
US 20190342380A1
IND IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2019/0342380 A1

THOTA et al . (43) Pub . Date : Nov. 7 , 2019

(54) Publication Classification ADAPTIVE RESOURCE - GOVERNED
SERVICES FOR
PERFORMANCE - COMPLIANT
DISTRIBUTED WORKLOADS

(71) Applicant : Microsoft Technology Licensing , LLC ,
Redmond , WA (US)

(51) Int . Ci .
H04L 29/08 (2006.01)
H04L 12/24 (2006.01)
H04L 29/06 (2006.01)

(52) U.S. CI .
CPC H04L 67/1012 (2013.01) ; H04L 67/1008

(2013.01) ; H04L 67/1029 (2013.01) ; H04L
69/24 (2013.01) ; H04L 41/5009 (2013.01) ;
H04L 41/5022 (2013.01) ; H04L 67/1034

(2013.01)

(57) ABSTRACT

(72) Inventors : Shireesh Kumar THOTA , Redmond ,
WA (US) ; Momin Mahmoud
AL - GHOSIEN , Sammamish , WA (US) ;
Rajeev Sudhakar BHOPI , Mercer
Island , WA (US) ; Samer BOSHRA ,
Woodinville , WA (US) ; Madhan
GAJENDRAN , Bengaluru (IN) ; Atul
KATIYAR , Sammamish , WA (US) ;
Abhijit Padmanabh PAI , Bangalore
(IN) ; Karthik RAMAN , Sammanish ,
WA (US) ; Ankur Savailal SHAH ,
Redmond , WA (US) ; Pankaj
SHARMA , Kirkland , WA (US) ;
Dharma SHUKLA , Bellevue , WA
(US) ; Shreshth SINGHAL , Seattle ,
WA (US) ; Hari Sudan SUNDAR ,
Redmond , WA (US) ; Lalitha
Manjapara VISWANATHAN ,
Redmond , WA (US)

(21) Appl . No .: 15 / 991,953
(22) led : May 29 , 2018

Related U.S. Application Data
(60) Provisional application No. 62 / 668,226 , filed on May

7 , 2018 .

Processing services are often provisioned by defining and
adjusting the performance capabilities of individual servers ,
and in multitenancy scenarios , servers may allocate compu
tational resources to ensure that a first client workload does
not impact a second client workload . However , a reduced
performance capability of a server may create a processing
jam with respect to an upstream server of the process path
of the workload , where the processing rate mismatch creates
a risk of failing to fulfill the performance guarantee for the
workload . Instead , the downstream server may monitor and
compare its performance capability with the performance
guarantee . If a performance guarantee failure risk arises , the
server may transmit a performance capability alert to the
upstream server , which may rate - limit the processing of the
workload . Rate - limiting by the first server in the server path
may limit workload intake to a volume for which the process
path can fulfill the performance guarantee .

300

1042 112 PERFORMANCE
GUARANTEE WORKLOAD PROCESS PATH

108
UPSTREAM
SERVER

2022
PERFORMANCE
CAPABILITY

302
SERVER 306

304 MEMORY 208 110 104
WORKLOAD RATE LIMIT TASK

308

314 312
SYSTEM
3101

TASK
PROCESSOR

TASK RATE
LIMITER

WORKLOAD
STREAMER

206 PERFORMANCE
CAPABILITY ALERT

204 FAILURE RISK

116 108 PROCESSING
CAPACITY
SHORTAGE 114

PERFORMANCE
GUARANTEE

DOWNSTREAM
SERVER 202

PERFORMANCE
CAPABILITY

COMPARISON

Patent Application Publication Nov. 7 , 2019 Sheet 1 of 9 US 2019/0342380 A1

102
CLIENT 1 104 CLIENT 2

WORKLOAD 1 WORKLOAD 2 114
PERFORMANCE
GUARANTEE :
10ms LATENCY

PERFORMANCE
GUARANTEE :
SCALABILITY PROCESS

PATH 1
PROCESS
PATH 2

INTAKE SERVER 1 INTAKE SERVER 2

TASK : QUERY INTAKE TASK QUERY INTAKE

SERVER
SET

QUERY PROCESSING
SERVER 110

TASK : QUERY PARSING

STORAGE SERVER 1 STORAGE SERVER 2

TASK : RECORD ACCESS TASK : RECORD ACCESS

122 112
INTAKE SERVER 1 INTAKE SERVER 2

QUERY PROCESSING SERVER

JAM PROCESSING
CAPACITY
SHORTAGE STORAGE SERVER 1 STORAGE SERVER 2

112 - r 112
INTAKE SERVER 1 INTAKE SERVER 2

JAM JAM

108 QUERY PROCESSING SERVER
(116

PROCESSING
CAPACITY
SHORTAGE STORAGE SERVER 1 STORAGE SERVER 2

FIG . 1

Patent Application Publication Nov. 7 , 2019 Sheet 2 of 9 US 2019/0342380 A1

200

T PROCESS PATH
114
PERFORMANCE
GUARANTEE

108
SERVER 1 SERVER 2 SERVER 3

MANG MANG RMANC WORKLOAD
PERFORMANCE
CAPABILITY

PERFORMANCE
CAPABILITY

PERFORMANCE
CAPABILITY

212

PROCESS PATH

104 SERVER 1 SERVER 2
WORKLOAD MANC MANCE PERFORMANCE

CAPABILITY
PERFORMANCE
CAPABILITY

SERVER 3
202 PERFORMANCE
CAPABILITY

PERFORMANCE
GUARANTEE

COMPARISON

FAILURE
RISK

PROCESSING
CAPACITY
SHORTAGE

214

PROCESS PATH
1

208
RATE LIMIT PERFORMANCE

CAPABILITY ALERT

108

SERVER 1 SERVER 2 SERVER 3
WORKLOAD MANG MANE PERFORMANCE

CAPABILITY
PERFORMANCE
CAPABILITY

PERFORMANCE
CAPABILITY 114

PERFORMANCE
GUARANTEE COMPARISON

204
FAILURE
RISK

PROCESSING
CAPACITY
SHORTAGE

FIG . 2

Patent Application Publication Nov. 7 , 2019 Sheet 3 of 9 US 2019/0342380 A1

112
PERFORMANCE
GUARANTEE WORKLOAD PROCESS PATH

UPSTREAM
SERVER

202
PERFORMANCE
CAPABILITY

SERVER

MEMORY

RATE LIMIT TASK WORKLOAD

SYSTEM

TASK RATE
LIMITER

TASK
PROCESSOR

WORKLOAD
STREAMER

PERFORMANCE
CAPABILITY ALERT

204
FAILURE RISK

PROCESSING
CAPACITY
SHORTAGE

108
DOWNSTREAM

SERVER 202
PERFORMANCE
CAPABILITY

PERFORMANCE
GUARANTEE COMPARISON

FIG . 3

Patent Application Publication Nov. 7 , 2019 Sheet 4 of 9 US 2019/0342380 A1

400

START

EXECUTE , BY PROCESSOR , INSTRUCTIONS THAT CAUSE SERVER TO :
406

RECEIVE WORKLOAD FROM UPSTREAM SERVER OF PROCESS PATH ,
WHEREIN WORKLOAD IS ASSOCIATED
WITH PERFORMANCE GUARANTEE

408

PERFORM TASK ON WORKLOAD

410

IDENTIFY PERFORMANCE CAPABILITY OF SERVER

412

COMPARE PERFORMANCE CAPABILITY
WITH PERFORMANCE GUARANTEE OF WORKLOAD

RESPONSIVE TO DETERMINING THAT PERFORMANCE CAPABILITY
RISKS FAILING PERFORMANCE GUARANTEE ,

TRANSMIT PERFORMANCE CAPABILITY ALERT TO UPSTREAM SERVER

RESPONSIVE TO RECEIVING PERFORMANCE CAPABILITY ALERT
FROM DOWNSTREAM SERVER OF PROCESS PATH ,
RATE - LIMIT TASK PERFORMED ON WORKLOAD

TO REDUCE COMPUTATIONAL LOAD OF DOWNSTREAM SERVER

FIG . 4

Patent Application Publication Nov. 7 , 2019 Sheet 5 of 9 US 2019/0342380 A1

500

START

504

CONFIGURE SERVER OF PROCESS PATH OF SERVER SET
TO PROCESS WORKLOAD BY :

PERFORMING TASK ON WORKLOAD
ACCORDING TO PERFORMANCE GUARANTEE

RECEIVING PERFORMANCE CAPABILITY ALERT
FROM DOWNSTREAM SERVER ,

WHERE PERFORMANCE CAPABILITY ALERT
INDICATES THAT PERFORMANCE CAPABILITY
OF DOWNSTREAM SERVER RISKS FAILING
PERFORMANCE GUARANTEE OF WORKLOAD

RESPONSIVE TO PERFORMANCE CAPABILITY ALERT ,
RATE - LIMITING TASK OF SERVER

TO REDUCE WORKLOAD DELIVERED TO DOWNSTREAM SERVER

AFTER PERFORMING TASK ON WORKLOAD ,
DELIVERING WORKLOAD

TO DOWNSTREAM SERVER OF PROCESS PATH

END

FIG . 5

Patent Application Publication Nov. 7 , 2019 Sheet 6 of 9 US 2019/0342380 A1

608

?

DEVICE

41
1

f
1
1

COMPUTER
INSTRUCTIONS

1

01011010001010
10101011010101
101101011100 ...

COMPUTER - READABLE
STORAGE DEVICE

FIG . 6

Patent Application Publication Nov. 7 , 2019 Sheet 7 of 9 US 2019/0342380 A1

RATE LIMIT

PROCESSOR SPEED 4 GHZ2 GHZ
THREAD PRIORITY HIGA

TASK WORKLOAD Ho

WORKLOAD
UPSTREAM
SERVER x SERVER

RATE LIMIT

RATE LIMIT RATE LIMIT

302
UPSTREAM
SERVER

INPUT QUEUE
5ms DELAY SERVER OUTPUT QUEUE

5ms DELAY
DOWNSTREAM

SERVER

CLIENT WORKLOAD

PERFORMANCE
CAPABILITY ALERT

PERFORMANCE
CAPABILITY ALERT OFFER

PERFORMANCE
GUARANTEE

108 302
SERVER 1

MAX LATENCY SERVER 2 SERVER 3 TASK
INTAKE 10x 20ms

208
RATE LIMIT

FIG . 7

Patent Application Publication Nov. 7 , 2019 Sheet 8 of 9 US 2019/0342380 A1

112
PROCESS
PATH

116
PROCESSING
CAPACITY
SHORTAGE

WORKLOAD
UPSTREAM
SERVER SERVER 1

DOWNSTREAM
SERVER

SUBSTITUTE
SERVER

PROCESSING
CAPACITY
SHORTAGE PROCESS

30 % SERVER

WORKLOAD
UPSTREAM
SERVER

DOWNSTREAM
SERVER

AUXILIARY
SERVER

112 CESS PROCESS
PATHS

PROCESSING
CAPACITY
SHORTAGE

PROCESS PRIORITIES
PROCESS 1 MID HIGH
PROCESS 2 MIS LOW

WORKLOAD 1

WORKLOAD 2 UPSTREAM
SERVER SERVER

DOWNSTREAM
SERVER

WORKLOAD 3

SUBSTITUTE
SERVER

FIG . 8

Patent Application Publication Nov. 7 , 2019 Sheet 9 of 9 US 2019/0342380 A1

DEVICE
904

1 DEVICE CONFIGURATION ***

STORAGE
1
1
1
1
1 1

1
1

912
PROCESSING

UNIT OUTPUT DEVICE (S)

1
1 INPUT DEVICE (S)

MEMORY *****
1

COMMUNICATION
CONNECTION (S)

NETWORK

COMPUTING
DEVICE

FIG . 9

US 2019/0342380 A1 Nov. 7. 2019

ADAPTIVE RESOURCE - GOVERNED
SERVICES FOR

PERFORMANCE - COMPLIANT
DISTRIBUTED WORKLOADS

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of , and claims
priority under 35 U.S.C. SS 119-120 to , U.S. Patent Appli
cation No. 62 / 668,226 , entitled “ DISTRIBUTED DATA
BASES , ” filed on May 7 , 2018 , the entirety of which is
hereby incorporated by reference as if fully rewritten herein .

BACKGROUND

server set , but may both include one or more servers of the
server set that are to be shared by the workloads . Servers
may be shared among workloads that are associated with
different clients and / or applications ; in some scenarios , a
server may concurrently handle workloads on behalf of
hundreds or even thousands of different applications or
clients .
[0006] A variety of multi - tenancy techniques may be
utilized to ensure that a first workload on behalf of a first
client or application does not interfere with a second work
load on behalf of a second client or application . As a first
such example , the server may utilize process and data
isolation techniques to ensure that a first workload on behalf
of a first client cannot achieve unauthorized access to a
second workload on behalf of a second client , including
accessing data owned by the second workload or even
identifying the presence of the second workload , including
the second client or application for which the second work
load is processed .
[0007] As a second such example , the server may protect
against resource overutilization . For instance , if a first
workload through the server begins exhibiting a surge of
volume that exceeds the share of computing resources
allocated to the first workload , the use of a resource - sharing
technique may enable the server to confine the consequences
of the excessive volume to the first workload and to avoid
impacting the processing of the second workload , such that
a performance guarantee extended to the second workload
remains fulfilled . In this manner , servers may allocate and
regulate computing resource utilization to promote fulfill
ment of performance guarantees and allocate computational
resources fairly over all of the workloads handled by the
server .

SUMMARY

[0002] Within the field of computing , many scenarios
involve a processing service that performs a set of work
loads using a server set . For example , a database service may
provide a distributed set of servers with various capabilities ,
such as a query intake server that receives a query ; a query
processing server that parses the query ; and a storage server
that applies the logical operations of the parsed query over
a data set .
[0003] A large - scale , distributed server set may involve a
significant number of servers that perform a large number of
distinct workloads for a variety of applications and / or cli
ents . Moreover , the workloads of various applications and
clients may utilize different process paths through the server
set . For example , a process path for a first workload may
involve first sequence of tasks to be performed by a
corresponding first sequence of servers , such as a first intake
server in a first region ; a query processing server ; and a first
storage server that stores records involved in the first work
load . A process path for a second workload may involve a
different sequence of tasks to be performed by a correspond
ing second sequence of servers , such as a second intake
server in a second region ; the same query processing server ;
a second storage server that stores records involved in the
second workload .
[0004] In such scenarios , workloads may be subject to
various forms of performance sensitivities . As a first such
example , a workload may be sensitive to latency (e.g. , a
realtime application in which users or devices have to
receive a result of the workload within a limited time , and
in which delays may be perceptible and / or problematic) . As
a second such example , a workload may be sensitive to
scalability and throughput (e.g. , demand for the workload
may fluctuate over time , and the inability of the server set to
scale up to handle an influx of volume may be problematic) .
As a third such example , a workload may be sensitive to
consistency and / or concurrency issues (e.g. , a strictly deter
ministic workload may have to receive the same result
across multiple instances , where inconsistent results may be
problematic) . As a fourth such example , a workload may be
sensitive to replication and / or resiliency (e.g. , downtime ,
data loss , or the failure of the workload may be problematic) .
In view of such sensitivities , it may be desirable to enable
the server set to provide a performance guarantee for a
workload , e.g. , a guarantee that the server set is capable of
handling a surge of volume up to a particular amount while
maintaining latency below a particular level .
[0005] In multitenant scenarios , workloads for different
applications and / or clients may share a process path . Other
workloads may take different process paths through the

[0008] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description . This Summary is not
intended to identify key factors or essential features of the
claimed subject matter , nor is it intended to used to limit
the scope of the claimed subject matter .
[0009] The processing of workloads through a large - scale
server set , in view of performance guarantees , may encoun
ter difficulties due to the sequential nature of the workloads
and interactions of servers along various process paths . For
example , a workload may involve a process path that
involves a sequence of tasks to be performed by an intake
server , a query processing server , and a storage server , and
to fulfill a performance guarantee . While the respective
servers may utilize computational resource allocation to
handle the individual tasks of the workload , a problem may
arise if the storage server begins to experience an excessive
computational load . Such excessive computational load may
arise , e.g. , due to an over - allocation of tasks onto the storage
server ; a shortage of computational resources , such as a
reduction of network bandwidth ; or an unanticipated surge
of processing , such as a failure of a process on the storage
server that necessitates the invocation of a recovery process .
In addition to slowing the processing of the workload
through the storage server , the excessive computational load
of the storage server may create a processing jam between
the storage server and the query processing server that is
upstream of the storage server in the process path . For
example , the query processing server may continue to

US 2019/0342380 A1 Nov. 7 , 2019
2

handle the query processing task of the workload at the same
rate , but the rate at which the query processing server is able
to pass the workload to the storage server may be dimin
ished . The query processing server may address the discrep
ancy in various ways , such as utilizing an outbound queue
for the completed workload of processed queries ; however ,
if the reduced processing rate of the storage server persists ,
the outbound queue may overflow . Moreover , the additional
processing burden placed upon the query processing server
may propagate the processing jam upward , even to the point
of potentially affecting other workloads that have a process
ing path through the query processing server that do not
utilize the storage server . The resulting gridlock may cause
a widespread failure of performance guarantees for a variety
of workloads due the processing jam between the storage
server and the upstream query processing server .
[0010] In view of such problems , it may be desirable to
configure the server set to evaluate the processing paths of
the various workloads , and to provide techniques for miti
gating a processing jam that may arise between a particular
server and a downstream server . In particular , a server of a
process path may estimate , measure , and / or monitor its
processing capabilities , and compare such processing capa
bilities with the performance guarantees of the workloads
utilizing a process path through the server . If the server
detects a risk of failing the performance guarantee (e.g. , due
to an overprovisioning of the server or a computational
resource shortage) , the server may transmit a performance
capability alert to an upstream server of the server path , as
an indication that the workload being passed to the server
may be too large to ensure that the performance guarantees
are met . The upstream server that receives the performance
capability alert may respond by rate - limiting its processing
of the workload , within the performance guarantee , thereby
downscaling the processing rate of the upstream server upon
the workload to match the diminished processing rate of the
downstream server . In some scenarios , the upstream server
may propagate the performance capability alert further
upstream . If the performance capability alert reaches a first
server of the server path , the first server may refuse or slow
a workload acceptance rate . In this manner , the server set
may adapt the acceptance of the workload for which the
process path is capable of fulfilling the performance guar
antee , and in response to fluctuating processing capabilities
(including an unexpected loss of processing capability) of
the servers of the server path .
[0011] A first embodiment of the presented techniques
involves a server of a server set that performs workloads
according to a performance guarantee . The server comprises
a processor and a memory storing instructions that , when
executed by the processor , cause the server to operate in
accordance with the techniques presented herein . In particu
lar , the server performs a task of the workload according to
a performance guarantee , wherein the workload is processed
through the server set according to a process path . On
condition of receiving , from a downstream server of the
process path , a performance capability alert indicating that
a computational load of the downstream server risks failing
the performance guarantee for the workload , the server may
rate limit the task of the workload to reduce the computa
tional load of the downstream server . After completing the
task (to which the rate - limit may have been applied) , the
server delivers the workload to the downstream server .

[0012] A second embodiment of the presented techniques
involves a method of configuring a server of a server set to
participate in workloads . The method involves , executing ,
by a processor of the server , instructions that cause the
server to operate in accordance with the techniques pre
sented herein . In particular , the server receives a workload
from an upstream server of a process path of the workload ,
wherein the workload is associated with a performance
guarantee . The server performs a task on the workload , and
further identifies a performance capability of the server and
compares the performance capability with the performance
guarantee of the workload . Responsive to determining that
the performance capability risks failing the performance
guarantee , the server transmits a performance capability
alert to the upstream server . Additionally , responsive to
receiving a performance capability alert from a downstream
server of the process path , the server rate limits a receipt of
additional workloads from the upstream server .
[0013] A third embodiment of the presented techniques
involves a method of configuring a server set to perform a
workload according to a performance guarantee . The
method involves configuring a server within a process path
of the workload through the server set to operate in accor
dance with the techniques presented herein . The method
further involves configuring the server to perform a task on
the workload according to the performance guarantee . The
method further involves configuring the server to receive a
performance capability alert from the downstream server ,
wherein the performance capability alert indicates that a
computational load of the downstream server risks failing
the performance guarantee for the workload . The method
further involves configuring the server to rate - limit the task
of the server to reduce the workload delivered to the
downstream server . The method further involves configuring
the server to , after performing the task on the workload ,
deliver the workload to a downstream server of the process
path .
[0014] To the accomplishment of the foregoing and related
ends , the following description and annexed drawings set
forth certain illustrative aspects and implementations . These
are indicative of but a few of the various ways in which one
or more aspects may be employed . Other aspects , advan
tages , and novel features of the disclosure will become
apparent from the following detailed description when con
sidered in conjunction with the annexed drawings .

DESCRIPTION OF THE DRAWINGS

[0015] FIG . 1 is an illustration of an example scenario
featuring a processing of workloads through a server set .
[0016] FIG . 2 is an illustration of an example scenario
featuring a processing of a workload through a server set in
accordance with the techniques presented herein .
[0017] FIG . 3 is a component block diagram illustrating an
example server featuring an example system for configuring
a server set to process a workload in accordance with the
techniques presented herein .
[0018] FIG . 4 is a flow diagram illustrating an exemplary
method of configuring a server to process a workload
through a process path of a server set in accordance with the
techniques presented herein .
[0019] FIG . 5 is a flow diagram illustrating an exemplary
method of configuring a server set to process a workload
through a process path in accordance with the techniques
presented herein .

US 2019/0342380 A1 Nov. 7 , 2019
3

[0020] FIG . 6 is an illustration of an example computer
readable medium storing instructions that provide an
embodiment of the techniques presented herein .
[0021] FIG . 7 is an illustration of a set of example sce
narios featuring a variety of rate - limiting mechanisms for a
task in accordance with the techniques presented herein .
[0022] FIG . 8 is an illustration of a set of example sce
narios featuring a variety of process path modifications for
a workflow in accordance with the techniques presented
herein .
[0023] FIG . 9 illustrates an exemplary computing envi
ronment wherein one or more of the provisions set forth
herein may be implemented .

DETAILED DESCRIPTION

[0024] The claimed subject matter is now described with
reference to the drawings , wherein like reference numerals
are used to refer to like elements throughout . In the follow
ing description , for purposes of explanation , numerous spe
cific details are set forth in order to provide a thorough
understanding of the claimed subject matter . It may be
evident , however , that the claimed subject matter may be
practiced without these specific details . In other instances ,
well - known structures and devices are shown in block
diagram form in order to facilitate describing the claimed
subject matter .

A. Introduction

[0025] FIG . 1 is an illustration of an example scenario 100
featuring a server set 106 that processes workloads 104 on
behalf of clients 102. In this example scenario 100 , the
server set 106 comprises a distributed query processing
system that accepts queries from clients 102 and processes
the queries over a data set . However , the example scenario
100 may similarly apply to a variety of workloads 104 , such
as content generation , media rendering and presentation ,
communication exchange , simulation , supercomputing , etc.
[0026] In this example scenario 100 , the server set 106
comprises a set of server 108 that respectively perform a task
110. For example , a pair of intake servers 108 may serve as
a front - end , client - facing interface that accepts queries to be
processed on behalf of the clients 102 ; a query processing
server 108 that parses queries , such as translating the query
from a query language into a sequence of logical relation
ships to be applied over the data set ; and a pair of storage
servers 108 that store a replica or a portion of the data set
over which the queries are to be applied . The servers 108
may be arranged such that the workloads 104 of the clients
102 are processed according to a process path 112 , e.g. , a
sequence of servers 108 that respectively apply a task 110 to
the workload 104 and deliver the partially processed work
load 104 to the next , downstream server 108 in the process
path 112. The process path 112 may enable a pipelined
evaluation of workloads 104 that enable the servers 108 to
apply the tasks 110 in the manner of an assembly line ,
thereby reducing idle processing capacity and promoting the
scalability of the server set 106 to handle a significant
volume of workloads 104 in a concurrent manner .
[0027] As further shown in the example scenario 100 of
FIG . 1 , different process paths 112 may be utilized for
different workloads 104 ; e.g. , the first intake server 108 may
receive workloads 104 from a first set of clients 102 and / or
geographic regions while the second intake server 108

receives workloads 104 from a second set of clients 102
and / or geographic regions . Similarly , the first workload 104
may present a first query over the portion of the database
stored by the first storage server 108 , while the second
workload 104 may present a second query over the portion
the database stored by the second storage server 108. Con
versely , the process paths 112 of different workloads 102
may coincide through one or more servers 108 ; e.g. , both
workloads 104 utilize the same query processing server 108 .
[0028] As further shown in the example scenario 100 of
FIG . 1 , the workloads 104 may be associated with various
kinds of performance constraints . As a first such example ,
the first workload 104 may be particularly sensitive to
latency ; e.g. , the first workload 104 may comprise time
sensitive data that the client 102 seeks to process in an
expedited manner , and delays in the completion of the
workload 104 may be highly visible , and may reduce or
negate the value of the completed workload 104. As a
second such example , the second workload 104 may involve
fluctuating volume , such as a data - driven service that is
sometimes heavily patronized by users and other times is
used by only a few users . The second workload 104 may
therefore be sensitive to scalability , and may depend upon
comparatively consistent processing behavior of the server
set 106 to handle the second workload 104 even as demand
scales upward . The performance dependencies may be
driven , e.g. , by the computational constraints of the work
load 104 ; the intended uses of the results of the processing ;
the circumstances of an application for which the workload
104 is performed ; and / or the preferences of the client 102
submitting the workload 104. Moreover , the sensitivities
and / or tolerances of different clients 102 and workloads 104
may vary ; e.g. , the first workload 104 may present a highly
consistent and regular volume such that which scalability is
not a concern , while the second client 102 is able to tolerate
reasonable variations in latency 114 , such as marginally
delayed completion of the workloads 104 , as long as pro
cessing is completed correctly at peak volume .
[0029] Due to the performance dependencies of the work
loads 104 , the server set 106 may extend to each client 102
a performance guarantee 114 of a performance capability of
the server set 106 to handle the workload 104. For example ,
the server set 106 may extend to the first client 102 a
performance guarantee 114 that processing of the majority
of workloads 104 (e.g. , 95 % of workloads 104) will com
plete within 10 milliseconds . For the second client 102 , the
server set 106 may offer a performance guarantee 114 of
correct processing of the second workload 104 up to a
defined volume , such as 1,000 requests per second . The
server set 106 may be arranged to fulfill the performance
guarantees 114 of the workloads 104 , e.g. , by supplement
ing , adapting , and / or optimizing the configuration of servers
108 comprising the data set .
[0030] When a server set 106 is arranged such that a
particular server 108 processes different workloads 104 ,
particularly for different clients 102 , problems may arise due
to the concurrent and / or consecutive sharing of the server
108. As a first example , the server 108 may have to secure
and isolate the workloads 104 of the first client 102 from the
workloads 104 of the second client 102 , e.g. , to prevent the
second load 104 from accessing proprietary information of
the first client 102 and tampering with the operation of the
first workload 104. The significance of isolation may grow
with the scalability of the server set 106 ; e.g. , a particular

US 2019/0342380 A1 Nov. 7 , 2019
4

server 108 may process hundreds or even thousands of
workloads 104 of various clients 102 , and safeguarding the
information of each client 102 may be a high priority . As a
second example , the server 108 may comprise a limited set
of computational resources , such as processor capacity ,
storage capacity , and network bandwidth . An overconsump
tion of the computational resources of the query processing
server 108 by the first workload 104 may create a shortage
of computational resources of the server 108 for the second
workload 104 , such as limited processing capacity ; an
exhaustion of available storage ; and / or constrained network
bandwidth . Such overconsumption by the first workload 104
may lead to delays or even a failure in the processing of the
second workload 104 , including a failure of the performance
guarantee 114 of the second workload 104 , such as an
inability of the query processing server 108 to scale up in
order to handle peak volume of the second client 102. In
view of such concerns , techniques may be utilized to allo
cate and compartmentalize the computational resources of
the server 108 for each workload 104 , such as processor
time - slicing and per - workload quotas or caps on storage and
network capacity . Using such techniques , a server 108 may
limit the adverse effects of an overconsumption of resources
to the workload 104 responsible for the overconsumption ;
e.g. , increased processing demand by the first workload 104
may result in delayed completion of the first workload 104
without impacting the processing of the second workload
104. However , resource limitations may also consume com
putational resources (e.g. , processor time - slicing among a
set of workloads 104 may present overhead due to context
switching) . Such inefficiency may scale with the scalability
of the server set 106 , such as using a particular server 108
to process hundreds or even thousands of workloads 104 , so
the isolation and allocation techniques may have to be
implemented with careful attention to efficiency .
[0031] Other developments may also present a potential
source of failure of a performance guarantee 114 of a
particular workload 104. For example , computational
resources may be limited by systemic factors , such as a
shortage of storage capacity due to a failure of a hard disk
drive in a storage array , or a surge in a computational
process , such as a background maintenance process . An
introduction of line noise into a network connection , such as
due to electromagnetic interference or a faulty cable , may
lead to diminished throughput and increased latency . The
server set 106 may experience a failure of a particular server
108 and may have to re - route the workload 104 of the failed
server to other servers 108 of the server set 106 , thereby
increasing the computational load of the individual servers
108. Any such change in the performance of the server set
106 may interfere with the process path 112 of a workload
104 , which may risk failing the performance guarantee 114 .
[0032] In view of such risks , load balancing techniques
are often utilized to detect and mitigate computational
overload of a particular server 108. For example , the respec
tive servers 108 of the server set 106 may include a
monitoring process of a performance capability , such as
available processor capacity , storage , network throughput ,
and latency . The performance capabilities may also include
considerations such as resiliency to data loss , e.g. , the
volume of data stored by the server 108 that has not yet been
transmitted to a replica , as a measure of the risk of data loss
in the event of a failure of the server 108. The server 108
may track the performance capabilities and , if detecting a

potential shortage that risks failing a performance guarantee
114 , may invoke a variety of “ self - help ” measurements to
alleviate the shortage . For example , in the event of a
shortage of processing capacity , the server 108 may place
the processor into a “ boost ” mode ; awaken and utilize
dormant processing capacity , such as additional processing
cores ; and / or reduce or suspend some deferrable processing ,
such as maintenance tasks . In the event of a shortage of
storage capacity , the server 108 may delete or compress data
that is not currently in use , including significant data that
may later be restored from a replica . In the event of a
shortage of network capacity , the server 108 may suspend
processes that are consuming network capacity , or shift
network bandwidth allocation from processes that are tol
erant of reduced network bandwidth and latency to pro
cesses that are sensitive to constrained network bandwidth
or latency .
[0033] Alternatively or additionally to such “ self - help ”
techniques , the server 108 may report the performance
capability shortage to a network administrator or network
monitoring process , which may intercede to reconfigure the
server set 106. For example , the computational load of a
storage server 108 may be alleviated by provisioning a new
server 108 , replicating the data set onto the new server 108 ,
and altering process paths 112 to utilize the new server 108 .
However , reconfiguration of the architecture of the server set
106 may be a comparatively expensive step , and / or may
involve a delay to implement , during which time the per
formance guarantee 114 of a workload 104 may fail .
[0034] However , these and other techniques may be inad
equate to address a particular source of interference with the
processing of the server set 106 that may jeopardize perfor
mance guarantees 114 .
[0035] As further illustrated in the example scenario 100
of FIG . 1 , at a second time 122 , a storage server 108 may
encounter a processing capacity shortage 116 that delays the
processing of a workload 104 through the storage server
108. Such delay by the storage server 108 may lead to a lag
in the acceptance by the storage server 108 of the workload
104 delivered the upstream query processin server 108 .
That is , the query processing server 108 may complete the
task 110 of parsing a number of queries that are to be applied
by the second storage server 108 , but the second storage
server 108 may not be ready to accept the parsed queries . In
some cases , the acceptance rate of the second storage server
108 may be diminished ; in other cases , the acceptance rate
of the second storage server 108 may be reduced to zero ,
such as an overflow of an input queue that the query
processing server 108 uses to record parsed queries for
processing by the second storage server 108. The interface
between the query processing server 108 and the storage
server 108 may therefore experience a processing jam 118
that interferes with the delivery of the partially processed
workload 104 from the query processing server 108 to the
storage server 108 .
[0036] The query processing server 108 may respond to
the processing jam 118 in numerous ways . For example , the
query processing server 108 may retry the delivery of the
workload 104 for a period of time , in case the processing jam
118 is ephemeral and is momentarily alleviated . The query
processing server 108 may utilize an outbound queue for the
workload 104 that the storage server 108 may be able to
work through and empty when the processing capacity
shortage 116 is alleviated , or that may be transferred to a

US 2019/0342380 A1 Nov. 7. 2019
5

replica of the storage server 108 following a reconfiguration
of the server set 106. However , these techniques may also
fail if the processing jam 118 is prolonged and a substitute
for the storage server 108 is unavailable . The outbound
queue of the query processing server 108 may also overflow ,
or the workloads 104 allocated to the query processing
server 108 may begin to starve , inducing a failure of the
performance guarantee 114. In some cases , the source of the
fault may be misattributed to the query processing server
108 , since the performance guarantees 114 failed while the
query processing server 108 retained the workloads 104 for
a prolonged period . For example , an automated diagnostic
process may identify the query processing server 108 as a
processing bottleneck , and may initiate a failover of the
query processing server 108 that fails to resolve the actual
limitation of the performance of the server set 106 .
[0037] As further illustrated in the example scenario 100
of FIG . 1 , at a third time 124 , even more significant
problems may arise when the processing capacity shortage
116 of the storage server 108 spills over to create a process
ing capacity shortage 116 of the upstream server . For
example , the volume of completed workloads 104 that the
query processing server 108 that are pending delivery to the
storage server 108 may cause delays in the handling of other
workloads 104 by the query processing server 108. This
backward propagation of the processing capacity shortage
116 may create processing jam 118 in the interfaces of the
query processing server 108 not with the second intake
server 108 along the same process path 112 of the second
workload 104. Moreover , the processing capacity shortage
116 may create a processing jam in the interface with the
first intake server 108 , leading to delayed processing and
completion of the first workload 104 , even though the
process path 112 of the first workload 104 does not include
the second storage server 108. In this manner , the processing
capacity shortage 116 of the second storage server 108 may
induce delays in other servers 108 and process paths 112 of
the server set 106 , and the failure of performance guarantees
114 even of workloads 104 that do not utilize the second
storage server 108 .

[0040] Additionally , because the effects of a processing
jam 118 may spill over onto other servers 108 in a process
path 112 , it may be advantageous to provide techniques that
may be easily propagated to a broader neighborhood of the
afflicted server 108 , and therefore expand to incorporate the
other servers 108 in the resolution of the processing capacity
shortage 116 .
[0041] FIG . 2 is an illustration of an example scenario 200
featuring a server set 200 that operates in accordance with
the techniques presented herein . In this example scenario
200 , a server set 106 processes a workload 104 as a sequence
of servers 108 that apply respective tasks 110 as a process
path 112. The workload 104 is associated with a perfor
mance guarantee 114 , such as a maximum total processing
duration of the workload 104 ; a scalability guarantee that the
process path 112 will remain capable of handling the work
load 104 at a higher volume ; and / or a resiliency of the server
set 108 to data loss , such as a maximum volume of data of
the workload 104 that is not replicated over at least two
replicas and that is therefore subject to data loss .
[0042] At a first time 210 , the servers 108 of the server set
may apply the tasks 110 to the workload 104 , where each
server 108 completes the task 110 on a portion of the
workload 104 and delivers the partially completed workload
104 to the next downstream server 108 of the process path
112. Additionally , the servers 108 may individually monitor
the performance capabilities 202 , and compare the perfor
mance capabilities 202 with the performance guarantee 114 .
For example , if the performance guarantee 114 comprises a
maximum latency , such as 10 milliseconds , the respective
servers 108 may monitor the duration of completing the task
110 over a selected portion of the workload 104 to ensure
that the task 110 is completed within 2.5 milliseconds on
each server 108. If the performance guarantee 114 comprises
a maximum volume of unreplicated data that is subject to
data loss , the server 108 may monitor and manage a queue
of unreplicated data that is awaiting synchronization with a
replica . In this manner , the respective servers 108 may
ensure that the performance capabilities 202 of the indi
vidual servers 108 are sufficient to satisfy the performance
guarantee 114 ; such that maintaining adequate individual
performance capabilities 202 of all servers 108 in the server
path 112 results in a satisfaction of the performance guar
antee .
[0043] However , at a second time 212 , the third server 108
in the process path 112 may detect a diminished perfor
mance capability 202 , such as limited processing capacity ,
storage capacity , or network bandwidth . Comparison of the
diminished performance capability 202 with the perfor
mance guarantee 114 may reveal a processing capacity
shortage 116 that introduces a risk 204 of failing the per
formance guarantee 114 for the workload 114 .
[0044] In some circumstances , the third server 108 may be
capable of utilizing “ self - help ” measures to restore the
performance capability 202. In other circumstances , the
processing capacity shortage 116 may rapidly be identified
as severe and unresolvable , such as a complete failure of a
storage device that necessitates substitution of the third
server 108. However , in some circumstances , the diminished performance capability 202 may be resolved by temporarily
reducing the workload 104 handled by the third server 108 .
Such reduction of the workload 104 may be achieved by
reducing the delivery of the workload 104 to the third server
108 by the upstream servers 108 of the process path 112 .

B. Presented Techniques
[0038] In view of the problems depicted in the example
scenario 100 of FIG . 1 , a server set 106 that handles a variety
of workloads 104 and process paths 112 , such as multitenant
distributed server sets 106 , may benefit from the use of
techniques to detect and alleviate processing jams 118 that
occur between servers 108 , wherein a processing capacity
shortage 116 of a downstream server 108 impacts the
performance capabilities of an upstream server 108 .
[0039] Additionally , because such incidents may occur
suddenly , may quickly present risks to the failure of a
performance guarantee 114 , and may often be only transient ,
it may be advantageous to utilize techniques that may be
applied rapidly and without involving a significant and
potentially expensive allocation of resources , such as induc
ing failover of the afflicted server 108 to a substitute server
108. It may also be advantageous to utilize techniques that
may be applied automatically in the locality of the afflicted
server 108 , without necessarily resorting to a centralized
manager that holistically evaluates the server set 106 to
identify potential solutions , and / or without involving a
human administrator who may not be able to respond to the
processing capacity shortage 116 in due time .

US 2019/0342380 A1 Nov. 7 , 2019
6

first server 108 , as the intake point of the workload 104 , may
reduce the commitment of the entire process path 112 to a
smaller workload volume over which the performance capa
bility 202 may be guaranteed even while afflicted with the
processing capacity shortage 116. In this manner , the back
ward propagation of performance capability alerts 206 and
the application of a rate limit 208 the task 110 of the second
server 108 operate as a form of “ backpressure ” on the
upstream servers 108 of the process path 112 , which reduces
the computational overload of the third server 108 and
promotes the satisfaction of the performance guarantee 114
of the server set 106 over the workload 104 in accordance
with the techniques presented herein .

C. Technical Effects

Such reduction may provide a window of opportunity in
which the third server 108 may apply the available perfor
mance capabilities 202 to a workload 104 of reduced vol
ume , which may enable the third server 108 to catch up with
the volume of the workload 104. For instance , the third
server 108 may utilize an input buffer of workloads 104
delivered by the upstream server 108. If the rate at which the
workload 104 is delivered into the input buffer exceeds the
rate at which the third server 108 removes and completes the
workload 104 from the input buffer , the input buffer may
steadily grow to reflect a deepening processing queue with
a growing latency . Reducing the input rate of delivery of the
workload 104 into the input buffer below the rate at which
the third server 108 takes the workload 104 out of the input
buffer may shrink the input buffer and enable the third server
108. When the input buffer is depleted or at least reduced to
an acceptable latency , and / or the cause of the diminished
performance capability 202 and processing capacity short
age is resolved , the input rate to the input buffer may be
restored .
[0045] As further shown in the example scenario 200 of
FIG . 2 , the reduction of the delivery rate of the workload to
the third server 108 may be achieved through coordination
with the upstream servers 108. At a third time point 214 ,
responsive to detecting the processing capacity shortage 116
and identifying the risk 204 of failing the performance
guarantee 114 , the third server 108 may transmit a perfor
mance capability alert 206 to the upstream server 108. The
second server may receive the performance capability alert
206 and respond by applying a rate limit 208 the task 110
performed on the workload 104 by the second server 108 .
The rate limit 208 may comprise , e.g. , slowing the rate at
which the task 110 is performed on the workload 104 , such
as by reducing the processing priority of the task 110 , a
processor rate or core count of a processor that handles the
task 110 , or an allocation of network bandwidth used by the
task 110. The rate limit 208 may also comprise slowing the
acceptance rate of the workload 104 by the second server
108 from the upstream first server 108 and thereby reducing
the rate of the completed workload 104 delivered to the third
server 108. The rate limit 208 may also comprise enqueuing
the workload 104 received from the upstream first server
108 for a delay period ; and / or enqueuing the workload 104
over which the task 110 has been completed for a delay
period before attempting delivery to the third server 108 .
[0046] The second server 108 may continue to apply the
rate limit 208 to task 110 for the duration of the processing
capacity shortage 116 of the third server 108. For example ,
the third server 108 may eventually report an abatement of
the processing capacity shortage 116 , or the second server
108 may detect such abatement , e.g. , by detecting an emp
tying of the outbound queue to the third server 108 , at which
point the second server 108 may remove the rate limit 208
and resume unrate limited processing of the task 110 for the
workload 104. Alternatively , if the processing capacity
shortage 116 is prolonged or indefinite , or if the second
server 108 identifies that applying the rate limit 208 to the
task 110 may impose a new risk 204 of failing the perfor
mance guarantee 114 , the second server 108 may propagate
the performance capability alert 206 to the next upstream
server 108 of the process path 112 , i.e. , the first server 108 .
The first server 108 may similarly respond to the perfor
mance capability alert 206 by applying a rate limit 208 to the
task 110 of the first server 108 over the workload 104. The

[0047] A first technical effect that may arise from the
techniques presented herein involves the resolution of the
processing capacity shortage 116 of a downstream server
108 and the risk 204 of failing the performance guarantee
114 of the workload 104 through the application of back
pressure on upstream servers 108 of the process path 112 .
[0048] The use of a rate limit 208 by the second server 108
in accordance with the techniques presented herein may
effectively address the process capacity shortage 116 and the
risk 204 of failure of the performance guarantee 114 of the
workload 104 in numerous ways . As a first such example , it
may be feasible for the second server 108 to apply the rate
limit 208 to the task 110 may be feasible by the second
server 108 without the introduction of the rate limit 208
exacerbating the risk 204 of failing the performance guar
antee 114. For example , the second server 108 may have a
surplus performance capability 202 , and may be capable of
working through the workload 104 significantly faster than
required by the performance guarantee 114 (e.g. , the second
server 108 may have a maximum allocation of 2.5 millisec
onds to perform the task 110 over the workload 104 within
the performance guarantee 114 , but may be capable of
completing the task 110 in only 0.7 milliseconds) . That is ,
the application of the rate limit 208 to the task 110 may
offload some of the delay caused by the processing capacity
shortage 116 from the third server 108 to the second server
108 , thus enabling the third server 108 to work through a
backlog of the workload 104 and restore the performance
capability 202 .
[0049] As a second such example , the second server 108
and third server 108 may share two workloads 104 , wherein
the processing capacity shortage 116 may introduce a risk
204 of failing the performance guarantee 114 of the first
workload 104 , but may pose no risk 204 of failing the
performance guarantee 114 of the second workload 104
(e.g. , the first workload 104 may be sensitive to latency ,
while the second workload 104 may be relatively tolerant of
latency) . The application of the rate limit 208 to the task 110
of the second server 108 may reduce the rate of delivery to
the third server 108 of both the first workload 104 and the
second workload 104. The reduced volume of the second
workload 104 may enable the third server 108 to apply the
performance capability 202 to work through a backlog of the
first workload 104 and therefore alleviate the processing
capacity shortage 116 , without introducing a risk 204 of
failing a performance guarantee 114 for the second workload
104 that is not significantly affected by increased latency .
[0050] As a third such example , the use of a performance
capability alert 206 and rate limit 208 may be applied to

US 2019/0342380 A1 Nov. 7. 2019
7

further upstream servers 108. For example , in the example
scenario 200 of FIG . 2 , the second server 108 may be unable
to apply a rate limit 208 to the task 110 without creating a
further risk 204 of failing the performance guarantee 114
(e.g. , the margin between the performance capability 202 of
the second server 108 and the performance guarantee 114
may already be thin) . Alternatively , the rate limit 208 may
initially be applied to the task 110 by the second server 108 ,
but a protracted and / or unresolvable processing capacity
shortage 116 by the third server 108 may eventually render
the rate limit 208 insufficient , such as an overflow of the
outbound queue of the second server 108 , or where the
application of the rate limit 208 to the task 110 introduces a
risk 204 of failing a performance guarantee 114 of another
workload 104 over which the server 108 applies the task
110. In these and other ways , the “ backpressure ” induced by
the backward propagation of the performance capability
alert 206 and the application of the rate limit 208 to a task
110 of an upstream server 108 may effectively alleviate the
processing capacity shortage 116 of the downstream server
108 .

[0052] A third technical effect that may arise from the
techniques presented herein involves the extension of the
process to reduce or avoid the risk 204 of failing the
performance guarantee 114 altogether . In the example sce
nario 200 of FIG . 2 , the first server 108 is positioned at the
top of the process path 112 and serves as an intake point for
the workload 104. If the server set 106 propagates the
performance capability alert 206 all the way to the first
server 108 at the top of the process path 112 , the first server
108 may respond by reducing the acceptance rate of the
workload 104 into the process path 112. That is , rather than
imposing a risk 204 of failing the performance guarantee
114 of a previously accepted workload 104 , reducing the
acceptance rate of the workload 104 into the process path
112 may alleviate the risk 204 altogether by reducing the
volume of the workload 104 over which the performance
guarantee 114 is offered . In more significant cases such as a
protracted or indefinite processing capacity shortage 116 , the
first server 108 may reduce the performance guarantee 114
that is offered for the workload 104 (e.g. , raising a latency
performance guarantee 114 of the workload 104 from 10
milliseconds to 50 milliseconds) , and / or may altogether
refrain from offering a performance guarantee 114 or accept
ing new workloads 104 until the processing capacity short
age 116 is alleviated . In this manner , the “ backpressure ”
techniques presented herein may enable the process path 112
to respond to processing capacity shortages 116 by reducing
the initial commitment of the server set 108 to the workload ,
thus avoiding problems of overcommitment of the server set
108 by only offering performance guarantees 114 that the
process path 112 is capable of fulfilling . Many such tech
nical effects may arise from the processing of the workload
104 by the server set 106 accordance with the techniques
presented herein .

[0051] A second technical effect that may arise from the
techniques presented herein involves the capability of the
server set 106 to respond to performance capacity shortages
in an efficient , rapid , and automated manner . As a first such
example , the techniques presented herein may be applied
without conducting a holistic , extensive analysis of the
capacity of the server set 106 , such as may be performed by
a network monitoring or network administrator , to determine
the ro cause of the processing capacity shortage 116 and
assess the available options . Rather , the server 108 afflicted
by diminished performance capability 202 may simply
detect the processing capacity shortage 116 and transmit the
performance capability alert 206 to the upstream server 108 .
As a second such example , the techniques presented herein
do not involve a significant and potentially expensive recon
figuration of the server set 106 or a commitment of
resources , such as provisioning a substitute server for the
afflicted server 108 , which may involve remapping associa
tions within the server set 106 and / or introduce a delay in the
recovery process . In some cases , the delay involved in
applying the recovery may outlast the duration of the
processing capacity shortage 116. In other cases , the per
formance guarantee 114 for the workload 104 may fail
during the delay involved in applying such heavy recovery
techniques . In some circumstances , such recovery may
impose additional computational load on the afflicted server
108 , thus hastening the failure of the performance guarantee
114. By contrast , the comparatively simple techniques pre
sented herein are applicable merely by transmitting the
performan ance capability alert 206 to the upstream server 108
and causing the second server 108 to apply the rate limit 208
to the task 110 may be applied rapidly and with a negligible
expenditure of resources , and may therefore be effective at
resolving some processing capacity shortages 116 , particu
larly serious but ephemeral shortages , that other techniques
may not adequately address . Moreover , the transmission of
the performance capability alert 206 and the application of
the rate limit 208 to the task 110 utilize currently existing
and available resources and capabilities of the downstream
and upstream servers (e.g. , processor clock rate adjustment ,
adjustment of thread and process priorities , and / or the use of
queues) , and do not depend upon the introduction of com
plex new process management machinery or protocols .

D. Example Embodiments
[0053] FIG . 3 is an illustration of an example scenario 300
featuring some example embodiments of the techniques
presented herein , including an example server 302 that
processes a workload 104 as part of a server set 106. The
example server 302 comprises a processor 304 and a
memory 306 (e.g. , a memory circuit , a platter of a hard disk
drive , a solid - state storage device , or a magnetic or optical
disc) encoding instructions that , when executed by the
processor 304 of the example server 302 , cause the example
server 302 to process the workload 104 in accordance with
the techniques presented herein . More particularly , in this
example scenario 300 , the instructions encode components
of example system 308 that perform various portions of the
presented techniques . The interoperation of the components
of the example system 308 enables the example server 302
to process the workload 104 in accordance with the tech
niques presented herein .
[0054] The example system 308 comprises a task proces
sor 310 , which performs a task 110 of the workload accord
ing to a performance guarantee , wherein the workload 104
is processed through the server set 106 according to a
process path 112 that includes an upstream server 108 and a
downstream server 108 relative to the example server 302 .
The example system 308 also includes a task rate limit 314 ,
which receives a performance capability alert 206 from a
downstream server 108 of the process path 112 , e.g. , in
response to a comparison of the performance capability 202
of the downstream server 108 with the performance guar

US 2019/0342380 A1 Nov. 7 , 2019
8

antee 114 of the workload 104 , which indicates a processing
capacity shortage 116 and a risk 204 of failing the perfor
mance guarantee 114 of the workload 104. Responsive to the
performance capability alert 206 , the task rate limit 314
applies a rate limit 208 to the task 110 performed on the
workload 104 to reduce the computational load of the
downstream server 108. The example system 308 also
includes a workload streamer 312 , which , after completion
of the task 110 on the workload 104 , delivers the workload
104 to the downstream server 108 of the process path 112 .
In this manner , the example system 308 enables the example
server 302 to apply the task 110 to the workload 104 as part
of the process path 112 in accordance with the techniques
presented herein .
[0055] FIG . 4 is an illustration of an example scenario
featuring a third example embodiment of the techniques
presented herein , wherein the example embodiment com
prises an example method 400 of configuring a server 108 to
process a workload 104 in accordance with techniques
presented herein . The example method 400 involves a server
108 comprising a processor 304 , and may be implemented ,
e.g. , as a set of instructions stored in a memory 306 of the
server 108 , such as firmware , system memory , a hard disk
drive , a solid - state storage component , or a magnetic or
optical medium , wherein the execution of the instructions by
the processor 304 causes the server 108 to operate in
accordance with the techniques presented herein .
[0056] The example method 400 begins at 402 and
involves executing 404 , by the server , instructions that cause
the server to perform in the following manner . The execution
of the instructions causes the server 108 to receive 406 a
workload 104 from an upstream server 108 of a process path
112 , wherein the workload 104 is associated with a perfor
mance guarantee 114. The execution of the instructions also
causes the server 108 to perform 408 a task 110 on the
workload 104. The execution of the instructions also causes
the server 108 to identify 410 a performance capability 202
of the server 108. The execution of the instructions also
causes the server 108 to compare 412 the performance
capability 202 with the performance guarantee 114 of the
workload 104. The execution of the instructions also causes
the server 108 to respond to determining that the perfor
mance capability 202 risks failing the performance guaran
tee 114 by transmit 414 a performance capability alert 206
to the upstream server 108. The execution of the instructions
also causes the server 108 to respond to a performance
capability alert 206 received from a downstream server 108
of the process path 112 by rate - limiting 416 the task 110
performed on the workload 104 to reduce the computational
load of the downstream server 108. In this manner , the
example method 400 may enable the server 108 to process
the workload 104 as part of the process path 112 in accor
dance with the techniques presented herein , and so ends at
418 .
[0057] FIG . 5 is an illustration of an example scenario
featuring a third example embodiment of the techniques
presented herein , wherein the example embodiment com
prises an example method 500 of configuring a server set
106 to process a workload 104 that is associated with a
performance guarantee 114 in accordance with techniques
presented herein . The example method 500 involves a server
set 106 comprising a collection of servers 108 respectively
comprising a processor 304 , and may be implemented , e.g. ,
as a set of instructions stored in a memory 306 of the server

108 , such as firmware , system memory , a hard disk drive , a
solid - state storage component , or a magnetic or optical
medium , wherein the execution of the instructions by the
processor 404 causes the server 108 to operate as a member
of the server set 106 in accordance with the techniques
presented herein .
[0058] The first example method 500 begins at 502 and
involves configuring a server 108 of the server set 106 that
is within the process path 112 to process the workload 104
in the following manner . The server 108 performs 506 a task
110 on the workload 104 according to the performance
guarantee 114. The server 108 further receives 508 a per
formance capability alert 206 from the downstream server
108 , wherein the performance capability alert 206 indicates
that a computational load of the downstream server 108 risks
failing the performance guarantee 114 for the workload 104 .
Responsive to the performance capability alert 206 , the
server 108 further rate - limits 510 the task 110 of the server
108 to reduce the workload delivered to the downstream
server 108. After performing the task 110 on the workload
104 , the server 108 further delivers 512 the workload 104 to
a downstream server 108 of the process path 112. In this
manner , the example method 500 may enable the server 108
to operate as part of a server set 106 to participate in the
processing of the workload 104 in accordance with the
techniques presented herein , and so ends at 514 .
[0059] Still another embodiment involves a computer
readable medium comprising processor - executable instruc
tions configured to apply the techniques presented herein .
Such computer - readable media may include various types of
communications media , such as a signal that may be propa
gated through various physical phenomena (e.g. , an electro
magnetic signal , a sound wave signal , or an optical signal)
and in various wired scenarios (e.g. , via an Ethernet or fiber
optic cable) and / or wireless scenarios (e.g. , a wireless local
area network (WLAN) such as WiFi , a personal area net
work (PAN) such as Bluetooth , or a cellular or radio
network) , and which encodes a set of computer - readable
instructions that , when executed by a processor of a device ,
cause the device to implement the techniques presented
herein . Such computer - readable media may also include (as
a class of technologies that excludes communications
media) computer - computer - readable memory devices , such
as a memory semiconductor (e.g. , a semiconductor utilizing
static random access memory (SRAM) , dynamic random
access memory (DRAM) , and / or synchronous dynamic ran
dom access memory (SDRAM) technologies) , a platter of a
hard disk drive , a flash memory device , or a magnetic or
optical disc (such as a CD - R , DVD - R , or floppy disc) ,
encoding a set of computer - readable instructions that , when
executed by a processor of a device , cause the device to
implement the techniques presented herein .
[0060] An example computer - readable medium that may
be devised in these ways is illustrated in FIG . 6 , wherein the
implementation 600 comprises computer - readable
memory device 602 (e.g. , a CD - R , DVD - R , or a platter of a
hard disk drive) , on which is encoded computer - readable
data 604. This computer - readable data 604 in turn comprises
a set of computer instructions 606 that , when executed on a
processor 304 of a server , cause the server to operate
according to the principles set forth herein . For example , the
processor - executable instructions 606 may encode a system
that processes a workload 104 as part of a server set 106 ,
such as the example system 308 of FIG . 3. As another

a

US 2019/0342380 A1 Nov. 7. 2019
9

example , the processor - executable instructions 606 may
encode a method of configuring a server 108 to process a
workload 104 as part of a server set 106 , such as the example
method 400 of FIG . 4. As yet another example , the proces
sor - executable instructions 606 may encode a method of
configuring a server set 106 to process a workload 104 , such
as the example method 500 of FIG . 5. Many such computer
readable media may be devised by those of ordinary skill in
the art that are configured to operate in accordance with the
techniques presented herein .

E. Variations

[0061] The techniques discussed herein may be devised
with variations in many aspects , and some variations may
present additional advantages and / or reduce disadvantages
with respect to other variations of these and other tech
niques . Moreover , some variations may be implemented in
combination , and some combinations may feature additional
advantages and / or reduced disadvantages through synergis
tic cooperation . The variations may be incorporated in
various embodiments (e.g. , the first example server 302
and / or the example system 308 of FIG . 3 ; the example
method 400 of FIG . 4 ; the example method 500 of FIG . 5 ;
and the example device 602 and / or example method 608 of
FIG . 6) to confer individual and / or synergistic advantages
upon such embodiments .
[0062] E1 . Scenarios
[0063] A first aspect that may vary among implementa
tions of these techniques relates to scenarios in which the
presented techniques may be utilized .
[0064] As a first variation of this first aspect , the presented
techniques may be utilized with a variety of servers 108 and
server sets 106 , such as workstations , laptops , consoles ,
tablets , phones , portable media and / or game players , embed
ded systems , appliances , vehicles , and wearable devices .
The server may also comprise a collection of server units ,
such as a collection of server processes executing on a
device ; a personal group of interoperating devices of a user ;
a local collection of server units comprising a computing
cluster ; and / or a geographically distributed colle
server units that span a region , including a global - scale
distributed database . Such servers 108 may be intercon
nected in a variety of ways , such as locally wired connec
tions (e.g. , a bus architecture such as Universal Serial Bus
(USB) or a locally wired network such as Ethernet) ; locally
wireless connections (e.g. , Bluetooth connections or a WiFi
network) ; remote wired connections (e.g. , long - distance
fiber optic connections comprising Internet) ; and / or remote
wireless connections (e.g. , cellular communication) . Addi
tionally , such servers 108 may serve a variety of clients 102 ,
such as a client process on one or more of the servers 108 ;
other servers 108 within a different server set 106 ; and / or
various client devices that utilize the server 108 and / or
server group on behalf of one or more clients 102 and / or
other devices .
[0065] As a second variation of this first aspect , the server
set 106 may present a variety of services that involve
applying tasks 110 to workloads 108. As a first such
example , the service may comprise a distributed database or
data storage system , involving tasks 110 such as receiving
the data ; storing the data ; replicating and / or auditing the
data ; evaluating queries over the data ; and / or running reports
or user - defined functions over the data . As a second such
example , the service may comprise a content presentation

system , such as a news service , a social network service , or
social media service , which may involve tasks 110 such as
retrieving and storing content items ; generating new content
items ; aggregating content items into a digest or collage ; and
transmitting or communicating the content items to clients
102. As a third such example , the service may comprise a
media presentation system , which may involve tasks 110
such as acquiring , storing , cataloging , and archiving the
media objects ; rendering and presenting media objects to
clients 102 ; and / or tracking engagement of the clients 102
with the media objects . As a fourth such example , the service
may comprise a software repository , which may involve
tasks 110 such as storing and cataloging software ; deploying
software to various clients 102 ; and receiving and applying
updates such as patches and upgrades to the software
deployed of the clients 102. As a fifth such example , the
service may comprise a gaming system , which may involve
tasks 110 such as initiating game sessions ; running game
sessions ; and compiling the results of game sessions among
various clients 102. As a sixth such example , the service may
comprise an enterprise operational service that provides
operational computing for an enterprise , which may involve
tasks 110 such as providing a directory of entities such as
individuals and operating units ; exchanging communication
among the entities ; controlling and managing various pro
cesses ; monitoring and logging various processes , such as
machine sensors ; and generating alerts . Those of ordinary
skill in the art may devise a range of scenarios in which a
server set 106 configured in accordance with the techniques
presented herein may be utilized .
[0066] E2 . Performance Capabilities and Performance
Guarantees
[0067] A second aspect that may vary among embodi
ments of the techniques presented herein involves the per
formance capabilities 202 monitored by the servers 108 and
the comparison with performance guarantees 114 over the
workload 104 to identify a processing capacity shortage 116
and a risk 204 of failing the performance guarantee 114 .
[0068] As a first variation of this second aspect , the
performance capabilities 202 may include , e.g. , processor
capacity ; storage capacity ; network bandwidth ; availability
of the server set 106 ; scalability to handle fluctuations in the
volume of a workload 104 ; resiliency to address faults such
as the failure of a server 108 ; latency of processing the
workload 104 through the server set 106 ; and / or adaptability
to handle new types of workloads 104 .
[0069] As a second variation of this second aspect , the
performance guarantees 114 of the workloads 104 may
involve , e.g. , a processing latency , such as a maximum
end - to - end processing duration for processing the workload
104 to completion ; a processing throughput of the workload
104 , such as a sustainable rate of completed items ; a
processing consistency of the workload 104 , such as a
guarantee of consistency among portions of the workload
104 processed at different times and / or by different servers
108 ; scalability to handle a peak volume of the workload 104
to a defined level ; a processing replication of the workload
104 , such as a maximum volume of unreplicated data that
may be subject to data loss ; and / or a minimum availability
of the server set 106 , such as a “ sigma ” level .
[0070] As a third variation of this second aspect , a server
108 may identify the performance capabilities 202 in various
ways . As a first such example , a server 108 may predict the
performance capability of the server 202 over the workload

US 2019/0342380 A1 Nov. 7 , 2019
10

104 , such as an estimate of the amount of time involved in
applying the task 110 to the workload 104 or a realistically
achievable throughput of the server 108. Such predictions
may be based , e.g. , upon an analysis of the workload 104 , a
set of typical performance characteristics or heuristics of the
server 108 , or previous assessments of processing the task
110 over similar workloads 104. Alternatively or addition
ally , the server 108 may measure the performance capability
202 of the server while performing the workload 104. Such
measurement may occur with various granularity and / or
periodicity , and may involve techniques such as low - level
hardware monitors (e.g. , hardware timers or rate meters)
and / or high - level software monitors (e.g. , a timer placed
upon a thread executing the task 110) . As a third such
example , a server 108 may not actively monitor the perfor
mance capability 202 but may receive an alert if an apparent
processing capacity shortage 116 arises (e.g. , a message
from a downstream server 108 of a reduced delivery of the
completed workload 104) .
[0071] As a fourth variation of this second aspect , a server
108 may and compare such performance capabilities 202
with the performance guarantees 114 of the workload 104 in
various ways . As a first such example , the server 108 may
compare an instantaneous measurement of the performance
capability 202 with an instantaneous performance guarantee
114 , such as a current data transfer rate compared with a
minimum acceptable data transfer rate , and / or periodic mea
surements , such as a number of completed tasks 110 over a
workload 104 in a given period vs. quota of completed
tasks 110. As a second such example , the server 108 may
compare a trend in the performance capability 202 , e.g. ,
detecting a gradual reduction of processing capacity over
time that , while currently satisfying the performance guar
antee 114 , may indicate an imminent or eventual risk 204 of
failing the performance guarantee 114 , such as a gradually
diminishing rate of completed tasks 110. As a third such
example , a workload 104 may be associated with a set of at
least two performance guarantees 114 for at least two
performance capabilities 202 and a priority order of the
performance guarantees 114 (e.g. , a first priority of a maxi
mum latency of processing individual tasks 110 over the
workload 104 at a typical rate of 10 milliseconds , but in the
event of an ephemeral failure of the first performance
guarantee 114 , a second priority of a maximum throughput
of processing tasks 110 of the workload 104 within a given
period , such as at least 100 tasks completed per second) .
Such prioritization may enable the performance guarantees
114 to be specified in a layered or more nuanced manner .
The server 108 may compare the respective performance
capabilities 202 of the server 202 according to the priority
order to evaluate the risk 204 of failing the collection of
performance guarantees 114 for the workload 114 .
[0072] As a fifth variation of this third aspect , a perfor
mance capability alert 206 may be relayed from a down
stream server 108 to an upstream server 108 in a variety of
ways . As a first such example , the performance capability
alert 206 may comprise a message initiated by the down
stream server 208 and transmitted to the upstream server 108
in response to the identification of a risk 204 of failing the
performance guarantee 114. The message may be delivered
in - band (e.g. , as part of an ordinary communication stream)
or out - of - band (e.g. , using a separate and dedicated com
munication channel) . As a second such example , the per
formance capability alert 206 may comprise a performance

metric that is continuously and / or periodically reported by
the downstream server 108 to the upstream server 108 (e.g. ,
an instantaneous measurement of processing capacity) ,
where the upstream server 108 may construe a fluctuation of
the metric as a performance capability alert 206 (e.g. , the
downstream server 108 may periodically report its latency in
completing the task 110 over the workload 104 , and the
metric may reveal an excessive latency that is approaching
a maximum latency specified by the performance guarantee
114) . As a third such example , the performance capability
alert 206 may comprise part of a data structure shared by the
downstream server 108 and the upstream server 108 , such as
a flag of a status field or a queue count of a workload queue
provided at the interface between the downstream server 108
and the upstream server 108. As a fourth such example , the
performance capability alert 206 may comprise a function of
the upstream server 108 that is invoked by the downstream
server 108 , such as an API call , a remote procedure call , a
delegate function , or an interrupt that the downstream server
108 initiates on the upstream server 108. Many such tech
niques may be utilized to compare the performance capa
bility 202 to the performance guarantee 14 to identify a risk
204 of failing the performance guarantee 114 of the work
load 104 in accordance with the techniques presented herein .
[0073] E3 . Task Rate - Limiting
[0074] A third aspect that may vary among embodiments
of the presented techniques involves the manner of applying
a rate limit 208 to a task 110 over the workload 104 in
accordance with the techniques presented herein . FIG . 7 is
an illustration of a set 700 of example scenarios featuring
various techniques for rate - limiting a task 110 applied to a
workload 104 of a server 302 .
[0075] As a first variation of this third aspect , illustrated in
a first example scenario 710 , a server 302 may rate limit a
task 110 , responsive to receiving a performance capability
alert 206 from a downstream server 108 , by reducing the
performance capabilities 202 of the server 108. As a first
example , the server 208 may reduce a processor speed 702
of a processor 304 , such as reducing the clock speed or core
count that is applied to orm the task 110 over the
workload 104. As a second example , the server 302 may
reduce a thread priority of the task 110 , such that a multi
processing processor 304 performs increments of the task
110 less frequently , or even suspends the task 110 tempo
rarily if other tasks 110 are of higher priority . Other types of
performance capabilities 202 that may be reduced for the
workload 104 include volatile or nonvolatile memory allo
cation ; network bandwidth ; and / or access to a peripheral
device such as a rendering pipeline . In some scenarios , the
server 302 may rate limit the task 110 , relative to a severity
of the performance capability alert 206 , such as the degree
of constraint on the network capacity of the downstream
server 108 or the pending volume of unprocessed work that
the downstream server 108 has to work through to alleviate
the performance capability alert 206 .
[0076] As a second variation of this third aspect , illus
trated in a second example scenario 712 , a server 302 may
rate limit a task 110 , responsive to receiving a performance
capability alert 206 from a downstream server 108 , by
temporarily refusing to accept the workload 104 from an
upstream server 108 , e.g. , by initiating a processing jam 118 .
The processing jam 118 may be initiated in increments , such
that the upstream server 108 is only capable of sending
batches of the workload 104 to the server 302 in intervals

US 2019/0342380 A1 Nov. 7 , 2019
11

that are interspersed by a cessation of the workload 104
arriving at the server 302. Alternatively or additionally , the
server 302 may reduce an acceptance rate of the workload
104 from the upstream server 108 ; e.g. , the upstream server
108 may utilize an output queue of workload 104 to deliver
to the server 302 , and the server 302 may only check the
output queue at an interval , or at a reduced interval , thereby
slowing the rate at which the server 302 accepts workload
104 from the upstream server 108 and delivers the workload
104 to the downstream server 108 .

[0077] As a third variation of this third aspect , illustrated
in a third example scenario 714 , a server 108 may rate limit
a task 110 , responsive to receiving a performance capability
alert 206 from a downstream server 108 , by utilizing one or
more queues that slow the intake and / or delivery of the
workload 104 to the downstream server 108. As a first such
example , the server 302 may implement an input queue 704
that enqueues the task 110 for the workload 104 for a delay
period , and withdraw the task 110 from the input queue to
perform the task 110 on the workload 104 only after the
delay period . As a second such example , the server 302 may
implement an output queue 706 with a delivery delay that
slows the rate at which processed work is delivered to the
downstream server 108 .
[0078] As a fourth variation of this third aspect , a server
302 may rate limit the task 110 over the workload 104 only
within the performance guarantee 114 of the workload 104 .
For example , the performance guarantee 114 may comprise
a maximum 10 - millisecond latency of processing the work
load 104 through the process path 112 , and a particular
server 302 may be permitted to expend up to 2.5 millisec
onds per task 110 while the task 110 remains in conformity
with the performance guarantee 114. If the server 302
typically performs the task 110 in 0.7 milliseconds , the
server 302 may rate limit the task 110 for up to or close to
an additional 1.8 milliseconds to reduce the rate at which the
workload 104 is delivered to the downstream server 108. If
further rate - limiting is to be applied , instead of introducing
a new risk 204 of failing the performance guarantee 114 , the
server 302 may refrain from further rate - limiting the task
110. Instead , as shown in the fourth example scenario 716 of
FIG . 4 , the server 302 may propagate the performance
capability alert 206 to an upstream server 108. Additionally ,
if the server 302 comprises a first server in the process path
112 that is assigned the task 110 of intake of new workload
708 from one or more clients 102 , the server 302 may rate
limit the workload by reducing an intake rate of the new
workload 708 to the entire process path 112. That is , the
server 302 may only agree to accept a diminished volume of
the new workload 708 for which the performance guarantee
114 is assigned . Alternatively or additionally , the first server
302 may apply the rate limit 208 to the performance guar
antee 114 in an offer 706 provided to the client 102 to extend
the new workload 708 , such as extending a maximum
latency of the performance guarantee from 10 milliseconds
to 20 milliseconds . In this manner , the server 302 may adapt
the commitment offered by the server set 302 toward a
performance guarantee 114 that the process path 12 , includ
ing the server 108 afflicted by a processing capacity shortage
116 , is currently able to guarantee . Many such techniques
may be utilized to rate limit the task 110 of a server 108 in
response to a performance capability alert 206 in accordance
with the techniques presented herein .

[0079] E4 . Process Path Adaptation
[0080] A fourth aspect that may vary among embodiments
of the techniques presented herein involves adjustment of
the process path 112 to adapt to a processing capacity
shortage 116. In some scenarios , rate - limiting the tasks 110
of upstream servers 108 may be adequate to resolve a
processing capacity shortage 116. However , in other sce
narios , the processing capacity shortage 116 may be severe ,
prolonged , and / or of indefinite duration , such that in addi
tion to rate - limiting a task 110 of an upstream server 108 , the
server set 106 may implement more significant steps to
maintain the satisfaction of the performance guarantee 114 .
FIG . 8 is an illustration of a set 800 of example scenarios
that illustrate some of the variations of this fifth aspect .
[0081] As a first variation of this fourth aspect , illustrated
in a first example scenario 808 , a server 302 may respond to
a performance capability alert 206 of a downstream server
108 by redirecting the process path 112 through the server
set 102 to provide a substitute server 802 in lieu of the server
108 exhibiting the performance capacity shortage 116. The
substitute server 802 may be previously allocated and allo
cated and ready for designation as a substitute server 802 , or
may be newly provisioned for 802 and inserted into the
process path 112. Alternatively , the substitute server 802
may already exist in the process path 112 of the workload
104 or in another process path 112 of the server set 104 , and
the task 110 performed by the server 108 may be transferred
to the substitute server 802 along with the workload 104 .
[0082] As a second variation of this fourth aspect , a server
302 may respond to a performance capability alert 206 by
expanding a computational resource set of the server 108
exhibiting the processing capacity shortage 116. As a first
such example , the server 108 may comprise a virtual
machine , and the processing resources allocated to the
virtual machine may be increased (e.g. , raising a thread
priority and / or processing core usage of the virtual
machine) . As a second such example , illustrated in a second
example scenario 810 , the server 108 exhibiting the pro
cessing capacity shortage 116 may be supplemented by the
addition of an xiliary server 804 that expands the pro
cessing capacity of the server 108. For example , the work
load 104 may be shared between the server 108 and the
auxiliary server 804 until the processing capacity shortage
116 of the server 108 is alleviated .
[0083] As a third variation of this fourth aspect , a server 108 exhibiting a processing capacity shortage 116 may
experience a processing capacity shortage 116 that risks
failing a performance guarantee 114 of a first workload 104 ,
but that presents lower or no risk of failing performance
guarantees 114 of other workloads 104 of the server 108 .
The server 108 may therefor prioritize the processing of the
first workload 104 over the other workloads 104 alleviate the
processing capacity shortage 106. As a first such example ,
illustrated in a third example scenario 812 , the server 108
may adjust by reducing a process priority 806 of another
workload 104 that the server 108 processes , e.g. , a workload
104 that involves no performance guarantee 114 , or may
involve a second performance guarantee 114 that is amply
satisfied (e.g. , a dependency upon a different type of per
formance capability of the server 108 , such as a CPU - bound
workload as compared with a network - bound workload) .
The relative adjustment of the process priorities 806 may
enable the server 108 to work through a backlog and resolve
the processing capacity shortage 116. As a second such

US 2019/0342380 A1 Nov. 7. 2019
12

example , where the server 108 processes a third task 110 for
a third workload 104 according to a third process path 112 ,
the server 108 may redirect the second process path for the
third workload 110 through a substitute server 802. The
server 108 may therefore reserve a greater proportion of
computational resources to address the processing capacity
shortage 116 .
[0084] As a fourth variation of this fourth aspect , a server
108 that implements rate - limiting of a task 110 in order to
alleviate a processing capacity shortage 116 of a down
stream server 108 may curtail or end the rate - limiting of the
task 110 based upon an alleviation of the performance
capability shortage 116 of the downstream sever 108. As a
first such example , a downstream server 108 initiating the
performance capability alert 206 may send a notification to
an upstream server 302 applying the rate - limiting to indicate
an abatement of the processing capacity shortage 116. As a
second such example , an upstream server 302 applying
rate - limiting to a task 110 may detect an abatement of the
processing capacity shortage 116 , e.g. , as a depletion of an
output queue of workloads 104 to deliver to the downstream
server 108. As a third such example , the upstream server 302
may apply the rate - limiting only for a set interval , such as
one second , and may then remove the rate - limiting , such that
a persistence of the processing capacity shortage 116 at the
downstream server 108 may result in a second performance
capability alert 206 and a reapplication of the rate limit to the
process 110. In some scenarios , the reapplication may occur
at an increasing interval (e.g. , first one second , then two
seconds , etc.) to reduce an inefficiency of the transmission
and receipt of multiple performance capability alerts 206 ,
which may reduce the ability of the downstream server 108
to alleviate the processing capacity shortage 116 .
[0085] As a fifth variation of this fourth aspect , the adjust
ments of the process paths 112 may be requested and / or
implemented by the server 108 experiencing the processing
capacity shortage 116. As another example , the adjustments
of the processing paths 112 may be requested and / or imple
mented by the upstream server 302 , e.g. , upon determining
that the rate - limiting of the task 110 by the upstream server
302 is insufficient to resolve a processing capacity shortage
116 that is prolonged , indefinite , overly frequent , and / or
unresolvable by rate - limiting . As yet another example , the
adjustments of the processing paths 112 may be imple
mented at the request of an automated network monitor or
network administrator . Many such techniques may be uti
lized to provide further adaptations of the server set 106 , in
conjunction with the rate - limiting of the task 110 by the
upstream server 302 , in accordance with the techniques
presented herein .

mainframe computers , distributed computing environments
that include any of the above systems or devices , and the
like .
[0087] Although not required , embodiments are described
in the general context of " computer readable instructions ”
being executed by one or more computing devices . Com
puter readable instructions may be distributed via computer
readable media (discussed below) . Computer readable
instructions may be implemented as program modules , such
as functions , objects , Application Programming Interfaces
(APIs) , data structures , and the like , that perform particular
tasks or implement particular abstract data types . Typically ,
the functionality of the computer readable instructions may
be combined or distributed as desired in various environ
ments .

[0088] FIG . 9 illustrates an example of a system compris
ing a computing device 902 configured to implement one or
more embodiments provided herein . In one configuration ,
computing device 902 includes at least one processing unit
906 and memory 908. Depending on the exact configuration
and type of computing device , memory 908 may be volatile
(such as RAM , for example) , non - volatile (such as ROM ,
flash memory , etc. , for example) or some combination of the
two . This configuration is illustrated in FIG.9 by dashed line
904 .
[0089] In other embodiments , device 902 may include
additional features and / or functionality . For example , device
902 may also include additional storage (e.g. , removable
and / or non - removable) including , but not limited to , mag
netic storage , optical storage , and the like . Such additional
storage is illustrated in FIG . 9 by storage 910. In one
embodiment , computer readable instructions to implement
one or more embodiments provided herein may be in storage
910. Storage 910 may also store other computer readable
instructions to implement an operating system , an applica
tion program , and the like . Computer readable instructions
may be loaded in memory 908 for execution by processing
unit 906 , for example .
[0090] The term “ computer readable media ” as used
herein includes computer storage media . mputer storage
media includes volatile and nonvolatile , removable and
non - removable media implemented in any method or tech
nology for storage of information such as computer readable
instructions or other data . Memory 908 and storage 910 are
examples of computer storage media . Computer storage
media includes , but is not limited to , RAM , ROM ,
EEPROM , flash memory or other memory technology , CD
ROM , Digital Versatile Disks (DVDs) or other optical
storage , magnetic cassettes , magnetic tape , magnetic disk
storage or other magnetic storage devices , or any other
medium which can be used to store the desired information
and which can be accessed by device 902. Any such com
puter storage media may be part of device 902 .
[0091] Device 902 may also include communication con
nection (s) 916 that allows device 902 to communicate with
other devices . Communication connection (s) 916 may
include , but is not limited to , a modem , a Network Interface
Card (NIC) , an integrated network interface , a radio fre
quency transmitter / receiver , an infrared port , a USB con
nection , or other interfaces for connecting computing device
902 to other computing devices . Communication connection
(s) 916 may include a wired connection or a wireless
connection . Communication connection (s) 916 may trans
mit and / or receive communication media .

F. Computing Environment
[0086] FIG.9 and the following discussion provide a brief ,
general description of a suitable computing environment to
implement embodiments of one or more of the provisions set
forth herein . The operating environment of FIG . 9 is only
one example of a suitable operating environment and is not
intended to suggest any limitation as to the scope of use or
functionality of the operating environment . Example com
puting devices include , but are not limited to , personal
computers , server computers , hand - held or laptop devices ,
mobile devices (such as mobile phones , Personal Digital
Assistants (PDAs) , media players , and the like) , multipro
cessor systems , consumer electronics , mini computers ,

US 2019/0342380 A1 Nov. 7 , 2019
13

[0092] The term " computer readable media ” may include
communication media . Communication media typically
embodies computer readable instructions or other data in a
“ modulated data signal ” such as a carrier wave or other
transport mechanism and includes any information delivery
media . The term “ modulated data signal ” may include a
signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the
signal .
[0093] Device 902 may include input device (s) 914 such
as keyboard , mouse , pen , voice input device , touch input
device , infrared cameras , video input devices , and / or any
other input device . Output device (s) 912 such as one or more
displays , speakers , printers , and / or any other output device
may also be included in device 902. Input device (s) 914 and
output device (s) 912 may be connected to device 902 via a
wired connection , wireless connection , or any combination
thereof . In one embodiment , an input device or an output
device from another computing device may be used as input
device (s) 914 or output device (s) 912 for computing device
902 .
[0094] Components of computing device 902 may be
connected by various interconnects , such as a bus . Such
interconnects may include a Peripheral Component Inter
connect (PCI) , such as PCI Express , a Universal Serial Bus
(USB) , Firewire (IEEE 1394) , an optical bus structure , and
the like . In another embodiment , components of computing
device 902 may be interconnected by a network . For
example , memory 908 may be comprised of multiple physi
cal memory units located in different physical locations
interconnected by a network .
[0095] Those skilled in the art will realize that storage
devices utilized to store computer readable instructions may
be distributed across a network . For example , a computing
device 920 accessible via network 918 may store computer
readable instructions to implement one or more embodi
ments provided herein . Computing device 902 may access
computing device 920 and download a part or all of the
computer readable instructions for execution . Alternatively ,
computing device 902 may download pieces of the computer
readable instructions , as needed , or some instructions may
be executed at computing device 902 and some at computing
device 920 .

disclosed subject matter . The term " article of manufacture ”
as used herein is intended to encompass a computer program
accessible from any computer - readable device , carrier , or
media . Of course , those skilled in the art will recognize
many modifications may be made to this configuration
without departing from the scope or spirit of the claimed
subject matter .
[0099] Various operations of embodiments are provided
herein . In one embodiment , one or more of the operations
described may constitute computer readable instructions
stored on one or more computer readable media , which if
executed by a computing device , will cause the computing
device to perform the operations described . The order in
which some or all of the operations are described should not
be construed as to imply that these operations are necessarily
order dependent . Alternative ordering will be appreciated by
one skilled in the art having the benefit of this description .
Further , it will be understood that not all operations are
necessarily present in each embodiment provided herein .
[0100] Any aspect or design described herein as an
“ example ” is not necessarily to be construed as advanta
geous over other aspects or designs . Rather , use of the word
“ example ” is intended to present one possible aspect and / or
implementation that may pertain to the techniques presented
herein . Such examples are not necessary for such techniques
or intended to be limiting . Various embodiments of such
techniques may include such an example , alone or in com
bination with other features , and / or may vary and / or omit the
illustrated example .
[0101] As used in this application , the term “ or ” is
intended to mean an inclusive “ or ” rather than an exclusive
“ or ” . That is , unless specified otherwise , or clear from
context , “ X employs A or B ” is intended to mean any of the
natural inclusive permutations . That is , if X employs A ; X
employs B ; or X employs both A and B , then “ X employs A
or B ” is satisfied under any of the foregoing instances . In
addition , the articles “ a ” and “ an ” as used in this application
and the appended claims may generally be construed to
mean “ one or more ” unless specified otherwise or clear from
context to be directed to a singular form .
[0102] Also , although the disclosure has been shown and
described with respect to one or more implementations ,
equivalent alterations and modifications will occur to others
skilled in the art based upon a reading and understanding of
this specification and the annexed drawings . The disclosure
includes all such modifications and alterations and is limited
only by the scope of the following claims . In particular
regard to the various functions performed by the above
described components (e.g. , elements , resources , etc.) , the
terms used to describe such components are intended to
correspond , unless otherwise indicated , to any component
which performs the specified function of the described
component (e.g. , that is functionally equivalent) , even
though not structurally equivalent to the disclosed structure
which performs the function in the herein illustrated
example implementations of the disclosure . In addition ,
while a particular feature of the disclosure may have been
disclosed with respect to only one of several implementa
tions , such feature may be combined with one or more other
features of the other implementations as may be desired and
advantageous for any given or particular application . Fur
thermore , to the extent that the terms “ includes ” , “ having ” ,
“ has ” , “ with ” , or variants thereof are used in either the

>>

G. Usage of Terms
[0096] Although the subject matter has been described in
language specific to structural features and / or methodologi
cal acts , it is to be understood that the subject matter defined
in the appended claims is not nece cessarily limited to the
specific features or acts described above . Rather , the specific
features and acts described above are disclosed as example
forms of implementing the claims .
[0097] As used in this application , the terms " component , ”
" module , " " system ” , “ interface ” , and the like are generally
intended to refer to a computer - related entity , either hard
ware , a combination of hardware and software , software , or
software in execution . One or more components may be
localized on one computer and / or distributed between two or
more computers .
[0098] Furthermore , the claimed subject matter may be
implemented as a method , apparatus , or article of manufac
ture using standard programming and / or engineering tech
niques to produce software , firmware , hardware , or any
combination thereof to control a computer to implement the

US 2019/0342380 A1 Nov. 7. 2019
14

detailed description or the claims , such terms are intended to
be inclusive in a manner similar to the term “ comprising . ”
What is claimed is :
1. A server of a server set that performs workloads

according to a performance guarantee , the server compris
ing :

a processor ; and
a memory storing instructions that , when executed by the
processor , cause the server to :
perform a task of the workload according to a perfor
mance guarantee , wherein the workload is processed
through the server set according to a process path ;

receive a performance capability alert from the down
stream server , wherein the performance capability
alert indicates that a computational load of a down
stream server risks failing the performance guarantee
for the workload ;

rate - limit the task performed on the workload to reduce
the computational load of the downstream server ;
and

after completing the task , deliver the workload to the
downstream server of the process path .

2. The server of claim 1 , wherein rate - limiting the task for
the workload further comprises : refusing to accept the
workload from an upstream server .

3. The server of claim 1 , wherein rate - limiting the task for
the workload further comprises : slowing an acceptance rate
of the workload from an upstream server .

4. The server of claim 1 , wherein rate - limiting the task for
the workload further comprises :
enqueuing the task for the workload in an input queue for

a delay period ; and
withdrawing the task from the input queue to perform the

task of the workload after the delay period .
5. The server of claim 1 , wherein rate - limiting the task for

the workload further comprises : rate - limiting a processing
rate of the task within the performance guarantee .
6. The server of claim 1 , further comprising : responsive to

receiving the performance capability alert from the down
stream server , propagating the performance capability alert
to an upstream server .

7. The server of claim 1 , wherein :
the server further comprises an intake server that accepts

the workload from a client into the process path ; and
rate - limiting the task for the workload further comprises :

refusing to accept the workload into the process path .
8. The server of claim 1 , wherein the performance guar

antee involves a performance capability selected from a
performance capability set comprising :

a processing latency of the process path for the workload ;
a processing throughput of the process path for the
workload ;

a processing consistency of the process path for the
workload ; and

a processing replication of the workload within the server
set .

9. A method of configuring a server of a server set to
participate in workloads , the method comprising :

executing , by a processor of the server , instructions that
cause the server to :
receive a workload from an upstream server of a

process path , wherein the workload is associated
with a performance guarantee ;

perform a task on the workload ;

identify a performance capability of the server ,
compare the performance capability with the perfor
mance guarantee of the workload ;

responsive to determining that the performance capa
bility risks failing the performance guarantee , trans
mit a performance capability alert to the upstream
server ; and

responsive to receiving a performance capability alert
from a downstream server of the process path , rate
limit the task performed on the workload to reduce
the computational load of the downstream server .

10. The method of claim 9 , wherein identifying the
performance capability of the server further comprises :
predicting the performance capability of the server perform
ing the workload .

11. The method of claim 9 , wherein identifying the
performance capability of the server further comprises :
measuring the performance capability of the server while
performing the workload .

12. The method of claim 9 , wherein :
the performance guarantee further comprises a set of

performance guarantees for at least two performance
capabilities and a priority order ; and

comparing the performance capability with the perfor
mance guarantee further comprises : comparing the
performance capabilities according to the priority
order .

13. The method of claim 9 , wherein executing the instruc
tions further causes the server to , responsive to an alleviation
of the performance capability alert , reduce the rate - limiting
of the task for the workload .

14. A method of configuring a server set to perform a
workload according to a performance guarantee , the method
comprising :

configuring a server of a process path of the server set to
process a workload by :
performing a task on the workload according to the

performance guarantee ;
receiving a performance capability alert from a down

stream server of the process path , wherein the per
formance capability alert indicates that a computa
tional load of the downstream server risks failing the
performance guarantee for the workload ;

rate - limiting the task of the server to reduce the work
load delivered to the downstream server , and

after performing the task , delivering the workload to
the downstream server .

15. The method of claim 14 , further comprising : respon
sive to the performance capability alert , redirecting the
process path through the server set to provide a substitute
server for the downstream server .

16. The method of claim 14 , wherein :
the downstream server is further processing a second task

for a second workload according to a second process
path ; and

the method further comprises : redirecting a second pro
cess path for the second workload to provide a substi
tute server for the downstream server .

17. The method of claim 14 , further comprising , respon
sive to the performance capability alert :

identifying a second workload of the process path for
which the server set is satisfying a second performance
guarantee ; and

US 2019/0342380 A1 Nov. 7 , 2019
15

increasing a processing priority of the workload relative
to the second workload .

18. The method of claim 14 , wherein :
the downstream server is processing the workload using a

computational resource set ; and
the method further comprises : responsive to the perfor
mance capability alert , expanding the computational
resource set of the downstream server .

19. The method of claim 18 , wherein expanding the
computational resource set of the downstream server further
comprises :

selecting an auxiliary server to supplement the down
stream server ; and

sharing the workload between the downstream server and
the auxiliary server .

20. The method of claim 14 , further comprising : respon
sive to the performance capability alert , transferring a com
putational task from the downstream server to a substitute
server .

