useful information for context. For
example, an interpreter may use raw data from a cellular telephone to determine an
address location for the cellular telephone, or for the user, if, for example, another
interpreter interprets the user as having or likely having the cellular telephone in

the user’s possession.

Context Modeling

The context engine also maintains information relating to the entities and
the relationships among entities, which may be constantly or periodically updated.
In an embodiment of the present invention, relationships are referred to as “first
class objects” (e.g., these objects are able to have associated features referred to as
“states” and “properties”). “States” are provided for and relate to each entity or to
a relationship among two or more entities. '

For example, each of the following illustrates states of objects (see also

FIG. 15 and accompanying text below):

-17-

WO 02/099597 PCT/US02/18009

10

15

20

25

1) “Tim is busy” -- Tim is the entity and busy is a state of Tim;

2) “Tim is scheduled for Flight 1043” -- Tim is an entity, Flight 1043 is an
entity, and a relationship is created between Tim and the Flight; and

3) “Tim is late for Flight 1043 -- Tim is the entity, but the state of “late” is
on the relationship between Tim and the Flight, not on the Tim entity.

The following provide a similar example:

1) “Tim has a 1:00 p.m. meeting”;

2) “Tim has a 2:00 p.m. meeting”;

3) Three entities (Tim, 1:00 p.m. meeting, 2:00 p.m. meeting);

4) Two relationships (Tim to 1:00 p.m. meeting, Tim to 2:00 p.m.
meeting); and

5) “Tim is late for the 1:00 p.m. meeting” -- the relationship between Tim
and the 1:00 p.m. meeting has the state of “late,” not the Tim entity or the 1:00
p-m. meeting entity, because Tim is not late for the 2:00 p.m. meeting, and the 1:00
p.m. meeting is on time.

As exemplified above, three types of “relationships™ exist in the context
engine in an embodiment of the present invention. These relationships include the
following: 1) the relationship of each entity to a state (e.g., Tim is busy); 2) the
relationship that may exist between the two entities (e.g., Tim is scheduled for
Flight 1043); and 3) the relationship of a state to the relationship between two
entities (e.g., Tim is late for Flight 1043).

For the context engine to maintain and provide information or other
services or actions relating to each of these components, a large amount of
information relating to entities, states, and relationships must be identified and be
accessible for the context engine. In an embodiment of the present invention, some
state information is obtained via interfacing software connected to each component
in the system, and the state and relationship parameters are used by this interfacing

software or other software that determines state and relationship information.

Context Packs

-18-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

In the broadest application, the context engine of the present invention
allows use of any set of entities, states, and relationships that may be input. The
context engine is thus a raw engine (something like a “blank slate”) for any such
input entity, state, and relationship.

Another application of an embodiment of the present invention, uses preset
groups or sets of entities, states, and relationships (something like a “template™)
that are particularly useful for predetermined applications, such as a group of
workers in corporate applications. These specific implementations of the present
invention are referred to as “context packs,” for which an example implementation
is described further with respect to FIG. 1. FIG. 1 provides a representative block
diagram of the Context Pack build on top of the Context Engine, in accordance
with an embodiment of the present invention. As shown in FIG. 1, the Context
Packs are usable by various applications to establish context aware applications.

These example Context Packs and their associated description are as
follows:

1) Intelligent Synch/Prefetch - at device cradle sync, on demand, and upon
detecting return to coverage, selectively sync/pre-fetch information that is relevant
based upon the user’s schedule, location and activity;

2) Workgroup - provides access to information about peer
availability/presence, location, skills, and on-hand inventory;

3) Travel - provides alerts and menu options based upon time, schedule,
location, and commercial content services (e.g., flight, traffic, weather);

4) Application - provides context options based on the specific usage of an
application by sensing the application (including field specific context) and
providing access to relevant menu options (across other applications and services)
and triggering new filtering parameters for Alerts;

5) Presentation - optimizes content delivery based on user activity (e.g.,
driving), location (e.g., customer site), device, and network characteristics;

6) Communications - manages the preferred communication options based

on presence, work status and preferences of user;

-19-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

7) Location/Proximity Services - Identifies physical locations, services, or
devices based on user’s location, commercial content services (e.g., maps,
directions, locator guides), and schedule; and

8) Workflow - provides menu options based on specific alert generation
requirements and application (workflow) context.

These example Context Packs may include as entities for input information,
along with appropriate states and relationships, the following: users; cellular
telephones for the users; office computers for the users; and meetings scheduled on
a network for the users. Thus, particular entities, states, and relationships are
predefined in context packs for use by the users. Another feature of each context
pack includes particularly defined sensors and interpreters for that pack.

Various features of the present invention will now be discussed in greater

detail.

A. What is Context?

Context is one essential factor in improving computer applications in
general, and mobile applications in particular. Understanding both the context of
the user and any other object, such as mobile devices, facilitates the creation and
deployment of intelligent mobile applications that are more effective, efficient, and
easier to use. The present invention enables applications to use context to optimize
both the information content and its presentation to the user in a manner that
reduces the complexity of the human-machine interaction, while increasing
information processing capabilities.

Before defining context, as used herein, it is important to define in more
particularity the concept of “context-aware” applications, as used herein. When
one looks at the dictionary definition of context, one generally finds a broad
definition, such as the following: 1) the part of a text or statement that surrounds a
particular word or passage and determines its meaning; or 2) the circumstances in
which an event occurs; a setting.

Some academic definitions are as broad as the dictionary definition:

“Context is any information that can be used to characterize the situation of an

20-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and application
themselves.” See, e.g., Dey, A.K,, et al., Toward a Better Understanding of
Context and Context-Awareness, (1999), which is hereby incorporated by
reference.

FIG. 2 presents examples of factors relating to context, in accordance with
an embodiment of the present invention. These factors include both static factors
and dynamic factors. Context, as used herein, can be generally described as the
aggregate knowledge about the user’s situation and intent, which a software
application or other aspect of the method and system of the present invention
applies to optimize the effectiveness of the application.

FIG. 3 shows an overview of factors involved in using context for methods
and systems, in accordance with embodiments of the present invention. As
indicated, context can be applied, among other factors, to determine relevant
information, relevant actions/services, and relevant methods of delivery.

In addition, simpler manifestations of context exist: Customization and
Personalization. In the case of Customization, the user is able to specify
presentation preferences according to specific interests. In the case of
Personalization, the application changes its behavior based on the user attributes,
usage habits, and personal preferences.

While Personalization and Customization are common in many web
applications in the prior art, a more detailed discussion of their place within
Context, in accordance with the present invention, is appropriate to a full
understanding of the present invention. Customization occurs when the user
provides explicit information to the application, prior to application launch. This
general application of Customization falls within a well-explored domain, in which
Customization is recognized as an important ingredient in web applications.
Personalization is a more complex entity that includes both explicit and implicit
information regarding the user, usually on an on-going basis (e.g., accumulating
historical user data). Personalization is targeted at learning more about an

anonymous user (e.g., in e-commerce) in search of relevant information. In most

21-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

cases, the first interaction with the user occurs with complete ignorance of the
personalization engine. As more user interactions take place, the personalization
engine modifies the information sent to the user. This information can be stored
for future interactions.

FIG. 4 illustrates some of the differences between customization,
personalization, and context, as used in accordance with the present invention. The
X Axis represents time, and the application-launch marks the time the user starts
the application. The Y Axis represents the modifications the application makes in
view of new context information (e.g., customization, personalization, and mobile
context). Note that, in the case of context, the application is actually in constant
change, adapting itself after the application was launched. In regard to
customization and personalization, the application is relatively constant once
launched. Another way to look at this is to consider an application that has been
tailored to a particular user—this tailoring (customization and personalization) can
be performed off-line before the application is launched. Imagine, as an example,
the John Doe Sales Force Automation: customization and personalization would
include an application that is tailored to John Doe, including his personal
preferences and details. However, because it does not include context, this
example application is not be able to consider changes in John Doe’s environment,
as these changes are not constant.

Personalization and customization are part of the context aware application
concept; however, the context concept is wider and contains, in addition to the
explicit and implicit information determined by the system as Customization and
Personalization, information about the user’s environment, such as the location of
the user, the location of co-workers, the device type used, and the network
bandwidth available.

As indicated above, FIG. 2 illustrates factors and considerations involved in
determining a user’s context, in accordance with an embodiment of the present
invention. FIG. 5 shows examples of using ‘Static Context’ to determine relevant

content and services/actions, in accordance with an embodiment of the present

22-

WO 02/099597 PCT/US02/18009

10

15

20

25

invention. The user’s dynamic context can be applied to determine relevancy, as
described in FIG. 6.

Applications that use dynamic Context sources in addition static Context
and user’s preferences, increase significantly the ability to infer the user’s need and
intent, thereby allowing increase in the accuracy of relevancy. (See also FIG. 12
and accompanying text, below).

FIG. 7 is an example representative diagram of how portals can leverage
Context information to better determine relevancy. As shown in FIG. 7, from
available content and services/actions, an enterprise portal (as described further
below), using application of context, can provide, for example, more relevant
information, and the same is true for a wireless portal, such as a hand-held device
(e.g., PDA or wireless telephon;). Where the importance of presenting only the
most relevant information is critical, the provision of more relevant information
can be achieved by applying the user’s context, as described in accordance with the
present invention.

FIG. 8 provides a representative block diagram of the general operation of
one embodiment of the present invention that produces relevant information that
can be uséd by other applications to present, for example, relevant information and

services.

Complexities Involved in Developing Context-Aware Applications

Developing Context Aware Applications is not an easy task. While the
benefit is clear, the technology that supports context awareness and the complexity
of the environment causes Context Aware Application development to be complex
and cumbersome. In addition, no current architecture supports the reuse of
complex applications from one environment to another. This has caused Context
Aware Applications to be tailored to specific needs and environments.

Specifically, Context Awareness relies on the ability of Context Sensors to
collect user and environment data (i.e., Context Parameters). The highly complex

process of Context Awareness has no well-defined interface to access the Context

23-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

Parameters or the Sensors, and as a result exposes the developer to the high
complexity of gathering this information.

The complexity does not end there; sensors tend to produce a large amount
of data, frequently requiring further analysis to reveal the user’s environment and
actions. Again, this complexity is not masked from the developer, who must
analyze the data and turn it into useful information.

Context Aware Applications are able to modify their behavior according to
the information derived by sensors and the analysis. This is also not a simple
task—knowing what the user is doing and understanding the experienced
environment does not always easily translate into an effect that modifies the
behavior of the application.

To summarize, three major problems prevent developers from making
Context Aware Applications readily available:

1) Sensors are a complex system, distributed over physical and logical
domains. Sensors are not constant in their existence; they may be unavailable or
become intermittently available. Sensors present and access data in a proprietary
way. For example, after developing access to a sensor for a location finding
service, the developer cannot re-use it for another system with a different location
finding service.

2) Moditying applications according to sensory information is complex, if
possible at all. Developers must build complex analysis into the application in
order to use the Sensory information. This analysis has no re-use as it is performed
per application. For example, longitude and latitude parameters do not allow the
developer to know if the user is at the office or at a customer site; only after
analysis can this be achieved.

3) Modifying the application to match the user’s requirements is an
intricate task. While the analysis discovers much about the user’s activity, actual
application behavior is not simple to deduce. For example, some users may need
sales information after a meeting with a customer while others require technical

data.

24-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

The present invention addresses the above complexities by presenting a

process and architecture for the development of a context aware system.

B. Process for Producing Context Aware Application

In accordance with these parameters, a general overview of a process for
producing a context aware application will now be described, in accordance with
embodiments of the present invention. In order to present a user’s context (or
entity’s context), information must be gathered about the user’s environment and
activities. This information is distributed and cuts across many constituents (e.g.,
location, weather, traffic, network bandwidth). Analysis is made of the collected
information in order to deduce a credible representation of the user’s context (e.g.,
activity and environment). Actions are then applied to the application. These
actions are designed to be in line with the user’s intent — to create the total effect of
easier and more accurate use of the application.

One feature of the present invention provides developers with a
development and runtime environment that enables the application to recognize
changes in the user’s context. This feature results in more streamlined
applications, with minimal required user interaction, which increases the usability
and the user-adoption of applications.

Context Architecture. As discussed in greater detail below with regard to

Context Engine Architecture below, the Context Architecture of the present
invention provides developers with a complete set of services, enabling the
development and deployment of context aware applications. The Architecture
masks the complexity required to deliver context aware applications by providing
context abstraction layers to the application developers. In embodiments of the
present invention, as shown in FIG. 9, the Context Architecture includes three tiers
of abstractions to simplify the developers’ work in delivering Context Aware
Applications. This enables more rapid context aware application development and
delivery of re-usable context aware application components.

While the underlying architecture of the present invention provides a very

flexible structure to support many of the requirements of Context Aware

-25-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

Applications, most developers should be relieved from comprehending and
developing according to that underlying architecture. The Context development
paradigm of the present invention adopts the notion of supporting the division of
labor between various types of developers.

As shown in FIG. 9, the three tiers utilized in accordance with
embodiments of the present invention include the following.

The Context Collection Tier, in an embodiment of the present invention,
provides the developer with simple access to Context Parameters by way of
sensors. In an embodiment of the present invention, this tier masks the complexity
of collecting Context Parameters and using sensors, incorporating data availability
and how the data are accessed. Furthermore, new Context Sensors can be created
and re-used, as long as they conform to the defined interface. In one embodiment,
two core tasks are included for the Collection Tier: 1) interfacing and collecting
information from various sources and services (e.g., for use by the User’s device);
and 2) providing some extent of intelligence, by mediating between various context
sources. In an embodiment of the present invention, this tier provides a uniform
method for accessing Context Parameters within the Architecture, as well as
outside of the Architecture.

The Context Analysis Tier, in an embodiment of the present invention,
provides the developer with Context States—meaningful information about the
environment the user is experiencing. One objective of this tier is to “mirror” the
settings and environment of the user in an analytical way and make it available for
applications. An example Analysis Tier task is combining several context values
to generate a more powerful understanding of the current situation. For instance,
knowing the current location and current time, together with the user’s calendar,
the application is able to determine the user’s current social situation, such as
having a meeting, sitting in a class, or waiting in the airport. In an embodiment of
the present invention, this tier provides a uniform method for accessing Context
States within the Architecture, as well as outside of the Architecture.

The Context Actions/Effects Tier, in an embodiment of the present

invention, merges context states, user preferences, and application content to derive

26-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

the objective of the user, resulting in actions that modify the application. Actions
are then applied, for example, to the presentation, navigation, or the application
logic of an existing application or even the launch of an external application. In an
embodiment of the present invention, this tier provides a uniform method for
accessing Context Actions/Effects within the Architecture, as well as outside of the
Architecture.

Various other aspects of the features of context interpretation and analysis,
which are designed to address these complex issues, in accordance with an
embodiment of the present invention, will now be discussed in greater detail.

Mediation - In embodiments of the present invention, Context is sensed
from different sensors, which may conflict with each other. For example, location
can be sensed from several different sensors, such as the following: a geographical
positioning system (GPS), Schedule (location of user’s meeting), telephone carrier,
and others (e.g., manual, the user using a desktop may allow deduction of the
user’s location — home, office). Logical features of the present invention, referred
to in one embodiment as “Interpreters,” are used with embodiments of the present
invention to determine what is the highest probability for the ‘User Location State’
by, for example, analyzing the various location-related context sources.

Abstraction — In embodiments of the present invention, high-level states are
determined from low-level parameters, usually by probing different sensory
information and/or other information and determining high-level states by applying
certain logic. For example, a high-level Context State can be ‘User’s Activity,’
which is deduced by analyzing low-level parameters, such as Schedule, Location,
and Presence.

Prediction — This feature, in accordance with embodiments of the present
invention, predicts the User’s ‘Future Context.” The system of the present
invention attempts to determine what the User’s (or other Entity’s) Context will be
in the future, such as “Late for a meeting.” By predicating future situations, the
system is able to alert the user or act otherwise upon the predicted situation. For
instance, the system is able to alert the user that the user should leave for a meeting

by a certain time to avoid being late. In another example application, the System

27-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

predicates the future location of the user and alerts the user of traffic delays,
provides directions, etc. One of the sources used for prediction is stored and/or
analyzed information relating to the user’s past context, referred to in embodiments
of the present invention as the “Context History,” as discussed further with regard
to Past, Present and Future Context Information below.

The following discussion provides examples of how embodiments of the
present invention address use of Past, Present and Future Context Information.
One interesting way to look at Context-Information is to divide it into these three
context-information types (Past, Present and Future Context Information), as
follows:

Present Context Information — Information that describes the User’s (or
other Entity’s) Present Context State.

Past Context Information (also referred to herein as “Context History”) —

Information that describes the Entity’s Past Context State. To obtain more
accurate results, the Interpreters of the present invention use ‘Past-Context-
Information’ (History). For example, upon receiving conflicting information from
two location sensors having the same accuracy, if the User is usually at a certain
location at that time and day, the Interpreters determine that there is a better
probability that the usual location is the right location. In addition, Past Context
Information is substantially usable in the predictive use of the Context Engine.

Future Context Information — Information that describes what the system

predicts will be the User’s (or Entity’s) Future State.

These features of the present invention are also usable with another aspect
of the present invention, referred to in one embodiment as the user’s “Privacy
Policy” (Control). With this feature, users may elect to determine the type of
Context Information the System is allowed to collect about them using the Past,
Present, and Future definitions. For example, Users may set the Privacy Policy
such that only Present Information may be collected by the System (and after 5
minutes this information is erased from the system, if not updated); or the system

may be allowed to predict the user’s future State (which typically is much more

28-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

invasive). Similarly, for Past Context-Information, users are able to select an
option to ‘turn-off” collection of context history information.

An embodiment of the present invention includes the paradigm of
separation of Data Acquisition, Business Logic, and Presentation from the world of
enterprise applications, and inclusion of these features in a Context Aware
Application, as follows: 1) Data Acquisition is analogous to the Collection tier; 2)
Business Logic corresponds to the Analysis Tier and the interpreters that derive
Context States; and 3) Presentation is on par with Context Action/Effect. In an
embodiment of the present invention, the development paradigm and architecture
is the recommended approach for logically partitioning and constructing scalable
applications required of business—critical deployments. One application model
includes a clear separation of Context Driven Actioﬁs/Effects, Context Analysis,
and Context Information Collection, which, among other advantages, promotes
code reusability and provides significant cost savings and faster deployment over
more traditional approaches.

FIGs. 10 and 11 present variations of context awareness maps for
determining context aware information and producing context aware applications,
in accordance with embodiments of the present invention. Various features of the
present invention, as shown in FIGs. 10 and 11, include the following.

Context Actions/Effects - Context Actions/Effects, in an embodiment of the

present invention, are the manifestation of the user environment and activity
adaptation in the application. These Context Actions/Effects are executable at the
presentation, logic, or navigation level.

As aforementioned, the usage of context varies in accordance with various
features of the present invention. Following are several examples for how Context
can be used in various paradigms, in accordance with embodiments of the present
invention.

Context Aware Map Component. In this case the well-known map

presentation includes more than one option for delivery of information to the user,
and these features may be considered to provide additional dimensions for

presentation made possible by the architecture of the present invention. The map is

29.

WO 02/099597 PCT/US02/18009

10

15

20

235

30

representable, for example, as a graphical image, a set of directions to the next
destination, or as a set of directions that are being read aloud. The following
scenario illustrates how this map component functions, in accordance with
embodiments of the present invention.

When the user is viewing, the next destination on the map is represented in
the most intuitive way — graphical representation. When, for example, the user
enters a vehicle and motion is detected, the graphical representation is replaced
with directions with a large font size. As velocity increases, the map is represented

as a set of the directions, but those are read aloud before any turn is needed.

Context Aware Navigation. Another manifestation of Context Awareness,
in embodiments of the present invention, is the continual modification of the
Navigational Model of the application. For example, an employee may be using a
workflow engine with an approval cycle. As the employee is in the car with the
boss, for example, the application does not require the employee to contact the
boss for approval, as the boss’s presence is sensed to be in the same car with the
employee.

Yet another manifestation of context awareness includes modification of
the application navigation. For example, if the user is presented with an option list
that is part of the application, each option leads the user to a specific part of the
application. Those options may be made irrelevant by the context state of the user
(e.g., when the user is off work); some of the options may not be needed, as other
options may be made possible instead.

Using Context to Determine Relevancy. Context Information can be very
beneficial in systems that aim to provide users with Relevant Information,
Relevant Actions, or Services and Relevant Method of Delivery. By applying the
User’s situation and Intent, the system of the present invention is able to infer what
the user is interested in, or in some cases what the user is predicted to be interested
in, and provide the user with relevant information. FIG. 12 illustrates how, by
applying the various context states, the available information can be filtered into

relevant information.

-30-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

Context and Portals. Another factor involved in application of the present

invention is the concept of enterprise portals. Portals are an example of a domain
in which Context is usable to provide the User with Relevant Information and
Services, in accordance with an embodiment of the present invention. Context can
be highly used in Portals. For example, in existing applications, Portals can
provide Relevant Information and Services based on static information, such as
Identity or Role, or based on personalization. Portals facilitate people to process
integration by exposing only those parts of multiple applications that users need in
a consolidated interface. Among other advantages, portals make business
applications more accessible to a wider audience of users by simplifying the
number and type of application interfaces and the amount of training and
maintenance needed to use them. Factors such as personalization, aggregation, and
integration are important to portal concepts, and use of portals is generally
appropriate when the capability to individually customize or personalize the user
interface is important.

Additional advantages that result from use of portals include the following:
1) increased employee efficiency and productivity, since information is
personalized and easier to find; employees can use fewer applications or sources to
find information and complete tasks; 2) improved decision-making due to better
access to more relevant information; 3) improved relationships with employees,
partners, and customers via personalization and aggregation of information and
services; 4) improved corporate communications to employees and among
employees; and 5) increased revenue due to partners having better access to up-to-
date product information and services.

In accordance with embodiments of the present invention, Context can be
highly used in Portals. In existing applications, Portals can provide Relevant
Information and Services based on static information, such as Identity or Role, or
based on personalization. By applying the User’s context, in accordance with
embodiments of the present invention, Portals are able to provide the user with
even more relevant information and services. In particular, in an embodiment of

the present invention, Portals used with Context provide the User with information

-31-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

and services that are relevant to the current situation of the user. Also note that
such usage of context with portals represents situation context influencing another
software application (e.g., the portal software) to affect the user experience in any
environment in which the portal is accessed (e.g., mobile, desktop, or otherwise).

Context and Alert Engines. Another domain Context is usable with
embodiments of the present invention is with a feature referred to as Alert Engines.
Context can be applied to provide the user with relevant alerts, according to
context states, or in other words, according to the situation and intent of the user,
including, for example, information obtained regarding relevant method of
Delivery, such as send Alert to the desktop PC if the user is currently active at the
desktop, or send Alert to PDA or Telephone if the user is currently remote and
available (e.g., based on the User situation and intent).

Context and Voice Engines. Another domain in which Context Information
is usable with embodiments of the present invention is with a feature referred to as
Voice Engines. Applying Context can improve the User Interaction with voice
systems, for example, by reducing the amount of explicit information required
from the user. For example, instead of using specific commands, such as “Show
Directions from 7010 Gentle Shade Rd., Columbia, MD to 9101 Guilford Rd.,
Columbia, MD,” where the likelihood for error is high, the user could reuse
patterns, such as: “Show Directions to next Meeting,” in which the System
interprets such information as the user’s intention by applying the User’s Context
States, the user current location, or the user’s next meeting details. By using these
short patterns, the likelihood for errors is significantly reduced, and the user is able
to use short sentences/commands.

Context and Data Entry. In embodiments of the present invention, Context

can be used to mask the complexity of entering data into devices, such as PDAs,
telephones, énd PCs. The System is able to pre-populate input fields or prompt the
user for input based on such information as the User’s Context (e.g., the user’s
situation and intent). For example, consider a service portion of the present
invention that provides directions, and that prompts for the origin address and the

destination address. To provide such information using a cellular telephone is

-32-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

almost an impossible task. By using the User’s context states, the System can pre-
populate the screen with the origin information (e.g., the User’s current location
state), and what is likely to be the destination (e.g., the user’s next event), and
simply prompt the user to confirm this information. By applying the User’s
context states, the system is able to reduce significantly the interaction between the
system and the user, while providing the user with the same results.

Context and Synchronization. Current mobile devices are low in memory,
and furthermore, syncing over a wireless network can be almost an impossible
mission, due, for example, to latency issues. To address this problem,
embodiments of the present invention can be used by sync platforms to reduce the
amount of information to be synced, thus reducing the sync time and volume.
Using the context information sync platform can reduce the amount of information,
enhance deduction of what is the relevant information, and increase the likelihood
of determining of what is of interest to the user. To be able to determine what is
relevant, or what is the user is interested in, the system applies the User’s Context,
including static and dynamic context, as well as Preferences — the user’s pre-
defined preferences; the user’s preferences can, in addition, define how to apply the
Static and Dynamic Context.

Context and Menus. Menus are included in common user interfaces used

with almost any computer based device. A typical Menu includes a list of actions
that a user can perform. Most of the Menus today are static (e.g., static list of
actions), or based on the application state. In an embodiment of the present
invention, Context can be used to provide users with more relevant actions in
Menus. In this embodiment, actions are associated with the User’s situation and
intent (e.g., the User’s context). For example, a user can be provided with

different actions for the same menu based on current location.

Context and Machine-to-Machine. While many of the examples discussed
above involve influencing the interaction of a system with a user, in accordance
with embodiments of the present invention, context is also usable to influence the
interaction among devices (e.g., machine to machine interaction or between

applications and machines). For example, knowing the situation that an office

-33-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

building is empty of people after a certain time can trigger the light system to shut
down and the security system to be activated. Knowing that the number of people
in a particular room of specified capacity can trigger a thermostat to adjust the
temperature downward or trigger a capacity warning event if the room capacity is
exceeded. Thus, context is usable to improve the effectiveness of devices in a
similar fashion to improving the effectiveness of an actual user.

In an embodiment of the present invention, the Context Framework
provides a flexible architecture, allowing for various implementations for use in
building context aware applications. This framework supports the collection,
analysis, and action tiers.

The Architecture and development paradigm discussed above may be
implemented in many ways with many technologies, in accordance with the
present invention. Regardless of the specific technologies selected, some
assumption can be made with regard the characteristics of the implementation,
such as the following: 1) Distributed Computing Environment (e.g., J2EE, Jini,
NET -- the use of industry standard XML interfaces for communication with third
party application and context sources); 2) a flexible Query language to satisfy
context awareness logic; and 3) a synchronous and asynchronous operation.

Building Framework Context-Components and employing the framework
services, in accordance with embodiments of the present invention, will now be
described in greater detail. The tier for these framework related features facilitates
the collection of Context Parameters. Collection of Context Parameters may be a
very complex task: the information is gathered from distributed machines, and,
among other things, Context Parameters are diverse and the availability of these
parameters is volatile. This tier masks the complexity of Context Parameters, their
availability, and how they are being accessed. For example, in embodiments of the
present invention, the developer is able to create new Context Sensors and re-use
existing ones, as long as they conform to the framework-defined interface. The
Analysis Tier provides an abstraction layer to the Developer by analyzing Context

Parameters and presenting the result in a uniform way.

-34-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

Low-level Context sensory information is difficult to address. To mask the
complexity of low-level Context Parameters from the application developer, in an
embodiment of the present invention, the Context Framework provides the
Analysis tier, which enables the Developer to define multiple layers of abstractions
above low-level Context Parameters. A Context State represents the result of the
analysis on various Context Parameters and/or Context States. For example, the
application developer is not likely to find the user’s longitude/latitude useful,;
however, the fact that the user is at a customer site is very useful. Furthermore, the
application may need to know if the user is driving, is late, etc.

The Analysis Tier of an embodiment of the present invention also enables
the developer to re-use scenarios for various applications. When creating a new
Context State, the developer may use Context Parameters, as well as other Context
States.

In embodiments of the present invention, Context States provide various
levels of abstraction. Some Context States provide higher abstraction than other
Context States. For example, the location context state may be defined as follows:
Location in the form of longitude/latitude and “at office” / “at home” / “at
customer.” Longitude/Latitude may be regarded as a lower abstraction than “at
office” / “at home” / “at customer.” In an embodiment of the present invention, the
Developer indicates the level of abstraction of each Context State.

In an embodiment of the present invention, the Action Tier combines
context states to derive the objective of the user, resulting in actions that modify
the application. Actions are applied to the presentation, navigation, or the
application logic of an existing application, or even to launch another application.

The Context Framework collects the Context information (e.g., Context
States and Context Parameters) relative to an Entity. An Entity is a person, place,
or any other object considered relevant to the interaction between a user and an
application. In an embodiment of the present invention, the developer is able to
obtain a list of existing Entities in the Context Framework.

In an embodiment of the present invention, the Developer is able to obtain a

list of all available Context States in the Framework.

-35-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

In an embodiment of the present invention, the Developer is able to obtain a
list of all available Context States of a certain Entity, such as, for example, all
Context States collected on the entity ‘Sharon Agam.” In an embodiment of the
present invention, the Developer is able to explicitly obtain the Context State of an
Entity.

In an embodiment of the present invention, the Subscribe feature enables
the application to be notified when change occurs; this may be used in lieu of the
feature of embodiments of the present invention referred to as “Get Context State.”
In an embodiment of the present invention, this feature further masks the
complexity of dealing with the often occurring changes of Context States. An
embodiment of the present invention includes a feature referred to as “Get the
Attributes,” which obtains the attributes of an Entity’s Context State, enabling the
developer to obtain the attributes of a context state of an Entity.

In an embodiment of the present invention, the Developer is able to access

Context Parameters; usually this is used to create new Context States.

Description of Context Engine Architecture

The Context Engine Architecture, in accordance with embodiments of the
present invention, will now be discussed in greater detail.

FIG. 13 presents an example UseCase Diagram of architecturally
significant use cases, in accordance with an embodiment of the present invention,
which includes the following features,.referred to herein as “actors” and

“usecases.”

Actor Context Consumer. This actor includes any component that requires
either asynchronous notification of Context State change events or synchronous
access to Context State Producers. In an embodiment of the present invention, the
components of this actor are located either inside or outside of the system
boundaries of the Mobile Context Engine (e.g., at a Wireless Application Client or
an Interpreter, respectively).

Actor Context Producer. This actor is any component that generates or

modifies a Context State. Typically, in embodiments of the present invention, this

-36-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

actor asynchronously generates Context State change events due to changes to the
application’s environment, although this actor can also have synchronous request
operations to enable point in time access to the Context States produced. In
embodiments of the present invention, some of these producers interface with
external services, which asynchronously or synchronously provide the raw data, or
parameters, that are transformed into a Context State.

UseCase Add Context States to Catalog. In embodiments of the present
invention, the Context Framework provides a catalog service that contains a list of
all Context States (e.g., schedule, location, and motion). Upon initialization of the
system of the present invention, Context Producers registers the Context States that
they can generate with the catalog service. The service ensures that the list of
states is unique.

UseCase Publish Context State Change. In embodiments of the present
invention, upon generation of or update to a Context State, Context Producers
deposits Context-State into a repository for persistence. A notification service is
informed of the change event and is passed the associated Context State, resulting
in the broadcast of the change event to all requesting Consumers.

UseCase Register for Context State Change. In embodiments of the present

invention, the Context Framework enables Context Consumers to request and
receive notification upon the creation/update of specific Context States. The
Consumers are able to access well-known services that provide the notification
service. The Context Framework provides standard interfaces to register for and to
process such Context related events.

UseCase Request Context State. In embodiments of the present invention,

Context Consumers are able to synchronously request an update to a specific
Context State from a Context Producer.

UseCase Retrieve Context States from Catalog. In embodiments of the
present invention, Context Consumers are able to retrieve a list of valid states
within the Context Engine. The states have an abstraction level associated with
them, and the Consumer can request the states of a specific abstraction level, range

of abstraction levels, or set of abstraction levels.

-37-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

UseCase Update Context State. In embodiments of the present invention,
the interface of Context Producers enables Consumers to request the update of a
specific Context State.

FIGs. 14-24 contain logical block diagrams of various components of the
present invention, reflecting, for example, software, such as Java programming,
used to perform functions for these components.

FIG. 14 shows as Class diagram of a domain model, in accordance with an
embodiment of the present invention. As shown in FIG. 14, the context domain
model includes three main classes: Entity, State, and Relationship. This structure
provides the flexibility necessary to represent a complex environment and its state,
which is collectively referred to as ‘Context State.’

FIG. 15 is a Collaboration diagram of an example context state domain
model, in accordance with an embodiment of the present invention. As shown in
FIG. 15, when modeling a context state, in acéordance with an embodiment of the
present invention, three types of relationships are represented to accurately depict a
context state, as follows: 1) Entity has a state (e.g., Tim is Busy); 2) the
relationship between two entities has a state (e.g., Tim is late for Flight 1043); and
3) an entity’s state effects another entity that has a relationship to that entity (e.g.,
Tim’s mobile telephone is at home). These three types of relationships can be
combined in infinite ways to accurately represent the context state of an
environment.

FIG. 16 contains a Class diagram of state hierarchy, in accordance with an
embodiment of the present invention.

FIG. 17 is a Collaboration diagram of relationships of services functions, in
accordance with an embodiment of the present invention. As shown in FIG. 17,
the relationships between the components of the Context Engine at runtime are
presented. Objects in shaded boxes represent components that are outside the
scope of the Context Engine framework. The framework provides the
specifications to allow plugin of these components into the engine.

FIG. 18 presents a Class diagram of entity service functions, in accordance

with an embodiment of the present invention.

-38-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

FIG. 19 contains a Class diagram of notification service functions, in
accordance with an embodiment of the present invention.

FIG. 20 is a Class diagram of event hierarchy structure, in accordance with
an embodiment of the present invention.

FIG. 21 presents a Class diagram of a JiniBean model for use in accordance
with an embodiment of the present invention.

FIG. 22 contains a Statechart diagram of a JiniBean state model for use in
accordance with an embodiment of the present invention.

FIG. 23 is a Class diagram of a SensorBean model for use in accordance
with an embodiment of the present invention.

FIG. 24 provides a components diagram of context engine components, in
accordance with an embodiment of the present invention.

Appendix B contains additional details of various program functions, in

accordance with embodiments of the present invention.

Description of Example Context Pack Architecture

A more detailed description of an example Context Pack Architecture (also
referred to herein as “Context Pack™) will now be provided, in accordance with an
embodiment of the present invention.

The Context Pack provides a framework to develop a context-aware
application. In an embodiment of the present invention, the Context Pack provides
access to a user’s context that is affected by location, schedule, and state, and also
allows management of the effect of the context of other users on the user’s context.
In an embodiment of the present invention, the Context Server provides the
underlying Context framework, and the user’s context is accessed through queries
and events. The data needed to determine context is provided by external data
sources through sensors. The Context Pack provides a framework to plug in
various data sources into the sensors. The interpreters interpret the data and
changes to a context are reported through subscribed events.

In an example application of the Context Pack, a user is subscribed to a late

for appointment event. FIG. 25 provides an Activity diagram for generating an

-390

WO 02/099597 PCT/US02/18009

10

15

20

25

30

example event for the user being late for an appointment, in accordance with an
embodiment of the present invention. In FIG. 25, the following activities occur:
1) the user subscribes to the Late for Appointment event with the Context Pack; 2)
the Context Pack registers with the Context Server to be notified of changes to the
state of the relationship between the user and all appointments; 3) whenever the
user location changes, Context Pack is notified, and the system updates the user
location on the Context Server; 4) when an appointment is added, the Context Pack
updates the information with the Context Server; 5) the Context Pack starts
monitoring the appointment by obtaining the estimated time of arrival (ETA) and
comparing the ETA with the appointment start time; 6) if the ETA is after
appointment start time, Context Pack updates the state of the relationship between
the user and that appointment to “Late”; and 7) the Context Server sends a
notification to the Context Pack, which then forwards it to the user.

The example shown in FIG. 25 describes an example of how Context Pack
uses external data sources and the Context server to determine the user’s context
and notify the user of any changes. The example is very simplistic in nature. In
actual implementation, in accordance with an embodiment of the present invention,
many more rules are applied before monitoring of appointments starts.

The example shown in FIG. 25 assumes that the user and an appointment
entity are created in the Context Server. The Context Server provides a very basic
framework to manage a context. The Context Pack isolates the complexities of the
Context Server and provides a framework to build context-aware applications,
based on users, location, schedule, traffic, and proximity, and the Context Pack
determines availability and activity based the context.

In an embodiment of the present invention, the developer does not need to
know the complicated graph representation of various entities, relationships, and
states. Information is presented to the user in a very simplified manner. The
Context Pack defines a Context Model that allows representation of a User’s
context related to location, schedule, traffic, and proximity.

In an embodiment of the present invention, one system purpose of the

Context Pack is to sense change in user related data, interpret the data using user’s

-40-

WO 02/099597 PCT/US02/18009

10

15

20

25

context, and present the data to the user on demand or by notification. FIG. 26 isa
flow diagram of the flow of information to and from the Context Pack, in
accordance with an embodiment of the present invention.

As shown in FIG. 26, data from various sources enters the Context Server
through the Context Pack. The Client Applications then use the Context Pack to
query data or receive notification of the data changes. The User Management
Systems provide information about the users whose context is being managed and
determined. The Device Inventory Systems provide information about the devices
that the user owns (e.g., PDA, GPS, Cellular Telephone). The PIM Systems
provide information about a user’s schedule and optionally also provide additional
information about the user. The PIM systems optionally also provide information
about the Workgroups to which the user belongs.

In an embodiment of the present invention, Location Services provide a
user’s location information. The location information is generally tied to the
location of the device that the user owns. Traffic and Route services provide
directions and traffic information. These services provide the best possible route to
a given destination and also estimate the travel time for the route. The service may
also provide reports of incidents on the route. Geocoding services provide
conversion between latitude/longitude location values to addresses or zip code.
These services also provide reverse geocoding conversions. |

In an embodiment of the present invention, Spatial Services provide
functions for calculating proximity between two locations. Yellow Pages provide
business locations (e.g., Restaurants, Shops). In an embodiment of the present
invention, users are also able to provide information manually about their activity,
availability, and location. The Client Applications, including the Alert Engine,
query or subscribe for contextual data using the Context Pack. The Context Pack
uses the Context Server services to obtain the required information and passes that

instruction on to the client applications.

Overview of Context Pack

41-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

In an embodiment of the present invention, a Context Pack includes a set of
subsystems that integrate with the Context Server to provide contextual
information about particular data associated with the user. The basic data needed
for determining a user’s context includes the user’s location and schedule. The
location and schedule sensors provide data to the Context Server. The Interpreters
interpret that data to determine the user’s context. The Query and Event service
provide access to the interpreter context. A different set of sensors, interpreters,
model, query, and event services are provided for each set of functionality, be it,
for example, location, schedule, ETA, workgroup, or availability. Each set of
sensors, interpreters, query and event services forms a context pack. FIG. 27
shows a representative diagram of the Context Pack Layout, in accordance with an
embodiment of the present invention.

As shown in FIG. 27, in an embodiment of the present invention, the Basic
Pack handles the information about the user, the user’s appointments, the user’s
location, and the appointments location. The Workgroup Pack handles information
about users in a workgroup. Route (ETA) Pack handles route and direction
information related to user traveling to an appointment or any other location.
Proximity deals with information about the distance between users and location.
Proximity also uses the Route (ETA) pack to determine time proximity. Activity
Pack determines the user’s and workgroup’s activity. Availability pack determines
user’s and workgroup’s availability.

FIG. 28 is a representative diagram of the high level external interfaces to
the Context Pack system. The actors involved in the process for the diagram of
FIG. 28 are provided in the table shown in FIG. 29.

The logical view of the static structure of the architecture in terms of its
components, their interconnections, and the interfaces and operations offered by
the components, in accordance with an embodiment of the present invention, will
now be presented.

FIG. 30 presents a representative diagram of the overall architectural
structure of an embodiment of the present invention. FIG. 30 shows a high level

view of the Context Pack and its dependency to other systems and subsystems.

42~

WO 02/099597 PCT/US02/18009

10

15

20

25

30

Each of the subsystems is explained in detail further below. Some important
features of the architecture of an embodiment of the present invention include the
following. In an embodiment of the present ihvention, the architecture is J2EE
based. This architecture provides scalability and other advantages, as well as
allowing portability across various J2EE application servers

In an embodiment of the present invention, JMS is used for communication
among the sensors, infrastructure, and interpreters. Users are completely isolated
from the Context Engine and model. The client application uses the query and the
event service to access Context Information. Sensors use standard data format and
JMS to update data into the context model.

FIG. 31 shows a representative diagram of the technology for each
component in the Context Pack for an embodiment of the present invention.

In an embodiment of the present invention, the Client Application queries
Context Pack data using the Query Service. The Query Services components are
divided by the data that each query supports, as follows: 1) CoreQueryBean
supports queries on the User, the user’s location and appointment schedule (e.g.,
obtain a user’s current location, obtain a user’s current appointment, obtain a user’s
today’s schedule); 2) ActivtyQueryBean supports queries on user’s activity (e.g., is
a user in a meeting?); 3) WorkgroupQueryBean supports queries on a workgroup
(e.g., find all user’s in Sales who are attending a meeting at a particular location);
4) ProximityQueryBean supports queries on a user’s proximity to other users in the
system or to a location (e.g., the location could be a location of an appointment or a
business); and 5) AvailabilityQueryBean supports queries on user’s availability;
availability optionally is manually set by the user or is determined by the user’s
current activity (e.g., do not notify the user via telephone if the user is unavailable
or in a meeting).

In an embodiment of the present invention, the QueryService depends on
the Interpreters to interpret user’s context (e.g., user’s location could be provided
by various devices). The Interpreter decides which location is the most accurate,
or, if, for example, location is not available, uses the user’s schedule for

determining the user’s most accurate location. This location is then used by the

43-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

Query Service to return a user’s information. The QueryService also obtains
proximity, activity, and availability information from the interpreter. For simple
information, such as current appointment, the QueryService directly uses the
Context Server to retrieve the information. The QueryService also uses external
services, such as Geocoding Services, to convert location data (e.g., position is
converted to an address).

FIG. 32 is a representative block diagram of an example query service
subsystem and its dependencies, in accordance with an embodiment of the present
invention. FIG. 33 provides a table of summary information relating to the query
service subsystem, in accordance with an embodiment of the present invention.
More detailed description of various components of the interface is provided in
Appendix C. In an embodiment of the present invention, the interface is used by
Client Applications to Query Context data.

In an embodiment of the present invention, client applications subscribe to
receive Context Pack events using an event service. The Client application
implements a ContextPackListener for each type of event and registers the Listener
with the Event Service. The Event Service invokes a callback method on the
Listener when an event occurs, thus notifying the client of the event. The Event
Service components, in accordance with an embodiment of the present invention,
include the following: 1) AppointmentSubscriber -- allows Client Applications to
subscribe to Appointment changes (e.g., subscribe to a Late for Appointment event
for a user); the application is notified when the user is late for any appointment; 2)
ProximitySubscriber -- allows Client Applications to subscribe to proximity
events; applications can subscribe to be notified when a user is located within or
outside an area of a specified radius; 3) AvailabilitySubscriber -- allows Client
Applications to subscribe to changes to User’s availability (e.g., notify the
application when a user is available for a meeting); 4) ActivitySubscriber -- allows
Client Applications to subscribe to changes to User’s activity (e.g., notify the
application when the user is in a meeting).

In an embodiment of the present invention, the EventService uses the

Context Servers Notification service to register for Context Events and converts

-44.

WO 02/099597 PCT/US02/18009

10

15

20

25

30

the events to appropriate notification callbacks to the Client Applications. A
subscription by an application is converted to an equivalent registration on the
Context Server Model (e.g., when an application subscribes to a Late for
Appointment Event for a User, the Event Service registers changes to the state of
relationship between a user and all appointments). In an embodiment of the
present invention, the Event Service is notified when any change in the state
occurs. The Event Service then gathers all the information related to the event
(e.g., for appointment, it could be the appointment details, the traffic information
for the route to the appointment.) The Event Service also depends on the
Geocoding Service to convert position data.

FIG. 34 is a representative block diagram of the event service feature of the
Context Pack, in accordance with an embodiment of the present invention.
Detailed description of the Event Service interfaces is provided below.

Various aspects of several event service features of the present invention
are also described in greater detail in Appendix C.

The Interpreter Subsystem of an embodiment of the present invention will
now be described in greater detail. In general, the interpreter subsystem interprets
data that is entered into the Context Pack system. The interpreter, in accordance
with an embodiment of the present invention, performs the following functions: 1)
interprets data on demand, when QueryService requests information or the
interpreter registers for changes (e.g., QueryService requests user’s location); and
2) registers for changes to context data and interprets and updates context data
when the data changes (e.g., Interpreter registers for changes to a user’s location);
when the user’s location changes, the interpreter calculates the user’s proximity to
aregistered location and then updates the proximity state.

In an embodiment of the present invention, the interpreter subsystem
supports the following interpreters (note: the architecture provides for extensibility
and new interpreters can be easily added):

Location Interpreter interprets user location. A user’s location can be

provided by more than one device (e.g., a GPS receiver, cellular telephone). The

location interpreter determines the most accurate location, based on location rules.

-45-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

If device location is unavailable, the interpreter uses the user’s schedule to
approximately determine user’s location.

Appointment Interpreter interprets Late for Appointment state. The
interpreter determines if the user is late for appointment by calculating the ETA at
the appointment location, based on user’s current location and the traffic
conditions, and determines if the user can reach the appointment in time.

Route Interpreter interprets route information by monitoring route data and
incident reports and applies them to appropriate entities.

Proximity Interpreter interprets proximity information. This interpreter
registers to listen for user location changes and then recalculates the proximity
state of a user with a specified location.

In an embodiment of the present invention, the interpreter subsystem uses
the EntityBeanWrapper to communicate with the Context Server. Interpreter
Bridge acts as a bridge between the interpreter and Notification service. FIG. 40
contains a representative block diagram of an interpreter subsystem, in accordance
with an embodiment of the present invention.

In an embodiment of the present invention, the infrastructure subsystem
provides the infrastructure for the following functions: 1) communicate with the
Context Server; 2) schedule data requests; 3) receive and request data from the
sensor; 4) register and receive events from the Context Server.

In an embodiment of the present invention, the infrastructure subsystem
includes the following components.

Controller controls the data in the context pack. Controller manages the
lifecycle of the data in the context subsystem (e.g., when a user is added into the
system, the controller requests the sensors to provide appointment information for
the user). The Interpreters register with the controller to receive notification on
changes to context data.

Scheduler schedules jobs (e.g., the scheduler is used by the controller to
schedule user location requests).

ModelUpdater receives data from the sensors, converts the data to Context

Information, and updates the context server using the EntityServiceWrapper.

46-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

In an embodiment of the present invention, all the infrastructure
components communicate with the sensors and interpreters through JMS Queues.

FIG. 41 is a representative block diagram of an infrastructure subsystem, in
accordance with an embodiment of the present invention.

In an embodiment of the present invention, the sensor subsystem inputs
data into the Context Pack. Sensors write data in specified format into the
ModelUpdaterQueue. These sensors can include, for example, device data sources,
such as cellular telephone locating devices or GPS devices, or other data sources,
such as repositories of data (e.g., databases on PCs, minicomputers,
microcomputers, or mainframe computers). The server, as well as other portions of
the system, may include or be located on processors, such as PCs, minicomputers,
microcomputers, or mainframe computers. The sensors and server and/or other
components may be coupled, using, for example, wired, wireless, or fiber optic
links, and may be coupled via networks, such as the Internet or telephone
networks.

In an embodiment of the present invention, Sensors are of three types: 1)
synchronous sensors provide data when requested; 2) passive asynchronous
sensors periodically push data into the Context Pack system; 3) active
asynchronous sensors periodically push data into the Context Pack system. The
Context Pack can also control the asynchronous dafa by subscribing and
unsubscribing to the data.

FIG. 42 provides a representative block diagram of a sensor subsystem, in
accordance with an embodiment of the present invention. As shown in FIG. 42,
synchronous sensors listen to their respective topics for data requests from the
controller. To update data, the sensors convert the data to the defined Context
Pack format and send the data to the Model Updater Queue.

In an embodiment of the present invention, the Sync Location Sensor
provides location information on request. Appointment sensor provides
appointment location on request. A Route Sensor provides route information on

request. An Async Location sensor pushes location data into the context pack

47-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

periodically or when the a user’s location is updated. A User/Device sensor
provides user and user device information on to the Context Pack.

In an embodiment of the present invention, sensors provide data in the form
of XML. The Context Pack defines the XML DTD for location, appointment,
route, and traffic information.

In an embodiment of the present invention, the Messaging System (Data
Bus) is a JMS based system. The Messaging System acts as the conduit for data
transfer between the sensors and interpreters to the Context Pack data ﬁlodel. The
asynchronous nature of the messaging system allows the Context Pack to manage
data handling without blocking or slowing down the clients that generate the data.
The messaging system of an embodiment of the present invention includes the
Topics and Queues shown in the table contained in FIG. 43.

In an embodiment of the present invention, a spatial service provides spatial
functions, which allow efficient storage of location information, and provides
useful APIs to perform proximity and other spatial operations.

In an embodiment of the present invention, a geocoding service provides
conversion of position (e.g., latitude, longitude) location data to one or more
addresses, and vice versa.

FIG. 44 presents a diagram of an example Context model used in a Context
Pack, in accordance with an embodiment of the present invention. The context
model is the representation of the context pack data on the Context Server. The
state model describes the hierarchy of the states used in the context model.

FIG. 45 is a representative block diagram of a state model for use in
accordance with an embodiment of the present invention.

FIG. 46 contains a flow diagram of an example distance proximity event, in
accordance with an embodiment of the present invention. The example of FIG. 46
shows how the proximity of 5 miles for the separation of userl, user2, and user3 is
handled.

FIG. 47 presents a flow diagram of an example time proximity event, in

accordance with an embodiment of the present invention. The example of FIG. 47

-48-

WO 02/099597 PCT/US02/18009

10

15

20

25

30

shows how the proximity of 15 minutes for the separation of user1, user2, and
user3 is handled.

FIG. 48 is a representative ER diagram showing the database or other
repository schema for an example Context Pack, in accordance with an
embodiment of the present invention. FIG. 49 shows a table of information for use
in conjunction with the database schema of FIG. 48.

FIGs. 50-52 present flow diagrams of example context events, in
accordance with embodiments of the present invention. FIG. 50 is an example user
proximity event activity, in accordance with an embodiment of the present
invention. FIG. 51 shows an example group proximity query, in accordance with
an embodiment of the present invention. FIG. 52 contains an example user
location updating activity, in accordance with an embodiment of the present
invention.

FIGs. 53-54 present flow diagrams of example rule applications for
location events, in accordance with embodiments of the present invention. FIG. 53
is an examplé flow diagram for handling of sensor specified location in the Context
Pack, in accordance with an embodiment of the present invention. FIG. 54 shows
an example flow diagram for location handling in the event service, in accordance
with an embodiment of the present invention. FIG. 55 contains an example flow
diagram for location handling in the query service, in accordance with an
embodiment of the present invention.

FIG. 56 is a representative block diagram of a runtime view, including
processes, threads, and remote objects, in accordance with an embodiment of the
present invention.

FIG. 57 presents a representative flow diagram of a deployment view,
including JVM nodes for a distributed objects model, a distributed objects model,
and mapping of development jars to deployment jars, in accordance with an
embodiment of the present invention.

The Context Pack can be deployed in many different ways, as it confirms to
the J2EE 1.2 specification. The diagram shown in FIG. 57 displays one of the

configurations. A simple configuration would be to bundle all the Enterprise Java

-49-

WO 02/099597 PCT/US02/18009

10

15

20

Beans into one .ear file and deploy it to a J2EE server. A cluster of J2EE Servers
can provide Load Balancing and fail over.

It is thus clear that, in embodiments of the present invention, the
architecture pfovides a clean interface to the user to query and subscribe to
contextual data. Among other advantages, the architecture hides the developer
from the underlying complexities of understanding context and presents the
information in a simple data format. Extension points are provided so that
developers can add new interpreters as needed, and sensors are completely isolated
from the system.

In one embodiment of the present invention, the architecture uses the well-
defined and popular J2EE framework. This provides a familiar and well-known
technology as the basis for Context Aware application development. As the code
conforms to J2EE 1.2 specifications, Context Aware applications can be developed
and deployed on any of the many application servers that confirm to the J2EE 1.2
specification.

FIGs. 58 and 59 present context based information examples for a hand
held device, in accordance with an embodiment of the present invention. In
particular, in the example shown in FIGs. 58 and 59, a comparison is presented
between a portal (FIG. 58) and a portal leveraging context information to
determine relevant information for tﬁe user (FIG. 59).

Example embodiments of the present invention have now been described in
accordance with the above advantages. It will be appreciated that these examples
are merely illustrative of the invention. Many variations and modifications will be

apparent to those skilled in the art.

-50-

WO 02/099597

10

15

20

25

Appendix A

PCT/US02/18009

[tem

|Description

User Profile

ser Profile aggregates the
ersonal information that is
vailable on the user.

fPersonal Profile

Home address, office
location, Email address,
vailable mobile devices for
he user

WRole

Sales person, Analyst,
anager

Workgroup

INorth America Sales,
Engineering

Preferences

JPreferences are where the
user stores his specific
preferences e.g., use large
ifonts etc.

[Presentational

|Presentational specifies
preferences that manipulate
the layout of the information
presented to the user
myahoo.com type
customization).

[nformational

[nformational specifies the
preferences that manipulte
the data that is given to the
user (do not show my stock
quotes at all).

Platform

Platform is where
information about the device
is extracted and stored.

JHost
Characteristics

bout the device are extracted

his is where the information
nd stored.

|Device type

e.g., Palm 11T

0S

e.g., Palm OS v3.5

CPU

e.g., DragonBall

Host Available
Resources

ICPU Load

e.g., CPU load is 78%

{Memory

e.g., Memory usages is 67%

Power (Battery, powerline)

e.g., power line is in use, e.g.,
10 minutes left on battery

{nput properties

.g., touch screen

Output properties

e.g., color screen

Presentation

e.g., HTML browser

IAvailable Applications

e.g., A Client is installed

Context Sensors

e.g., User heart rate sensor is
available

-51-

WO 02/099597 PCT/US02/18009

[tem [Description

Network INetwork extracts and stores
the characteristics of the
network.

Network QoS Current QoS profile of the
network
Bandwidth
Latency
5 More QoS params.
{Network Cost Cost of the various features
of the network. E.g., each
lert message is $.25
WNetwork Coverage !? representation of the areas
or which there is wireless
data coverage.

Spatial Spatial stores the information
regarding location and
physical positioning of the
user.

10 [Position
Long/Lat
Street/City/State/Zip/Country
Elevation e.g., 10,000 ft.
Velocity e.g., 45 MPH
15 Orientation e.g., Northwest (315
degrees)

Temporal Stores the information

regarding time.
Year,Month,Date
Time of Day
20 Time Zone
Season
Moon State
25 Environmental Extracts and stores the
information regarding the
physical environment the
user is experiencing.
Weather e.g., rain, e.g., fog, e.g.,
Snow
Air Quality e.g., polluted
|Light e.g., 40% light
30 Presence Eresence makes available the
urrent constituents that are

5.

WO 02/099597

PCT/US02/18009

[tem

[Description

present. The constituents are
defined in a user or a
company profile.

Constituents’
[Presence

.g., similar to an
pplication such as Yahoo

Messenger (Yifat is online)

Proximate
Constituents

[n addition to presence, the
proximity of constituents is
stored here.

Accessible
Constituents

E.g., Freetime. The
accessible user may be busy
or not.

-53.-

WO 02/099597

10

15

PCT/US02/18009

Item |Description

Proximate is is where available

Resources esources are

iscovered/stored for the use
f the application. E.g.,
Printers, screens.

PIM Personal Information
Manager entries are extracted
and stored.

Schedule
Tasks
Contacts
|Reminders

Route %‘his parameter is responsible

[nformation or providing the time it will

ake to reach the next
destination (usually specified
in the PIM schedule).
ime to Next
Destination
Physiological

Blood Pressure

|Heart rate

IMuscle Activity

-54-

WO 02/099597 PCT/US02/18009

Appendix B

@)
2
I
17
17

: BeanException

package: net.unwex.platform.activation.bean
Direct Known Subclasses: FatalException, UnavailableException
5 public abstract class BeanException

Extends: java.lang.RuntimeException
Defines an abstract runtime exception.

Class: FatalException
package: net.unwex.platform.activation.bean
10 public class FatalException
Extends: net.unwex.platform.activation.bean.BeanException
Defines an exception that a bean throws to indicate that it is permanently
unavailable and must be destroyed.
When a bean is permanently unavailable and needs to be destroyed,
15 something is severely wrong with the bean and no administrative action can be
taken to correct it. A bean should log the error and any other details necessary to

prevent a similar situation from reoccurring.

Class: UnavailableException

package: net.unwex.platform.activation.bean
20 public class UnavailableException

Extends: net.unwex.platform.activation.bean.BeanException

Defines an exception that a bean throws to indicate that it is permanently or
temporarily unavailable.
When a bean is permanently unavailable, something is wrong with the

25 bean, and it cannot operate until some action is taken. For example, the bean might

-55-

WO 02/099597 PCT/US02/18009

be configured incorrectly. A bean should log both the error and the corrective
action that is needed.
A bean is temporarily unavailable if it cannot operate momentarily due to
some system-wide problem. For example, a third-tier server might not be
5 accessible, or there may be insufficient memory or disk storage to operate. A

system administrator may need to take corrective action.

Interface: JiniBean
package: net.unwex.platform.activation.bean.jini

public interface JiniBean

10 Interface: JiniBeanAdmin
package: net.unwex.platform.activation.bean.jini

public interface JiniBeanAdmin

Interface: JiniBeanContainer
package: net.unwex.platform.activation.bean.jini

15 public interface JiniBeanContainer

Interface: Entity
package: net.unwex.platform.context

public interface Entity

The Entity class represents any person, place, or thing that the context

20 engine monitors for state changes.

Class: EntityKey
package: net.unwex.platform.context
public final class EntityKey

Implements: java.io.Serializable

-56-

WO 02/099597 PCT/US02/18009

10

15

20

This class uniquely identifies an Entity

Interface: EntityService
package: net.unwex.platform.context

public interface EntityService

This is a JINI service that is the front-end to the Context Engine’s
persistence mechanism for Entities, Relationships, and State. It can be accessed by
clients via a remote interface for the purpose of CRUD. Some of the significant
functions of this service are the passing of events to the Notification Service and

the handling of rollbacks for aborted transaction based updates.

Class: EnumerationState
package: net.unwex.platform.context
public abstract class EnumerationState

Extends: net.unwex.platform.context.SingleValueState

This class represents a State that has a finite set of defined state values.
Interface: Lease

package: net.unwex.platform.context

public interface Lease

A lease object that determines the life cycle of an object in the entity

service.

Interface: Relationship

package: net.unwex.platform.context

public interface Relationship

-57-

WO 02/099597 PCT/US02/18009

10

15

20

25

The Relationship interface represents an association between two Entities.
Just like in the real world, the relationship between entities can have states. For
example, the statement “John is late for Flight 1043” shows that the two entities,
John and Flight 1043, have a relationship. In this example, the State ‘late’ would
be on the Relationship between John and Flight 1043. Relationships are either a
parent/child association between two entities or merely a familiarity between the
two. In addition, a Relationship can be of one or several types. The type of
Relationship aids in identifying how two entities are associated (e.g., a User is

scheduled for a Meeting).

Class: SingleValueState

package: net.unwex.platform.context
Direct Known Subclasses: EnumerationState
public abstract class SingleValueState

Extends: net.unwex.platform.context.State

This class represents a State that has a singular state value that has infinite

possible values.

Class: State

package: net.unwex.platform.context
Direct Known Subclasses: SingleValueState
public abstract class State

Implements: java.io.Serializable

This class provides the contextual status information regarding an Entity or
a Relationship between two Entities. The State only has one owner and is
accessible through the owner’s getState() methods, which return an Iterator. The
State can be removed from its owner via the Iterator’s remove() method, which

will throw an UnsupportedOperationException if the State’s owner is not locked.

-58-

WO 02/099597 PCT/US02/18009

10

15

20

Class: CatalogEntry
package: net.unwex.platform.context.catalog

public class CatalogEntry

Class: CatalogEntryLease
package: net.unwex.platform.context.catalog

public class CatalogEntryLease

Interface: CatalogService
package: net.unwex.platform.context.catalog

public interface CatalogService

CatalogService provides a central service for tracking the context states that
are being published by the Context Engine. Each component that generates
context states is responsible for registering the states it is tracking with this service.
CatalogService may be used by administrators to determine which states are “live”
in the Context Engine or might be used by clients to determine which states might

be available before registering for state notification.

Class: EntityEvent
package: net.unwex.platform.context.event
public class EntityEvent

Extends: net.unwex.platform.context.event.Event

EntityEvent provides the event information associated with an Entity that is

either created, changed or destroyed.

Class: Event
package: net.unwex.platform.context.event
Direct Known Subclasses: EntityEvent, RelationshipEvent,
25 StateChangeEvent, StateEvent

-59-

WO 02/099597 PCT/US02/18009

10

15

20

25

public class Event

Implements: java.io.Serializable

Interface: NotificationListener
package: net.unwex.platform.context.event
public interface NotificationListener

Extends: java.rmi.Remote, java.io.Serializable

This remote interface is implemented by any context-aware client that
wishes to receive notification of events from the Context Engine. The client passes
a reference to the object that implements NotificationListener to the
NotificationService, along with a description of the type of events it wishes to

receive. NotificationListener represents the Observer role in the Observer pattern.

Interface: NotificationService
package: net.unwex.platform.context.event

public interface NotificationService

NotificationService is the central event registration service for the Context
Engine. It is called by event producers (such as the EntityService) to make clients
aware of changes in the domain model, and by observers in order to register to
receive notification of such events.

This service, combined with the EntityService and NotificationListeners,
represents a Mediator pattern implementation, in which the NotificationService

acts as a ChangeManager.

Class: RegistrationPath
package: net.unwex.platform.context.event
public class RegistrationPath

Implements: java.io.Serializable

-60-

WO 02/099597 PCT/US02/18009

10

15

20

25

A representation of the chain of association between a root Entity or
Relationship (that may represent a particular concrete object or a type template)
and templates representing other objects in the model.

' A Relationship or Entity is modeled by a RelationshipElement or an
EntityElement that represents either a key (concrete) or a set of types (template).

RegistrationPaths are used when registering a listener for events. In order
to be more specific about which types of sub-elements we are willing to receive
events from, we add those element types to the path. Listeners are registered on the
“generalized state” of a context object. That is, registration on a context object is
tantamount to registration on all of the Entities, Relationships and their States that
are reachable from that object by the matching strategy in use by the
ContextMatcher. Typically, a path used for Registration will consist of a concrete
root element (although the root may be a template) and one or more additional
templates. There is no utility in specifying more than one concrete element (the

root) in this type of path.

Examples:

Entity id=“Mike” (all context relationships and states owned by Mike)

Entity id="Meeting1234”

State type="“on_time” (is meeting on time?)

Entity id="Meeting1234”
Relationship type="attendee”

State type="“on_time” (are all attendees on time?)

Entity id="“Meeting1234”
Relationship type="“attendee”
Entity type="person”

State type="location” (current location of all attendees)

-61-

WO 02/099597 PCT/US02/18009

RegistrationPaths can also be used when returning navigational information
about the source of an Event to a registered listener during notification. Typically,
this is not the same path as the path that was registered. The registered path may
be a template, whereas the path sent during notification is concrete.

5 Path elements alternate between Entities (people, places, things) and
Relationships (links between a source Entity and a target Entity), and may
terminate with a State. Entities and Relationships can have State (hold State object
references). Since State objects do not refer to other objects, they are the leaves of
the context tree structure. If a State object is contained in a RegistrationPath, it

10 must be the final object in the path.

If the root element is a RelationshipElement, the path can only contain an

additional StateElement template. If the first element is an EntityElement, it can

contain additional alternating RelationshipElement and EntityElement templates.

Class: RelationshipEvent
15 package: net.unwex.platform.context.event
public class RelationshipEvent

Extends: net.unwex.platform.context.event.Event

RelationshipEvent provides the event information associated with a

Relationship that is either created, changed or destroyed.

20 Class: StateChangeEvent
package: net.unwex.platform.context.event
public class StateChangeEvent

Extends: net.unwex.platform.context.event.Event
Interface: Interpreter

25 package: net.unwex.platform.context.interpreter

public interface Interpreter

-62-

WO 02/099597 PCT/US02/18009

10

15

20

The Interpreter interface defines methods that clients use to interact with
Interpreter services. The InterpreterClientProxy implements this interface. This
interface provides methods for retrieving context state information from the

Interpreter, for example.

Interface: InterpreterBean
package: net.unwex.platform.context.interpreter

public interface InterpreterBean

InterpreterBean extends both ContextBean and Interpreter interfaces and
defines additional methods required by the InterpreterContainer to manage the life-
cycle of a interpreter bean. Also, the InterpreterServerProxy intercepts client
method invocations on the interpreter and redirects those calls to the interpreter

bean via this interface.

Interface: InterpreterBeanAdmin
package: net.unwex.platform.context.interpreter

public interface InterpreterBeanAdmin

InterpreterBeanAdmin extends the ContextBeanAdmin interface and
provides additional administrative methods supported by interpreter beans.
Different types of interpreter beans require an admin interface that extends
InterpreterBeanAdmin. For example, a location interpreter bean may allow an

administrator to configure which users the interpreter is monitoring.

Interface: InterpreterContainer
package: net.unwex.platform.context.interpreter

public interface InterpreterContainer

-63-

WO 02/099597 PCT/US02/18009

InterpreterContainer extends the Container interface and defines additional
methods that a InterpreterBean (which runs inside the container) require of its

container.

Interface: Sensor
5 package: net.unwex.platform.context.sensor

public interface Sensor

The Sensor interface defines methods that clients use to interact with Sensor

services.

Interface: SensorBean
10 package: net.unwex.platform.context.sensor

public interface SensorBean

Interface: SensorBeanAdmin
package: net.unwex.platform.context.sensor

public interface SensorBeanAdmin

15 SensorBeanAdmin provides administrative methods supported by sensor
beans. Different types of sensor beans require an admin interface that extends
SensorBeanAdmin. For example, a location sensor bean may allow an

administrator to configure which users the sensor is monitoring.

Interface: SensorContainer
20 package: net.unwex.platform.context.sensor

public interface SensorContainer

-64-

WO 02/099597 PCT/US02/18009

Subsystem Detail for Context Engine Components

Subsystem: CatalogServer
Dependency Links
to Subsystem ContextCore
5 Contained Elements
Component CatalogServer.jar

Stereotype: executable

Subsystem: Container
Dependency Links
10 to Subsystem ContextCore
Contained Elements
Component Container-dl.jar
Stereotype: downloadable
Component Container.jar

15 Stereotype: library

Subsystem: ContextCore
Contained Elements
Component ContextCore.jar
Stereotype: library
20
Subsystem: EntityServer
Dependency Links

to Subsystem ContextCore

-65-

WO 02/099597 PCT/US02/18009

Contained Elements
Component EntityServer-dl.jar
Stereotype: downloadable
Component EntityServer.jar

5 Stereotype: executable

Subsystem: InterpreterContainer
Dependency Links
to Subsystem ContextCore
to Subsystem Container
10 Contained Elements
Component InterpreterServer.jar

Stereotype: executable

Subsystem: NotificationServer
Dependency Links
15 to Subsystem ContextCore
Contained Elements
Component NotificationServer.jar

Stereotype: executable

Subsystem: SensorContainer
20 Dependency Links
to Subsystem ContextCore
to Subsystem Container

Contained Elements

-66-

WO 02/099597 PCT/US02/18009

Component SensorServer.jar

Stereotype: executable

-67-

WO 02/099597 PCT/US02/18009

10

15

20

Appendix C

Abbreviations for Context Pack Architecture

CCP Core Context Pack (supports location and schedule only)
CP Context Pack

PIM Personal Information Manager (Exchange, Lotus)

ETA Estimated Time of Arrival

Query Interfaces

Interface: ActivityQuery
Method Summary
public String:

findActivityForUser(String userID, ActivityTemplate
activityTemplate)

Find a user’s activity specified by the Activity template
public User[]:

findUsersByActivity (UserTemplate userTemplate,
ActivityTemplate activityTemplate)

Find all users who are/will perform the activity specified by the

ActivityTemplate

Method Detail
findActivityForUser

public: String findActivityForUser(String userID, ActivityTemplate
activityTemplate)

-68-

WO 02/099597 PCT/US02/18009

Find a user’s activity specified by the Activity template
Parameter doc:

userID the user’s Id

activityTemplate the Activity Template
5 Return doc:

the Activity

findUsersByActivity

public User[]: findUsersByActivity(UserTemplate userTemplate,
ActivityTemplate activityTemplate)

10 Find all users who are/will perform the activity specified by the
ActivityTemplate

Parameter doc:

userTemplate the user template

activityTemplate the Activity Template
15 Return doc:

an array of Users

Interface: Ap;;ointmentQuery
Field Summary
public final static int: ALL_USERS
20 All Users must be attendees of each appointment
public final static int: ANY USER

Any of the specified user may be an attendee of each appointment

Method Summary

-69-

WO 02/099597 PCT/US02/18009

public Appointment[]: findAppointments (UserTemplate userTemplate,

AppointmentTemplate appointmentTemplate, int userCondition)

Find all appointments for the users specified by the user template

and filter the appointments based on the appointment template.

5 public User[]: findAttendees(AppointmentTemplate appointmentTemplate,

int attendance)

Find all attendees for the appointments specified by the template.

Method Summary
public Appointment[]: findCurrentAppointment(String userID)
10 Find the current appointment for the user
public Appointment[]: findNextAppointment(String userld)
Find the next appointment for the user
public Appointment[]: findPreviousAppointment(String userID)

Find the previous appointment for the user

15 Field Detail
ALL_USERS
public final static int ALL._USERS =0
All Users must be attendees of each appointment
ANY_USER
20 public final static int ANY USER =1

Any of the specified users may be an attendee of each appointment

Method Detail

find Appointments

-70-

WO 02/099597 PCT/US02/18009

public Appointment[] find Appointments(UserTemplate userTemplate,

AppointmentTemplate appointmentTemplate, int userCondition)

Find all appointments for the users specified by the user template
and filter the appointments based on the appointment template. The operation
5 specifies an additional condition where any or all users are attendees of an

appointment.
Parameter doc:
userTemplate the user template

appointmentTemplate the appointment template
10 userCondition ALL, USER or ANY USER

Return doc:

An array of appointments

find Attendees

public User[] findAttendees(AppointmentTemplate appointmentTemplate,

15 int attendance)
Find all attendees for the appointments specified by the template.
Parameter doc:

appointmentTemplate the Appointment Template
attendance ANY or appointment or ALL appointments

20 Return doc:

An array of Users

findCurrentAppointment
public Appointment[] findCurrentAppointment(String userID)
Find the current appointment for the user

25 Parameter doc:

-71-

WO 02/099597 PCT/US02/18009

userld the Id of the user
Return doc:

A list of appointments (Could be overlapping appointments)

findNextAppointment
5 public Appointment[] findNextAppointment(String userId)
Find the next appointment for the user
Parameter doc:
userld the Id of the user
Return doc:

10 A list of appointments (Could be overlapping appointments)

findPreviousAppointment
public Appointment[] findPreviousAppointment(String userID)
Find the previous appointment for the user
Parameter doc:
15 userld the Id of the user
Return doc:

A list of appointments (Could be overlapping appointments)

Interface: AvailabilityQuery

Method Summary

20 public User[]: findAvailableUsers(UserTemplate userTemplate,
AvailabilityTemplate availabilityTemplate, Calendar time)

Find all users who satisfy the availability criteria.

-72-

WO 02/099597 PCT/US02/18009

10

15

20

25

Method Detail
findAvailableUsers

public User[] findAvailableUsers(UserTemplate userTemplate,
AvailabilityTemplate availabilityTemplate, Calendar time)

Find all users who satisfy the availability criteria. The availability

may be sometime in the future
Parameter doc:

time the time for which availability is queried. If null, the
query applies to the current time.

userTemplate Filter criteria for the Users. If null then all
users who satisfy the availability criteria are returned.

availabilityTemplate the availability criteria for selection
Return doc:

An array of Users

Interface: ProximityQuery
Method Summary
public float: findDistanceFrom (String userID, Location location)
Find the distance in meters between the user and a specified location

public User[]: findUsersWithinDistanceFromLocation (Location location,

UserTemplate users, long distance)
Finds all the users within a specified distance of a location

public User[]: findUsersWithinDistanceFromUser (String userID,

UserTemplate users, long distance)

Finds all the users within a specified distance of a user

Method Detail

73-

WO 02/099597 PCT/US02/18009

findDistanceFrom
public float findDistanceFrom (String userID, Location location)
Find the distance in meters between the user and a specified location
Parameter doc:

5 userID the user

location the specified location
Return doc:

distance in meters

findUsersWithinDistanceFromLocation

10 public User[] findUsersWithinDistanceFromLocation(Location location,

UserTemplate users, long distance)
Finds all the users within a specified distance of a location
Parameter doc:

users criteria for user selection. If null all the users within
15 the distance are returned.

distance distance in meters
Return doc:

An array of users

findUsersWithinDistanceFromUser

20 public User[] findUsersWithinDistanceFromUser(String userID,

UserTemplate users, long distance)
Finds all the users within a specified distance of a user
Parameter doc:
userID the user

25 users criteria for user selection. If null all the users within

“74-

WO 02/099597 PCT/US02/18009

the distance are returned.

distance distance in meters
Return doc:

An array of users

5 Interface: TimeProximityQuery
Method Summary
public long: findETA(String userID, Location destination)

Calculates the Estimated Travel Time between the user’s location

and the specified location

10 Method Detail
findETA
public long findETA(String userID, Location destination)

Calculates the Estimated Travel Time between the user’s location

and the specified location
15 Parameter doc:

userID the User

location the destination
Return doc:

Travel time in milliseconds

20 Interface: UserQuery
Method Summary
public User[]: findUser(UserTemplate user, Calendar time)

Find a user based on the criteria specified in the UserTemplate.

-75-

WO 02/099597 PCT/US02/18009

10

15

20

25

Method Detail
findUser
public User[] findUser(UserTemplate user, Calendar time)

Find a user based on the criteria specified in the UserTemplate. The
time is used to lookup up users based on future locations (e.g., find all users at

location IBM at 10.00 am tomorrow).
Parameter doc:

user UserTemplate that specifies the query criteria

time Time of the future location
Return doc:

List of users satisfying the Query

Event Service Features

public class: ActivitySubscriber -- provides an API to subscribe to asynchronously
notifications when user’s activity changes to certain activity or generally changes.
FIG. 35 provides summary information for the ActivitySubscriber feature, in

accordance with an embodiment of the present invention.

Method Detail
subscribeToUserActivity

public static ContextPackRemoteEventListener
subscribeToUserActivity(String[] userID, ActivityTemplate filterTemplate,
boolean recurring)
throws UserNotFoundException,
ApplicationException,
SystemException
Get asynchronously notifications when user’s activity changes to certain

activity(value) or generally changes

-76-

WO 02/099597 PCT/US02/18009

10

15

20

25

Parameters:
userlD - An array contains User IDs

recurring - Defines whether the event will be fired once, or infinite

number of times - until unsubscribe is called. Set false to get the event only once
filterTemplate - Description of Parameter

Returns: The returned object is a remote listener object that will process
remote events, and will fire the event to the application if applicable. The returned
object must be kept alive by the application, in order to keep the subscription alive.
Keep alive means to keep a reference to this object from within the application.
The remote listener also responsible to create a Context Pack Event object and

populate it with all the information associated with this event.
Throws:

UserNotFoundException - A user with the provided User ID cannot
be found

SystemException - Could be a result of not finding one of the
services required to fulfill this task, or a low level exception thrown by one of the

services

ApplicationException - Description of Exception

Class: AppointmentSubscriber

public class AppointmentSubscriber -- Provides an API to subscribe to
obtain asynchronously notifications related to user’s appointments schedule. The
different types of subscriptions are: 1) event when an appointment property is
changed, for a particular User; 2) event when an appointment property is changed,
for a particular appointment; and 3) event when a particular User is evaluated as

Late for an appointment.

The method summary for Appointment Subscriber, in accordance with an

embodiment of the present invention, is provided in FIG. 36.

-77-

WO 02/099597 PCT/US02/18009

subscribeToAppointmentChanges

public static ContextPackRemoteEventListener
subscribeToAppointmentChanges (String[] appointmentID)
throws AppointmentNotFoundException,
5 SystemException,
> ApplicationException

Get asynchronously notifications when an Appointment changes
Parameters:
appointmentID - An array contains Appointment IDs

10 Returns: The returned object is a remote listener object that will process
remote events, and will fire the event to the application if applicable. The returned
object must be kept alive by the application, in order to keep the subscription alive.
Keep alive means to keep a reference to this object from within the application.
The remote listener also responsible to create a Context Pack Event object and

15 populate it with all the information associated with this event.
Throws:

SystemException - Could be a result of not finding one of the
services required to fulfill this task, or a low level exception thrown by one of the

services
20 AppointmentNotFoundException - Description of Exception

ApplicationException - Description of Exception

subscribeToUserAppointmentChanges
public static ContextPackRemoteEventListener

subscribeToUserAppointmentChanges (String[] userID, Calendar
25 startTime, Calendar endTime)

throws UserNotFoundException,

-78-

WO 02/099597 PCT/US02/18009

ApplicationException,
SystemException

Get asynchronously notifications when an Appointment is changed for a

User.
5 Parameters:
userID - An array contains User IDs.

startTime - The start/end time defines the interesting time window

for the interesting appointments.

endTime - The start/end time defines the interesting time window

10 for the interesting appointments.

Returns: The returned object is a remote listener object that will process
remote events, and will fire the event to the application if applicable. The returned
object must be kept alive by the application, in order to keep the subscription alive.
Keep alive means to keep a reference to this object from within the application.

15 The remote listener also responsible to create a Context Pack Event object and

populate it with all the information associated with this event.
Throws:

UserNotFoundException - A user with the provided User ID cannot
be found

20 SystemException - Could be a result of not finding one of the
services required to fulfill this task, or a low level exception thrown by one of the

services.

ApplicationException - An application exception.

subscribeToUserLateToAppointment

25 public static ContextPackRemoteEventListener
subscribeToUserLate ToAppointment (String[] userID, String[] appointmentiD)
throws UserNotFoundException,

~79-

WO 02/099597 PCT/US02/18009

10

15

20

25

ApplicationException,
SystemException

Get asynchronously notifications when a User is evaluated to be late for a

meeting
Parameters:

userID - An array contains User IDs. At least one user should be
defined.

appointmentID - An array contains Appointment IDs. If null, all
appointments assumed. If not null, only the specified appointments will be

monitored

Returns: The returned object is a remote listener object that will process
remote events, and will fire the event to the application if applicable. The returned
object must be kept alive by the application, in order to keep the subscription alive.
Keep alive means to keep a reference to this object from within the application.
The remote listener also responsible to create a Context Pack Event object and

populate it with all the information associated with this event.
Throws:

UserNotFoundException - A user with the provided User ID cannot
be found

SystemException - Could be a result of not finding one of the
services required to fulfill this task, or a low level exception thrown by one of the

services

ApplicationException - Description of Exception

Class: AwvailabilitySubscriber

public class AvailabilitySubscriber -- provides an API to subscribe to get
asynchronously notifications when user’s availability changes to certain value or

generally changes. FIG. 37 provides a method summary table for the

-80-

WO 02/099597 PCT/US02/18009

10

15

20

25

AvailabilitySubscriber feature, in accordance with an embodiment of the present

invention.

subscribeToUserAvailability

public static ContextPackRemoteEventListener
subscribeToUserAvailability (String[] userID, AvailabilityTemplate filterTemplate,
boolean recurring)
throws UserNotFoundException,
ApplicationException,
SystemException

Get asynchronously notifications when user’s availability changes to certain

availability(value) or generally changes
Parameters:
userlD - An array contains User IDs

recurring - Defines whether the event will be fired once, or infinite

number of times - until unsubscribe is called. Set false to get the event only once

availabilityValue - If set to null that means that any change in the user’s
availability state will cause an event to be fired. If not null then the event will be

fired only when the state is changed to this value.

Returns: The returned object is a remote listener object that will process
remote events, and will fire the event to the application if applicable. The returned
object must be kept alive by the application, in order to keep the subscription alive.
Keep alive means to keep a reference to this object from within the application.
The remote listener also responsible to create a Context Pack Event object and

populate it with all the information associated with this event.
Throws:

UserNotFoundException - A user with the provided User ID cannot
be found

-81-

WO 02/099597 PCT/US02/18009

10

15

20

SystemException - Could be a result of not finding one of the
services required to fulfill this task, or a low level exception thrown by one of the

services

Class: TimeProximitySubscriber

public class TimeProximitySubscriber -- provides an API to subscribe to get
asynchronously notifications on the travel time between User(s) and User, or
between User(s) and a Location. The event could be fired when - a) User(s) are
WITHIN a travel time to location (or user); b) User(s) are OUTSIDE a travel time
to location (or user); or ¢) User(s) state turned from WITHIN travel time to location
(or user) to OUTSIDE travel time to location or vice versa. FIG. 38 contains a
table of field summary information for the TimeProximitySubscriber feature, in
accordance with an embodiment of the present invention. FIG. 39 contains a table
of method summary information for the TimeProximitySubscriber feature, in

accordance with an embodiment of the present invention.

ANY

public final static int ANY -- a subscription type that sets the event to be fired
whenever the estimated travel time cross the line between the WITHIN travel time

to the OUTSIDE travel time or vice versa.

OUTSIDE_REGION

public final static int OUTSIDE_REGION -- a subscription type that sets the event
to be fired only when users are identified to be outside an estimated travel time

from a Location (or user).

WITHIN_REGION

-82-

WO 02/099597 PCT/US02/18009

10

15

20

25

public final static int WITHIN_REGION -- a subscription type that sets the event
to be fired only when users are identified to be within an estimated travel time from

a Location (or user).

subscribeToTravel TimeProximityFromLocation

public static ContextPackRemoteEventListener
subscribeToTravel TimeProximityFromILocation (String[] userID, Location
location, int minutes, int changeType, boolean recurring)
throws UserNotFoundException,
ApplicationException,
SystemException

Get asynchronously notifications when user(s) travel time to Location

match a criteria
Parameters:
minutes - The travel time that the application is interested in.

recurring - Defines whether the event will be fired once, or infinite

number of times - until unsubscribe is called. Set false to get the event only once

changeType - the type of change that should cause the event to be

fired.
userID - one or more users.
location - The location.
Returns:
Throws:
UserNotFoundException - A user with the provided User ID cannot
be found

SystemException - Could be a result of not finding one of the
services required to fulfill this task, or a low level exception thrown by one of the

services

-83-

WO 02/099597 PCT/US02/18009

10

15

20

25

ApplicationException - Description of Exception

subscribeToTravel TimeProximityFromUser

public static ContextPackRemoteEventListener
subscribeToTravel TimeProximityFromUser (String[] userID, String user, int
minutes, int changeType, boolean recurring)
throws UserNotFoundException,
ApplicationException,
SystemException

Get asynchronously notifications when user(s) travel time to other User

match a given criteria
Parameters:
minutes - The travel time that the application is interested in.

recurring - defines whether the event will be fired once, or infinite number of times

- until unsubscribe is called. Set false to get the event only once.

changeType - The type of change that should cause the event to be

fired.
userID - One or more users.
user - The user.
Returns:
Throws:
UserNotFoundException - A user with the provided User ID cannot
be found

SystemException - Could be a result of not finding one of the
services required to fulfill this task, or a low level exception thrown by one of the

services

ApplicationException - Description of Exception

-84

WO 02/099597 PCT/US02/18009

10

15

20

25

Data Functions
Data Request

The following dtd defines the format of a generic request that is sent by the

controller to a sensor, in accordance with an embodiment of the present invention.
<?xml version="1.0” encoding= “is0-8859-1"7>
<!-- The request element -->

<IELEMENT request (criteria)>

<IATTLIST request

type (query | subscribe | unsubscribe) #REQUIRED
>

<!IELEMENT criteria (criterion*)>

<IELEMENT criterion EMPTY>

<IATTLIST criterion

type (name | value) #REQUIRED

>

Data Response

The following dtd defines the format of the data that is provided by a
sensor, in accordance with an embodiment of the present invention. Specific data

is embedded inside the response element.

<?xml version= “1.0” encoding= “is0-8859-177>
<!-- The response element -->

<IELEMENT response ANY>

<IATTLIST response

type (update | delete) #REQUIRED

>

Appointment Data Response

-85-

WO 02/099597 PCT/US02/18009

The following dtd defines the format of the data an Appointment sensor

provides, in accordance with an embodiment of the present invention.
<?xml version="1.0" encoding=“UTF-8”7?>

<IELEMENT appointment (title, location, last-update-time, start-time, end-time,

5 attendees)>
<IATTLIST appointment
id CDATA #REQUIRED
>
<IELEMENT appointments (appointment)>
10 <IELEMENT attendees (attendee)>
<IELEMENT attendee (user-id, invite-type)>
<IELEMENT end-time (#PCDATA)>
<IELEMENT invite-type (#PCDATA)>
<IELEMENT last-update-time (#PCDATA)>
15 <!ELEMENT location (#PCDATA)>
<IELEMENT start-time (#PCDATA)>
<IELEMENT title (#PCDATA)>

<!IELEMENT user-id (#PCDATA)>

Location Response

20 The following dtd defines the format of data that a location sensor provides,

in accordance with an embodiment of the present invention.
<IENTITY % street-address-file SYSTEM “street-address.dtd”>
%street-address-file;

<!-- The locations element -->

25 <IELEMENT locations (location)*>

-86-

WO 02/099597 PCT/US02/18009

10

15

20

25

<!-- The location element -->

<IELEMENT location (source-id, date-time, duration, (logical-location | street-

address | postal-location | spatial-location))>
<l--
The uniqe identifier for a wireless handset being located,
i.e., the source IP or the mobile ID.
>
<IELEMENT source-id (#PCDATA)>
<!-- The date-time stamp - either from the reading or created by the initial xslt -->
<IELEMENT date-time (#PCDATA)>
<!-- The duration of the validity of the reading >
<IELEMENT duration (#PCDATA)>
<I--

Logical location indicates a landmark or name of a known boundary or

zone near or containing the geographic location.
>

<IELEMENT logical-location (#PCDATA)>
<l--

The spatial location data set

-_—

<IELEMENT spatial-location (position, precision?, ground-speed?, track-angle?,
magnetic-variation?, fix-quality?, direction?)>

<l--

The geopositional information

-—

<IELEMENT position (latitude, longitude, elevation?, geoid-height?)>

-87-

WO 02/099597 PCT/US02/18009

<!ELEMENT latitude ({PCDATA)>
<IELEMENT longitude (#PCDATA)>
<!-- The altitude of the object above sea-level -->
<IELEMENT elevation (#PCDATA)>
5 <!-- The height of the object above ground level -->
<IELEMENT geoid-height (#PCDATA)>
<!-- The precision (standard deviation) -->
<IELEMENT precision (#PCDATA)>
<!-- The fix-quality: invalid | GPS | DGPS | estimated -->
10 <IELEMENT fix-quality (#PCDATA)>
<!--The magnetic variation; degrees off magnetic north -->
<IELEMENT magnetic-variation ({PCDATA)>
<!-- The track angle; angle source is facing off north -->
<!ELEMENT track-angle (#fPCDATA)>
15 <!-- The speed (m/s) -->
<IELEMENT ground-speed (fPCDATA)>
<!I-- The direction -->

<!ELEMENT direction (#PCDATA)>

Route Request

20 The following dtd defines the format of data request made by the Controller

to a Route Sensor, in accordance with an embodiment of the present invention.
<?xml version="“1.0” encoding="UTF-8"?>

<!-- request for route information -->

<IELEMENT request (route)>

25 <!-- route has an origin and a destination-->

-88-

WO 02/099597

10

15

20

25

<IELEMENT route (origin-location, destination-location)>

<!-- route has a key which is internally generated -->

<IATTLIST route
key CDATA #REQUIRED

>

<!l-- the origin location of the route -->

<IELEMENT origin-location (location)>

<!--route destination location of the route -->
<IELEMENT destination-location (location)>

<!-- the location can be defined as a position or an address™>
<IELEMENT location (position | street-address)>

<!-- position is made up of a latitude and longitude-->

<IELEMENT position (latitude, longitude)>

<!-- latitude value -->
<IELEMENT latitude (#PCDATA)>
<!--longitude value-->

<IELEMENT longitude (#PCDATA)>

PCT/US02/18009

<IELEMENT street-address (linel, line2?, city, state-province, county?, postal-

location)>
<IELEMENT linel (#PCDATA)>
<IELEMENT line2 (#PCDATA)>

<IELEMENT city (#PCDATA)>

<IELEMENT state-province (fPCDATA)>

<IELEMENT county (#{PCDATA)>

<l--

The postal code and country

-89-

WO 02/099597 PCT/US02/18009

10

15

20

25

-
<!ELEMENT postal-location (postal-code, country-code)>
<IELEMENT postal-code (#PCDATA)>

<IELEMENT country-code (#PCDATA)>

Route Response

The following dtd defines the format of the route information that a route

sensor provides, in accordance with an embodiment of the present invention.
7xml version="1.0" encoding="is0-8859-1"7>

<!-- edited with XML Spy v3.5 NT (http://www.xmlspy.com) by dbhat (Unwired

Express) -->

<!-- The response element -->

<IELEMENT response (route-info)>

<IATTLIST response

type (update | delete) #REQUIRED

>

<!-- the route information -->

<IELEMENT route-info (travel-time, distance, directions, source)>
<!-- the travel time for the route in hours, minutes -->
<IELEMENT travel-time (hour, minute)>

<!-- hour value -->

<IELEMENT hour (##CDATA)>

<!-- minute value -->

<IELEMENT minute (#PCDATA)>

<!-- distance of the route in meters -->

<IELEMENT distance (meters)>

~90-

WO 02/099597 PCT/US02/18009

10

15

20

<!-- mile value -->

<IELEMENT meters (#PCDATA)>

<l-- the directions for the route, consists of one or more segments-->

<IELEMENT directions (segment)+>

<l-- segment consists of the distance of the segment, the average speed
over this segment and the actual travel time. Static routing engines
provide the default travel time-->

<IELEMENT segment (description, distance, speed, travel-time)>

<!-- the internal (source specific id of the segment), may be used to refer back-->

<IATTLIST segment

id CDATA #REQUIRED

>

<!--description of the segment (eg. name of the highway)-->

<IELEMENT description ({PCDATA)>

<!-- speed in kph--> |

<IELEMENT speed (kilometer-per-hour)>

<!I-- kph value -->

<IELEMENT kilometer-per-hour (#PCDATA)>

<!-- the source of this information eg. SmartRoute, TrafficCast -->

<IELEMENT source (#PCDATA)>

91-

WO 02/099597 PCT/US02/18009

10

15

20

25

WHAT IS CLAIMED IS:
1. A method for providing context-relevant information, comprising:
collecting context specific information;

determining information needs relating to the context specific information

collected; and

providing delivery information to a platform, wherein the delivery
information is formatted based on the platform, the collected context specific

information, and the determined information needs.

2. The method of Claim 1, wherein the platform includes an application

interface.

3. The method of Claim 1, wherein the platform includes a platform

device.

4. The method of Claim 3, wherein the platform device is selected from a
group consisting of a personal computer, a minicomputer, a microcomputer, a main
frame computer, a personal digital assistant, a mobile telephone, a cellular

telephone, and a pager.

5. The method of Claim 3, wherein the platform device comprises a hand-

held device.

6. The method of Claim 1, wherein the context specific information

includes information for a user.

7. The method of Claim 1, wherein the context specific information

includes information for a device.

8. The method of Claim 1, wherein the context specific information
includes at least one selected from a group consisting of location information,
personal information manager information, presence information, travel
information, device usage information, network information, workgroup
information, role information, skill information, application information, user

settings information, device settings information, and web services information.

-97.

WO 02/099597 PCT/US02/18009

9. The method of Claim 1, wherein the context specific information is

collected from an information source.

10. The method of Claim 1, wherein the context specific information is

collected for context parameters.

5 11. The method of Claim 10, wherein the context parameters include

implicit context parameters and explicit context parameters.

12. The method of Claim 8, wherein the location information is selected
from a group consisting of carrier based information, geographical positioning
system information, Wifi information, Bluetooth information, and services

10 information.

13. The method of Claim 8, wherein the personal information manager
information is selected from a group consisting of applications information and

services information.

14. The method of Claim 8, wherein the presence information is selected

15 from a group consisting of applications information and services information.

15. The method of Claim 8, wherein the travel information is selected from
a group consisting of proximity information, direction information, flight

information, weather information, and traffic information.

16. The method of Claim 1, wherein determining information needs

20 relating to the context specific information collected includes:
determining a user’s situation and intent.

17. The method of Claim 1, wherein determining information needs

relating to the context specific information collected includes:
determining a device situation.

25 18. The method of Claim 16, wherein the user’s situation and intent are

obtained from analysis information.

19. The method of Claim 18, wherein the analysis information includes

relevant information.

-93-

WO 02/099597 PCT/US02/18009

10

15

20

25

20. The method of Claim 19, wherein the relevant information is selected
from a group consisting of relevant information, relevant actions, and relevant

method of delivery information.

21. The method of Claim 19, wherein the relevant information is identified

from available information.

22. The method of Claim 21, wherein the relevant information is identified

from static context.

23. The method of Claim 21, wherein the relevant information is identified

from dynamic context.

24. The method of Claim 21, wherein the relevant information is identified

from preference information.

25. The method of Claim 24, wherein the preference information includes

historic behavior information.

26. The method of Claim 21, wherein the relevant information is

determined using user situation information.

27. The method of Claim 21, wherein the relevant information is

determined using device situation information.

28. The method of Claim 21, wherein the relevant information is

determined using user intent information.

29. The method of Claim 18, wherein the analysis information includes
analyzed location information, event