wo 2013/147878 A1 | I 00N O OO0 00RO

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

3 October 2013 (03.10.2013)

WIPOIPCT

(10) International Publication Number

WO 2013/147878 Al

(51

eay)

(22)

(25)
(26)
1

(72)
(73)

International Patent Classification:

GOG6F 9/46 (2006.01) GO6F 13/14 (2006.01)
GO6F 9/38 (2006.01)
International Application Number:
PCT/US2012/031634

International Filing Date:
30 March 2012 (30.03.2012)

English
Publication Language: English

Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mision College
Boulevard, MS: RNB-4-150, Santa Clara, California 95052
(US).

Inventors; and

Inventors/Applicants (for US only): MERTEN, Matthew
C. [US/US]; 898 N.E. Eaglenest Court, Hillsboro, Oregon
97124 (US). LI, Tong [CN/US]; 15159 N.W. Decatur
Way, Portland, Oregon 97229 (US). KADGI, Vijaykumar

Filing Language:

(74

(8D

B. [IN/US]; 14945 N.W. Deerfoot Lane, Portland, Oregon
97229 (US). SRINIVASAN, Srikanth T. [US/US]; 12572
N.W. Bayonne Lane, Portland, Oregon 97229 (US).
WANG, Christine E. [US/US]; 327 N.W. Park Ave., Apt.
1C, Portland, Oregon 97209 (US).

Agents: SHAQO, Kevin G. et al.; Blakely Sokoloft Taylor
& Zafman LLP, 1279 Oakmead Parkway, Sunnyvale, Cali-
fornia 94085 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: PREDICTION-BASED THREAD SELECTION IN A MULTITHREADING PROCESSOR

—

100

Instruction
Prefetch/Fetch
Unit 191

Instruction
Decoder
102

Retirement Unit
104

(——= Buffers/Issug Unit —m
108

[Execution Unit(s) ——m|
103

Thread Selection
Logic
107

Thread Selection
Heuristics
108

Thread Control Logic

106
FIG. 1A
Instruction
—» PrefetchiFetch — ———————- —| Relirement Unit ——»-
Unit 101 104
Feedhacks from Feedbacks from
Other Units Other Units
Thread Selection Thread Selection Thread Selection
Logic for Thread Logic for Thread Logic for Thread
Selection Point 1 Selection Point 2 Selection Point N
Thread Selection Thread Selection Thread Contral Thread Selection
Heuristics Heuiistics Logic Heuristics
1081 1082 o 108N
FIG. 1B

(57) Abstract: A processor includes one or more execution
units to execute instructions of a plurality of threads and
thread control logic coupled to the execution units to predict
whether a first of the plurality of threads is ready for selection
in a current cycle based on readiness of instructions of the
first thread in one or more previous cycles, to predict whether
a second of the plurality of threads is ready for selection in
the current cycle based on readiness of instructions of the
second thread in the one or more previous cycles, and to se-
lect one of the first and second threads in the current cycle
based on the predictions.

WO 2013/147878 A1 |IIWAT 00N AV 00O

(84) Designated States (unless otherwise indicated, for every Declarations under Rule 4.17:

gnMd, Olé[];ﬁ,egﬁ?{’?aé i r%afoﬁgfﬁf?lfi{v?gé?gé?gz’, C;}ZI: — of inventorship (Rule 4.17(iv))
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, Published:
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT,
LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

PREDICTION-BASED THREAD SELECTION IN A MULTITHREADING PROCESSOR

TECHNICAL FIELD

Embodiments of the present invention relate generally to multithreading processors.
More particularly, embodiments of the invention relate to thread selection based on

prediction in a multithreading processor.

BACKGROUND ART

Many modern computer systems are able to execute more than one distinct software
program, or "thread", without having to explicitly save the state for one thread and restore the
state for another thread. For this reason they are referred to as "multi-threaded" computer
systems. In one older approach, called sequential multi-threaded operation, the operating
system or other control mechanism permits the several threads to share resources by
permitting each thread that is a candidate for execution to operate in sequence on the
processor. Changing between threads may be referred to as thread switching. In some of
these older approaches, threads are switched when the currently executing thread executes for
a certain period or reaches a point when it cannot proceed, such as waiting for a memory
access or an input/output (I/O) transfer to finish, or simply to ensure fairness amongst the
tasks. The selection of the next thread to be switched in (permitted use of execution
resources) may be made on the basis of strict priority. In other approaches, a round-robin
approach may be used in thread switching. Several modern microprocessors support what is
known as simultaneous (or concurrent) multi-threaded operation. In these processors, several
threads may execute simultaneously sharing resources in parallel rather than in sequence.

A multithreading processor such as a simultaneous-multithreading (SMT) processor
often requires some control algorithm to select which thread to retire when multiple threads
are ready to retire at the same time. A conventional approach is to round-robin among the
ready threads. For example, for a two-thread SMT processor, the two threads essentially
PING-pong between each other. This approach, however, can consume a lot of power due to

frequent thread switching.

BRIEF DESCRIPTION OF THE DRAWINGS

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

Embodiments of the invention are illustrated by way of example and not limitation in
the figures of the accompanying drawings in which like references indicate similar elements.
Figures 1A and 1B are block diagrams illustrating an example of a processor
according certain embodiments of the invention.

Figure 2 is a block diagram illustrating a thread selection scheme according to one
embodiment of the invention.

Figure 3 is a block diagram illustrating an example of a thread selection according to
another embodiment of the invention.

Figure 4 is a flow diagram illustrating a method for thread selection according to one
embodiment of the invention.

Figure 5 is a flow diagram illustrating a method for thread selection according to
another embodiment of the invention.

Figure 6 is a flow diagram illustrating a method for thread selection according to
another embodiment of the invention.

Figure 7 is a block diagram illustrating an example of a data processing system
according to one embodiment.

Figure 8 is a block diagram illustrating an example of a data processing system

according to one embodiment.

DESCRIPTION OF THE EMBODIMENTS

Various embodiments and aspects of the inventions will be described with reference
to details discussed below, and the accompanying drawings will illustrate the various
embodiments. The following description and drawings are illustrative of the invention and
are not to be construed as limiting the invention. Numerous specific details are described to
provide a thorough understanding of various embodiments of the present invention.
However, in certain instances, well-known or conventional details are not described in order
to provide a concise discussion of embodiments of the present inventions.

Reference in the specification to “one embodiment” or “an embodiment” means that a
particular feature, structure, or characteristic described in conjunction with the embodiment
can be included in at least one embodiment of the invention. The appearances of the phrase
“in one embodiment” in various places in the specification do not necessarily all refer to the

same embodiment.

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

According to some embodiments, an optimized thread selection scheme is utilized to
select a thread that leads to fewer thread switching and still provides high performance. In
one embodiment, in deciding which of a first thread and a second thread should be selected,
for example, for retirement, a thread selection logic of a processor is to predict whether the
first thread and the second thread are ready for selection based on readiness of one or more
instructions (or micro-operations (uOps)) of the first and second threads in a previous cycle.
According to one embodiment, if there is at least one instruction or uOp that was not ready
for selection in the previous cycle (e.g., the last cycle immediately preceding to the current
cycle), the corresponding thread is considered not ready for the current cycle. One of the first
and second threads that is considered ready is then selected based on the predictions of the
first and second threads. The readiness of the instructions or uOps is determined based on
whether the instructions or pOps have been executed by the execution units and ready for
retirement by a retirement unit of a processor.

If both the first and second threads are considered to be ready for selection, for
example, for retirement, according to one embodiment, a contention resolution algorithm is
applied to decide which of the first and second threads should be selected in the current cycle.
In one embodiment, if one of the thread (e.g., first thread) was selected in the last cycle but a
number of consecutive previous selections of the same thread has not exceeded a
predetermined number cycles, the same thread (e.g., first thread) is selected again in the
current cycle. Otherwise, if the number of consecutive previous selections of a thread (e.g.,
first thread) that was selected in the last cycle has reached the predetermined threshold,
another thread (e.g., second thread) is selected for the current cycle. As a result, a thread
would not be switched out even if it was selected in the last cycle, unless it has been selected
for a predetermined number of consecutive cycles. The predetermined threshold may be
configured or programmed dependent upon a specific configuration to reduce amount of
thread switching while maintaining performance of the processor. The thread control logic is
to maintain such thread selection heuristics for certain amount of thread selections of
previous cycles to be utilized for prediction and selection of a thread in the current cycle.
Throughout this application, for the purpose of illustration, thread selection techniques are
described in view of thread retirement purposes; however, the thread selection techniques can
also be utilized for other purposes, such as instruction fetching or execution, etc.

Figure 1A is a block diagram illustrating an example of a processor according one
embodiment of the invention. Processor 100 may be an SMT capable processor available

from Intel Corporation of Santa Clara, California. For example, processor 100 may be a

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

general-purpose processor. Processor 100 may be any of various complex instruction set
computing (CISC) processors, various reduced instruction set computing (RISC) processors,
various very long instruction word (VLIW) processors, various hybrids thereof, or other types
of processors entirely. In one embodiment, processor 100 includes, but is not limited to, an
instruction fetch unit 101, a buffer/issue unit 105, an instruction decoder 102, one or more
execution units 103, and a retirement unit 104.

Instruction fetch unit 101 is configured to fetch or prefetch instructions from an
instruction cache or from memory and store the fetched instructions in buffer/issue unit 105
(also referred to as a reorder buffer). Instruction decoder 102 is to receive and decode
instructions from instruction fetch unit 102 and/or buffer/issue unit 105. Instruction decoder
102 may generate and output one or more micro-operations, micro-code, entry points,
microinstructions, other instructions, or other control signals, which reflect, or are derived
from, the instructions. Instruction decoder 102 may be implemented using various different
mechanisms. Examples of suitable mechanisms include, but are not limited to, microcode
read only memories (ROMs), look-up tables, hardware implementations, programmable logic
arrays (PLAs), and the like.

Execution unit(s) 103, which may include an arithmetic logic unit, or another type of
logic unit capable of performing operations based on instructions (or micro-operations or
uOps). As aresult of instruction decoder 102 decoding the instructions, execution unit 103
may receive one or more micro-operations, micro-code entry points, microinstructions, other
instructions, or other control signals, which reflect, or are derived from, the instructions.
Execution unit 103 may be operable as a result of instructions indicating one or more source
operands (SRC) and to store a result in one or more destination operands (DEST) of a register
set indicated by the instructions. Execution unit 103 may include circuitry or other execution
logic (e.g., software combined with hardware and/or firmware) operable to execute
instructions or other control signals derived from the instructions and perform an operation
accordingly. Execution unit 103 may represent any kinds of execution units such as logic
units, arithmetic logic units (ALUs), arithmetic units, integer units, etc. After execution,
exceptions are handled and retirement is made by retirement unit 104.

Some or all of the source and destination operands may be stored in registers of a
register set or memory. The register set may be part of a register file, along with potentially
other registers, such as status registers, flag registers, etc. A register may be a storage
location or device that may be used to store data. The register set may often be physically

located on die with the execution unit(s). The registers may be visible from the outside of the

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

processor or from a programmer's perspective. For example, instructions may specify
operands stored in the registers. Various different types of registers are suitable, as long as
they are capable of storing and providing data as described herein. The registers may or may
not be renamed. Examples of suitable registers include, but are not limited to, dedicated
physical registers, dynamically allocated physical registers using register renaming,
combinations of dedicated and dynamically allocated physical registers, etc. Alternatively,
one or more of the source and destination operands may be stored in a storage location other
than a register, such as, for example, a location in system memory.

Referring back to Figure 1A, processor 100 further includes thread control logic 106
to determine and inform instruction fetch unit 101 which threads should be switched in for
execution, and therefore which particular instructions should be fetched. The quality of the
thread selection may be enhanced by thread fairness and forward progress information.
According to one embodiment, thread control logic 106 includes a thread selection logic 107
and thread selection heuristics 108. Thread selection heuristics 108 is configured to store
certain amounts of thread selections during previous cycles. For example, thread selection
heuristics 108 may be configured to store thread selection information for prior N
consecutive cycles, as well as readiness of instructions in the prior cycles or alternatively,
based on the real-time readiness information. Based on thread selection heuristics 108 and
the readiness information of instructions and/or pOps, according to one embodiment, thread
selection logic 107 is to select one of the threads in the current cycle and to inform instruction
fetch unit 101 accordingly. The information or signals concerning the actual readiness of
instructions and/or uOps can be obtained from instruction fetch unit 101 and/or retirement
unit 104 and/or buffer/issue unit 105.

According to one embodiment, for each thread selection point in the pipeline, there
can be separate thread selection logic 107-1 to 107-N with separate algorithm and heuristics
108-1 to 108-N as shown in Figure 1B. Over the processor pipeline, there can be multiple
thread selection points. For example, there can be a thread selection point at instruction fetch
unit 101, between instruction fetch unit 101 and buffer/issue unit 105, between execution unit
103 and retirement unit 104, etc. According to one embodiment, each thread selection point
is associated with a separate thread selection logic and thread selection heuristics. Thus, for
retirement, processing logic looks at retirement information and possibly from other units of
the processor, and then feeds that back into retirement unit 104. Similarly, instruction fetch

unit 101 includes feedback from previous fetch operations and other units of the processor.

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

Both instruction fetch unit 101 and retirement unit 104 can receive feedback information
from other units and factor that into the thread selection process.

According to one embodiment, an optimized thread selection scheme is employed by
thread control logic 106 to select a thread (e.g., to be retired) that leads to fewer thread
switching and still provides high performance. In one embodiment, in deciding which of a
first thread and a second thread should be selected, thread selection logic 107 is to predict
whether the first thread and second thread are ready for selection based on thread selection
heuristics 108 of prior cycles. The prediction is performed based on the readiness of
instructions or uOps of the threads in the last cycle immediately preceding the current cycle.
One of the first and second threads is then selected based on the prediction and the
determination. Note that we cannot get perfect information about what is ready in cycle 0.
For example, suppose we have a 4-wide machine where 4 pOps can be ready in a cycle.
Thread selection for cycle 0 happens before the effects of cycle -1 (i.e., 1 cycle earlier) are
fully available. We do not see updated ready bits from those that completed in cycle -1, and
we do not see any information for pOps beyond the potential selection window of 4 uOps in
the previous cycle. But one can see perfect information from updated information in cycle -2
(i.e., 2 cycles earlier). So for the thread that was not selected in cycle -1, one can see those
next 4 nOps, because the full effects of the actions in cycle -2 are now visible in cycle 0. If
both the first and second threads are considered to be ready for selection, according to one
embodiment, a contention resolution algorithm is applied to decide which of the first and
second threads should be selected in the current cycle. In one embodiment, if one of the
thread (e.g., first thread) was selected in the last cycle but a number of consecutive previous
selections of the same thread has not exceeded a predetermined number cycles, thread
selection logic 107 is to select the same thread (e.g., first thread) again in the current cycle.
Otherwise, if the number of consecutive previous selections for retirement of a thread (e.g.,
first thread) that was selected in the last cycle has reached the predetermined threshold,
thread selection logic 107 is to select another thread (e.g., second thread) for the current
cycle. As aresult, a thread would not be switched out even if it was selected in the last cycle,
unless it has been selected for consecutive several cycles. The predetermined threshold may
be configured or programmed dependent upon a specific configuration to reduce amount of
thread switching while maintaining performance of the processor.

Figure 2 is a block diagram illustrating a thread selection scheme according to one
embodiment of the invention. Referring to Figure 2, thread selection scheme 200 includes

prior thread selection heuristics 108 and actual ready information of instructions or uOps of

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

the threads 201 in those prior cycles. Based on information obtained from thread selection
heuristics 108, a prediction is performed on each of threads 201 regarding whether the
threads are likely ready for selection, in this example for retirement. One of the threads 201
can be selected for the current cycle based on the predictions. If all of threads 201 are ready
(or are not ready) for selection, a contention resolution algorithm is applied to select one of
the threads 201 in the current cycle. In this example, C-2 represents an identifier (ID) of the
thread that was selected two cycles ago and C-1 represents an ID of the thread that was
selected one cycle ago. RO is 1 if thread 0 (TO) is predicted ready for selection in the current
cycle and RO is marked as O if thread O is not predicted ready for selection. Similarly, R1 is
marked as 1 if thread 1 (T1) is predicted ready for selection in the current cycle and R1 is
marked as O if thread 1 is not predicted ready for selection. Selection as an output 202
represents the ID of a thread that is selected for the current cycle. Note that in this example,
although two threads are described for the purpose of illustration only, more threads can also
be applied. Similarly, in this example, although thread selection information for two prior
consecutive cycles is maintained as part of thread selection heuristics 108, thread selection
information for more prior cycles may also be maintained.

Thus, instead of thread switching in every cycle (e.g., a PING-pong-PING-pong
scheme), according to one embodiment, a thread that is selected to retire in cycle A will
remain selected in cycle A+1, if it continues to have pOps ready for selection in cycle A+1.
A thread switch happens only in cycle A+2 (in this example, the threshold is 2) if a different
thread is also ready for selection in this cycle A+2. For a two-thread processor, this
essentially performs a “PING-PING-pong-pong” selection scheme between the two threads
when they both have uOps ready for selection. That is, thread switching occurs only if a
thread has been selected in the last two consecutive cycles. For example, if both threads TO
and T1 are ready for selection, and if thread TO has been selected in cycles C-1 and C-2, T1
will be selected in the current cycle (e.g., current cycle 211), or vice versa (e.g., current cycle
212). In this way, the thread switching rate is reduced by a half, which allows various thread-
related signals to reduce toggling, thus saving power. The table in Figure 2 shows the thread
selection scheme 200 for a 2-thread processor. This algorithm can be generalized to perform
a thread switch every N cycles, where the larger N is, the less thread switching happens
(hence less power), but potentially lower SMT performance.

In one embodiment, the thread selection logic is to determine if a thread has pOps
ready for selection in every cycle (i.e., RO and R1 in the table as shown in Figure 2) and,

based on that information, the thread selection logic selects a thread in the same cycle. In one

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

embodiment, instead of calculating accurately if a thread has ready nOps for selection in the
current cycle (which may take a longer time), the previous cycle’s ready information 108 is
used to predict the current cycle 202. For a thread that selected some but not the maximum
uOps last cycle allowed by the microarchitecture, the thread selection logic may not be able
to look up the ready information for the subsequent nOps in time. As a result, certain
heuristics are utilized.

In one embodiment, if in a previous cycle, among all the uOps for the thread that
were selected, in this example, four nOps (0-3) that were possible for selection, uOps 1, 2,
and 3 were all ready for selection, then the thread selection logic predicts that this thread
continues to have pOps ready for selection in the current cycle. Alternatively, the thread
select logic could consider whether uOps 0, 1, 2, and 3 were ready for selection last cycle, or
just uOps 1 and 3, for the thread that was selected last cycle. For a thread that was not
selected last cycle (e.g., a thread was not selected in cycle C-1), the thread selection logic will
have up-to-date information, i.e., no prediction is needed, because timing allows the proper
uOp ready information to be obtained. In one embodiment, a thread is ready for selection if
uOp 0 is ready for selection. In other embodiments, a thread is ready for selection if several
contiguous pnOps are ready nOps, beginning with uOp 0.

Figure 3 is a running example illustrating an example of a thread selection according
to another embodiment of the invention. Referring to Figure 3, in this example, it is assumed
that in each cycle, 0 to 4 nOps can be considered for selection (e.g., for retirement). Since
uOps must be selected in the program order, nOp 1 cannot be selected (even if it is ready) if
uOp 0 is not ready for selection or has not been selected, nOp 2 cannot be selected if uOp 0
or uOp 1 is not ready for selection or has not been selected, and so on. If a thread is ready for
selection, then pOp 0 must be ready for selection and, furthermore, uOp 1, 2, and/or 3 may
be ready for selection too. In cycle 0, TO has uOps A0, B0, and CO ready for selection, but
not DO (e.g., A0, B0, CO, B8), where the letter uniquely identifies a uOp and the number 0
means the pOp belongs to thread 0. A strikethrough letter, such as B8, means that the uOp is
not ready.

In cycle 0, TO (thread 0) has uOps 0, 1, and 2 (e.g., A0, B0, and CO) ready for
selection and T1 has uOps 0-3 (e.g., Al, B1, C1, and D1) ready for selection. However, the
hardware (e.g., retirement unit) cannot know this information in cycle 0 in time; instead, it
only knows about what uOps were actually ready for selection in the previous cycle. Thus, it
needs to predict for both TO and T1 whether they are ready for selection in cycle 0 based on

the previous cycle’s ready information. The result of this prediction is RO and R1, which are

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

fed into the thread selection logic. At the same time the thread selection logic also keeps track
of which thread was selected in each of certain prior cycles, in this example, the past two
cycles. All these 4 signals feed into the thread selection logic as inputs and the output is the
thread selected in the current cycle.

In this example, the thread ready indications for cycle 0 are assumed from the
previous unshown cycle and TO is selected in cycle 0. In cycle 1, thread selection logic looks
at the ready information from cycle 0. Since TO was selected in the previous cycle, a
prediction is performed to predict if TO is ready in cycle 1 based on its ready info in cycle 0.
Since TO had only uOps A0-CO ready for selection in cycle 0, but not D0, it is predicted to
have no uOps ready for selection in cycle 1 (although it indeed has uOps D0O-GO all ready for
selection in cycle 1, as shown in the table, because DO executed and became ready during
cycle 0, i.e., this is an example where the prediction can be incorrect). On the other hand, T1
had uOps A1-D1 ready for selection in cycle 0 and, since it was not selected to retire in cycle
0, its ready info in cycle 0 should remain correct in cycle 1. Thus, T1 is predicted to be ready
in cycle 1. The end resultis RO is set to 0 and R1 1. Therefore, based on the thread selection
scheme, and T1 is selected in cycle 1.

In cycle 2, both TO and T1 are predicted as ready since their pOps 1-3 (e.g., pOps EO-
GO for TO and uOps B1-D1 for T1) were all ready in cycle 1. Due to the “PING-PING-pong-
pong” scheme, T1 is selected again in cycle 2 (because T1 was selected in cycle 1 and the
number of consecutive selections of T1 has not reached the predetermined threshold of two in
this example). In cycle 3, TO is predicted as ready and T1 is not ready (because uOp L1 is
not ready in cycle 2). Thus, TO is selected in cycle 3. Note that even if T1 were predicted as
ready, TO would still be selected since T1 had already been selected for two consecutive
cycles and the “PING-PING-pong-pong” scheme would enforce a thread switch. Note that
the threshold representing a number of consecutive cycles can vary dependent upon a specific
configuration. Higher threshold (e.g., a “PING-PING ... PING-pong-pong ... pong” scheme)
may also be applied.

Figure 4 is a flow diagram illustrating a method for thread retirement according to one
embodiment of the invention. Method 400 may be performed by processor 100 of Figure 1A.
Referring to Figure 4, at block 401, a first thread and a second thread are received for
possible selection (e.g., for retirement) in a current cycle. At block 402, a prediction is
performed on the first thread to determine the likelihood that the first thread is ready for
selection in the current cycle based on readiness of instructions or uOps of the first thread in

a previous cycle or cycles. Similarly at block 403, a prediction is performed on the second

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

thread to determine the likelihood that the second thread is ready for selection in the current
cycle based on readiness of instructions or uQOps of the second thread in a previous cycle or
cycles. At block 404, it is determined whether both of the first and second threads are
predicted ready for selection in the current cycle. If not all of the first and second threads are
predicted ready, at block 405, it is determined whether one of them is ready. If one of them is
ready, at block 408, the ready one is selected for the current cycle. If none of them is ready,
at block 407, the thread that was selected in the previous cycle is selected in the current cycle
(to reduce thread switching). If both threads are predicted ready, at block 406, a contention
resolution algorithm (e.g., PING-PING-pong-pong) is applied to select one of them in the
current cycle. Note that there are other hints that can be used to switch the threads ahead of
time when neither thread is ready. For example, if a memory miss is returning to the core for
thread N, thread N will be selected.

Figure 5 is a flow diagram illustrating a method for thread retirement according to
another embodiment of the invention. Method 500 may be performed as part of blocks 402-
403 of Figure 4. Referring to Figure 5, at block 501, a thread Tn is received for possible
selection (e.g., for retirement)in a current cycle. At block 502, processing logic looks up in
the thread heuristics to determine whether a certain set or number of uOps were ready for
selection in a previous cycle. For the thread that was selected in a previous cycle, this set of
uOps includes uOps 1-3, excluding uOp 0. For the thread that was not selected in a previous
cycle, this set of uOps includes only nOp 0. If not all of the pOps in this set were ready for
selection in the previous cycle, at block 503, the thread Tn is marked is not ready for
selection in the current cycle. Otherwise, at block 504, the thread Tn is marked as ready for
selection in the current cycle. Subsequently, at block 505, readiness of uOps of the thread of
the current cycle is updated in the heuristics, which may be used for predictions in a next
cycle.

Figure 6 is a flow diagram illustrating a method for thread selection according to
another embodiment of the invention. Method 600 may be performed as part of blocks 405-
408 of Figure 4. At block 601, predictions of a first thread (TO) and a second thread (T1) are
received for possible selection in a current cycle of a processor. If not all of them are
predicted ready, at block 606, it is determined whether none of them is ready. If so, at block
607, the thread that was selected in the last cycle is selected in the current cycle to reduce
thread switching. If one of them is ready, at block 602, the ready one is selected in the
current cycle. If both threads are predicted ready, at block 603, it is determined any of the

threads (TO in this example) has been selected for a predetermined number of consecutive

10

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

cycles. If so, at block 605, the other thread (T1 in this example) is selected; otherwise the
same thread (TO in this example) is selected at block 604.

Figure 7 is a block diagram illustrating an example of a data processing system
according to one embodiment of the invention. System 900 may represent any of the systems
described above. For example, processor 901 may be implemented as part of processor 100
of Figure 1A. For example, system 900 may represent a desktop, a laptop, a tablet, a server, a
mobile phone (e.g., Smartphone), a media player, a personal digital assistant (PDA), a
personal communicator, a gaming device, a network router or hub, a wireless access point or
repeater, a set-top box, or a combination thereof. Note that while Figure 7 illustrates various
components of a data processing system, it is not intended to represent any particular
architecture or manner of interconnecting the components; as such details are not germane to
embodiments of the present invention. It will also be appreciated that network computers,
handheld computers, mobile phones, and other data processing systems which have fewer
components or perhaps more components may also be used with embodiments of the present
invention.

Referring to Figure 7, in one embodiment, system 900 includes processor 901 and
chipset 902 to couple various components to processor 901 including memory 905 and
devices 903-904 via a bus or an interconnect. Processor 901 may represent a single processor
or multiple processors with a single processor core or multiple processor cores 909 included
therein. Processor 901 may represent one or more general-purpose processors such as a
microprocessor, a central processing unit (CPU), or the like. More particularly, processor
901 may be a complex instruction set computing (CISC) microprocessor, reduced instruction
set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or
processor implementing other instruction sets, or processors implementing a combination of
instruction sets. Processor 901 may also be one or more special-purpose processors such as
an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a
digital signal processor (DSP), a network processor, a graphics processor, a network
processor, a communications processor, a cryptographic processor, a co-processor, an
embedded processor, or any other type of logic capable of processing instructions. For
example, processor 901 may be a Pentium® 4, Pentium® Dual-Core, Core™ 2 Duo and Quad,
Xeon™ Itanium™, XScale™, Core™ i7, Core™ i5, Celeron®, or StrongARM™
microprocessor available from Intel Corporation of Santa Clara, California. Processor 901 is

configured to execute instructions for performing the operations and steps discussed herein.

11

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

Processor 901 may include an instruction decoder, which may receive and decode a
variety of instructions. The decoder may generate and output one or more micro-operations,
micro-code entry points, microinstructions, other instructions, or other control signals, which
reflect, or are derived from, an original input instruction. The decoder may be implemented
using various different mechanisms. Examples of suitable mechanisms include, but are not
limited to, microcode read only memories (ROMs), look-up tables, hardware
implementations, programmable logic arrays (PLAs), and the like.

The decoder may not be a required component of processor 901. In one or more other
embodiments, processor 901 may instead have an instruction emulator, an instruction
translator, an instruction morpher, an instruction interpreter, or other instruction conversion
logic. Various different types of instruction emulators, instruction morphers, instruction
translators, and the like, are known in the arts. The instruction conversion logic may receive
the bit range isolation instruction, emulate, translate, morph, interpret, or otherwise convert
the bit range isolation instruction, and output one or more instructions or control signals
corresponding to the original bit range isolation instruction. The instruction conversion logic
may be implemented in software, hardware, firmware, or a combination thereof. In some
cases, some or all of the instruction conversion logic may be located off-die with the rest of
the instruction processing apparatus, such as a separate die or in a system memory. In some
cases, the instruction processing apparatus may have both the decoder and the instruction
conversion logic.

Processor 901 and/or cores 909 may further include one or more execution units
coupled with, or otherwise in communication with, an output of the decoder. The term
"coupled" may mean that two or more elements are in direct electrical contact or connection.
However, "coupled" may also mean that two or more elements are not in direct connection
with each other, but yet still co-operate or interact or communicate with each other (e.g.,
through an intervening component). As one example, the decoder and the execution unit may
be coupled with one another through an intervening optional buffer or other component(s)
known in the arts to possibly be coupled between a decoder and an execution unit. Processor
901 and/or cores 909 may further include multiple different types of execution units, such as,
for example, arithmetic units, arithmetic logic units (ALUs), integer units, etc.

Processor 901 may further include one or more register files including, but are not
limited to, integer registers, floating point registers, vector or extended registers, status
registers, and an instruction pointer register, etc. The term "registers" is used herein to refer

to the on-board processor storage locations that are used as part of macro-instructions to

12

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

identify operands. In other words, the registers referred to herein are those that are visible
from the outside of the processor (from a programmer's perspective). However, the registers
should not be limited in meaning to a particular type of circuit. Rather, a register need only
be capable of storing and providing data, and performing the functions described herein. The
registers described herein can be implemented by circuitry within a processor using any
number of different techniques, such as dedicated physical registers, dynamically allocated
physical registers using register renaming, combinations of dedicated and dynamically
allocated physical registers, etc. In one embodiment, integer registers store 32-bit or 64-bit
integer data. A register file may contain extended multimedia SIMD registers (e.g., XMM)
for packed data. Such registers may include 128 bits wide XMM registers and 256 bits wide
registers (which may incorporate the XMM registers in their low order bits) relating to SSE2,
SSE3, SSE4, GSSE, and beyond (referred to generically as "SSEx") technology to hold such
packed data operands.

Processor 901 and/or cores 909 may also optionally include one or more other well-
known components. For example, processor 901 may optionally include instruction fetch
logic, pre-decode logic, scheduling logic, re-order buffers, branch prediction logic, retirement
logic, register renaming logic, and the like, or some combination thereof. These components
may be implemented conventionally, or with minor adaptations that would be apparent to
those skilled in the art based on the present disclosure. Further description of these
components is not needed in order to understand the embodiments herein, although further
description is readily available, if desired, in the public literature. There are literally
numerous different combinations and configurations of such components known in the arts.
The scope is not limited to any known such combination or configuration. Embodiments
may be implemented either with or without such additional components.

Chipset 902 may include memory control hub (MCH) 910 and input output control
hub (ICH) 911. MCH 910 may include a memory controller (not shown) that communicates
with a memory 905. MCH 910 may also include a graphics interface that communicates with
graphics device 912. In one embodiment of the invention, the graphics interface may
communicate with graphics device 912 via an accelerated graphics port (AGP), a peripheral
component interconnect (PCI) express bus, or other types of interconnects. ICH 911 may
provide an interface to I/0 devices such as devices 903-904. Any of devices 903-904 may be
a storage device (e.g., a hard drive, flash memory device), universal serial bus (USB) port(s),
a keyboard, a mouse, parallel port(s), serial port(s), a printer, a network interface (wired or

wireless), a wireless transceiver (e.g., WiFi, Bluetooth, or cellular transceiver), a media

13

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

device (e.g., audio/video codec or controller), a bus bridge (e.g., a PCI-PCI bridge), or a
combination thereof.

MCH 910 is sometimes referred to as a Northbridge and ICH 911 is sometimes
referred to as a Southbridge, although some people make a technical distinction between
them. As used herein, the terms MCH, ICH, Northbridge and Southbridge are intended to be
interpreted broadly to cover various chips who functions include passing interrupt signals
toward a processor. In some embodiments, MCH 910 may be integrated with processor 901.
In such a configuration, chipset 902 operates as an interface chip performing some functions
of MCH 910 and ICH 911, as shown in Figure 8. Furthermore, graphics accelerator 912 may
be integrated within MCH 910 or processor 901.

Memory 905 may store data including sequences of instructions that are executed by
processor 901, or any other device. For example, executable code 913 and/or data 914 of a
variety of operating systems, device drivers, firmware (e.g., input output basic system or
BIOS), and/or applications can be loaded in memory 905 and executed by processor 901. An
operating system can be any kind of operating systems, such as, for example, Windows®
operating system from Microsoft®, Mac OS®/i0S® from Apple, Android® from Google®,
Linux®, Unix®, or other real-time operating systems. In one embodiment, memory 905 may
include one or more volatile storage (or memory) devices such as random access memory
(RAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), static RAM (SRAM), or
other types of storage devices. Nonvolatile memory may also be utilized such as a hard disk
or a flash storage device. Front side bus (FSB) 906 may be a multi-drop or point-to-point
interconnect. The term FSB is intended to cover various types of interconnects to processor
901. Chipset 902 may communicate with other devices such as devices 903-904 via point-to-
point interfaces. Bus 906 may be implemented as a variety of buses or interconnects, such as,
for example, a quick path interconnect (QPI), a hyper transport interconnect, or a bus
compatible with advanced microcontroller bus architecture (AMBA) such as an AMBA high-
performance bus (AHB).

Cache 908 may be any kind of processor cache, such as level-1 (L1) cache, L2 cache,
L3 cache, L4 cache, last-level cache (LLC), or a combination thereof. Cache 908 may be
shared with processor cores 909 of processor 901. Cache 908 may be embedded within
processor 901 and/or external to processor 901. Cache 908 may be shared amongst cores
909. Alternatively, at least one of cores 909 further includes its own local cache embedded
therein. At least one of cores 909 may utilize both the local cache and the cache shared with

another one of cores 909. Processor 901 may further include a direct cache access (DCA)

14

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

logic to enable other devices such as devices 903-904 to directly access cache 908. Processor
901 and/or chipset 902 may further include an interrupt controller, such as an advanced
programmable interrupt controller (APIC), to handle interrupts such as message signaled
interrupts.

An example of embodiments of the invention includes a processor having one or more
execution units to execute instructions of a plurality of threads, thread control logic coupled
to the execution units to select the plurality of threads, where the thread control logic to
predict whether a first of the plurality of threads is ready for selection in a current cycle based
on readiness of instructions of the first thread in one or more previous cycles, predict whether
a second of the plurality of threads is ready for selection in the current cycle based on
readiness of instructions of the second thread in the one or more previous cycles, and select
one of the first and second threads in the current cycle based on the predictions.

The thread control logic is further to determine whether both the first and the second
threads are predicted as ready for selection, and apply a contention resolution algorithm to
select one of the first and second threads in the current cycle, if both the first and the second
threads are predicted as ready for selection. In applying the contention resolution algorithm,
the thread control logic is configured to determine whether the first thread has been selected
for a consecutive number of previous cycles immediately preceding the current cycle that
exceeds a predetermined threshold, select the second thread for the current cycle if the first
thread has been selected for retirement for a consecutive number of previous cycles
immediately preceding the current cycle that exceeds the predetermined threshold, and select
the first thread for the current cycle if the first thread has not been selected for the
consecutive number of previous cycles exceeding the predetermined threshold.

The predetermined threshold is two consecutive cycles. If none of the first and
second threads is predicted as ready for selection, the thread control logic is configured to
select one of the first and second threads that was selected in a previous cycle. In predicting
the first thread, the thread control logic is configured to determine whether at least a
predetermined number or a predetermined set of the instructions of the first thread have been
selected in the previous cycle, indicate the first thread as ready for selection if the
predetermined number or a predetermined set of the instructions of the previous cycle have
been selected, and indicate the first thread as not-ready for selection if fewer than the
predetermined number or a predetermined set of the instructions of the previous cycle have

been selected.

15

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

If the first thread was not selected in the previous cycle, the thread control logic is
configured to determine readiness of the first thread based on actual readiness information of
the instructions. The thread control logic is to maintain heuristics information concerning
readiness of instructions of the first and second threads and thread selections in one or more
prior cycles. The previous cycle is a cycle immediately preceding the current cycle, and
wherein the thread control logic is further to obtain readiness of instructions of the first and
second threads in the current cycle and to store the readiness of instructions as part of the
heuristics information to be utilized in a next cycle following the current cycle. One of the
first and second threads is selected for thread retirement.

An example of embodiments of the invention further includes a method. The method
includes predicting whether a first of a plurality of threads is ready for selection in a current
cycle based on readiness of instructions of the first thread in one or more previous cycles, the
plurality of threads having instructions being executed by one or more execution units of a
processor; predicting whether a second of the plurality of threads is ready for selection in the
current cycle based on readiness of instructions of the second thread in the one or more
previous cycles, and selecting one of the first and second threads in the current cycle based
on the predictions.

The method further includes determining whether both the first and the second threads
are predicted as ready for selection; and applying a contention resolution algorithm to select
one of the first and second threads for selection in the current cycle, if both the first and the
second threads are predicted as ready for selection. The applying the contention resolution
algorithm includes determining whether the first thread has been selected for a consecutive
number of previous cycles immediately preceding the current cycle that exceeds a
predetermined threshold; selecting the second thread for the current cycle if the first thread
has been selected for a consecutive number of previous cycles immediately preceding the
current cycle that exceeds the predetermined threshold; and selecting the first thread for the
current cycle if the first thread has not been selected for the consecutive number of previous
cycles exceeding the predetermined threshold.

The predetermined threshold is two consecutive cycles. The method further includes
selecting one of the first and second threads that was selected in a previous cycle, if none of
the first and second threads is predicted as ready. The predicting the first thread includes
determining whether a predetermined number or a predetermined set of instructions of the
first thread have been selected in the previous cycle; indicating the first thread as ready for

retirement if at least the predetermined number or the predetermined set of instructions of the

16

10

15

20

25

30

WO 2013/147878 PCT/US2012/031634

previous cycle have been selected; and indicating the first thread as not-ready for retirement
if fewer than the predetermined number or the predetermined set of instructions of the
previous cycle have been selected.

The method further includes determining readiness of the first thread based on actual
readiness information of the instructions of the first thread, if the first thread was not selected
in the previous cycle. The method further includes maintaining heuristics information
concerning readiness of instructions of the first and second threads and thread selections in
one or more prior cycles. The previous cycle is a cycle immediately preceding the current
cycle, and the method further includes obtaining readiness of instructions of the first and
second threads in the current cycle; and storing the readiness of instructions as part of the
heuristics information to be utilized in a next cycle following the current cycle. An
embodiment of the invention further includes a data processing system to perform the method
set forth above.

Some portions of the preceding detailed descriptions have been presented in terms of
algorithms and symbolic representations of operations on data bits within a computer
memory. These algorithmic descriptions and representations are the ways used by those
skilled in the data processing arts to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent
sequence of operations leading to a desired result. The operations are those requiring
physical manipulations of physical quantities.

It should be borne in mind, however, that all of these and similar terms are to be
associated with the appropriate physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as apparent from the above
discussion, it is appreciated that throughout the description, discussions utilizing terms such
as those set forth in the claims below, refer to the action and processes of a computer system,
or similar electronic computing device, that manipulates and transforms data represented as
physical (electronic) quantities within the computer system's registers and memories into
other data similarly represented as physical quantities within the computer system memories
or registers or other such information storage, transmission or display devices.

The techniques shown in the figures can be implemented using code and data stored
and executed on one or more electronic devices. Such electronic devices store and
communicate (internally and/or with other electronic devices over a network) code and data
using computer-readable media, such as non-transitory computer-readable storage media

(e.g., magnetic disks; optical disks; random access memory; read only memory; flash

17

10

15

WO 2013/147878 PCT/US2012/031634

memory devices; phase-change memory) and transitory computer-readable transmission
media (e.g., electrical, optical, acoustical or other form of propagated signals — such as carrier
waves, infrared signals, digital signals).

The processes or methods depicted in the preceding figures may be performed by
processing logic that comprises hardware (e.g. circuitry, dedicated logic, etc.), firmware,
software (e.g., embodied on a non-transitory computer readable medium), or a combination
of both. Although the processes or methods are described above in terms of some sequential
operations, it should be appreciated that some of the operations described may be performed
in a different order. Moreover, some operations may be performed in parallel rather than
sequentially.

In the foregoing specification, embodiments of the invention have been described
with reference to specific exemplary embodiments thereof. It will be evident that various
modifications may be made thereto without departing from the broader spirit and scope of the
invention as set forth in the following claims. The specification and drawings are,

accordingly, to be regarded in an illustrative sense rather than a restrictive sense.

18

WO 2013/147878 PCT/US2012/031634

CLAIMS

What is claimed is:

1. A processor, comprising:
one or more execution units to execute instructions of a plurality of threads; and
thread control logic coupled to the execution units to
5 predict whether a first of the plurality of threads is ready for selection in a
current cycle based on readiness of instructions of the first thread in
one or more previous cycles,
predict whether a second of the plurality of threads is ready for selection in the
current cycle based on readiness of instructions of the second thread in
10 the one or more previous cycles, and
select one of the first and second threads in the current cycle based on the

predictions.

2. The processor of claim 1, wherein the thread control logic is further to
determine whether both the first and the second threads are predicted as ready for
15 selection, and
apply a contention resolution algorithm to select one of the first and second threads in
the current cycle, if both the first and the second threads are predicted as ready

for selection.

3. The processor of claim 2, wherein in applying the contention resolution algorithm, the
thread control logic is configured to
20 determine whether the first thread has been selected for a consecutive number of
previous cycles immediately preceding the current cycle that exceeds a
predetermined threshold,
select the second thread for the current cycle if the first thread has been selected for
retirement for a consecutive number of previous cycles immediately preceding
25 the current cycle that exceeds the predetermined threshold, and
select the first thread for the current cycle if the first thread has not been selected for
the consecutive number of previous cycles exceeding the predetermined

threshold.

19

10

WO 2013/147878 PCT/US2012/031634

4. The processor of claim 3, wherein the predetermined threshold is two consecutive
cycles.
5. The processor of claim 2, wherein if none of the first and second threads is predicted

as ready for selection, the thread control logic is configured to select one of the first and

second threads that was selected in a previous cycle.

6. The processor of claim 1, wherein in predicting the first thread, the thread control
logic is configured to
determine whether at least a predetermined number or a predetermined set of the
instructions of the first thread have been selected in the previous cycle,
indicate the first thread as ready for selection if the predetermined number or a
predetermined set of the instructions of the previous cycle have been selected,
and
indicate the first thread as not-ready for selection if fewer than the predetermined
number or a predetermined set of the instructions of the previous cycle have

been selected.

7. The processor of claim 6, wherein if the first thread was not selected in the previous
cycle, the thread control logic is configured to determine readiness of the first thread based on

actual readiness information of the instructions.

8. The processor of claim 1, wherein the thread control logic is to maintain heuristics
information concerning readiness of instructions of the first and second threads and thread

selections in one or more prior cycles.

0. The processor of claim 8, wherein the previous cycle is a cycle immediately preceding
the current cycle, and wherein the thread control logic is further to obtain readiness of
instructions of the first and second threads in the current cycle and to store the readiness of
instructions as part of the heuristics information to be utilized in a next cycle following the

current cycle.

20

WO 2013/147878 PCT/US2012/031634

10. The processor of claim 1, wherein one of the first and second threads is selected for

thread retirement.

11. A computer-implemented method, comprising:

predicting whether a first of a plurality of threads is ready for selection in a current
cycle based on readiness of instructions of the first thread in one or more
previous cycles, the plurality of threads having instructions being executed by

5 one or more execution units of a processor;

predicting whether a second of the plurality of threads is ready for selection in the
current cycle based on readiness of instructions of the second thread in the one
or more previous cycles, and

selecting one of the first and second threads in the current cycle based on the

10 predictions.

12. The method of claim 11, further comprising:
determining whether both the first and the second threads are predicted as ready for
selection; and
applying a contention resolution algorithm to select one of the first and second threads
15 for selection in the current cycle, if both the first and the second threads are

predicted as ready for selection.

13. The method of claim 12, wherein applying the contention resolution algorithm
comprises:
determining whether the first thread has been selected for a consecutive number of
previous cycles immediately preceding the current cycle that exceeds a
20 predetermined threshold;
selecting the second thread for the current cycle if the first thread has been selected
for a consecutive number of previous cycles immediately preceding the
current cycle that exceeds the predetermined threshold; and
selecting the first thread for the current cycle if the first thread has not been selected

25 for the consecutive number of previous cycles exceeding the predetermined

threshold.

21

WO 2013/147878 PCT/US2012/031634

14. The method of claim 13, wherein the predetermined threshold is two consecutive
cycles.
15. The method of claim 12, further comprising selecting one of the first and second

threads that was selected in a previous cycle, if none of the first and second threads is

predicted as ready.

16. The method of claim 11, wherein predicting the first thread comprises:
determining whether a predetermined number or a predetermined set of instructions of
the first thread have been selected in the previous cycle;
5 indicating the first thread as ready for retirement if at least the predetermined number
or the predetermined set of instructions of the previous cycle have been

selected; and

indicating the first thread as not-ready for retirement if fewer than the predetermined
number or the predetermined set of instructions of the previous cycle have

10 been selected.

17. The method of claim 16, further comprising determining readiness of the first thread

based on actual readiness information of the instructions of the first thread, if the first thread

was not selected in the previous cycle.

18. The method of claim 11, further comprising maintaining heuristics information

concerning readiness of instructions of the first and second threads and thread selections in

one or more prior cycles.

19. The method of claim 18, wherein the previous cycle is a cycle immediately preceding
the current cycle, and wherein the method further comprises

obtaining readiness of instructions of the first and second threads in the current cycle;

and

15 storing the readiness of instructions as part of the heuristics information to be utilized

in a next cycle following the current cycle.

20. A data processing system, comprising:

a dynamic random —access memory (DRAM); and

22

WO 2013/147878 PCT/US2012/031634

a processor coupled to the DRAM, the processor including
one or more execution units to execute instructions of a plurality of threads,
and
thread control logic coupled to the execution units to perform a method of any

of claims 11-19.

23

PCT/US2012/031634

1/9

Vi 'Old

901 21607 |0U0) peaJy |
801 01
> SoNSUNaH 21607 <
uoIoa[es peaiyL uoIoa[es peaiyL
A
y y y
vor cor o SoT TOT qun
NuN Juswalney |-—— (S)Hun uopndexy j—— u o_we%h_ — JIlu 2nss|/siayng —— Y9 4/yoIeIeId
: uononJIsu|

WO 2013/147878

00l

PCT/US2012/031634

WO 2013/147878

2/9

dl 'Old

R80T e 7800 T807
SoNSUNaH . SoNSUNaH SONSUNaH
|0U0)) pealy)
uoIoa[es peaiyL uoIoa[es peaiyL uonoajes peaiy L
N-201 L0l |-.01
N Julod uondsies C . ¢ Julod uondsies | JUl0d uonosles
peaiy] Joj 21607 peaiy] Joj 21607 pealy] Joj 21607
uoIoa[es peaiyL uoIoa[es peaiyL uonoajes peaiy L
A
sjun Jayio sjun J8yio
WoJj S}oeqpPas WO} SHORQPD
vor TOT Jup
<+— Junswaindy jl¢— —— — — — —— +— yipe4/yppld le——

uononasy|

PCT/US2012/031634

WO 2013/147878

3/9

¢ '9Old

10¢

801

e —

bl

0L

o1

bl

ol

21

hosane

o1

bl

b1

Lg—"]

bl

bl

Uo1I8|8g

s
xa

-
(.

g

ndu

00¢

PCT/US2012/031634

WO 2013/147878

4/9

€ Old

¢

0L & 31 bl QoN T el]| oo ed 03 00 E0 S
bL w 31 131 NIz 0904 03°0G E0 g
bL ‘ 0 ol bl wgiotigiivien| 0o 0303000 b
oL \ 31 bl Hghotgivien| Beeo 08 ovizo g

TLIRETE T

by

0y

-2

sdpon ApeaM |}

sdon Apeay g}

mang

FOLATT

21607 UDID8|eg Peell] JUeWsIsy

sdon Apeal jenjoy

ajoA9

PCT/US2012/031634

WO 2013/147878

5/9

¥ 'Old

pu3

80y 91049 Jua.LINd 8y} 10}
uooa[es 10} Apeal se pajoIpald SI ey Spealy) ay) JO sUo 109[9S

907 a0k
JUS.IND 8Y) Ul Spealy) uonnjosal Apeai Jo auo 198es 0) (buod
-Buod-9NId-ONId B8) wyiobie uonnjosal uonusuod e Alddy

iApeal auoN

GOv

iApeal speaiy) yjog

ON vOY

0¥
81040 snoiraid ay) Ul Pa1os|as SeMm Jey) SPeaIy) 8y JO 8UO 19|98

™)
prd

0 81042 snoiaaid e ul peasy) puodss ay) Jo suonesado

-0J0ILU JO SUONONJISUI JO SSBUIPESI UO Paseq 8JoAd Jus.LIng
U} Ul UoNa|8s 10} Apeal SI pealy) puooss ay) Jayisym 1oIpaid

00v

o
=
<

81042 snoiaaid e ul pealy) 1811 8y Jo suonesado
-0J0IW JO SUONINIISUI JO SSBUIPBaI UO Paseq 8[oAo Jusund
AU Ul UoNOs|as J0) Apeal SI pealy) 1Sl B JaYIdyM J0Ipaid

—
O
prd

*108$900.1d B J0 91942 Ju8.IND B Ul (JusWaJnal J0)
“68) pa)as|es aq 0) pealy) PuodISS B PUB pealy) 1Sl B SAI809Y

PCT/US2012/031634

WO 2013/147878

6/9

G "OId

pu3

"810kd 1xau
B Ul Pasn aq 0} SINSLINaY pealy) 8y} ul uonewJojul Apeal sy
910)S pue pealy) ay Jo sdon ay) JO SSaUIPeal aY) SUIWIRR(

\

(0= uy)
91042 Ju.1IN2 BY) Ul UONDR|RS 10} ApESI 10U SB pEaIY) SU) YB

09
(1=
uy) 8|9A2 JuaLINd By Ul UONI3IBS J0J Apeal Se pealy) ay) YIep

009

791040 158 Ul Apeal sdon ||

ON

206
91040 1SB| 8Y) Ul UONDB|SS J0) Apeal ale pealy) 8y} Jo sdon
(|8 Jayjeym aulwIa)ep 0 SonsLNay pealy) ay ul dn 4007

I

O

G
*108$200.d B JO 91942 JuB.IND B Ul (Juswalnal

Jo] “6°8) uonodajes ajqissod Joj (u]) peaiy) e 8AI808Y

PCT/US2012/031634

WO 2013/147878

7/9

9 'OId

pu3

"8)BPIPUBD UONOS|SS B SE (] 109[8S

209
“(es1on 82IM 10 0 = 1Y

1101 109[8S “6°8) uonoa|es Joj Apeal Si jey) pealy) ay) 199[eS

T,
o
(o)

"8)BPIPUBD UONOS|SS B SB || 1089[8S

SA[ND3SUO0D JO) PBJO8Ias
ON

€09 "$90A0

10 Jaquinu paulwia)apald e o) pa1os|as Aj9ANNIasU0d Ussq
Sey 0 J8y1aym aulLLIgIep ‘ajoAd 1S.| 8y Ul pajaales Sem O I

¢0==1Y ==0d

109
"8]BpPIPUBD UONJS|SS
B Se 9joAd 1SB| 8y Ul PaJoa|as SEM JBY) pesaly ay) 198[eS

009

¢ ==14==0d

ON

109 *1085800.d e J0 8]0Ad Juaind e Ul
(uawalnai Joj “68) uondajes ajqissod Joy (1) peaIy) puooas
B pue (01) peaiyr 1sJi e Jo uonewlojul uondipaid anlgoey

PCT/US2012/031634

WO 2013/147878

8/9

L 'Old

706 €06
20I1n8(20I1N8(]
-
106 /
TT@m T T T
“ esdiy) _
| 76 |
I HOI _
I
%06 | |
Kowap “ - _ 716 |
— — HOW 1 (soydeis) “68)
716 €6 | _ 90IA8(]
ered 9p0) I _
906 = |
106
()105529014
006 606 806
(s)a10) ayoen

PCT/US2012/031634

WO 2013/147878

9/9

8 'Old

706 €06
9IS 801A8(Q
- >
L06 /
206
jesdyd 716
— (soydels) “6-9)
116 somneq
HOI
906 =
806 106
— ayoe) paleys ($)108529014
G06
Kows |y —
0l6
716 t16 HOW
BleQ suononsy|
N606 suoen V606 0S6
210D 2109

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2012/031634

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 9/46(20006.01)i, GOOF 9/38(2006.01)i, GOGF 13/14(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F 9/46; GO6F 9/38; GOGF 9/40; GO6F 9/00

Minimum documentation searched (classification system followed by classification symbols)

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: " thread readiness, thread micro-operation”

C. DOCUMENTS CONSIDERED TO BE RELEVANT

See abstract, paragraph [0013], claim 1, and figure 4.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2011-0004881 A1l (TERECHKO ANDRET SERGEEVICH et al.) 06 January 2011 1-20
See abstract, paragraphs [0044]-[0046], claim 1.
A US 20110087866 Al (SHAH MANISH K. et al.) 14 April 2011 1-20
See abstract, paragraph [0041].
A US 2007-0226465 Al (CHAUDHRY SHAILENDER et.al.) 27 September 2007 1-20
See abstract, paragraph [0008].
A US 2004-0015970 A1l (W., JAMES SCHEUERMANN) 22 January 2004 1-20

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later
than the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

29 NOVEMBER 2012 (29.11.2012)

Date of mailing of the international search report

29 NOVEMBER 2012 (29.11.2012)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan
City, 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer
Ji Jeong Hoon

Telephone No. 82-42-481-5688

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2012/031634

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2011-0004881 A1 06.01.2011 WO 2009-113034 A1 17.09.2009

US 2011-0087866 A1 14.04.2011 None

US 2007-0226465 A1 27.09.2007 US 7650487 B2 19.01.2010

US 2004-0015970 A1 22.01.2004 AU 2003-222248 A1 22.09.2003
TW 229806 B 21.03.2005
WO 03-077117 A1 18.09.2003

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report

