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Methods for predicting the development of sepsis in a subject
at risk for developing sepsis are provided. In one method,
features in a biomarker profile of the subject are evaluated.
The subject is likely to develop sepsis if these features satisfy
a particular value set. Methods for predicting the develop-
ment of a stage of sepsis in a subject at risk for developing a
stage of sepsis are provided. In one method, a plurality of
features in a biomarker profile of the subject is evaluated. The
subject is likely to have the stage of sepsis if these feature
values satisty a particular value set. Methods of diagnosing
sepsis in a subject are provided. In one such method, a plu-
rality of features in a biomarker profile of the subject is
evaluated. The subject is likely to develop sepsis when the
plurality of features satisfies a particular value set.
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DIAGNOSIS OF SEPSIS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims benefit, under 35 U.S.C.
§119(e), of U.S. Provisional Patent Application No. 60/671,
620, filed on Apr. 15, 2005, which hereby is incorporated
herein, by reference, in its entirety. This application also
claims benefit, under 35 U.S.C. §119(e), of U.S. Provisional
Patent Application No. 60/674,046, filed on Apr. 22, 2005,
which is hereby incorporated herein, by reference, in its
entirety.

1. FIELD OF THE INVENTION

[0002] The present invention relates to methods and com-
positions for diagnosing or predicting sepsis and/or its stages
of progression in a subject. The present invention also relates
to methods and compositions for diagnosing systemic inflam-
matory response syndrome in a subject.

2. BACKGROUND OF THE INVENTION

[0003] Early detection of a disease condition typically
allows for a more effective therapeutic treatment with a cor-
respondingly more favorable clinical outcome. In many
cases, however, early detection of disease symptoms is prob-
lematic due to the complexity of the disease; hence, a disease
may become relatively advanced before diagnosis is possible.
Systemic inflammatory conditions represent one such class of
diseases. These conditions, particularly sepsis, typically, but
not always, result from an interaction between a pathogenic
microorganism and the host’s defense system that triggers an
excessive and dysregulated inflammatory response in the
host. The complexity of the host’s response during the sys-
temic inflammatory response has complicated efforts towards
understanding disease pathogenesis (reviewed in Healy,
2002, Annul. Pharmacother. 36:648-54). An incomplete
understanding of the disease pathogenesis, in turn, contrib-
utes to the difficulty in finding useful diagnostic biomarkers.
Early and reliable diagnosis is imperative, however, because
of the remarkably rapid progression of sepsis into a life-
threatening condition.

[0004] The development of sepsis in a subject follows a
well-described course, progressing from systemic inflamma-
tory response syndrome (“SIRS”)-negative, to SIRS-positive,
and then to sepsis, which may then progress to severe sepsis,
septic shock, multiple organ dysfunction (“MOD”), and ulti-
mately death. Sepsis may also arise in an infected subject
when the subject subsequently develops SIRS. “Sepsis™ is
commonly defined as the systemic host response to infection
with SIRS plus a documented infection. “Severe sepsis” is
associated with MOD, hypotension, disseminated intravas-
cular coagulation (“DIC”) or hypoperfusion abnormalities,
including lactic acidosis, oliguria, and changes in mental
status. “Septic shock” is commonly defined as sepsis-induced
hypotension that is resistant to fluid resuscitation with the
additional presence of hypoperfusion abnormalities.

[0005] Documenting the presence of the pathogenic micro-
organisms that are clinically significant to sepsis has proven
difficult. Causative microorganisms typically are detected by
culturing a subject’s blood, sputum, urine, wound secretion,
in-dwelling line catheter surfaces, etc. Causative microorgan-
isms, however, may reside only in certain body microenvi-
ronments such that the particular material that is cultured may

May 5, 2011

not contain the contaminating microorganisms. Detection
may be complicated further by low numbers of microorgan-
isms at the site of infection. Low numbers of pathogens in
blood present a particular problem for diagnosing sepsis by
culturing blood. In one study, for example, positive culture
results were obtained in only 17% of subjects presenting
clinical manifestations of sepsis (Rangel-Frausto et al., 1995,
JAMA 273:117-123). Diagnosis can be further complicated
by contamination of samples by non-pathogenic microorgan-
isms. For example, only 12.4% of detected microorganisms
were clinically significant in a study of 707 subjects with
septicemia (Weinstein et al., 1997, Clinical Infectious Dis-
eases 24:584-602).

[0006] Thedifficulty in early diagnosis of sepsis is reflected
by the high morbidity and mortality associated with the dis-
ease. Sepsis currently is the tenth leading cause of death in the
United States and is especially prevalent among hospitalized
patients in non-coronary intensive care units (ICUs), where it
is the most common cause of death. The overall rate of mor-
tality is as high as 35%, with an estimated 750,000 cases per
year occurring in the United States alone. The annual cost to
treat sepsis in the United States alone is on the order of
billions of dollars.

[0007] A need, therefore, exists for a method of diagnosing
sepsis, using techniques that have satisfactory specificity and
sensitivity performance, sufficiently early to allow effective
intervention and prevention.

3. SUMMARY OF THE INVENTION

[0008] The present invention relates to methods and com-
positions for diagnosing sepsis, including the onset of sepsis,
in a test subject. The present invention also relates to methods
and compositions for predicting sepsis in a test subject.
[0009] The present invention further relates to methods and
compositions for diagnosing or predicting stages of sepsis
progression in a test subject. The present invention still fur-
ther relates to methods and compositions for diagnosing sys-
temic inflammatory response syndrome (SIRS) in a test sub-
ject.

[0010] In one aspect, the present invention provides a
method of predicting the development of sepsis in a test
subject at risk for developing sepsis. This method comprises
evaluating whether a plurality of features in a biomarker
profile of the test subject satisfies a value set, wherein satis-
fying the value set means that the test subject will develop
sepsis with a likelihood that is determined by the accuracy of
the decision rule to which the plurality of features are applied
in order to determine whether they satisfy the value set. In
some embodiments, the accuracy of the decision rule is at
least 60%. Therefore, correspondingly, the likelihood that the
test subject will develop sepsis when the plurality of features
satisfies the value set is at least 60%.

[0011] Yet another aspect of the invention comprises a
method of diagnosing sepsis in a test subject. These methods
comprise evaluating whether a plurality of features in a biom-
arker profile of the test subject satisfies a value set, wherein
satisfying the value set predicts that the test subject has sepsis
with a likelihood that is determined by the accuracy of the
decision rule to which the plurality of features are applied in
order to determine whether they satisty the value set. In some
embodiments, the accuracy of the decision rule is at least
60%. Therefore, correspondingly, the likelihood that the test
subject has sepsis when the plurality of features satisfies the
value set is at least 60%.
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[0012] In a particular embodiment, the biomarker profile
comprises at least two features, each feature representing a
feature of a corresponding biomarker listed in column four or
five of Table 30. In one embodiment, the biomarker profile
comprises at least two different biomarkers listed in column
four or five of Table 30. In such an embodiment, the biomar-
ker profile can comprise a respective corresponding feature
for the at least two biomarkers. Generally, the at least two
biomarkers are derived from at least two different genes. In
the case where a biomarker in the at least two different biom-
arkers is listed in column four of Table 30, the biomarker can
be, for example, a transcript made by the listed gene, a
complement thereof;, or a discriminating fragment or comple-
ment thereof, or a cDNA thereof, or a discriminating frag-
ment of the cDNA, or a discriminating amplified nucleic acid
molecule corresponding to all or a portion of the transcript or
its complement, or a protein encoded by the gene, or a dis-
criminating fragment of the protein, or an indication of any of
the above. Further still, the biomarker can be, for example, a
protein listed in column five of Table 30, or a discriminating
fragment of the protein, or an indication of any of the above.
Here, a discriminating molecule or fragment is a molecule or
fragment that, when detected, indicates presence or abun-
dance of the above-identified transcript, cDNA, amplified
nucleic acid, or protein. In accordance with this embodiment,
the biomarker profiles of the present invention can be
obtained using any standard assay known to those skilled in
the art, or in an assay described herein, to detect a biomarker.
Such assays are capable, for example, of detecting the prod-
ucts of expression (e.g., nucleic acids and/or proteins) of a
particular gene or allele of a gene of interest (e.g., a gene
disclosed in Table 30). In one embodiment, such an assay
utilizes a nucleic acid microarray. In some embodiments, the
biomarker profile comprises at least two different biomarkers
from column four or five of Table 32. In some embodiments,
the biomarker profile comprises atleast 2, 3, 4, 5, 6,7, 8,9, 10,
11,12,13,14,15,16,17,18,19, 20,21, 22,23, 24, 25, 30, 35,
40, 45, or 50 different biomarkers from Table 30.

[0013] In a particular embodiment, the biomarker profile
comprises at least two different biomarkers that each contain
one of the probesets listed in column 2 of Table 30, biomar-
kers that contain the complement of one of the probesets of
Table 30, or biomarkers that contain an amino acid sequence
encoded by a gene that either contains one of the probesets of
Table 30 or the complement of one of the probesets of Table
30. Such biomarkers can be, for example, mRNA transcripts,
c¢DNA or some other nucleic acid, for example amplified
nucleic acid, or proteins. The biomarker profile further com-
prises a respective corresponding feature for the at least two
biomarkers. Generally, the at least two biomarkers are derived
from at least two different genes. In the case where a biom-
arker is based upon a gene that includes the sequence of a
probeset listed in Table 30, the biomarker can be, for example,
a transcript made by the gene, a complement thereof, or a
discriminating fragment or complement thereof, or a cDNA
thereof, or a discriminating fragment of the cDNA, or a dis-
criminating amplified nucleic acid molecule corresponding
to all or a portion of the transcript or its complement, or a
protein encoded by the gene, or a discriminating fragment of
the protein, or an indication of any of the above. Further still,
the biomarker can be, for example, a protein encoded by a
gene that includes a probeset sequence described in Table 30,
ora discriminating fragment of the protein, or an indication of
any ofthe above. Here, a discriminating molecule or fragment
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is a molecule or fragment that, when detected, indicates pres-
ence or abundance of the above-identified transcript, cDNA,
amplified nucleic acid, or protein. In some embodiments, the
biomarker profile comprises at least 2,3,4,5,6,7,8,9,0r 10
different biomarkers from any one of Table 31, 32, 33, 34, or
36.

[0014] In a particular embodiment, the biomarker profile
comprises at least two different biomarkers listed in column
three of Table 31. The biomarker profile further comprises a
respective corresponding feature for the at least two biomar-
kers. Generally, the at least two biomarkers are derived from
at least two different genes. The biomarker can be, for
example, a transcript made by gene listed in Table 31, a
complement thereof, or a discriminating fragment or comple-
ment thereof, or a cDNA thereof, or a discriminating frag-
ment of the cDNA, or a discriminating amplified nucleic acid
molecule corresponding to all or a portion of the transcript or
its complement, or a protein encoded by the gene, or a dis-
criminating fragment of the protein, or an indication of any of
the above. Further still, the biomarker can be, for example, a
protein encoded by a gened listed in column three of Table 31,
ora discriminating fragment ofthe protein, or an indication of
any ofthe above. Here, a discriminating molecule or fragment
is a molecule or fragment that, when detected, indicates pres-
ence or abundance of the above-identified transcript, cDNA,
amplified nucleic acid, or protein. In accordance with this
embodiment, the biomarker profiles of the present invention
can be obtained using any standard assay known to those
skilled in the art, or in an assay described herein, to detect a
biomarker. Such assays are capable, for example, of detecting
the products of expression (e.g., nucleic acids and/or pro-
teins) of a particular gene or allele of a gene of interest (e.g.,
a gene disclosed in Table 31). In one embodiment, such an
assay utilizes a nucleic acid microarray.

[0015] In a particular embodiment, the biomarker profile
comprises at least two different biomarkers that each contain
one of the probesets listed in column 2 of Table 31, biomar-
kers that contain the complement of one of the probesets of
Table 31, or biomarkers that contain an amino acid sequence
encoded by a gene that either contains one of the probesets of
Table 31 or the complement of one of the probesets of Table
31. Such biomarkers can be, for example, mRNA transcripts,
c¢DNA or some other nucleic acid, for example amplified
nucleic acid, or proteins. The biomarker profile further com-
prises a respective corresponding feature for the at least two
biomarkers. Generally, the at least two biomarkers are derived
from at least two different genes. In the case where a biom-
arker is based upon a gene that includes the sequence of a
probeset listed in Table 31, the biomarker can be, for example,
a transcript made by the gene, a complement thereof, or a
discriminating fragment or complement thereof, or a cDNA
thereof, or a discriminating fragment of the cDNA, or a dis-
criminating amplified nucleic acid molecule corresponding
to all or a portion of the transcript or its complement, or a
protein encoded by the gene, or a discriminating fragment of
the protein, or an indication of any of the above. Further still,
the biomarker can be, for example, a protein encoded by a
gene that includes a probeset sequence described in Table 31,
ora discriminating fragment ofthe protein, or an indication of
any ofthe above. Here, a discriminating molecule or fragment
is a molecule or fragment that, when detected, indicates pres-
ence or abundance of the above-identified transcript, cDNA,
amplified nucleic acid, or protein. In some embodiments, the
biomarker profile comprises atleast 2,3, 4,5,6,7,8,9,10,11,
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12,13,14,15,16,17,18,19, 20,21, 22, 23,24, 25,30, 35, 40,
45, or 50 different biomarkers from Table 31.

[0016] In a particular embodiment, the biomarker profile
comprises at least three features, each feature representing a
feature of a corresponding biomarker listed in column 3 or
four of Table 1. In one embodiment, the biomarker profile
comprises at least three different biomarkers listed in column
three or four of Table I. In such an embodiment, the biomarker
profile can comprise a respective corresponding feature for
the at least three biomarkers. Generally, the at least three
biomarkers are derived from at least three different genes
listed in Table 1. In the case where a biomarker in the at least
three different biomarkers is listed in column three of Table I,
the biomarker can be, for example, a transcript made by the
listed gene, a complement thereof, a splice variant thereof, a
complement of a splice variant thereof, or a discriminating
fragment or complement of any of the foregoing, a cDNA of
any of the forgoing, a discriminating fragment of the cDNA,
or a discriminating amplified nucleic acid molecule corre-
sponding to all or a portion of the transcript or its comple-
ment, or a protein encoded by the gene, or a discriminating
fragment of the protein, or an indication of any of the above.
Further still, the biomarker can be, for example, a protein
listed in column four of Table I, or a discriminating fragment
of the protein, or an indication of any of the above. Here, a
discriminating molecule or fragment is a molecule or frag-
ment that, when detected, indicates presence or abundance of
the above-identified transcript, cDNA, amplified nucleic
acid, splice-variant thereof or protein. In accordance with this
embodiment, the biomarker profiles of the present invention
can be obtained using any standard assay known to those
skilled in the art, or in an assay described herein, to detect a
biomarker. Such assays are capable, for example, of detecting
the products of expression (e.g., nucleic acids and/or pro-
teins) of a particular gene or allele of a gene of interest (e.g.,
a gene disclosed in Table I). In one embodiment, such an
assay utilizes a nucleic acid microarray. In some embodi-
ments, the biomarker profile comprises at least 2,3, 4, 5, 6,7,
8,9,10,11,12,13,14,15,16,17, 18, 19, 20, 21, 22, 23, 24,
25,30, 35, 40, 45, or 50 different biomarkers from Table 1.

[0017] In a particular embodiment, the biomarker profile
comprises at least three features, each feature representing a
feature of a corresponding biomarker listed in column 3 or
four of Table J. In one embodiment, the biomarker profile
comprises at least three different biomarkers listed in column
three or four of Table J. In such an embodiment, the biomarker
profile can comprise a respective corresponding feature for
the at least three biomarkers. Generally, the at least three
biomarkers are derived from at least three different genes. In
the case where a biomarker in the at least three different
biomarkers is listed in column three of Table J, the biomarker
can be, for example, a transcript made by the listed gene, a
complement thereof, a splice variant thereof, a complement
of a splice variant thereof, or a discriminating fragment or
complement of any of the foregoing, a cDNA of any of the
forgoing, a discriminating fragment of the cDNA, or a dis-
criminating amplified nucleic acid molecule corresponding
to all or a portion of the transcript or its complement, or a
protein encoded by the gene, or a discriminating fragment of
the protein, or an indication of any of the above. Further still,
the biomarker can be, for example, a protein listed in column
four of Table J, or a discriminating fragment of the protein, or
an indication of any of the above. Here, a discriminating
molecule or fragment is a molecule or fragment that, when
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detected, indicates presence or abundance of the above-iden-
tified transcript, cDNA, amplified nucleic acid, splice-variant
thereof or protein. In accordance with this embodiment, the
biomarker profiles of the present invention can be obtained
using any standard assay known to those skilled in the art, or
in an assay described herein, to detect a biomarker. Such
assays are capable, for example, of detecting the products of
expression (e.g., nucleic acids and/or proteins) of a particular
gene or allele of a gene of interest (e.g., a gene disclosed in
Table J). In one embodiment, such an assay utilizes a nucleic
acid microarray. In some embodiments, the biomarker profile
comprises at least 2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40 different
biomarkers from Table J.

[0018] In a particular embodiment, the biomarker profile
comprises at least three features, each feature representing a
feature of a corresponding biomarker listed in column 3 or
four of Table K. In one embodiment, the biomarker profile
comprises at least three different biomarkers listed in column
three or four of Table K. In such an embodiment, the biom-
arker profile can comprise a respective corresponding feature
for the at least three biomarkers. Generally, the at least two or
three biomarkers are derived from at least two or three differ-
ent genes, respectively. In the case where a biomarker in the at
least two or three different biomarkers is listed in column
three of Table K, the biomarker can be, for example, a tran-
script made by the listed gene, a complement thereof, a splice
variant thereof, a complement of a splice variant thereof, or a
discriminating fragment or complement of any of the forego-
ing, a cDNA of any of the forgoing, a discriminating fragment
of'the cDNA, or a discriminating amplified nucleic acid mol-
ecule corresponding to all or a portion of the transcript or its
complement, or a protein encoded by the gene, or a discrimi-
nating fragment of the protein, or an indication of any of the
above. Further still, the biomarker can be, for example, a
protein listed in column four of Table K, or a discriminating
fragment of the protein, or an indication of any of the above.
Here, a discriminating molecule or fragment is a molecule or
fragment that, when detected, indicates presence or abun-
dance of the above-identified transcript, cDNA, amplified
nucleic acid, splice-variant thereof or protein. In accordance
with this embodiment, the biomarker profiles of the present
invention can be obtained using any standard assay known to
those skilled in the art, or in an assay described herein, to
detect a biomarker. Such assays are capable, for example, of
detecting the products of expression (e.g., nucleic acids and/
or proteins) of a particular gene or allele of a gene of interest
(e.g., a gene disclosed in Table K). In one embodiment, such
an assay utilizes a nucleic acid microarray. In some embodi-
ments, the biomarker profile comprises at least 2,3,4, 5, 6,7,
8, 9, 10 different biomarkers from Table K.

[0019] Although the methods of the present invention are
particularly useful for detecting or predicting the onset of
sepsis in SIRS subjects, one of skill in the art will understand
that the present methods may be used for any subject: includ-
ing, but not limited to, subjects suspected of having SIRS or
of being at any stage of sepsis. For example, a biological
sample can be taken from a subject, and a profile of biomar-
kers in the sample can be evaluated in light of biomarker
profiles obtained from several different types of training
populations. Representative training populations variously
include, for example, populations that include subjects who
are SIRS-negative, populations that include subjects who are
SIRS-positive, and/or populations that include subjects at a
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particular stage of sepsis. Evaluation of the biomarker profile
in light of each of these different training populations can be
used to determine whether the test subject is SIRS-negative,
SIRS-positive, is likely to become septic, or has a particular
stage of sepsis. Based on the diagnosis resulting from the
methods of the present invention, an appropriate treatment
regimen can then be initiated.

[0020] In particular embodiments, the invention also pro-
vides kits that are useful in diagnosing or predicting the
development of sepsis or SIRS in a subject (see Section 5.3,
infra). The kits of the present invention comprise at least 2, 3,
4,5,6,7,8,9,10,11,12,13,14,15,16,17,18, 19, 20, 25, 30,
35,40, 45, 50, 55, 60, 65,70, 75, 80, 85, 90, 95, 96, 100, 105,
110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165,
170, 175, 180, 185, 190, 195 or 200 or more biomarkers
and/or reagents used to detect the presence or abundance of
such biomarkers. In some embodiments, each of these biom-
arkers is from Table 30. In some embodiments, each of these
biomarkers is from Table 31. In some embodiments, each of
these biomarkers is from Table 32. In some embodiments,
each of these biomarkers is from Table 33. In some embodi-
ments, each of these biomarkers is from Table 36. In some
embodiments, each of these biomarkers is from FIG. 39, FIG.
43, FIG. 52, FIG. 53, or FIG. 56. In another embodiment, the
kits of the present invention comprise at least two, but as
many as several hundred or more biomarkers and/or reagents
used to detect the presence or abundance of such biomarkers.
[0021] In a specific embodiment, the kits of the present
invention comprise at least 2,3, 4, 5,6,7,8,9,10, 11, 12, 13,
14,15,16,17, 18,19, 20,25, 30, 35, 40, 45, 50, 55, 60, 65, 70,
75,80, 85, 90, 95, 96, 100, 105,110, 115, 120, 125, 130, 135,
140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195 or
200 or more reagents that specifically bind the biomarkers of
the present invention. For example, such kits can comprise
nucleic acid molecules and/or antibody molecules that spe-
cifically bind to biomarkers of the present invention.

[0022] Specific exemplary biomarkers that are useful in the
present invention are set forth in Section 5.6, Section 5.11, as
well as Tables 30, 31, 32, 34 and 36 of Section 6. The biom-
arkers of the kit can be used to generate biomarker profiles
according to the present invention. Examples of types of
biomarkers and/or reagents within such kits include, but are
not limited to, proteins and fragments thereof, peptides,
polypeptides, antibodies, proteoglycans, glycoproteins, lipo-
proteins, carbohydrates, lipids, nucleic acids (mRNA, DNA,
c¢DNA), organic and inorganic chemicals, and natural and
synthetic polymers or a discriminating molecule or fragment
thereof.

[0023] In particular embodiments, the invention also pro-
vides still other kits that are useful in diagnosing or predicting
the development of sepsis or SIRS in a subject (see Section
5.3, infra). The kits of the present invention comprise at least
2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15, 16, 17, 18, 19, 20,
25, 30, 35, 40, 45, 50 or more biomarkers. In some embodi-
ments, each of these biomarkers is from Table 1. In some
embodiments, each of these biomarkers is from Table J. In
some embodiments, each of these biomarkers is from Table
K. In some embodiments, each of these biomarkers is found
in Table I or Table 30. In some embodiments, each of these
biomarkers is found in Table I or Table 31. In some embodi-
ments, each of these biomarkers is from FIG. 39, FIG. 43,
FIG. 52, FIG. 53, or FIG. 56. In another embodiment, the kits
of'the present invention comprise at least two, but as many as
50 or more biomarkers. In a specific embodiment, the kits of
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the present invention comprise at least 2,3,4,5,6,7, 8,9, 10,
11,12,13,14,15,16,17,18, 19, 20, 25, 30, 35, 40, 45, 50, 55,
60, 65, 70,75, 80,85, 90,95,96,100,105,110,115,120,125,
130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185,
190, 195 or 200 or more reagents that specifically bind the
biomarkers of the present invention. Specific biomarkers that
are useful in the present invention are set forth in Section 5.6,
Section 5.11, as well as Tables I, J, K, L, M, N, and O. The
biomarkers of the kits can be used to generate biomarker
profiles according to the present invention. Examples of
classes of compounds of the kits include, but are not limited
to, proteins and fragments thereof, peptides, polypeptides,
proteoglycans, glycoproteins, lipoproteins, carbohydrates,
lipids, nucleic acids (mRNA, DNA, cDNA), organic and inor-
ganic chemicals, and natural and synthetic polymers or a
discriminating molecule or fragment thereof.

[0024] Still another aspect of the present invention com-
prises computers and computer readable media for evaluating
whether a test subject is likely to develop sepsis or SIRS. For
instance, one embodiment of the present invention provides a
computer program product for use in conjunction with a
computer system. The computer program product comprises
a computer readable storage medium and a computer pro-
gram mechanism embedded therein. The computer program
mechanism comprises instructions for evaluating whether a
plurality of features in a biomarker profile of a test subject at
risk for developing sepsis satisfies a first value set. Satisfac-
tion of the first value set predicts that the test subject is likely
to develop sepsis. The features are measurable aspects of a
plurality of biomarkers comprising at least three biomarkers
listed in Table 1. In some embodiments, the computer pro-
gram product further comprises instructions for evaluating
whether the plurality of features in the biomarker profile of
the test subject satisfies a second value set. Satisfaction of the
second value set predicts that the test subject is not likely to
develop sepsis. In some embodiments, the biomarker profile
has between 3 and 50 biomarkers listed in Table I, between 3
and 40 biomarkers listed in Table 1, at least four biomarkers
listed in Table I, or at least six biomarkers listed in Table 1.

[0025] Another computer embodiment of the present
invention comprises a central processing unit and a memory
coupled to the central processing unit. The memory stores
instructions for evaluating whether a plurality of features in a
biomarker profile of a test subject at risk for developing sepsis
satisfies a first value set. Satisfaction of the first value set
predicts that the test subject is likely to develop sepsis. The
features are measurable aspects of a plurality of biomarkers.
This plurality of biomarkers comprises at least three biomar-
kers from Table I. In some embodiments, the memory further
stores instructions for evaluating whether the plurality of
features in the biomarker profile of the test subject satisfies a
second value set, wherein satisfying the second value set
predicts that the test subject is not likely to develop sepsis. In
some embodiments, the biomarker profile consists of
between 3 and 50 biomarkers listed in Table I, between 3 and
40 biomarkers listed in Table I, at least four biomarkers listed
in Table I, or at least eight biomarkers listed in Table 1.

[0026] Another computer embodiment in accordance with
the present invention comprises a computer system for deter-
mining whether a subject is likely to develop sepsis. The
computer system comprises a central processing unit and a
memory, coupled to the central processing unit. The memory
stores instructions for obtaining a biomarker profile of a test
subject. The biomarker profile comprises a plurality of fea-
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tures. The plurality of biomarkers comprises at least three
biomarkers listed in Table I. The memory further comprises
instructions for transmitting the biomarker profile to a remote
computer. The remote computer includes instructions for
evaluating whether the plurality of features in the biomarker
profile of the test subject satisfies a first value set. Satisfaction
of the first value set predicts that the test subject is likely to
develop sepsis. The memory further comprises instructions
for receiving a determination, from the remote computer, as to
whether the plurality of features in the biomarker profile of
the test subject satisfies the first value set. The memory also
comprises instructions for reporting whether the plurality of
features in the biomarker profile of the test subject satisfies
the first value set. In some embodiments, the remote computer
further comprises instructions for evaluating whether the plu-
rality of features in the biomarker profile of the test subject
satisfies a second value set. Satisfaction of the second value
set predicts that the test subject is not likely to develop sepsis.
In such embodiments, the memory further comprises instruc-
tions for receiving a determination, from the remote com-
puter, as to whether the plurality of features in the biomarker
profile of the test subject satisfies the second set as well as
instructions for reporting whether the plurality of features in
the biomarker profile of the test subject satisfies the second
value set. In some embodiments, the plurality of biomarkers
comprises at least four biomarkers listed in Table I. In some
embodiments, the plurality of biomarkers comprises at least
six biomarkers listed in Table I.

[0027] Still another embodiment of the present invention
comprises a digital signal embodied on a carrier wave com-
prising a respective value for each of a plurality of features in
a biomarker profile. The features are measurable aspects of a
plurality of biomarkers. The plurality of biomarkers com-
prises at least three biomarkers listed in Table 1. In some
embodiments, the plurality of biomarkers comprises at least
four biomarkers listed in Table 1. In some embodiments, the
plurality of biomarkers comprises at least eight biomarkers
listed in Table I.

[0028] Still another aspect of the present invention provides
a digital signal embodied on a carrier wave comprising a
determination as to whether a plurality of features in a biom-
arker profile of a test subject satisfies a value set. The features
are measurable aspects of a plurality of biomarkers. This
plurality of biomarkers comprises at least three biomarkers
listed in Table 1. Satistying the value set predicts that the test
subject is likely to develop sepsis. In some embodiments, the
plurality of biomarkers comprises at least four biomarkers
listed in Table 1. In some embodiments, the plurality of biom-
arkers comprises at least eight biomarkers listed in Table 1.
[0029] Still another embodiment provides a digital signal
embodied on a carrier wave comprising a determination as to
whether a plurality of features in a biomarker profile of a test
subject satisfies a value set. The features are measurable
aspects of a plurality of biomarkers. The plurality of biomar-
kers comprises at least three biomarkers listed in Table 1.
Satisfaction of the value set predicts that the test subject is not
likely to develop sepsis. In some embodiments, the plurality
of biomarkers comprises at least four biomarkers listed in
Table 1. In some embodiments, the plurality of biomarkers
comprises at least eight biomarkers listed in Table 1.

[0030] Still another embodiment of the present invention
provides a graphical user interface for determining whether a
subject is likely to develop sepsis. The graphical user inter-
face comprises a display field for a displaying a result
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encoded in a digital signal embodied on a carrier wave
received from a remote computer. The features are measur-
able aspects of a plurality of biomarkers. The plurality of
biomarkers comprises at least three biomarkers listed in Table
1. The result has a first value when a plurality of features in a
biomarker profile of a test subject satisfies a first value set.
The result has a second value when a plurality of features in a
biomarker profile of a test subject satisfies a second value set.
In some embodiments, the plurality of biomarkers comprises
at least four biomarkers listed in Table I. In some embodi-
ments, the plurality of biomarkers comprises at least eight
biomarkers listed in Table I.

[0031] Yet another aspect of the present invention provides
acomputer system for determining whether a subject is likely
to develop sepsis. The computer system comprises a central
processing unit and a memory, coupled to the central process-
ing unit. The memory stores instructions for obtaining a
biomarker profile of a test subject. The biomarker profile
comprises a plurality of features. The features are measurable
aspects of a plurality of biomarkers. The plurality of biomar-
kers comprise at least three biomarkers listed in Table 1. The
memory further stores instructions for evaluating whether the
plurality of features in the biomarker profile of the test subject
satisfies a first value set. Satisfying the first value set predicts
that the test subject is likely to develop sepsis. The memory
also stores instructions for reporting whether the plurality of
features in the biomarker profile of the test subject satisfies
the first value set. In some embodiments, the plurality of
biomarkers comprises at least four biomarkers listed in Table
1. In some embodiments, the plurality of biomarkers com-
prises at least eight biomarkers listed in Table 1.

4. BRIEF DESCRIPTION OF THE FIGURES

[0032] FIG.1illustrates a classification and regression tree
for discriminating between a SIRS phenotypic state charac-
terized by the onset of sepsis and a SIRS phenotypic state
characterized by the absence of sepsis using T_; static data
obtained from a training population in accordance with an
embodiment of the present invention.

[0033] FIG. 2 shows the distribution of feature values for
five biomarkers used in the decision tree of FIG. 1 across T_;
static data obtained from a training population in accordance
with an embodiment of the present invention. The biomarkers
are referenced by their corresponding Affymetrix U133 plus
2.0 probeset names given in Table 30.

[0034] FIG. 3 illustrates the overall accuracy, sensitivity,
and specificity of 500 trees used to train a decision tree using
the Random Forests method based upon T_;4 static data
obtained from a training population in accordance with an
embodiment of the present invention.

[0035] FIG. 4 illustrates the biomarker importance in the
decision rule trained using the trees of FIG. 3.

[0036] FIG. 5 illustrates the overall accuracy, with 95%
confidence interval bars, specificity, and sensitivity of a deci-
sion rule developed with predictive analysis of microarrays
(PAM) using the biomarkers of the present invention across
T_5¢ static data obtained from a training population.

[0037] FIG. 6 is a list of biomarkers, rank-ordered by their
respective degrees of discriminatory power, identified by
PAM using T_; static data obtained from a training popula-
tion. The biomarkers are referenced by their corresponding
Aftymetrix U133 plus 2.0 probeset names given in Table 30.
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[0038] FIG. 7 illustrates CART, PAM, and random forests
classification algorithm performance data, and associated
95% confidence intervals, for T_; static data obtained from a
training population.

[0039] FIG. 8 illustrates the number of times that common
biomarkers were found to be important across the decision
rules developed using (i) CART, (ii) PAM, (iii) random for-
ests, and (iv) the Wilcoxon (adjusted) test, for T_ static data
obtained from a training population.

[0040] FIG. 9 illustrates an overall ranking of biomarkers
for T_; static data obtained from a training population. The
biomarkers are referenced by their corresponding Affymetrix
U133 plus 2.0 probeset names given in Table 30.

[0041] FIG. 10 illustrates a classification and regression
tree for discriminating between a SIRS phenotypic state char-
acterized by the onset of sepsis and a SIRS phenotypic state
characterized by the absence of sepsis using data using T_ ,
static data obtained from a training population in accordance
with an embodiment of the present invention.

[0042] FIG. 11 shows the distribution of feature values for
four biomarkers used in the decision tree of FIG. 10 using
T_,, static data obtained from a training population in accor-
dance with an embodiment of the present invention. The
biomarkers are referenced by their corresponding Affymetrix
U133 plus 2.0 probeset names given in Table 30.

[0043] FIG. 12 illustrates the overall accuracy, sensitivity,
and specificity of 500 trees used to train a decision tree using
the Random Forests method based upon T_,, static data
obtained from a training population in accordance with an
embodiment of the present invention.

[0044] FIG. 13 illustrates the biomarker importance in the
decision rule trained using the trees of FIG. 12. The biomar-
kers are referenced by their corresponding Affymetrix U133
plus 2.0 probeset names given in Table 30.

[0045] FIG. 14 illustrates a calculation of biomarker impor-
tance, summing to 100%, determined by a multiple additive
regression tree (MART) approach using T_,, static data
obtained from a training population. The biomarkers are ref-
erenced by their corresponding Affymetrix U133 plus 2.0
probeset names given in Table 30.

[0046] FIG. 15 illustrates the distribution of feature values
of'the biomarkers selected by the MART approach illustrated
in FIG. 14 between the Sepsis and SIRS groups using T_,,
static data obtained from a training population. The biomar-
kers are referenced by their corresponding Affymetrix U133
plus 2.0 probeset names given in Table 30.

[0047] FIG. 16 illustrates the overall accuracy, with 95%
confidence interval bars, specificity, and sensitivity of a deci-
sion rule developed with predictive analysis of microarrays
(PAM) using the biomarkers of the present invention using
T_,, static data obtained from a training population.

[0048] FIG.17isalist of biomarkers, rank-ordered by their
respective degrees of discriminatory power, identified by
PAM using T_ |, static data obtained from a training popula-
tion. The biomarkers are referenced by their corresponding
Aftymetrix U133 plus 2.0 probeset names given in Table 30.
[0049] FIG. 18 provides a summary of the CART, MART,
PAM, and random forests (RF) classification algorithm (deci-
sion rule) performance and associated 95% confidence inter-
vals using T_ , static data obtained from a training popula-
tion.

[0050] FIG. 19 illustrates the number of times that common
biomarkers were found to be important across the decision
rules developed using (i) CART, (ii) MART, (iii) PAM, (iv)

May 5, 2011

random forests, and (v) the Wilcoxon (adjusted) test using
T_,, static data obtained from a training population. The
biomarkers are referenced by their corresponding Affymetrix
U133 plus 2.0 probeset names given in Table 30.

[0051] FIG. 20 illustrates an overall ranking of biomarkers
using T_, , static data obtained from a training population.

[0052] FIG. 21 illustrates a classification and regression
tree for discriminating between a SIRS phenotypic state char-
acterized by the onset of sepsis and a SIRS phenotypic state
characterized by the absence of sepsis using T_,, baseline
data obtained from a training population in accordance with
an embodiment of the present invention.

[0053] FIG. 22 shows the distribution of the feature values
of five biomarkers used in the decision tree of FIG. 21 using
T_,, baseline data obtained from a training population in
accordance with an embodiment of the present invention. The
biomarkers are referenced by their corresponding Affymetrix
U133 plus 2.0 probeset names given in Table 30.

[0054] FIG. 23 illustrates the overall accuracy, sensitivity,
and specificity of 500 trees used to train a decision tree using
the Random Forests method using T_ |, baseline data obtained
from a training population in accordance with an embodiment
of the present invention.

[0055] FIG. 24 illustrates the biomarker importance in the
decision rule trained using the trees of FIG. 23. The biomar-
kers are referenced by their corresponding Affymetrix U133
plus 2.0 probeset names given in Table 30.

[0056] FIG. 25 illustrates the overall accuracy, with 95%
confidence interval bars, specificity, and sensitivity of a deci-
sion rule developed with predictive analysis of microarrays
(PAM) using select biomarkers of the present invention and
T_,, baseline data obtained from a training population.
[0057] FIG. 26is alist of biomarkers, rank-ordered by their
respective degrees of discriminatory power, identified by
PAM using T_, , baseline data obtained from a training popu-
lation. The biomarkers are referenced by their corresponding
Aftymetrix U133 plus 2.0 probeset names given in Table 30.
[0058] FIG. 27 illustrates CART, PAM, and random forests
classification algorithm (decision rule) performance data, and
associated 95% confidence intervals, using T_, , baseline data
obtained from a training population in accordance with an
embodiment of the present invention.

[0059] FIG. 28 illustrates the number of times that common
biomarkers were found to be important across the decision
rules developed using (i) CART, (ii) PAM, (iii) random for-
ests, and (iv) the Wilcoxon (adjusted) test using T_ , baseline
data obtained from a training population.

[0060] FIG. 29 illustrates an overall ranking of biomarkers
for data obtained using T_,, baseline data obtained from a
training population. The biomarkers are referenced by their
corresponding Affymetrix U133 plus 2.0 probeset names
given in Table 30.

[0061] FIG. 30 illustrates the filters applied to identify
biomarkers that discriminate between subjects that will get
sepsis during a defined time period and subjects that will not
get sepsis during the defined time period using data obtained
from a training population, in accordance with an embodi-
ment of the present invention. Other combinations of biom-
arkers are disclosed herein including, for example, in Section
5.3 and in Section 6.

[0062] FIG. 31 shows the correlation between IL18R1
expression, as determined by RT-PCR, and the intensity of the
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X206618_at probeset, as determined using Affymetrix U133
plus 2.0 microarray measurements, across a training popula-
tion.

[0063] FIG. 32 shows the correlation between FCGRI1A
expression, as determined by RT-PCR, and the intensity of the
X214511_x_at, X216950_s_at and X216951_at probesets,
as determined using Affymetrix U133 plus 2.0 microarray
measurements, across a training population.

[0064] FIG. 33 shows the correlation between MMP9
expression, as determined by RT-PCR, and the intensity of the
X203936_s_at probeset, as determined using Affymetrix
U133 plus 2.0 microarray measurements, across a training
population.

[0065] FIG. 34 shows the correlation between CD86
expression, as determined by RT-PCR, and the intensity of the
X205685_at, X205686_s_at, and X210895_s_at probesets,
as determined using Affymetrix U133 plus 2.0 microarray
measurements, across a training population.

[0066] FIG. 35 shows a computer system in accordance
with the present invention.

[0067] FIG. 36 illustrates a classification and regression
tree for discriminating between a SIRS phenotypic state char-
acterized by the onset of sepsis and a SIRS phenotypic state
characterized by the absence of sepsis using T_, , static data
obtained from an RT-PCR discovery training population in
accordance with an embodiment of the present invention.
[0068] FIG. 37 shows the distribution of feature values for
seven biomarkers used in the decision tree of FIG. 36 across
T_,, static data obtained from an RT-PCR discovery training
population in accordance with an embodiment of the present
invention.

[0069] FIG. 38 illustrates the overall accuracy, sensitivity,
and specificity of 462 trees used to train a decision tree using
the Random Forests method based upon T_,, static data
obtained from an RT-PCR discovery training population in
accordance with an embodiment of the present invention.
[0070] FIG. 39 illustrates the biomarker importance in the
decision rule trained using the trees of FIG. 38.

[0071] FIG. 40illustrates a calculation of biomarker impor-
tance, summing to 100%, determined by a multiple additive
regression tree (MART) approach using T_,, static data
obtained from an RT-PCR discovery training population.
[0072] FIG. 41 illustrates the distribution of feature values
of'the biomarkers selected by the MART approach illustrated
in FIG. 40 between the Sepsis and SIRS groups using T_,
static data obtained from an RT-PCR discovery training popu-
lation.

[0073] FIG. 42 illustrates the overall accuracy, with 95%
confidence interval bars, specificity, and sensitivity of a deci-
sion rule developed with predictive analysis of microarrays
(PAM) using the biomarkers of the present invention using
T_,, static data obtained from an RT-PCR discovery training
population.

[0074] FIG.43isalist of biomarkers, rank-ordered by their
respective degrees of discriminatory power, identified by
PAMusing T_,, static data obtained from an RT-PCR discov-
ery training population.

[0075] FIG. 44 provides a summary of the CART, MART,
PAM, and random forests (RF) classification algorithm (deci-
sion rule) performance and associated 95% confidence inter-
vals using T_, static data obtained from an RT-PCR discov-
ery training population.
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[0076] FIG. 45 identified fifty selected biomarkers selected
based on the decision rule performance summarized in FIG.
44.

[0077] FIG. 46 provides a summary of the CART, MART,
PAM, and random forests (RF) classification algorithm (deci-
sion rule) performance and associated 95% confidence inter-
vals using T_, , static data obtained from an Affymetrix gene
chip discovery training population.

[0078] FIG. 47 provides a summary of the CART, MART,
PAM, and random forests (RF) classification algorithm (deci-
sion rule) performance and associated 95% confidence inter-
vals using T_, static data obtained from an RT-PCR confi-
matory training population.

[0079] FIG. 48 provides a summary of the CART, MART,
PAM, and random forests (RF) classification algorithm (deci-
sion rule) performance and associated 95% confidence inter-
vals using T_, , static data obtained from a combined pool of
a Aftymetrix gene chip confirmatory training population and
an RT-PCR confirmatory training population.

[0080] FIG. 49 illustrates a classification and regression
tree for discriminating between a SIRS phenotypic state char-
acterized by the onset of sepsis and a SIRS phenotypic state
characterized by the absence of sepsis using T_, , static data
obtained from a bead-based protein discovery training popu-
lation in accordance with an embodiment of the present
invention.

[0081] FIG. 50 shows the distribution of feature values for
ten biomarkers used in the decision tree of FIG. 49 across
T_,, static data obtained from a bead-based protein discovery
training population in accordance with an embodiment of the
present invention.

[0082] FIG. 51 illustrates the overall accuracy, sensitivity,
and specificity of 64 trees used to train a decision tree using
the Random Forests method based upon T_,, static data
obtained from a bead-based protein discovery training popu-
lation in accordance with an embodiment of the present
invention.

[0083] FIG. 52 illustrates the biomarker importance in the
decision rule trained using the trees of FIG. 51.

[0084] FIG. 53 illustrates a calculation of biomarker impor-
tance, summing to 100%, determined by a multiple additive
regression tree (MART) approach using T_,, static data
obtained from a bead-based protein discovery training popu-
lation in accordance with an embodiment of the present
invention.

[0085] FIG. 54 illustrates the distribution of feature values
of'the biomarkers selected by the MART approach illustrated
in FIG. 53 between the Sepsis and SIRS groups using T_,
static data obtained from a bead-based protein discovery
training population in accordance with an embodiment of the
present invention.

[0086] FIG. 55 illustrates the overall accuracy, with 95%
confidence interval bars, specificity, and sensitivity of a deci-
sion rule developed with predictive analysis of microarrays
(PAM) using the biomarkers of the present invention using
T_,, static data obtained from a bead-based protein discovery
training population in accordance with an embodiment of the
present invention.

[0087] FIG.561s alist of biomarkers, rank-ordered by their
respective degrees of discriminatory power, identified by
PAM using T_ |, static data obtained from a bead-based pro-
tein discovery training population in accordance with an
embodiment of the present invention.
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[0088] FIG. 57 provides a summary of the CART, MART,
PAM, and random forests (RF) classification algorithm (deci-
sion rule) performance and associated 95% confidence inter-
vals using T_ | , static data obtained from a bead-based protein
discovery training population in accordance with an embodi-
ment of the present invention.

[0089] FIG. 58 illustrates the number of times that common
biomarkers were found to be important across the decision
rules developed using (i) CART, (ii) MART, (iii) PAM, (iv)
random forests, and (v) the Wilcoxon (adjusted) test using
T_,, static data obtained from a bead-based protein discovery
training population in accordance with an embodiment of the
present invention.

[0090] FIG. 59 provides a summary of the CART, MART,
PAM, and random forests (RF) classification algorithm (deci-
sion rule) performance and associated 95% confidence inter-
vals using T_, , static data obtained from a bead-based protein
confirmation training population in accordance with an
embodiment of the present invention.

[0091] FIG. 60 plots the sepsis predicting accuracy of each
of 24 families of subcombinations from Table J, using T_,,
nucleic acid data, in a bar graph fashion, in accordance with
an embodiment of the present invention.

[0092] FIG. 61 plots the sepsis predicting performance (ac-
curacy) of each individual subcombination in each of 24
families of subcombinations, for a total of 4800 subcombina-
tions from Table J,using T_, , nucleic acid data, in accordance
with an embodiment of the present invention.

[0093] FIG. 62 plots the sepsis predicting accuracy of each
of 8 families of subcombinations from Table K, using T_,,
protein data, in a bar graph fashion, in accordance with an
embodiment of the present invention.

[0094] FIG. 63 plots the sepsis predicting performance (ac-
curacy) of each individual subcombination in each of 8 fami-
lies of subcombinations, for a total of 1600 subcombinations
from Table K, using T_, , protein data, in accordance with an
embodiment of the present invention.

[0095] FIG. 64 plots the sepsis predicting accuracy of each
of 8 families of subcombinations from Table K, using T_;4
protein data, in a bar graph fashion, in accordance with an
embodiment of the present invention.

[0096] FIG. 65 plots the sepsis predicting performance (ac-
curacy) of each individual subcombination in each of 8 fami-
lies of subcombinations, for a total of 1600 subcombinations
from Table K, using T_; protein data, in accordance with an
embodiment of the present invention.

[0097] FIG. 66 plots the sepsis predicting accuracy of each
of 23 families of subcombinations from Table J, using T_;
nucleic acid data, in a bar graph fashion, in accordance with
an embodiment of the present invention.

[0098] FIG. 67 plots the sepsis predicting performance (ac-
curacy) of each individual subcombination in each of 23
families of subcombinations, for a total of 4600 subcombina-
tions from Table J, using T_;¢nucleic acid data, in accordance
with an embodiment of the present invention.

[0099] FIG. 68 plots the sepsis predicting accuracy of each
of 23 families of subcombinations from Table I, using T_,,
combined protein and nucleic acid data, in a bar graph fash-
ion, in accordance with an embodiment of the present inven-
tion.

[0100] FIG. 69 plots the sepsis predicting performance (ac-
curacy) of each individual subcombination in each of 23
families of subcombinations, for a total of 4600 subcombina-
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tions from Table I, using T_, , combined protein and nucleic
acid data, in accordance with an embodiment of the present
invention.

[0101] FIG. 70 plots the sepsis predicting accuracy of each
of 23 families of subcombinations from Table I, using T_;4
combined protein and nucleic acid data, in a bar graph fash-
ion, in accordance with an embodiment of the present inven-
tion.

[0102] FIG. 71 plots the sepsis predicting performance (ac-
curacy) of each individual subcombination in each of 23
families of subcombinations, for a total of 4600 subcombina-
tions from Table I, using T_,; combined protein and nucleic
acid data, in accordance with an embodiment of the present
invention.

5. DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0103] The present invention allows for the rapid and accu-
rate diagnosis or prediction of sepsis by evaluating biomarker
features in biomarker profiles. These biomarker profiles can
be constructed from one or more biological samples of sub-
jects at a single time point (“snapshot™), or multiple such time
points, during the course of time the subject is at risk for
developing sepsis. Advantageously, sepsis can be diagnosed
or predicted prior to the onset of conventional clinical sepsis
symptoms, thereby allowing for more effective therapeutic
intervention.

5.1 DEFINITIONS

[0104] “Systemic inflammatory response syndrome,” or
“SIRS,” refers to a clinical response to a variety of severe
clinical insults, as manifested by two or more of the following
conditions within a 24-hour period:
[0105] body temperature greater than 38° C. (100.4° F.)
or less than 36° C. (96.8° F.);
[0106] heart rate (HR) greater than 90 beats/minute;
[0107] respiratory rate (RR) greater than 20 breaths/
minute, or P.,, less than 32 mmHg, or requiring
mechanical ventilation; and
[0108] white blood cell count (WBC) either greater than
12.0x10°/L or less than 4.0x10°/L..
[0109] These symptoms of SIRS represent a consensus
definition of SIRS that can be modified or supplanted by other
definitions in the future. The present definition is used to
clarify current clinical practice and does not represent a criti-
cal aspect of the invention (see, e.g., American College of
Chest Physicians/Society of Critical Care Medicine Consen-
sus Conference: Definitions for Sepsis and Organ Failure and
Guidelines for the Use of Innovative Therapies in Sepsis,
1992, Crit. Care. Med. 20, 864-874, the entire contents of
which are herein incorporated by reference).
[0110] A subject with SIRS has a clinical presentation that
is classified as SIRS, as defined above, but is not clinically
deemed to be septic. Methods for determining which subjects
are at risk of developing sepsis are well known to those in the
art. Such subjects include, for example, those in an ICU and
those who have otherwise suffered from a physiological
trauma, such as a burn, surgery or other insult. A hallmark of
SIRS is the creation of a proinflammatory state that can be
marked by tachycardia, tachypnea or hyperpnea, hypoten-
sion, hypoperfusion, oliguria, leukocytosis or leukopenia,
pyrexia or hypothermia and the need for volume infusion.
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SIRS characteristically does not include a documented source
of infection (e.g., bacteremia).

[0111] “Sepsis” refers to a systemic host response to infec-
tion with SIRS plus a documented infection (e.g., a subse-
quent laboratory confirmation of a clinically significant infec-
tion such as a positive culture for an organism). Thus, sepsis
refers to the systemic inflammatory response to a documented
infection (see, e.g., American College of Chest Physicians
Society of Critical Care Medicine, Chest, 1997, 101:1644-
1655, the entire contents of which are herein incorporated by
reference). As used herein, “sepsis” includes all stages of
sepsis including, but not limited to, the onset of sepsis, severe
sepsis, septic shock and multiple organ dystunction (“MOD”)
associated with the end stages of sepsis.

[0112] The “onset of sepsis” refers to an early stage of
sepsis, e.g., prior to a stage when conventional clinical mani-
festations are sufficient to support a clinical suspicion of
sepsis. Because the methods of the present invention are used
to detect sepsis prior to a time that sepsis would be suspected
using conventional techniques, the subject’s disease status at
early sepsis can only be confirmed retrospectively, when the
manifestation of sepsis is more clinically obvious. The exact
mechanism by which a subject becomes septic is not a critical
aspect of the invention. The methods of the present invention
can detect the onset of sepsis independent of the origin of the
infectious process.

[0113] “Severe sepsis™ refers to sepsis associated with
organ dysfunction, hypoperfusion abnormalities, or sepsis-
induced hypotension. Hypoperfusion abnormalities include,
but are not limited to, lactic acidosis, oliguria, or an acute
alteration in mental status.

[0114] “Septic shock™ refers to sepsis-induced hypotension
that is not responsive to adequate intravenous fluid challenge
and with manifestations of peripheral hypoperfusion.

[0115] A “converter” or “converter subject” refers to a
SIRS-positive subject who progresses to clinical suspicion of
sepsis during the period the subject is monitored, typically
during an ICU stay.

[0116] A “non-converter” or “non-converter subject” refers
to a SIRS-positive subject who does not progress to clinical
suspicion of sepsis during the period the subject is monitored,
typically during an ICU stay.

[0117] A “biomarker” is virtually any detectable com-
pound, such as a protein, a peptide, a proteoglycan, a glyco-
protein, a lipoprotein, a carbohydrate, a lipid, a nucleic acid
(e.g., DNA, such as cDNA or amplified DNA, or RNA, such
as mRNA), an organic or inorganic chemical, a natural or
synthetic polymer, a small molecule (e.g., a metabolite), or a
discriminating molecule or discriminating fragment of any of
the foregoing, that is present in or derived from a biological
sample. “Derived from” as used in this context refers to a
compound that, when detected, is indicative of a particular
molecule being present in the biological sample. For
example, detection of a particular cDNA can be indicative of
the presence of a particular RNA transcript in the biological
sample. As another example, detection of or binding to a
particular antibody can be indicative of the presence of a
particular antigen (e.g., protein) in the biological sample.
Here, a discriminating molecule or fragment is a molecule or
fragment that, when detected, indicates presence or abun-
dance of an above-identified compound.

[0118] A biomarker can, for example, be isolated from the
biological sample, directly measured in the biological
sample, or detected in or determined to be in the biological
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sample. A biomarker can, for example, be functional, par-
tially functional, or non-functional. In one embodiment ofthe
present invention, a biomarker is isolated and used, for
example, to raise a specifically-binding antibody that can
facilitate biomarker detection in a variety of diagnostic
assays. Any immunoassay may use any antibodies, antibody
fragment or derivative thereof capable of binding the biom-
arker molecules (e.g., Fab, F(ab'),, Fv, or scFv fragments).
Such immunoassays are well-known in the art. In addition, if
the biomarker is a protein or fragment thereof, it can be
sequenced and its encoding gene can be cloned using well-
established techniques.

[0119] As used herein, the term “a species of a biomarker”
refers to any discriminating portion or discriminating frag-
ment of a biomarker described herein, such as a splice variant
of a particular gene described herein (e.g., a gene listed in
Table 30, or Table I, or Table J, or Table K, infra). Here, a
discriminating portion or discriminating fragment is a portion
or fragment of a molecule that, when detected, indicates
presence or abundance of the above-identified transcript,
c¢DNA, amplified nucleic acid, or protein.

[0120] As used herein, the terms “protein”, “peptide”, and
“polypeptide” are, unless otherwise indicated, interchange-
able.

[0121] A “biomarker profile” comprises a plurality of one
or more types of biomarkers (e.g., an mRNA molecule, a
c¢DNA molecule, a protein and/or a carbohydrate, etc.), or an
indication thereof, together with a feature, such as a measur-
able aspect (e.g., abundance) of the biomarkers. A biomarker
profile comprises at least two such biomarkers or indications
thereof, where the biomarkers can be in the same or different
classes, such as, for example, a nucleic acid and a carbohy-
drate. A biomarker profile may also comprise at least 3, 4, 5,
6,7,8,9,10,11,12,13,14,15,16,17, 18,19, 20, 21, 22, 23,
24, 25,30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or
100 or more biomarkers or indications thereof. In one
embodiment, a biomarker profile comprises hundreds, or
even thousands, of biomarkers or indications thereof. A biom-
arker profile can further comprise one or more controls or
internal standards. In one embodiment, the biomarker profile
comprises at least one biomarker, or indication thereof, that
serves as an internal standard. In another embodiment, a
biomarker profile comprises an indication of one or more
types of biomarkers. The term “indication” as used herein in
this context merely refers to a situation where the biomarker
profile contains symbols, data, abbreviations or other similar
indicia for a biomarker, rather than the biomarker molecular
entity itself. For instance, consider an exemplary biomarker
profile of the present invention that comprises the Affymetrix
(SantaClara, Calif.) U133 plus 2.0205013_s_atand 209369_
at probesets. Another exemplary biomarker profile of the
present invention comprises the name of genes used to derive
the Affymetrix (Santa Clara, Calif.) U133 plus 2.0 205013 _
s_at and 209369_at probesets. In still another exemplary
biomarker profile of the present invention, the biomarker
profile comprises a physical quantity of a transcript of a gene
from which the 205013_s_at probeset was derived, and a
physical quantity of a transcript of a gene from which the
209369_at probeset was derived. In another embodiment, the
biomarker profile comprises a nominal indication of the
quantity of a transcript of a gene from which the 205013 _s_at
probeset was derived and a nominal indication of the quantity
of transcript of a gene from which the 209369_at probeset
was derived. Still another exemplary biomarker profile of the
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present invention comprises a microarray to which a physical
quantity of a gene transcript from which the 205013_s_at
probeset was derived is bound at a first probe spot on the
microarray and an abundance of a gene transcript from which
the 209369_at probeset was derived is bound to a second
probe spot on the microarray. In this last exemplary biomar-
ker profile, at least twenty percent, forty percent, or more than
forty percent ofthe probes spots are based on sequences in the
probesets given in Table 30. In another exemplary biomarker
profile, at least twenty percent, forty percent, or more than
forty percent ofthe probes spots are based on sequences in the
probesets given in Table 31.

[0122] Each biomarker in a biomarker profile includes a
corresponding “feature.”” A “feature”, as used herein, refers to
ameasurable aspect of a biomarker. A feature can include, for
example, the presence or absence of biomarkers in the bio-
logical sample from the subject as illustrated in exemplary
biomarker profile 1:

Exemplary biomarker profile 1.

Feature
Biomarker Presence in sample
transcript of gene A Present
transcript of gene B Absent

[0123] In exemplary biomarker profile 1, the feature value
for the transcript of gene A is “presence” and the feature value
for the transcript of gene B is “absence.”

[0124] A feature can include, for example, the abundance
of a biomarker in the biological sample from a subject as
illustrated in exemplary biomarker profile 2:

Exemplary biomarker profile 2.

Feature
Abundance in sample
Biomarker in relative units
transcript of gene A 300
transcript of gene B 400
[0125] In exemplary biomarker profile 2, the feature value

for the transcript of gene A is 300 units and the feature value
for the transcript of gene B is 400 units.

[0126] A feature can also be a ratio of two or more measur-
able aspects of a biomarker as illustrated in exemplary biom-
arker profile 3:

Exemplary biomarker profile 3.

Feature
Ratio of abundance of transcript of

Biomarker gene A/transcript of gene B

transcript of gene A 300/400

transcript of gene B

[0127] In exemplary biomarker profile 3, the feature value
for the transcript of gene A and the feature value for the
transcript of gene B is 0.75 (300/400).

May 5, 2011

[0128] A feature may also be the difference between a
measurable aspect of the corresponding biomarker that is
taken from two samples, where the two samples are collected
from a subject at two different time points. For example,
consider the case where the biomarker is a transcript of a gene
A and the “measurable aspect” is abundance of the transcript,
in samples obtained from a test subject as determined by, e.g.,
RT-PCR or microarray analysis. In this example, the abun-
dance of the transcript of gene A is measured in a first sample
as well as a second sample. The first sample is taken from the
test subject a number of hours before the second sample. To
compute the feature for gene A, the abundance of the tran-
script of gene A in one sample is subtracted from the abun-
dance of the transcript of gene A in the second sample. A
feature can also be an indication as to whether an abundance
of a biomarker is increasing in biological samples obtained
from a subject over time and/or an indication as to whether an
abundance of a biomarker is decreasing in biological samples
obtained from a subject over time.

[0129] In some embodiments, there is a one-to-one corre-
spondence between features and biomarkers in a biomarker
profile as illustrated in exemplary biomarker profile 1, above.
In some embodiments, the relationship between features and
biomarkers in a biomarker profile of the present invention is
more complex, as illustrated in Exemplary biomarker profile
3, above.

[0130] Those of skill in the art will appreciate that other
methods of computation of a feature can be devised and all
such methods are within the scope of the present invention.
For example, a feature can represent the average of an abun-
dance of a biomarker across biological samples collected
from a subject at two or more time points. Furthermore, a
feature can be the difference or ratio of the abundance of two
or more biomarkers from a biological sample obtained from a
subject in a single time point. A biomarker profile may also
comprise at least three, four, five, 10, 20, 30 or more features.
In one embodiment, a biomarker profile comprises hundreds,
or even thousands, of features.

[0131] In some embodiments, features of biomarkers are
measured using microarrays. The construction of microar-
rays and the techniques used to process microarrays in order
to obtain abundance data is well known, and is described, for
example, by Draghici, 2003, Data Analysis Tools for DNA
Microarrays, Chapman & Hall/CRC, and international pub-
lication number WO 03/061564, each of which is hereby
incorporated by reference in its entirety. A microarray com-
prises a plurality of probes. In some instances, each probe
recognizes, e.g., binds to, a different biomarker. In some
instances, two or more different probes on a microarray rec-
ognize, e.g., bind to, the same biomarker. Thus, typically, the
relationship between probe spots on the microarray and a
subject biomarker is a two to one correspondence, a three to
one correspondence, or some other form of correspondence.
However, it can be the case that there is a unique one-to-one
correspondence between probes on a microarray and biom-
arkers.

[0132] A “phenotypic change” is a detectable change in a
parameter associated with a given state of the subject. For
instance, a phenotypic change can include an increase or
decrease of a biomarker in a bodily fluid, where the change is
associated with SIRS, sepsis, the onset of sepsis or with a
particular stage in the progression of sepsis. A phenotypic
change can further include a change in a detectable aspect of
a given state of the subject that is not a change in a measurable
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aspect of a biomarker. For example, a change in phenotype
can include a detectable change in body temperature, respi-
ration rate, pulse, blood pressure, or other physiological
parameter. Such changes can be determined via clinical
observation and measurement using conventional techniques
that are well-known to the skilled artisan.

[0133] As used herein, the term “complementary,” in the
context of a nucleic acid sequence (e.g., a nucleotide
sequence encoding a gene described herein), refers to the
chemical affinity between specific nitrogenous bases as a
result of their hydrogen bonding properties. For example,
guanine (G) forms a hydrogen bond with only cytosine (C),
while adenine forms a hydrogen bond only with thymine (T)
in the case of DNA, and uracil (U) in the case of RNA. These
reactions are described as base pairing, and the paired bases
(Gwith C, or A with T/U) are said to be complementary. Thus,
two nucleic acid sequences may be complementary if their
nitrogenous bases are able to form hydrogen bonds. Such
sequences are referred to as “complements” of each other.
Such complement sequences can be naturally occurring, or,
they can be chemically synthesized by any method known to
those skilled in the art, as for example, in the case of antisense
nucleic acid molecules which are complementary to the sense
strand of a DNA molecule or an RNA molecule (e.g., an
mRNA transcript). See, e.g., Lewin, 2002, Genes VII. Oxford
University Press Inc., New York, N.Y., which is hereby incor-
porated by reference.

[0134] As used herein, “conventional techniques” in the
context of diagnosing or predicting sepsis or SIRS are those
techniques that classify a subject based on phenotypic
changes without obtaining a biomarker profile according to
the present invention.

[0135] A “decisionrule”isa methodused to evaluate biom-
arker profiles. Such decision rules can take on one or more
forms that are known in the art, as exemplified in Hastie et al.,
2001, The Elements of Statistical Learning, Springer-Verlag,
New York, which is hereby incorporated by reference in its
entirety. A decision rule may be used to act on a data set of
features to, inter alia, predict the onset of sepsis, to determine
the progression of sepsis, or to diagnose sepsis. Exemplary
decision rules that can be used in some embodiments of the
present invention are described in further detail in Section
5.5, below.

[0136] “Predicting the development of sepsis” is the deter-
mination as to whether a subject will develop sepsis. Any such
prediction is limited by the accuracy of the means used to
make this determination. The present invention provides a
method, e.g., by utilizing a decision rule(s), for making this
determination with an accuracy that is 60% or greater. As
used herein, the terms “predicting the development of sepsis”™
and “predicting sepsis” are interchangeable. In some embodi-
ments, the act of predicting the development of sepsis (pre-
dicting sepsis) is accomplished by evaluating one or more
biomarker profiles from a subject using a decision rule that is
indicative of the development of sepsis and, as a result of this
evaluation, receiving a result from the decision rule that indi-
cates that the subject will become septic. Such an evaluation
of one or more biomarker profiles from a test subject using a
decision rule uses some or all the features in the one or more
biomarker profiles to obtain such a result.

[0137] The terms “obtain” and “obtaining,” as used herein,
mean “to come into possession of,” or “coming into posses-
sion of,” respectively. This can be done, for example, by
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retrieving data from a data store in a computer system. This
can also be done, for example, by direct measurement.

[0138] As used herein, the term “specifically,” and analo-
gous terms, in the context of an antibody, refers to peptides,
polypeptides, and antibodies or fragments thereof that spe-
cifically bind to an antigen or a fragment and do not specifi-
cally bind to other antigens or other fragments. A peptide or
polypeptide that specifically binds to an antigen may bind to
other peptides or polypeptides with lower affinity, as deter-
mined by standard experimental techniques, for example, by
any immunoassay well-known to those skilled in the art. Such
immunoassays include, but are not limited to, radioimmu-
noassays (RIAs) and enzyme-linked immunosorbent assays
(ELISAs). Antibodies or fragments that specifically bind to
an antigen may be cross-reactive with related antigens. Pref-
erably, antibodies or fragments thereof that specifically bind
to an antigen do not cross-react with other antigens. See, e.g.,
Paul, ed., 2003, Fundamental Immunology, 5th ed., Raven
Press, New York at pages 69-105, which is incorporated by
reference herein, for a discussion regarding antigen-antibody
interactions, specificity and cross-reactivity, and methods for
determining all of the above.

[0139] As used herein, a “subject” is an animal, preferably
a mammal, more preferably a non-human primate, and most

preferably a human. The terms “subject” “individual” and
“patient” are used interchangeably herein.

[0140] As used herein, a “test subject,” typically, is any
subject that is not in a training population used to construct a
decision rule. A test subject can optionally be suspected of
either having sepsis at risk of developing sepsis.

[0141] Asused herein, a “tissue type,” is a type of tissue. A
tissue is an association of cells of a multicellular organism,
with a common embryoloical origin or pathway and similar
structure and function. Often, cells of a tissue are contiguous
at cell membranes but occasionally the tissue may be fluid
(e.g., blood). Cells of a tissue may be all of one type (a simple
tissue, e.g., squamous epithelium, plant parentchyma) or of
more than one type (a mixed tissue, e.g., connective tissue).

[0142] As used herein, a “training population™ is a set of
samples from a population of subjects used to construct a
decision rule, using a data analysis algorithm, for evaluation
of the biomarker profiles of subjects at risk for developing
sepsis. In a preferred embodiment, a training population
includes samples from subjects that are converters and sub-
jects that are nonconverters.

[0143] As used herein, a “data analysis algorithm” is an
algorithm used to construct a decision rule using biomarker
profiles of subjects in a training population. Representative
data analysis algorithms are described in Section 5.5. A “deci-
sion rule” is the final product of a data analysis algorithm, and
is characterized by one or more value sets, where each of
these value sets is indicative of an aspect of SIRS, the onset of
sepsis, sepsis, or a prediction that a subject will acquire sep-
sis. In one specific example, a value set represents a predic-
tion that a subject will develop sepsis. In another example, a
value set represents a prediction that a subject will not
develop sepsis.

[0144] As used herein, a “validation population™ is a set of
samples from a population of subjects used to determine the
accuracy of a decision rule. In a preferred embodiment, a
validation population includes samples from subjects that are
converters and subjects that are nonconverters. In a preferred
embodiment, a validation population does not include sub-
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jects that are part of the training population used to train the
decision rule for which an accuracy measurement is sought.
[0145] As used herein, a “value set” is a combination of
values, or ranges of values for features in a biomarker profile.
The nature of this value set and the values therein is dependent
upon the type of features present in the biomarker profile and
the data analysis algorithm used to construct the decision rule
that dictates the value set. To illustrate, reconsider exemplary
biomarker profile 2:

Exemplary biomarker profile 2.

Feature
Abundance in sample
Biomarker in relative units
transcript of gene A 300
transcript of gene B 400

[0146] Inthis example, the biomarker profile of each mem-
ber of a training population is obtained. Each such biomarker
profile includes a measured feature, here abundance, for the
transcript of gene A, and a measured feature, here abundance,
for the transcript of gene B. These feature values, here abun-
dance values, are used by a data analysis algorithm to con-
struct a decision rule. In this example, the data analysis algo-
rithm is a decision tree, described in Section 5.5.1 and the
final product of this data analysis algorithm, the decision rule,
is a decision tree. An exemplary decision tree is illustrated in
FIG. 1. The decision rule defines value sets. One such value
set is predictive of the onset of sepsis. A subject whose biom-
arker feature values satisfy this value set is likely to become
septic. An exemplary value set of this class is exemplary value
set 1:

Exemplary value set 1.

Value set component
(Abundance in sample

Biomarker in relative units)
transcript of gene A <400
transcript of gene B <600
[0147] Another such value set is predictive of a septic-free

state. A subject whose biomarker feature values satisfy this
value set is not likely to become septic. An exemplary value
set of this class is exemplary value set 2:

Exemplary value set 2.

Value set component
(Abundance in sample

Biomarker in relative units)
transcript of gene A >400
transcript of gene B >600
[0148] In the case where the data analysis algorithm is a

neural network analysis and the final product of this neural
network analysis is an appropriately weighted neural net-
work, one value set is those ranges of biomarker profile fea-
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ture values that will cause the weighted neural network to
indicate that onset of sepsis is likely. Another value set is
those ranges of biomarker profile feature values that will
cause the weighted neural network to indicate that onset of
sepsis is not likely.

[0149] As used herein, the term “probe spot” in the context
of a microarray refers to a single stranded DNA molecule
(e.g., a single stranded cDNA molecule or synthetic DNA
oligomer), referred to herein as a “probe,” that is used to
determine the abundance of a particular nucleic acid in a
sample. For example, a probe spot can be used to determine
the level of mRNA in a biological sample (e.g., a collection of
cells) from a test subject. In a specific embodiment, a typical
microarray comprises multiple probe spots that are placed
onto a glass slide (or other substrate) in known locations on a
grid. The nucleic acid for each probe spot is a single stranded
contiguous portion of the sequence of a gene or gene of
interest (e.g., a 10-mer, 11-mer, 12-mer, 13-mer, 14-mer,
15-mer, 16-mer, 17-mer, 18-mer, 19-mer, 20-mer, 21-mer,
22-mer, 23-mer, 24-mer, 25-mer or larger) and is a probe for
the mRNA encoded by the particular gene or gene of interest.
Each probe spot is characterized by a single nucleic acid
sequence, and is hybridized under conditions that cause it to
hybridize only to its complementary DNA strand or mRNA
molecule. As such, there can be many probe spots on a sub-
strate, and each can represent a unique gene or sequence of
interest. In addition, two or more probe spots can represent
the same gene sequence. In some embodiments, a labeled
nucleic sample is hybridized to a probe spot, and the amount
oflabeled nucleic acid specifically hybridized to a probe spot
can be quantified to determine the levels of that specific
nucleic acid (e.g., mRNA transcript of a particular gene) in a
particular biological sample. Probes, probe spots, and
microarrays, generally, are described in Draghici, 2003, Data
Analysis Tools for DNA Microarrays, Chapman & Hall/CRC,
Chapter, 2, which is hereby incorporated by reference in its
entirety.

[0150] As used herein, the term “annotation data” refers to
any type of data that describes a property of a biomarker.
Annotation data includes, but is not limited to, biological
pathway membership, enzymatic class (e.g., phosphodi-
esterase, kinase, metalloproteinase, etc.), protein domain
information, enzymatic substrate information, enzymatic
reaction information, protein interaction data, disease asso-
ciation, cellular localization, tissue type localization, and cell
type localization.

[0151] As used herein, the term “T_,,” refers to the last
time blood was obtained from a subject before the subject is
clinically diagnosed with sepsis. Since, in the present inven-
tion, blood is collected from subjects each 24 hour period,
T_,, references the average time period prior to the onset of
sepsis for a pool of patients, with some patients turning septic
prior to the 12 hour mark and some patients turning septic
after the 12 hour mark. However, across a pool of subjects, the
average time period for this last blood sample is the 12 hour
mark, hence the name “T_,,.”

5.2 METHODS FOR SCREENING SUBJECTS

[0152] The present invention allows for accurate, rapid pre-
diction and/or diagnosis of sepsis through detection of two or
more features of a biomarker profile of a test individual sus-
pected of or at risk for developing sepsis in each of one or
more biological samples from a test subject. In one embodi-
ment, only a single biological sample taken at a single point in
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time from the test subject is needed to construct a biomarker
profile that is used to make this prediction or diagnosis of
sepsis. In another embodiment, multiple biological samples
taken at different points in time from the test subject are used
to construct a biomarker profile that is used to make this
prediction or diagnosis of sepsis.

[0153] Inspecific embodiments of the invention, subjects at
risk for developing sepsis or SIRS are screened using the
methods of the present invention. In accordance with these
embodiments, the methods of the present invention can be
employed to screen, for example, subjects admitted to an ICU
and/or those who have experienced some sort of trauma (such
as, e.g., surgery, vehicular accident, gunshot wound, etc.).

[0154] In specific embodiments, a biological sample such
as, for example, blood, is taken upon admission. In some
embodiments, a biological sample is blood, plasma, serum,
saliva, sputum, urine, cerebral spinal fluid, cells, a cellular
extract, a tissue specimen, a tissue biopsy, or a stool speci-
men. In some embodiments a biological sample is whole
blood and this whole blood is used to obtain measurements
for a biomarker profile. In some embodiments a biological
sample is some component of whole blood. For example, in
some embodiments some portion of the mixture of proteins,
nucleic acid, and/or other molecules (e.g., metabolites)
within a cellular fraction or within a liquid (e.g., plasma or
serum fraction) of the blood is resolved as a biomarker profile.
This can be accomplished by measuring features of the biom-
arkers in the biomarker profile. In some embodiments, the
biological sample is whole blood but the biomarker profile is
resolved from biomarkers in a specific cell type that is iso-
lated from the whole blood. In some embodiments, the bio-
logical sample is whole blood but the biomarker profile is
resolved from biomarkers expressed or otherwise found in
monocytes that are isolated from the whole blood. In some
embodiments, the biological sample is whole blood but the
biomarker profile is resolved from biomarkers expressed or
otherwise found in red blood cells that are isolated from the
whole blood. In some embodiments, the biological sample is
whole blood but the biomarker profile is resolved from biom-
arkers expressed or otherwise found in platelets that are iso-
lated from the whole blood. In some embodiments, the bio-
logical sample is whole blood but the biomarker profile is
resolved from biomarkers expressed or otherwise found in
neutriphils that are isolated from the whole blood. In some
embodiments, the biological sample is whole blood but the
biomarker profile is resolved from biomarkers expressed or
otherwise found in eosinophils that are isolated from the
whole blood. In some embodiments, the biological sample is
whole blood but the biomarker profile is resolved from biom-
arkers expressed or otherwise found in basophils that are
isolated from the whole blood. In some embodiments, the
biological sample is whole blood but the biomarker profile is
resolved from biomarkers expressed or otherwise found in
lymphocytes that are isolated from the whole blood. In some
embodiments, the biological sample is whole blood but the
biomarker profile is resolved from biomarkers expressed or
otherwise found in monocytes that are isolated from the
whole blood. In some embodiments, the biological sample is
whole blood but the biomarker profile is resolved from one,
two, three, four, five, six, or seven cell types from the group of
cells types consisting of red blood cells, platelets, neutrophils,
eosinophils, basophils, lymphocytes, and monocytes.

[0155] A biomarker profile comprises a plurality of one or
more types of biomarkers (e.g., an mRNA molecule, a cDNA
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molecule, a protein and/or a carbohydrate, etc.), or an indi-
cation thereof, together with features, such as a measurable
aspect (e.g., abundance) of the biomarkers. A biomarker pro-
file can comprise at least two such biomarkers or indications
thereof, where the biomarkers can be in the same or different
classes, such as, for example, a nucleic acid and a carbohy-
drate. In some embodiments, a biomarker profile comprises at
least2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, 18,19,
20,25,30,35, 40,45, 50,55, 60, 65,70,75,80, 85, 90, 95, 96,
100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155,
160, 165, 170, 175, 180, 185, 190, 195 or 200 or more biom-
arkers or indications thereof. In one embodiment, a biomar-
ker profile comprises hundreds, or even thousands, of biom-
arkers or indications thereof. In some embodiments, a
biomarker profile comprises atleast 2,3, 4,5,6,7,8,9,10,11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, or
more biomarkers or indications thereof. In one example, in
some embodiments, a biomarker profile comprises at least 2,
3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, 18,19, 20, 25,
30, 35, 40, 45, 50, or more biomarkers selected from Table 1
of'Section 5.11, or indications thereof. In another example, in
some embodiments, a biomarker profile comprises at least 2,
3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, 18,19, 20, 25,
30, 35, 40 or more biomarkers selected from Table J of Sec-
tion 5.11, or indications thereof. In another example, in some
embodiments, a biomarker profile comprises any 2, 3, 4, 5, 6,
7,8, 9, or all ten biomarkers in Table K of Section 5.11, or
indications thereof.

[0156] In typical embodiments, each biomarker in the
biomarker profile is represented by a feature. In other words,
there is a correspondence between biomarkers and features.
In some embodiments, the correspondence between biomar-
kers and features is 1:1, meaning that for each biomarker there
is a feature. In some embodiments, there is more than one
feature for each biomarker. In some embodiments the number
of features corresponding to one biomarker in the biomarker
profile is different than then number of features correspond-
ing to another biomarker in the biomarker profile. As such, in
some embodiments, a biomarker profile can include at least 2,
3,4,5,6,7,8,9,10,11,12,13,14, 15,16, 17, 18, 19, 20, 25,
30,35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 100,
105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160,
165, 170, 175, 180, 185, 190, 195 or 200 or more features,
provided that there are at least 2, 3, 4, 5, 6, or 7 or more
biomarkers in the biomarker profile. In some embodiments, a
biomarker profile can include at least 2, 3,4, 5,6, 7, 8,9, 10,
11,12,13,14,15,16,17, 18, 19, 20, 25, 30, 35, 40, 45, 50, or
more features. Regardless of embodiment, these features can
be determined through the use of any reproducible measure-
ment technique or combination of measurement techniques.
Such techniques include those that are well known in the art
including any technique described herein or, for example, any
technique disclosed in Section 5.4, infra. Typically, such tech-
niques are used to measure feature values using a biological
sample taken from a subject at a single point in time or
multiple samples taken at multiple points in time. In one
embodiment, an exemplary technique to obtain a biomarker
profile from a sample taken from a subject is a cDNA microar-
ray (see, e.g., Section 5.4.1.2 and Section 6, infra). In another
embodiment, an exemplary technique to obtain a biomarker
profile from a sample taken from a subject is a protein-based
assay or other form of protein-based technique such as
described in the BD Cytometric Bead Array (CBA) Human
Inflammation Kit Instruction Manual (BD Biosciences) or the
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bead assay described in U.S. Pat. No. 5,981,180, each of
which is incorporated herein by reference in their entirety,
and in particular for their teachings of various methdds of
assay protein concentrations in biological samples. In still
another embodiment, the biomarker profile is mixed, mean-
ing that it comprises some biomarkers that are nucleic acids,
or indications thereof, and some biomarkers that are proteins,
or indications thereof. In such embodiments, both protein
based and nucleic acid based techniques are used to obtain a
biomarker profile from one or more samples taken from a
subject. In other words, the feature values for the features
associated with the biomarkers in the biomarker profile that
are nucleic acids are obtained by nucleic acid based measure-
ment techniques (e.g., a nucleic acid microarray) and the
feature values for the features associated with the biomarkers
in the biomarker profile that are proteins are obtained by
protein based measurement techniques. In some embodi-
ments biomarker profiles can be obtained using a kit, such as
a kit described in Section 5.3 below.

[0157] Inspecific embodiments, a subject is screened using
the methods and compositions of the invention as frequently
as necessary (e.g., during their stay in the ICU) to diagnose or
predict sepsis or SIRS in a subject. In a preferred embodi-
ment, the subject is screened soon after they arrive in the ICU.
In some embodiments, the subject is screened daily after they
arrive in the ICU. In some embodiments, the subject is
screened every 1 to 4 hours, 1 to 8 hours, 8 to 12 hours, 12 to
16 hours, or 16 to 24 hours after they arrive in the ICU.

5.3 KITS

[0158] The invention also provides kits that are useful in
diagnosing or predicting the development of sepsis or diag-
nosing SIRS in a subject. In some embodiments, the kits of
the present invention comprise at least 2, 3,4, 5,6, 7, 8,9, 10,
11,12,13,14,15,16,17,18, 19, 20, 25, 30, 35, 40, 45, 50, 55,
60, 65, 70,75, 80,85, 90, 95,96, 100, 105,110, 115, 120, 125,
130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185,
190, 195 or 200 or more biomarkers and/or reagents to detect
the presence or abundance of such biomarkers. In other
embodiments, the kits of the present invention comprise at
least 2, but as many as several hundred or more biomarkers. In
some embodiments, the kits ofthe present invention comprise
atleast2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 25, 30, 35, 40, 45, 50 or more biomarkers selected
from Table I of Section 5.11. In some embodiments, the kits
of the present invention comprise at least 2, 3,4, 5,6,7,8, 9,
10,11,12,13,14,15,16,17,18,19, 20, 25,30, 35,40 or more
biomarkers selected from Table J of Section 5.11. In some
embodiments, the kits of the present invention comprise at
least 2,3, 4, 5,6,7,8,9, orall 10 of the biomarkers in Table
K of Section 5.11. In accordance with the definition of biom-
arkers given in Section 5.1, in some instances, a biomarker is
in fact a discriminating molecule of, for example, a gene,
mRNA, or protein rather than the gene, mRNA, or protein
itself. Thus, a biomarker could be a molecule that indicates
the presence or abundance of a particular gene or protein, or
fragment thereof, identified in any one of Tables I, J, or K of
Section 5.11 rather than the actual gene or protein itself. Such
discriminating molecules are sometimes referred to in the art
as “reagents.” In some embodiments, the kits of the present
invention comprise at least 2, but as many as several hundred
or more biomarkers.

[0159] The biomarkers of the kits of the present invention
can be used to generate biomarker profiles according to the
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present invention. Examples of classes of compounds of the
kit include, but are not limited to, proteins and fragments
thereof, peptides, proteoglycans, glycoproteins, lipoproteins,
carbohydrates, lipids, nucleic acids (e.g., DNA, such as
c¢DNA or amplified DNA, or RNA, such as mRNA), organic
or inorganic chemicals, natural or synthetic polymers, small
molecules (e.g., metabolites), or discriminating molecules or
discriminating fragments of any of the foregoing. In a specific
embodiment, a biomarker is of a particular size, (e.g., at least
10, 15,20, 25,30, 35, 40,45, 50, 55, 60, 65,70, 75, 80, 85, 90,
95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150,
155,160, 165,170, 175, 180, 185, 190, 195, 200, 1000, 2000,
3000, 5000, 10 k, 20 k, 100 k Daltons or greater). The biom-
arker(s) may be part of an array, or the biomarker(s) may be
packaged separately and/or individually. The kit may also
comprise at least one internal standard to be used in generat-
ing the biomarker profiles of the present invention. Likewise,
the internal standard or standards can be any of the classes of
compounds described above.

[0160] In one embodiment, the invention provides kits
comprising probes and/or primers that may or may not be
immobilized at an addressable position on a substrate, such as
found, for example, in a microarray. In a particular embodi-
ment, the invention provides such a microarray.

[0161] In a specific embodiment, the invention provides a
kit for predicting the development of sepsis in a test subject
that comprises a plurality of antibodies that specifically bind
the protein-based biomarkers listed in any one of Tables 30,
31, 32, 33, 34, 36, 1, J, or K. In such embodiments, the
antibodies themselves are biomarkers within the scope of the
present invention. In accordance with this embodiment, the
kit may comprise a set of antibodies or functional fragments
or derivatives thereof (e.g., Fab, F(ab),, Fv, or scFv frag-
ments) that specifically bind at least 2, 3,4,5,6,7,8,9,10,11,
12,13,14,15,16,17, 18,19, 20, 25,30, 35, 40,45, 50, 55, 60,
65,70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130,
135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190,
195 or 200 or more of the protein-based biomarkers set forth
in any one of Tables 30, 31, 32, 33, 34,36, [, J, or K. In
accordance with this embodiment, the kit may include anti-
bodies, fragments or derivatives thereof (e.g., Fab, F(ab"),,
Fv, or scFv fragments) that are specific for the biomarkers of
the present invention. In one embodiment, the antibodies may
be detectably labeled.

[0162] In a specific embodiment, the invention provides a
kit for predicting the development of sepsis in a test subject
comprises a plurality of antibodies that specifically bind a
plurality of the protein-based biomarkers listed in Table I of
Section 5.11. In accordance with this embodiment, the kit
may comprise a set of antibodies or functional fragments or
derivatives thereof (e.g., Fab, F(ab'),, Fv, or scFv fragments)
that specifically bind atleast 2,3, 4, 5,6,7,8,9,10,11,12,13,
14,15,16,17,18, 19,20, 25,30, 35, 40,45, 50 or more of the
biomarkers set forth in Table I. In accordance with this
embodiment, the kit may include antibodies, fragments or
derivatives thereof (e.g., Fab, F(ab'),, Fv, or scFv fragments)
that are specific for the biomarkers of the present invention. In
one embodiment, the antibodies may be detectably labeled.
[0163] In other embodiments of the invention, a kit may
comprise a specific biomarker binding component, such as an
aptamer. If the biomarkers comprise a nucleic acid, the kit
may provide an oligonucleotide probe that is capable of form-
ing a duplex with the biomarker or with a complementary
strand of a biomarker. The oligonucleotide probe may be
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detectably labeled. In such embodiments, the probes are
themselves biomarkers that fall within the scope of the
present invention.

[0164] The kits of the present invention may also include
additional compositions, such as buffers, that can be used in
constructing the biomarker profile. Prevention of the action of
microorganisms can be ensured by the inclusion of various
antibacterial and antifungal agents, for example, paraben,
chlorobutanol, phenol sorbic acid, and the like. It may also be
desirable to include isotonic agents such as sugars, sodium
chloride, and the like.

[0165] Some kits of the present invention comprise a
microarray. In one embodiment this microarray comprises a
plurality of probe spots, wherein at least twenty percent of the
probe spots in the plurality of probe spots correspond to
biomarkers in any one of Tables 30, 31, 32,33,34, 36,1, J, or
K. In some embodiments, at least twenty-five percent, at least
thirty percent, at least thirty-five percent, at least forty per-
cent, or at least sixty percent, or at least eighty percent of the
probe spots in the plurality of probe spots correspond to
biomarkers in any one of Tables 30, 31, 32,33,34, 36,1, J, or
K. Such probe spots are biomarkers within the scope of the
present invention. In some embodiments, the microarray con-
sists of between about three and about one hundred probe
spots on a substrate. In some embodiments, the microarray
consists of between about three and about one hundred probe
spots on a substrate. As used in this context, the term “about”
means within five percent of the stated value, within ten
percent of the stated value, or within twenty-five percent of
the stated value. In some embodiments, such microarrays
contain one or more probe spots for inter-microarray calibra-
tion or for calibration with other microarrays such as refer-
ence microarrays using techniques that are known to those of
skill in the art. In some embodiments such microarrays are
nucleic acid microarrays. In some embodiments, such
microarrays are protein microarrays.

[0166] Some kits of the invention may further comprise a
computer program product for use in conjunction with a
computer system, wherein the computer program product
comprises a computer readable storage medium and a com-
puter program mechanism embedded therein. In such kits, the
computer program mechanism comprises instructions for
evaluating whether a plurality of features in a biomarker
profile of a test subject at risk for developing sepsis satisfies a
first value set. Satisfying the first value set predicts that the
test subject is likely to develop sepsis. In one embodiment, the
plurality of features corresponds to biomarkers listed in any
one of Tables 30,31, 32,33, 34,36, 1, ], or K. In some kits, the
computer program product further comprises instructions for
evaluating whether the plurality of features in the biomarker
profile of the test subject satisfies a second value set. Satisfy-
ing the second value set predicts that the test subject is not
likely to develop sepsis.

[0167] Some kits of the present invention comprise a com-
puter having a central processing unit and a memory coupled
to the central processing unit. The memory stores instructions
for evaluating whether a plurality of features in a biomarker
profile of a test subject at risk for developing sepsis satisfies a
first value set. Satisfying the first value set predicts that the
test subject is likely to develop sepsis. In one embodiment, the
plurality of features corresponds to biomarkers listed in any
one of Tables 30, 31, 32, 33, 34, 36,1, J, or K.
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[0168] FIG. 35 details an exemplary system that supports
the functionality described above. The system is preferably a
computer system 10 having:

[0169] a central processing unit 22;

[0170] a main non-volatile storage unit 14, for example,
a hard disk drive, for storing software and data, the
storage unit 14 controlled by storage controller 12;

[0171] a system memory 36, preferably high speed ran-
dom-access memory (RAM), for storing system control
programs, data, and application programs, comprising
programs and data loaded from non-volatile storage unit
14; system memory 36 may also include read-only
memory (ROM);

[0172] auserinterface 32, comprising one or more input
devices (e.g., keyboard 28) and a display 26 or other
output device;

[0173] anetwork interface card 20 for connecting to any
wired or wireless communication network 34 (e.g., a
wide area network such as the Internet);

[0174] an internal bus 30 for interconnecting the afore-
mentioned elements of the system; and

[0175] a power source 24 to power the aforementioned
elements.

[0176] Operation of computer 10 is controlled primarily by
operating system 40, which is executed by central processing
unit 22. Operating system 40 can be stored in system memory
36. In addition to operating system 40, in a typical implemen-
tation, system memory 36 includes:

[0177] filesystem 42 for controlling access to the various
files and data structures used by the present invention;

[0178] atraining data set 44 foruse in construction one or
more decision rules in accordance with the present
invention;

[0179] a data analysis algorithm module 54 for process-
ing training data and constructing decision rules;

[0180] one or more decision rules 56;

[0181] a biomarker profile evaluation module 60 for
determining whether a plurality of features in a biomar-
ker profile of a test subject satisfies a first value set or a
second value set;

[0182] a test subject biomarker profile 62 comprising
biomarkers 64 and, for each such biomarkers, features
66; and

[0183] a database 68 of select biomarkers of the present
invention (e.g., Table 30 and/or Table I and/or Table J
and/or Table K, and/or Table L. and/or Table M and/or
Table N and/or Table O etc.) and/or one or features for
each of these select biomarkers.

[0184] Training data set 46 comprises data for a plurality of
subjects 46. For each subject 46 there is a subject identifier 48
and a plurality of biomarkers 50. For each biomarker 50, there
is at least one feature 52. Although not shown in FIG. 35, for
each feature 52, there is a feature value. For each decision rule
56 constructed using data analysis algorithms, there is at least
one decision rule value set 58.

[0185] As illustrated in FIG. 35, computer 10 comprises
software program modules and data structures. The data
structures stored in computer 10 include training data set 44,
decision rules 56, test subject biomarker profile 62, and biom-
arker database 68. Each of these data structures can comprise
any form of data storage system including, but not limited to,
a flat ASCII or binary file, an Excel spreadsheet, a relational
database (SQL), or an on-line analytical processing (OLAP)
database (MDX and/or variants thereof). In some specific
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embodiments, such data structures are each in the form of one
or more databases that include hierarchical structure (e.g., a
star schema). In some embodiments, such data structures are
each in the form of databases that do not have explicit hier-
archy (e.g., dimension tables that are not hierarchically
arranged).

[0186] In some embodiments, each of the data structures
stored or accessible to system 10 are single data structures. In
other embodiments, such data structures in fact comprise a
plurality of data structures (e.g., databases, files, archives)
that may or may not all be hosted by the same computer 10.
For example, in some embodiments, training data set 44
comprises a plurality of Excel spreadsheets that are stored
either on computer 10 and/or on computers that are address-
able by computer 10 across wide area network 34. In another
example, training data set 44 comprises a database that is
either stored on computer 10 or is distributed across one or
more computers that are addressable by computer 10 across
wide area network 34.

[0187] It will be appreciated that many of the modules and
data structures illustrated in FIG. 35 can be located on one or
more remote computers. For example, some embodiments of
the present application are web service-type implementa-
tions. In such embodiments, biomarker profile evaluation
module 60 and/or other modules can reside on a client com-
puter that is in communication with computer 10 via network
34. In some embodiments, for example, biomarker profile
evaluation module 60 can be an interactive web page.
[0188] Insomeembodiments, training data set 44, decision
rules 56, and/or biomarker database 68 illustrated in FIG. 35
are on a single computer (computer 10) and in other embodi-
ments one or more of such data structures and modules are
hosted by one or more remote computers (not shown). Any
arrangement of the data structures and software modules
illustrated in FIG. 35 on one or more computers is within the
scope of the present invention so long as these data structures
and software modules are addressable with respect to each
other across network 34 or by other electronic means. Thus,
the present invention fully encompasses a broad array of
computer systems.

[0189] Still another kit of the present invention comprises
computers and computer readable media for evaluating
whether a test subject is likely to develop sepsis or SIRS. For
instance, one embodiment of the present invention provides a
computer program product for use in conjunction with a
computer system. The computer program product comprises
a computer readable storage medium and a computer pro-
gram mechanism embedded therein. The computer program
mechanism comprises instructions for evaluating whether a
plurality of features in a biomarker profile of a test subject at
risk for developing sepsis satisfies a first value set. Satisfac-
tion of the first value set predicts that the test subject is likely
to develop sepsis. The plurality of features are measurable
aspects of a plurality of biomarkers, the plurality of biomar-
kers comprising at least three biomarkers listed in Table I. In
certain embodiments, the plurality of biomarkers comprises
at least six biomarkers listed in Table I, wherein the plurality
of biomarkers comprises both IL-6 and IL-8. In some
embodiments, the computer program product further com-
prises instructions for evaluating whether the plurality of
features in the biomarker profile of the test subject satisfies a
second value set. Satisfaction of the second value set predicts
that the test subject is not likely to develop sepsis. In some
embodiments, the biomarker profile has between 3 and 50
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biomarkers listed in Table I, between 3 and 40 biomarkers
listed in Table I, at least four biomarkers listed in Table I, or at
least eight biomarkers listed in Table 1.

[0190] Another kit of the present invention comprises a
central processing unit and a memory coupled to the central
processing unit. The memory stores instructions for evaluat-
ing whether a plurality of features in a biomarker profile of a
test subject at risk for developing sepsis satisfies a first value
set. Satisfaction of the first value set predicts that the test
subject is likely to develop sepsis. The plurality of features are
measurable aspects of a plurality of biomarkers. This plural-
ity of biomarkers comprises at least three biomarkers from
Table 1. In some embodiments, the plurality of biomarkers
comprises at least six biomarkers listed in Table I when the
plurality of biomarkers comprises both IL-6 and IL-8. In
some embodiments, the memory further stores instructions
for evaluating whether the plurality of features in the biom-
arker profile of the test subject satisfies a second value set,
wherein satisfying the second value set predicts that the test
subject is not likely to develop sepsis. In some embodiments,
the biomarker profile consists of between 3 and 50 biomark-
ers listed in Table I, between 3 and 40 biomarkers listed in
Table I, at least four biomarkers listed in Table 1., or at least
eight biomarkers listed in Table 1.

[0191] Anotherkitinaccordance with the present invention
comprises a computer system for determining whether a sub-
ject is likely to develop sepsis. The computer system com-
prises a central processing unit and a memory, coupled to the
central processing unit. The memory stores instructions for
obtaining a biomarker profile of a test subject. The biomarker
profile comprises a plurality of features. Each feature in the
plurality of features is a measurable aspect of a corresponding
biomarker in a plurality of biomarkers. The plurality of biom-
arkers comprises at least three biomarkers listed in Table 1.
The memory further comprises instructions for transmitting
the biomarker profile to a remote computer. The remote com-
puter includes instructions for evaluating whether the plural-
ity of features in the biomarker profile of the test subject
satisfies a first value set. Satisfaction of the first value set
predicts that the test subject is likely to develop sepsis. The
memory further comprises instructions for receiving a deter-
mination, from the remote computer, as to whether the plu-
rality of features in the biomarker profile of the test subject
satisfies the first value set. The memory also comprises
instructions for reporting whether the plurality of features in
the biomarker profile of the test subject satisfies the first value
set. In some embodiments, the plurality of biomarkers com-
prises at least six biomarkers listed in Table I when the plu-
rality of biomarkers comprises both IL.-6 and IL-8. In some
embodiments, the remote computer further comprises
instructions for evaluating whether the plurality of features in
the biomarker profile of the test subject satisfies a second
value set. Satisfaction of the second value set predicts that the
test subject is not likely to develop sepsis. In such embodi-
ments, the memory further comprises instructions for receiv-
ing a determination, from the remote computer, as to whether
the plurality of features in the biomarker profile of the test
subject satisfies the second set as well as instructions for
reporting whether the plurality of features in the biomarker
profile of the test subject satisfies the second value set. In
some embodiments, the plurality of biomarkers comprises at
least four biomarkers listed in Table 1. In some embodiments,
the plurality of biomarkers comprises at least six biomarkers
listed in Table I.
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[0192] Still another aspect of the present invention com-
prises a digital signal embodied on a carrier wave comprising
a respective value for each of a plurality of features in a
biomarker profile. The plurality of features are measurable
aspects of a plurality of biomarkers. The plurality of biomar-
kers comprises at least three biomarkers listed in Table 1. In
some embodiments, the plurality of biomarkers comprises at
least six biomarkers listed in Table I when the plurality of
biomarkers comprises both IL.-6 and IL-8. In some embodi-
ments, the plurality of biomarkers comprises at least four
biomarkers listed in Table 1. In some embodiments, the plu-
rality of biomarkers comprises at least eight biomarkers listed
in Table I.

[0193] Still another aspect of the present invention provides
a digital signal embodied on a carrier wave comprising a
determination as to whether a plurality of features in a biom-
arker profile of a test subject satisfies a value set. The plurality
of features are measurable aspects of a plurality of biomark-
ers. This plurality of biomarkers comprises at least three
biomarkers listed in Table 1. Satisfying the value set predicts
that the test subject is likely to develop sepsis. In some
embodiments, the plurality of biomarkers comprises at least
six biomarkers listed in Table I when the plurality of biomar-
kers comprises both IL.-6 and IT.-8. In some embodiments, the
plurality of biomarkers comprises at least four biomarkers
listed in Table 1. In some embodiments, the plurality of biom-
arkers comprises at least eight biomarkers listed in Table 1.
[0194] Still another embodiment provides a digital signal
embodied on a carrier wave comprising a determination as to
whether a plurality of features in a biomarker profile of a test
subject satisfies a value set. The plurality of features are
measurable aspects of a plurality of biomarkers. The plurality
of biomarkers comprise at least three biomarkers listed in
Table 1. Satisfaction of the value set predicts that the test
subject is not likely to develop sepsis. In some embodiments,
the plurality of biomarkers comprises at least six biomarkers
listed in Table I when the plurality of biomarkers comprises
both IL-6 and IL-8. In some embodiments, the plurality of
biomarkers comprises at least four biomarkers listed in Table
1. In some embodiments, the plurality of biomarkers com-
prises at least eight biomarkers listed in Table 1.

[0195] Still another embodiment of the present invention
provides a graphical user interface for determining whether a
subject is likely to develop sepsis. The graphical user inter-
face comprises a display field for a displaying a result
encoded in a digital signal embodied on a carrier wave
received from a remote computer. The plurality of features are
measurable aspects of a plurality of biomarkers. The plurality
of biomarkers comprise at least three biomarkers listed in
Table I. The result has a first value when a plurality of features
in a biomarker profile of a test subject satisfies a first value set.
The result has a second value when a plurality of features in a
biomarker profile of a test subject satisfies a second value set.
In some embodiments, the plurality of biomarkers comprises
at least six biomarkers listed in Table I when the plurality of
biomarkers comprises I1.-6 and IL.-8. In some embodiments,
the plurality of biomarkers comprises at least four biomarkers
listed in Table 1. In some embodiments, the plurality of biom-
arkers comprises at least eight biomarkers listed in Table 1.
[0196] Yet another kit of the present invention provides a
computer system for determining whether a subject is likely
to develop sepsis. The computer system comprises a central
processing unit and a memory, coupled to the central process-
ing unit. The memory stores instructions for obtaining a
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biomarker profile of a test subject. The biomarker profile
comprises a plurality of features. The plurality of features are
measurable aspects of a plurality of biomarkers. The plurality
of biomarkers comprise at least three biomarkers listed in
Table I. The memory further stores instructions for evaluating
whether the plurality of features in the biomarker profile of
the test subject satisfies a first value set. Satisfying the first
value set predicts that the test subject is likely to develop
sepsis. The memory also stores instructions for reporting
whether the plurality of features in the biomarker profile of
the test subject satisfies the first value set. In some embodi-
ments, the plurality of biomarkers comprises at least six
biomarkers listed in Table I when the plurality of biomarkers
comprises both IL.-6 and IL-8. In some embodiments, the
plurality of biomarkers comprises at least four biomarkers
listed in Table 1. In some embodiments, the plurality of biom-
arkers comprises at least eight biomarkers listed in Table 1.

5.4 GENERATION OF BIOMARKER PROFILES

[0197] According to one embodiment, the methods of the
present invention comprise generating a biomarker profile
from a biological sample taken from a subject. The biological
sample may be, for example, whole blood, plasma, serum, red
blood cells, platelets, neutrophils, eosinophils, basophils,
lymphocytes, monocytes, saliva, sputum, urine, cerebral spi-
nal fluid, cells, a cellular extract, a tissue sample, a tissue
biopsy, a stool sample or any sample that may be obtained
from a subject using techniques well known to those of skill
in the art. In a specific embodiment, a biomarker profile is
determined using samples collected from a subject at one or
more separate time points. In another specific embodiment, a
biomarker profile is generated using samples obtained from a
subject at separate time points. In one example, these samples
are obtained from the subject either once or, alternatively, on
a daily basis, or more frequently, e.g., every 4, 6, 8 or 12
hours. In a specific embodiment, a biomarker profile is deter-
mined using samples collected from a single tissue type. In
another specific embodiment, a biomarker profile is deter-
mined using samples collected from at least two different
tissue types.

5.4.1 Methods of Detecting Nucleic Acid
Biomarkers

[0198] In specific embodiments of the invention, biomark-
ers in a biomarker profile are nucleic acids. Such biomarkers
and corresponding features of the biomarker profile may be
generated, for example, by detecting the expression product
(e.g., a polynucleotide or polypeptide) of one or more genes
described herein (e.g., a gene listed in Table 30, Table I, Table
J, or Table K.). In a specific embodiment, the biomarkers and
corresponding features in a biomarker profile are obtained by
detecting and/or analyzing one or more nucleic acids
expressed from a gene disclosed herein (e.g., a gene listed in
Table 30, Table I, Table J, or Table K) using any method well
known to those skilled in the art including, but by no means
limited to, hybridization, microarray analysis, RT-PCR,
nuclease protection assays and Northern blot analysis.

[0199] Incertain embodiments, nucleic acids detected and/
oranalyzed by the methods and compositions of the invention
include RNA molecules such as, for example, expressed RNA
molecules which include messenger RNA (mRNA) mol-
ecules, mRNA spliced variants as well as regulatory RNA,
cRNA molecules (e.g., RNA molecules prepared from cDNA
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molecules that are transcribed in vitro) and discriminating
fragments thereof. Nucleic acids detected and/or analyzed by
the methods and compositions of the present invention can
also include, for example, DNA molecules such as genomic
DNA molecules, cDNA molecules, and discriminating frag-
ments thereof (e.g., oligonucleotides, ESTs, STSs, etc.).

[0200] The nucleic acid molecules detected and/or ana-
lyzed by the methods and compositions of the invention may
be naturally occurring nucleic acid molecules such as
genomic or extragenomic DNA molecules isolated from a
sample, or RNA molecules, such as mRNA molecules,
present in, isolated from or derived from a biological sample.
The sample of nucleic acids detected and/or analyzed by the
methods and compositions of the invention comprise, e.g.,
molecules of DNA, RNA, or copolymers of DNA and RNA.
Generally, these nucleic acids correspond to particular genes
or alleles of genes, or to particular gene transcripts (e.g., to
particular mRNA sequences expressed in specific cell types
or to particular cDNA sequences derived from such mRNA
sequences). The nucleic acids detected and/or analyzed by the
methods and compositions of the invention may correspond
to different exons of the same gene, e.g., so that different
splice variants of that gene may be detected and/or analyzed.

[0201] In specific embodiments, the nucleic acids are pre-
pared in vitro from nucleic acids present in, or isolated or
partially isolated from biological a sample. For example, in
one embodiment, RNA is extracted from a sample (e.g., total
cellular RNA, poly(A)xmessenger RNA, fraction thereof)
and messenger RNA is purified from the total extracted RNA.
Methods for preparing total and poly(A)" RNA are well
known in the art, and are described generally, e.g., in Sam-
brook et al., 2001, Molecular Cloning: A Laboratory Manual.
3"? ed. Cold Spring Harbor Laboratory Press (Cold Spring
Harbor, N.Y.), which is incorporated by reference herein in its
entirety. In one embodiment, RNA is extracted from a sample
using guanidinium thiocyanate lysis followed by CsCl cen-
trifugation and an oligo dT purification (Chirgwin et al.,
1979, Biochemistry 18:5294-5299). In another embodiment,
RNA is extracted from a sample using guanidinium thiocy-
anate lysis followed by purification on RNeasy columns
(Qiagen, Valencia, Calif.). cDNA is then synthesized from the
purified mRNA using, e.g., oligo-dT or random primers. In
specific embodiments, the target nucleic acids are cRNA
prepared from purified messenger RNA extracted from a
sample. As used herein, cRNA is defined here as RNA
complementary to the source RNA. The extracted RNAs are
amplified using a process in which doubled-stranded cDNAs
are synthesized from the RNAs using a primer linked to an
RNA polymerase promoter in a direction capable of directing
transcription of anti-sense RNA. Anti-sense RNAs or cRNAs
are then transcribed from the second strand of the double-
stranded cDNAs using an RNA polymerase (see, e.g., U.S.
Pat. Nos. 5,891,636, 5,716,785; 5,545,522 and 6,132,997,
which are hereby incorporated by reference). Both oligo-dT
primers (U.S. Pat. Nos. 5,545,522 and 6,132,997, hereby
incorporated by reference herein) or random primers that
contain an RNA polymerase promoter or complement thereof
can beused. In some embodiments the target nucleic acids are
short and/or fragmented nucleic acid molecules which are
representative of the original nucleic acid population of the
sample.

[0202] In one embodiment, nucleic acids of the invention
can be detectably labeled. For example, cDNA can be labeled
directly, e.g., with nucleotide analogs, or indirectly, e.g., by
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making a second, labeled cDNA strand using the first strand
as a template. Alternatively, the double-stranded cDNA can
be transcribed into cRNA and labeled.

[0203] In some embodiments the detectable label is a fluo-
rescent label, e.g., by incorporation of nucleotide analogs.
Other labels suitable for use in the present invention include,
but are not limited to, biotin, imminobiotin, antigens, cofac-
tors, dinitrophenol, lipoic acid, olefinic compounds, detect-
able polypeptides, electron rich molecules, enzymes capable
of generating a detectable signal by action upon a substrate,
and radioactive isotopes. Suitable radioactive isotopes
include 2P, *°S, '#C, '°N and '**1. Fluorescent molecules
suitable for the present invention include, but are not limited
to, fluorescein and its derivatives, rhodamine and its deriva-
tives, Texas red, 5' carboxy-fluorescein (“FMA”™), 6-carboxy-
4',5'-dichloro-2',7'-dimethoxyfluorescein, succinimidyl ester
(“JOE”), 6-carboxytetramethylrhodamine (“TAMRA™),
6Ncarboxy-X-rhodamine (“ROX”), HEX, TET, IRD40, and
IRDA41. Fluorescent molecules that are suitable for the inven-
tion further include, but are not limited to: cyamine dyes,
including by not limited to Cy3, Cy3.5 and Cy5; BODIPY
dyes including but not limited to BODIPY-FL, BODIPY-TR,
BODIPY-TMR, BODIPY-630/650, BODIPY-650/670; and
ALEXA dyes, including but not limited to ALEXA-488,
ALEXA-532, ALEXA-546, ALEXA-568, and ALEXA-594,
as well as other fluorescent dyes which will be known to those
who are skilled in the art. Electron-rich indicator molecules
suitable for the present invention include, but are not limited
to, ferritin, hemocyanin, and colloidal gold. Alternatively, in
some embodiments the target nucleic acids may be labeled by
specifically complexing a first group to the nucleic acid. A
second group, covalently linked to an indicator molecules and
which has an affinity for the first group, can be used to indi-
rectly detect the target nucleic acid. In such an embodiment,
compounds suitable for use as a first group include, but are not
limited to, biotin and iminobiotin. Compounds suitable for
use as a second group include, but are not limited to, avidin
and streptavidin.

5.4.1.1 Nucleic Acid Arrays

[0204] In certain embodiments of the invention, nucleic
acid arrays are employed to generate features of biomarkers
in a biomarker profile by detecting the expression of any one
or more of the genes described herein (e.g., a gene listed in
Table 30, Table I, Table J or Table K). In one embodiment of
the invention, a microarray, such as a cDNA microarray, is
used to determine feature values of biomarkers in a biomarker
profile. The diagnostic use of cDNA arrays is well known in
the art. (See, e.g., Zou et. al., 2002, Oncogene 21:4855-4862;
as well as Draghici, 2003, Data Analysis Tools for DNA
Microarrays, Chapman & Hall/CRC, each of which is hereby
incorporated by reference herein in its entirety). Exemplary
methods for cDNA microarray analysis are described below,
and in the examples in Section 6, infra.

[0205] Incertainembodiments, the feature values for biom-
arkers in a biomarker profile are obtained by hybridizing to
the array detectably labeled nucleic acids representing or
corresponding to the nucleic acid sequences in mRNA tran-
scripts present in a biological sample (e.g., fluorescently
labeled cDNA synthesized from the sample) to a microarray
comprising one or more probe spots.

[0206] Nucleic acid arrays, for example, microarrays, can
be made in a number of ways, of which several are described
herein below. Preferably, the arrays are reproducible, allow-
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ing multiple copies of'a given array to be produced and results
from said microarrays compared with each other. Preferably,
the arrays are made from materials that are stable under
binding (e.g., nucleic acid hybridization) conditions. Those
skilled in the art will know of suitable supports, substrates or
carriers for hybridizing test probes to probe spots on an array,
or will be able to ascertain the same by use of routine experi-
mentation.

[0207] Arrays, for example, microarrays, used can include
one or more test probes. In some embodiments each such test
probe comprises a nucleic acid sequence that is complemen-
tary to a subsequence of RNA or DNA to be detected. Each
probe typically has a different nucleic acid sequence, and the
position of each probe on the solid surface of the array is
usually known or can be determined. Arrays useful in accor-
dance with the invention can include, for example, oligo-
nucleotide microarrays, cDNA based arrays, SNP arrays,
spliced variant arrays and any other array able to provide a
qualitative, quantitative or semi-quantitative measurement of
expression of a gene described herein (e.g., a gene listed in
Table 30, Table I, Table J or Table K). Some types of microar-
rays are addressable arrays. More specifically, some microar-
rays are positionally addressable arrays. In some embodi-
ments, each probe of the array is located at a known,
predetermined position on the solid support so that the iden-
tity (e.g., the sequence) of each probe can be determined from
its position on the array (e.g., on the support or surface). In
some embodiments, the arrays are ordered arrays. Microar-
rays are generally described in Draghici, 2003, Data Analysis
Tools for DNA Microarrays, Chapman & Hall/CRC, which is
hereby incorporated herein by reference in its entirety.

[0208] In some embodiments of the present invention, an
expressed transcript (e.g., a transcript of a gene described
herein) is represented in the nucleic acid arrays. In such
embodiments, a set of binding sites can include probes with
different nucleic acids that are complementary to different
sequence segments of the expressed transcript. Exemplary
nucleic acids that fall within this class can be of length of 15
to 200 bases, 20 to 100 bases, 25 to 50 bases, 40 to 60 bases
or some other range of bases. Each probe sequence can also
comprise one or more linker sequences in addition to the
sequence that is complementary to its target sequence. As
used herein, a linker sequence is a sequence between the
sequence that is complementary to its target sequence and the
surface of support. For example, the nucleic acid arrays of the
invention can comprise one probe specific to each target gene
or exon. However, if desired, the nucleic acid arrays can
contain at least 2, 5, 10, 100, or 1000 or more probes specific
to some expressed transcript (e.g., a transcript of a gene
described herein, e.g., in Table 30, Table I, Table J, or Table
K). Forexample, the array may contain probes tiled across the
sequence of the longest mRNA isoform of a gene.

[0209] Itwill be appreciated that when cDNA complemen-
tary to the RNA of a cell, for example, a cell in a biological
sample, is made and hybridized to a microarray under suitable
hybridization conditions, the level of hybridization to the site
in the array corresponding to a gene described herein (e.g., a
gene listed in Table 30, Table I, Table J, or Table K) will reflect
the prevalence in the cell of mRNA or mRNAs transcribed
from that gene. Alternatively, in instances where multiple
isoforms or alternate splice variants produced by particular
genes are to be distinguished, detectably labeled (e.g., with a
fluorophore) ¢cDNA complementary to the total cellular
mRNA can be hybridized to a microarray, and the site on the
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array corresponding to an exon of the gene that is not tran-
scribed or is removed during RNA splicing in the cell will
have little or no signal (e.g., fluorescent signal), and a site
corresponding to an exon of a gene for which the encoded
mRNA expressing the exon is prevalent will have a relatively
strong signal. The relative abundance of different mRNAs
produced from the same gene by alternative splicing is then
determined by the signal strength pattern across the whole set
of exons monitored for the gene.

[0210] Inoneembodiment, hybridization levels at different
hybridization times are measured separately on different,
identical microarrays. For each such measurement, at hybrid-
ization time when hybridization level is measured, the
microarray is washed briefly, preferably in room temperature
in an aqueous solution of high to moderate salt concentration
(e.g., 0.5 to 3 M salt concentration) under conditions which
retain all bound or hybridized nucleic acids while removing
allunbound nucleic acids. The detectable label on the remain-
ing, hybridized nucleic acid molecules on each probe is then
measured by a method which is appropriate to the particular
labeling method used. The resulting hybridization levels are
then combined to form a hybridization curve. In another
embodiment, hybridization levels are measured in real time
using a single microarray. In this embodiment, the microarray
is allowed to hybridize to the sample without interruption and
the microarray is interrogated at each hybridization time in a
non-invasive manner. In still another embodiment, one can
use one array, hybridize for a short time, wash and measure
the hybridization level, put back to the same sample, hybrid-
ize for another period of time, wash and measure again to get
the hybridization time curve.

[0211] In some embodiments, nucleic acid hybridization
and wash conditions are chosen so that the nucleic acid biom-
arkers to be analyzed specifically bind or specifically hybrid-
ize to the complementary nucleic acid sequences of the array,
typically to a specific array site, where its complementary
DNA is located.

[0212] Arrays containing double-stranded probe DNA situ-
ated thereon can be subjected to denaturing conditions to
render the DNA single-stranded prior to contacting with the
target nucleic acid molecules. Arrays containing single-
stranded probe DNA (e.g., synthetic oligodeoxyribonucleic
acids) may need to be denatured prior to contacting with the
target nucleic acid molecules, e.g., to remove hairpins or
dimers which form due to self complementary sequences.

[0213] Optimal hybridization conditions will depend on the
length (e.g., oligomer versus polynucleotide greater than 200
bases) and type (e.g., RNA, or DNA) of probe and target
nucleic acids. General parameters for specific (i.e., stringent)
hybridization conditions for nucleic acids are described in
Sambrook et al., (supra), and in Ausubel et al., 1988, Current
Protocols in Molecular Biology, Greene Publishing and
Wiley-Interscience, New York. When the cDNA microarrays
of Shena et al. are used, typical hybridization conditions are
hybridization in 5xSSC plus 0.2% SDS at 65° C. for four
hours, followed by washes at 25° C. in low stringency wash
buffer (1xSSC plus 0.2% SDS), followed by 10 minutes at
25° C. in higher stringency wash bufter (0.1xSSC plus 0.2%
SDS) (Shena et al., 1996, Proc. Natl. Acad. Sci. U.S.A. 93:
10614). Useful hybridization conditions are also provided in,
e.g., Tijessen, 1993, Hybridization With Nucleic Acid Probes,
Elsevier Science Publishers B.V.; Kricka, 1992, Nonisotopic
DNA Probe Techniques, Academic Press, San Diego, Calif.;
and Zou et. al., 2002, Oncogene 21:4855-4862; and Draghici,
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Data Analysis Tools for DNA Microanalysis, 2003, CRC
Press LL.C, Boca Raton, Fla., pp. 342-343, which are hereby
incorporated by reference herein in their entirety.

[0214] In a specific embodiment, a microarray can be used
to sort out RT-PCR products that have been generated by the
methods described, for example, below in Section 5.4.1.2.

5.4.1.2 RT-PCR

[0215] In certain embodiments, to determine the feature
values of biomarkers in a biomarker profile of the invention,
the level of expression of one or more of the genes described
herein (e.g., a gene listed in Table 30, Table I, Table J, or Table
K) is measured by amplifying RNA from a sample using
reverse transcription (RT) in combination with the poly-
merase chain reaction (PCR). In accordance with this
embodiment, the reverse transcription may be quantitative or
semi-quantitative. The RT-PCR methods taught herein may
be used in conjunction with the microarray methods
described above, for example, in Section 5.4.1.1. For
example, a bulk PCR reaction may be performed, the PCR
products may be resolved and used as probe spots on a
microarray. See also Section 6.10, infra.

[0216] Total RNA, or mRNA from a sample is used as a
template and a primer specific to the transcribed portion of the
gene(s) is used to initiate reverse transcription. Methods of
reverse transcribing RNA into ¢cDNA are well known and
described in Sambrook et al., 2001, supra. Primer design can
be accomplished based on known nucleotide sequences that
have been published or available from any publicly available
sequence database such as GenBank. For example, primers
may be designed for any of the genes described herein (see,
e.g., in Table 30, Table I, Table J, or Table K). Further, primer
design may be accomplished by utilizing commercially avail-
able software (e.g., Primer Designer 1.0, Scientific Software
etc.). The product of the reverse transcription is subsequently
used as a template for PCR.

[0217] PCR provides a method for rapidly amplifying a
particular nucleic acid sequence by using multiple cycles of
DNA replication catalyzed by a thermostable, DNA-depen-
dent DNA polymerase to amplify the target sequence of inter-
est. PCR requires the presence of a nucleic acid to be ampli-
fied, two single-stranded oligonucleotide primers flanking
the sequence to be amplified, a DNA polymerase, deoxyribo-
nucleoside triphosphates, a buffer and salts. The method of
PCR is well known in the art. PCR, is performed, for example,
as described in Mullis and Faloona, 1987, Methods Enzymol.
155:335, which is hereby incorporated herein by reference in
its entirety.

[0218] PCR can be performed using template DNA or
c¢DNA (at least 1 fg; more usefully, 1-1000 ng) and at least 25
pmol of oligonucleotide primers. A typical reaction mixture
includes: 2 ul of DNA, 25 pmol of oligonucleotide primer, 2.5
ul of 10 M PCR buffer 1 (Perkin-Elmer, Foster City, Calif.),
0.4 pl of 1.25 M dNTP, 0.15 pl (or 2.5 units) of Tag DNA
polymerase (Perkin Elmer, Foster City, Calif.) and deionized
water to a total volume of 25 pl. Mineral oil is overlaid and the
PCR is performed using a programmable thermal cycler.
[0219] The length and temperature of each step of a PCR
cycle, as well as the number of cycles, are adjusted according
to the stringency requirements in effect. Annealing tempera-
ture and timing are determined both by the efficiency with
which a primer is expected to anneal to a template and the
degree of mismatch that is to be tolerated. The ability to
optimize the stringency of primer annealing conditions is
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well within the knowledge of one of moderate skill in the art.
An annealing temperature of between 30° C. and 72° C. is
used. Initial denaturation of the template molecules normally
occurs at between 92° C. and 99° C. for 4 minutes, followed
by 20-40 cycles consisting of denaturation (94-99° C. for 15
seconds to 1 minute), annealing (temperature determined as
discussed above; 1-2 minutes), and extension (72° C. for 1
minute). The final extension step is generally carried out for 4
minutes at 72° C., and may be followed by an indefinite (0-24
hour) step at 4° C.

[0220] Quantitative RT-PCR (“QRT-PCR”), which is quan-
titative in nature, can also be performed to provide a quanti-
tative measure of gene expression levels. In QRT-PCR reverse
transcription and PCR can be performed in two steps, or
reverse transcription combined with PCR can be performed
concurrently. One of these techniques, for which there are
commercially available kits such as Tagman (Perkin Elmer,
Foster City, Calif.) or as provided by Applied Biosystems
(Foster City, Calif.) is performed with a transcript-specific
antisense probe. This probe is specific for the PCR product
(e.g. a nucleic acid fragment derived from a gene) and is
prepared with a quencher and fluorescent reporter probe com-
plexed to the 5' end of the oligonucleotide. Different fluores-
cent markers are attached to different reporters, allowing for
measurement of two products in one reaction. When Taq
DNA polymerase is activated, it cleaves off the fluorescent
reporters of the probe bound to the template by virtue of its
5'-t0-3' exonuclease activity. In the absence of the quenchers,
the reporters now fluoresce. The color change in the reporters
is proportional to the amount of each specific product and is
measured by a fluorometer; therefore, the amount of each
color is measured and the PCR product is quantified. The
PCR reactions are performed in 96-well plates so that
samples derived from many individuals are processed and
measured simultaneously. The Tagman system, has the addi-
tional advantage of not requiring gel electrophoresis and
allows for quantification when used with a standard curve.
[0221] A second technique useful for detecting PCR prod-
ucts quantitatively is to use an intercolating dye such as the
commercially available QuantiTect SYBR Green PCR
(Qiagen, Valencia Calif.). RT-PCR is performed using SYBR
green as a fluorescent label which is incorporated into the
PCR product during the PCR stage and produces a floure-
scense proportional to the amount of PCR product.

[0222] Both Tagman and QuantiTect SYBR systems can be
used subsequent to reverse transcription of RNA. Reverse
transcription can either be performed in the same reaction
mixture as the PCR step (one-step protocol) or reverse tran-
scription can be performed first prior to amplification utiliz-
ing PCR (two-step protocol).

[0223] Additionally, other systems to quantitatively mea-
sure mRNA expression products are known including
Molecular Beacons® which uses a probe having a fluorescent
molecule and a quencher molecule, the probe capable of
forming a hairpin structure such that when in the hairpin
form, the fluorescence molecule is quenched, and when
hybridized the fluorescence increases giving a quantitative
measurement of gene expression.

[0224] Additional techniques to quantitatively measure
RNA expression include, but are not limited to, polymerase
chain reaction, ligase chain reaction, Qbeta replicase (see,
e.g., International Application No. PCT/US87/00880, which
is hereby incorporated by reference), isothermal amplifica-
tion method (see, e.g., Walker etal., 1992, PNAS 89:382-396,
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which is hereby incorporated herein by reference), strand
displacement amplification (SDA), repair chain reaction,
Asymmetric Quantitative PCR (see, e.g., U.S. Publication
No.US 2003/30134307A1, herein incorporated by reference)
and the multiplex microsphere bead assay described in Fuja et
al., 2004, Journal of Biotechnology 108:193-205, herein
incorporated by reference.

[0225] The level of expression of one or more of the genes
described herein (e.g., the genes listed in Table 30, Table I,
Table J, or Table K) can, for example, be measured by ampli-
fying RNA from a sample using amplification (NASBA). See,
e.g., Kwoh et al., 1989, PNAS USA 86:1173; International
Publication No. WO 88/10315; and U.S. Pat. No. 6,329,179,
each of which is hereby incorporated by reference. In
NASBA, the nucleic acids may be prepared for amplification
using conventional methods, e.g., phenol/chloroform extrac-
tion, heat denaturation, treatment with lysis buffer and
minispin columns for isolation of DNA and RNA or guani-
dinium chloride extraction of RNA. These amplification tech-
niques involve annealing a primer that has target specific
sequences. Following polymerization, DNA/RNA hybrids
are digested with RNase H while double stranded DNA mol-
ecules are heat denatured again. In either case the single
stranded DNA is made fully double stranded by addition of
second target specific primer, followed by polymerization.
The double-stranded DNA molecules are then multiply tran-
scribed by a polymerase such as T7 or SP6. In an isothermal
cyclic reaction, the RNA’s are reverse transcribed into double
stranded DNA, and transcribed once with a polymerase such
as T7 or SP6. The resulting products, whether truncated or
complete, indicate target specific sequences.

[0226] Several techniques may be used to separate ampli-
fication products. For example, amplification products may
be separated by agarose, agarose-acrylamide or polyacryla-
mide gel electrophoresis using conventional methods. See
Sambrook et al., 2001. Several techniques for detecting PCR
products quantitatively without electrophoresis may also be
used according to the invention (see, e.g., PCR Protocols, A
Guide to Methods and Applications, Innis et al., 1990, Aca-
demic Press, Inc. N.Y., which is hereby incorporated by ref-
erence). For example, chromatographic techniques may be
employed to effect separation. There are many kinds of chro-
matography which may be used in the present invention:
adsorption, partition, ion-exchange and molecular sieve,
HPLC, and many specialized techniques for using them
including column, paper, thin-layer and gas chromatography
(Freifelder, Physical Biochemistry Applications to Biochem-
istry and Molecular Biology, 2nd ed., Wm. Freeman and Co.,
New York, N.Y., 1982, which is hereby incorporated by ref-
erence).

[0227] Another example of a separation methodology is to
covalently label the oligonucleotide primers used in a PCR
reaction with various types of small molecule ligands. In one
such separation, a different ligand is present on each oligo-
nucleotide. A molecule, perhaps an antibody or avidin if the
ligand is biotin, that specifically binds to one of the ligands is
used to coat the surface of a plate such as a 96 well ELISA
plate. Upon application of the PCR reactions to the surface of
such a prepared plate, the PCR products are bound with
specificity to the surface. After washing the plate to remove
unbound reagents, a solution containing a second molecule
that binds to the first ligand is added. This second molecule is
linked to some kind of reporter system. The second molecule
only binds to the plate if a PCR product has been produced
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whereby both oligonucleotide primers are incorporated into
the final PCR products. The amount of the PCR product is
then detected and quantified in a commercial plate reader
much as ELISA reactions are detected and quantified. An
ELISA-like system such as the one described here has been
developed by Raggio Italgene (under the C-Track tradename.
[0228] Amplification products should be visualized in
order to confirm amplification of the nucleic acid sequences
of interest, i.e., nucleic acid sequences of one or more of the
genes described herein (e.g., a gene listed in Table 30, Table
1, Table I, or Table K). One typical visualization method
involves staining of a gel with ethidium bromide and visual-
ization under UV light. Alternatively, if the amplification
products are integrally labeled with radio- or fluorometri-
cally-labeled nucleotides, the amplification products may
then be exposed to x-ray film or visualized under the appro-
priate stimulating spectra, following separation.

[0229] In one embodiment, visualization is achieved indi-
rectly. Following separation of amplification products, a
labeled, nucleic acid probe is brought into contact with the
amplified nucleic acid sequence of interest, i.e., nucleic acid
sequences of one or more of the genes described herein (e.g.,
a gene listed in Table 30, Table I, Table I, or Table K). The
probe preferably is conjugated to a chromophore but may be
radiolabeled. In another embodiment, the probe is conjugated
to a binding partner, such as an antibody or biotin, where the
other member of the binding pair carries a detectable moiety.
[0230] In another embodiment, detection is by Southern
blotting and hybridization with a labeled probe. The tech-
niques involved in Southern blotting are well known to those
of'skill in the art and may be found in many standard books on
molecular protocols. See Sambrook et al., 2001. Briefly,
amplification products are separated by gel electrophoresis.
The gel is then contacted with a membrane, such as nitrocel-
Iulose, permitting transfer of the nucleic acid and non-cova-
lent binding. Subsequently, the membrane is incubated with a
chromophore-conjugated probe that is capable of hybridizing
with a target amplification product. Detection is by exposure
of the membrane to x-ray film or ion-emitting detection
devices. One example of the foregoing is described in U.S.
Pat. No. 5,279,721, incorporated by reference herein, which
discloses an apparatus and method for the automated electro-
phoresis and transfer of nucleic acids. The apparatus permits
electrophoresis and blotting without external manipulation of
the gel and is ideally suited to carrying out methods according
to the present invention.

5.4.1.3 Nuclease Protection Assays

[0231] In particular embodiments, feature values for biom-
arkers in a biomarker profile can be obtained by performing
nuclease protection assays (including both ribonuclease pro-
tection assays and S1 nuclease assays) to detect and quantify
specific mRNAs (e.g., mRNAs of a gene described in Table
30, Table I, Table J, or Table K). Such assays are described in,
for example, Sambrook et al., 2001, supra. In nuclease pro-
tection assays, an antisense probe (labeled with, e.g., radio-
labeled or nonisotopic) hybridizes in solution to an RNA
sample. Following hybridization, single-stranded, unhybrid-
ized probe and RNA are degraded by nucleases. An acryla-
mide gel is used to separate the remaining protected frag-
ments. Typically, solution hybridization is more efficient than
membrane-based hybridization, and it can accommodate up
to 100 pg of sample RNA, compared with the 20-30 g
maximum of blot hybridizations.
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[0232] The ribonuclease protection assay, which is the
most common type of nuclease protection assay, requires the
use of RNA probes. Oligonucleotides and other single-
stranded DNA probes can only be used in assays containing
S1 nuclease. The single-stranded, antisense probe must typi-
cally be completely homologous to target RNA to prevent
cleavage of the probe:target hybrid by nuclease.

5.4.1.4 Northern Blot Assays

[0233] Any hybridization technique known to those of skill
in the art can be used to generate feature values for biomarkers
in a biomarker profile. In other particular embodiments, fea-
ture values for biomarkers in a biomarker profile can be
obtained by Northern blot analysis (to detect and quantify
specific RNA molecules (e.g., RNAs of a gene described in
Table 30, Table 1, Table J; or Table K). A standard Northern
blot assay can be used to ascertain an RNA transcript size,
identify alternatively spliced RNA transcripts, and the rela-
tive amounts of one or more genes described herein (in par-
ticular, mRNA) in a sample, in accordance with conventional
Northern hybridization techniques known to those persons of
ordinary skill in the art. In Northern blots, RNA samples are
first separated by size via electrophoresis in an agarose gel
under denaturing conditions. The RNA is then transferred to
a membrane, crosslinked and hybridized with a labeled
probe. Nonisotopic or high specific activity radiolabeled
probes can be used including random-primed, nick-trans-
lated, or PCR-generated DNA probes, in vitro transcribed
RNA probes, and oligonucleotides. Additionally, sequences
with only partial homology (e.g., cDNA from a different
species or genomic DNA fragments that might contain an
exon) may be used as probes. The labeled probe, e.g., a
radiolabelled cDNA, either containing the full-length, single
stranded DNA or a fragment of that DNA sequence may be at
least 20, at least 30, at least 50, or at least 100 consecutive
nucleotides in length. The probe can be labeled by any of the
many different methods known to those skilled in this art. The
labels most commonly employed for these studies are radio-
active elements, enzymes, chemicals that fluoresce when
exposed to ultraviolet light, and others. A number of fluores-
cent materials are known and can be utilized as labels. These
include, but are not limited to, fluorescein, rhodamine,
auramine, Texas Red, AMCA blue and Lucifer Yellow. The
radioactive label can be detected by any of the currently
available counting procedures. Non-limiting examples ofiso-
topes include *H, **C, *2P, 3°S, *°Cl, *Cr, *"Co, **Co, **Fe,
20y, 1251, 1311, and **°Re. Enzyme labels are likewise useful,
and can be detected by any of the presently utilized colori-
metric, spectrophotometric, fluorospectrophotometric,
amperometric or gasometric techniques. The enzyme is con-
jugated to the selected particle by reaction with bridging
molecules such as carbodiimides, diisocyanates, glutaralde-
hyde and the like. Any enzymes known to one of skill in the art
can be utilized. Examples of such enzymes include, but are
not limited to, peroxidase, beta-D-galactosidase, urease, glu-
cose oxidase plus peroxidase and alkaline phosphatase. U.S.
Pat. Nos. 3,654,090, 3,850,752, and 4,016,043 are referred to
by way of example for their disclosure of alternate labeling
material and methods.

5.4.2 Methods of Detecting Proteins

[0234] In specific embodiments of the invention, feature
values of biomarkers in a biomarker profile can be obtained
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by detecting proteins, for example, by detecting the expres-
sion product (e.g., a nucleic acid or protein) of one or more
genes described herein (e.g., a gene listed in Table 30, Table
1, Table J, or Table K), or post-translationally modified, or
otherwise modified, or processed forms of such proteins. In a
specific embodiment, a biomarker profile is generated by
detecting and/or analyzing one or more proteins and/or dis-
criminating fragments thereof expressed from a gene dis-
closed herein (e.g., a gene listed in Table 30, Table I, Table J,
or Table K) using any method known to those skilled in the art
for detecting proteins including, but not limited to protein
microarray analysis, immunohistochemistry and mass spec-
trometry.

[0235] Standard techniques may be utilized for determin-
ing the amount of the protein or proteins of interest (e.g.,
proteins expressed from genes listed in Table 30, Table I,
Table J, or Table K) present in a sample. For example, stan-
dard techniques can be employed using, e.g., immunoassays
such as, for example Western blot, immunoprecipitation fol-
lowed by sodium dodecyl sulfate polyacrylamide gel electro-
phoresis, (SDS-PAGE), immunocytochemistry, and the like
to determine the amount of protein or proteins of interest
present in a sample. One exemplary agent for detecting a
protein of interest is an antibody capable of specifically bind-
ing to a protein of interest, preferably an antibody detectably
labeled, either directly or indirectly.

[0236] For such detection methods, if desired a protein
from the sample to be analyzed can easily be isolated using
techniques which are well known to those of skill in the art.
Protein isolation methods can, for example, be such as those
described in Harlow and Lane, 1988, Antibodies: A Labora-
tory Manual, Cold Spring Harbor Laboratory Press (Cold
Spring Harbor, N.Y.), which is incorporated by reference
herein in its entirety.

[0237] Incertain embodiments, methods of detection ofthe
protein or proteins of interest involve their detection via inter-
action with a protein-specific antibody. For example, antibod-
ies directed to a protein of interest (e.g., a protein expressed
from a gene described herein, e.g., a protein listed in Table 30,
Table I, Table J, or Table K). Antibodies can be generated
utilizing standard techniques well known to those of skill in
the art. In specific embodiments, antibodies can be poly-
clonal, or more preferably, monoclonal. An intact antibody, or
an antibody fragment (e.g., scFv, Fab or F(ab'),) can, for
example, be used.

[0238] Forexample, antibodies, or fragments of antibodies,
specific for a protein of interest can be used to quantitatively
or qualitatively detect the presence of a protein. This can be
accomplished, for example, by immunofluorescence tech-
niques. Antibodies (or fragments thereof) can, additionally,
be employed histologically, as in immunofluorescence or
immunoelectron microscopy, for in situ detection of a protein
ofinterest. In situ detection can be accomplished by removing
a biological sample (e.g., a biopsy specimen) from a patient,
and applying thereto a labeled antibody that is directed to a
protein of interest (e.g., a protein expressed from a gene in
Table 30, Table I, Table J, or Table K). The antibody (or
fragment) is preferably applied by overlaying the antibody (or
fragment) onto a biological sample. Through the use of such
a procedure, it is possible to determine not only the presence
of'the protein of interest, but also its distribution, in a particu-
lar sample. A wide variety of well-known histological meth-
ods (such as staining procedures) can be utilized to achieve
such in situ detection.
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[0239] Immunoassays for a protein of interest typically
comprise incubating a biological sample of a detectably
labeled antibody capable of identifying a protein of interest,
and detecting the bound antibody by any of a number of
techniques well-known in the art. As discussed in more detail,
below, the term “labeled” can refer to direct labeling of the
antibody via, e.g., coupling (i.e., physically linking) a detect-
able substance to the antibody, and can also refer to indirect
labeling of the antibody by reactivity with another reagent
that is directly labeled. Examples of indirect labeling include
detection of a primary antibody using a fluorescently labeled
secondary antibody.

[0240] The biological sample can be brought in contact
with and immobilized onto a solid phase support or carrier
such as nitrocellulose, or other solid support which is capable
of immobilizing cells, cell particles or soluble proteins. The
support can then be washed with suitable buffers followed by
treatment with the detectably labeled fingerprint gene-spe-
cific antibody. The solid phase support can then be washed
with the buffer a second time to remove unbound antibody.
The amount of bound label on solid support can then be
detected by conventional methods.

[0241] By “solid phase support or carrier” is intended any
support capable of binding an antigen or an antibody. Well-
known supports or carriers include glass, polystyrene,
polypropylene, polyethylene, dextran, nylon, amylases, natu-
ral and modified celluloses, polyacrylamides and magnetite.
The nature of the carrier can be either soluble to some extent
or insoluble for the purposes of the present invention. The
support material can have virtually any possible structural
configuration so long as the coupled molecule is capable of
binding to an antigen or antibody. Thus, the support configu-
ration can be spherical, as in a bead, or cylindrical, as in the
inside surface of a test tube, or the external surface of a rod.
Alternatively, the surface can be flat such as a sheet, test strip,
etc. Preferred supports include polystyrene beads. Those
skilled in the art will know many other suitable carriers for
binding antibody or antigen, or will be able to ascertain the
same by use of routine experimentation.

[0242] One of the ways in which an antibody specific for a
protein of interest can be detectably labeled is by linking the
same to an enzyme and use in an enzyme immunoassay (EIA)
(Voller, 1978, “The Enzyme Linked Immunosorbent Assay
(ELISA)”, Diagnostic Horizons 2:1-7, Microbiological
Associates Quarterly Publication, Walkersville, Md.; Voller
et al,, 1978, 1. Clin. Pathol. 31:507-520; Butler, J. E., 1981,
Meth. Enzymol. 73:482-523; Maggio (ed.), 1980, Enzyme
Immunoassay, CRC Press, Boca Raton, Fla.; Ishikawa et al.,
(eds.), 1981, Enzyme Immunoassay, Kgaku Shoin, Tokyo,
each of which is hereby incorporated by reference in its
entirety). The enzyme which is bound to the antibody will
react with an appropriate substrate, preferably a chromogenic
substrate, in such a manner as to produce a chemical moiety
which can be detected, for example, by spectrophotometric,
fluorimetric or by visual means. Enzymes which can be used
to detectably label the antibody include, but are not limited to,
malate dehydrogenase, staphylococcal nuclease, delta-5-ste-
roid isomerase, yeast alcohol dehydrogenase, alpha-glycero-
phosphate, dehydrogenase, triose phosphate isomerase,
horseradish peroxidase, alkaline phosphatase, asparaginase,
glucose oxidase, beta-galactosidase, ribonuclease, urease,
catalase, glucose-6-phosphate dehydrogenase, glucoamylase
and acetylcholinesterase. The detection can be accomplished
by colorimetric methods which employ a chromogenic sub-
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strate for the enzyme. Detection can also be accomplished by
visual comparison of the extent of enzymatic reaction of a
substrate in comparison with similarly prepared standards.
[0243] Detection can also be accomplished using any of a
variety of other immunoassays. For example, by radioac-
tively labeling the antibodies or antibody fragments, it is
possible to detect a protein of interest through the use of a
radioimmunoassay (RIA) (see, for example, Weintraub,
1986, Principles of Radioimmunoassays, Seventh Training
Course on Radioligand Assay Techniques, The Endocrine
Society, which is hereby incorporated by reference herein).
The radioactive isotope (e.g., *°I, **'1, **S or *H) can be
detected by such means as the use of a gamma isotope (e.g.,
counter or a scintillation counter or by autoradiography.
[0244] It is also possible to label the antibody with a fluo-
rescent compound. When the fluorescently labeled antibody
is exposed to light of the proper wavelength, its presence can
then be detected due to fluorescence. Among the most com-
monly used fluorescent labeling compounds are fluorescein
isothiocyanate, rhodamine, phycoerythrin, phycocyanin,
allophycocyanin, o-phthaldehyde and fluorescamine.

[0245] The antibody can also be detectably labeled using
fluorescence emitting metals such as *>>Eu, or others of the
lanthanide series. These metals can be attached to the anti-
body using such metal chelating groups as diethylenetri-
aminepentacetic acid (DTPA) or ethylenediaminetetraacetic
acid (EDTA).

[0246] The antibody also can be detectably labeled by cou-
pling it to a chemiluminescent compound. The presence of
the chemiluminescent-tagged antibody is then determined by
detecting the presence of luminescence that arises during the
course of a chemical reaction. Examples of particularly useful
chemiluminescent labeling compounds are luminol, isolumi-
nol, theromatic acridinium ester, imidazole, acridinium salt
and oxalate ester.

[0247] Likewise, a bioluminescent compound can be used
to label the antibody of the present invention. Biolumines-
cence is a type of chemiluminescence found in biological
systems in, which a catalytic protein increases the efficiency
of the chemiluminescent reaction. The presence of a biolu-
minescent protein is determined by detecting the presence of
luminescence. Important bioluminescent compounds for pur-
poses of labeling are luciferin, luciferase and aequorin.
[0248] Inanother embodiment, specific binding molecules
other than antibodies, such as aptamers, may be used to bind
the biomarkers. In yet another embodiment, the biomarker
profile may comprise a measurable aspect of an infectious
agent (e.g., lipopolysaccharides or viral proteins) or a com-
ponent thereof.

[0249] In some embodiments, a protein chip assay (e.g.,
The ProteinChip® Biomarker System, Ciphergen, Fremont,
Calif) is used to measure feature values for the biomarkers in
the biomarker profile. See also, for example, Lin, 2004, Mod-
ern Pathology, 1-9; Li, 2004, Journal of Urology 171, 1782-
1787; Wadsworth, 2004, Clinical Cancer Research, 10, 1625-
1632; Prieto, 2003, Journal of Liquid Chromatography &
Related Technologies 26, 2315-2328; Coombes, 2003, Clini-
cal Chemistry 49, 1615-1623; Mian, 2003, Proteomics 3,
1725-1737; Lehre et al., 2003, BJU International 92, 223-
225; and Diamond, 2003, Journal of the American Society for
Mass Spectrometry 14, 760-765, each of which is hereby
incorporated by reference in its entirety.

[0250] Insome embodiments, a bead assay is used to mea-
sure feature values for the biomarkers in the biomarker pro-
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file. One such bead assay is the Becton Dickinson Cytometric
Bead Array (CBA). CBA employs a series of particles with
discrete fluorescence intensities to simultaneously detect
multiple soluble analytes. CBA is combined with flow cytom-
etry to create a multiplexed assay. The Becton Dickinson
CBA system, as embodied for example in the Becton Dick-
inson Human Inflammation Kit, uses the sensitivity of ampli-
fied fluorescence detection by flow cytometry to measure
soluble analytes in a particle-based immunoassay. Each bead
in a CBA provides a capture surface for a specific protein and
is analogous to an individually coated well in an ELISA plate.
The BD CBA capture bead mixture is in suspension to allow
for the detection of multiple analytes in a small volume
sample.

[0251] In some embodiments the multiplex analysis
method described in U.S. Pat. No. 5,981,180 (“the *180
patent™), herein incorporated by reference in its entirety, and
in particular for its teachings of the general methodology,
bead technology, system hardware and antibody detection, is
used to measure feature values for the biomarkers in a biom-
arker profile. For this analysis, a matrix of microparticles is
synthesized, where the matrix consists of different sets of
microparticles. Each set of microparticles can have thousands
of molecules of a distinct antibody capture reagent immobi-
lized on the microparticle surface and can be color-coded by
incorporation of varying amounts of two fluorescent dyes.
The ratio of the two fluorescent dyes provides a distinct
emission spectrum for each set of microparticles, allowing
the identification of a microparticle a set following the pool-
ing of the various sets of microparticles. U.S. Pat. Nos. 6,268,
222 and 6,599,331 also are incorporated herein by reference
in their entirety, and in particular for their teachings of various
methods of labeling microparticles for multiplex analysis.

5.4.3 Use of Other Methods of Detection

[0252] Insome embodiments, a separation method may be
used determine feature values for biomarkers in a biomarker
profile, such that only a subset of biomarkers within the
sample is analyzed. For example, the biomarkers that are
analyzed in a sample may be mRNA species from a cellular
extract which has been fractionated to obtain only the nucleic
acid biomarkers within the sample, or the biomarkers may be
from a fraction of the total complement of proteins within the
sample, which have been fractionated by chromatographic
techniques.

[0253] Feature values for biomarkers in a biomarker profile
can also, for example, be generated by the use of one or more
of the following methods described below. For example,
methods may include nuclear magnetic resonance (NMR)
spectroscopy, a mass spectrometry method, such as electro-
spray ionization mass spectrometry (ESI-MS), ESI-MS/MS,
ESI-MS/(MS)” (n is an integer greater than zero), matrix-
assisted laser desorption ionization time-of-flight mass spec-
trometry (MALDI-TOF-MS), surface-enhanced laser des-
orption/ionization time-of-flight mass spectrometry (SELDI-
TOF-MS), desorption/ionization on silicon (DIOS),
secondary ion mass spectrometry (SIMS), quadrupole time-
of-flight (Q-TOF), atmospheric pressure chemical ionization
mass spectrometry (APCI-MS), APCI-MS/MS, APCI-(MS)
”, atmospheric pressure photoionization mass spectrometry
(APPI-MS), APPI-MS/MS, and APPI-(MS)". Other mass
spectrometry methods may include, inter alia, quadrupole,
Fourier transform mass spectrometry (FTMS) and ion trap.
Other suitable methods may include chemical extraction par-
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titioning, column chromatography, ion exchange chromatog-
raphy, hydrophobic (reverse phase) liquid chromatography,
isoelectric focusing, one-dimensional polyacrylamide gel
electrophoresis (PAGE), two-dimensional polyacrylamide
gel electrophoresis (2D-PAGE) or other chromatography,
such as thin-layer, gas or liquid chromatography, or any com-
bination thereof. In one embodiment, the biological sample
may be fractionated prior to application of the separation
method.

[0254] In one embodiment, laser desorption/ionization
time-of-flight mass spectrometry is used to create determine
feature values in a biomarker profile where the biomarkers are
proteins or protein fragments that have been ionized and
vaporized off an immobilizing support by incident laser
radiation and the feature values are the presence or absence of
peaks representing these fragments in the mass spectra pro-
file. A variety of laser desorption/ionization techniques are
known in the art (see, e.g., Guttman et al., 2001, Aral. Chem.
73:1252-62 and Wei et al., 1999, Nature 399:243-246, each of
which is hereby incorporated by herein be reference in its
entirety).

[0255] Laser desorption/ionization time-of-flight mass
spectrometry allows the generation of large amounts of infor-
mation in a relatively short period of time. A biological
sample is applied to one of several varieties of a support that
binds all of the biomarkers, or a subset thereof, in the sample.
Cell lysates or samples are directly applied to these surfaces
in volumes as small as 0.5 pl., with or without prior purifica-
tion or fractionation. The lysates or sample can be concen-
trated or diluted prior to application onto the support surface.
Laser desorption/ionization is then used to generate mass
spectra of the sample, or samples, in as little as three hours.

5.5 DATA ANALYSIS ALGORITHMS

[0256] Biomarkers whose corresponding feature values are
capable of discriminating between converters and noncon-
verters are identified in the present invention. The identity of
these biomarkers and their corresponding features (e.g.,
expression levels) can be used to develop a decision rule, or
plurality of decision rules, that discriminate between convert-
ers and nonconverters. Section 6 below illustrates how data
analysis algorithms can be used to construct a number of such
decision rules. Each of the data analysis algorithms described
in Section 6 use features (e.g., expression values) of a subset
of the biomarkers identified in the present invention across a
training population that includes converters and nonconvert-
ers. Typically, a SIRS subject is considered a nonconverter
when the subject does not develop sepsis in a defined time
period (e.g., observation period). This defined time period can
be, for example, twelve hours, twenty four hours, forty-eight
hours, a day, a week, amonth, or longer. Specific data analysis
algorithms for building a decision rule, or plurality of deci-
sion rules, that discriminate between subjects that develop
sepsis and subjects that do not develop sepsis during a defined
period will be described in the subsections below. Once a
decision rule has been built using these exemplary data analy-
sis algorithms or other techniques known in the art, the deci-
sion rule can be used to classify a test subject into one of the
two or more phenotypic classes (e.g., a converter or a non-
converter). This is accomplished by applying the decision
rule to a biomarker profile obtained from the test subject.
Such decision rules, therefore, have enormous value as diag-
nostic indicators.
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[0257] The present invention provides, in one aspect, for
the evaluation of a biomarker profile from a test subject to
biomarker profiles obtained from a training population. In
some embodiments, each biomarker profile obtained from
subjects in the training population, as well as the test subject,
comprises a feature for each of a plurality of different biom-
arkers. In some embodiments, this comparison is accom-
plished by (i) developing a decision rule using the biomarker
profiles from the training population and (ii) applying the
decision rule to the biomarker profile from the test subject. As
such, the decision rules applied in some embodiments of the
present invention are used to determine whether a test subject
having SIRS will or will not likely acquire sepsis.

[0258] In some embodiments of the present invention,
when the results of the application of a decision rule indicate
that the subject will likely acquire sepsis, the subject is diag-
nosed as a “sepsis” subject. If the results of an application of
adecision rule indicate that the subject will not acquire sepsis,
the subject is diagnosed as a “SIRS” subject. Thus, in some
embodiments, the result in the above-described binary deci-
sion situation has four possible outcomes:

[0259] (i) truly septic, where the decision rule indicates that
the subject will acquire sepsis and the subject does in fact
acquire sepsis during the definite time period (true positive,
TP);

[0260] (ii) falsely septic, where the decision rule indicates
that the subject will acquire sepsis and the subject, in fact,
does not acquire sepsis during the definite time period (false
positive, FP);

[0261] (iii) truly SIRS, where the decision rule indicates
that the subject will not acquire sepsis and the subject, in fact,
does not acquire sepsis during the definite time period (true
negative, TN); or

[0262] (iv) falsely SIRS, where the decision rule indicates
that the subject will not acquire sepsis and the subject, in fact,
does acquire sepsis during the definite time period (false
negative, FN).

[0263] It will be appreciated that other definitions for TP,
FP, TN, FN can be made. For example, TP could have been
defined as instances where the decision rule indicates that the
subject will not acquire sepsis and the subject, in fact, does
not acquire sepsis during the definite time period. While all
such alternative definitions are within the scope of the present
invention, for ease of understanding the present invention, the
definitions for TP, FP, TN, and FN given by definitions (i)
through (iv) above will be used herein, unless otherwise
stated.

[0264] As will be appreciated by those of skill in the art, a
number of quantitative criteria can be used to communicate
the performance of the comparisons made between a test
biomarker profile and reference biomarker profiles (e.g., the
application of a decision rule to the biomarker profile from a
test subject). These include positive predicted value (PPV),
negative predicted value (NPV), specificity, sensitivity, accu-
racy, and certainty. In addition, other constructs such a
receiver operator curves (ROC) can be used to evaluate deci-
sion rule performance. As used herein:

7P
PPV = ——
TP+ FP
™
NPV = —
TN + FN
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-continued
N
TN + FP
TP
TP+ FN
TP+ TN
N

specificity =

sensitivity =

accuracy = certainty =

[0265] Here, N is the number of samples compared (e.g.,
the number of test samples for which a determination of
sepsis or SIRS is sought). For example, consider the case in
which there are ten subjects for which SIRS/sepsis classifi-
cation is sought. Biomarker profiles are constructed for each
of'the ten test subjects. Then, each of the biomarker profiles is
evaluated by applying a decision rule, where the decision rule
was developed based upon biomarker profiles obtained from
a training population. In this example, N, from the above
equations, is equal to 10. Typically, N is a number of samples,
where each sample was collected from a different member of
a population. This population can, in fact, be of two different
types. In one type, the population comprises subjects whose
samples and phenotypic data (e.g., feature values of biomar-
kers and an indication of whether or not the subject acquired
sepsis) was used to construct or refine a decision rule. Such a
population is referred to herein as a training population. Inthe
other type, the population comprises subjects that were not
used to construct the decision rule. Such a population is
referred to herein as a validation population. Unless other-
wise stated, the population represented by N is either exclu-
sively a training population or exclusively a validation popu-
lation, as opposed to a mixture of the two population types. It
will be appreciated that scores such as accuracy will be higher
(closer to unity) when they are based on a training population
as opposed to a validation population. Nevertheless, unless
otherwise explicitly stated herein, all criteria used to assess
the performance of a decision rule (or other forms of evalu-
ation of a biomarker profile from a test subject) including
certainty (accuracy) refer to criteria that were measured by
applying the decision rule corresponding to the criteria to
either a training population or a validation population. Fur-
thermore, the definitions for PPV, NPV, specificity, sensitiv-
ity, and accuracy defined above can also be found in Draghici,
Data Analysis Tools for DNA Microanalysis, 2003, CRC
Press LLC, Boca Raton, Fla., pp. 342-343, which is hereby
incorporated herein by reference.

[0266] Insome embodiments the training population com-
prises nonconverters and converters. In some embodiments,
biomarker profiles are constructed from this population using
biological samples collected from the training population at
some time period prior to the onset of sepsis by the converters
of the population. As such, for the converters of the training
population, a biological sample can be collected two week
before, one week before, four days before, three days before,
one day before, or any other time period before the converters
became septic. In practice, such collections are obtained by
collecting a biological sample at regular time intervals after
admittance into the hospital with a SIRS diagnosis. For
example, in one approach, subjects who have been diagnosed
with SIRS in a hospital are used as a training population.
Once admitted to the hospital with SIRS, the biological
samples are collected from the subjects at selected times (e.g.,
hourly, every eight hours, every twelve hours, daily, etc.). A
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portion of the subjects acquire sepsis and a portion of the
subjects do not acquire sepsis. For the subjects that acquire
sepsis, the biological sample taken from the subjects just prior
to the onset of sepsis are termed the T_, , biological samples.
All other biological samples from the subjects are retroac-
tively indexed relative to these biological samples. For
instance, when a biological sample has been taken from a
subject on a daily basis, the biological sample taken the day
before the T_,, sample is referred to as the T_,, biological
sample. Time points for biological samples for anonconverter
in the training population are identified by “time-matching”
the nonconverter subject with a converter subject. To illus-
trate, consider the case in which a subject in the training
population became clinically-defined as septic on his sixth
day of enrollment. For the sake of illustration, for this subject,
T_,41s day four ofthe study, and the T_; ; biological sample is
the biological sample that was obtained on day four of the
study. Likewise, T_,; for the matched nonconverter subject is
deemed to be day four of the study on this paired nonconverter
subject.

[0267] In some embodiments, N is more than one, more
than five, more than ten, more than twenty, between ten and
100, more than 100, or less than 1000 subjects. A decision
rule (or other forms of comparison) can have at least about
99% certainty, or even more, in some embodiments, against a
training population or a validation population. In other
embodiments, the certainty is at least about 97%, at least
about 95%, at least about 90%, at least about 85%, at least
about 80%, at least about 75%, at least about 70%, at least
about 65%, or at least about 60% against a training population
or a validation population (and therefore against a single
subject that is not part of a training population such as a
clinical patient). The useful degree of certainty may vary,
depending on the particular method of the present invention.
Asused herein, “certainty” means “accuracy.” In one embodi-
ment, the sensitivity and/or specificity is at is at least about
97%, at least about 95%, at least about 90%, at least about
85%, at least about 80%, at least about 75%, or at least about
70% against a training population or a validation population.
In some embodiments, such decision rules are used to predict
the development of sepsis with the stated accuracy. In some
embodiments, such decision rules are used to diagnoses sep-
sis with the stated accuracy. In some embodiments, such
decision rules are used to determine a stage of sepsis with the
stated accuracy.

[0268] The number of features that may be used by a deci-
sion rule to classify a test subject with adequate certainty is
two or more. In some embodiments, it is three or more, four or
more, ten or more, or between 10 and 200. Depending on the
degree of certainty sought, however, the number of features
used in a decision rule can be more or less, but in all cases is
at least two. In one embodiment, the number of features that
may be used by a decision rule to classify a test subject is
optimized to allow a classification of a test subject with high
certainty.

[0269] In some of the examples in Section 6 below,
microarray data abundance data was collected for a plurality
of biomarkers in each subject. That is, for each biomarker in
a biomarker profile, a feature, microarray abundance data for
the biomarker, was measured. Decision rules are developed
from such biomarker profiles from a training population
using data analysis algorithms in order to predict sample
phenotypes based on observed gene expression patterns.
While new and microarray specific classification tools are
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constantly being developed, the existing body of pattern rec-
ognition and prediction algorithms provide effective data
analysis algorithms for constructing decision rules. See, for
example, National Research Council; Panel on Discriminant
Analysis Classification and Clustering, Discriminant Analy-
sis and Clustering, Washington, D.C.: National Academy
Press, which is hereby incorporated by reference. Further-
more, the techniques described in Dudoit et al., 2002, “Com-
parison of discrimination methods for the classification of
tumors using gene expression data.” JASA 97; 77-87, hereby
incorporated by reference herein in its entirety, can be used to
develop such decision rules.

[0270] Relevant data analysis algorithms for developing a
decision rule include, but are not limited to, discriminant
analysis including linear, logistic, and more flexible discrimi-
nation techniques (see, e.g., Gnanadesikan, 1977, Methods
for Statistical Data Analysis of Multivariate Observations,
New York: Wiley 1977, which is hereby incorporated by
reference herein in its entirety); tree-based algorithms such as
classification and regression trees (CART) and variants (see,
e.g., Breiman, 1984, Classification and Regression Trees,
Belmont, Calif.: Wadsworth International Group, which is
hereby incorporated by reference herein in its entirety, as well
as Section 5.1.3, below); generalized additive models (see,
e.g., Tibshirani, 1990, Generalized Additive Models,London:
Chapman and Hall, which is hereby incorporated by refer-
ence herein in its entirety); and neural networks (see, e.g.,
Neal, 1996, Bayesian Learning for Neural Networks, New
York: Springer-Verlag; and Insua, 1998, Feedforward neural
networks for nonparametric regression In: Practical Non-
parametric and Semiparametric Bayesian Statistics, pp. 181-
194, New York: Springer, which is hereby incorporated by
reference herein in its entirety, as well as Section 5.5.6,
below).

[0271] In one embodiment, comparison of a test subject’s
biomarker profile to a biomarker profiles obtained from a
training population is performed, and comprises applying a
decision rule. The decision rule is constructed using a data
analysis algorithm, such as a computer pattern recognition
algorithm. Other suitable data analysis algorithms for con-
structing decision rules include, but are not limited to, logistic
regression (see Section 5.5.10, below) or a nonparametric
algorithm that detects differences in the distribution of feature
values (e.g., a Wilcoxon Signed Rank Test (unadjusted and
adjusted)). The decision rule can be based upon two, three,
four, five, 10, 20 or more features, corresponding to measured
observables from one, two, three, four, five, 10, 20 or more
biomarkers. In one embodiment, the decision rule is based on
hundreds of features or more. Decision rules may also be built
using a classification tree algorithm. For example, each biom-
arker profile from a training population can comprise at least
three features, where the features are predictors in a classifi-
cation tree algorithm (see Section 5.5.1, below). The decision
rule predicts membership within a population (or class) with
an accuracy of at least about at least about 70%, of at least
about 75%, of at least about 80%, of at least about 85%, of at
least about 90%, of at least about 95%, of at least about 97%,
of at least about 98%, of at least about 99%, or about 100%.

[0272] Suitable data analysis algorithms are known in the
art, some of which are reviewed in Hastie et al., supra. In a
specific embodiment, a data analysis algorithm of the inven-
tion comprises Classification and Regression Tree (CART;
Section 5.5.1, below), Multiple Additive Regression Tree
(MART; Section 5.5.4, below), Prediction Analysis for
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Microarrays (PAM; Section 5.5.2, below) or Random Forest
analysis (Section 5.5.1, below). Such algorithms classify
complex spectra from biological materials, such as a blood
sample, to distinguish subjects as normal or as possessing
biomarker expression levels characteristic of a particular dis-
ease state. In other embodiments, a data analysis algorithm of
the invention comprises ANOVA and nonparametric equiva-
lents, linear discriminant analysis (Section 5.5.10, below),
logistic regression analysis (Section 5.5.10, below), nearest
neighbor classifier analysis (Section 5.5.9, below), neural
networks (Section 5.5.6, below), principal component analy-
sis (Section 5.5.8, below), quadratic discriminant analysis
(Section 5.5.11, below), regression classifiers (Section 5.5.5,
below) and support vector machines (Section 5.5.12, below).
While such algorithms may be used to construct a decision
rule and/or increase the speed and efficiency of the applica-
tion of the decision rule and to avoid investigator bias, one of
ordinary skill in the art will realize that computer-based algo-
rithms are not required to carry out the methods of the present
invention.

[0273] Decision rules can be used to evaluate biomarker
profiles, regardless of the method that was used to generate
the biomarker profile. For example, suitable decision rules
that can be used to evaluate biomarker profiles generated
using gas chromatography, as discussed in Harper, “Pyrolysis
and GC in Polymer Analysis,” Dekker, New York (1985).
Further, Wagner et al., 2002, Anal. Chem. 74:1824-1835 dis-
close a decision rule that improves the ability to classify
subjects based on spectra obtained by static time-of-flight
secondary ion mass spectrometry (TOF-SIMS). Additionally,
Bright et al., 2002, J. Microbiol. Methods 48:127-38, hereby
incorporated by reference herein in its entirety, disclose a
method of distinguishing between bacterial strains with high
certainty (79-89% correct classification rates) by analysis of
MALDI-TOF-MS spectra. Dalluge, 2000, Fresenius J. Anal.
Chem. 366:701-711, hereby incorporated by reference herein
in its entirety, discusses the use of MALDI-TOF-MS and
liquid chromatography-electrospray ionization mass spec-
trometry (LC/ESI-MS) to classify profiles of biomarkers in
complex biological samples.

5.5.1 Decision Trees

[0274] One type of decision rule that can be constructed
using the feature values of the biomarkers identified in the
present invention is a decision tree. Here, the “data analysis
algorithm” is any technique that can build the decision tree,
whereas the final “decision tree” is the decision rule. A deci-
sion tree is constructed using a training population and spe-
cific data analysis algorithms. Decision trees are described
generally by Duda, 2001, Pattern Classification, John Wiley
& Sons, Inc., New York. pp. 395-396, which is hereby incor-
porated by reference. Tree-based methods partition the fea-
ture space into a set of rectangles, and then fit a model (like a
constant) in each one.

[0275] The training population data includes the features
(e.g., expression values, or some other observable) for the
biomarkers of the present invention across a training set popu-
lation. One specific algorithm that can be used to construct a
decision tree is a classification and regression tree (CART).
Other specific decision tree algorithms include, but are not
limited to, ID3, C4.5, MART, and Random Forests. CART,
1D3, and C4.5 are described in Duda, 2001, Pattern Classifi-
cation, John Wiley & Sons, Inc., New York. pp. 396-408 and
pp. 411-412, which is hereby incorporated by reference.
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CART, MART, and C4.5 are described in Hastie et al., 2001,
The Elements of Statistical Learning, Springer-Verlag, New
York, Chapter 9, which is hereby incorporated by reference in
its entirety. Random Forests are described in Breiman, 1999,
“Random Forests—Random Features,” Technical Report
567, Statistics Department, U.C. Berkeley, September 1999,
which is hereby incorporated by reference in its entirety.

[0276] Insomeembodiments ofthe presentinvention, deci-
sion trees are used to classify subjects using features for
combinations of biomarkers of the present invention. Deci-
sion tree algorithms belong to the class of supervised learning
algorithms. The aim of a decision tree is to induce a classifier
(atree) from real-world example data. This tree can be used to
classify unseen examples that have not been used to derive the
decision tree. As such, a decision tree is derived from training
data. Exemplary training data contains data for a plurality of
subjects (the training population). For each respective subject
there is a plurality of features the class of the respective
subject (e.g., sepsis/SIRS). In one embodiment of the present
invention, the training data is expression data for a combina-
tion of biomarkers across the training population.

[0277] The following algorithm describes an exemplary
decision tree derivation:

Tree(Examples,Class,Features)
Create a root node
If all Examples have the same Class value, give the root this label
Else if Features is empty label the root according to the most common
value
Else begin
Calculate the information gain for each Feature
Select the Feature A with highest information gain and make this
the root
Feature
For each possible value, v, of this Feature
Add a new branch below the root, correspondingto A =v
Let Examples(v) be those examples with A = v
If Examples(v) is empty, make the new branch a leaf node
labeled with the most common value among Examples
Else let the new branch be the tree created by
Tree(Examples(v),Class,Features — {A})
end

[0278] A more detailed description of the calculation of
information gain is shown in the following. If the possible
classes v, of the examples have probabilities P(v,) then the
information content I of the actual answer is given by:

n

(P, ..., Plvy)) = Z —P(vi)log, P(vi)

i=1

[0279] The I-value shows how much information we need
in order to be able to describe the outcome of a classification
for the specific dataset used. Supposing that the dataset con-
tains p positive (e.g. will develop sepsis) and n negative (e.g.
will not develop sepsis) examples (e.g. subjects), the infor-
mation contained in a correct answer is:

(=2 L)oo Do,
p+n’ p+n!/” p+n g2p+n p+n g2p+n



US 2011/0105350 Al

where log, is the logarithm using base two. By testing single
features the amount of information needed to make a correct
classification can be reduced. The remainder for a specific
feature A (e.g. representing a specific biomarker) shows how
much the information that is needed can be reduced.

v

Remainder(A) = Z

i=1

pi+”i1( Pi ni )
pn \pi+n o pitn

“v” is the number of unique attribute values for feature A in a
certain dataset, is a certain attribute value, “p,” is the
number of examples for feature A where the classification is
positive (e.g. will develop sepsis), “n,” is the number of
examples for feature A where the classification is negative
(e.g. will not develop sepsis).

[0280] The information gain of a specific feature A is cal-
culated as the difference between the information content for
the classes and the remainder of feature A:

73233
1

p

Gain(A):I(p+n, p+n

) — Remainden(A)

The information gain is used to evaluate how important the
different features are for the classification (how well they split
up the examples), and the feature with the highest informa-
tion.

[0281] In general there are a number of different decision
tree algorithms, many of which are described in Duda, Pattern
Classification, Second Edition, 2001, John Wiley & Sons,
Inc. Decision tree algorithms often require consideration of
feature processing, impurity measure, stopping criterion, and
pruning. Specific decision tree algorithms include, but are not
limited to classification and regression trees (CART), multi-
variate decision trees, ID3, and C4.5.

[0282] In one approach, when a decision tree is used, the
gene expression data for a select combination of genes
described in the present invention across a training population
is standardized to have mean zero and unit variance. The
members of the training population are randomly divided into
atraining set and a test set. For example, in one embodiment,
two thirds of the members of the training population are
placed in the training set and one third of the members of the
training population are placed in the test set. The expression
values for a select combination of biomarkers described in the
present invention is used to construct the decision tree. Then,
the ability for the decision tree to correctly classify members
in the test set is determined. In some embodiments, this com-
putation is performed several times for a given combination
of biomarkers. In each computational iteration, the members
of'the training population are randomly assigned to the train-
ing set and the test set. Then, the quality of the combination of
biomarkers is taken as the average of each such iteration of the
decision tree computation.

[0283] Inaddition to univariate decision trees in which each
split is based on a feature value for a corresponding biomar-
ker, among the set of biomarkers of the present invention, or
the relative feature values of two such biomarkers, multivari-
ate decision trees can be implemented as a decision rule. In
such multivariate decision trees, some or all of the decisions
actually comprise a linear combination of feature values for a
plurality of biomarkers of the present invention. Such a linear
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combination can be trained using known techniques such as
gradient descent on a classification or by the use of a sum-
squared-error criterion. To illustrate such a decision tree,
consider the expression:

0.04%,+0.16x,<500

[0284] Here, x, and x, referto two different features for two
different biomarkers from among the biomarkers of the
present invention. To poll the decision rule, the values of
features x, and x, are obtained from the measurements
obtained from the unclassified subject. These values are then
inserted into the equation. If a value of less than 500 is
computed, then a first branch in the decision tree is taken.
Otherwise, a second branch in the decision tree is taken.
Multivariate decision trees are described in Duda, 2001, Pat-
tern Classification, John Wiley & Sons, Inc., New York, pp.
408-409, which is hereby incorporated by reference.

[0285] Another approach that can be used in the present
invention is multivariate adaptive regression splines
(MARS). MARS is an adaptive procedure for regression, and
is well suited for the high-dimensional problems addressed
by the present invention. MARS can be viewed as a generali-
zation of stepwise linear regression or a modification of the
CART method to improve the performance of CART in the
regression setting. MARS is described in Hastie et al., 2001,
The Elements of Statistical Learning, Springer-Verlag, New
York, pp. 283-295, which is hereby incorporated by reference
in its entirety.

5.5.2 Predictive Analysis of Microarrays (PAM)

[0286] One approach to developing a decision rule using
feature values of biomarkers of the present invention is the
nearest centroid classifier. Such a technique computes, for
each class (sepsis and SIRS), a centroid given by the average
feature levels of the biomarkers in the class, and then assigns
new samples to the class whose centroid is nearest. This
approach is similar to k-means clustering except clusters are
replaced by known classes. This algorithm can be sensitive to
noise when a large number of biomarkers are used. One
enhancement to the technique uses shrinkage: for each biom-
arker, differences between class centroids are set to zero if
they are deemed likely to be due to chance. This approach is
implemented in the Prediction Analysis of Microarray, or
PAM. See, for example, Tibshirani et al., 2002, Proceedings
of the National Academy of Science USA 99; 6567-6572,
which is hereby incorporated by reference in its entirety.
Shrinkage is controlled by a threshold below which differ-
ences are considered noise. Biomarkers that show no differ-
ence above the noise level are removed. A threshold can be
chosen by cross-validation. As the threshold is decreased,
more biomarkers are included and estimated classification
errors decrease, until they reach a bottom and start climbing
again as a result of noise biomarkers—a phenomenon known
as overfitting.

5.5.3 Bagging, Boosting, and the Random Subspace
Method

[0287] Bagging, boosting, the random subspace method,
and additive trees are data analysis algorithms known as
combining techniques that can be used to improve weak
decision rules. These techniques are designed for, and usually
applied to, decision trees, such as the decision trees described
in Section 5.5.1, above. In addition, such techniques can also



US 2011/0105350 Al

be useful in decision rules developed using other types of data
analysis algorithms such as linear discriminant analysis.
[0288] Inbagging, one samples the training set, generating
random independent bootstrap replicates, constructs the deci-
sion rule on each of these, and aggregates them by a simple
majority vote in the final decision rule. See, for example,
Breiman, 1996, Machine Learning 24, 123-140; and Efron &
Tibshirani, An Introduction to Boostrap, Chapman & Hall,
New York, 1993, which is hereby incorporated by reference in
its entirety.

[0289] In boosting, decision rules are constructed on
weighted versions of the training set, which are dependent on
previous classification results. Initially, all features under
consideration have equal weights, and the first decision rule is
constructed on this data set. Then, weights are changed
according to the performance of the decision rule. Errone-
ously classified features get larger weights, and the next deci-
sion rule is boosted on the reweighted training set. In this way,
a sequence of training sets and decision rules is obtained,
which is then combined by simple majority voting or by
weighted majority voting in the final decision rule. See, for
example, Freund & Schapire, “Experiments with a new
boosting algorithm,” Proceedings 13th International Confer-
ence on Machine Learning, 1996, 148-156, which is hereby
incorporated by reference in its entirety.

[0290] To illustrate boosting, consider the case where there
are two phenotypes exhibited by the population under study,
phenotype 1 (e.g., acquiring sepsis during a defined time
periond), and phenotype 2 (e.g., SIRS only, meaning that the
subject does acquire sepsis within a defined time period).
Given a vector of predictor biomarkers (e.g., a vector of
features that represent such biomarkers) from the training set
data, a decision rule G(X) produces a prediction taking one of
the type values in the two value set: {phenotype 1, phenotype
2}. The error rate on the training sample is

Ly
orr= ﬁ; 1(y; # Glx)

[0291] where N is the number of subjects in the training set
(the sum total of the subjects that have either phenotype 1 or
phenotype 2). For example, if there are 49 organisms that
acquire sepsis and 72 organisms that remain in the SIRS state,
Nis 121. A weak decision rule is one whose error rate is only
slightly better than random guessing. In the boosting algo-
rithm, the weak decision rule is repeatedly applied to modi-
fied versions of the data, thereby producing a sequence of
weak decision rules G,,(x), m, =1, 2, . .., M. The predictions
from all of the decision rules in this sequence are then com-
bined through a weighted majority vote to produce the final
decision rule:

M
Gx) = sign| > @ Gu(x)
m=1

[0292] Here o, o, . .., o, are computed by the boosting
algorithm and their purpose is to weigh the contribution of
each respective decision rule Gm(x). Their effect is to give
higher influence to the more accurate decision rules in the
sequence.
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[0293] The data modifications at each boosting step consist
of applying weights w,, w,, w,, to each of the training obser-
vations (X,, Y,),1=1, 2, . . ., N. Initially all the weights are set
to w,=1/N;, so that the first step simply trains the decision rule
on the data in the usual manner. For each successive iteration
m=2, 3, . . ., M the observation weights are individually
modified and the decision rule is reapplied to the weighted
observations. At step m, those observations that were mis-
classified by the decision rule G,,-1(x) induced at the previ-
ous step have their weights increased, whereas the weights are
decreased for those that were classified correctly. Thus as
iterations proceed, observations that are difficult to correctly
classify receive ever-increasing influence. Each successive
decision rule is thereby forced to concentrate on those train-
ing observations that are missed by previous ones in the
sequence.

[0294] The exemplary boosting algorithm is summarized
as follows:

1. Initialize the observation weights w; = I/N,i=1,2,...,N.
2.Form=1to M:
(a) Fit a decision rule G,,(x) to the training set using weights w;.
(b) Compute

i=1

N

D willy; # Gn(x)

ey = ——————————————
N
2w
i=1

(c) Compute a,, = log((1-err,,)/err,,).

(d) Set w; < w; - exp[a,, " I(v; = G,,(x))],i=1,2,...,N.

M
3.0utput G(x) = sign {Z @ G, (X)

m=1

[0295] In one embodiment in accordance with this algo-
rithm, each object is, in fact, a factor. Furthermore, in the
algorithm, the current decision rule G,,,(x) is induced on the
weighted observations at line 2a. The resulting weighted error
rate is computed at line 2b. Line 2c¢ calculates the weight a.,,,
given to G,,(x) in producing the final classifier G(x) (line 3).
The individual weights of each of the observations are
updated for the next iteration at line 2d. Observations mis-
classified by G,,(x) have their weights scaled by a factor
exp(a,,), increasing their relative influence for inducing the
next classifier G,,+1(x) in the sequence. In some embodi-
ments, modifications of the Freund and Schapire, 1997, Jour-
nal of Computer and System Sciences 55, pp. 119-139, boost-
ing methods are used. See, for example, Hasti et al., The
Elements of Statistical Learning, 2001, Springer, N.Y., Chap-
ter 10, which is hereby incorporated by reference in its
entirety. For example, in some embodiments, feature prese-
lection is performed using a technique such as the nonpara-
metric scoring methods of Park et al., 2002, Pac. Symp.
Biocomput. 6, 52-63, which is hereby incorporated by refer-
ence in its entirety. Feature preselection is a form of dimen-
sionality reduction in which the genes that discriminate
between classifications the best are selected for use in the
classifier. Then, the LogitBoost procedure introduced by
Friedman et al., 2000, Ann Stat 28, 337-407 is used rather
than the boosting procedure of Freund and Schapire. In some
embodiments, the boosting and other classification methods
of Ben-Dor et al., 2000, Journal of Computational Biology 7,
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559-583, hereby incorporated by reference in its entirety, are
used in the present invention. In some embodiments, the
boosting and other classification methods of Freund and
Schapire, 1997, Journal of Computer and System Sciences
55, 119-139, hereby incorporated by reference in its entirety,
are used.

[0296] In the random subspace method, decision rules are
constructed in random subspaces of the data feature space.
These decision rules are usually combined by simple majority
voting in the final decision rule. See, for example, Ho, “The
Random subspace method for constructing decision forests,”
IEEE Trans Pattern Analysis and Machine Intelligence, 1998;
20(8): 832-844, which is hereby incorporated by reference in
its entirety.

5.5.4 Multiple Additive Regression Trees

[0297] Multiple additive regression trees (MART) repre-
sents another way to construct a decision rule that can be used
in the present invention. A generic algorithm for MART is:

N
1. Initialize fO(x) = argminyZ Liy;, »).
i=1

2.Form=1toM:
(a) ForI=1,2,...,N compute

L [6L<y‘-, f(x;))]
im = T | T arioN
o) o,
(b) Fit a regression tree to the targets rim giving terminal regions
Rjm,j=1,2,...,Jm.
(¢)Forj=1,2,...,Jm compute

im = argmin L{y;, f 1 (X)) + ).
7; i D L b ) +7)

X E€R i

Im
(d) Update fm(x) = fm— 1(x) + Z Yiml(x € Rjp)

J=1

3. Ouput %(X)=fM (x).

[0298] Specific algorithms are obtained by inserting difter-
ent loss criteria L(y,f(x)). The first line of the algorithm ini-
tializes to the optimal constant model, which is just a single
terminal node tree. The components of the negative gradient
computed in line 2(a) are referred to as generalized pseudo
residuals, r. Gradients for commonly used loss functions are
summarized in Table 10.2, of Hastie et al., 2001, The Ele-
ments of Statistical Learning, Springer-Verlag, New York, p.
321, which is hereby incorporated by reference. The algo-
rithm for classification is similar and is described in Hastie et
al., Chapter 10, which is hereby incorporated by reference in
its entirety. Tuning parameters associated with the MART
procedure are the number of iterations M and the sizes of each
of the constituent trees J,,, m=1, 2, ..., M.

5.5.5 Decision Rules Derived by Regression

[0299] Insome embodiments, a decision rule used to clas-
sify subjects is built using regression. In such embodiments,
the decision rule can be characterized as a regression classi-
fier, preferably a logistic regression classifier. Such a regres-
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sion classifier includes a coefficient for each of the biomark-
ers (e.g., a feature for each such biomarker) used to construct
the classifier. In such embodiments, the coefficients for the
regression classifier are computed using, for example, a maxi-
mum likelihood approach. In such a computation, the features
for the biomarkers (e.g., RT-PCR, microarray data) is used. In
particular embodiments, molecular marker data from only
two trait subgroups is used (e.g., trait subgroup a: will acquire
sepsis in a defined time period and trait subgroup b: will not
acquire sepsis in a defined time period) and the dependent
variable is absence or presence of a particular trait in the
subjects for which biomarker data is available.

[0300] In another specific embodiment, the training popu-
lation comprises a plurality of trait subgroups (e.g., three or
more trait subgroups, four or more specific trait subgroups,
etc.). These multiple trait subgroups can correspond to dis-
crete stages in the phenotypic progression from healthy, to
SIRS, to sepsis, to more advanced stages of sepsis in a train-
ing population. In this specific embodiment, a generalization
of the logistic regression model that handles multicategory
responses can be used to develop a decision that discriminates
between the various trait subgroups found in the training
population. For example, measured data for selected molecu-
lar markers can be applied to any of the multi-category logit
models described in Agresti, An Introduction to Categorical
Data Analysis, 1996, John Wiley & Sons, Inc., New York,
Chapter 8, hereby incorporated by reference in its entirety, in
order to develop a classifier capable of discriminating
between any of a plurality of trait subgroups represented in a
training population.

5.5.6 Neural Networks

[0301] Insomeembodiments, the feature data measured for
select biomarkers of the present invention (e.g., RT-PCR data,
mass spectrometry data, microarray data) can be used to train
a neural network. A neural network is a two-stage regression
or classification decision rule. A neural network has a layered
structure that includes a layer of input units (and the bias)
connected by a layer of weights to a layer of output units. For
regression, the layer of output units typically includes just one
output unit. However, neural networks can handle multiple
quantitative responses in a seamless fashion.

[0302] In multilayer neural networks, there are input units
(input layer), hidden units (hidden layer), and output units
(output layer). There is, furthermore, a single bias unit that is
connected to each unit other than the input units. Neural
networks are described in Duda et al., 2001, Pattern Classi-
fication, Second Edition, John Wiley & Sons, Inc., New York;
and Hastie et al., 2001, The Elements of Statistical Learning,
Springer-Verlag, New York, each of which is hereby incorpo-
rated by reference in its entirety. Neural networks are also
described in Draghici, 2003, Data Analysis Tools for DNA
Microarrays, Chapman & Hall/CRC; and Mount, 2001, Bio-
informatics: sequence and genome analysis, Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, N.Y., each of
which is hereby incorporated by reference in its entirety.
What is disclosed below is some exemplary forms of neural
networks.

[0303] The basic approach to the use of neural networks is
to start with an untrained network, present a training pattern
to the input layer, and to pass signals through the net and
determine the output at the output layer. These outputs are
then compared to the target values; any difference corre-
sponds to an error. This error or criterion function is some
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scalar function of the weights and is minimized when the
network outputs match the desired outputs. Thus, the weights
are adjusted to reduce this measure of error. For regression,
this error can be sum-of-squared errors. For classification,
this error can be either squared error or cross-entropy (devia-
tion). See, e.g., Hastie etal., 2001, The Elements of Statistical
Learning, Springer-Verlag, New York, which is hereby incor-
porated by reference in its entirety.

[0304] Three commonly used training protocols are sto-
chastic, batch, and on-line. In stochastic training, patterns are
chosen randomly from the training set and the network
weights are updated for each pattern presentation. Multilayer
nonlinear networks trained by gradient descent methods such
as stochastic back-propagation perform a maximum-likeli-
hood estimation of the weight values in the classifier defined
by the network topology. In batch training, all patterns are
presented to the network before learning takes place. Typi-
cally, in batch training, several passes are made through the
training data. In online training, each pattern is presented
once and only once to the net.

[0305] In some embodiments, consideration is given to
starting values for weights. If the weights are near zero, then
the operative part of the sigmoid commonly used in the hid-
den layer of a neural network (see, e.g., Hastie et al., 2001,
The Elements of Statistical Learning, Springer-Verlag, New
York, hereby incorporated by reference) is roughly linear, and
hence the neural network collapses into an approximately
linear classifier. In some embodiments, starting values for
weights are chosen to be random values near zero. Hence the
classifier starts out nearly linear, and becomes nonlinear as
the weights increase. Individual units localize to directions
and introduce nonlinearities where needed. Use of exact zero
weights leads to zero derivatives and perfect symmetry, and
the algorithm never moves. Alternatively, starting with large
weights often leads to poor solutions.

[0306] Since the scaling of inputs determines the effective
scaling of weights in the bottom layer, it can have a large
effect on the quality of the final solution. Thus, in some
embodiments, atthe outset all expression values are standard-
ized to have mean zero and a standard deviation of one. This
ensures all inputs are treated equally in the regularization
process, and allows one to choose a meaningful range for the
random starting weights. With standardization inputs, it is
typical to take random uniform weights over the range [-0.7,
+0.7].

[0307] A recurrent problem in the use of three-layer net-
works is the optimal number of hidden units to use in the
network. The number of inputs and outputs of a three-layer
network are determined by the problem to be solved. In the
present invention, the number of inputs for a given neural
network will equal the number of biomarkers selected from
the training population. The number of output for the neural
network will typically be just one. However, in some embodi-
ments more than one output is used so that more than just two
states can be defined by the network. For example, a multi-
output neural network can be used to discriminate between,
healthy phenotypes, various stages of SIRS, and/or various
stages of sepsis. If too many hidden units are used in a neural
network, the network will have too many degrees of freedom
and is trained too long, there is a danger that the network will
overfit the data. If there are too few hidden units, the training
set cannot be learned. Generally speaking, however, it is
better to have too many hidden units than too few. With too
few hidden units, the classifier might not have enough flex-
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ibility to capture the nonlinearities in the date; with too many
hidden units, the extra weight can be shrunk towards zero if
appropriate regularization or pruning, as described below, is
used. In typical embodiments, the number of hidden units is
somewhere in the range of 5 to 100, with the number increas-
ing with the number of inputs and number of training cases.
[0308] One general approach to determining the number of
hidden units to use is to apply a regularization approach. In
the regularization approach, a new criterion function is con-
structed that depends not only on the classical training error,
but also on classifier complexity. Specifically, the new crite-
rion function penalizes highly complex classifiers; searching
for the minimum in this criterion is to balance error on the
training set with error on the training set plus a regularization
term, which expresses constraints or desirable properties of
solutions:

PAYYS S

The parameter A is adjusted to impose the regularization more
orless strongly. In other words, larger values for A will tend to
shrink weights towards zero: typically cross-validation with a
validation set is used to estimate A. This validation set can be
obtained by setting aside a random subset of the training
population. Other forms of penalty have been proposed, for
example the weight elimination penalty (see, e.g., Hastie et
al., 2001, The Elements of Statistical Learning, Springer-
Verlag, New York, hereby incorporated by reference).
[0309] Another approach to determine the number of hid-
den units to use is to eliminate-prune-weights that are least
needed. In one approach, the weights with the smallest mag-
nitude are eliminated (set to zero). Such magnitude-based
pruning can work, but is nonoptimal; sometimes weights with
small magnitudes are important for learning and training data.
In some embodiments, rather than using a magnitude-based
pruning approach, Wald statistics are computed. The funda-
mental idea in Wald Statistics is that they can be used to
estimate the importance of a hidden unit (weight) in a classi-
fier. Then, hidden units having the least importance are elimi-
nated (by setting their input and output weights to zero). Two
algorithms in this regard are the Optimal Brain Damage
(OBD) and the Optimal Brain Surgeon (OBS) algorithms that
use second-order approximation to predict how the training
error depends upon a weight, and eliminate the weight that
leads to the smallest increase in training error.

[0310] Optimal Brain Damage and Optimal Brain Surgeon
share the same basic approach of training a network to local
minimum error at weight w, and then pruning a weight that
leads to the smallest increase in the training error. The pre-
dicted functional increase in the error for a change in full
weight vector dw is:

8 aJ’(s 16\4/62]6 o(|swli?
—(m]'w'*'z 'W'W"' (llswl)

is the Hessian matrix. The first term vanishes at a local mini-
mum in error; third and higher order terms are ignored. The
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general solution for minimizing this function given the con-
straint of deleting one weight is:

Wy = 1 wy
———H " -u;and I, = 5 -
[H 1, g

ow=—
2 [H Y],

Here, u,, is the unit vector along the gth direction in weight
space and L, is approximation to the saliency of the weight
q—the increase in training error if weight q is pruned and the
other weights updated dw. These equations require the
inverse of H. One method to calculate this inverse matrix is to
start with a small value, H,"'=c~"1, where c. is a small param-
eter—effectively a weight constant. Next the matrix is
updated with each pattern according to

H X X2, HE Eqn. 1

-1 _ -1
Hm+l _Hm ) T L
—+ Xm+l Hr; Xnr1
m

where the subscripts correspond to the pattern being pre-
sented and a.,,, decreases with m. After the full training set has
been presented, the inverse Hessian matrix is given by
H™'=H,~". In algorithmic form, the Optimal Brain Surgeon
method is:

begin initialize ng, w, 6
train a reasonably large network to minimum error
do compute H! by Eqn. 1

q° <« argminwg/(Z[H’l]qq) (saliency L)
q

V' Hrle . (saliency I,
W wW— m e, (saliency L)
until J(w) >0
return w
end
[0311] The Optimal Brain Damage method is computation-

ally simpler because the calculation of the inverse Hessian
matrix in line 3 is particularly simple for a diagonal matrix.
The above algorithm terminates when the error is greater than
a criterion initialized to be 6. Another approach is to change
line 6 to terminate when the change in J(w) due to elimination
of a weight is greater than some criterion value. In some
embodiments, the back-propagation neural network See, for
example Abdi, 1994, “A neural network primer,” J. Biol Sys-
tem. 2, 247-283, hereby incorporated by reference in its
entirety.

5.5.7 Clustering

[0312] In some embodiments, features for select biomark-
ers of the present invention are used to cluster a training set.
For example, consider the case in which ten features (corre-
sponding to ten biomarkers) described in the present inven-
tion is used. Each member m of the training population will
have feature values (e.g. expression values) for each of the ten
biomarkers. Such values from a member m in the training
population define the vector:
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le X2m X3m X4m X5m XGm X7m XSm XQm XlOm

where X,,, is the expression level of the i” biomarker in
organism m. If there are m organisms in the training set,
selection of 1 biomarkers will define m vectors. Note that the
methods of the present invention do not require that each the
expression value of every single biomarker used in the vectors
be represented in every single vector m. In other words, data
from a subject in which one of the i” biomarkers is not found
can still be used for clustering. In such instances, the missing
expression value is assigned either a “zero” or some other
normalized value. In some embodiments, prior to clustering,
the feature values are normalized to have a mean value of zero
and unit variance.

[0313] Those members of the training population that
exhibit similar expression patterns across the training group
will tend to cluster together. A particular combination of
genes of the present invention is considered to be a good
classifier in this aspect of the invention when the vectors
cluster into the trait groups found in the training population.
For instance, if the training population includes class a: sub-
jects that do not develop sepsis, and class b: subjects that
develop sepsis, an ideal clustering classifier will cluster the
population into two groups, with one cluster group uniquely
representing class a and the other cluster group uniquely
representing class b.

[0314] Clustering is described on pages 211-256 of Duda
and Hart, Pattern Classification and Scene Analysis, 1973,
John Wiley & Sons, Inc., New York, (hereinafter “Duda
1973”) which is hereby incorporated by reference in its
entirety. As described in Section 6.7 of Duda 1973, the clus-
tering problem is described as one of finding natural group-
ings in a dataset. To identify natural groupings, two issues are
addressed. First, a way to measure similarity (or dissimilar-
ity) between two samples is determined. This metric (simi-
larity measure) is used to ensure that the samples in one
cluster are more like one another than they are to samples in
other clusters. Second, a mechanism for partitioning the data
into clusters using the similarity measure is determined.

[0315] Similarity measures are discussed in Section 6.7 of
Duda 1973, where it is stated that one way to begin a cluster-
ing investigation is to define a distance function and to com-
pute the matrix of distances between all pairs of samples in a
dataset. If distance is a good measure of similarity, then the
distance between samples in the same cluster will be signifi-
cantly less than the distance between samples in different
clusters. However, as stated on page 215 of Duda 1973, clus-
tering does not require the use of a distance metric. For
example, a nonmetric similarity function s(x, x') can be used
to compare two vectors x and x'. Conventionally, s(x, x') is a
symmetric function whose value is large when x and x' are
somehow “similar”. An example of a nonmetric similarity
function s(x, x') is provided on page 216 of Duda 1973.

[0316] Once a method for measuring “similarity” or “dis-
similarity” between points in a dataset has been selected,
clustering requires a criterion function that measures the clus-
tering quality of any partition ofthe data. Partitions ofthe data
set that extremize the criterion function are used to cluster the
data. See page 217 of Duda 1973. Criterion functions are
discussed in Section 6.8 of Duda 1973.
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[0317] More recently, Duda et al., Pattern Classification,
2"? edition, John Wiley & Sons, Inc. New York, has been
published. Pages 537-563 describe clustering in detail. More
information on clustering techniques can be found in Kauf-
man and Rousseeuw, 1990, Finding Groups in Data: An
Introduction to Cluster Analysis, Wiley, New York, N.Y;
Everitt, 1993, Cluster analysis (3d ed.), Wiley, New York,
N.Y.; and Backer, 1995, Computer-Assisted Reasoning in
Cluster Analysis, Prentice Hall, Upper Saddle River, N.J.
Particular exemplary clustering techniques that can be used in
the present invention include, but are not limited to, hierar-
chical clustering (agglomerative clustering using nearest-
neighbor algorithm, farthest-neighbor algorithm, the average
linkage algorithm, the centroid algorithm, or the sum-of-
squares algorithm), k-means clustering, fuzzy k-means clus-
tering algorithm, and Jarvis-Patrick clustering.

5.5.8 Principle Component Analysis

[0318] Principal component analysis (PCA) has been pro-
posed to analyze gene expression data. More generally, PCA
can be used to analyze feature value data of biomarkers of the
present invention in order to construct a decision rule that
discriminates converters from nonconverters. Principal com-
ponent analysis is a classical technique to reduce the dimen-
sionality of a data set by transforming the data to a new set of
variable (principal components) that summarize the features
of the data. See, for example, Jollifte, 1986, Principal Com-
ponent Analysis, Springer, N.Y., which is hereby incorpo-
rated by reference. Principal component analysis is also
described in Draghici, 2003, Data Analysis Tools for DNA
Microarrays, Chapman & Hall/CRC, which is hereby incor-
porated by reference. What follows is non-limiting examples
of principal components analysis.

[0319] Principal components (PCs) are uncorrelated and
are ordered such that the k” PC has the kth largest variance
among PCs. Thek” PC can be interpreted as the direction that
maximizes the variation of the projections of the data points
such thatitis orthogonal to the first k—1 PCs. The first few PCs
capture most of the variation in the data set. In contrast, the
last few PCs are often assumed to capture only the residual
‘noise’ in the data.

[0320] PCA can also be used to create a classifier in accor-
dance with the present invention. In such an approach, vectors
for the select biomarkers of the present invention can be
constructed in the same manner described for clustering
above. In fact, the set of vectors, where each vector represents
the feature values (e.g., abundance values) for the select genes
from a particular member of the training population, can be
viewed as a matrix. In some embodiments, this matrix is
represented in a Free-Wilson method of qualitative binary
description of monomers (Kubinyi, 1990, 3D QSAR in drug
design theory methods and applications, Pergamon Press,
Oxford, pp 589-638), and distributed in a maximally com-
pressed space using PCA so that the first principal component
(PC) captures the largest amount of variance information
possible, the second principal component (PC) captures the
second largest amount of all variance information, and so
forth until all variance information in the matrix has been
considered.

[0321] Then, each of the vectors (where each vector repre-
sents a member of the training population) is plotted. Many
different types of plots are possible. In some embodiments, a
one-dimensional plot is made. In this one-dimensional plot,
the value for the first principal component from each of the
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members of the training population is plotted. In this form of
plot, the expectation is that members of a first subgroup (e.g.
those subjects that do not develop sepsis in a determined time
period) will cluster in one range of first principal component
values and members of a second subgroup (e.g., those sub-
jects that develop sepsis in a determined time period) will
cluster in a second range of first principal component values.
[0322] In one ideal example, the training population com-
prises two subgroups: “sepsis” and “SIRS.” The first principal
component is computed using the molecular marker expres-
sion values for the select biomarkers of the present invention
across the entire training population data set. Then, each
member of the training set is plotted as a function of the value
for the first principal component. In this ideal example, those
members of the training population in which the first princi-
pal component is positive are the “responders” and those
members of the training population in which the first princi-
pal component is negative are “subjects with sepsis.”

[0323] Insome embodiments, the members of the training
population are plotted against more than one principal com-
ponent. For example, in some embodiments, the members of
the training population are plotted on a two-dimensional plot
in which the first dimension is the first principal component
and the second dimension is the second principal component.
In such a two-dimensional plot, the expectation is that mem-
bers of each subgroup represented in the training population
will cluster into discrete groups. For example, a first cluster of
members in the two-dimensional plot will represent subjects
that develop sepsis in a given time period and a second cluster
of members in the two-dimensional plot will represent sub-
jects that do not develop sepsis in a given time period.

5.5.9 Nearest Neighbor Analysis

[0324] Nearest neighbor classifiers are memory-based and
require no classifier to be fit. Given a query point X,, the k
training points X, r, k closest in distance to x, are identified
and then the point x,, is classified using the k nearest neigh-
bors. Ties can be broken at random. In some embodiments,
Euclidean distance in feature space is used to determine dis-
tance as:

d(i):H'x(/')_on'

Typically, when the nearest neighbor algorithm is used, the
expression data used to compute the linear discriminant is
standardized to have mean zero and variance 1. In the present
invention, the members of the training population are ran-
domly divided into a training set and a test set. For example,
in one embodiment, two thirds of the members of the training
population are placed in the training set and one third of the
members of the training population are placed in the test set.
A select combination of biomarkers of the present invention
represents the feature space into which members of the test set
are plotted. Next, the ability of the training set to correctly
characterize the members of the test set is computed. In some
embodiments, nearest neighbor computation is performed
several times for a given combination of biomarkers of the
present invention. In each iteration of the computation, the
members of the training population are randomly assigned to
the training set and the test set. Then, the quality of the
combination of biomarkers is taken as the average of each
such iteration of the nearest neighbor computation.

[0325] The nearest neighbor rule can berefined to deal with
issues of unequal class priors, differential misclassification
costs, and feature selection. Many of these refinements



US 2011/0105350 Al

involve some form of weighted voting for the neighbors. For
more information on nearest neighbor analysis, see Duda,
Pattern Classification, Second Edition, 2001, John Wiley &
Sons, Inc; and Hastie, 2001, The Elements of Statistical
Learning, Springer, N.Y., each of which is hereby incorpo-
rated by reference in its entirety.

5.5.10 Linear Discriminant Analysis

[0326] Linear discriminant analysis (LDA) attempts to
classify a subject into one of two categories based on certain
object properties. In other words, LDA tests whether object
attributes measured in an experiment predict categorization
of the objects. LDA typically requires continuous indepen-
dent variables and a dichotomous categorical dependent vari-
able. In the present invention, the feature values for the select
combinations of biomarkers of the present invention across a
subset of the training population serve as the requisite con-
tinuous independent variables. The trait subgroup classifica-
tion of each of the members of the training population serves
as the dichotomous categorical dependent variable.

[0327] LDA seeks the linear combination of variables that
maximizes the ratio of between-group variance and within-
group variance by using the grouping information. Implicitly,
the linear weights used by LDA depend on how the feature
values of a molecular marker across the training set separates
in the two groups (e.g., a group a that develops sepsis during
a defined time period and a group b that does not develop
sepsis during a defined time period) and how these feature
values correlate with the feature values of other biomarkers.
In some embodiments, LDA is applied to the data matrix of
the N members in the training sample by K biomarkers in a
combination of biomarkers described in the present inven-
tion. Then, the linear discriminant of each member of the
training population is plotted. Ideally, those members of the
training population representing a first subgroup (e.g. those
subjects that develop sepsis in a defined time period) will
cluster into one range of linear discriminant values (e.g.,
negative) and those member of the training population repre-
senting a second subgroup (e.g. those subjects that will not
develop sepsis in a defined time period) will cluster into a
second range of linear discriminant values (e.g., positive).
The LDA is considered more successful when the separation
between the clusters of discriminant values is larger. For more
information on linear discriminant analysis, see Duda, Par-
tern Classification, Second Edition, 2001, John Wiley &
Sons, Inc; and Hastie, 2001, The Elements of Statistical
Learning, Springer, N.Y.; and Venables & Ripley, 1997, Mod-
ern Applied Statistics with s-plus, Springer, N.Y., each of
which is hereby incorporated by reference in its entirety.

5.5.11 Quadratic Discriminant Analysis

[0328] Quadratic discriminant analysis (QDA) takes the
same input parameters and returns the same results as LDA.
QDA uses quadratic equations, rather than linear equations,
to produce results. LDA and QDA are interchangeable, and
which to use is a matter of preference and/or availability of
software to support the analysis. Logistic regression takes the
same input parameters and returns the same results as LDA
and QDA.

5.5.12 Support Vector Machines

[0329] Insome embodiments of the present invention, sup-
port vector machines (SVMs) are used to classify subjects
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using feature values of the genes described in the present
invention. SVMs are a relatively new type of learning algo-
rithm. See, for example, Cristianini and Shawe-Taylor, 2000,
An Introduction to Support Vector Machines, Cambridge Uni-
versity Press, Cambridge; Boser et al., 1992, “A training
algorithm for optimal margin classifiers,” in Proceedings of
the 5" Annual ACM Workshop on Computational Learning
Theory, ACM Press, Pittsburgh, Pa., pp. 142-152; Vapnik,
1998, Statistical Learning Theory, Wiley, New York; Mount,
2001, Bioinformatics: sequence and genome analysis, Cold
Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.,
Duda, Pattern Classification, Second Edition, 2001, John
Wiley & Sons, Inc.; and Hastie, 2001, The Elements of Sta-
tistical Learning, Springer, N.Y.; and Furey et al., 2000, Bio-
informatics 16, 906-914, each of which is hereby incorpo-
rated by reference in its entirety. When used for classification,
SVMs separate a given set of binary labeled data training data
with a hyper-plane that is maximally distance from them. For
cases in which no linear separation is possible, SVMs can
work in combination with the technique of ‘kernels’, which
automatically realizes a non-linear mapping to a feature
space. The hyper-plane found by the SVM in feature space
corresponds to a non-linear decision boundary in the input
space.

[0330] In one approach, when a SVM is used, the feature
data is standardized to have mean zero and unit variance and
the members of a training population are randomly divided
into a training set and a test set. For example, in one embodi-
ment, two thirds of the members of the training population are
placed in the training set and one third of the members of the
training population are placed in the test set. The expression
values for a combination of genes described in the present
invention is used to train the SVM. Then the ability for the
trained SVM to correctly classify members in the test set is
determined. In some embodiments, this computation is per-
formed several times for a given combination of molecular
markers. In each iteration of the computation, the members of
the training population are randomly assigned to the training
set and the test set. Then, the quality of the combination of
biomarkers is taken as the average of each such iteration of the
SVM computation.

5.5.13 Evolutionary Methods

[0331] Inspired by the process of biological evolution, evo-
Iutionary methods of decision rule design employ a stochastic
search for an decision rule. In broad overview, such methods
create several decision rules—a population—from a combi-
nation of biomarkers described in the present invention. Each
decision rule varies somewhat from the other. Next, the deci-
sion rules are scored on feature data across the training popu-
lation. In keeping with the analogy with biological evolution,
the resulting (scalar) score is sometimes called the fitness.
The decision rules are ranked according to their score and the
best decision rules are retained (some portion of the total
population of decision rules). Again, in keeping with biologi-
cal terminology, this is called survival of the fittest. The
decision rules are stochastically altered in the next genera-
tion—the children or offspring. Some offspring decision
rules will have higher scores than their parent in the previous
generation, some will have lower scores. The overall process
is then repeated for the subsequent generation: the decision
rules are scored and the best ones are retained, randomly
altered to give yet another generation, and so on. In part,
because of the ranking, each generation has, on average, a
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slightly higher score than the previous one. The process is
halted when the single best decision rule in a generation has a
score that exceeds a desired criterion value. More information
on evolutionary methods is found in, for example, Duda,
Pattern Classification, Second Edition, 2001, John Wiley &
Sons, Inc.

5.5.14 Other Data Analysis Algorithms

[0332] The data analysis algorithms described above are
merely examples of the types of methods that can be used to
construct a decision rule for discriminating converters from
nonconverters. Moreover, combinations of the techniques
described above can be used. Some combinations, such as the
use of the combination of decision trees and boosting, have
been described. However, many other combinations are pos-
sible. In addition, in other techniques in the art such as Pro-
jection Pursuit and Weighted Voting can be used to construct
decision rules.

5.6 BIOMARKERS

[0333] In specific embodiments, the present invention pro-
vides biomarkers that are useful in diagnosing or predicting
sepsis and/or its stages of progression in a subject. While the
methods of the present invention may use an unbiased
approach to identifying predictive biomarkers, it will be clear
to the artisan that specific groups of biomarkers associated
with physiological responses or with various signaling path-
ways may be the subject of particular attention. This is par-
ticularly the case where biomarkers from a biological sample
are contacted with an array that can be used to measure the
amount of various biomarkers through direct and specific
interaction with the biomarkers (e.g., an antibody array or a
nucleic acid array). In this case, the choice of the components
of the array may be based on a suggestion that a particular
pathway is relevant to the determination of the status of sepsis
or SIRS in a subject. The indication that a particular biomar-
ker has a feature that is predictive or diagnostic of sepsis or
SIRS may give rise to an expectation that other biomarkers
that are physiologically regulated in a concerted fashion like-
wise may provide a predictive or diagnostic feature. The
artisan will appreciate, however, that such an expectation may
not be realized because of the complexity of biological sys-
tems. For example, if the amount of a specific mRNA biom-
arker were a predictive feature, a concerted change in mRNA
expression of another biomarker might not be measurable, if
the expression of the other biomarker was regulated at a
post-translational level. Further, the mRNA expression level
of'a biomarker may be affected by multiple converging path-
ways that may or may not be involved in a physiological
response to sepsis.

[0334] Biomarkers can be obtained from any biological
sample, which can be, by way of example and not of limita-
tion, whole blood, plasma, saliva, serum, red blood cells,
platelets, neutrophils, eosinophils, basophils, lymphocytes,
monocytes, urine, cerebral spinal fluid, sputum, stool, cells
and cellular extracts, or other biological fluid sample, tissue
sample or tissue biopsy from a host or subject. The precise
biological sample that is taken from the subject may vary, but
the sampling preferably is minimally invasive and is easily
performed by conventional techniques.

[0335] Measurement of a phenotypic change may be car-
ried out by any conventional technique. Measurement of body
temperature, respiration rate, pulse, blood pressure, or other
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physiological parameters can be achieved via clinical obser-
vation and measurement. Measurements of biomarker mol-
ecules may include, for example, measurements that indicate
the presence, concentration, expression level, or any other
value associated with a biomarker molecule. The form of
detection of biomarker molecules typically depends on the
method used to form a profile of these biomarkers from a
biological sample. See Section 5.4, above, and Tables 30, 1, J,
K, L, and M below.

[0336] In a particular embodiment, the biomarker profile
comprises at least two different biomarkers listed in column
four or five of Table 30. The biomarker profile further com-
prises a respective corresponding feature for the at least two
biomarkers. Such biomarkers can be, for example, mRNA
transcripts, cDNA or some other nucleic acid, for example
amplified nucleic acid, or proteins. Generally, the at least two
biomarkers are derived from at least two different genes. In
the case where a biomarker in the at least two different biom-
arkers is listed in column four of Table 30, the biomarker can
be, for example, a transcript made by the listed gene, a
complement thereof, or a discriminating fragment or comple-
ment thereof, or a cDNA thereof, or a discriminating frag-
ment of the cDNA, or a discriminating amplified nucleic acid
molecule corresponding to all or a portion of the transcript or
its complement, or a protein encoded by the gene, or a dis-
criminating fragment of the protein, or an indication of any of
the above. Further still, the biomarker can be, for example, a
protein listed in column five of Table 30, or a discriminating
fragment of the protein, or an indication of any of the above.
Here, a discriminating molecule or fragment is a molecule or
fragment that, when detected, indicates presence or abun-
dance of the above-identified transcript, cDNA, amplified
nucleic acid, or protein. In accordance with this embodiment,
the biomarker profiles of the present invention can be
obtained using any standard assay known to those skilled in
the art, or in an assay described herein, to detect a biomarker.
Such assays are capable, for example, of detecting the prod-
ucts of expression (e.g., nucleic acids and/or proteins) of a
particular gene or allele of a gene of interest (e.g., a gene
disclosed in Table 30). In one embodiment, such an assay
utilizes a nucleic acid microarray.

[0337] In a particular embodiment, the biomarker profile
comprises at least two different biomarkers that each contain
one of the probesets listed in column 2 of Table 30, biomar-
kers that contain the complement of one of the probesets of
Table 30, or biomarkers that contain an amino acid sequence
encoded by a gene that either contains one of the probesets of
Table 30 or the complement of one of the probesets of Table
30. Such biomarkers can be, for example, mRNA transcripts,
c¢DNA or some other nucleic acid, for example amplified
nucleic acid, or proteins. The biomarker profile further com-
prises a respective corresponding feature for the at least two
biomarkers. Generally, the at least two biomarkers are derived
from at least two different genes. In the case where a biom-
arker is based upon a gene that includes the sequence of a
probeset listed in Table 30, the biomarker can be, for example,
a transcript made by the gene, a complement thereof, or a
discriminating fragment or complement thereof, or a cDNA
thereof, or a discriminating fragment of the cDNA, or a dis-
criminating amplified nucleic acid molecule corresponding
to all or a portion of the transcript or its complement, or a
protein encoded by the gene, or a discriminating fragment of
the protein, or an indication of any of the above. Further still,
the biomarker can be, for example, a protein encoded by a
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gene that includes a probeset sequence described in Table 30,
ora discriminating fragment of the protein, or an indication of
any ofthe above. Here, a discriminating molecule or fragment
is a molecule or fragment that, when detected, indicates pres-
ence or abundance of the above-identified transcript, cDNA,
amplified nucleic acid, or protein.

[0338] In some embodiments the biomarker profile has
between 2 and 626 biomarkers listed in Table 30. In some
embodiments, the biomarker profile has between 3 and 50
biomarkers listed in Table 30. In some embodiments, the
biomarker profile has between 4 and 25 biomarkers listed in
Table 30. In some embodiments, the biomarker profile has at
least 3 biomarkers listed in Table 30. In some embodiments,
the biomarker profile has at least 4 biomarkers listed in Table
30. In some embodiments, the biomarker profile has at least 2,
3,4,5,6,7,8,9,10,11, 12,13, 14, 15, 16,17, 18, 19, 20, 25,
30,35, 40,45, 50, 55, 60, 65,70, 75, 80, 85, 90, 95, 96, or 100
biomarkers listed in Table 30. In some embodiments, each
such biomarker is a nucleic acid. In some embodiments, each
such biomarker is a protein.

[0339] In some embodiments, some of the biomarkers in
the biomarker profile are nucleic acids and some of the biom-
arkers in the biomarker profile are proteins. In some embodi-
ments the biomarker profile has between 2 and 130 biomar-
kers listed in Table 31. In some embodiments, the biomarker
profile has between 3 and 50 biomarkers listed in Table 31. In
some embodiments, the biomarker profile has between 4 and
25 biomarkers listed in Table 31. In some embodiments, the
biomarker profile has at least 3 biomarkers listed in Table 31.
In some embodiments, the biomarker profile has at least 4
biomarkers listed in Table 30. In some embodiments, the
biomarker profile has at least 6, 10, 15, 20, 25, 30, 35, 40, 45,
50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, or 100 biomarkers
listed in Table 31.

[0340] In some embodiments the biomarker profile has
between 2 and 10 biomarkers listed in Table 33. In some
embodiments, the biomarker profile has between 3 and 10
biomarkers listed in Table 32. In some embodiments, the
biomarker profile has between 4 and 10 biomarkers listed in
Table 32. In some embodiments, the biomarker profile has at
least 3 biomarkers listed in Table 32. In some embodiments,
the biomarker profile has at least 4 biomarkers listed in Table
32. In some embodiments, the biomarker profile has at least 6,
7, 8,9, or 10 biomarkers listed in Table 32. In some embodi-
ments, each such biomarker is a nucleic acid. In some
embodiments, each such biomarker is a protein. In some
embodiments, some of the biomarkers in the biomarker pro-
file are nucleic acids and some of the biomarkers in the
biomarker profile are proteins.

[0341] In some embodiments the biomarker profile has
between 2 and 10 biomarkers listed in Table 33. In some
embodiments, the biomarker profile has between 3 and 10
biomarkers listed in Table 33. In some embodiments, the
biomarker profile has between 4 and 10 biomarkers listed in
Table 33. In some embodiments, the biomarker profile has at
least 3 biomarkers listed in Table 33. In some embodiments,
the biomarker profile has at least 4 biomarkers listed in Table
33. In some embodiments, the biomarker profile has at least 6,
7, 8,9, or 10 biomarkers listed in Table 33. In some embodi-
ments, each such biomarker is a nucleic acid. In some
embodiments, each such biomarker is a protein. In some
embodiments, some of the biomarkers in the biomarker pro-
file are nucleic acids and some of the biomarkers in the
biomarker profile are proteins.
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[0342] In some embodiments the biomarker profile has
between 2 and 130 biomarkers listed in Table 34. In some
embodiments, the biomarker profile has between 3 and 40
biomarkers listed in Table 34. In some embodiments, the
biomarker profile has between 4 and 25 biomarkers listed in
Table 34. In some embodiments, the biomarker profile has at
least3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18, 19, 20,
25, 30, 35, or 40 biomarkers listed in Table 34. In some
embodiments, each such biomarker is a nucleic acid. In some
embodiments, each such biomarker is a protein. In some
embodiments, some of the biomarkers in the biomarker pro-
file are nucleic acids and some of the biomarkers in the
biomarker profile are proteins.

[0343] In some embodiments the biomarker profile has
between 2 and 7 biomarkers listed in Table 36. In some
embodiments, the biomarker profile has between 3 and 6
biomarkers listed in Table 36. In some embodiments, the
biomarker profile has between 4 and 7 biomarkers listed in
Table 36. In some embodiments, the biomarker profile has at
least 3 biomarkers listed in Table 36. In some embodiments,
the biomarker profile has at least 4 biomarkers listed in Table
36. In some embodiments, the biomarker profile has at least 6,
7,8, 9, or 10 biomarkers listed in Table 36. In some embodi-
ments, each such biomarker is a nucleic acid. In some
embodiments, each such biomarker is a protein. In some
embodiments, some of the biomarkers in the biomarker pro-
file are nucleic acids and some of the biomarkers in the
biomarker profile are proteins.

[0344] In some embodiments the biomarker profile has
between 2 and 53 biomarkers listed in Table I. In some
embodiments, the biomarker profile has between 3 and 50
biomarkers listed in Table 1. In some embodiments, the biom-
arker profile has between 4 and 25 biomarkers listed in Table
1. In some embodiments, the biomarker profile has at least 3
biomarkers listed in Table 1. In some embodiments, the biom-
arker profile has at least 4 biomarkers listed in Table I. In some
embodiments, the biomarker profile has at least 5, 6, 7, 8, 9,
10,11,12,13,14,15,15,17, 18,19, 20,21, 22,23, 24, 25, 26,
27,28,29,30,31,32,33,34,35,36,37,38,39,40, 41,42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, or 53 biomarkers listed in
Table I. In some embodiments, each of the biomarkers in the
biomarker profile is anucleic acid in Table . In some embodi-
ments, each of the biomarkers in the biomarker profile is a
protein in Table I. In some embodiments, some of the biom-
arkers in a biomarker profile are proteins in Table I and some
of the biomarkers in the same biomarker profile are nucleic
acids in Table L.

[0345] In some embodiments the biomarker profile has
between 2 and 44 biomarkers listed in Table J. In some
embodiments, the biomarker profile has between 3 and 44
biomarkers listed in Table J. In some embodiments, the biom-
arker profile has between 4 and 25 biomarkers listed in Table
J. In some embodiments, the biomarker profile has at least 3
biomarkers listed in Table J. In some embodiments, the biom-
arker profile has at least 4 biomarkers listed in Table J. In
some embodiments, the biomarker profile has at least 5, 6, 7,
8,9,10,11,12,13,14,15,15,17,18, 19, 20, 21, 22, 23, 24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40, 41,
42, or 43 biomarkers listed in Table J. In some embodiments,
each of the biomarkers in the biomarker profile is a nucleic
acid in Table J. In some embodiments, each of the biomarkers
in the biomarker profile is a protein in Table J. In some
embodiments, some of the biomarkers in a biomarker profile
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are proteins in Table J and some of the biomarkers in the same
biomarker profile are nucleic acids in Table J.

[0346] In some embodiments the biomarker profile has
between 2 and 10 biomarkers listed in Table K. In some
embodiments, the biomarker profile has between 3 and 10
biomarkers listed in Table K. In some embodiments, the
biomarker profile has between 4 and 10 biomarkers listed in
Table K. In some embodiments, the biomarker profile has at
least 3 biomarkers listed in Table K. In some embodiments,
the biomarker profile has at least 4 biomarkers listed in Table
K. In some embodiments, the biomarker profile has at least 5,
6,7, 8, or 9 biomarkers listed in Table K. In some embodi-
ments, each of the biomarkers in the biomarker profile is a
nucleic acid in Table K. In some embodiments, each of the
biomarkers in the biomarker profile is a protein in Table K. In
some embodiments, some of the biomarkers in a biomarker
profile are proteins in Table K and some of the biomarkers in
the same biomarker profile are nucleic acids in Table K.

5.6.1 Isolation of Useful Biomarkers

[0347] The biomarkers of the present invention may, for
example, be used to raise antibodies that bind the biomarker
if it is a protein (using methods described in Section 5.4.2,
supra, or any method well known to those of skill in the art),
or they may be used to develop a specific oligonucleotide
probe, if it is a nucleic acid, for example, using a method
described in Section 5.4.1, supra, or any method well known
to those of skill in the art. The skilled artisan will readily
appreciate that useful features can be further characterized to
determine the molecular structure of the biomarker. Methods
for characterizing biomarkers in this fashion are well-known
in the art and include X-ray crystallography, high-resolution
mass spectrometry, infrared spectrometry, ultraviolet spec-
trometry and nuclear magnetic resonance. Methods for deter-
mining the nucleotide sequence of nucleic acid biomarkers,
the amino acid sequence of polypeptide biomarkers, and the
composition and sequence of carbohydrate biomarkers also
are well-known in the art.

5.7 APPLICATION OF THE PRESENT
INVENTION TO SIRS SUBJECTS

[0348] In one embodiment, the presently described meth-
ods are used to screen SIRS subjects who are at risk for
developing sepsis. A biological sample is taken from a SIRS-
positive subject and used to construct a biomarker profile. The
biomarker profile is then evaluated to determine whether the
feature values of the biomarker profile satisfy a first value set
associated with a particular decision rule. This evaluation
classifies the subject as a converter or a nonconverter. A
treatment regimen may then be initiated to forestall or prevent
the progression of sepsis when the subject is classified as a
converter.

5.8 APPLICATION OF THE PRESENT
INVENTION TO STAGES OF SEPSIS

[0349] In one embodiment, the presently described meth-
ods are used to screen subjects who are particularly at risk for
developing a certain stage of sepsis. A biological sample is
taken from a subject and used to construct a biomarker profile.
The biomarker profile is then evaluated to determine whether
the feature values of the biomarker profile satisty a first value
set associated with a particular decision rule. This evaluation
classifies the subject as having or not having a particular stage
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of sepsis. A treatment regimen may then be initiated to treat
the specific stage of sepsis. In some embodiments, the stage of
sepsis is for example, onset of sepsis, severe sepsis, septic
shock, or multiple organ dysfunction.

5.9 EXEMPLARY EMBODIMENTS

[0350] In some embodiments of the present invention, a
biomarker profile is obtained using a biological sample from
a test subject, particularly a subject at risk of developing
sepsis, having sepsis, or suspected of having sepsis. The
biomarker profile in such embodiments is evaluated. This
evaluation can be made, for example, by applying a decision
rule to the test subject. The decision rule can, for example, be
or have been constructed based upon the biomarker profiles
obtained from subjects in the training population. The train-
ing population, in one embodiment, includes (a) subjects that
had SIRS and were then diagnosed as septic during an obser-
vation time period as well as (b) subjects that had SIRS and
were not diagnosed as septic during an observation time
period. If the biomarker profile from the test subject contains
appropriately characteristic features, then the test subject is
diagnosed as having a more likely chance of becoming septic,
as being afflicted with sepsis or as being at the particular stage
in the progression of sepsis. Various populations of subjects
including those who are suffering from SIRS (e.g., SIRS-
positive subjects) or those who are suffering from an infection
but who are not suffering from SIRS (e.g., SIRS-negative
subjects) can serve as training populations. Accordingly, the
present invention allows the clinician to distinguish, inter
alia, between those subjects who do nothave SIRS, those who
have SIRS but are not likely to develop sepsis within a given
time frame, those who have SIRS and who are at risk of
eventually becoming septic, and those who are suffering from
a particular stage in the progression of sepsis. For more
details on suitable training populations and suitable data col-
lected from such populations, see Section 5.5, above.

5.10 USE OF ANNOTATION DATA TO IDENTIFY
DISCRIMINATING BIOMARKERS

[0351] In some embodiments, data analysis algorithms
identify a large set of biomarkers whose features discriminate
between converters and nonconverters. For example, in some
embodiments, application of a data analysis algorithm to a
training population results in the selection of more than 500
biomarkers, more than 1000 biomarkers, or more than 10,000
biomarkers. In some embodiments, further reduction in the
number of biomarkers that are deemed to be discriminating is
desired. Accordingly, in some embodiments, filtering rules
that are complementary to data analysis algorithms (e.g., the
data analysis algorithms of Section 5.5) are used to further
reduce the list of discriminating biomarkers identified by the
data analysis algorithms. Specifically, the list of biomarkers
identified by application of one or more data analysis algo-
rithms to the biomarker profile data measured in a training
population is further refined by application of annotation data
based filtering rules to the list. In such embodiments, those
biomarkers in the set of biomarkers identified by the one or
more data analysis algorithms that satisfy the one or more
applied annotation data based filtering rules remain in the set
of discriminating biomarkers. In some instances, those biom-
arkers in the set of biomarkers identified by the one or more
data analysis algorithms that do not satisfy the one or more
applied annotation data based filtering rules are removed
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from the set. In other instances, those biomarkers in the set of
biomarkers identified by the one or more data analysis algo-
rithms that do not satisfy the one or more applied annotation
data based filtering rules stay in the set and those that satisfy
the one or more applied annotation data based filtering rules
are removed from the set. In this way, annotation data can be
used to reduce the number of biomarkers in the set of dis-
criminating biomarkers identified by the data analysis algo-
rithms.

[0352] Annotation data based filtering rules are rules based
upon annotation data. Annotation data refers to any type of
data that describes a property of a biomarker. An example of
annotation data is the identification of biological pathways to
which a given biomarker belongs. Another example of anno-
tation data is enzymatic class (e.g., phosphodiesterases,
kinases, metalloproteinases, etc.). Still other examples of
annotation data include, but are not limited to, protein domain
information, enzymatic substrate information, enzymatic
reaction information, and protein interaction data. Yet another
example of annotation data is disease association, in other
words, which disease process a given biomarker has been
linked to or otherwise affects. Another form of annotation
data is any type of data that associates biomarker expression,
other forms of biomarker abundance, and/or biomarker activ-
ity, with cellular localization, tissue type localization, and/or
cell type localization.

[0353] As the name implies, annotation data is used to
construct an annotation data based filtering rule. An example
of an annotation data based filtering rule is:

Annotation rule 1:
remove all transcription factors from the training set.

Application of this filtering rule to a set of biomarkers will
remove all transcription factors from the set.

[0354] Another type of annotation data based filtering rule
is:

Annotation rule 2:
keep all biomarkers that are enriched for annotation X in a
biomarker list.

Application of this filtering rule will only keep those biom-
arkers in a given list that are enriched (overrepresented) for
annotation X in the list. To more fully appreciate this filtering
rule, consider an exemplary biomarker set that has been iden-
tified by application of'a data analysis algorithm (Section 5.5)
to biomarker profiles measured using training population data
measured in accordance with a technique disclosed in Section
5.4. This exemplary biomarker set has 500 biomarkers.
Assume, for in this illustrative example, that the full set of
biomarkers in a human consists of 25,000 biomarkers. Here,
the 25,000 biomarkers is a population and the 500 biomarker
set is the sample. As used here, the term “population” consists
of all possible observable biomarkers. The term “sample” is
the data that is actually considered. Now, for this example, let
X=kinases. Suppose there are 800 known human kinases and
further suppose that the set of 500 biomarkers was randomly
selected with respect to kinases. Under these circumstances,
the list of 500 biomarkers identified by the data analysis
algorithms should select about (500/25,000)*800=16
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kinases. Since there are, in fact, 50 kinases in the sample, a
conclusion can be reached that kinases are indeed enriched in
the sample relative to the population.

[0355] More formally, in this example, a determination can
be made as to whether kinases are enriched in the set of
biomarkers identified by the data analysis algorithm (the
sample) relative to the population by analysis of the two-way
contingency table that describes the observed sample and
population:

Kinase
Group Yes No Total
Population 800 24,200 25,000
Sample 50 450 500
[0356] Following Agresti, 1996, Ar Introduction to Cat-

egorical Data Analysis, John Wiley & Sons, New York, which
is hereby incorporated by reference in its entirety, this two-
way contingency table can be analyzed by treating each row
as an independent bionomial variable. In such instances, the
true difference in proportions, termed it, 7, -7,, compares the
probabilities in the two rows. This difference falls between -1
and +1. It equals zero when 7, =,; that is, when the selection
otfkinases in the sample from the population is independent of
the kinase annotation. Of the N,=25,000 biomarkers in the
population, 800 are kinases, a proportion of p,=800/25,
000=0.032. Of the N,=500 biomarkers in the sample identi-
fied using a data analysis algorithm, 50 are kinases, a propor-
tion p, of 50/500=0.10. The sample difference of proportions
is 0.032-0.10=-0.068. In accordance with Agresti, when the
counts in the two rows are independent binomial samples, the
estimated standard error of p, -p, is:

1- 1-
Hpy - p) :\/Pl(N1 p1) N Pz(N2 p2)

where N, and N, are the samples sizes for the population and
the sample selected by data analysis algorithm, respectively.
The standard error decreases, and hence the estimate of 7, -7,
improves, as the sample sizes increase. A large-sample (100
(1-a)) % confidence interval for rt, -, is

(P1+D2)22412720,025=1.96

Thus, for this example, the estimated error is

=0.013

00321 -0032) 010 010)
25,000 500

and a 95% confidence interval for the true difference &, -m, is
-0.068+1.96(0.013), or —0.068+0.025. Since the 95% confi-
dence interval contains only negative values, the conclusion
can be reached that kinases are enriched in the sample (the
biomarker set produced by the data analysis algorithm) rela-
tive to the population of 25,000 biomarkers.

[0357] The two-way contingency table in the example
above can be analysed using methods known in the art other
than the one disclosed above. For example, the chi-square test
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for independence and/or Fisher’s exact test can be used to test
the null hypothesis that the row and column classification
variables of the two-way contingency table are independent.
[0358] Theterm “X” inannotation rule 2 can be any form of
annotation data. In one embodiment, “X” is any biological
pathway. As such the annotation data based filtering rule has
the following form.

Annotation rule 3:
Select all biomarkers that are in any biological pathway that
is enriched in the biomarker list.

To determine whether a particular biological pathway is
enriched, the number of biomarkers in a particular biological
pathway in the sample is compared with the number of biom-
arkers that are in the particular biological pathway in the
population using, for example, the two-way contingency
table analysis described above, or other techniques known in
the art. If the biological pathway is enriched in the sample,
then all biomarkers in the sample that are also in the biologi-
cal pathway are retained for further analysis, in accordance
with the annotation data based filtering rule.

[0359] An example of enrichment, in which it was shown
that the proportion of kinases in the sample was greater than
the proportion of kinases in the population across its entire
95% confidence interval has been given. In one embodiment,
biomarkers having a given annotation are considered
enriched in the sample relative to the population when the
proportion of biomarkers having the annotation in the sample
is greater than the proportion of biomarkers having the anno-
tation in the population across its entire 95% degree confi-
dence interval as determined by two-way contingency table
analysis. In another embodiment, biomarkers having a given
annotation are considered enriched in the sample relative to
the population if a p value as determined by the Fisher exact
test, Chi-square test, or relative algorithms is 0.05 or less,
0.005 or less or 0.0005 or less.

[0360] Another form of annotation data based filtering rule
has the following form:

Annotation rule 4:
Select all biomarkers that are in biological pathway X.

[0361] Inanembodiment,asetofbiomarkersisdetermined
using a data analysis algorithm. Exemplary data analysis
algorithms are disclosed in Section 5.5. In addition, Section 6
describes certain tests that can also serve as data analysis
algorithms. These tests include, but are not limited to a Wil-
coxon test and the like with a statistically significant p value
(e.g.,0.050rless, 0.04, orless, etc.), and/or a requirement that
a biomarker exhibit a mean differential abundance between
biological samples obtained from converters and biological
samples obtained from nonconverters in a training popula-
tion. Upon application of the data analysis algorithm, a set of
biomarkers that discriminates between converters and non-
converters is determined. Next, an annotation rule, for
example annotation rule 4, is applied to the set of discrimi-
nating biomarkers in order to further reduce the set of biom-
arkers. Those of skill in the art will appreciate that the order in
which these rules are applied is generally not important. For
example, annotation rule 4 can be applied first and then cer-
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tain data analysis algorithms can be applied, or vice versa. In
some embodiments, biomarkers ultimately deemed as dis-
criminating between converters and nonconverters satisfy
each of the following criteria: (i) a p value of 0.05 or less
(p<0.05) as determined from a Wilcoxon adjusted test using
static (single time point) data; (ii) a mean-fold change of 1.2
or greater between converters and nonconverters across the
training set using static (single time point data), and (iii)
present in a specific biological pathway. See also, Section 6.7,
infra, for a detailed example. In this example, there is no
requirement that members of the pathway are enriched in the
set of biomarkers identified by the data analysis algorithms.
Furthermore, it is noted that criteria (i) and (ii) are forms of
data analysis algorithms and criterion (iii) is a annotation data
based filtering rule.

[0362] Inanotherembodiment, once alistofdiscriminating
biomarkers is identified, the biomarkers can then be used to
determine the identity of the particular biological pathways
from which the discriminating biomarkers are implicated. In
certain embodiments, annotation data-based filtering rules
are applied to the list of discriminating biomarkers identified
by the methods of the present invention (e.g., the methods
described in Sections 5.4, 5.5 and 6). Such annotation data-
based filtering rules identify the particular biological pathway
or pathways that are enriched in the discriminating list of
biomarkers identified by the data analysis algorithms. In an
exemplary embodiment of the invention, DAVID 2.0 soft-
ware, available at appsl.niaid.nih.gov/david/, is used to iden-
tify and apply such annotation data-based filtering rules to the
set of biomarkers identified by the data analysis algorithms in
order to identify pathways that are enriched in the set. In some
embodiments, those biomarkers that are in an enriched bio-
logical pathway are selected for use as discriminating biom-
arkers in the kits of the present invention.

[0363] In some embodiments of the present invention,
biomarkers that are in biological pathways that are enriched
in the biomarker set determined by application of a data
analysis algorithm to a training population that includes con-
verters and nonconverters can be used as filtering step to
reduce the number of biomarkers in the set. In one such
approach, biological samples from subjects in a training
population are obtained using, e.g., any of one or more of the
methods described in Section 5.4, supra, and in Section 6,
infra. In accordance with this embodiment, a nucleic acid
array, such as a cDNA microarray, may be employed to gen-
erate features of biomarkers in a biomarker profile by detect-
ing the expression of any one or more of the genes known to
be or suspected to be involved in the selected biological
pathways. Data derived from the cDNA microarray analysis
may then be analyzed using any one or more of the analysis
algorithms described in Section 5.5, supra, to identify biom-
arkers whose features discriminate between converters and
nonconverters. Biomarkers whose corresponding feature val-
ues are capable of discriminating, for example, between con-
verters (i.e., SIRS patients who subsequently develop sepsis)
and non-converters (i.e., SIRS patients who do not subse-
quently develop sepsis) can thus be identified and classified as
discriminating biomarkers. Biomarkers that are in enriched
biological pathways can be selected from this set by applying
Annotation rule 3, from above. Representative biological
pathways that could be found include, for example, genes
involved in the Th1/Th2 cell differentiation pathway). In one
embodiments, biomarkers ultimately deemed as discriminat-
ing between converters and nonconverters satisfy each of the
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following criteria: (i) a p value of 0.05 or less (p<0.05) as
determined from a Wilcoxon adjusted test; (ii) a mean-fold
change of 1.2 or greater between converters and nonconvert-
ers across the training set, and (iii) present in a biological
pathway that is enriched in the set of biomarkers derived by
application of criteria (i) and (ii).

[0364] In some embodiments of the present invention,
annotation data based filtering rules are used to identify bio-
logical pathways that are enriched in a given biomarker set.
This biomarker set can be, for example, a set of biomarkers
that is identified by application of a data analysis algorithm to
training data comprising converters and nonconverters. Then,
biomarkers in these enriched biological pathways are ana-
lyzed using any of the data analysis algorithms disclosed
herein in order to identify biomarkers that discriminate
between converters and nonconverters. In some instances,
some of the biomarkers analyzed in the enriched biological
pathways were not among the biomarkers in the original
given biomarker set. In some instances, some of the biomar-
kers in the enriched biological pathways are among the biom-
arkers in the original given biomarker set. In some embodi-
ments, a secondary assay is used to collect feature data for
biomarkers that are in enriched pathways and it is this data
that is used to determine whether the biomarkers in the
enriched biological pathways discriminate between convert-
ers and nonconverters.

[0365] In some embodiments, biomarkers in biological
pathways of interest are identified. In one example, genes
involved in the Th1/Th2 cell differentiation pathway are iden-
tified. Then, these biomarkers are evaluated using the data
analysis algorithms disclosed herein to determine whether
they discriminate between converters and nonconverters.

5.11 REPRESENTATIVE EMBODIMENT IN
ACCORDANCE WITH THE PRESENT
INVENTION

[0366] Sections 6.11 through 6.13 identify a number of
biomarkers that are of interest in one embodiment in accor-
dance with the present invention. Specifically, one embodi-
ment of the present invention comprises the 10 biomarkers
identified in Table 48 of Section 6.11.1, the 34 biomarkers
listed in Table 59 of Section 6.11.2, and the 10 biomarkers
listed in Table 93 of Section 6.13.1, below. Table 48 and Table
93 each identify MMP?9 as a discriminating biomarker. Thus,
the total number of biomarkers in Table I is one less than the
sum of the biomarkers identified in Tables 48, Table 59, and
Table 93, (34+10+10-1) or 53. These biomarkers are repro-
duced in Table I, below. Section 5.11.1 provides details on
each of the individual biomarkers. Section 5.11.2, below,
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provides more details on select combinations of the biomar-
kers listed in Tables I, J, and K. Each of the biomarkers listed
in Table I were selected based on the experimental results
summarized in Sections 6.11 through 6.13. In some experi-
ments, the identified biomarkers were proteins or fragments
thereof. Such protein biomarkers, which discriminate
between sepsis and SIRS, are listed in Table I with a “P”
designation in column 5. In some experiments, the identified
biomarkers were nucleic acids or fragment thereof. Such
nucleic acid biomarkers, which discriminate between sepsis
and SIRS, are listed in Table I with an “N” designation in
column 5. As indicated above, one biomarker MMP9, was
identified both as a protein and as a nucleic acid biomarker.
Table J below lists the biomarkers in accordance with one
embodiment of the present invention in which the biomarkers
were discovered using nucleic acid based assays described in
Section 6, such as RT-PCR. Table K below lists the biomar-
kers in accordance with one embodiment of the present inven-
tion in which the biomarkers were discovered using protein
based assays, described in Section 6, such as bead assays. One
embodiment of the invention comprises at least 3,4, 5, 6,7, 8,
9, or 10 biomarkers from any one of Tables 48, 59, or 93.

[0367] Unless indicated in specific embodiments below, the
biomarkers of Tables I, J and K are not limited by their
physical form in the experiments summarized in Sections
6.11 through 6.13. For example, although the discriminatory
nature of a biomarker may have been discovered by the abun-
dance of the biomarker, in nucleic acid form, in a nucleic acid
assay such as RT-PCR and accordingly listed in Table I on this
basis with an “N” designation in column 5 of Table I, the
physical manifestation of the biomarker in the methods, kits,
and biomarker profiles of the present invention is not limited
to nucleic acids. Rather, any physical manifestation of the
biomarker as defined for the term “biomarker” in Section 5.1
is encompassed in the present invention. Column 6 of Table |
indicates, based on the data summarized in Section 6 below,
whether the biomarker is up-regulated or down-regulated in
the subjects that will convert to sepsis (the converters) relative
to the subjects that will not convert (the SIRS subjects). Thus,
if a biomarker has the designation UP, in column 6, that means
that the biomarker, in the form indicated in column 5, was, on
average, more abundant in subjects that will convert to sepsis
(sepsis subjects) relative to subjects that will not convert to
sepsis (SIRS subjects). Furthermore, if a biomarker has the
designation DOWN;, in column 6, that means that the biom-
arker, in the form indicated in column 5, was, on average, less
abundant in subjects that will convert to sepsis (sepsis sub-
jects), relative to subjects that will not convert to sepsis (SIRS
subjects).

TABLE 1

Biomarkers in accordance with an embodiment of the present invention.

Gene Protein

Gene Accession Accession Regulation
Symbol Gene Name Number Number Source in SEPSIS
1 2 3 4 5 6
AFP ALPHA-FETOPROTEIN NM_001134  CAA79592 P UP
ANKRD22  ANKYRIN REPEAT NM_144590  NP_653191 N Up

DOMAIN 22
ANXA3 ANNEXIN A3 NM_005139  NP_005130 N Up
APOC3 APOLIPOPROTEIN CIIT NM_000040  CAA25648 P  DOWN
ARG2 ARGINASE TYPE II NM_001172  CAG38787 N Up
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TABLE I-continued

41

Biomarkers in accordance with an embodiment of the present invention.

Gene Protein
Gene Accession Accession Regulation
Symbol Gene Name Number Number Source in SEPSIS
1 2 3 4 5 6
B2M BETA-2 NM_ 004048  AAA51811 P UP
MICROGLOBULIN
BCL2A1 BCL2-RELATED NM_004049  NP_004040 N UP
PROTEIN Al
CCL5 CHEMOKINE (C-C NM_002985  NP_002976 N DOWN
MOTIF) LIGAND 5
CD86 CD8&6 ANTIGEN (CD28 NM_ 006889  NP_008820 N DOWN
ANTIGEN LIGAND 2, NM_ 175862  NP_787058
B7-2 ANTIGEN)
CEACAM1 CARCINOEMBRYONIC NM_001712  NP_001703 N UP
ANTIGEN-RELATED
CELL ADHESION
MOLECULE 1
CRP C REACTIVE PROTEIN NM_000567 CAA39671 P UP
CRTAP CARTILAGE- NM_006371  NP_006362 N DOWN
ASSOCIATED
PROTEIN
CSFIR COLONY NM_005211  NP_005202 N DOWN
STIMULATING
FACTOR 1 RECEPTOR,
FORMERLY
MCDONOUGH FELINE
SARCOMA VIRAL (V-
FMS) ONCOGENE
HOMOLOG
FAD104 FIBRONECTIN TYPE NM_ 022763  NP_073600 N UP
1II DOMAIN
CONTAINING 3B
(FNDC3B)
FCGR1A FC FRAGMENT OF NM_000566  NP_000557 N UP
IGG, HIGH AFFINITY
1A
GADD45A  GROWTH ARREST NM_001924  NP_001915 N UP
AND DNA-DAMAGE-
INDUCIBLE, ALPHA
GADD45B  GROWTH ARREST- NM_015675  NP_056490 N UP
AND DNA DAMAGE-
INDUCIBLE GENE
GADD45
HLA-DRA MAJOR NM_002123  NP_002114 N DOWN
HISTOCOMPATIBILITY
COMPLEX, CLASS
1I, DR ALPHA
IFNGR1 INTERFERON GAMMA NM_000416  NP_000407 N UP
RECEPTOR 1
ILIRN INTERLEUKIN =1 NM_000577, AAN8R7150 UP
RECEPTOR NM__173841,
ANTAGONIST GENE NM_173842,
NM_173843
IL-6 INTERLEUKIN 6 NM_000600  NP_000591 P UP
IL-8 INTERLEUKIN 8 M28130 AAAS59158 P UP
IL-10 INTERLEUKIN 10 NM_000572  CAH73907 P UP
IL10RA INTERLEUKIN 10 NM_001558  NP_001549 N DOWN
RECEPTOR, ALPHA
IL18R1 INTERLEUKIN 18 NM__003855  NP_003846 N UP
RECEPTOR 1
INSL3 INSULIN-LIKE 3 NM_005543  NP_005534 N UP
(LEYDIG CELL)
IRAK2 INTERLEUKIN-1 NM_001570  NP_001561 N UP
RECEPTOR-
ASSOCIATED KINASE 2
IRAK4 INTERLEUKIN-1 NM_016123  NP_057207 N UP
RECEPTOR-
ASSOCIATED KINASE 4
ITGAM INTEGRIN, ALPHA M NM_000632  NP_000623 N UP
(COMPLEMENT
COMPONENT

RECEPTOR 3, ALPHA;
ALSO KNOWN AS
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TABLE I-continued

42

Biomarkers in accordance with an embodiment of the present invention.

Gene
Symbol

Gene Name
2

Gene
Accession
Number

3

Protein
Accession
Number

4

Source

Regulation
in SEPSIS
6

JAK2

LDLR

LY%96

MAP2K6

MAPK14

MCP1

MKNK1

MMP9

NCR1

OSM
PFKFB3

PRV1

PSTPIP2

SOCS3

SOD2

TDRD9

TGFBI

TIFA

CD11B (P170),
MACROPHAGE
ANTIGEN ALPHA
POLYPEPTIDE)
JANUS KINASE 2 (A
PROTEIN TYROSINE
KINASE)

LOW DENSITY
LIPOPROTEIN
RECEPTOR
LYMPHOCYTE
ANTIGEN 96
MITOGEN-
ACTIVATED PROTEIN
KINASE KINASE 6
MAPK14 MITOGEN-
ACTIVATED PROTEIN
KINASE 14

MONOCYTE
CHEMOATTRACTANT
PROTEIN 1

MAP KINASE
INTERACTING
SERINE/THREONINE
KINASE 1

MATRIX
METALLOPROTEINASE
9 (GELATINASE B,

92 KDA GELATINASE,
92 KDATYPEIV
COLLAGENASE)
NATURAL
CYTOTOXICITY
TRIGGERING
RECEPTOR 1
ONCOSTATIN M
6-PHOSPHOFRUCTO-
2-KINASE/FRUCTOSE-
2,6-BISPHOSPHATASE 3
NEUTROPHIL-
SPECIFIC ANTIGEN 1
(POLYCYTHEMIA
RUBRA VERA 1)

NM__ 004972

NM__ 000527

NM_ 015364

NM_ 002758
NM_ 031988

NM_ 001315
NM__139012
NM__ 139013
NM__ 139014
AF493698,
AF493697

NM__ 003684
NM__ 198973

NM__ 004994

NM__ 004829

NM_020530
NM__ 004566

NM__020406

PROLINE/SERINE/THREONINE NM__024430

PHOSPHATASE-
INTERACTING
PROTEIN 1 (PROLINE-
SERINE-THREONINE
PHOSPHATASE
INTERACTING
PROTEIN 2)
SUPPRESSOR OF
CYTOKINE
SIGNALING 3
SUPEROXIDE
DISMUTASE 2,
MITOCHONDRIAL
TUDOR DOMAIN
CONTAINING 9
TRANSFORMING
GROWTH FACTOR,
BETA-1
(TRANSFORMING
GROWTH FACTOR,
BETA-INDUCED,

68 KDA)
TRAF-INTERACTING
PROTEIN WITH A

NM__ 003955

NM__ 000636

NM__153046

NM__ 000358

NM__ 052864

NP__004963

NP_000518

NP_056179

NP_002749
NP__114365

NP__001306
NP__620581
NP__620582
NP__620583
AAQT5526

NP_003675
NP_ 945324

NP__004985

NP__004820

NP_065391
NP__004557

NP_065139

NP_077748

NP_003946

NP__000627

NP__694591

NP__000349

NP_443096

N/P

z 1z

UPp

UPp

UPp

UPp

UPp

UPp

UPp

UP (both
protein and
nucleic
acid)

UPp

UPp
UPp

UPp

UPp

UPp

UPp

UPp

DOWN

UPp
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TABLE I-continued

43

Biomarkers in accordance with an embodiment of the present invention.

Gene Protein
Gene Accession Accession Regulation
Symbol Gene Name Number Number Source in SEPSIS
1 2 3 4 56
FORKHEAD-
ASSOCIATED
DOMAIN
TIMP1 TISSUE INHIBITOR OF NM_003254  AAAT75558 P UP
METALLOPROTEINASE 1
TLR4 TOLL-LIKE AH009665 AAF05316 UP
RECEPTOR 4
TNFRSF6 TUMOR NECROSIS NM__152877  NP_000034 N UP
FACTOR RECEPTOR
SUPERFAMILY,
MEMBER 6
TNFSF10 TUMOR NECROSIS NM__ 003810  NP_003801 N UP
FACTOR (LIGAND)
SUPERFAMILY,
MEMBER 10
TNFSF13B  TUMOR NECROSIS NM__ 006573  NP_006564 N UP
FACTOR (LIGAND)
SUPERFAMILY,
MEMBER 13B
VNNI1 VANIN 1 NM__ 004666  NP_ 004657 N UP
[0368] Each of the sequences, genes, proteins, and

probesets identified in Table I is hereby incorporated by ref-

crence.

TABLE J

Biomarkers identified based on the ability of the nucleic acid form

of the biomarker to discriminate between SIRS and sepsis
Gene Protein
Gene Accession Accession
Symbol Gene Name Number Number
1 2 3 4
FCGR1A FC FRAGMENT OF NM_000566  NP_000557
IGG, HIGH AFFINITY
1A
MMP9 MATRIX NM_004994  NP_004985
METALLOPROTEINASE
9
IL18R1 INTERLEUKIN 18 NM__003855  NP_003846
RECEPTOR 1
ARG2 ARGINASE TYPE I NM_001172  CAG38787
ILIRN INTERLEUKIN-1 NM__000577, AANR87150
RECEPTOR NM__173841,
ANTAGONIST GENE NM__173842,
NM__173843
TNFSF13B  TUMOR NECROSIS NM_006573  NP_006564
FACTOR
SUPERFAMILY,
MEMBER 13B
ITGAM INTEGRIN, ALPHA M NM__000632  NP_000623
TGFB1 TRANSFORMING NM__000358  NP_000349
GROWTH FACTOR,
BETA-1
CDg6 CD86 ANTIGEN NM__006889  NP_008820
NM__175682  NP_787058
TLR4 TOLL-LIKE AHO009665 AAF05316
RECEPTOR 4
BCL2-RELATED NM__004049  NP_004040
PROTEIN Al
CCL35 CHEMOKINE (C-C NM_002985  NP_002976

MOTIF) LIGAND 5
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TABLE J-continued

Biomarkers identified based on the ability of the nucleic acid form
of the biomarker to discriminate between SIRS and sepsis

Gene
Symbol

Gene Name
2

Gene
Accession
Number

3

Protein
Accession
Number

4

CSFIR

GADDA45SA

GADD45B

IFNGR1

IL10RA

IRAK2

IRAK4

JAK2

LY%96

MAP2K6

COLONY
STIMULATING
FACTOR 1 RECEPTOR,
FORMERLY
MCDONOUGH FELINE
SARCOMA VIRAL (V-
FMS) ONCOGENE
HOMOLOG

GROWTH ARREST
AND DNA-DAMAGE-
INDUCIBLE, ALPHA
GROWTH ARREST-
AND DNA DAMAGE-
INDUCIBLE GENE
GADD45

INTERFERON
GAMMA RECEPTOR 1
INTERLEUKIN 10
RECEPTOR, ALPHA
INTERLEUKIN-1
RECEPTOR-
ASSOCIATED KINASE 2
INTERLEUKIN-1
RECEPTOR-
ASSOCIATED KINASE 4
JANUS KINASE 2 (A
PROTEIN TYROSINE
KINASE)
LYMPHOCYTE
ANTIGEN 96
MITOGEN-
ACTIVATED PROTEIN
KINASE 6

NM_ 005211

NM_ 001924

NM_ 015675

NM_ 000416

NM_ 001558

NM_ 001570

NM_016123

NM__ 004972

NM_ 015364

NM__ 002758
NM_ 031988

NP__005202

NP_001915

NP__056490

NP__000407

NP_001549

NP_001561

NP_057207

NP__004963

NP_056179

NP__002749
NP__114365
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TABLE J-continued
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TABLE J-continued

Biomarkers identified based on the ability of the nucleic acid form
of the biomarker to discriminate between SIRS and sepsis

Biomarkers identified based on the ability of the nucleic acid form
of the biomarker to discriminate between SIRS and sepsis

Gene Protein Gene Protein

Gene Accession Accession Gene Accession Accession

Symbol Gene Name Number Number Symbol Gene Name Number Number

1 2 3 4 1 2 3 4

MAPK14  MAPK14 MITOGEN- NM_001315  NP_001306 HLA-DRA MAJOR NM_002123  NP_002114
ACTIVATED PROTEIN ~ NM_139012  NP__620581 HISTOCOMPATIBILITY
KINASE 14 NM_139013  NP_620582 COMPLEX, CLASS

NM_139014  NP_620583 II, DR ALPHA

MKNK1 MAP KINASE NM_003684  NP_003675 SOD2 SUPEROXIDE NM_000636  NP_000627
INTERACTING NM_198973  NP_945324 DISMUTASE 2,

SERINE/THREONINE MITOCHONDRIAL
KINASE 1

OSM ONCOSTATIN M NM_020530  NP_065391

SOCS3 SUPPRESSOR OF NM_003955  NP_003946
CYTOKINE TABLE K
SIGNALING 3

TDRD9 ggg%ig%hégn\] NM_153046  NP_694591 Biomarkers identified based on the ability of the protein form of the

biomarker to discriminate between SIRS and sepsis

TNFRSF6 ~ TUMOR NECROSIS NM_152877  NP_000034
FACTOR RECEPTOR Gene Protein
&%ﬁgﬁ%mx Gene Accession Accession

Symbol  Gene N: Numb Numby

TNFSF10  TUMOR NECROSIS NM_003810  NP_ 003801 Jen Jene e S e
FACTOR (LIGAND)

SUPERFAMILY, IL-6 INTERLEUKIN 6 NM__000600 NP__000591
MEMBER 10 IL-8 INTERLEUKIN 8 M28130 AAAS59158

ANKRD22  ANKYRIN REPEAT NM_144590  NP_653191 CRP C Reactive protein CAA39671 NM__000567
DOMAIN 22 IL-10 INTERLEUKIN 10 NM_000572 CAH73907

ANXA3 ANNEXIN A3 NM_005139  NP_005130 APOC3  APOLIPOPROTEIN CIII NM__000040 CAA25648

CEACAM1 CARCINOEMBRYONIC ~ NM_001712  NP_001703 MMP9  MATRIX NM._004994 NP_ 004985
ANTIGEN-RELATED METALLOPROTEINASE 9
CELL ADHESION (GELATINASE B, 92 KDA
MOLECULE 1 GELATINASE, 92 KDA TYPE

LDLR LOW DENSITY NM_000527  NP_000518 IV COLLAGENASE)

LIPOPROTEIN TIMP1  TISSUE INHIBITOR OF NM_003254 AAA75558
RECEPTOR METALLOPROTEINASE 1

PFKFB3 6-PHOSPHOFRUCTO- NM__004566 NP__ 004557 MCP1 MONOCYTE AF493698,  AAQ75526
2-KINASE/FRUCTOSE- CHEMOATTRACTANT AF493697
2,6-BISPHOSPHATASE 3 PROTEIN 1

PRV1 NEUTROPHIL- NM_020406  NP_065139 AFP ALPHA-FETOPROTEIN NM_001134 CAA79592
SPECIFIC ANTIGEN 1 B2M BETA-2 MICROGLOBULIN ~ NM_ 004048 AAAS51811
(POLYCYTHEMIA
RUBRA VERA 1)

PSTPIP2 PROLINE/SERINE/ NM_024430  NP_077748
THREONINE . e
PHOSPHATASE- 5.11.1 Biomarker Descriptions
INTERACTING
PROTEIN 1 (PROLINE- [0369] The references for the biomarkers in this section
SERINE-THREONINE | d ) for the bi X ;
PHOSPHATASE merely provide exemplary sequences for the biomarkers se
INTERACTING forth in the present application.

PROTEIN 2) : : :

TIFA TRAF-INTERACTING NM 052864 NP 443096 [0370]. The nucleotide seq}len.ce of AEP (1dent1ﬁeq by
PROTEIN WITH A accession no. NM__001134) is disclosed in, e.g., Beattie et
FORKHEAD- al., 1982, “Structure and evolution of human alpha-fetopro-
g(s)i?[f&TED tein deduced from partial sequence of cloned cDNA” Gene 20

. _ I3

VNN VANIN 1 NM_ 004666  NPOO4E57 3): 415 42.2, Harper, M. E. et al.,. 1983, “Linkage of tl.le

NCRI1 NATURAL NM_004829  NP_ 004820 evolutionarily-related serum albumin and alpha-fetoprotein
CYTOTOXICITY genes within q11-22 of human chromosome 4,” Am. J. Hum.
TRIGGERING Genet. 35 (4):565-572, Morinaga, T. et al., 1983, “Primary
RECEPTOR 1 : : »

FADI04 FIBRONECTIN TYPE NM_022763  NP_ 073600 structures of hqman alpha-fetoprotein and its mRNA, Prpc.
I DOMAIN Natl. Acad. Sci. U.S.A. 80 (15):4604-4608, and the amino
CONTAINING 3B acid sequence of AFP (identified by accession no.
(FNDC3B) CAA79592) is disclosed in, e.g., McVey, 1993, Direct Sub-

INSL3 gggggégiif NM_005543  NP_005534 mission, Clinical Research Centre, Haemostasis Research

CRTAP CARTILAGE- NM_006371 NP 006362 Group, Watford Road3 HZ.II'I'O\.V, UK, HAI 3UJ R .Mc\{ey .et al.,
ASSOCIATED 1993, “A G->A substitution in an HNF I binding site in the
PROTEIN human alpha-fetoprotein gene is associated with hereditary

persistence of alpha-fetoprotein (HPAFP),” Hum. Mol.
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Genet. 2 (4): 379-384, each of which is incorporated by
reference herein in its entirety.

[0371] The nucleotide sequence of ANKRD22 (identified
by accession no. NM__144590) is disclosed in, e.g., Straus-
berg, 2002, “Homo sapiens ankyrin repeat domain 22,
mRNA (cDNA clone MGC:22805 IMAGE:3682099),”
unpublished, and the amino acid sequence of ANKRD22
(identified by accessionno. NP_ 653191) is disclosed in, e.g.,
Strausberg, 2002, “Homo sapiens ankyrin repeat domain 22,
mRNA (cDNA clone MGC:22805 IMAGE:3682099),”
unpublished, each of which is incorporated by reference
herein in its entirety.

[0372] The nucleotide sequence of ANXA3 (identified by
accessionno. NM__005139) is disclosed in, e.g., Pepinsky, R.
B.etal., 1988,” Five distinct calcium and phospholipid bind-
ing proteins share homology with lipocortin 1,” J. Biol. Chem.
263 (22): 10799-10811, Tait, J. F. et al., 1988, “Placental
anticoagulant proteins: isolation and comparative character-
ization four members of the lipocortin family,” Biochemistry
27(17):6268-6276, Ross, T. S. et al., 1990, “Identity of inosi-
tol 1,2-cyclic phosphate 2-phosphohydrolase with lipocortin
III,” Science 248 (4955):605-607, and the amino acid
sequence of ANXA3 (identified by accession no.
NP_ 005130)isdisclosedin, e.g., Pepinsky, R. Betal., 1988,
Five distinct calcium and phospholipid binding proteins share
homology with lipocortin I,” J. Biol. Chem. 263 (22): 10799-
10811, Tait, J. F. et al., 1988, “Placental anticoagulant pro-
teins: isolation and comparative characterization four mem-
bers of the lipocortin family,” Biochemistry 27 (17):6268-
6276, Ross, T. S. et al., 1990, “Identity of inositol 1,2-cyclic
phosphate 2-phosphohydrolase with lipocortin I1I,” Science
248 (4955):605-607, each of which is incorporated by refer-
ence herein in its entirety.

[0373] The nucleotide sequence of Apolipoprotein CIII
(APOC3) (identified by accession no. NM__000040) is dis-
closed in, e.g., Ruiz-Narvaez. et al., 2005 “APOC3/AS5 hap-
lotypes, lipid levels, and risk of myocardial infarction in the
Central Valley of Costa Rica,” J. Lipid Res. 46 (12), 2605-
2613; Garenc et al., 2005, “Effect of the APOC3 SstI SNP on
fasting triglyceride levels in men heterozygous for the LPL
P207L deficiency,” Eur. J. Hum. Genet. 13, 1159-1165;
Baum. et al., 2005, “Effect of hepatic lipase -514C->T poly-
morphism and its interactions with apolipoprotein C;_,¢,C-
>T and apolipoprotein E exon 4 polymorphisms on the risk of
nephropathy in chinese type 2 diabetic patients,” Diabetes
Care 28, 1704-1709, and the amino acid sequence of APOC3
(identified by accession no. CAA25648) is disclosed in, e.g.,
Proffer et al., 1984, “Isolation and sequence analysis of the
human apolipoprotein CIII gene and the intergenic region
between the apo Al and apo CIII,” DNA 3, 449-456, each of
which is incorporated by reference herein in its entirety.

[0374] The nucleotide sequence of ARG2 (identified by
accessionno. NM_ 001172)is disclosed in, e.g., Gotoh et al.,
1996 “Molecular cloning of cDNA for nonhepatic mitochon-
drial arginase(arginase II) and comparison of its induction
with nitric oxide synthase in a murine macrophage-like cell
line,” FEBS Lett. 395 (2-3):119-122, Vockley et al., 1996,
“Cloning and characterization of the human type II arginase
gene,” Genomics 38 (2):118-123, Gotoh et al., 1997, “Chro-
mosomal localization of the human arginase II gene and
tissue distribution of its mRNA,” Biochem. Biophys. Res.
Commun. 233 (2):487-491, and the amino acid sequence of
ARG?2 (identified by accession no. CAG38787) is disclosed
in, e.g., Halleck et al., 2004, Direct Submission, RZPD Deut-
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sches Ressourcenzentrum fuer Genomforschung GmbH, Im
Neuenheimer Feld 580, D-69120 Heidelberg, Germany, Hal-
leck et al., unpublished, “Cloning of human full open reading
frames in Gateway™ system entry vector (pDONR201),”
each of which is incorporated by reference herein in its
entirety.

[0375] The nucleotide sequence of B2M (identified by
accessionno. NM_ 004048) is disclosed in, e.g., Krangel, M.
S. et al., 1979, “Assembly and maturation of HLA-A and
HILA-B antigens in vivo,” Cell 18 (4):979-991, Suggs, S. V. et
al., 1981, “Use of synthetic oligonucleotides as hybridization
probes: isolation of cloned cDNA sequences for human beta
2-microglobulin,” Proc. Natl. Acad. Sci. U.S.A. 78 (11):
6613-6617, Rosa, F. et al., 1983, “The beta2-microglobulin
mRNA in human Daudi cells has a mutated initiation codon
but is still inducible by interferon,” EMBO J. 2 (2):239-243,
and the amino acid sequence of B2M (identified by accession
no. AAAS51811) is disclosed in, e.g., Gussow, D. et al., 1987,
“The human beta 2-microglobulin gene. Primary structure
and definition of the transcriptional unit,” J. Immunol. 139
(9): 3132-3138, each of which is incorporated by reference
herein in its entirety.

[0376] The nucleotide sequence of BCL.2A1 (identified by
accession no. NM__004049) is disclosed in, e.g., Lin, E. Y. et
al., 1993, “Characterization of A1, a novel hemopoietic-spe-
cific early-response gene with sequence similarity to bcl-2,”
J. Immunol. 151 (4):1979-1988, Savitsky, K. et al., “The
complete sequence of the coding region of the ATM gene
reveals similarity to cell cycle regulators in different species,”
Hum. Mol. Genet. 4 (11):2025-2032, Choi, S. S. et al., 1995,
“A novel Bcl-2 related gene, Bfl-1, is overexpressed in stom-
ach cancer and preferentially expressed in bone marrow,”
Oncogene 11 (9):1693-1698, and the amino acid sequence of
BCL2A1 (identified by accession no. NP__004040) is dis-
closedin, e.g., Lin, E.Y. et al., 1993, “Characterization of A1,
a novel hemopoietic-specific early-response gene with
sequence similarity to bel-2,” J. Immunol. 151 (4):1979-
1988, Savitsky, K. et al., “The complete sequence of the
coding region of'the ATM gene reveals similarity to cell cycle
regulators in different species,” Hum. Mol. Genet. 4 (11):
2025-2032, Choi, S. S. et al., 1995, “A novel Bcl-2 related
gene, Bfl-1, is overexpressed in stomach cancer and prefer-
entially expressed in bone marrow,” Oncogene 11 (9):1693-
1698, each of which is incorporated by reference herein in its
entirety.

[0377] The nucleotide sequence of CCL5 (identified by
accession no. NM__002985) is disclosed in, e.g., Schall, T. J.
etal., 1988, “A humanT cell-specific molecule is a member of
anew gene family,” J. Immunol. 141 (3):1018-1025, Donlon,
T. A. et al., 1990, “Localization of a human T-cell-specific
gene, RANTES (D17S136E), to chromosome 17q11.2-q12,”
Genomics 6 (3):548-553, Kameyoshi, Y. et al., 1992, “Cytok-
ine RANTES released by thrombin-stimulated platelets is a
potent attractant for human eosinophils,” J. Exp. Med. 176
(2):587-592, and the amino acid sequence of CCL5 (identi-
fied by accession no. NP_002976) is disclosed in, e.g.,
Schall, T. J. et al., 1988, “A human T cell-specific molecule is
a member of a new gene family,” J. Immunol. 141 (3):1018-
1025, Donlon, T. A. et al., 1990, “Localization of a human
T-cell-specific gene, RANTES (D17S136E), to chromosome
17911.2-q12,” Genomics 6 (3):548-553, Kameyoshi, Y. et al.,
1992, “Cytokine RANTES released by thrombin-stimulated
platelets is a potent attractant for human eosinophils,” J. Exp.
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Med. 176 (2):587-592, each of which is incorporated by
reference herein in its entirety.

[0378] The nucleotide sequence of CD86 (identified by
accession nos. NM__ 006889, NM__175862) is disclosed in,
e.g., Azuma, M. et al., 1993, “B70 antigen is a second ligand
for CTLA-4 and CD28,” Nature 366 (6450):76-79, Freeman,
G. J. et al., 1993, “Cloning of B7-2: a CTLA-4 counter-
receptor that costimulates human T cell proliferation,” Sci-
ence 262 (5135):909-911, Chen, C. et al., 1994, “Molecular
cloning and expression of early T cell costimulatory mol-
ecule-1 and its characterization as B7-2 molecule,” J. Immu-
nol. 152 (10):4929-4936, and the amino acid sequence of
CD86 (identified by accession nos. NP 008820, NP__787058)
is disclosed in, e.g., Azuma, M. et al., 1993, “B70 antigenis a
second ligand for CTLA-4 and CD28,” Nature 366 (6450):
76-79, Azuma, M. et al., 1993, “B70 antigen is a second
ligand for CTLA-4 and CD28,” Nature 366 (6450):76-79,
Freeman, G. J. et al., 1993, “Cloning of B7-2: a CTLA-4
counter-receptor that costimulates human T cell prolifera-
tion,” Science 262 (5135):909-911, Chen, C. et al., 1994,
“Molecular cloning and expression of early T cell costimula-
tory molecule-1 and its characterization as B7-2 molecule,” J.
Immunol. 152 (10):4929-4936, each of which is incorporated
by reference herein in its entirety.

[0379] The nucleotide sequence of CEACAM1 (identified
by accession no. NM__001712) is disclosed in, e.g., Sven-
berg, T. et at, 1979, “Immunofluorescence studies on the
occurrence and localization of the CEA-related biliary gly-
coprotein I (BGP I) in normal human gastrointestinal tissues,”
Clin. Exp. Immunol. 36 (3):436-441, Hinoda, Y. et al., 1988,
“Molecular cloning of a cDNA coding biliary glycoprotein I:
primary structure of a glycoprotein immunologically cross-
reactive with carcinoembryonic antigen,” Proc. Natl. Acad.
Sci. U.S.A. 85 (18):6959-6963, Barnett, T. R. et al., 1989,
“Carcinoembryonic antigens: alternative splicing accounts
for the multiple mRNAs that code for novel members of the
carcinoembryonic antigen family,” J. Cell Biol. 108 (2):267-
276, and the amino acid sequence of CEACAM1 (identified
by accessionno. NP__001703) is disclosed in, e.g., Svenberg,
T. et al., 1979, “Immunofluorescence studies on the occur-
rence and localization of the CEA-related biliary glycopro-
tein [ (BGP I) in normal human gastrointestinal tissues,” Clin.
Exp. Immunol. 36 (3):436-441, Hinoda, Y. et al., 1988,
“Molecular cloning of a cDNA coding biliary glycoprotein I:
primary structure of a glycoprotein immunologically cross-
reactive with carcinoembryonic antigen,” Proc. Natl. Acad.
Sci. U.S.A. 85 (18):6959-6963, Barnett, T. R. et al., 1989,
“Carcinoembryonic antigens: alternative splicing accounts
for the multiple mRNAs that code for novel members of the
carcinoembryonic antigen family,” J. Cell Biol. 108 (2):267-
276, each of which is incorporated by reference herein in its
entirety.

[0380] The nucleotide sequence of C Reactive Protein
(CRP) (identified by accession no. NM__000567) is disclosed
in, e.g., Song et al., 2006, “C-reactive protein contributes to
the hypercoagulable state in coronary artery disease,” J.
Thromb. Haemost. 4 (1), 98-106; Wakugawa et al., 2006,
“C-reactive protein and risk of first-ever ischemic and hem-
orrhagic stroke in a general Japanese population: the
Hisayama Study,” Stroke 37, 27-32; Tong et al., 2005, “Asso-
ciation of testosterone, insulin-like growth factor-1, and C-re-
active protein with metabolic syndrome in Chinese middle-
aged men with a family history of type 2 diabetes,” J. Clin.
Endocrinol. Metab. 90, 6418-6423, and the amino acid
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sequence of CRP (identified by accession no. CAA39671 is
described in a direct submissiong by Tenchini et al., 1990,
Tenchini M.L., Dipartimento di Biologia e Genetica per le
Scienze mediche, via Viotti 3, 20133 Milano, Italy, each of
which is incorporated by reference herein in its entirety.

[0381] The nucleotide sequence of CRTAP (identified by
accession no. NM__006371) is disclosed in, e.g., Castagnola,
P.etal., 1997, “Cartilage associated protein (CASP) is a novel
developmentally regulated chick embryo protein,” J. Cell.
Sci. 110 (PT 12):1351-1359; Tonachini, L. et al., 1999,
“cDNA cloning, characterization and chromosome mapping
of'the gene encoding human cartilage associated protein (CR-
TAP),” Cytogenet. Cell Genet. 87:(3-4); Morello, R. et al.,
1999, “cDNA cloning, characterization and chromosome
mapping of Crtap encoding the mouse cartilage associated
protein,” Matrix Biol. 18 (3):319-324, and the amino acid
sequence of CRTAP (identified by accession no.
NP__006362) is disclosed in, e.g., Castagnola, P. et al., 1997,
“Cartilage associated protein (CASP) is a novel developmen-
tally regulated chick embryo protein,” J. Cell. Sci. 110 (PT
12):1351-1359, Tonachini, L. et al., 1999, “cDNA cloning,
characterization and chromosome mapping of the gene
encoding human cartilage associated protein (CRTAP),”
Cytogenet. Cell Genet. 87:(3-4), Morello, R. et al., 1999,
“cDNA cloning, characterization and chromosome mapping
of Crtap encoding the mouse cartilage associated protein,”
Matrix Biol. 18 (3):319-324, each of which is incorporated by
reference herein in its entirety.

[0382] The nucleotide sequence of CSF1R (identified by
accession no. NM__005211) is disclosed in, e.g., Verbeek, J.
S. et al., 1985, “Human c-fins proto-oncogene: comparative
analysis with an abnormal allele,” Mol. Cell. Biol. 5 (2):422-
426; Xu, D. Q. et al., 1985, “Restriction fragment length
polymorphism of the human c-fms gene,” Proc. Natl. Acad.
Sci. U.S.A. 82 (9):2862-2865; Sherr, C. J. et al., 1985, “The
c-fims proto-oncogene product is related to the receptor for
the mononuclear phagocyte growth factor, CSF-1,” Cell 41
(3):665-676, and the amino acid sequence of CSF1R (identi-
fied by accession no. NP__005202) is disclosed in, e.g., Ver-
beek, J. S. et al., 1985, “Human c-fins proto-oncogene: com-
parative analysis with an abnormal allele,” Mol. Cell. Biol. 5
(2):422-426, Xu, D. Q. et al., 1985, “Restriction fragment
length polymorphism of the human c-fins gene,” Proc. Natl.
Acad. Sci. U.S.A. 82 (9):2862-2865, Sherr, C. J. et al., 1985,
“The c-fms proto-oncogene product is related to the receptor
for the mononuclear phagocyte growth factor, CSF-1,” Cell
41 (3):665-676, each of which is incorporated by reference
herein in its entirety.

[0383] The nucleotide sequence of FAD104 (identified by
accession no. NM_ 022763) is disclosed in, e.g., Clark, H. F.
etal., 2003, “The secreted protein discovery initiative (SPDI),
a large-scale effort to identify novel human secreted and
transmembrane proteins:a bioinformatics assessment,”
Genome Res. 13 (10):2265-2270, Tominaga, K. et al., 2004,
“The novel gene fad104, containing a fibronectin type III
domain, has a significant role in adipogenesis,” FEBS Lett.
577 (1-2):49-54, and the amino acid sequence of FAD104
(identified by accession no. NP__073600) is disclosed in, e.g.,
Clark, H. F. et al., 2003, “The secreted protein discovery
initiative (SPDI), a large-scale effort to identify novel human
secreted and transmembrane proteins:a bioinformatics
assessment,” Genome Res. 13 (10):2265-2270, Tominaga, K.
etal., 2004, “The novel gene fad104, containing a fibronectin
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type Il domain, has a significant role in adipogenesis,” FEBS
Lett. 577 (1-2):49-54, each of which is incorporated by ref-
erence herein in its entirety.

[0384] The nucleotide sequence of FCGR1A (identified by
accession no. NM_000566) is disclosed in, e.g., Eizuru, Y. et
al., 1988, “Induction of Fc (IgG) receptor(s) by simian
cytomegaloviruses in human embryonic lung fibroblasts,”
Intervirology 29 (6):339-345, Allen, J. M. et al., 1988,
“Nucleotide sequence of three cDNAs for the human high
affinity Fc receptor (FcRI),” Nucleic Acids Res. 16 (24):
11824, van de Winkel, J. G. et al., 1991, “Gene organization
of the human high affinity receptor for IgG, Fc gamma RI
(CD64). Characterization and evidence for a second gene,” J.
Biol. Chem. 266 (20):13449-1345, and the amino acid
sequence of FCGRIA (identified by accession no.
NP__000557) is disclosed in, e.g., Eizuru, Y. et al., 1988,
“Induction of Fc (IgG) receptor(s) by simian cytomegalovi-
ruses in human embryonic lung fibroblasts,” Intervirology 29
(6):339-345, Allen, J. M. et al., 1988, “Nucleotide sequence
of three cDNAs for the human high affinity Fc receptor
(FcRI),” Nucleic Acids Res. 16 (24):11824, van de Winkel, J.
G. etal., 1991, “Gene organization of the human high affinity
receptor for IgG, Fc gamma R1 (CD64). Characterization and
evidence for a second gene,” J. Biol. Chem. 266 (20):13449-
1345, each of which is incorporated by reference herein in its
entirety.

[0385] The nucleotide sequence of GADD45A (identified
by accession no. NM__001924) is disclosed in, e.g., Papatha-
nasiou, M. A. etal., 1991, “Induction by ionizing radiation of
the gadd45 gene in cultured human cells: lack of mediation by
protein kinase C,” Mol. Cell. Biol. 11 (2):1009-1016, Hol-
lander, M. C. et al., 1993, “Analysis of the mammalian
gadd45 gene and its response to DNA damage,” J. Biol.
Chem. 268 (32):24385-24393, Smith, M. L. et al,, 1994,
“Interaction of the p53-regulated protein Gadd45 with pro-
liferating cell nuclear antigen,” Science 266 (5189):1376-
1380, and the amino acid sequence of GADD45A (identified
by accession no. NP__001915) is disclosed in, e.g., Papatha-
nasiou, M. A. etal., 1991, “Induction by ionizing radiation of
the gadd45 gene in cultured human cells: lack of mediation by
protein kinase C,” Mol. Cell. Biol. 11 (2):1009-1016, Hol-
lander, M. C. et al., 1993, “Analysis of the mammalian
gadd45 gene and its response to DNA damage,” J. Biol.
Chem. 268 (32):24385-24393, Smith, M. L. et al,, 1994,
“Interaction of the p53-regulated protein Gadd45 with pro-
liferating cell nuclear antigen,” Science 266 (5189):1376-
1380, each of which is incorporated by reference herein in its
entirety.

[0386] The nucleotide sequence of GADD45B (identified
by accession no. NM__015675) is disclosed in, e.g., Abdol-
lahi, A. et al., 1991, “Sequence and expression of a cDNA
encoding MyD118: a novel myeloid differentiation primary
response gene induced by multiple cytokines,” Oncogene 6
(1): 165-167, Vairapandi, M. et al., 1996, “The differentiation
primary response gene MyD118, related to GADDA4S,
encodes for a nuclear protein which interacts with PCNA and
p21WAF1/CIP1,” Oncogene 12 (12):2579-2594, Koonin, E.
V., 1997, “Cell cycle and apoptosis: possible roles of Gadd45
and MyD118 proteins inferred from their homology to ribo-
somal proteins,” J. Mol. Med. 75 (4):236-238, and the amino
acid sequence of GADD45B (identified by accession no.
NP__056490) is disclosed in, e.g., Abdollahi, A. et al., 1991,
“Sequence and expression of a cDNA encoding MyD118: a
novel myeloid differentiation primary response gene induced
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by multiple cytokines,” Oncogene 6 (1):165-167, Vairapandi,
M. et al., 1996, “The differentiation primary response gene
MyD 118, related to GADDA45, encodes for a nuclear protein
which interacts with PCNA and p21 WAF1/CIP1,” Oncogene
12 (12):2579-2594, Koonin, E.V., 1997, “Cell cycle and apo-
ptosis: possible roles of Gadd45 and MyD118 proteins
inferred from their homology to ribosomal proteins,” J. Mol.
Med. 75 (4):236-238, each of which is incorporated by ref-
erence herein in its entirety.

[0387] The nucleotide sequence of HLA-DRA (identified
by accession no. NM__002123) is disclosed in, e.g., Larham-
mar, D. etal., 1981, Evolutionary relationship between HLA-
DR antigen beta-chains, HLA-A, B, C antigen subunits and
immunoglobulin chains,” Scand. J. Immunol. 14 (6):617-622,
Wiman, K. et al., 1982, “Isolation and identification of a
c¢DNA clone corresponding to an HLA-DR antigen beta
chain,” Proc. Natl. Acad. Sci. U.S.A. 79 (6):1703-1707, Lar-
hammar, D. et al., 1982, “Complete amino acid sequence of
an HLA-DR antigen-like beta chain as predicted from the
nucleotide sequence: similarities with immunoglobulins and
HLA-A, -B, and -C antigens,” Proc. Natl. Acad. Sci. U.S.A.
79 (12):3687-3691, and the amino acid sequence of HLA-
DRA (identified by accession no. NP__002114) is disclosed
in, e.g., Larhammar, D. etal., 1981, Evolutionary relationship
between HLA-DR antigen beta-chains, HLA-A, B, C antigen
subunits and immunoglobulin chains,” Scand. J. Immunol. 14
(6):617-622, Wiman, K. et al., 1982, “Isolation and identifi-
cationofa cDNA clone corresponding to an HLA-DR antigen
beta chain,” Proc. Natl. Acad. Sci. U.S.A. 79 (6):1703-1707,
Larhammar, D. et al., 1982, “Complete amino acid sequence
of'an HLLA-DR antigen-like beta chain as predicted from the
nucleotide sequence: similarities with immunoglobulins and
HLA-A, -B, and -C antigens,” Proc. Natl. Acad. Sci. U.S.A.
79 (12):3687-3691, each of which is incorporated by refer-
ence herein in its entirety.

[0388] The nucleotide sequence of IFNGRI1 (identified by
accession no. NM__000416) is disclosed in, e.g., Novick, D.
et at, 1987, “The human interferon-gamma receptor. Purifi-
cation, characterization, and preparation of antibodies, each
of'which is incorporated by reference herein in its entirety,” J.
Biol. Chem. 262 (18): 8483-8487, Aguet, M. et al., 1988,
“Molecular cloning and expression of the human interferon-
gamma receptor,” Cell 55 (2): 273-280, Le Coniat, M. et al.,
1989, “Human interferon gamma receptor 1 (IFNGR1) gene
maps to chromosome region 6q23-6q24,” Hum. Genet. 84
(1):92-94, and the amino acid sequence of IFNGR1 (identi-
fied by accession no. NP__000407) is disclosed in, e.g., Nov-
ick, D. et al., 1987, “The human interferon-gamma receptor.
Purification, characterization, and preparation of antibodies,”
J. Biol. Chem. 262 (18):8483-8487, Aguet, M. et al., 1988,
“Molecular cloning and expression of the human interferon-
gamma receptor,” Cell 55 (2): 273-280, Le Coniat, M. et al.,
1989, “Human interferon gamma receptor 1 (IFNGR1) gene
maps to chromosome region 6q23-6q24,” Hum. Genet. 84
(1):92-94, each of which is incorporated by reference herein
in its entirety.

[0389] The nucleotide sequence of IL (identified by acces-
sion nos. NM_ 000577, NM_ 173841, NM_ 173842,
NM__173843) is disclosed in, e.g., Eisenberg, S. P. et al.,
1990, “Primary structure and functional expression from
complementary DNA of a human interleukin-1 receptor
antagonist,” Nature 343 (6256):341-346, Carter, D. B. et al.,
1990, “Purification, cloning, expression and biological char-
acterization of an interleukin-1 receptor antagonist protein,”
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Nature 344 (6267):633-638, Seckinger, P. et al., 1990, “Natu-
ral and recombinant human IL.-1 receptor antagonists block
the effects of IL-1 on bone resorption and prostaglandin pro-
duction,” J. Immunol. 145 (12):4181-4184, and the amino
acid sequence of ILIRN (identified by accession no.
AANR7150) is disclosed in, e.g., Rieder, M. J. et al., 2002,
Direct Submission, Genome Sciences, University of Wash-
ington, 1705 NE Pacific, Seattle, Wash. 98195, USA, each of
which is incorporated by reference herein in its entirety.
[0390] The nucleotide sequence of IL-6 (identified by
accession no. NM__000600) is disclosed in, e.g., Haegeman,
G. etal., 1986, “Structural analysis of the sequence coding for
an inducible 26-kDa protein in human fibroblasts,” Eur. J.
Biochem. 159 (3):625-632, Zilberstein, A. et al., 1986,
“Structure and expression of cDNA and genes for human
interferon-beta-2, a distinct species inducible by growth-
stimulatory cytokines,” EMBO J. 5 (10):2529-2537, Hirano,
T. et al., 1986, “Complementary DNA for a novel human
interleukin (BSF-2) that induces B lymphocytes to produce
immunoglobulin,” Nature 324 (6092):73-76, and the amino
acid sequence of IL-6 (identified by accession no.
NP__000591) is disclosed in, e.g., Haegeman, G. et al., 1986,
“Structural analysis of the sequence coding for an inducible
26-kDa protein in human fibroblasts,” Eur. J. Biochem. 159
(3):625-632, Zilberstein, A. et al., 1986, “Structure and
expression of cDNA and genes for human interferon-beta-2,
a distinct species inducible by growth-stimulatory cytok-
ines,” EMBO 1. 5 (10):2529-2537, Hirano, T. et al., 1986,
“Complementary DNA for a novel human interleukin (BSF-
2) that induces B lymphocytes to produce immunoglobulin,”
Nature 324 (6092):73-76, each of which is incorporated by
reference herein in its entirety.

[0391] The nucleotide sequence of IL.-8 (identified by
accession no. M28130) and the amino acid sequence of IL.-8
(identified by accession no. AAAS9158) are each disclosed
in, e.g., Mukaida et al., 1989, “Genomic structure of the
human monocyte-derived neutrophil chemotactic factor
1L-8,” J. Immunol. 143, 1366-1371 which is incorporated by
reference herein in its entirety.

[0392] The nucleotide sequence of IL-10 (identified by
accession no. NM_ 000572) is disclosed in, e.g., Ghosh, S. et
al., 1975, “Anaerobic acidogenesis of wastewater sludge,”
Breast Cancer Res. Treat. 47 (1):30-45, Hsu, D. H. et al.,
1990, “Expression of interleukin-10 activity by Epstein-Barr
virus protein BCRF1,” Science 250 (4982):830-832, Vieira,
P. et al,, 1991, “Isolation and expression of human cytokine
synthesis inhibitory factor ¢cDNA clones: homology to
Epstein-Barr virus open reading frame BCRFL,” Proc. Natl.
Acad. Sci. U.S.A. 88 (4):1172-1176, and the amino acid
sequence of IL-10 (identified by accession no. CAH73907) is
disclosed in, e.g., Tracey, A., 2005, Direct Submission,
Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire,
CB 10 1S A, each of which is incorporated by reference herein
in its entirety.

[0393] The nucleotide sequence of IL10RA (identified by
accession no. NM__001558) is disclosed in, e.g., Tan, J. C. et
al., 1993, “Characterization of interleukin-10 receptors on
human and mouse cells,” J. Biol. Chem. 268 (28):21053-
21059, Ho, A. S. et al., 1993, “A receptor for interleukin 10 is
related to interferon receptors,” Proc. Natl. Acad. Sci. U.S.A.
90 (23):11267-11271, Liu, Y. et al., 1994, “Expression clon-
ing and characterization of a human IL.-10 receptor,” J. Immu-
nol. 152 (4):1821-1829, and the amino acid sequence of
IL10RA (identified by accession no. NP__001549) is dis-
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closed in, e.g., Tan, J. C. et al., 1993, “Characterization of
interleukin-10 receptors on human and mouse cells,” J. Biol.
Chem. 268 (28):21053-21059, Ho, A. S. et al., 1993, “A
receptor for interleukin 10 is related to interferon receptors,”
Proc. Natl. Acad. Sci. U.S.A. 90(23):11267-11271, Liu, Y. et
al., 1994, “Expression cloning and characterization of a
human IL-10receptor,” J. Immunol. 152 (4):1821-1829, each
of' which is incorporated by reference herein in its entirety.

[0394] The nucleotide sequence of IL18R1 (identified by
accession no. NM__003855) is disclosed in, e.g., Parnet, P. et
al., 1996, “IL-1Rrp is a novel receptor-like molecule similar
to the type I interleukin-1 receptor and its homologues
T1/ST2 and IL-1R AcP;” J. Biol. Chem. 271 (8):3967-3970,
Lovenberg, T. W. et al., 1996, “Cloning of a cDNA encoding
anovel interleukin-1 receptor related protein (IL 1R-rp2),” J.
Neuroimmunol. 70 (2):113-122, Torigoe, K. et al., 1997,
“Purification and characterization of the human interleukin-
18 receptor,” J. Biol. Chem. 272 (41):25737-25742, and the
amino acid sequence of IL18R1 (identified by accession no.
NP__003846) is disclosed in, e.g., Pamet, P. et al., 1996,
“IL-1Rrp is a novel receptor-like molecule similar to the type
I interleukin-1 receptor and its homologues T1/ST2 and
IL-1R AcP;” J. Biol. Chem. 271 (8):3967-3970, Lovenberg, T.
W. et al., 1996, “Cloning of a cDNA encoding a novel inter-
leukin-1 receptor related protein (IL1R-rp2),” J. Neuroimmu-
nol. 70 (2):113-122, Torigoe, K. etal., 1997, “Purification and
characterization of the human interleukin-18 receptor,” J.
Biol. Chem. 272 (41):25737-25742, each of which is incor-
porated by reference herein in its entirety.

[0395] The nucleotide sequence of INSL3 (identified by
accession no. NM_005543) is disclosed in, e.g., Adham, 1.
M. et al., 1993, “Cloning of a cDNA for a novel insulin-like
peptide of the testicular Leydig cells,” J. Biol. Chem. 268
(35):26668-26672, Burkhardt, E. et al., 1994, “Structural
organization of the porcine and human genes coding for a
Leydig cell-specific insulin-like peptide (LEY I-L) and chro-
mosomal localization of the human gene (INSL3),” Genom-
ics 20 (1):13-19, Burkhardt, E. et al., 1994, “A human cDNA
coding for the Leydig insulin-like peptide (Ley I-L.),” Hum.
Genet. 94 (1):91-94, and the amino acid sequence of INSL.3
(identified by accessionno. NP_ 005534) is disclosed in, e.g.,
Adham, 1. M. et al., 1993, “Cloning of a cDNA for a novel
insulin-like peptide of the testicular Leydig cells,” J. Biol.
Chem. 268 (35):26668-26672, Burkhardt, E. et al., 1994,
“Structural organization of the porcine and human genes
coding for a Leydig cell-specific insulin-like peptide (LEY
I-L) and chromosomal localization of the human gene
(INSL3),” Genomics 20 (1):13-19, Burkhardt, E. et al., 1994,
“A human cDNA coding for the Leydig insulin-like peptide
(Ley I-L),” Hum. Genet. 94 (1):91-94, each of which is incor-
porated by reference herein in its entirety.

[0396] The nucleotide sequence of IRAK?2 (identified by
accessionno. NM_001570)is disclosed in, e.g., Muzio, M. et
al., 1997, “IRAK (Pelle) family member IRAK-2 and MyDS88
as proximal mediators of IL-1 signaling,” Science 278
(5343):1612-1615, Auron, PE., 1998, “The interleukin 1
receptor: ligand interactions and signal transduction,” Cytok-
ine Growth Factor Rev. 9 (3-4):221-237, Maschera, B. et al.,
1999, “Overexpression of an enzymically inactive interleu-
kin-1-receptor-associated kinase activates nuclear factor-
kappaB,” Biochem. J. 339 (PT 2):227-231, and the amino
acid sequence of IRAK2 (identified by accession no.
NP__001561) is disclosed in, e.g..Muzio, M. et al., 1997,
“IRAK (Pelle) family member IRAK-2 and MyD88 as proxi-
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mal mediators of IL-1 signaling,” Science 278 (5343):1612-
1615, Auron, PE., 1998, “The interleukin 1 receptor: ligand
interactions and signal transduction,” Cytokine Growth Fac-
tor Rev. 9 (3-4):221-237, Maschera, B. et al., 1999, “Overex-
pression of an enzymically inactive interleukin-1-receptor-
associated kinase activates nuclear factor-kappaB,” Biochem.
J. 339 (PT 2):227-231, each of which is incorporated by
reference herein in its entirety.

[0397] The nucleotide sequence of IRAK4 (identified by
accessionno. NM__016123)isdisclosed in, e.g., Siu, G. etal.,
1986, “Analysis of a human V beta gene subfamily,” J. Exp.
Med. 164 (5):1600-1614, Scanlan, M. J. et al., 1999, “Anti-
gens recognized by autologous antibody in patients with
renal-cell carcinoma,” Int. J. Cancer 83 (4):456-464, 1, S. et
al., 2002, “IRAK-4: a novel member of the IRAK family with
the properties of an IRAK-kinase,” Proc. Natl. Acad. Sci.
U.S.A. 99 (8):5567-5572, and the amino acid sequence of
IRAK4 (identified by accessionno. NP__057207) is disclosed
in, e.g., Siu, G. et cd., 1986, “Analysis of a human V beta gene
subfamily,” J. Exp. Med. 164 (5):1600-1614, Scanlan, M. J. et
al., 1999, “Antigens recognized by autologous antibody in
patients with renal-cell carcinoma,” Int. J. Cancer 83 (4):456-
464, Li, S. et al., 2002, “IRAK-4: a novel member of the
IRAK family with the properties of an IRAK-kinase,” Proc.
Natl. Acad. Sci. U.S.A. 99 (8):5567-5572, each of which is
incorporated by reference herein in its entirety.

[0398] The nucleotide sequence of ITGAM (identified by
accessionno. NM__000632)is disclosed in, e.g., Micklem, K.
J.etat, 1985, “Isolation of complement-fragment-iC3b-bind-
ing proteins by affinity chromatography. The identification of
p150,95 as an iC3b-binding protein,” Biochem. J. 231 (1):
233-236, Pierce, M. W. et al., 1986, “N-terminal sequence of
human leukocyte glycoprotein Mol:conservation across spe-
cies and homology to platelet 1Ib/I1la,” Biochim. Biophys.
Acta 874 (3):368-371, Arnaout, M. A. et al., 1988, “Molecu-
lar cloning of the alpha subunit of human and guinea pig
leukocyte adhesion glycoprotein Mol: chromosomal local-
ization and homology to the alpha subunits of integrins,”
Proc. Natl. Acad. Sci. US.A. 85 (8):2776-2780, and the
amino acid sequence of ITGAM (identified by accession no.
NP_ 000623) is disclosed in, e.g., Micklem, K. J. etal., 1985,
“Isolation of complement-fragment-iC3b-binding proteins
by affinity chromatography. The identification of p150,95 as
an iC3b-binding protein,” Biochem. J. 231 (1):233-236,
Pierce, M. W. et al., 1986, “N-terminal sequence of human
leukocyte glycoprotein Mol:conservation across species and
homology to platelet 11b/I1la,” Biochim. Biophys. Acta 874
(3):368-371, Amaout, M. A. et al., 1988, “Molecular cloning
of'the alpha subunit of human and guinea pig leukocyte adhe-
sion glycoprotein Mol: chromosomal localization and
homology to the alpha subunits of integrins,” Proc. Natl.
Acad. Sci. U.S.A. 85 (8):2776-2780, each of which is incor-
porated by reference herein in its entirety.

[0399] The nucleotide sequence of JAK2 (identified by
accession no. NM__004972) is disclosed in, e.g., Wilks, A. F.
etal., 1991, “Two novel protein-tyrosine kinases, each with a
second phosphotransferase-related catalytic domain, define a
new class of protein kinase,” Mol. Cell. Biol. 11 (4):2057-
2065, Pritchard, M. A. et al., 1992, “Two members of the JAK
family of protein tyrosine kinases map to chromosomes
1p31.3 and 9p24,” Mamm. Genome 3 (1):36-38, Witthuhn, B.
A. et al.,, 1993, “JAK2 associates with the erythropoietin
receptor and is tyrosine phosphorylated and activated follow-
ing stimulation with erythropoietin,” Cell 74 (2):227-236,
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and the amino acid sequence of JAK?2 (identified by accession
no. NP__004963) is disclosed in, e.g., Wilks, A. F. etal., 1991,
“Two novel protein-tyrosine kinases, each with a second
phosphotransferase-related catalytic domain, define.a new
class of protein kinase,” Mol. Cell. Biol. 11 (4):2057-2065,
Pritchard, M. A. et al., 1992, “Two members of the JAK
family of protein tyrosine kinases map to chromosomes
1p31.3 and 9p24,” Mamm. Genome 3 (1):36-38, Witthuhn, B.
A. et al,, 1993, “JAK2 associates with the erythropoietin
receptor and is tyrosine phosphorylated and activated follow-
ing stimulation with erythropoietin,” Cell 74 (2):227-236,
each of which is incorporated by reference herein in its
entirety.

[0400] The nucleotide sequence of LDLR (identified by
accession no. NM__000527) is disclosed in, e.g., Brown, M.
S. et al, 1979, “Receptor-mediated endocytosis: insights
from the lipoprotein receptor system,” Proc. Natl. Acad. Sci.
U.S.A. 76 (7):3330-3337, Goldstein, J. L. et al., 1982,
“Receptor-mediated endocytosis and the cellular uptake of
low density lipoprotein,” Ciba Found. Symp. 92, 77-95,
Tolleshaug H. et al., 1983, “The LDL receptor locus in famil-
ial hypercholesterolemia: multiple mutations disrupt trans-
port and processing of a membrane receptor,” Cell 32 (3):941-
951, and the amino acid sequence of LDLR (identified by
accessionno. NP__000518) is disclosed in, e.g., Brown, M. S.
et al.,, 1979, “Receptor-mediated endocytosis: insights from
the lipoprotein receptor system,” Proc. Natl. Acad. Sci. U.S.
A.76(7):3330-3337, Goldstein, J. L. et al., 1982, “Receptor-
mediated endocytosis and the cellular uptake of low density
lipoprotein,” Ciba Found. Symp. 92, 77-95, Tolleshaug, H. et
al., 1983, “The LDL receptor locus in familial hypercholes-
terolemia: multiple mutations disrupt transport and process-
ing of a membrane receptor,” Cell 32 (3):941-951, each of
which is incorporated by reference herein in its entirety.

[0401] The nucleotide sequence of LY96 (identified by
accessionno. NM_ 015364) is disclosed in, e.g., Shimazu, R.
etal., 1999, “MD-2, a molecule that confers lipopolysaccha-
ride responsiveness on Toll-like receptor 4,” J. Exp. Med. 189
(11):1777-1782, Kato, K. et al., 2000, “ESOP-1, a secreted
protein expressed in the hematopoietic, nervous, and repro-
ductive systems of embryonic and adult mice,” Blood 96
(1):362-364, Dziarski, R. et al., 2001, “MD-2 enables Toll-
like receptor 2 (TLR2)-mediated responses to lipopolysac-
charide and enhances TL.R2-mediated responses to Gram-
positive and Gram-negative bacteria and their cell wall
components,” J. Immunol. 166 (3):1938-1944, and the amino
acid sequence of LY96 (identified by accession no.
NP_056179) is disclosed in, e.g., Shimazu, R. et al., 1999,
“MD-2, a molecule that confers lipopolysaccharide respon-
siveness on Toll-like receptor 4,” J. Exp. Med. 189 (11):1777-
1782, Kato, K. et al., 2000, “ESOP-1, a secreted protein
expressed in the hematopoietic, nervous, and reproductive
systems of embryonic and adult mice,” Blood 96 (1):362-364,
Dziarski, R. et al., 2001, “MD-2 enables Toll-like receptor 2
(TLR2)-mediated responses to lipopolysaccharide and
enhances TLR2-mediated responses to Gram-positive and
Gram-negative bacteria and their cell wall components,” J.
Immunol. 166 (3):1938-1944, each of which is incorporated
by reference herein in its entirety.

[0402] The nucleotide sequence of MAP2K6 (identified by
accession nos. NM__ 002758, NM__031988) is disclosed in,
e.g.,Han, J. etal., 1996, “Characterization of the structure and
function of a novel MAP kinase kinase (MKK6), J. Biol.
Chem. 271 (6):2886-2891, Raingeaud, J. et al., 1996,
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“MKK3- and MKK6-regulated gene expression is mediated
by the p38 mitogen-activated protein kinase signal transduc-
tion pathway,” Mol. Cell. Biol. 16 (3), 1247-1255, Stein, B. et
al., 1996, “Cloning and characterization of MEKG6, a novel
member of the mitogen-activated protein kinase kinase cas-
cade,” J. Biol. Chem. 271 (19): 11427-11433, and the amino
acid sequence of MAP2K6 (identified by accession nos.
NP_ 002749, NP__114365)is disclosed in, e.g., Han, J. et al.,
1996, “Characterization of the structure and function of a
novel MAP kinase kinase (MKKS6), J. Biol. Chem. 271 (6):
2886-2891, Raingeaud, J. et al., 1996, “MKK3- and MKK6-
regulated gene expression is mediated by the p38 mitogen-
activated protein kinase signal transduction pathway,” Mol.
Cell. Biol. 16 (3), 1247-1255, Stein, B. et al., 1996, “Cloning
and characterization of MEK6, a novel member of the mito-
gen-activated protein kinase kinase cascade,” J. Biol. Chem.
271 (19): 11427-11433, each of which is incorporated by
reference herein in its entirety.

[0403] The nucleotide sequence of MAPK 14 (identified by
accession nos. NM__001315, NM__139012, NM__139013,
NM_ 139014) is disclosed in, e.g., Zhukov-Verezhnikov, N.
N. et al., 1976, “Study of the heterogenetic antigens in vac-
cinal preparations of V. cholerae,” Biochem. Biophys. Res.
Commun. 82 (8):961-962, Schultz, S. J. et al., 1993, Identi-
fication of 21 novel human protein kinases, including 3 Mem-
bers of a family related to the cell cycle regulator nimA of
Aspergillus nidulans,” Cell Growth Differ. 4 (10):821-830,
Lee, J. C. et al., 1994, “A protein kinase involved in the
regulation of inflammatory cytokine biosynthesis,” Nature
372 (6508):739-746, and the amino acid sequence of
MAPK14 (identified by accession nos. NP_ 001306,
NP__620581, I'IP__620582, NP__620583) is disclosed in,
e.g., Zhukov-Verezhnikov, N. N. et al., 1976, “Study of the
heterogenetic antigens in vaccinal preparations of V. chol-
erae,” Biochem. Biophys. Res. Commun. 82 (8):961-962,
Schultz, S. I. et al., 1993, Identification of 21 novel human
protein kinases, including 3 members of a family related to
the cell cycle regulator nimA of Aspergillus nidulans,” Cell
Growth Differ. 4 (10):821-830, Lee, J. C. et al,, 1994, “A
protein kinase involved in the regulation of inflammatory
cytokine biosynthesis,” Nature 372 (6508):739-746, each of
which is incorporated by reference herein in its entirety.
[0404] The nucleotide sequence of Monocyte Chemoat-
tractant Protein 1 (MCP1) (identified by accession nos.
AF493698 and AF493697) is disclosed in, e.g., Shanmu-
gasundaram et al., 2002, Virology II, National Institute of
Immunology, Aruna Asag Ali Marg, J.N.U. Campus, New
Delhi 110 067, India, and the amino acid sequence of MCP1
(identified by accession no. AAQ75526) is disclosed in, e.g.,
Nyquist et al., 2003, direct submission, Medicine, Inova Fair-
fax, 3300 Gallows Road, Falls Church, Va. 22402-3300, each
of which is incorporated by reference herein in its entirety.
[0405] The nucleotide sequence of MKNKI1 (identified by
accession nos. NM__ 003684, NM__198973) is disclosed in,
e.g., Fukunaga et al., 1997, “MNKI1, a new MAP kinase-
activated protein kinase, isolated by a novel expression
screening method for identifying protein kinase substrates,
EMBO 1J. 16: 1921-1933; Pyronnet et al., 1999, “Human
eukaryotic translation initiation factor 4G (elF4G) recruits
mnkl to phosphorylate eI[F4E,” EMBO J. 18: 270-279; Cuesta
et al., 2000, “Chaperone hsp27 inhibits translation during
heat shock by binding eIlF4G and facilitating dissociation of
cap-initiation complexes,” Genes Dev. 14: 1460-1470, and
the amino acid sequence of MKNKI1 (identified by accession
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nos. NP__003675, NP_945324) is disclosed in, e.g., Fuku-
naga et al., 1997, “MNK1, a new MAP kinase-activated pro-
tein kinase, isolated by a novel expression screening method
for identifying protein kinase substrates,” EMBO J. 16:1921-
1933, Pyronnet et al., 1999, “Human eukaryotic translation
initiation factor 4G (eIF4G) recruits mnkl to phosphorylate
elF4E,” EMBO J. 18: 270-279, Cuesta et al., 2000, “Chaper-
one hsp27 inhibits translation during heat shock by binding
elF4G and facilitating dissociation of cap-initiation com-
plexes,” Genes Dev. 14: 1460-1470, each of which is incor-
porated by reference herein in its entirety.

[0406] The nucleotide sequence of MMP9 (identified by
accession no. NM__004994) is disclosed in, e.g., Wilhelm et
al., 1989, “SV40-transformed human lung fibroblasts secrete
a 92-kDa type IV collagenase which is identical to that
secreted by normal human macrophages,” J. Biol. Chem. 264:
17213-17221, Huhtala et al., 1990, “Completion of the pri-
mary structure of the human type IV collagenase preproen-
zyme and assignment of the gene (CLG4) to the q21 region of
chromosome 16,” Genomics 6: 554-559, Collier et al., 1991,
“On the structure and chromosome location of the 72- and
92-kDa human type IV collagenase genes,” Genomics 9:
429-434, and the amino acid sequence of MMP9 (identified
by accession no. NP__004985) is disclosed in, e.g., Wilhelm
et al., 1989, “SV40-transformed human lung fibroblasts
secrete a 92-kDa type IV collagenase which is identical to that
secreted by normal human macrophages,” J. Biol. Chem. 264:
17213-17221, Huhtala et al., 1990, “Completion of the pri-
mary structure of the human type IV collagenase preproen-
zyme and assignment of the gene (CLG4) to the q21 region of
chromosome 16,” Genomics 6: 554-559, Collier et al., 1991,
“On the structure and chromosome location of the 72- and
92-kDa human type IV collagenase genes,” Genomics 9:
429-434, each of which is incorporated by reference herein in
its entirety.

[0407] The nucleotide sequence of NCR 1 (identified by
accession no. NM_ 004829) is disclosed in, e.g., Sivori et al.,
1997, “p46, a novel natural killer cell-specific surface mol-
ecule that mediates cell activation,” J. Exp. Med. 186:1129-
1136, Vitale, M. et al., NKp44, 1998, “NKp44, a novel trig-
gering surface molecule specifically expressed by activated
natural killer cells, is involved in non-major histocompatibil-
ity complex-restricted tumor cell lysis,” J. Exp. Med. 187:
2065-2072, Pessino et al., 1998, “Molecular cloning of
NKp46: a novel member of the immunoglobulin superfamily
involved in triggering of natural cytotoxicity,” J. Exp. Med.
188: 953-960, and the amino acid sequence of NCR1 (iden-
tified by accession no. NP__004820) is disclosed in, e.g.,
Sivori et al., 1997, “p46, a novel natural killer cell-specific
surface molecule that mediates cell activation,” J. Exp. Med.
186:1129-1136, Vitale et al., NKp44, 1998, “NKp44, a novel
triggering surface molecule specifically expressed by acti-
vated natural killer cells, is involved in non-major histocom-
patibility complex-restricted tumor cell lysis,” J. Exp. Med.
187: 2065-2072, Pessino et al., 1998, “Molecular cloning of
NKp46: a novel member of the immunoglobulin superfamily
involved in triggering of natural cytotoxicity,” J. Exp. Med.
188: 953-96, each of which is incorporated by reference
herein in its entirety.

[0408] The nucleotide sequence of OSM (identified by
accession no. NM__020530) is disclosed in, e.g., Zarling et
al., 1986, “Oncostatin M: a growth regulator produced by
differentiated histiocytic lymphoma cells,” Proc. Natl. Acad.
Sci. U.S.A. 83 (24):9739-9743, Malik et al., 1989, “Molecu-
lar cloning, sequence analysis, and functional expression of a
novel growth regulator, oncostatin M,” Mol. Cell. Biol. 9
(7):2847-2853, Linsley, P. S. et al., 1990, “Cleavage of a
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hydrophilic C-terminal domain increases growth-inhibitory
activity of oncostatin M,” Mol. Cell. Biol. 10 (5):1882-1890,
and the amino acid sequence of OSM (identified by accession
no. NP_065391) is disclosed in, e.g., Zarling, J. M. et al.,
1986, “Oncostatin M: a growth regulator produced by difter-
entiated histiocytic lymphoma cells,” Proc. Natl. Acad. Sci.
U.S.A.83(24):9739-9743, Malik, N. et al., 1989, “Molecular
cloning, sequence analysis, and functional expression of a
novel growth regulator, oncostatin M,” Mol. Cell. Biol. 9
(7):2847-2853, Linsley, P. S. et al., 1990, “Cleavage of a
hydrophilic C-terminal domain increases growth-inhibitory
activity of oncostatin M,” Mol. Cell. Biol. 10 (5):1882-1890,
each of which is incorporated by reference herein in its
entirety.

[0409] The nucleotide sequence of PFKFB3 (identified by
accession no. NM__004566) is disclosed in, e.g., Sakai, A. et
al., 1996, “Cloning of cDNA encoding for a novel isozyme of
fructose 6-phosphate, 2-kinase/fructose 2,6-bisphosphatase
from human placenta,” J. Biochem. 119 (3):506-511, Hamil-
ton,J. A. etal., 1997, “Identification of PRG1, a novel proges-
tin-responsive gene with sequence homology to 6-phospho-
fructo-2-kinase/fructose-2,6-bisphosphatase,” Mol.
Endocrinol. 11 (4):490-502, Nicholl, J. et al., “The third
human isoform of 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase (PFKFB3) map position 10p14-pl5, Chro-
mosome Res. 5 (2):150, and the amino acid sequence of
PFKFB3 (identified by accession no. NP__004557) is dis-
closed in, e.g., Sakai, A. et al., 1996, “Cloning of cDNA
encoding for a novel isozyme of fructose 6-phosphate, 2-ki-
nase/fructose 2,6-bisphosphatase from human placenta,” J.
Biochem. 119 (3):506-511, Hamilton, J. A. et al.,, 1997,
“Identification of PRG1, a novel progestin-responsive gene
with sequence homology to 6-phosphofructo-2-kinase/fruc-
tose-2,6-bisphosphatase,” Mol. Endocrinol. 11 (4):490-502,
Nicholl, J. a al., “The third human isoform of 6-phosphof-
ructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) map
position 10p14-p15, Chromosome Res. 5 (2):150, each of
which is incorporated by reference herein in its entirety.

[0410] The nucleotide sequence of PRV1 (identified by
accession no. NM__020406) is disclosed in, e.g., Lalezari, P.
etal., 1971, “NB1, a new neutrophil-specific antigen involved
in the pathogenesis of neonatal neutropenia,” J. Clin. Invest.
50 (5):1108-1115, Goldschmeding, R. et al., 1992, “Further
characterization of the NB 1 antigen as a variably expressed
56-62 kD GPI-linked glycoprotein of plasma membranes and
specific granules of neutrophils,” Br. J. Haematol. 81 (3):336-
345, Stroncek, D. F. et al., “Neutrophil-specific antigen NB1
inhibits neutrophil-endothelial cell interactions,” J. Lab. Clin.
Med. 123 (2):247-255, and the amino acid sequence of PRV1
(identified by accessionno. NP_ 065139) is disclosed in, e.g.,
Lalezari, P. et al,, 1971, “NBI1, a new neutrophil-specific
antigen involved in the pathogenesis of neonatal neutrope-
nia,” J. Clin. Invest. 50 (5):1108-1115, Goldschmeding, R. et
al., 1992, “Further characterization of the NB1 antigen as a
variably expressed 56-62 kD GPI-linked glycoprotein of
plasma membranes and specific granules of neutrophils,” Br.
J. Haematol. 81 (3):336-345, Stroncek, D. F. et al., “Neutro-
phil-specific antigen NB1 inhibits neutrophil-endothelial cell
interactions,” J. Lab. Clin. Med. 123 (2):247-255, each of
which is incorporated by reference herein in its entirety.

[0411] The nucleotide sequence of PSTPIP2 (identified by
accessionno. NM__024430)is disclosed in, e.g., Hillier, L. D.
et al.,, 1996, “Generation and analysis of 280,000 human
expressed sequence tags,” Genome Res. 6 (9):807-828, Wu,Y.
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et al., 1998, “PSTPIP 2, a second tyrosine phosphorylated,
cytoskeletal-associated protein that binds a PEST-type pro-
tein-tyrosine phosphatase,” J. Biol. Chem. 273 (46):30487-
30496, Yeung, Y. G. et al., 1998, “A novel macrophage actin-
associated protein (MAYP) is tyrosine-phosphorylated
following colony stimulating factor-1 stimulation,” J. Biol.
Chem. 273 (46): 30638-30642, and the amino acid sequence
of PSTPIP2 (identified by accession no. NP__077748) is dis-
closed in, e.g., Hillier, L. D. et al., 1996, “Generation and
analysis of 280,000 human expressed sequence tags,”
Genome Res. 6 (9):807-828, Wu,Y. etal., 1998, “PSTPIP 2, a
second tyrosine phosphorylated, cytoskeletal-associated pro-
tein that binds a PEST-type protein-tyrosine phosphatase,” J.
Biol. Chem. 273 (46):30487-30496, Yeung, Y. G. et al., 1998,
“A novel macrophage actin-associated protein (MAYP) is
tyrosine-phosphorylated following colony stimulating fac-
tor-1 stimulation,” J. Biol. Chem. 273 (46): 30638-30642,
each of which is incorporated by reference herein in its
entirety.

[0412] The nucleotide sequence of SOCS3 (identified by
accession no. NM_003955) is disclosed in, e.g., Minamoto,
S.etal., 1997, “Cloning and functional analysis of new mem-
bers of STAT induced STAT inhibitor (SSI) family: SSI-2 and
SSI-3,” Biochem. Biophys. Res. Commun. 237 (1):79-83,
Masuhara, M. et al., 1997, “Cloning and characterization of
novel CIS family genes,” Biochem. Biophys. Res. Commun.
239 (2):439-446, Zhang, J. G. et al., 1999, “The conserved
SOCS box motifin suppressors of cytokine signaling binds to
elongins B and C and may couple bound proteins to protea-
somal degradation,” Proc. Natl. Acad. Sci. U.S.A. 96 (5):
2071-2076, and the amino acid sequence of SOCS3 (identi-
fied by accession no. NP_003946) is disclosed in, e.g.,
Minamoto, S. etal., 1997, “Cloning and functional analysis of
new members of STAT induced STAT inhibitor (SSI) family:
SSI-2 and SSI-3,” Biochem. Biophys. Res. Commun. 23/(1):
79-83, Masuhara, M. et al., 1997, “Cloning and characteriza-
tion of novel CIS family genes,” Biochem. Biophys. Res.
Commun. 239 (2):439-446, Zhang, J. G. et al., 1999, “The
conserved SOCS box motif in suppressors of cytokine sig-
naling binds to elongins B and C and may couple bound
proteins to proteasomal degradation,” Proc. Natl. Acad. Sci.
U.S.A. 96 (5):2071-2076, each of which is incorporated by
reference herein in its entirety.

[0413] The nucleotide sequence of SOD2 (identified by
accessionno. NM__000636) is disclosed in, e.g., Smith, M. et
al., 1978, “Regional localization of HLA, MES, and SODM
on chromosome 6,” Cytogenet. Cell Genet. 22 (1-6):428-433,
Beck, Y. et al,, 1987, “Human Mn superoxide dismutase
c¢DNA sequence,” Nucleic Acids Res. 15 (21):9076, Ho, Y. S.
et al., 1988, “Isolation and characterization of complemen-
tary DNAs encoding human manganese-containing superox-
ide dismutase,” FEBS Lett. 229 (2):256-260, and the amino
acid sequence of SOD2 (identified by accession no.
NP__000627) is disclosed in, e.g., Smith, M. et al., 1978,
“Regional localization of HLA, MES, and SODM on chro-
mosome 6,” Cytogenet. Cell Genet. 22 (1-6):428-433, Beck,
Y. et al., 1987, “Human Mn superoxide dismutase cDNA
sequence,” Nucleic Acids Res. 15 (21):9076, Ho, Y. S. et al.,
1988, “Isolation and characterization of complementary
DNAs encoding human manganese-containing superoxide
dismutase,” FEBS Lett. 229 (2):256-260, each of which is
incorporated by reference herein in its entirety.

[0414] The nucleotide sequence of TDRD9 (identified by
accessionno. NM__153046) is disclosed in, e.g., Isogai et al.,
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2003, “Homo sapiens cDNA FLJ43990 fis, clone
TESTI4019566, weakly similar to Dosage compensation
regulator,” unpublished, and the amino acid sequence of
TDRD9Y (identified by accession no. NP_ 694591) is dis-
closed in, e.g., Isogai et al., 2003, “Homo sapiens cDNA
FLJ43990 fis, clone TESTI4019566, weakly similar to Dos-
age compensation regulator,” unpublished, each of which is
incorporated by reference herein in its entirety.

[0415] The nucleotide sequence of TGFBI (identified by
accession no. NM__000358) is disclosed in, e.g., Skonier et
al., 1992, “cDNA cloning and sequence analysis of beta ig-
h3, anovel gene induced in a human adenocarcinoma cell line
after treatment with transforming growth factor-beta,” DNA
Cell Biol. 11 (7):511-522, Stone et al., 1994, “Three autoso-
mal dominant corneal dystrophies map to chromosome 5q,”
Nat. Genet. 6 (1):47-51, Skonier et al., 1994, “beta ig-h3: a
transforming growth factor-beta-responsive gene encoding a
secreted protein that inhibits cell attachment in vitro and
suppresses the growth of CHO cells in nude mice,” DNA Cell
Biol. 13 (6):571-584, and the amino acid sequence of TGFB1
(identified by accessionno. NP_ 000349) is disclosed in, e.g.,
Skonieret al., 1992, “cDNA cloning and sequence analysis of
beta ig-h3, a novel gene induced in a human adenocarcinoma
cell line after treatment with transforming growth factor-
beta,” DNA Cell Biol. 11 (7):511-522; Stone et al., 1994,
“Three autosomal dominant corneal dystrophies map to chro-
mosome 5q,” Nat. Genet. 6 (1):47-51; Skonier et al., 1994,
“beta ig-h3: a transforming growth factor-beta-responsive
gene encoding a secreted protein that inhibits cell attachment
in vitro and suppresses the growth of CHO cells in nude
mice,” DNA Cell Biol. 13: 571-584, each of which is incor-
porated by reference herein in its entirety.

[0416] The nucleotide sequence of TIFA (identified by
accession no. NM_ 052864) is disclosed in, e.g., Kanamori,
M. et al., 2002, “T2BP, a novel TRAF2 binding protein, can
activate NF-kappaB and AP-1 without TNF stimulation,”
Biochem. Biophys. Res. Commun. 290 (3):1108-1113,
Takatsuna, H. et al., 2003, “Identification of TIFA as an
adapter protein that links tumor necrosis factor receptor-as-
sociated factor 6 (TRAF6) to interleukin-1 (IL-1) receptor-
associated kinase-1 (IRAK-1) in IL-1 receptor signaling,” J.
Biol. Chem. 278 (14):12144-12150, Matsuda et al., 2003,
“Large-scale identification and characterization of human
genes that activate NF-kappaB and MAPK signaling path-
ways,” Oncogene 22 (21):3307-3318, and the amino acid
sequence of TIFA (identified by accession no. NP__443096)
is disclosed in, e.g., Kanamori et al., 2002, “T2BP, a novel
TRAF2 binding protein, can activate NF-kappaB and AP-1
without TNF stimulation,” Biochem. Biophys. Res. Com-
mun. 290:1108-1113, Takatsuna et al., 2003, “Identification
of TIFA as an adapter protein that links tumor necrosis factor
receptor-associated factor 6 (TRAF6) to interleukin-1 (IL-1)
receptor-associated kinase-1 (IRAK-1) in IL.-1 receptor sig-
naling,” J. Biol. Chem. 278 (14):12144-12150, Matsudaetal.,
2003, “Large-scale identification and characterization of
human genes that activate NF-kappaB and MAPK signaling
pathways,” Oncogene 22 (20:3307-3318, each of which is
incorporated by reference herein in its entirety.

[0417] The nucleotide sequence of Tissue Inhibitor of Met-
alloproteinase 1 (TIMP1) (identified by accession no.
NM__003254) is disclosed in, e.g., Domeij et al., 2005, “ell
expression of MMP-1 and TIMP-1 in co-cultures of human
gingival fibroblasts and monocytes: the involvement of
ICAM-1,” Biochem. Biophys. Res. Commun. 338, 1825-
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1833; Zureik et al., “Serum tissue inhibitors of metallopro-
teinases 1 (TIMP-1) and carotid atherosclerosis and aortic
arterial stiffness”, J. Hypertens. 23, 2263-2268; Crombez,
2005, “High level production of secreted proteins: example of
the human tissue inhibitor of metalloproteinases 17, Bio-
chem. Biophys. Res. Commun. 337, 908-915 and the amino
acid sequence of TIMP1 (identified by accession no.
AAAT5558) is disclosed in, e.g., Hardcastle et al., 1997,
“Genomic organization of the human TIMP-1 gene. Investi-
gation of a causative role in the pathogenesis of X-linked
retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 38, 1893-
1896, which is incorporated by reference herein in its entirety.

[0418] The nucleotide sequence of TLR4 (identified by
accession no. AH009665) is disclosed in, e.g., Arbour, N. C.
et al., 1999, Direct Submission, Medicine, University of
Towa, 2182 Med Labs, lowa City, lowa 52242, USA, Arbour,
N. C. et al,, A Genetic Basis for a Blunted Response to
Endotoxin in Humans, Arbour, N. C. et al., unpublished, “A
Genetic Basis for a Blunted Response to Endotoxin in
Humans”, and the amino acid sequence of TL.R4 (identified
by accession no. AAF05316) is disclosed in, e.g., Beutler,
1999, Direct Submission, Department of Internal Medicine,
University of Texas Southwestern Medical Center and the
Howard Hughes Medical Institute, 5323 Harry Hines Boule-
vard, Dallas, Tex. 75235-9050, USA, Smirnova, 1. et al.,
2000, “Phylogenetic variation and polymorphism at the toll-
like receptor 4 locus (TLR4),” Genome Biol. 1, res. 002.1-
002.10, each of which is incorporated by reference herein in
its entirety.

[0419] The nucleotide sequence of TNFRSF6 (identified
by accessionno. NM_ 152877)is disclosed in, e.g., Ochm, A.
etal., 1992, “Purification and molecular cloning of the APO-1
cell surface antigen, a member of the tumor necrosis factor/
nerve growth factor receptor superfamily. Sequence identity
with the Fas antigen,” J. Biol. Chem. 267 (15):10709-10715,
Inazawa, J. et al., 1992, “Assignment of the human Fas anti-
gen gene (Fas) to 10q24.1,” Genomics 14 (3):821-822,
Cheng, J. et al., 1994, “Protection from Fas-mediated apop-
tosis by a soluble form of the Fas molecule,” Science 263
(5154):1759-1762, and the amino acid sequence of
TNFRSF6 (identified by accession no. NP_ 000034) is dis-
closed in, e.g., Ochm, A. et al., 1992, “Purification and
molecular cloning of the APO-1 cell surface antigen, a mem-
ber of the tumor necrosis factor/nerve growth factor receptor
superfamily. Sequence identity with the Fas antigen,” J. Biol.
Chem. 267 (15):10709-10715, Inazawa, J. et al, 1992,
“Assignment of the human Fas antigen gene (Fas) to 10q24.
1,” Genomics 14 (3):821-822, Cheng, J. et al., 1994, “Protec-
tion from Fas-mediated apoptosis by a soluble form of the Fas
molecule,” Science 263 (5154):1759-1762, each of which is
incorporated by reference herein in its entirety.

[0420] The nucleotide sequence of TNFSF10 (identified by
accession no. NM_ 003810) is disclosed in, e.g., Wiley, S. R.
et al., 1995, “Identification and characterization of a new
member of the TNF family that induces apoptosis,” Immunity
3 (6):673-682, Pitti, R. M. et al., 1996, “Induction of apopto-
sis by Apo-2 ligand, a new member of the tumor necrosis
factor cytokine family,” J. Biol. Chem. 271 (22):12687-
12690, Pan, G. et al., 1997, “The receptor for the cytotoxic
ligand TRAIL,” Science 276 (5309):111-113, and the amino
acid sequence of TNFSF10 (identified by accession no.
NP__003801) is disclosed in, e.g., Wiley, S. R. et al., 1995,
“Identification and characterization of a new member of the
TNF family that induces apoptosis,” Immunity 3 (6):673-682,
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Pitti, R. M. et al., 1996, “Induction of apoptosis by Apo-2
ligand, a new member of the tumor necrosis factor cytokine
family,” J. Biol. Chem. 271 (22):12687-12690, Pan, G. et al.,
1997, “The receptor for the cytotoxic ligand TRAIL,” Science
276 (5309):111-113, each of which is incorporated by refer-
ence herein in its entirety.

[0421] The nucleotide sequence of TNFSF13B (identified
by accession no. NM__006573) is disclosed in, e.g., Shu, H.
B.etal, 1999, “TALL-1 is a novel member of the TNF family
that is down-regulated by mitogens,” J. Leukoc. Biol. 65 (5):
680-683, Mukhopadhyay, A. et al., 1999, “Identification and
characterization of a novel cytokine, THANK, a TNF homo-
logue that activates apoptosis, nuclear factor-kappaB, and
c-Jun NH,-terminal kinase,” J. Biol. Chem. 274 (23):15978-
15981, Schneider, P. et al., 1999, “BAFF, a novel ligand of the
tumor necrosis factor family, stimulates B cell growth,” J.
Exp. Med. 189 (11):1747-1756, and the amino acid sequence
of TNFSF13B (identified by accession no. NP_ 006564) is
disclosed in, e.g., Shu, H. B. et al., 1999, “TALL-1 is a novel
member of the TNF family that is down-regulated by mito-
gens,” J. Leukoc. Biol. 65 (5): 680-683, Mukhopadhyay, A. et
al., 1999, “Identification and characterization of a novel
cytokine, THANK, a TNF homologue that activates apopto-
sis, nuclear factor-kappaB, and c-Jun NH2-terminal kinase,”
J. Biol. Chem. 274 (23):15978-15981, Schneider, P. et al.,
1999, “BAFF, a novel ligand of the tumor necrosis factor
family, stimulates B cell growth,” J. Exp. Med. 189 (11):
1747-1756, each of which is incorporated by reference herein
in its entirety.

[0422] The nucleotide sequence of VNNI1 (identified by
accession no. NM__004666) is disclosed in, e.g., Aurrand-
Lions, M. et al., 1996, “Vanin-1, a novel GPI-linked perivas-
cular molecule involved in thymus homing,” Immunity 5
(5):391-405, Galland, F. et al., 1998, “Two human genes
related to murine vanin-1 are located on the long arm of
human chromosome 6,” Genomics 53 (2):203-213, Maras, B.
etal., 1999, “Is pantetheinase the actual identity of mouse and
human vanin-1 proteins?,” FEBS Lett. 461 (3):149-152, and
the amino acid sequence of VNN1 (identified by accession
no. NP__004657) is disclosed in, e.g., Aurrand-Lions,M. et
al., 1996, “Vanin-1, a novel GPI-linked perivascular molecule
involved in thymus homing,” Immunity 5 (5):39'-405, Gal-
land, F. et al., 1998, “Two human genes related to murine
vanin-1 are located on the long arm of human chromosome
6,” Genomics 53 (2):203-213, Maras, B. et al., 1999, “Is
pantetheinase the actual identity of mouse and human vanin-1
proteins?,” FEBS Lett. 461 (3):149-152, each of which is
incorporated by reference herein in its entirety.

5.11.2 Exemplary Combinations of Biomarkers in
Accordance with Embodiments of the Invention

[0423] In some embodiments, the methods or kits respec-
tively described or referenced in Section 5.2 and Section 5.3
use at least 2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, or more
biomarkers selected from Table I regardless of whether each
such biomarker has an “N” designation or a “P” designation
in Table 1. In some nonlimiting exemplary embodiments,
between 2 and 53, between 3 and 40, between 4 and 30, or
between 5 and 20 such biomarkers are used.

[0424] Nucleic acid based kits and methods. In some
embodiments, the methods or kits respectively described or
referenced in Section 5.2 and Section 5.3 use at least 2, 3, 4,
5,6,7,8,9,10,11, 12,13, 14,15, 16, 17, 18, 19, 20, 21, 22,
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23,24, 25,30,35, 40, or more biomarkers selected from Table
J. Typcially, in these embodiments, each biomarker is a
nucleic acid (e.g., DNA, such as cDNA or amplified DNA, or
RNA, such as mRNA), or a discriminating molecule or dis-
criminating fragment of a nucleic acid. In some nonlimiting
exemplary embodiments, between 2 and 44, between 3 and
35, between 4 and 25, or between 5 and 20 such biomarkers
are used.

[0425] Protein or peptide based kits and methods. In some
embodiments, the methods or kits respectively described or
referenced in Section 5.2 and Section 5.3 use at least 2, 3, 4,
5,6,7,8,9, or 10 of the biomarkers selected from Table K.
Typcially, such biomarkers are peptide-based (e.g., a peptide,
a full length protein, etc.), or a discriminating molecule or
discriminating fragment of the foregoing. In some embodi-
ments, the biomarkers in the kit are specific antibodies to two
or more of the biomarkers listed in Table K. In some nonlim-
iting exemplary embodiments, between 2 and 10, between 3
and 10, between 4 and 10, or between 5 and 10 such biomar-
kers are used.

[0426] Homogenous kits and methods. In some embodi-
ments, each of the biomarkers in the methods or kits respec-
tively described or referenced in Section 5.2 and Section 5.3
use at least two or more biomarkers selected from Table I
where each biomarker used in such methods or kits is in the
same physical form. In one example in accordance with such
embodiments, each biomarker in a method or kit in accor-
dance Section 5.2 and Section 5.3, respectively, is a biomar-
ker selected from Table I and is a nucleic acid or a discrimi-
nating molecule of a nucleic acid in the method or kit. In
another example in accordance with such embodiments, each
biomarker in a method or kit in accordance Section 5.2 and
Section 5.3, respectively, is a biomarker selected from Table
I and is peptide-based (e.g., a peptide, a full length protein,
etc.) or a discriminating molecule of the forgoing. In these
embodiments, biomarkers are selected without regard as to
whether they are designated “P” or “N” in Table I. Thus, a kit
in accordance with these embodiments can include a biom-
arker in nucleic acid form, even when the biomarker is des-
ignated “P” on Table I. Correspondingly, a kit in accordance
with this embodiment can include a biomarker in peptidic
form, even when the biomarker is designated “N” on Table I.
[0427] Heterogeneous kits and methods. In some embodi-
ments, each of the biomarkers in the methods and kits respec-
tively described or referenced in Section 5.2 and Section 5.3
use at least two or more biomarkers selected from Table I
where each such biomarker is in the same physical form that
the biomarker was in when identified in Sections 6.11 through
6.13 below. In other words, if the biomarker has an “N”
designation in Table I, a nucleic acid form of the biomarker is
used in the methods and kits respectively described or refer-
enced in Section 5.2 and 5.3 in accordance with this embodi-
ment of the invention. If the biomarker has a “P” designation
in Table 1, a peptidic form of the biomarker is used in the
methods and kits respectively described or referenced in Sec-
tion 5.2 and 5.3 in accordance with this embodiment of the
invention. Further, there is at least one biomarker used in such
methods or kits that has an “N” designation in Table I and at
least one biomarker that has a “P” designation. In such
embodiments, biomarkers having an N designation in Table |
are nucleic acids and biomarkers having a P designation in
Table I are peptide-based or protein-based.

[0428] A non-limiting exemplary kit in accordance with
such mixed embodiments use two biomarkers from among
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the biomarkers listed in Table ], in nucleic acid form, and
three biomarkers from among the biomarkers listed in Table
K, in peptidic-based form. In some embodiments, the non-
limiting methods and kits respectively described or refer-
enced in Sections 5.2 and 5.3 use at least 2, 3,4, 5,6,7,8, 9,
10,11,12,13,14,15,16,17, 18,19, 20, 21,22, 23, 24,25, 30,
35, 40, or more biomarkers from Table J, in nucleic acid form,
and 1,2,3,4,5,6,7,8,9, or 10 biomarkers from Table K in
peptide-based or protein-based form.

[0429] Additional kits and methods. In some embodiments,
each of the biomarkers in the methods and kits respectively
described or referenced in Section 5.2 and Section 5.3 use at
least one biomarkers selected from Table I and at least one
different biomarker from Table 31. In some embodiments,
each of the biomarkers in the methods and kits respectively
described or referenced in Section 5.2 and Section 5.3 use at
least2,3,4,5,6,7,8,9, or 10 biomarkers selected from Table
Tand at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 different biomarkers
from Table 31.

[0430] Insomeembodiments, each of the biomarkers in the
methods and kits respectively described or referenced in Sec-
tion 5.2 and Section 5.3 use at least one biomarker in, nucleic
acid form, selected from Table J and at least one different
biomarker from Table 31. In some embodiments, each of the
biomarkers in the methods and kits respectively described or
referenced in Section 5.2 and Section 5.3 use at least 2, 3, 4,
5,6,7,8,9, or 10 biomarkers selected from Table I, each in
nucleic acid form, and at least 2, 3, 4, 5, 6, 7, 8, 9, or 10
different biomarkers from Table 31.

[0431] Insomeembodiments, each of the biomarkers in the
methods and kits respectively described or referenced in Sec-
tion 5.2 and Section 5.3 use at least one biomarker in, protein
form, selected from Table K and at least one different biom-
arker from Table 31. In some embodiments, each of the biom-
arkers in the methods and kits respectively described or ref-
erenced in Section 5.2 and Section 5.3 use atleast 2, 3,4, 5, 6,
7,8, 9, or 10 biomarkers selected from Table I, each in protein
form, and at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 different biomar-
kers from Table 31.

[0432] Insomeembodiments, each of the biomarkers in the
methods and kits respectively described or referenced in Sec-
tion 5.2 and Section 5.3 use at least one biomarker from
among the biomarkers listed in Table J, in nucleic acid form,
and at least one biomarkers from among the biomarkers listed
in Table K, in protein form. In some embodiments, the non-
limiting methods and kits respectively described or refer-
enced in Sections 5.2 and 5.3 use at least 2, 3,4, 5,6,7,8, 9,
10,11,12,13,14,15,16,17, 18,19, 20, 21,22, 23, 24, 25, 30,
35, 40, or more biomarkers from Table J, in nucleic acid form,
and 1,2,3,4,5,6,7,8,9, or 10 biomarkers from Table K in
protein form.

[0433] In some embodiments, any of the above-described
combinations of biomarkers are used in methods or kits in
accordance Section 5.2 and Section 5.3 with the exception
that the IL-6, IL-8, MMP9, B2M, HLA-DRA, and MCP1
biomarkers are not used in such methods orkits. For example,
in embodiments where certain monocytes are isolated from
whole blood and tested, such biomarkers are not utilized,
especially when such biomarkers are nucleic acids. In some
embodiments, any of the above-described combinations of
biomarkers are used in methods or kits in accordance Section
5.2 and Section 5.3 with the exception that the 1L.-6, I1.-8,
IL-10, and CRP protein biomarkers are not used in such
methods or kits. In some embodiments, any of the above-
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described combinations of biomarkers are used in methods or
kits in accordance Section 5.2 and Section 5.3 with the excep-
tion that the IL-6, IL-8, IL-10, and CRP nucleic acid biom-
arkers are not used in such methods or kits. In some embodi-
ments, any of the above-described combinations of
biomarkers are used in methods or kits in accordance Section
5.2 and Section 5.3 with the exception that the IL-6 and
MAPK biomarkers are not used in such methods or kits. In
some embodiments, any of the above-described combina-
tions of biomarkers are used in methods or kits in accordance
Section 5.2 and Section 5.3 with the exception that the I1.-6,
IL-8, and IL-10 biomarkers are not used in such methods or
kits. In some embodiments, any of the above-described com-
binations of biomarkers are used in methods or kits in accor-
dance Section 5.2 and Section 5.3 with the exception that the
CD86, 1L-6, IL-8, IL-10, and CRP biomarkers are not used in
such methods or kits. In some embodiments, any of the
above-described combinations of biomarkers are used in
methods or kits in accordance Section 5.2 and Section 5.3
with the exception that the IL.-6 and IL.-10 biomarkers are not
used in such methods or kits. In some embodiments, any of
the above-described combinations of biomarkers are used in
methods or kits in accordance Section 5.2 and Section 5.3
with the exception that the IL.-6 and CRP biomarkers are not
used in such methods or kits. In some embodiments, any of
the above-described combinations of biomarkers are used in
methods or kits in accordance Section 5.2 and Section 5.3
with the exception that the CRP biomarker is not used in such
methods or kits. In some embodiments, any of the above-
described combinations of biomarkers are used in methods or
kits in accordance Section 5.2 and Section 5.3 with the excep-
tion that the IL-8 biomarker is not used in such methods or
kits. In some embodiments, any of the above-described com-
binations of biomarkers are used in methods or kits in accor-
dance Section 5.2 and Section 5.3 with the exception that the
B2M biomarker is not used in such methods or kits.

5.11.3 Exemplary Subcombinations of Biomarkers in
Accordance with Embodiments of the Invention

[0434] In some embodiments, the methods or kits respec-
tively described or referenced in Section 5.2 and Section 5.3
use any one biomarker set listed in Table L. The biomarker
sets listed in Table I were identified in the computational
experiments described in Section 6.14.1, below, in which
4600 random subcombinations of the biomarkers listed in
Table J were tested. Table L, below, lists some of the biom-
arker sets that provided high accuracy scores against the
validation population described in Section 6.14.1. Each row
of Table L lists a single biomarker set that can be used in the
methods and kits respectively referenced in Sections 5.2 and
5.3.In other words, each row of Table L describes a biomarker
set that can be used to discriminate between sepsis and SIRS
subjects (e.g., to determine whether a subject is likely to
acquire sepsis). In some embodiments, nucleic acid forms of
the biomarkers listed in a biomarker set in Table L are used in
the methods and kits respectively referenced in Sections 5.2
and 5.3. In some embodiments, protein forms of the biomar-
kers listed in a biomarker set in Table L. are used in the
methods and kits respectively referenced in Sections 5.2 and
5.3. In some hybrid embodiments, some of the biomarkers in
abiomarker set listed in Table L are in protein form and some
of the biomarkers in the same biomarker set from Table L are
in nucleic acid form in the methods and kits respectively
referenced in Sections 5.2 and 5.3.
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[0435] In some embodiments, a given biomarker set listed four, five, six, seven, eight, or nine or more additional biom-
in Table L is used with the addition of one, two, three, four, arkers from any one of Tables 1, 30, 31, 32, 33, 34, or 36 that
five, six, seven, eight, or nine or more additional biomarkers are not within the given biomarker set from Table .. In Table
listed in Table I that are not within the given set of biomarkers L, accuracy, specificity, and senstitivity are described with
from Table L. In some embodiments, a given biomarker set reference to T_, , time point data described in Section 6.14.1,

listed in Table L is used with the addition of one, two, three, below.

TABLE L

Exemplary sets of biomarkers used in the methods or kits referenced in
Sections 5.2 and 5.3

BIOMARKER SET ACCURACY  SPECIFICITY SENSISTIVITY
INSL3, BCL2A1, CD86 0.82 0.82 0.83
MAP2KS6, INSL3, CD86 0.82 0.75 0.87
ARG2, MAP2K6, SOCS3 0.82 0.75 0.87
NCRI1, GADD45A, OSM 0.81 0.77 0.85
GADDA45B, TNFSF13B, PFKFB3 0.80 0.74 0.87
TLR4, FCGR1A, CSF1R 0.80 0.82 0.78
SOCS3, FCGR1A, PSTPIP2 0.80 0.79 0.81
TGFBI, MAP2K6, PSTPIP2 0.80 0.76 0.83
IFNGR1, JAK2, TNFRSF6, OSM 0.83 0.80 0.87
IRAK2, GADDA45A, CDg6, JAK?2 0.83 0.86 0.81
GADD45A, PRV1, OSM, FCGR1A 0.83 0.80 0.86
IRAK4, CCL5, INSL3, CD86 0.83 0.76 0.90
VNNI1, BCL2A1, GADD45B, FAD104 0.82 0.83 0.81
OSM, CD86, PRV1, BCL2A1 0.82 0.78 0.85
VNN1, SOCS3, CSF1R, FCGR1A 0.82 0.78 0.85
VNN1, CCL5, ANKRD22, OSM 0.82 0.77 0.86
LDLR, SOCS3, CD86, IL10alpha 0.81 0.78 0.85
TLR4, SOCS3, IRAK?2, CSFIR 0.81 0.76 0.85
IL1RN, SOCS3, ARG2, LDLR 0.81 0.76 0.84
IL18R1, MAP2K6, TGFBI, OSM 0.80 0.86 0.75
FCGR1A, HLA-DRA, IL18R1, PSTPIP2 0.80 0.79 0.82
OSM, ILIRN, SOD2, SOCS3 0.80 0.78 0.82
NCR1, JAK?2, TNFSF13B, FCGR1A 0.80 0.76 0.86
TIFA, VNN1, ANXA3, ITGAM 0.80 0.73 0.88
PFKFB3, IRAK?2, CSF1R, CD86, PSTPIP2 0.88 0.83 0.91
PSTPIP2, FAD104, TIFA, CD8&6, LY96 0.84 0.85 0.84
IL1RN, IL10alpha, IFNGR1, OSM, MKNK1 0.83 0.78 0.89
IL18R1, CCL5,JAK?2, SOCS3, SOD2 0.83 0.81 0.84
JAK2, MKNK1, TNFSF13B, PRV1, TNFSF10 0.83 0.81 0.84
MAP2K6, ARG2, OSM, ANKRD?22, 0.83 0.8 0.85
Gene_ MMP9

SOCS3, IL1IRN, ARG2, FCGR1A, CCL5 0.83 0.78 0.87
CCL5, INSL3, SOD2, TLR4, ARG2 0.83 0.78 0.87
FCGR1A, ARG2, CD&6, MAPK14, TNFRSF6 0.82 0.83 0.82
INSL3, TLR4, SOCS3, CSF1R, FCGR1A 0.82 0.79 0.85
CEACAM1, TNFRSF6, MAPK 14, IL10alpha, 0.82 0.79 0.84
CSFIR

ANKRD?22, CD86, CRTAP, OSM, PFKFB3 0.82 0.79 0.84
OSM, IL18R1, LDLR, GADD45B, MKNK1 0.82 0.76 0.86
CRTAP, SOCS3, PSTPIP2, TIFA, FAD104 0.81 0.82 0.81
PSTPIP2, ARG2, IL10alpha, TLR4, CSF1R 0.81 0.81 0.82
TIFA, PFKFB3, CSF1R, LDLR, Gene_ MMP9 0.81 0.79 0.83
NCRI1, PSTPIP2, GADD45A, LY96, MAPK14 0.81 0.77 0.86
ARG2,BCL2A1, NCR1, PSTPIP2, IL10alpha 0.81 0.82 0.8
PFKFB3, OSM, CSF1R, CD86, TIFA 0.81 0.81 0.81
IL10alpha, CD86, SOCS3, GADDA45A, TGFBI 0.81 0.78 0.84
PSTPIP2, PFKFB3, INSL3, PRV1, ILIRN 0.81 0.78 0.85
ITGAM, PRV, IL18R1, INSL3, JAK2 0.81 0.77 0.85
PSTPIP2, OSM, IL18R1, TNFSF13B, ITGAM 0.81 0.72 0.9
CDg6, TIFA, CSF1R, FCGR1A, CRTAP 0.81 0.84 0.78
LY96, TGFBI, SOCS3, ANKRD22, MAPK14 0.81 0.83 0.79
IL1RN, SOD2, VNN1, OSM, TNFSF10 0.81 0.79 0.82
CRTAP, NCR1, OSM, PRV1, ANXA3 0.81 0.76 0.85
TDRD?9, LY96, CEACAM1, OSM, NCR1 0.81 0.72 0.88
TGFBI, INSL3, GADD45A, LDLR, PSTPIP2 0.8 0.75 0.85
PFKFB3, IRAK?2, CSF1R, CD86, PSTPIP2 0.88 0.83 0.91
MAP2K6, ARG2, CD86, PRV1, FAD104, 0.85 0.86 0.84
MAPK14

ARG2,LY96, INSL3, MAP2K6, TNFSF10, 0.85 0.86 0.84
NCR1

SOCS3, GADD45B, CSF1R, ARG2, PSTPIP2, 0.85 0.83 0.86

OSM
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TABLE L-continued

56

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET ACCURACY SPECIFICITY SENSISTIVITY
GADDA45B, PFKFB3, PSTPIP2, FCGR1A, 0.85 0.81 0.88
HLA-DRA, ARG2

TIFA, IL18R1, MAPK14, CD86, ARG2, 0.84 0.8 0.88
TNFSF13B

FCGRI1A, ARG2, GADD45B, IL10alpha, 0.84 0.81 0.86
NCR1, LDLR

TGFBI, INSL3, IRAK4, GADD45B, SOCS3, 0.84 0.8 0.87
CSFIR

SOCS3, CSFIR, CEACAM1, ARG2, 0.83 0.82 0.85
IL10alpha, IFNGR1

TLR4, PFKFB3, ARG2, PRV1, LDLR, 0.83 0.81 0.85
TNFSF13B

PSTPIP2, OSM, TLR4, INSL3, IRAK4, 0.83 0.8 0.85
IL18R1

GADDA45A, CCL5, FCGR1A, PSTPIP2, 0.82 0.83 0.82
MAP2K6, ILIRN

OSM, FAD104, JAK2, CRTAP, TDRD9, 0.82 0.79 0.85
TNFSF13B

FAD104, SOCS3, TNFSF13B, GADD45B, 0.82 0.84 0.81
CRTAP, TGFBI

IL18R1, TNFRSF6, INSL3, CD86, ANXA3, 0.82 0.79 0.84
PSTPIP2

HLA-DRA, INSL3, ARG2, CD8&6, CCL5, 0.82 0.79 0.84
SOCS3

TNFRSF6, IL18R1, CD&6, PFKFB3, 0.81 0.82 0.81
IL10alpha, FAD104

FAD104, TGFBI, TDRD9, CD86, SOD2, 0.81 0.79 0.83
ARG2

CD86, ARG2, GADD45A, TLR4, BCL2Al, 0.81 0.79 0.83
GADD45B

SOD2, CEACAMI1, OSM, GADDA45A, 0.81 0.74 0.88
PSTPIP2, IL10alpha

FCGRI1A, CSFIR, NCR1, ANXA3, SOCS3, 0.81 0.81 0.8
Gene_ MMP9

TNFSF10, IL1IRN, OSM, CSF1R, PSTPIP2, 0.81 0.78 0.83
JAK2

CD86, VNN1, LDLR, IL1RN, MAP2KS6, 0.81 0.76 0.84
TDRD9

ARG2, OSM, CSFIR, ITGAM, CRTAP, 0.81 0.76 0.85
SOCS3

ANXA3, CSF1R, CEACAMI, Gene_ MMP9, 0.8 0.8 0.81
CD86, OSM

LY96, VNNI1, SOD2, TGFBI, ARG2, CSF1R 0.8 0.78 0.83
GADDA45A, PSTPIP2, BCL2A1, ANKRD22, 0.8 0.77 0.83
HLA-DRA, ANXA3

TGFBI, FCGR1A, ARG2, CD86, PFKFB3, 0.86 0.86 0.85
BCL2A1, TNFRSF6

SOCS3, ITGAM, TDRD9, INSL3, PRV1, 0.84 0.81 0.87
TGFBI, ARG2

MKNK1, GADD45B, IRAK?2, TIFA, OSM, 0.83 0.81 0.85
VNN1, PSTPIP2

SOCS3, PSTPIP2, TDRD9, IL10alpha, ARG2, 0.83 0.82 0.84
CD86, CCL5

CSF1R, PSTPIP2, MAPK 14, INSL3, IL18R1, 0.83 0.78 0.87
JAK2, OSM

MKNKI1, PSTPIP2, ARG2, LY96, ANKRD22, 0.82 0.85 0.8
SOCS3, IRAK4

PSTPIP2, FAD104, TNFSF13B, ITGAM, 0.82 0.83 0.82
BCL2A1, FCGR1A, ANXA3

SOCS3, IRAK?2, IFNGR1, CD86, OSM, 0.82 0.81 0.83
PSTPIP2, GADD45A

INSL3, NCR1, PSTPIP2, PFKFB3, 0.82 0.8 0.84
ANXRD22, HLA-DRA, MKNK1

FCGRI1A, HLA-DRA, CSFIR, SOCS3, 0.82 0.76 0.88
IRAK4, TIFA, ARG2

FAD104, TGFBI, MAP2K6, IRAK4, LY96, 0.82 0.81 0.83
CD86, ANKRD22

LDLR, INSL3, GADD45B, ARG2, PFKFB3, 0.82 0.78 0.86
HLA-DRA, ITGAM

FCGRI1A, TIFA, CD86, PFKFB3, TDRD9, 0.82 0.79 0.85

GADDA45A, LDLR

May 5, 2011



US 2011/0105350 Al

TABLE L-continued
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Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET ACCURACY SPECIFICITY SENSISTIVITY
SOCS3, CSFIR, SOD2, CD86, MAP2KG, 0.82 0.76 0.86
GADDA45B, PSTPIP2

MKNK]1, CD86, FAD104, PRV1, SOCS3, 0.82 0.76 0.87
IL10alpha, MAP2K6

TIFA, JAK2, LDLR, IRAK?2, VNNI1, CDg6, 0.81 0.81 0.81
ARG2

ANKRD22, MAPK14, INSL3, BCL2A1, 0.81 0.79 0.83
CRTAP, IRAK2, FCGRIA

FAD104, INSL3, CD86, TNFRSF6, 0.81 0.79 0.83
GADDA45A, IFNGR1, JAK2

CSFIR, INSL3, VNNI, TIFA, IFNGR1, 0.81 0.79 0.83
LDLR, ARG2

PFKFB3, BCL2A1, ANXA3, IL10alpha, 0.81 0.79 0.84
FAD104, VNN1, INSL3

CSFIR, CEACAMI1, MAP2K6, GADD45B, 0.81 0.82 0.8
TNFSF10, TNFSF13B, TIFA

FCGRIA, ARG2, IRAK2, GADD45A, CDS6, 0.81 0.82 0.79
Gene_ MMP9, BCL2A1

CRTAP, CEACAMI, FAD104, MKNK1, 0.81 0.76 0.84
INSL3, ITGAM, SOD2

OSM, TDRDSY, BCL2A1, IRAK2, GADD45A, 0.8 0.77 0.84
CD86, LDLR

PFKFB3, CCLS, CSFIR, LDLR, TLR4, LY96, 0.8 0.77 0.84
FAD104

IRAK4, GADD45B, CEACAMI, FAD104, 0.8 0.75 0.85
CSFIR, IRAK2, MAPK14

IFNGR1, FAD104, MAP2K6, TNFRSF6, 0.8 0.74 0.86
FCGRIA, IRAK2, ARG2

TGFBI, IRAK2, CRTAP, BCL2A1, ITGAM, 0.8 0.81 0.79
ANXA3, FCGR1A

SOD2, PFKFB3, GADD45B, IRAK2, PRV, 0.8 0.77 0.82
SOCS3, FCGRIA

TNFRSF6, TLR4, IRAK?2, ITGAM, JAK2, 0.8 0.77 0.83
OSM, NCR1

IL10alpha, ANKRD22, Gene. MMP9, ILIRN, 0.8 0.76 0.84
LY96, FAD104, PSTPIP2

IRAK4, INSL3, CSFIR, ITGAM, VNN, 0.8 0.74 0.86
HLA-DRA, IL18R1

IRAK?2, TGFBI, MAP2K6, IL18R1, IFNGRI, 0.8 0.73 0.87
CRTAP, PSTPIP2

TDRD9, ITGAM, OSM, NCR1, CD86, 0.8 0.73 0.87
MAP2K6, CCL5

ANXA3, FCGR1A, TNFSF10, VNNI, 0.85 0.86 0.84
TNFSF13B, ARG2, 12, CD86

INSL3, PFKFB3, MAPK14, FCGRIA, 0.85 0.84 0.85
TDRD9, CSFIR, 12, IRAK4

VNNI1, CSFIR, ANKRD22, OSM, 0.85 0.78 0.9
GADDA45A, LY96, 12, MAP2K6

ITGAM, OSM, LY96, TDRDY, ANKRD22, 0.84 0.84 0.83
TLR4, 12, MKNK1

ARG2, ANXA3, MAP2K6, CCL5, CD86, 0.84 0.84 0.83
OSM, 12, LDLR

OSM, IL1RN, FCGR1A, GADD45A, ARG2, 0.84 0.82 0.86
IL10alpha, 12, ITGAM

TIFA, ANKRD22, TNFSF13B, CRTAP, 0.84 0.81 0.86
MAP2K6, IRAK4, 12, ARG2

IRAK?2, TLR4, IL10alpha, TGFBI, PRV1, 0.83 0.8 0.86
FAD104, 12, MAP2K6

IL18R1, FAD104, TNFSF13B, MAP2KG, 0.83 0.81 0.85
OSM, SOD2, 12, TNFRSF6

OSM, LDLR, VNNI, LY96, ARG2, MAPK 14, 0.83 0.8 0.85
12, IRAK2

PRV1, ITGAM, SOD2, Gene_ MMP9, OSM, 0.83 0.79 0.86
JAK?2, 12, ARG2

ANXA3, TNFSF10, CEACAMI, FCGRIA, 0.83 0.78 0.86
HLA-DRA, IL10alpha, 12, SOCS3

ITGAM, CD86, CEACAMI, TDRDY, 0.83 0.77 0.88
GADDA45A, PFKFB3, 12, SOCS3

SOCS3, PRV1, ARG2, CEACAMI, LDLR, 0.82 0.83 0.82

GADDA45A, 12, IL10alpha
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Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET ACCURACY SPECIFICITY SENSISTIVITY
INSL3, CSFIR, ILIRN, PSTPIP2, MKNKI, 0.82 0.8 0.84
SOCS3, 12, JAK2

TDRD9, LY96, ITGAM, NCR1, PSTPIP2, 0.82 0.75 0.9
IL10alpha, 12, OSM

PFKFB3, MAP2K6, ARG2, TGFBL, LDLR, 0.82 0.84 0.8
FAD104, 12, MAPK14

ARG2, IL18R1, NCR1, CD86, FCGRIA, 0.82 0.79 0.84
TGFBI, 12, ILIRN

HLA-DRA, CEACAMI, IFNGR1, MKNK1, 0.82 0.76 0.87
LDLR, GADD45B, 12, CSFIR

IL10alpha, ILIRN, OSM, PSTPIP2, INSL3, 0.82 0.81 0.82
TIFA, 12, TLR4

MKNK]1, CSFIR, VNN1, OSM, ARG2, 0.81 0.81 0.82
GADD45B, 12, SOCS3

IL18R1, GADD45B, TNFRSF6, TNFSF10, 0.81 0.79 0.84
TIFA, JAK2, 12, GADD4SA

LDLR, IL10alpha, PRV1, LY96, ANXA3, 0.81 0.76 0.86
TNFRSF6, 12, CCLS

IL18R1, CD86, PFKFB3, ANKRD22, CSFIR, 0.81 0.8 0.82
SOCS3, 12, TIFA

CCL5, TDRD9, PSTPIP2, ARG2, INSL3, 0.81 0.77 0.85
OSM, 12, CSFIR

CEACAMLI, IL10alpha, IL18R1, PSTPIP2, 0.81 0.77 0.85
TGFBI, TIFA, 12, VNN1

GADDA45B, Gene_ MMP9, TLR4, PFKFB3, 0.81 0.76 0.85
VNNI1, JAK2, 12, IL18R1

FAD104, MAPK14, IFNGR1, IL18R1, 0.81 0.76 0.86
TNFSF10, CD86, 12, HLA-DRA

PSTPIP2, SOCS3, OSM, CSFIR, PFKFB3, 0.81 0.75 0.86
NCR1, 12, PRV1

TGFBI, SOCS3, ITGAM, TNFSF13B, 0.81 0.8 0.81
IL18R1, PSTPIP2, 12, ANKRD22

CEACAMI, SOCS3, PFKFB3, TNFRSF6, 0.81 0.79 0.82
PSTPIP2, OSM, 12, BCL2Al

TNFRSF6, ITGAM, BCL2A1, INSL3, CDg6, 0.81 0.77 0.84
TIFA, 12, PFKFB3

PFKFB3, PSTPIP2, MAP2K6, IRAK4, OSM, 0.81 0.76 0.85
CCLS5, 12, TNFSF10

MKNKI, TIFA, IL1RN, ARG2, SOCS3, 0.81 0.76 0.85
IL10alpha, 12, IFNGR1

FAD104, TNFSF13B, OSM, BCL2Al, 0.8 0.8 0.8
TDRD9, LY96, 12, SOD2

CD86, SOCS3, PSTPIP2, CCLS, OSM, TLR4, 0.8 0.77 0.83
12, MAPK14

TGFBI, LDLR, CRTAP, CSFIR, NCRI, 0.8 0.82 0.78
LY96, 12, PSTPIP2

JAK?2, TIFA, TNFSF10, IL18R1, CCL5, 0.8 0.82 0.78
INSL3, 12, VNNI1

TIFA, ILIRN, MAP2K6, HLA-DRA, OSM, 0.8 0.8 0.8
FAD104, 12, INSL3

JAK?2, IRAK?2, PRV1, TNFSF13B, OSM, 0.8 0.8 0.8
HLA-DRA, 12, IFNGR1

ANXA3, CSFIR, TLR4, SOCS3, IRAK4, 0.8 0.8 0.8
PRV1, 12, INSL3

TGFBI, IRAK4, PFKFB3, SOD2, ANXA3, 0.8 0.8 0.8
ITGAM, 12, TDRD9

TIFA, FCGR1A, TNFRSF6, LY96, IL10alpha, 0.8 0.78 0.81
SOCS3, 12, OSM

PRV1, TLR4, CSFIR, IL18R1, PSTPIP2, 0.8 0.78 0.82
TDRD9, 12, HLA-DRA

LY96, TNFSF13B, OSM, TGFBI, TIFA, 0.8 0.77 0.82
FAD104, 12, NCR1

ITGAM, ARG2, IL10alpha, SOD2, LY96, 0.8 0.76 0.83
OSM, 12, FCGR1A

ANKRD22, HLA-DRA, PRV1, NCR1, 0.8 0.76 0.84
CSFIR, PSTPIP2, 12, LY96

Gene_ MMP9, PSTPIP2, GADD45B, SOD2, 0.8 0.74 0.86
ANKRD22, TNFSF13B, 12, ITGAM

ANXA3, FCGR1A, TNFSF10, VNNI, 0.85 0.86 0.84

TNFSF13B, ARG2, 12, CD86
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Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET ACCURACY SPECIFICITY SENSISTIVITY
CSF1R, PFKFB3, BCL2A1, SOCS3, NCR1, 0.86 0.87 0.85
TNFSF10, FCGR1A, ARG2, CD86

PSTPIP2, ITGAM, IRAK?2, OSM, NCR1, 0.84 0.81 0.87
CEACAM1, PFKFB3, TLR4, ANXA3

INSL3, ARG2, LDLR, HLA-DRA, NCR1, 0.84 0.78 0.9
TIFA, LY96, ITGAM, SOCS3

CD86, CSFIR, SOD2, OSM, SOCS3, 0.83 0.79 0.87
BCL2A1, GADD45B, ARG2, HLA-DRA

ARG2, CD86, MAP2K6, HLA-DRA, 0.83 0.82 0.84
IL10alpha, IRAK2, GADD45B, MKNK 1,

IL18R1

IFNGRI1, BCL2A1, ARG2, TNFSF13B, 0.83 0.8 0.86
GADDA45A, FCGR1A, TNFRSF6, CD86,

MAP2K6

OSM, TNFSF10, CSF1R, CCL5, IRAK2, 0.83 0.82 0.83
INSL3, ARG2, TNFSF13B, TNFRSF6

LY96, TNFSF10, GADD45B, CRTAP, ARG2, 0.82 0.87 0.77
ANXA3, CSF1R, CCL5, OSM

NCRI, LY96, FAD104, ANKRD22, BCL2A1, 0.82 0.79 0.84
PSTPIP2, ARG2, PRV1, IL18R1

SOD2, IRAK?, JAK2, CCL5, IL10alpha, 0.82 0.77 0.86
ARG2, BCL2A1, SOCS3, CSF1IR

TNFRSF6, TGFBI, FCGR1A, IRAK4, 0.82 0.81 0.83
GADD45A, LDLR, IFNGR1, CSFIR, TIFA

GADDA45B, ITGAM, PRV1, SOD2, 0.81 0.79 0.83
TNFSF13B, HLA-DRA, FAD104, TNFRSF6,

TLR4

IRAK?2, SOCS3, GADD45B, MAP2K6, PRV, 0.81 0.83 0.8
PFKFB3, CD8&6, IFNGR1, ANKRD22

HLA-DRA, GADD45A, FCGR1A, 0.81 0.81 0.81
ANKRD22, ARG2, NCR1, BCL2A1, IRAK?,

SOCS3

IRAK4, SOCS3, MKNK1, JAK2, OSM, 0.81 0.79 0.83
ANXA3, VNNI1, ITGAM, TNFRSF6

SOD2, JAK?2, FAD104, CD86, ARG2, CCL5, 0.81 0.79 0.83
MAP2K6, IFNGR1, PFKFB3

IL18R1, CSF1R,IRAK?2, HLA-DRA, 0.81 0.78 0.83
PFKFB3, CRTAP, CD86, TIFA, TNFSF10

MAP2K6, FAD104, TGFBI, IRAK4, CRTAP, 0.81 0.77 0.84
LDLR, IRAK2, FCGR1A, ARG2

CEACAM1, SOD2, GADD45A, VNNI1, 0.81 0.73 0.88
IRAK4, OSM, TDRD9, GADD45B, PSTPIP2

PSTPIP2, ANKRD22, TNFSF10, INSL3, 0.81 0.84 0.78
HLA-DRA, NCR1, TNFSF13B, CSF1R,

Gene_ MMP9

JAK2, MAP2K6, CSF1R, IRAK?2, TNFSF10, 0.81 0.81 0.8
LDLR, OSM, BCL2A1, ARG2

Gene_ MMP9, MAP2K6, IL18R1, VNNI, 0.81 0.8 0.81
INSL3, ANKRD22, CCL5, PFKFB3,

MAPK14

IL18R1, ARG2, FCGR1A, CRTAP, 0.81 0.8 0.82
GADDA45B, FAD104, IRAK4, MAPK 14,

TDRD9

SOD2, PRV1, MKNK1, FCGR1A, CD86, 0.81 0.78 0.83
GADDA45A, IL18R1, TNFSF13B, HLA-DRA

ANXA3, TNFRSF6, MAP2K6, OSM, 0.81 0.78 0.83
ANKRD22,IL18R1, MAPK14, GADDA45A,

GADD45B

OSM, IRAK?2, ANXA3, TNFSF13B, IL18R1, 0.81 0.78 0.83
ANKRD22, MAP2KS, IL10alpha, FAD104

ITGAM, SOD2, CSF1R, TGFBI, IFNGR1, 0.81 0.73 0.87
TDRD9, JAK2, ARG2, GADD45A

INSL3, ITGAM, OSM, TIFA, IRAK?2, 0.8 0.84 0.77
MKNK1, SOCS3, TNFSF10, ANKRD22

GADDA45A, PFKFB3, SOD2, IRAK2, 0.8 0.79 0.82
MAPK14, INSL3, IRAK4, ITGAM, ARG2

NCRI, INSL3, ARG2, IFNGR1, LDLR, OSM, 0.8 0.78 0.83
PRV1, GADDA45B, CD86

IRAK2, FAD104, TLR4, CSF1R, PRV1, OSM, 0.8 0.77 0.83

MKNKI1, BCL2A1, CD86
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Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY

SENSISTIVITY

NCR1, SOCS3, HLA-DRA, PFKFB3,
FAD104, IRAK4, VNN1, CCL5, MAP2K6
CRTAP, TLR4, PFKFB3, CSFIR, TIFA,
PSTPIP2, PRV1, IFNGRI1, CCL5

LY96, SOD2, IL18R1, TNFRSF6, TLR4,
MAP2K6, FAD104, Gene_ MMP9, NCR1
ITGAM, SOD2, SOCS3, LDLR, MAP2K6,
FAD104, NCRI, CSFIR, CD86

CRTAP, ARG2, SOD2, TDRDY, TNFRSF6,
TIFA, OSM, Gene_ MMP9, HLA-DRA
OSM, LY96, CEACAMI, IRAK4, INSL3,
PSTPIP2, PRV1, IRAK2, JAK2

CD86, ILIRN, IFNGR1, ANXA3, CSFIR,
ITGAM, NCR1, TDRDY, MAP2K6
TNFSF13B, JAK2, IRAK4, TDRDY, HLA-
DRA, SOCS3, PSTPIP2, FAD104, SOD2
Gene_ MMP9, SOD2, JAK?2, CD86, HLA-
DRA, IRAK2, CEACAMI, MAPK 14, ANXA3
GADD45B, ITGAM, TLR4, NCR1, CD86,
TNFSF13B, HLA-DRA, FCGR1A, OSM
OSM, GADD45B, CSFIR, CCL5, ANXA3,
CEACAMI, CD86, TNFSF10, ARG2, LY96,
TDRD9

NCRI, HLA-DRA, BCL2A1, ARG2, SOCS3,
IL18R1, PSTPIP2, VNNI1, CD86, GADD45A,
CCL5

PFKFB3, SOCS3, TNFRSF6, GADDA4SA,
OSM, TDRDY, IL18R1, NCR1, CSFIR,
ANXA3, PSTPIP2

ARG2, IFNGR1, MAPK14, Gene_ MMP9,
IRAK4, CEACAMI, ITGAM, ANKRD22,
GADDA45B, VNN1, OSM

BCL2A1, LY96, GADDA45B, IL10alpha,
CRTAP, OSM, IFNGR1, IL1RN, TIFA,
IRAK4, GADD45A

TGFBI, SOCS3, MAP2K6, ANXA3, TLR4,
ILIRN, VNN, HLA-DRA, TIFA, JAK?2,
TDRD9

TNFSF13B, GADD45A, ANXA3, IL18R1,
FCGRIA, JAK2, CD86, SOCS3, INSL3,
CRTAP, NCR1

LY96, INSL3, TNFSF10, MAP2K6, OSM,
ITGAM, JAK2, CD86, FCGR1A, IL10alpha,
CCL5

ARG2, OSM, TLR4, NCR1, CCL5, BCL2Al,
ILIRN, GADD45A, MAPK 14, SOCS3,
TDRD9

INSL3, IL18R1, IFNGR1, ARG2, IL10alpha,
LY96, CRTAP, LDLR, JAK2, CSFIR, VNN1
ANXA3, IFNGR1, GADD45A, TNFRSF6,
CCLS5, JAK2, FAD104, ILIRN, ARG2,
IL10alpha, INSL3

CRTAP, TNFRSF6, LDLR, VNN1, HLA-
DRA, SOCS3, TGFBI, TNFSF10, IFNGR1,
ARG2, FCGR1A

GADDA45A, VNN1, MKNK1, CCL5,
IL10alpha, PSTPIP2, IRAK?2, TNFRSF6,
CEACAMI, FAD104, TGFBI

HLA-DRA, BCL2A1, PSTPIP2, PFKFB3,
JAK?2, TNFSF10, ARG2, CEACAMI, IL18R1,
MAPK14, CSFIR

GADDA45B, TNFSF10, TNFSF13B, OSM,
VNNI1, PRV1, MKNK1, Gene_ MMP9,
ANXA3, TGFBL, HLA-DRA

GADD45A, IFNGR1, IRAK4, TGFBI, NCR1,
FAD104, INSL3, IL10alpha, OSM, TIFA,
CSFIR

Gene_ MMP9, IRAK?2, JAK2, TGFBI,
BCL2AL, PSTPIP2, GADD45A, ARG2, OSM,
CEACAMLI, IFNGR1

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.84

0.84

0.84

0.83

0.83

0.83

0.83

0.83

0.82

0.82

0.82

0.82

0.82

0.74

0.82

0.81

0.8

0.8

0.78

0.78

0.78

0.74

0.84

0.8

0.8

0.77

0.83

0.82

0.79

0.86

0.83

0.82

0.75

0.83

0.86

0.78

0.79

0.8

0.8

0.82

0.82

0.82

0.85

0.84

0.87

0.88

0.89

0.83

0.83

0.86

0.79

0.82

0.83

0.88

0.81

May 5, 2011



US 2011/0105350 Al

TABLE L-continued

61

Exemplary sets of biomarkers used in the methods or kits referenced in
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BIOMARKER SET
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SPECIFICITY
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MAP2K6, FCGR1A, TNFSF13B, SOD2,
NCR1, ANXA3, TLR4, CD86, ITGAM,
IRAK?2, INSL3

FAD104, ARG2, NCR1, ANKRD22, OSM,
CSFIR, BCL2A1, CRTAP, LY96, SOD2,
TNFRSF6

LY96, TDRDY, CD86, GADD45A, ARG2,
VNNI, IL10alpha, SOD2, CRTAP, TIFA,
FCGRIA

BCL2A1, VNN1, LDLR, TLR4, OSM,
IRAK4, IRAK2, CRTAP, IFNGR1, TGFBI,
CD86

CCLS5, IFNGRI, TIFA, SOCS3, INSL3, TLR4,
IRAK4, ANXA3, TGFBL TDRDY, CSFIR
VNNI1, SOD2, CCL5, BCL2A1, HLA-DRA,
ANKRD?22, CD86, TDRD9, TLR4, FCGRIA,
TNFSF10

CEACAMI, OSM, IRAK4, MAP2KS6,
PSTPIP2, GADD45A, IRAK2, PRV, ILIRN,
TNFSF10, PFKFB3

TNFSF10, ILIRN, IFNGR1, TIFA, FCGRIA,
PSTPIP2, OSM, ANXA3, TGFBI, INSL3,
CRTAP

LDLR, VNN1, GADD45B, IL18R1,
GADDA45A, Gene_ MMP9, FAD104, ILIRN,
IRAK4, JAK2, TGFBI

FCGRIA, OSM, GADD45A, IL18R1,
GADD45B, TLR4, MAP2K6, CRTAP, TIFA,
CCL5, BCL2AL

CSFIR, ITGAM, HLA-DRA, MAP2KS,
JAK?2, FCGR1A, OSM, LDLR, SOCS3,
TNFRSF6, IL18R1

IL10alpha, IRAK2, OSM, TIFA, TNFSF10,
FAD104, GADD45B, ITGAM, CD86, VNN1,
SOD2

ARG2, GADD45A, LDLR, TNFRSF6,
CEACAMI, ANKRD22, MAPK14, IRAK4,
SOD2, INSL3, PSTPIP2

TGFBI, TNFRSF6, IRAK4, IRAK2, OSM,
TNFSF13B, TIFA, FAD104, ANKRD22,
MAPK14, CD86

VNNI1, INSL3, TNFSF10, TGFBI, JAK2,
CRTAP, IRAK?2, TNFRSF6, TNFSF13B,
LY96, OSM

GADD45B, OSM, SOD2, FCGRIA, VNNI,
CEACAMLI, TIFA, PSTPIP2, ILIRN, TDRD9,
LY96

PFKFB3, LDLR, IL10alpha, IRAK4, ANXA3,
NCR1, IL18R1, VNN1, TDRD9, TNFSF13B,
CSFIR

CD86, TNFRSF6, PFKFB3, MKNK1, OSM,
JAK?2, FAD104, IL10alpha, BCL2A1, SOCS3,
IRAK4

OSM, GADD45A, TNFSF10, IFNGR1,
CRTAP, JAK2, ANKRD22, HLA-DRA,
TNFSF13B, SOCS3, FCGRIA

CCLS5, CD86, HLA-DRA, SOCS3, TGFBI,
PSTPIP2, ANXA3, GADD45A, CSFIR,
IRAK4, FAD104, MAPK14

IRAK?2, CD86, ILIRN, TLR4, ANKRD22,
ANXA3, IL10alpha, GADD45B, BCL2ALl,
CSFIR, INSL3, FCGRIA

CD86, TNFRSF6, TIFA, GADD45B,
CEACAMLI, TNFSF13B, OSM, IL18R1,
CCLS5, ITGAM, TGFBI, FAD104

NCRI, CCLS5, BCL2A1, IL18R1, ARG2,
MKNK]1, FCGR1A, CD86, GADD45B,
INSL3, IRAK4, ANXA3

TNFSF13B, IFNGR1, Gene_ MMP9, SOD2,
LDLR, NCR1, CD86, INSL3, SOCS3, VNNI,
PSTPIP2, CEACAMI

0.82

0.82

0.82

0.82

0.82

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.84

0.84

0.83

0.79

0.78

0.81

0.79

0.77

0.8

0.79

0.78

0.84

0.82

0.77

0.76

0.82

0.8

0.8

0.85

0.85

0.82

0.85

0.85

0.83

0.83

0.85

0.78

0.79

0.8

0.85

0.85

0.85

0.87

0.86

May 5, 2011



US 2011/0105350 Al

TABLE L-continued

62

Exemplary sets of biomarkers used in the methods or kits referenced in
Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY

SENSISTIVITY

SOD2, INSL3, TDRD9, OSM, TNFSF13B,
BCL2A1, JAK2, CSFIR, ANXA3, TNFSF10,
GADDA45A, CRTAP

IL10alpha, MKNK1, GADD45A, TGFBI,
MAPK14, IRAK4, TDRDS, ILIRN,
TNFRSF6, FCGR1A, ITGAM, CD86
TNFRSF6, IL10alpha, PSTPIP2, HLA-DRA,
CRTAP, ARG2, MKNK1, NCR1, OSM,
INSL3, VNN1, FAD104

ANXA3, PRV, LDLR, TNFSF13B, PFKFB3,
TNFRSF6, VNN1, ARG2, ANKRD22, INSL3,
NCR1, OSM

FCGRIA, HLA-DRA, IFNGR1, CD86, LY96,
ANXA3, MAP2K6, TDRDS, IL18R1, PRV1,
SOCS3, TIFA

GADDA45B, OSM, ITGAM, CSFIR, CD86,
CEACAMLI, IFNGR1, SOCS3, MAP2KS6,
ILIRN, FAD104, CCLS

TGFBI, PRV1, JAK2, FCGR1A, ANKRD22,
TNFSF10, VNN1, SOCS3, PSTPIP2, IRAK?2,
INSL3, FAD104

FCGRIA, GADD45A, SOD2, OSM, ARG2,
PFKFB3, ANKRD22, IL10alpha, CCLS,
SOCS3, CD86, ITGAM

LDLR, MAP2K6, INSL3, TDRD9, NCR1,
ILIRN, HLA-DRA, ARG2, MKNKI1,
MAPK14, OSM, PFKFB3

ILIRN, PFKFB3, TIFA, OSM, IRAK?2,
TGFBI, INSL3, TNFSF13B, TNFRSF6,
MAP2K6, PSTPIP2, CEACAM1

LY96, TNFSF13B, HLA-DRA, IRAK?2,
FCGRIA, ANXA3, CEACAM]1, FAD104,
TDRD9, ILIRN, ARG2, LDLR

ILIRN, ARG2, IRAK2, IRAK4, SOCS3,
IL10alpha, CCLS5, Gene_ MMP9, MAPK 14,
FAD104, LY96, TGFBI

BCL2A1, LY96, ITGAM, OSM, TNFSF10,
INSL3, CD86, IRAK2, MAP2K6, IFNGRI,
PRV1, TNFRSF6

BCL2A1, ANXA3, LY96, TNFSF10, NCR1,
OSM, MAPK 14, MKNK1, IFNGR1,
GADD45A, INSL3, ANKRD22, TNFSF13B
LY96, GADD45B, MAPK14, OSM, MKNK1,
BCL2A1, ARG2, ILIRN, INSL3, PFKFB3,
LDLR, CRTAP, TIFA

OSM, CD86, GADD45B, IRAK4, MAPK14,
SOCS3, VNN1, ARG2, TNFSF13B, TDRD9,
PRV1, ILIRN, IL18R1

OSM, NCR1, HLA-DRA, TNFSF10, PSTPIP2,
ILIRN, SOCS3, INSL3, TNFRSF6, MAPK14,
Gene_ MMP9, CEACAMI, IL18R1

CCL5, ARG2, IL10alpha, MAPK14, CSFIR,
GADD45B, LDLR, SOD2, Gene_ MMP9,
IFNGRI, IL18R1, CEACAMI, CD86
TDRD9, SOCS3, Gene_ MMP9, IL18R1,
CRTAP, ANXA3, PRV1, ARG2, CD86,
ITGAM, OSM, NCR1, VNN1

SOD2, JAK2, PSTPIP2, MAPK14, MAP2KS6,
FCGRIA, CCL5, ITGAM, CD86, GADD45B,
ILIRN, HLA-DRA, VNN1

IRAK4, JAK2, SOD2, Gene_ MMP9, PSTPIP2,
PFKFB3, HLA-DRA, TNFRSF6, FAD104,
ARG2, IFNGR1, IRAK2, MAP2K6

PSTPIP2, MAPK14, CCLS5, Gene_ MMP9,
TNFRSF6, IL10alpha, LY96, ILIRN, ARG2,
SOCS3, TLR4, OSM, HLA-DRA

CRTAP, CEACAMI, ARG2, JAK2,
TNFSF10, VNN1, PSTPIP2, IRAK?,
TNFRSF6, ITGAM, SOCS3, OSM, IL18R1

0.83

0.83

0.82

0.82

0.82

0.82

0.82

0.81

0.83

0.83

0.83

0.83

0.83

0.83

0.83

0.83

0.83

0.82

0.79

0.8

0.76

0.84

0.8

0.84

0.83

0.81

0.81

0.83

0.82

0.82

0.8

0.85

0.83

0.79

0.79

0.84

0.86

0.89

0.8

0.79

0.81

0.82

0.82

0.83

0.84

0.84

0.81

0.83

0.86

0.87
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TABLE L-continued

63

Exemplary sets of biomarkers used in the methods or kits referenced in
Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY

SENSISTIVITY

VNNI1, PSTPIP2, GADD45B, ITGAM,
ILIRN, FAD104, NCR1, TIFA, OSM,
TDRD9, SOD2, ARG2, TGFBI

TGFBI, IL1RN, INSL3, PSTPIP2, NCR1,
FAD104, HLA-DRA, CD86, IRAK4,
IL10alpha, ARG2, CSFIR, MAP2K6
FAD104, IRAK?2, TIFA, TGFBL, IL18R1,
MAPK14, SOCS3, PSTPIP2, CD86, PRV,
NCR1, FCGRIA, ANXA3

GADDA45A, HLA-DRA, INSL3, ANKRD22,
ANXA3, CD86, IRAK4, GADD45B, PFKFB3,
ITGAM, VNN1, NCR1, JAK2

MKNKI1, CCLS, PSTPIP2, ANXA3, VNNI,
LY96, IRAK2, IFNGR1, CRTAP, PFKFB3,
IL18R1, LDLR, FAD104

TNFSF10, OSM, FCGRIA, IRAK4, TLR4,
SOCS3, IL18R1, CRTAP, GADD45B, ILIRN,
IL10alpha, PRV1, JAK2

FAD104, ITGAM, ARG2, PSTPIP2, TLR4,
NCR1, ILIRN, MAP2K6, FCGR1A, PFKFB3,
LDLR, IFNGRI, BCL2A1

LDLR, ARG2, NCR1, MKNK1, GADD45B,
GADDA45A, CEACAM1, PSTPIP2,

Gene_ MMP9, CCL5, BCL2A1, TIFA, TDRD9
IRAK?2, Gene_ MMP9, INSL3, ARG2, OSM,
ITGAM, PSTPIP2, TNFSF13B, FCGRIA,
BCL2A1, CRTAP, PRV1, MAP2K6
CEACAMLI, PSTPIP2, TLR4, IFNGR1,
GADD45B, CSFIR, CD86, VNNI, IL18R1,
ANKRD22, MAPK14, OSM, CCL5, IRAK4
LY96, ANKRD22, Gene_ MMP9, ARG2,
GADDA45A, MKNK1, CD86, PSTPIP2, OSM,
FAD104, FCGRI1A, IL18R1, TIFA, ITGAM
ARG2, ANKRD22, VNN, TLR4, OSM,
TIFA, TGFBL, TDRD9, ANXA3, CCLS,
TNFRSF6, GADD45B, FAD104, CD86
IFNGR1, TLR4, CRTAP, ANKRD22,

Gene_ MMP9, JAK2, INSL3, ITGAM, IRAK4,
HLA-DRA, BCL2A1, OSM, TNFSF10, NCR1
TNFSF10, VNN1, TDRD9, CSFIR, OSM,
IFNGRI, TLR4, PSTPIP2, TIFA, ARG2,
FCGRIA, CD86, MAPK14, MAP2K6

LDLR, IL18R1, BCL2A1, ILIRN, ARG2,
IRAK?2, JAK2, GADD45A, ANKRD22,
MAP2K6, OSM, CD86, IRAK4, SOD2
ILIRN, IRAK4, VNN1, CRTAP, TNFSF10,
IFNGR1, FAD104, ARG2, OSM, NCRI,
JAK2, ANXA3, CEACAMI, TDRD9

CD86, FCGR1A, MKNK1, TNFRSF6,
GADDA45B, LY96, NCR1, PSTPIP2, HLA-
DRA, VNN1, ANXA3, IRAK4, ARG2, TGFBI
IRAK2, ANKRD22, JAK2, CD86, INSL3,
TNFSF10, OSM, PSTPIP2, IL10alpha, CCL5,
TDRD9, GADD45B, Gene_ MMP9, LY96
LY96, FCGRIA, CCL5, IL18R1, VNNI,
TNFSF10, MAP2K6, PRV1, IRAK4, ILIRN,
TLR4, PSTPIP2, PFKFB3, TGFBI

SOD2, ILIRN, JAK2, PRV1, IRAK2, CD86,
TGFBI, CCL5, MAPK 14, TLR4, INSL3,
PFKFB3, GADD45B, LY96

TDRD9, FCGR1A, NCR1, IFNGR1, ARG2,
SOD2, TNFRSF6, CD86, PFKFB3, LDLR,
JAK?2, CCL5, ANKRD22, FAD104

MAPK14, INSL3, MAP2K6, CCL5, CSFIR,
CD86, GADD45A, SOCS3, GADD45B,
ANXA3, TGFBL, TNFRSF6, IFNGRI,
CRTAP

GADDA45B, MAPK14, GADD45A, IL1RN,
CEACAMI, CRTAP, MKNK1, IL18R1,
NCR1, FCGR1A, TIFA, MAP2K6, CDS86,
TLR4

0.83

0.82

0.82

0.82

0.81

0.85

0.84

0.84

0.83

0.83

0.83

0.83

0.83

0.83

0.83

0.77

0.84

0.86

0.81

0.81

0.89

0.82

0.79

0.83

0.8

0.78

0.77

0.83

0.81

0.82

0.88

0.81

0.78

0.83

0.82

0.83

0.86

0.87

0.83

0.86

0.88

0.88

0.83

0.85

0.83

May 5, 2011



US 2011/0105350 Al

TABLE L-continued

64

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY

SENSISTIVITY

ARG2, ANKRD22, OSM, LDLR, CCLS,
ILIRN, FCGR1A, PFKFB3, CSFIR, ANXA3,
HLA-DRA, INSL3, NCR1, TIFA

TNFSF10, ANXA3, OSM, JAK2, VNN,
ANKRD22, INSL3, IFNGR1, CD86,
MAPK14, GADD45B, TNFRSF6, MAP2KS6,
LY96

TGFBI, IL18R1, IFNGR1, TDRD9, ANXA3,
TNFSF10, ANKRD22, CD86, TNFRSF6,
BCL2A1, FAD104, Gene_ MMP9, TNFSF13B,
CRTAP

OSM, ANXA3, SOCS3, INSL3, ITGAM,
SOD2, NCR1, TNFSF10, BCL2A1, PSTPIP2,
TLR4, IRAK?2, Gene_ MMP9, IL18R1

SOD2, IRAK4, TNFRSF6, PRV1, FCGRIA,
LDLR, MAP2K6, TIFA, CEACAMI, IL18R1,
SOCS3, OSM, IL10alpha, MKNK1

TLR4, MKNK1, SOD2, SOCS3, FAD104,
HLA-DRA, PSTPIP2, ANKRD22, TIFA,
TNFRSF6, JAK2, TNFSF10, ARG2, CSFIR,
TLR4

CCL5, MAP2K6, SOCS3, IFNGR1, TGFBL,
ANXA3, OSM, GADD45A, TNFSF10,
Gene_ MMP9, TNFRSF6, TIFA, ARG2,
INSL3, SOCS3

ANXA3, ILI8R1, VNNI, NCR1, TIFA,
INSL3, TGFBL, MAPK14, CEACAMI,
CRTAP, CSFIR, TDRD9, IL10alpha, CCL5,
MAPK14

TLR4, MKNK1, SOD2, SOCS3, FAD104,
HLA-DRA, PSTPIP2, ANKRD22, TIFA,
TNFRSF6, JAK2, TNFSF10, ARG2, CSFIR,
IRAK4

CCL5, MAP2K6, SOCS3, IFNGR1, TGFBL,
ANXA3, OSM, GADD45A, TNFSF10,
Gene_ MMP9, TNFRSF6, TIFA, ARG2,
INSL3, TLR4

ANXA3, ILI8R1, VNNI, NCR1, TIFA,
INSL3, TGFBL, MAPK14, CEACAMI,
CRTAP, CSFIR, TDRD9, IL10alpha, CCL5,
SOCS3

IL18R1, MAP2K6, INSL3, IRAK4, CCLS5,
PFKFB3, CSFIR, LDLR, ITGAM,
GADDA45A, ARG2, PSTPIP2, TLR4, CDg6,
MAPK14

SOD2, IFNGR1, CEACAM1, OSM, FAD104,
HLA-DRA, CRTAP, IL10alpha, TGFBI,
GADDA45A, ITGAM, IL18R1, CCL5, TLR4,
FCGRIA

SOCS3, OSM, TIFA, TNFRSF6, INSL3,
LDLR, IL18R1, PFKFB3, TGFBL, IL10alpha,
GADDA45B, ARG2, TNFSF10, VNNI,
ANXA3

PRV1, PFKFB3, CEACAM1, FCGRIA, TIFA,
MKNK]1, ARG2, GADD45B, IL18R1, CD86,
ITGAM, VNN1, IFNGR1, OSM, JAK2
NCRI1, INSL3, HLA-DRA, TNFSF10,
TNFRSF6, FCGR1A, OSM, GADD45B,
MKNK]1, TNFSF13B, CSFIR, LY96,
MAPK14, PRV1, CCLS

FCGRIA, CD86, CEACAMI, ANXA3,
FAD104, CRTAP, JAK2, MKNK1, MAPK14,
IFNGRI1, GADD45A, PFKFB3, ANKRD22,
IL18R1, Y96

IRAK?2, IL10alpha, INSL3, FAD104, TIFA,
SOD2, IFNGRI, ILIRN, HLA-DRA, LY96,
IL18R1, CCL5, CD86, TDRDY, TNFSF10
LY96, BCL2A1, Gene_ MMP9, OSM, ARG2,
MAP2K6, INSL3, ITGAM, MAPK 14, TIFA,
IRAK?2, PSTPIP2, FCGR1A, CEACAMI,
IFNGR1

0.82

0.82

0.82

0.82

0.85

0.84

0.85

0.84

0.84

0.83

0.83

0.83

0.83

0.83

0.83

0.81

0.8

0.87

0.84

0.83

0.84

0.83

0.85

0.84

0.84

0.83

0.79

0.8

0.82

0.83

0.79

0.8

0.86

0.83

0.86

0.83

0.83

0.83

0.84

0.87
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TABLE L-continued

65

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY

SENSISTIVITY

IL18R1, BCL2A1, PFKFB3, Gene_ MMP9,
ILIRN, IL10alpha, SOCS3, PSTPIP2, CRTAP,
OSM, CD86, FCGRIA, FAD104, JAK2,
SOD2

MKNK]1, CRTAP, PRV1, ILIRN, GADD45A,
TNFRSF6, FAD104, HLA-DRA, CEACAMI,
PSTPIP2, OSM, JAK2, IL18R1, LDLR,
IRAK4

FCGRIA, BCL2A1, IFNGR1, CRTAP, VNNI,
TIFA, CCL5, NCR1, OSM, HLA-DRA,
IRAK4, INSL3, MAP2K6, TNFSF13B, ARG2
FAD104, BCL2A1, PRV1, MKNK1, CRTAP,
IRAK4, PFKFB3, SOD2, CD86, ARG2,
FCGRIA, ANKRD22, INSL3, IFNGRI,
LDLR

SOCS3, CD86, FCGR1A, MAP2K6, TGFBI,
IRAK?2, PSTPIP2, CCL5, ILIRN, GADD45B,
TDRD9, OSM, IL10alpha, PFKFB3, FAD104
TIFA, SOD2, LDLR, FCGR1A, BCL2Al,
TNFSF13B, ARG2, PSTPIP2, MAPK 14,
LY96, Gene_ MMP9, IFNGR1, GADD45B,
ANXA3, PRV, CD86

HLA-DRA, IRAK2, FCGR1A, ANXA3,
ITGAM, LY96, TDRD9, SOCS3, ILIRN,
PFKFB3, GADD45B, TNFSF13B, TLR4,
ARG2, CSFIR, FAD104

OSM, CRTAP, CEACAMI, NCR1, IRAK4,
TLR4, FAD104, MKNK1, TDRD9, PSTPIP2,
ILIRN, CSFIR, MAP2K6, ITGAM, ARG2,
IFNGR1

TIFA, IL10alpha, VNN1, OSM, MAP2KG,
GADD45B, PSTPIP2, TDRD9, TNFRSF6,
INSL3, IL1RN, FAD104, TNFSF10, TGFBI,
IL18R1, TLR4

GADDA45A, CSFIR, INSL3, BCL2Al,
TDRD9, LDLR, HLA-DRA, MAP2KG,
PSTPIP2, CCLS, ANXA3, PRV1, TNFRSF6,
TLR4, CD86, JAK2

TDRD9, PFKFB3, MAPK14, ILIRN,
IFNGRI1, FCGR1A, MAP2K6, TNFRSF6,
ARG2, VNN1, CRTAP, LDLR, CEACAMI,
FAD104, NCR1, TNFSF10

ARG2, IL10alpha, TLR4, PRV, INSL3,
OSM, CD86, TGFBL, SOCS3, GADD45B,
TIFA, LDLR, IRAK2, GADD45A, SOD2,
TNFSF13B

TNFSF10, PRV1, SOCS3, FAD104,
TNFRSF6, ARG2, Gene_ MMP9, FCGRIA,
TGFBI, NCR1, CRTAP, MAP2K6, ANXA3,
CSFIR, HLA-DRA, JAK2

TNFRSF6, BCL2A1, VNN1, ANXA3, SOCS3,
GADDA45A, CRTAP, CCL5, FAD104,
ANKRD22, MKNK1, FCGR1A, SOD2,
IRAK2, MAPK14, Gene_ MMP9

FAD104, OSM, LDLR, TNFSF10, GADD45B,
HLA-DRA, TNFRSF6, GADD45A, CD86,
TDRD9, ITGAM, ANXA3, IFNGRI,
MAPK14, CSFIR, TGFBI

CSFIR, PRV1, ANXA3, SOD2, PSTPIP2,
CEACAMLI, IFNGR1, IRAK4, LY96,
MAPK14, IL10alpha, MKNK1, TNFRSFG6,
OSM, TGFBI, INSL3

PSTPIP2, ARG2, MAP2K6, INSL3, SOCS3,
JAK?2, FAD104, ANKRD22, HLA-DRA,
ITGAM, GADD45B, LY96, IRAK2, PFKFB3,
TNFRSF6, IFNGR1

CRTAP, MKNK1, BCL2A1, PRV1, CDS86,
TNFRSF6, PSTPIP2, MAPK14, TNFSF13B,
ARG2, PFKFB3, CEACAM1, FAD104,
Gene_ MMP9, OSM, SOD2

0.83

0.82

0.82

0.82

0.84

0.83

0.83

0.83

0.83

0.83

0.82

0.82

0.76

0.82

0.8

0.77

0.84

0.83

0.81

0.82

0.85

0.8

0.8

0.78

0.77

0.88

0.82

0.87

0.8

0.84

0.86

0.9

0.84

0.8

0.85

0.85

0.87

0.87
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66

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

MKNK1, SOCS3, CRTAP, FCGR1A, CD86,
IL10alpha, GADD45A, IL18R1, IRAK?2,
CCL5, JAK2, ANKRD22, TIFA, TGFBI,
CSF1R, BCL2A1

GADD45B, CEACAMI1, ANKRD22, IRAK4,
LDLR, CRTAP, MKNK1, OSM, MAPK14,
MAP2K6, INSL3, GADD45A, PFKFB3,
TNFSF10, CSF1R, TIFA

CSF1R, INSL3, TNFRSF6, BCL2A1, CD86,
CEACAM]1, IL10alpha, IL18R1, TLR4,
ITGAM, TNFSF10, OSM, ARG2, SOD2,
FCGRI1A, PSTPIP2

NCRI1, LDLR, MKNK1, INSL3, BCL2A1,
JAK?2, FCGR1A, IL1RN, TNFRSF6, PRV1,
GADD45B, ARG2, MAP2K6, OSM, VNN1,
TDRD9

TLR4, CD86, MAPK14, TNFSF13B, INSL3,
CRTAP, NCR1, ARG2, GADD45A, CSF1R,
TNFRSF6, MAP2K6, JAK2, MKNK1,
ANKRD22, OSM

CSFIR, CCL5, ARG2, BCL2A1, FCGRI1A,
MKNK1, TDRD9, IFNGR1, PFKFB3,
ITGAM, JAK?2, OSM, GADD45B, FAD104,
NCRI1, HLA-DRA

IFNGR1, FCGR1A, TLR4, OSM, PSTPIP2,
IL18R1, NCR1, SOCS3, PFKFB3, INSL3,
LDLR, TNFRSF6, SOD2, GADD45B,
IL10alpha, CCL5, ILIRN

CEACAM]1, IL18R1, SOCS3, CRTAP, LDLR,
HLA-DRA, LY96, IL1RN, IL10alpha,
BCL2A1, GADD45A, TIFA, FAD104,
ANKRD22, OSM, CCL5, IFNGR1

FAD104, GADD45B, HLA-DRA, VNN1,
IL10alpha, CD86, JAK2, INSL3, TDRD9,
TLR4, IRAK4, SOD2, LDLR, CCLS5,
MKNK1, ARG2, IL18R1

IL18R1, PRV1, IL1IRN, TNFSF10, FAD104,
ITGAM, FCGR1A, INSL3, MAP2K6, LDLR,
TNFSF13B, IRAK2, OSM, PFKFB3, TGFBI,
IL10alpha, Y96

IRAK?2, HLA-DRA, IFNGR1, MAP2K6,
TLR4, ITGAM, SOCS3, CD8&6, ARG2, VNNI1,
IL18R1, ANXA3, FCGR1A, ILIRN,

Gene_ MMP9, TGFBI, IL10alpha

MAP2K6, IL18R1, ILIRN, CSFIR,
TNFRSF6, FCGR1A, NCR1, TDRD9,
TNFSF10, SOCS3, CCL5, IFNGR1, TIFA,
CRTAP, GADD45B, IL10alpha, TGFBI
CD86, CCL5, IRAK4, GADD45A, ANXA3,
OSM, JAK2, INSL3, SOCS3, BCL2Al,
FAD104, MAPK14, TIFA, TLR4, NCR1,
PRV1, TDRD9

BCL2A1,IL18R1, TLR4, OSM, CD86,
FAD104, PRV1, JAK2, MAPK 14, TNFRSF6,
CEACAM]I, IL1RN, IL10alpha, SOD2,
Gene_ MMP9, CSF1R, PFKFB3

LY96, TIFA, IL10alpha, ANXA3, LDLR,
JAK?, IFNGRI1, IRAK?2, MAP2K6, TGFBI,
MAPK14, TDRD9Y, FCGR1A, ITGAM,
TNFSF10, GADD45B, SOCS3

TNFSF13B, FAD104, SOD2, SOCS3,
CEACAM1, TDRD9, ARG2, CD86, IRAK?2,
PFKFB3, FCGR1A, NCR1, MAPK 14,
CRTAP, LDLR, GADD45A, TNFRSF6
IRAK2, MKNK1, PSTPIP2, ANXA3, HLA-
DRA, TNFSF10, IFNGR1, PFKFB3, OSM,
PRV1, IL1RN, IL10alpha, FAD104, CD86,
TIFA, BCL2A1, TNFSF13B

0.82

0.82

0.82

0.82

0.82

0.86

0.85

0.85

0.84

0.84

0.84

0.84

0.82

0.81

0.78

0.85

0.85

0.81

0.81

0.81

0.8

0.8

0.81

0.82

0.82

0.85

0.79

0.79

0.9

0.89

0.89

0.87

0.88

0.89

0.87
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TABLE L-continued

67

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY

SENSISTIVITY

VNNI, IFNGR1, LY96, SOD2, IL18R1,
SOCS3, FCGR1A, ARG2, CSFIR,

Gene_ MMP9, IRAK4, MAP2K6, TIFA,
FAD104, HLA-DRA, GADDA45B, ILIRN
CD86, Gene_ MMP9, IL18R1, TNFSF13B,
FCGRI1A, TNFRSF6, INSL3, IL1RN,
PFKFB3, PSTPIP2, NCR1, GADD45B,
VNN1, CRTAP, IRAK4, MAP2K 6, OSM
TNFSF13B, FAD104, PRV1, TIFA, SOD2,
TDRD9, TLR4, TNFRSF6, MKNK1, OSM,
MAP2K6, CCL5, ARG2, LDLR, HLA-DRA,
PSTPIP2, IL18R1

IRAK4, MAP2KS6, JAK?, LY96, ITGAM,
CCLS5, CSF1R, ARG2, FCGRI1A, FAD104,
CD86, TNFSF10, IL18R1, CRTAP,
GADDA45A, TLR4, Gene_ MMP9

IRAK2, OSM, MAP2K6, TNFSF13B,
ANKRD22, HLA-DRA, SOD2, TNFSF10,
VNNI1, ARG2, IRAK4, LY96, IFNGR1, JAK2,
BCL2A1, FCGR1A, CSFIR

IL10alpha, FCGR1A, TGFBI, ANKRD22,
IRAK4, CD86, TNFSF13B, TNFRSF6,
IL18R1,JAK?2, ILIRN, PSTPIP2, OSM,
MAP2K6, GADD45 A, Gene_ MMP9,
MAPK14

PRV1, IRAK4, MKNK1, JAK2, OSM,
MAP2K6, BCL2A1, GADD45B,

Gene_ MMP9, IL10alpha, FAD104, ARG2,
PSTPIP2, SOD2, TNFRSF6, TNFSF10,
ILIRN

ILIRN, OSM, FAD104, CRTAP, IRAK4,
IL10alpha, LDLR, INSL3, TNFSF10, CCL5,
IL18R1, ANXA3, PRV1, ARG2,

Gene_ MMP9, CEACAM1, SOCS3
TNFRSF6, MAP2K6, FCGR1A, MAPK 14,
ARG2, INSL3, TNFSF10, NCR1, PRV1,
CEACAMI1, ANXA3, IL18R1, TIFA,
IFNGRI1, IRAK4, CCL5, VNN1

IRAK2, ANKRD22, MAPK14, TIFA,
GADDA45B, OSM, IL10alpha, SOD2, CCL5,
GADDA45A, CD86, IRAK4, SOCS3, TDRD9,
MAP2K6, FAD104, PRV1, ANXA3

TLR4, LDLR, OSM, MAP2K6, GADD45A,
TIFA, NCR1, IL18R1, IFNGR1, INSL3,
ANXA3, IL10alpha, IL1RN, CSF1R,
GADDA45B, PFKFB3, TGFBI, CRTAP
HLA-DRA, GADD45A, ANXA3, ARG2,
FAD104, PFKFB3, ITGAM, JAK2, MAPK 14,
OSM, CD86, LDLR, TIFA, CCL5, NCR1,
IRAK2, SOD2, PRV1

GADDA45A, INSL3, IRAK?2, TNFSF10,
TGFBI, IRAK4, NCR1, HLA-DRA,
CEACAM1, GADD45B, MAPK14, CD86,
IL18R1, CRTAP, ANKRD?22, PSTPIP2, LY96,
PFKFB3

MAP2KS6, IL1RN, TIFA, TLR4, OSM, TGFBI,
ANXA3,NCR1, IL18R1, ANKRD22,
GADDA45A, TNFSF10, PRV, IRAK2,
TDRD9, JAK2, Gene_ MMP9, CSFIR
CD86, GADD45A, GADD45B, TNFSF13B,
CRTAP, TNFRSF6, NCR1, IL10alpha,
CSF1R, OSM, MKNK1, CEACAMI1, TLR4,
IFNGRI1, IRAK?2, SOCS3, TGFBI,

Gene_ MMP9

BCL2A1, ANKRD22, OSM, CDg6, ITGAM,
ANXA3,FCGRIA, CCLS5, TIFA, IRAK4,
HLA-DRA, NCR1, CRTAP, TLR4,
CEACAM1, FAD104, ARG2, MAP2K6

0.84

0.83

0.83

0.83

0.83

0.82

0.82

0.82

0.85

0.83

0.82

0.82

0.82

0.8

0.78

0.83

0.82

0.81

0.83

0.86

0.84

0.84

0.86

0.87

0.82

0.83

0.83

0.87
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TABLE L-continued

68

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY

SENSISTIVITY

GADD45A, IFNGR1, MAP2K6, CRTAP,
MAPK14, TNFSF10, LDLR, TIFA, OSM,
SOCS3, CD86, ARG2, PSTPIP2, ILIRN,
LY96, GADD45B, ANKRD22, TGFBI
INSL3, TLR4, BCL2A1, ANKRD22, FAD104,
MAP2K6, GADD45B, ARG2, NCR1,
MKNK]1, ITGAM, CSFIR, ILIRN, HLA-
DRA, LDLR, CRTAP, PRV1, LY96

CRTAP, HLA-DRA, ARG2, PSTPIP2,
MKNKI1, INSL3, TIFA, CEACAMI, JAK2,
Gene_ MMP9, TLR4, IRAK4, CD86, FAD104,
CCL5, TNFSF10, LDLR, IFNGR1

IL18R1, TNFRSF6, PFKFB3, FAD104,
GADDA45A, OSM, JAK2, VNN1, MKNK1,
BCL2A1, SOCS3, NCR1, TLR4, FCGRIA,
CSFIR, ITGAM, IRAK4, CRTAP

FAD104, TNFRSF6, OSM, TIFA, PSTPIP2,
ANXA3, TLR4, CD86, IRAK4, TNFSF13B,
ILIRN, IFNGRI1, ITGAM, BCL2ALl,
CEACAMI, MKNK1, TGFBI, ARG2
TNFSF10, BCL2A1, TGFBI, LY96, PRV1,
MKNKI1, SOD2, ARG2, SOCS3, CDg6,
IL10alpha, TNFSF13B, ITGAM, OSM,
MAPK14, PSTPIP2, ANXA3, CCL5

SOCS3, OSM, CCL5, JAK2, MAP2K6,
IL18R1, NCR1, CEACAMI, IRAK2, ARG2,
LY96, PRV1, ITGAM, TNFSF13B, TNFSF10,
TGFBI, IL10alpha, LDLR

ARG2, IRAK2, Gene_ MMP9, GADD45B,
MKNK]1, PFKFB3, MAPK14, IRAK4, CSFIR,
FCGRIA, GADD45A, TDRD, TIFA, CDS86,
IL18R1, BCL2A1, CRTAP, TNFRSF6
FAD104, ILIRN, TGFBI, TLR4, BCL2A1,
IFNGR1, IRAK4, PRV1, ANKRD22, CRTAP,
TNFRSF6, CSFIR, ARG2, OSM, GADD4SA,
VNNI1, INSL3, CEACAM1

CSFIR, SOCS3, FAD104, TLR4, INSL3,
ANXA3, NCR1, CRTAP, IFNGRI1, TIFA,
OSM, MAPK 14, TDRDY, ILIRN, ANKRD22,
TNFRSF6, IRAK2, BCL2A1

MAP2K6, IFNGR1, CD86, FCGR1A, IRAK?2,
MKNK]1, CRTAP, FAD104, IL10alpha,
VNN1, ANXA3, NCR1, IL18R1, CEACAMI,
CCL5, ARG2, MAPK 14, SOCS3

ILIRN, IRAK4, JAK2, CD86, BCL2A1,
TGFBI, Gene_ MMP9, NCR1, IFNGRI,
VNNI1, SOCS3, CCL5, TNFSF13B, TDRD9,
MAPK14, PRV1, OSM, TLR4

MAP2K6, CSFIR, HLA-DRA, ANKRD22,
MKNK]1, SOCS3, TNFSF10, LDLR, FAD104,
CEACAMI, TNFSF13B, TDRDY, IRAK4,
VNN, IL18R1, OSM, PSTPIP2, Gene_ MMP9
CCLS5, SOD2, JAK2, IRAK4, IRAK?2,

Gene_ MMP9, IFNGR1, TLR4, GADD45A,
TNFSF10, CSFIR, IL18R1, PRV,
TNFSF13B, HLA-DRA, LDLR, CD86,
SOCS3, FAD104

MAP2K6, TNFSF13B, SOD2, GADD45B,
HLA-DRA, CSFIR, CCL5, TIFA, NCRI,
IFNGR1, OSM, CD86, SOCS3, ARG2,
IL10alpha, BCL2A1, TDRDY, LDLR,
GADDA45A

IFNGRI1, OSM, MAPK14, CEACAMI,
PFKFB3, TLR4, CSFIR, JAK2, IL18R1,
TGFBI, CD86, IL10alpha, INSL3, BCL2A1,
FCGRIA, GADD45B, LDLR, PSTPIP2,
FAD104

0.83

0.83

0.83

0.83

0.83

0.83

0.83

0.83

0.83

0.82

0.84

0.84

0.84

0.82

0.8

0.78

0.85

0.85

0.83

0.79

0.8

0.79

0.84

0.83

0.84

0.86

0.87

0.81

0.81

0.82

0.86

0.85

0.89

0.84

0.85
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TABLE L-continued

69

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY

SENSISTIVITY

ARG2, PRV1, IRAK4, TNFRSF6, MAP2KS6,
SOCS3, IL18R1, HLA-DRA, IFNGR1,
ANXA3, TNFSF10, JAK2, FCGR1A,
GADDA45A, INSL3, IL1RN, TNFSF13B,
ITGAM, CSFIR

LDLR, INSL3, JAK2, TNFRSF6, PRV1,
IFNGRI1, OSM, ITGAM, FCGRI1A, IL10alpha,
NCR1, TDRD9, MAP2K6, TNFSF13B, TIFA,
HLA-DRA, ANKRD22, GADD45B, ILIRN
MAPK14, SOD2, CSFIR, ITGAM, MAP2KS6,
TLR4, ANXA3, BCL2A1, CRTAP, IL10alpha,
IRAK4, CCL5, SOCS3, TNFSF13B, ARG2,
FCGRI1A, CEACAMI, OSM, ILIRN

LY96, IL10alpha, GADD45A, GADD45B,
ILIRN, IL18R1, PSTPIP2, ARG2, IRAK?,
CEACAM1, MKNK1, PFKFB3, TNFSF10,
ANKRD22, ANXA3, SOD2, MAP2K6,
IRAK4, SOCS3

IL18R1, MAP2K6, ARG2, CD86, TNFSF13B,
MAPK14, TNFSF10, CRTAP, GADD45A,
NCRI1, GADD45B, JAK2, MKNK1,
TNFRSF6, VNNI1, FAD104, LY96,
CEACAM1, PRV1

HLA-DRA, CD86, SOCS3, TIFA, TNFSF13B,
FCGRI1A, JAK?2, PFKFB3, MAP2K6, OSM,
TGFBI, ANKRD22, CEACAMI, IRAK4,
ARG2,IL18R1, SOD2, MKNK1, GADD45B
TDRD9, IRAK?2, PFKFB3, CSF1R, TGFBI,
SOCS3, IL10alpha, IFNGR1, TNFRSF6,
VNNI1, FCGR1A, PRV, TNFSF13B,
MAPK14, BCL2A1, CD86, SOD2, INSL3,
ARG2

LDLR, ITGAM, IL18R1, ANXA3,
GADDA45A, VNN1, TDRD9, Y96, BCL2A1,
CD86, IRAK?2, FAD104, Gene_ MMP9, TLR4,
TIFA, OSM, ARG2, CRTAP, PSTPIP2

CCL5, TGFBI, BCL2A1, VNNI1, TDRD9,
SOCS3, CRTAP, CD86, TNFRSF6, LDLR,
CSF1R, PRV1, IL18R1, INSL3, GADD45B,
TNFSF13B, PFKFB3, JAK2, SOD2

SOD2, ARG2, HLA-DRA, LY96,

Gene_ MMP9, VNNI1, CD86, IL10alpha,
CSF1R, PSTPIP2, JAK2, TNFSF13B, IRAK?2,
CCL5, ANKRD22, TLR4, ILIRN, OSM,
GADD45B

SOCS3, TGFBI, FCGR1A, TDRD9,
GADDA45A, TIFA, IFNGR1, VNN1, ITGAM,
MAPK14, OSM, ANXA3, TNFSF13B,
ILIRN, HLA-DRA, ARG2, MAP2K6, TLR4,
PSTPIP2

CDB86, INSL3, MAPK14, TIFA, MAP2KS6,
Gene_ MMP9, CRTAP, CSFIR, MKNK1,
IL10alpha, FAD104, PRV1, BCL2A1, NCR1,
LDLR, IRAK4, HLA-DRA, IFNGR1, TDRD9
NCRI1, LDLR, IRAK?2, TNFRSF6, CD86,
SOD2, TNFSF13B, VNN1, GADD45A,
Gene_ MMP9, PFKFB3, ANKRD22, PSTPIP2,
PRV1, FCGRIA, IL18R1, TIFA, INSL3,
CRTAP

ILIRN, TLR4, PSTPIP2, IL18R1, GADDA4S5A,
IL10alpha, BCL2A1, MKNK1, IRAK?2, HLA-
DRA, ANKRD22, NCR1, CEACAM],
LRAK4, OSM, TIFA, SOD2, TGFBI,

Gene_ MMP9

GADDA45A, LY96, ITGAM, CCL5, TNFSF10,
TNFSF13B, HLA-DRA, CSFIR, TIFA,
SOCS3, MKNK1, ARG2, IFNGR1, IL1RN,
BCL2A1, OSM, PFKFB3, PSTPIP2, IRAK2

0.84

0.83

0.83

0.83

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.8

0.82

0.78

0.79

0.8

0.8

0.78

0.74

0.86

0.84

0.87

0.85

0.84

0.84

0.86

0.89
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TABLE L-continued

70

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

Gene_ MMP9, GADD45A, PSTPIP2, INSL3,
IRAK4, HLA-DRA, CCL5, TGFBL, OSM,
LY96, TDRD9, NCR1, PFKFB3, IFNGR1,
IRAK2, VNNI, CRTAP, TIFA, CD86

LDLR, ARG2, MAP2K6, MAPK14, IL18RI,
CCLS5, PSTPIP2, ANKRD22, OSM, TDRD9,
HLA-DRA, SOCS3, ANXA3, TNFRSF6,
TIFA, CD86, FAD104, MKNK1, BCL2Al,
IRAK2

FCGRIA, FAD104, Gene_ MMP9, LDLR,
ANKRD22, VNNI1, SOCS3, TNFSF13B,
TLR4, TDRD9, CEACAM1, PSTPIP2,
MAPK14, ARG2, IRAK4, OSM, PRV,
TNFRSF6, IL10alpha, PFKFB3

TNFSF10, IRAK2, TDRDY, TGFBI, PFKFB3,
CD86, OSM, IFNGR1, FAD104, ANXA3,
CCLS5, IRAK4, PSTPIP2, GADD45A, SOCS3,
CSFIR, NCR1, CRTAP, ILIRN, BCL2A1
IFNGRI, TIFA, ARG2, IRAK2, CCL5, LDLR,
OSM, SOCS3, SOD2, IL1IRN, PSTPIP2,
BCL2A1, FAD104, IL18R1, IL10alpha, CD86,
FCGRIA, ITGAM, JAK?2, Gene_ MMP9
PSTPIP2, SOCS3, OSM, FCGRIA, ILIRN,
IRAK4, ITGAM, ARG2, TGFBL,

Gene_ MMP9, CSFIR, TLR4, GADD45A,
GADD45B, PRV1, IFNGR1, IL18R1, VNNI,
FAD104, PFKFB3

TNFRSF6, TIFA, PFKFB3, PRV1, OSM,
JAK?2, TGFBL, IL10alpha, CEACAMI, INSL3,
IRAK?2, LY96, ARG2, CD86, FAD104,
MAP2K6, TLR4, SOCS3, IL18R1, ITGAM
FCGRIA, HLA-DRA, ARG2, CRTAP,
CEACAMLI, TNFSF13B, OSM, ANXA3,
ILIRN, Gene_ MMP9, TNFRSF6, FAD104,
JAK?2, IFNGR1, MKNK1, LDLR, IL10alpha,
TGFBI, SOD2, CCLS

GADDA45A, MAPK14, ARG2, TDRD9, NCR1,
IL18R1, SOD2, ITGAM, FCGRIA, SOCS3,
HLA-DRA, IRAK4, TNFRSF6, PRV1, CDS6,
TGFBI, TNFSF13B, TIFA, VNN1, FAD104
HLA-DRA, ARG2, ILIRN, SOCS3, PSTPIP2,
CCLS5, IFNGR1, CD86, TLR4, TGFBL, LY96,
TNFRSF6, OSM, MAP2K6, VNNI, ITGAM,
TNFSF10, NCR1, IRAK4, MAPK14
BCL2AL, ITGAM, ANKRD22, ARG2,
FAD104, OSM, GADD45A, CCLS, TGFBI,
CD86, PSTPIP2, PFKFB3, IFNGR1, IL18R1,
CEACAMI, Gene_ MMP9, IRAK2, ILIRN,
NCRI, LY96

JAK?2, VNN, CSFIR, TLR4, OSM, SOCS3,
ANXA3, LY96, MKNK1, TDRD9, ITGAM,
Gene_ MMP9, TGFBIL, CEACAMI, CDS86,
MAP2K6, CCL5, TNFSF10, ILIRN, IL18R1
FAD104, PSTPIP2, CEACAM1, MAP2KS6,
TIFA, ANKRD22, INSL3, TLR4, CRTAP,
LY96, SOCS3, MAPK14, JAK2, ARG2,
MKNKI1, IL18R1, CSFIR, CD86, PRV1, OSM
CEACAMI, SOCS3, FCGR1A, ARG2,
INSL3, FAD104, IRAK4, GADDA4SA,
ITGAM, PRV1, TNFSF13B, NCRI,

Gene_ MMP9, IL18R1, SOD2, MAPK14,
TIFA, IRAK2, ANKRD22, ILIRN
GADD45B, SOD2, CRTAP, OSM,
TNFSF13B, CCLS, CD86, INSL3, HLA-DRA,
TNFRSF6, TGFBIL, GADD45A, FCGRIA,
FAD104, JAK2, ILIRN, PFKFB3, MAP2KS6,
CEACAMI, TDRD9

0.82

0.84

0.83

0.83

0.83

0.78

0.8

0.8

0.8

0.79

0.84

0.8

0.78

0.85

0.9

0.87

0.83

0.87

0.88
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TABLE L-continued

71

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY

SENSISTIVITY

FCGRI1A, GADD45A, ANKRD22, ILIRN,
PFKFB3, CCLS5, TIFA, IL10alpha, CRTAP,
MKNKI1, PSTPIP2, PRV1, CSF1R, ANXA3,
NCRI, JAK2, VNNI, IRAK4, CD86,
MAP2K6

TLR4, GADDA45A, JAK2, OSM, CD86,
SOCS3, CEACAMI, IL18R1, MAP2KS6,
PRV1,FAD104, BCL2A1, VNNI1, INSL3,
PSTPIP2, ANKRD22, TNFSF10, IFNGR1,
CRTAP, HLA-DRA

FAD104, IL18R1, TIFA, TNFRSF6,

Gene_ MMP9, ARG2, OSM, TNFSF13B,
FCGRI1A, CD86, CEACAMI, LY96, NCR1,
TNFSF10, PFKFB3, PRV1, GADD45A,
SOCS3, HLA-DRA, IRAK2

TDRD9, MKNK1, PFKFB3, IRAK?2, INSL3,
ITGAM, MAPK14, JAK2, HLA-DRA,
CSF1R, CRTAP, NCR1, SOD2, TIFA, IRAKA4,
CD86, OSM, BCL2A1, LY96, ANKRD22
ANKRD22, CRTAP, NCR1, OSM, INSL3,
CD86, CCLS5, JAK2, CSF1R, GADD45B,
ANXA3, SOCS3, PSTPIP2, FCGR1A, HLA-
DRA, IRAK?, ILIRN, IL18R1, PFKFB3,
Gene_ MMP9

ILIRN, LY96, ARG2, PRV1, GADD45A,
TNFSF10, FCGRI1A, IL10alpha, LDLR,
PFKFB3, CRTAP, SOD2, CEACAM1,
IL18R1, CCL5, PSTPIP2, TLR4, VNNI,
HLA-DRA, JAK2, ANKRD22

CD86, LDLR, CRTAP, OSM, TGFBI,
FCGRI1A, NCR1, MAPK14, GADD45A,
ARG2, TLR4, GADDA45B, INSL3, TNFSF10,
ANXA3, MKNK1, PSTPIP2, CSFIR, SOD2,
MAP2K6, BCL2A1

IRAK4, GADD45A, MAP2K6, ANKRD22,
Gene_ MMP9, TDRD9, PSTPIP2, VNN1,
IL18R1, ARG2, IL1RN, PFKFB3, FCGRIA,
TNFRSF6, JAK2, NCR1, TLR4, FAD104,
SOCS3, IFNGR1, SOD2

SOCS3, ITGAM, Gene_ MMP9, MKNK1,
ARG2, CRTAP, BCL2A1, PRV1, NCR1,
HLA-DRA, MAP2K6, FCGR1A, CD86,
FAD104, CCL5, TGFBI, TDRD9, OSM,
GADD45B, IRAK4, LY96

INSL3, BCL2A1, PSTPIP2, OSM, MAP2KS,
CCL5, MKNK1, FAD104, ITGAM, MAPK 14,
ILIRN, VNNI1, IRAK?2, FCGR1A, CD86,
PFKFB3, TDRD9, HLA-DRA, ARG2, TLR4,
CEACAM1

TIFA, MKNK1, TNFSF13B, CSF1R, HLA-
DRA, IL18R1, MAPK14, INSL3, PFKFB3,
ANKRD22, LDLR, ARG2, CCL5, LY96,
PSTPIP2, GADD45A, CEACAMI, JAK?2,
TGFBI, VNN1, ILIRN

CRTAP, FAD104, TIFA, BCL2A1, IRAK?,
PSTPIP2, PFKFB3, MKNK1, ANKRD22,
IL18R1, GADD45B, TDRD9, TLR4, INSL3,
CEACAM1, MAP2K6, ARG2, CD86, NCR1,
TNFSF13B, PRV1

JAK2, SOCS3, IFNGR1, IL1RN, OSM,
BCL2A1, SOD2, ITGAM, FAD104, IL18R1,
PSTPIP2, ARG2, PRV1, TNFSF13B,
FCGRI1A, IRAK?2, IL10alpha, PFKFB3,
MAPK14, INSL3, TGFBI

GADDA45A, CCL5, LDLR, ARG2, IRAK2,
SOCS3, SOD2, PRV1, MAP2K6, INSL3,
TNFSF10, IL18R1, ILIRN, MAPK14,
FAD104, IFNGR1, HLA-DRA, PSTPIP2,
ITGAM, CSF1R, IL10alpha

CD86, TGFBI, ITGAM, IL10alpha, JAK?2,
TIFA, FAD104, CRTAP, ILIRN, BCL2A1,

0.83

0.83

0.83

0.83

0.85

0.84

0.84

0.84

0.83

0.83

0.83

0.78

0.78

0.77

0.82

0.84

0.88

0.82

0.82

0.82

0.81

0.79

0.88

0.88

0.88

0.84

0.85

0.82

0.85

0.86

0.84

0.85

0.8

0.86
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TABLE L-continued

72

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY

SENSISTIVITY

CCL5, GADD45B, HLA-DRA, SOD2, OSM,
NCRI, VNNI, IL18R1, ANXA3,

Gene_ MMP9, PSTPIP2

IL10alpha, TNFSF13B, GADD45B, MAP2KS6,
CCL5, IRAK2, MKNK1, LDLR, VNNI,
GADDA45A, ARG2, OSM, IFNGR1, IL18R1,
ANKRD?22, JAK2, TLR4, TGFBI, TNFRSF6,
FAD104, PFKFB3

MAPK14, SOD2, PRV1, GADD45B,
MKNKI, IL18R1, INSL3, NCR1, LY96,
IRAK?2, CSFIR, TNFRSF6, HLA-DRA,
VNNI1, IRAK4, FAD104, CEACAMI,
IFNGRI1, FCGR1A, TIFA, CD86

ILIRN, PFKFB3, IL18R1, PRV1, CRTAP,
ITGAM, TNFRSF6, IL10alpha, SOCS3,
VNN1, BCL2A1, MAPK14, GADD45A,
IRAK?2, CCLS, ARG2, TLR4, CD86,
ANKRD?22, TNFSF10, TGFBI

HLA-DRA, PRV1, GADD45A, ILIRN,
IL18R1, TNFRSF6, LDLR, IRAK4, BCL2A1,
TIFA, PSTPIP2, SOCS3, IL10alpha, FAD104,
MKNK]1, TNFSF13B, JAK2, TDRD9,
TNFSF10, FCGR1A, CD86

INSL3, GADD45A, TGFBL, JAK?2, IRAK?2,
OSM, TIFA, TNFSF13B, HLA-DRA,
FCGRIA, BCL2A1, PRV1, CEACAMI,
SOCS3, MAPK14, IRAK4, ANXA3,
TNFRSF6, FAD104, IFNGR1, Gene_ MMP9
BCL2A1, ANKRD22, IL10alpha, HLA-DRA,
VNN1, GADD45B, TNFRSF6, CSFIR,
IRAK4, ITGAM, ILIRN, IRAK?2, LY96,
MAPK14, JAK2, Gene_ MMP9, TLR4, ARG?2,
CCLS5, SOCS3, MAP2K6

TDRDY, VNN1, GADD45A, ANKRD22,
PFKFB3, TNFSF13B, SOCS3, IL18R1,
ILIRN, ARG2, CSFIR, HLA-DRA, PRV,
CEACAMI, CD86, IFNGR1, CCL5,
MAP2K6, TGFBI, IL10alpha, Gene_ MMP9
CRTAP, IL1RN, TIFA, IRAK4, ANXA3,
SOCS3, CD86, CSFIR, FCGR1A, FAD104,
ANKRD22, TNFSF13B, PSTPIP2, TDRDS,
ARG2, TGFBI, Gene_ MMP9, CCLS5,
IL10alpha, GADD45B, TNFRSF6

ANXA3, TNFRSF6, TDRDY, IRAK?2,
MAP2K6, INSL3, FCGR1A, GADDA45A,
NCR1, ARG2, VNNI, PRV1, MAPK14,
IRAK4, SOCS3, ITGAM, HLA-DRA, CDg6,
CEACAMI, LY96, GADD45B

VNNI1, CCLS, IFNGR1, LY96, IL10alpha,
ITGAM, FCGRI1A, FAD104, NCRI,
TNFRSF6, TNFSF13B, SOCS3, TIFA,
TNFSF10, PSTPIP2, ARG2, IL18R1, CSFIR,
OSM, PFKFB3, LDLR, IRAK2

IL18R1, GADD45A, BCL2A1, HLA-DRA,
PSTPIP2, ANKRD22, CRTAP, FAD104,
CD86, TNFRSF6, Gene_ MMP9, IRAK?2,
SOD2, IL10alpha, IFNGR1, FCGRI1A, TIFA,
OSM, CCL5, GADD45B, TGFBI, TLR4
TNFSF13B, LDLR, GADD45B, MAPK14,
PFKFB3, CRTAP, MAP2K6, NCR1, CCL5,
ARG2, SOD2, BCL2A1, MKNK1, TIFA,
ANKRD?22, Gene_ MMP9, TGFBL, IL1RN,
HLA-DRA, IL18R1, VNN1, CSFIR
TNFRSF6, PSTPIP2, CD86, VNN, CCL5,
MAPK14, TLR4, BCL2A1, ANKRD22,
ARG2, ITGAM, IL10alpha, IRAK4, SOCS3,
LY96, CRTAP, JAK2, ILIRN, FCGRIA,
MAP2K6, TNFSF10, GADD45A

TDRD9, CRTAP, ANKRD22, TNFSF13B,
ANXA3, CCLS, FCGR1A, TNFSF10,
TNFRSF6, PRV1, IRAK2, CEACAMLI,

0.83

0.83

0.82

0.82

0.82

0.82

0.87

0.84

0.83

0.83

0.76

0.81

0.82

0.8

0.79

0.78

0.84

0.79

0.85

0.82

0.89

0.84

0.82

0.84

0.85

0.86

0.89

0.89

0.82

0.85
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TABLE L-continued

73

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY

SENSISTIVITY

SOCS3, CSFIR, FAD104, PSTPIP2, VNNI,
ARG2, ILIRN, HLA-DRA, BCL2A1, INSL3
TNFSF10, TLR4, MAP2K6, PFKFB3,
FCGRIA, INSL3, MAPK14, PSTPIP2,
IFNGRI, CD86, PRV1, IL10alpha, OSM,
FAD104, ITGAM, ANXA3, TIFA,
CEACAMI, IL18R1, TNFRSF6, NCR1,
GADDA45A

GADD45B, HLA-DRA, NCR1, TGFBI, OSM,
MKNK]1, TLR4, ARG2, CCLS, LDLR,
IFNGRI, SOCS3, INSL3, TIFA, TNFSF10,
CD86, IL10alpha, GADD45A, CSFIR,
TDRD9, BCL2A1, ANXA3

TLR4, ANXA3, IL10alpha, NCR1, JAK2,
TNFSF13B, GADD45A, OSM, SOCS3,
CEACAMI, BCL2A1, MKNK1, ARG2,
CRTAP, TNFRSF6, Gene_ MMP9, PSTPIP2,
SOD2, CD86, ILIRN, FCGR1A, CSFIR
LY96, TIFA, TLR4, PSTPIP2, Gene_ MMP9,
PRV1, HLA-DRA, CEACAMI, FCGRIA,
ARG2, IRAK4, ILIRN, OSM, IFNGR1,
TNFSF13B, CSFIR, TDRDY9, GADD45B,
ANXA3, SOCS3, GADD45A, LDLR
INSL3, PSTPIP2, MKNK1, FCGRIA,
PFKFB3, OSM, TGFBI, MAPK14, IRAK?2,
GADDA45A, ANKRD22, CCLS5, HLA-DRA,
IL10alpha, SOCS3, CD86, IFNGR1, ARG2,
Gene_ MMP9, GADD45B, VNN1, ILIRN
ILIRN, IFNGR1, CCL5, GADD45B, VNN1,
CSFIR, TNFSF10, LDLR, TNFRSF6, INSL3,
CD86, OSM, FCGR1A, BCL2A1, CRTAP,
TLR4, NCR1, PSTPIP2, SOCS3, MAP2KS6,
TNFSF13B, Gene_ MMP9

ARG2, GADD45B, TNFSF10, IRAK?2,
MAPK14, ILIRN, MKNK1, CRTAP,
TNFSF13B, PRV1, SOD2, VNN, IL18R1,
HLA-DRA, MAP2K6, INSL3, CEACAMI,
IL10alpha, LY96, SOCS3, FCGRIA,
ANKRD22

IFNGRI, LDLR, ITGAM, VNN, IL18R1,
TGFBI, SOCS3, ANKRD22, HLA-DRA,
TIFA, OSM, TLR4, IRAK4, INSL3, SOD2,
TNFSF13B, LY96, IRAK2, BCL2A1,
MAPK14, CCL5, MKNK1

Gene_ MMP9, BCL2A1, TDRD9, OSM,
MAPK14, IRAK2, CRTAP, MAP2K6, TGFBI,
IL18R1, TNFSF10, ANXA3, IFNGRI,
GADD45A, TIFA, PSTPIP2, SOCS3, ITGAM,
ARG2, HLA-DRA, FAD104, IRAK4
IRAK?2, ILIRN, ITGAM, LY96, IFNGRI,
TGFBI, TIFA, PFKFB3, Gene_ MMP9,
FAD104, TNFSF13B, VNN1, LDLR, INSL3,
HLA-DRA, NCR1, TDRD9, TNFRSF6,
ANXA3, CSFIR, SOCS3, IL18R1
TNFRSF6, INSL3, LDLR, CD86, TGFBL,
NCR1, Gene. MMP9, CRTAP, HLA-DRA,
BCL2A1, MKNKI, IL18R1, TLR4,
CEACAMI, PRV1, CCLS, OSM, TDRDY,
PFKFB3, IFNGR1, IRAK2, PSTPIP2
PFKFB3, ITGAM, ANKRD22, MAPK 14,
TGFBI, PSTPIP2, BCL2A1, IFNGR1,
MKNK]1, NCR1, ARG2, HLA-DRA, INSL3,
CRTAP, FCGRIA, LDLR, CCL5, JAK2,
IRAK4, TLR4, LY96, IL10alpha

TIFA, IFNGR1, HLA-DRA, Gene_ MMP9,
PRV1, FAD104, IL10alpha, GADD45B,
IRAK4, ILIRN, TDRD9, IL18R1, BCL2Al,
CD86, GADD45A, CCLS, ANXA3, OSM,
SOCS3, PFKFB3, LDLR, CSFIR

FAD104, NCR1, BCL2A1, IRAK2, TLR4,
IL18R1, SOD2, MAPK14, GADD45B, CDS86,

0.83

0.83

0.83

0.83

0.83

0.82

0.82

0.82

0.82

0.82

0.79

0.8

0.76

0.82

0.78

0.83

0.83

0.81

0.8

0.8

0.8

0.8

0.86

0.88

0.83

0.87

0.82

0.82

0.84

0.85

0.84
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TABLE L-continued

74

Exemplary sets of biomarkers used in the methods or kits referenced in
Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

FCGRIA, CSFIR, OSM, MAP2K6, PFKFB3,
LY96, TIFA, MKNK1, PSTPIP2, CRTAP,
TGFBI, GADD45A

GADDA45A, CSFIR, IL18R1, TGFBI,
TNFSF13B, ANXA3, OSM, SOCS3, LY96,
TDRD9, ITGAM, FCGR1A, IFNGR1,
FAD104, HLA-DRA, PSTPIP2, MKNKI1,
CRTAP, GADD45B, Gene_ MMP9, LDLR,
TLR4, VNNI1

MAP2K6, TGFBI, HLA-DRA, IL10alpha,
VNN1, GADD45B, CEACAMI, PRV1, OSM,
IRAK4, IRAK2, ITGAM, CSF1R, TDRDS,
NCR1, TNFSF13B, CRTAP, BCL2A1, TIFA,
IFNGRI1, GADD45A, IL18R1, SOD2
GADDA45B, MAPK 14, TDRD9, CCL5, OSM,
TNFSF13B, ANXA3, TIFA, ANKRD22,
TNFRSF6, TNFSF10, PSTPIP2, TLR4, VNN1,
FCGRIA, IL18R1, NCR1, GADD45A, Y96,
INSL3, ITGAM, BCL2A1, IRAK2
HLA-DRA, PFKFB3, IRAK4, MKNK1,
TGFBI, CRTAP, ANXA3, CEACAM1, CCLS5,
JAK?2, TNFSF10, ILIRN, CSFIR, IFNGRI,
ARG2, LY96, Gene_ MMP9, PRV1, CDg6,
IRAK?2, ITGAM, IL10alpha, OSM

FAD104, LY96, NCR1, TLR4, TNFSF13B,
MAPK14, MAP2K6, HLA-DRA, FCGRIA,
CD86, ANKRD22, LDLR, ILIRN, IFNGRI,
TDRD9, TGFBI, GADD45A, PRV1, PFKFB3,
ITGAM, JAK2, PSTPIP2, CRTAP

BCL2A1, FCGR1A, CRTAP, Gene_ MMP9,
TDRD9, CEACAMI, SOCS3, SOD2, LDLR,
GADD45B, LY96, CSFIR, ARG2, TNFRSFG6,
PSTPIP2, PFKFB3, ILIRN, IL10alpha, VNNI,
GADD45A, INSL3, JAK2, IFNGR1

Gene_ MMP9, LDLR, CEACAM1, MAPK14,
TLR4, ANXA3, IRAK4, FCGRIA,
GADDA45B, GADD45A, TGFBL, BCL2A1,
CSFIR, PRV1, TNFRSF6, IFNGR1, TDRDY,
LY96, MAP2K6, OSM, CRTAP, CDg6,
FAD104

FCGRIA, ANXA3, MAPK14, TNFRSF6,
PSTPIP2, INSL3, ANKRD22, CD86, CRTAP,
FAD104, GADD45B, IL18R1, TLR4, IRAK?2,
ITGAM, JAK2, GADD45A, BCL2Al,
IFNGRI, CSFIR, TIFA, NCR1, IRAK4
CRTAP, OSM, TNFRSF6, IRAK2, VNN1,
IRAK4, ANXA3, SOD2, ANKRD22, ITGAM,
TLR4, MKNK]1, IL18R1, CEACAMI, TGFBI,
PRV1, Gene_ MMP9, TNFSF13B, BCL2Al,
HLA-DRA, INSL3, NCR1, CSFIR

FAD104, CEACAMI, CCL5, PSTPIP2,
TNFSF10, VNN1, CRTAP, IRAK?2, FCGRIA,
TNFSF13B, CD86, IL10alpha, ARG2,
BCL2A1, IFNGR1, PRV, IL18R1, TNFRSFG6,
TIFA, TLR4, JAK2, MAPK 14, MAP2K6
ARG2, MAPK14, IRAK4, LDLR, IL10alpha,
Gene_ MMP9, NCR1, OSM, CEACAMI,
SOD2, CSFIR, CCLS, GADD45A, ITGAM,
BCL2A1, HLA-DRA, PFKFB3, TNFSF13B,
TNFSF10, IRAK2, VNN1, JAK2, PRV1
FAD104, IFNGR1, INSL3, PFKFB3,
MAP2K6, LDLR, CD86, ARG2, PRV,
ILIRN, OSM, ITGAM, VNN1, MKNKI,
ANXA3, JAK2, GADD45B, CSFIR,
TNFSF13B, PSTPIP2, FCGR1A, CRTAP,
TGFBI

VNNI1, SOCS3, ANKRD22, FAD104, IL18R1,
OSM, ITGAM, CCL5, TGFBI, MAPK 14,
MKNK]1, HLA-DRA, LDLR, PSTPIP2,
ARG2, CSFIR, IL10alpha, MAP2K6, Y96,
FCGRIA, TNFSF10, JAK2, TLR4

0.85

0.84

0.84

0.84

0.84

0.83

0.83

0.83

0.83

0.83

0.81

0.83

0.8

0.8

0.82

0.82

0.82

0.8

0.79

0.83

0.89

0.85

0.89

0.85

0.86

0.84

0.85

0.87

0.83
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TABLE L-continued

75

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY

SENSISTIVITY

CEACAMI1, MAP2K6, IL18R1, TIFA, HLA-
DRA, FAD104, TGFBI, LDLR, ANKRD22,
ILIRN, SOCS3, TNFSF13B, NCR1, CD86,
BCL2A1, IL10alpha, TLR4, CRTAP,
MKNKI1, ITGAM, JAK?2, OSM, ARG2
VNN1, FCGR1A, SOD2, CRTAP, TGFBI,
LDLR, FAD104, NCR1, TNFRSF6, ARG2,
GADDA45A, OSM, ANXA3, ITGAM,
BCL2A1, CSFIR, IFNGRI, TIFA,
CEACAM1, CCL5, SOCS3, ANKRD22,
Gene_ MMP9

CCLS5, ILIRN, TIFA, PRV1, TNFSF13B,
INSL3, IRAK2, MKNK1, MAPK14,
FCGRI1A, SOCS3, JAK?2, FAD104, IFNGR1,
CRTAP, IL18R1, GADD45B, SOD2,
TNFSF10, HLA-DRA, TNFRSF6, ANKRD22,
LDLR

PRV1, BCL2A1, SOD2, VNNI, FAD104,
TIFA, IL10alpha, SOCS3, ITGAM, IL18R1,
CEACAM1, MAP2K6, TNFSF13B, JAK2,
IRAK4, TNFRSF6, OSM, CRTAP, PSTPIP2,
TLR4, CSFIR, ILIRN, FCGR1A

TNFRSF6, TNFSF10, CD86, IL10alpha,
ARG2, TLR4, JAK2, MAP2K6, GADD45B,
LDLR, TIFA, IRAK2, BCL2A1, SOD2, LY96,
PFKFB3, HLA-DRA, CSF1R, FAD104,
CRTAP, FCGR1A, ANXA3, SOCS3
TNFSF13B, IRAK4, CD86, LDLR, OSM,
CCL5, ANXA3, ILIRN, GADD45B, SOCS3,
TGFBI, BCL2A1, FAD104, IRAK?,
IL10alpha, NCR1, MAP2K6, INSL3, TIFA,
CEACAM1, MKNK1, MAPK14, JAK2
LY96, ANXA3, TIFA, CSFIR, GADD45B,
PFKFB3, ILIRN, IL18R1, LDLR, TNFRSF6,
OSM, INSL3, CRTAP, MAP2K6, IRAK2,
ARG2, IL10alpha, NCR1, FAD104, IRAKA4,
MKNK1, VNNI1, IFNGR1, SOD2

NCRI, ILIRN, PRV1, IL18R1, HLA-DRA,
BCL2A1, GADD45A, FAD104, TLR4, OSM,
FCGRI1A, TNFSF10, CRTAP, INSL3,
GADDA45B, Y96, IRAK?2, CD86, VNNI1,
CCLS5, JAK2, IL10alpha, MKNK1, IRAK4
GADDA45A, MKNK1, ANXA3, TLR4,
MAP2KS6, TIFA, FCGR1A, IRAK?2, TDRD9,
VNN1, CSF1R, GADD45B, LDLR, IL1RN,
ANKRD22, JAK?2, HLA-DRA, IL10alpha,
PSTPIP2, Gene_ MMP9, CRTAP, IL18R1,
MAPK14, ARG2

FAD104,IL18R1, IRAK?, TIFA, IL10alpha,
ITGAM, SOCS3, TDRD9, PSTPIP2, ARG2,
INSL3, IL1RN, TLR4, IFNGR1, VNN1,
MAPK14, TNFRSF6, SOD2, ANKRD22,
NCRI1, ANXA3, FCGR1A, CD86, OSM
TLR4, TGFBI, CEACAM1, OSM, CRTAP,
ILIRN, TNFRSF6, PRV1, SOD2, MKNK1,
VNNI1, CSF1R, IL18R1, ANKRD22,
MAPK14, ANXA3, TNFSF10, TDRD9,
BCL2A1, IRAK4, FCGR1A, CCL5,
TNFSF13B, GADD45B

ARG2, JAK2, CSFIR, NCR1, LY96, HLA-
DRA, ANXA3, PSTPIP2, IRAK4, BCL2A1,
ILIRN, IFNGR1, FCGR1A, VNN1, TNFSF10,
MAPK14, TGFBI, GADD45B, INSL3,
IRAK2, OSM, CD86, CRTAP, TNFSF13B
HLA-DRA, INSL3, PRV1, MAP2KS6, TIFA,
NCRI1, CSFIR, TDRD9, IL18R1, MKNK1,
TNFRSF6, TNFSF10, LDLR, IRAK4,
FAD104, ITGAM, PSTPIP2, MAPK 14,
TNFSF13B, GADD45B, CEACAMI, IL1RN,
ANXA3, PFKFB3

0.82

0.82

0.82

0.82

0.82

0.82

0.84

0.83

0.83

0.83

0.82

0.81

0.81

0.74

0.81

0.8

0.8

0.82

0.83

0.82

0.81

0.83

0.84

0.84

0.9

0.83

0.83

0.86

0.84

0.84

0.84
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TABLE L-continued

76

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

INSL3, TDRD9, GADD45A, BCL2A1,
PFKFB3, TNFRSF6, MAP2K6, GADD45B,
TGFBI, IRAK2, CEACAM1, ITGAM,
IL10alpha, ANXA3, JAK2, ILIRN, CRTAP,
PRV1, SOCS3, TIFA, CCLS5, LY 96,
TNFSF10, OSM

VNNI1, LDLR, FAD104, HLA-DRA, ARG2,
IFNGRI1, IRAK4, TNFRSF6, TIFA, MAP2KS6,
NCR1, OSM, PRV1, CSFIR, INSL3,
TNFSF13B, JAK2, MAPK14, BCL2A1,
IRAK?2, TLR4, PSTPIP2, TDRD9, ANXA3
ANXA3, TNFSF10, TGFBIL, MKNK1,
PSTPIP2, GADD45SA, CRTAP, LDLR, INSL3,
MAPK14, IFNGR1, BCL2A1, TNFSF13B,
GADDA45B, Gene_ MMP9, IRAK2,
CEACAMI, PRV1, SOD2, FAD104, JAK?2,
NCRI1, ARG2, ILIRN

TDRD9, LY96, PFKFB3, IRAK2, FAD104,
NCR1, Gene_ MMP9, MAPK14, CCLS5,
LDLR, PSTPIP2, OSM, VNNI, IRAK4,
BCL2A1, TIFA, GADD45A, TGFBI,
ANKRD22, FCGR1A, IFNGR1, ARG2, CD86,
IL18R1

CD86, TNFSF13B, PSTPIP2, IL10alpha,
HLA-DRA, MAP2K6, FCGRIA,

Gene_ MMP9, JAK2, SOCS3, CSFIR,
TDRD9, ARG2, NCR1, OSM, FAD104,
BCL2A1, TNFRSF6, INSL3, VNN1, ITGAM,
PRV1, TLR4, CEACAM1

IL18R1, ARG2, VNN1, TNFRSF6, TIFA,
MKNK]1, IL10alpha, CD86, NCR1, OSM,
ANKRD22, TDRD9, PSTPIP2, ITGAM,
IFNGRI1, MAP2K6, BCL2A1, IRAK2, TLR4,
LY96, SOCS3, GADD45B, IRAK4, PRV1
TNFSF10, ITGAM, MAP2K6, TIFA, CSF1R,
TDRD9, FAD104, TLR4, GADDA45B, HLA-
DRA, IRAK?2, IRAK4, OSM, FCGR1A,
CCL5, SOD2, VNN1, MKNK1, ARG2,
Gene_ MMP9, TGFBI, TNFSF13B, MAPK 14,
PFKFB3

TNFSF10, CEACAMI, IFNGRI1, TIFA,
MKNK1, ANXA3, IL1RN, IL10alpha,
IL18R1, HLA-DRA, SOCS3, Gene_ MMP9,
MAPK14, TGFBI, JAK2, IRAK?2, TLR4,
CSF1R, BCL2A1, PSTPIP2, MAP2KS6, CD86,
ITGAM, SOD2

SOD2, PFKFB3, MAP2K6, HLA-DRA,
ANKRD22,IL18R1, Gene_ MMP9, LDLR,
ARG2, GADD45A, JAK2, MKNK1, PRV1,
FCGRI1A, ITGAM, OSM, NCR1, VNNI,
LY96, IFNGRI, TIFA, PSTPIP2, IL1RN,
TLR4

CSF1R, FCGRI1A, IL18R1, ANKRD22,
MKNKI1, NCR1, IRAK2, TDRD9, GADD45A,
CRTAP, GADDA45B, JAK?2, PRV1, SOCS3,
CD86, MAPK14, MAP2K6, IFNGR1, LY96,
FAD104, OSM, SOD2, TLR4, IL10alpha
ARG2, TGFBI, TIFA, IL18R1, TNFRSF6,
CSF1R, CCL5, SOCS3, LY96, MKNK1,
BCL2A1, SOD2, FCGR1A, PSTPIP2,
GADD45B, IFNGR1, NCR1, TNFSF10,
LDLR, PRV1, ILIRN, TDRD9, ANKRD22,
TLR4

ILIRN, IL10alpha, IFNGR1, TDRD9,
PFKFB3, GADD45B, TNFSF10, PSTPIP2,
SOCS3, TIFA, MAPK14, CSF1R, TNFSF13B,
CRTAP, TNFRSF6, ARG2, IL18R1, LY96,
TGFBI, CD8&6, TLR4, GADD45A, OSM,
Gene_ MMP9

SOD2, IRAK4, SOCS3, VNNI1, IL1RN,
ITGAM, TNFSF10, GADD45A, CCL5,

0.83

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.86

0.78

0.83

0.8

0.8

0.78

0.78

0.75

0.85

0.81

0.8

0.8

0.88

0.87

0.8

0.82

0.85

0.84

0.86

0.86

0.88

0.79

0.83

0.83

0.84

0.85
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TABLE L-continued

Exemplary sets of biomarkers used in the methods or kits referenced in
Sections 5.2 and 5.3

BIOMARKER SET ACCURACY  SPECIFICITY

SENSISTIVITY

CEACAMI, ANKRD22, NCR1, ILI8R1,
OSM, ARG2, INSL3, MAPK14, MAP2KS6,

TGFBI, TNFSF13B, PFKFB3, MKNK1,

LY96, FCGRIA, CSFIR

LDLR, VNNI, GADD45A, SOCS3, TLR4, 0.85 0.85
SOD2, BCL2Al, IL18R1, IRAK2, HLA-DRA,

TIFA, CEACAMI, OSM, INSL3, TNFSF13B,

TNFRSF6, Gene_ MMP9, CRTAP, ARG2,

LY96, GADD45B, CSFIR, FCGRIA, ILIRN,

PFKFB3

ARG2, PRV1, TNFSF10, FAD104, SOD2, 0.85 0.84
ANXA3, IL18R1, JAK2, LDLR, OSM,

IFNGR1, PSTPIP2, TNFRSF6, IRAK4,

ILIRN, VNNI1, FCGRIA, ITGAM, IL10alpha,

IRAK?2, INSL3, CD86, TDRDS, TIFA,

MKNK1

GADD45B, IRAK2, MAPK14, Gene_ MMP9, 0.85 0.81
CD86, CEACAMI1, SOD2, SOCS3, ARG2,

ANXA3, LDLR, JAK2, VNN1, IFNGRI,

FAD104, NCR1, PRV1, OSM, TDRDY,

MKNKI1, ITGAM, INSL3, ILIRN,

ANKRD22, CCL5

IL10alpha, IRAK2, HLA-DRA, Gene_ MMP9, 0.84 0.85
TGFBI, LDLR, TIFA, GADD45A, ARG2,

CSFIR, MAP2K6, CEACAMI, PRV1, OSM,

CD86, TNFRSF6, LY96, FAD104, PSTPIP2,

ANXA3, IFNGR1, NCR1, CCLS, GADD45B,

PFKFB3

GADDA45A, SOCS3, SOD2, TGFBI, HLA- 0.84 0.84
DRA, VNNI, CD86, CCLS, BCL2A1,

CRTAP, MAP2K6, PRV1, IL18R1, CSFIR,

OSM, IRAK?2, PSTPIP2, TLR4, FCGRIA,

ANKRD22, CEACAMI, JAK?2, INSL3,

TDRDY, TNFSF10

FCGRIA, TLR4, ANKRD22, CEACAMI, 0.84 0.78
IRAK4, LY96, TDRD9, ARG2, CRTAP,

ANXA3, LDLR, MAPK14, CDg6,

Gene_ MMP9, INSL3, GADD45B, TNFSF10,

VNNI1, IRAK2, PSTPIP2, TIFA, TNFRSF6,

TGFBIL, IL18R1, ILIRN

SOCS3, VNNI1, FCGR1A, SOD2, OSM, 0.84 0.83
TNFSF10, LY96, Gene_ MMP9, GADD45B,

CRTAP, PRV1, HLA-DRA, GADD45A,

TLR4, ARG2, IRAK2, FAD104, INSL3,

PSTPIP2, TIFA, TGFBL IL18R1, MAP2KG,

LDLR, ANXA3

MAP2K6, LDLR, TIFA, TNFSF13B, IL18R1, 0.84 0.83
ITGAM, SOCS3, OSM, ANXA3, GADD45A,

Gene_ MMP9, CD86, ILIRN, IFNGR1, PRV1,

FCGRIA, MAPK14, CCLS, VNN1, ARG2,

PSTPIP2, IRAK2, NCR1, TDRDY, TNFRSF6

TIFA, ANKRD22, TNFSF13B, SOCS3, 0.84 0.82
NCRI, IRAK4, JAK2, GADD45A, CCLS,

LDLR, MAPK14, IL18R1, SOD2, TGFBL,

CSFIR, IFNGR1, MAP2K6, TNFSF10,

IRAK?2, LY96, IL1RN, TNFRSF6, VNN,

INSL3, PFKFB3

MAP2K6, FAD104, CCL5, IL18R1, NCR1, 0.84 0.81
VNNI, IL10alpha, ANKRD22, IFNGRI,

MAPK14, CD86, MKNK1, TLR4, LY96,

TIFA, PSTPIP2, TNFRSF6, LDLR, CSFIR,

ARG2, TGFBI, JAK?2, PFKFB3, OSM,

TDRD9

0.86

0.89

0.84

0.85

0.9

0.84

0.86
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TABLE L-continued

May 5, 2011

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET ACCURACY

SPECIFICITY

SENSISTIVITY

JAK?2, OSM, IRAK4, VNN1, SOCS3, 0.83
GADD45B, ILIRN, FCGR1A, TNFRSF6,
Gene_ MMP9, ANKRD22, ARG2, IL10alpha,
CCLS5, IL18R1, ANXA3, LY96, PSTPIP2,
TIFA, TNFSF10, FAD104, MAP2KG,
MKNK]1, PFKFB3, CRTAP

TIFA, IRAK2, ANKRD22, CCL5, IL10alpha,
INSL3, CEACAMI, TLR4, FCGR1A, NCR1,
CD86, BCL2A1, GADD45A, ITGAM,
MAP2K6, CRTAP, VNN1, TDRD9, SOCS3,
ANXA3, TNFSF10, LY96, MKNK1, JAK2,
ARG2

PSTPIP2, CEACAMLI, FAD104, TIFA,
ANKRD22, OSM, TNFSF13B, IRAK4,
INSL3, GADD45A, IL10alpha, CSFIR, HLA-
DRA, SOCS3, GADD45B, CCL5,

Gene_ MMP9, LY96, TLR4, IFNGR1, TGFBI,
BCL2A1, MAP2K6, CD86, PFKFB3

ILIRN, JAK2, PFKFB3, OSM, CD86, IL18R1,
SOD2, GADD45B, ITGAM, TNFRSF6,
MAP2K6, LDLR, TLR4, TIFA, INSL3,
SOCS3, IFNGR1, ANKRD22, GADD45A,
IRAK4, CRTAP, CSFIR, TNFSF13B, PRV,
PSTPIP2

IFNGRI1, VNN1, ANKRD22, FCGR1A, JAK2,
MAP2K6, SOD2, TNFSF13B, IRAK4,
CEACAMI, LY96, MAPK14, INSL3, NCR1,
Gene_ MMP9, CCL5, HLA-DRA, LDLR,
TNFRSF6, PFKFB3, ANXA3, SOCS3, ARG2,
ITGAM, CSFIR

LDLR, GADD45A, IFNGR1, ARG2,
MAPK14, HLA-DRA, CRTAP, OSM,
TDRD9, CSFIR, FCGRIA, Gene_ MMP9,
NCRI, PRV1, IRAK4, TGFBI, TLR4, LY96,
ILIRN, FAD104, SOD2, CCL5, TNFRSF6,
MAP2K6, TNFSF13B

IL18R1, ILIRN, IRAK4, CEACAMI,
ITGAM, LY96, ANKRD22, ARG2, TDRDY,
LDLR, NCR1, IL10alpha, ANXA3, CDS6,
MAPK14, TNFRSF6, SOD2, MKNKI,
GADDA45B, CRTAP, PFKFB3, CSFIR,
INSL3, PSTPIP2, CCL5

PSTPIP2, NCR1, MKNK1, SOCS3, ILIRN,
IFNGRI, IL18R1, CSFIR, ITGAM, LDLR,
TIFA, CRTAP, OSM, TLR4, CEACAMI,
Gene_ MMP9, INSL3, MAP2K6, CCL3,
FAD104, HLA-DRA, PRV1, VNN1, PFKFB3,
JAK2

0.83

0.83

0.83 0.83

0.84

0.82

0.78

0.83

0.84

0.87

0.83

[0436] In some embodiments, the methods or kits respec-
tively described or referenced in Section 5.2 and Section 5.3
use any one of the biomarker sets listed in Table M. The
biomarker sets listed in Table M were identified in the com-
putational experiments described in Section 6.14.2, below, in
which 1600 random subcombinations of the biomarkers
listed in Table K were tested. Table M lists some of the
biomarker sets that provided high accuracy scores against the
validation population described in Section 6.14.2. Each row
of Table M lists a single biomarker set that can be used in the
methods and kits respectively referenced in Sections 5.2 and
5.3. In other words, each row of Table M describes a biom-
arker set that can be used to discriminate between sepsis and
SIRS subjects (e.g., to determine whether a subject is likely to
acquire SEPSIS). In some embodiments, nucleic acid forms
of the biomarkers listed in Table M are used in the methods
and kits respectively referenced in Sections 5.2 and 5.3. In

some embodiments, protein forms of the biomarkers listed in
Table M are used. In some hybrid embodiments, some of the
biomarkers in a biomarker set from Table M are in protein
form and some of the biomarkers in the same biomarker set
from Table M are in nucleic acid form in the methods and kits
respectively referenced in Sections 5.2 and 5.3.

[0437] In some embodiments, a given biomarker set listed
in Table M is used with the addition of one, two, three, four,
five, six, seven, eight, or nine or more additional biomarkers
from Table I that are not within the given set of biomarkers
from Table M. In some embodiments, a given set of biomar-
kers from Table M is used with the addition of one, two, three,
four, five, six, seven, eight, or nine or more additional biom-
arkers from any one of Table 1, 30, 31, 32, 33, 34, or 36 that
are not within the given biomarker set from Table M. In Table
M, accuracy, specificity, and senstitivity are described with
reference to T_ |, time point data described in Section 6.14.2,
below.
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TABLE M

79

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET ACCURACY SPECIFICITY SENSISTIVITY
ALPHAFETOPROTEIN, IL6, IL8 0.78 0.76 0.8
CREACTIVEPROTEIN, TIMP1, IL6 0.78 0.75 0.8
PROTEIN_ MMP9, IL8, IL6 0.77 0.8 0.74
IL8, IL6, IL10 0.77 0.72 0.81
CREACTIVEPROTEIN, IL6, 0.77 0.77 0.76
PROTEIN_ MMP9

APOLIPOPROTEINCIIL, IL8, IL6 0.76 0.74 0.78
IL6, IL8, CREACTIVEPROTEIN 0.76 0.74 0.79
ALPHAFETOPROTEIN, MCP1, IL10, IL6 0.8 0.8 0.8
ALPHAFETOPROTEIN, IL10, IL6, 0.79 0.7 0.86
PROTEIN_ MMP9

ALPHAFETOPROTEIN, 0.78 0.74 0.81
PROTEIN_ MMP?9, IL6,

APOLIPOPROTEINCIII

APOLIPOPROTEINCIIL, IL6, 0.78 0.73 0.81
BETA2MICROGLOBULIN, TIMP1

IL6, BETA2MICROGLOBULIN, IL10, 0.77 0.73 0.81
APOLIPOPROTEINCIII

IL6, PROTEIN_MMP9, IL10, MCP1 0.77 0.81 0.73
APOLIPOPROTEINCIIL, 0.77 0.78 0.75
ALPHAFETOPROTEIN,

PROTEIN_ MMP9, IL6

IL10, TIMP1, IL6, ALPHAFETOPROTEIN 0.77 0.71 0.83
TIMP1, IL6, CREACTIVEPROTEIN, 0.76 0.8 0.73
BETA2MICROGLOBULIN

PROTEIN_ MMP9, CREACTIVEPROTEIN, 0.8 0.78 0.81
MCP1, IL10, IL6

APOLIPOPROTEINCIIL, 0.79 0.81 0.78
CREACTIVEPROTEIN, IL10,

ALPHAFETOPROTEIN, IL6

CREACTIVEPROTEIN, 0.79 0.77 0.81
ALPHAFETOPROTEIN, IL6,

PROTEIN_ MMP9, IL8

IL6, TIMP1, MCP1, 0.78 0.75 0.82
APOLIPOPROTEINCIIL,

CREACTIVEPROTEIN

CREACTIVEPROTEIN, 0.78 0.79 0.76
APOLIPOPROTEINCIII, TIMP1, IL8,

PROTEIN_ MMP9

CREACTIVEPROTEIN, IL10, MCP1, IL6, 0.77 0.78 0.77
TIMP1

IL10, IL8, APOLIPOPROTEINCIIL, IL6, 0.77 0.73 0.8
TIMP1

IL10, CREACTIVEPROTEIN, MCP1, IL6, 0.77 0.72 0.82
APOLIPOPROTEINCIII

IL6, ALPHAFETOPROTEIN, IL8, 0.77 0.75 0.78
CREACTIVEPROTEIN, TIMP1

TIMP1, MCP1, PROTEIN_ MMP9, IL6, 0.8 0.81 0.79
APOLIPOPROTEINCIIL,

CREACTIVEPROTEIN

TIMP1, IL6, IL10, CREACTIVEPROTEIN, 0.79 0.77 0.8
APOLIPOPROTEINCIIIL, PROTEIN_MMP9

MCP1, PROTEIN_ MMP9, 0.79 0.75 0.82
APOLIPOPROTEINCIIL, IL6, TIMP1, IL10

IL10, CREACTIVEPROTEIN, IL6, 0.78 0.78 0.79
ALPHAFETOPROTEIN, TIMP1,

PROTEIN_ MMP9

PROTEIN_ MMP9, CREACTIVEPROTEIN, 0.78 0.77 0.79
ALPHAFETOPROTEIN, IL10, IL6, MCP1

IL6, MCP1, IL10, TIMP1, 0.78 0.76 0.79
APOLIPOPROTEINCIIL, IL8

TIMP1, IL6, IL10, 0.77 0.72 0.83
BETA2MICROGLOBULIN,

PROTEIN_ MMP9, APOLIPOPROTEINCIII

IL10, MCP1, ALPHAFETOPROTEIN, 0.77 0.76 0.78
APOLIPOPROTEINCIIL, IL6,

PROTEIN_ MMP9

BETA2MICROGLOBULIN, IL6, TIMP1, 0.77 0.74 0.79

ALPHAFETOPROTEIN,
CREACTIVEPROTEIN, PROTEIN__ MMP9
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80

Exemplary sets of biomarkers used in the methods or kits referenced in
Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

MCP1, IL10, IL8, IL6, TIMP1,

PROTEIN_MMP9, CREACTIVEPROTEIN

PROTEIN_ MMP9,
BETA2MICROGLOBULIN,
APOLIPOPROTEINCIIL, IL8, IL6,
ALPHAFETOPROTEIN,
CREACTIVEPROTEIN

IL8, MCP1, CREACTIVEPROTEIN,
APOLIPOPROTEINCIIL,
ALPHAFETOPROTEIN,

PROTEIN_ MMP9, IL6

TIMP1, IL6, CREACTIVEPROTEIN,
APOLIPOPROTEINCIIL,

PROTEIN_ MMP?9, IL8,
ALPHAFETOPROTEIN

IL10, IL6, BETA2MICROGLOBULIN,
CREACTIVEPROTEIN,
APOLIPOPROTEINCIII, MCP1, IL8
APOLIPOPROTEINCIIL,

PROTEIN_ MMP9, MCP1, IL6,
ALPHAFETOPROTEIN, IL10, TIMP1
IL10, CREACTIVEPROTEIN,
ALPHAFETOPROTEIN,
BETA2MICROGLOBULIN, IL8,

PROTEIN_MMP9, APOLIPOPROTEINCIII

TIMP1, IL10, CREACTIVEPROTEIN,
APOLIPOPROTEINCIIL, IL6, IL8, MCP1
IL8, TIMP1, CREACTIVEPROTEIN, IL6,
IL10, BETA2MICROGLOBULIN,
APOLIPOPROTEINCIII
APOLIPOPROTEINCIIL,
CREACTIVEPROTEIN, IL8, IL10,
PROTEIN_ MMP?9, IL6,
BETA2MICROGLOBULIN

TIMP1, MCP1, IL10,
BETA2MICROGLOBULIN,

PROTEIN_ MMP?9, IL6,
ALPHAFETOPROTEIN,
APOLIPOPROTEINCIII

TIMP1, PROTEIN_ MMP9, IL6,
ALPHAFETOPROTEIN, IL10,
APOLIPOPROTEINCIII, MCP1, IL8
IL10, IL6, MCP1, CREACTIVEPROTEIN,
APOLIPOPROTEINCIIL,

PROTEIN_ MMP9,
BETA2MICROGLOBULIN,
ALPHAFETOPROTEIN

TIMP1, MCP1, IL10,
CREACTIVEPROTEIN,
ALPHAFETOPROTEIN, IL6,
PROTEIN_ MMP9, IL8
APOLIPOPROTEINCIIL,
ALPHAFETOPROTEIN, TIMPI,
BETA2MICROGLOBULIN, MCP1, IL10,
IL6, IL8

CREACTIVEPROTEIN, TIMP1,
APOLIPOPROTEINCIII, MCP1, IL6,
ALPHAFETOPROTEIN,
BETA2MICROGLOBULIN,

PROTEIN_ MMP9
BETA2MICROGLOBULIN, IL10, IL8,
APOLIPOPROTEINCIIL,

PROTEIN_ MMP?9, IL6, TIMP1,
CREACTIVEPROTEIN
APOLIPOPROTEINCIIL, IL8,
ALPHAFETOPROTEIN, IL6,
PROTEIN_ MMP9, IL10, TIMP1, MCP1
APOLIPOPROTEINCIIL, IL6, IL8,
PROTEIN_ MMP9, TIMP1,
BETA2MICROGLOBULIN, IL10,
CREACTIVEPROTEIN

0.79

0.79

0.78

0.78

0.78

0.78

0.8

0.79

0.79

0.79

0.79

0.78

0.77

0.77

0.76

0.7

0.8

0.81

0.8

0.74

0.77

0.76

0.73

0.73

0.81

0.8

0.8

0.85

0.74

0.76

0.86

0.82

0.81

0.83

0.83
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Exemplary sets of biomarkers used in the methods or kits referenced in
Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

APOLIPOPROTEINCIII, MCP1, IL10,
PROTEIN_ MMP9, TIMP1,
ALPHAFETOPROTEIN,
CREACTIVEPROTEIN, IL6

PROTEIN_ MMP9, CREACTIVEPROTEIN,
IL6, TIMP1, BETA2MICROGLOBULIN,
IL10, APOLIPOPROTEINCIIL, MCP1,
ALPHAFETOPROTEIN
APOLIPOPROTEINCIIL,

PROTEIN_ MMP9,
ALPHAFETOPROTEIN,
CREACTIVEPROTEIN, IL6, IL10, IL8,
TIMP1, BETA2MICROGLOBULIN
ALPHAFETOPROTEIN, TIMPI,
PROTEIN_ MMP9, MCP1, IL6,
APOLIPOPROTEINCIIL,
BETA2MICROGLOBULIN, IL10,
CREACTIVEPROTEIN
APOLIPOPROTEINCIIL,

PROTEIN_ MMP9, MCP1,
BETA2MICROGLOBULIN, IL8, IL6, IL10,
CREACTIVEPROTEIN, TIMP1

TIMP1, APOLIPOPROTEINCIIL, IL6,
CREACTIVEPROTEIN, MCP1,
PROTEIN_ MMP9, IL8,
BETA2MICROGLOBULIN,
ALPHAFETOPROTEIN
BETA2MICROGLOBULIN, IL8,
CREACTIVEPROTEIN, TIMP1, IL6,
ALPHAFETOPROTEIN,
APOLIPOPROTEINCIIL,

PROTEIN_ MMP?9, IL10

IL6, IL8, TIMP1, PROTEIN_ MMP9, IL10,
BETA2MICROGLOBULIN,
APOLIPOPROTEINCIIL,
CREACTIVEPROTEIN,
ALPHAFETOPROTEIN

PROTEIN_ MMP9, IL10, MCP1,
CREACTIVEPROTEIN,
ALPHAFETOPROTEIN, IL6, TIMP1,
APOLIPOPROTEINCIIL,
BETA2MICROGLOBULIN

IL10, IL8, ALPHAFETOPROTEIN, IL6,
TIMP1, PROTEIN_ MMP9, MCP1,
BETA2MICROGLOBULIN,
CREACTIVEPROTEIN
ALPHAFETOPROTEIN, MCPI, IL6,
BETA2MICROGLOBULIN,

PROTEIN_ MMP9, CREACTIVEPROTEIN,
TIMP1, APOLIPOPROTEINCIIL, IL10
TIMP1, IL6, CREACTIVEPROTEIN,
ALPHAFETOPROTEIN, IL10,
BETA2MICROGLOBULIN, MCP1,
APOLIPOPROTEINCIIL, IL8,
PROTEIN_ MMP9

IL8, CREACTIVEPROTEIN, TIMP1, IL10,
MCP1, IL6, ALPHAFETOPROTEIN,
PROTEIN_ MMP9,
APOLIPOPROTEINCIIL,
BETA2MICROGLOBULIN

MCP1, TIMP1, APOLIPOPROTEINCIII,
ALPHAFETOPROTEIN,

PROTEIN_ MMP?9, IL10,
CREACTIVEPROTEIN,
BETA2MICROGLOBULIN, IL8, IL6
BETA2MICROGLOBULIN, MCP1, IL6,
CREACTIVEPROTEIN, IL10, IL8,
ALPHAFETOPROTEIN,
APOLIPOPROTEINCIII, TIMP1,
PROTEIN_ MMP9

0.77

0.79

0.79

0.79

0.78

0.78

0.78

0.78

0.79

0.79

0.78

0.78

0.76

0.78

0.79

0.72

0.77

0.8

0.78

0.78

0.78

0.8

0.78

0.78

0.81

0.79

0.84

0.79

0.75

0.78

0.81

0.8

0.77

0.79

May 5, 2011



US 2011/0105350 Al

82

TABLE M-continued

May 5, 2011

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET ACCURACY

SPECIFICITY  SENSISTIVITY

CREACTIVEPROTEIN, TIMP1, IL10, IL6, 0.78 0.76
ALPHAFETOPROTEIN,

APOLIPOPROTEINCIIL, IL8,

BETA2MICROGLOBULIN, MCP1,

PROTEIN_ MMP9

MCP1, TIMP1, IL6, 0.78 0.78
ALPHAFETOPROTEIN,

PROTEIN_ MMP9,

BETA2MICROGLOBULIN,

APOLIPOPROTEINCIIL,

CREACTIVEPROTEIN, IL8, IL10

ALPHAFETOPROTEIN, 0.78 0.8
APOLIPOPROTEINCIIL,

PROTEIN_ MMP9,

BETA2MICROGLOBULIN, IL10, TIMP1,

MCP1, IL6, IL8, CREACTIVEPROTEIN

TIMP1, IL10, BETA2MICROGLOBULIN, 0.78 0.76
IL8, APOLIPOPROTEINCIIL, IL6, MCP1,

CREACTIVEPROTEIN,

ALPHAFETOPROTEIN, PROTEIN_ MMP9

BETA2MICROGLOBULIN, 0.77 0.74
ALPHAFETOPROTEIN, MCP1, IL10,

APOLIPOPROTEINCIIL, TIMP1,

CREACTIVEPROTEIN, IL8,

PROTEIN_ MMP9, IL6

IL8, MCP1, BETA2MICROGLOBULIN, 0.77 0.79
PROTEIN._ MMP9, IL10, TIMP1, IL6,

CREACTIVEPROTEIN,

ALPHAFETOPROTEIN,

APOLIPOPROTEINCIII

0.8

0.78

0.75

0.8

0.8

0.75

[0438] In some embodiments, the methods or kits respec-
tively described or referenced in Section 5.2 and Section 5.3
use any one of the subsets of biomarkers listed in Table N. The
subsets of biomarkers listed in Table N were identified in the
computational experiments described in Section 6.14.5,
below, in which 4600 random subcombinations of the biom-
arkers listed in Table I were tested. Table N lists some of the
biomarker sets that provided high accuracy scores against the
validation population described in Section 6.14.5. Each row
of Table N lists a single set of biomarkers that can be used in
the methods and kits respectively referenced in Sections 5.2
and 5.3. In other words, each row of Table N describes a set of
biomarkers that can be used to discriminate between sepsis
and SIRS subjects. In some embodiments, nucleic acid forms
of the biomarkers listed in Table N are used in the methods

and kits respectively referenced in Sections 5.2 and 5.3. In
some embodiments, protein forms of the biomarkers listed in
Table N are used. In some embodiments, some of the biom-
arkers in a biomarker set from Table N are in protein form and
some of the biomarkers in the same biomarker set from Table
N are in nucleic acid form in the methods and kits respectively
referenced in Sections 5.2 and 5.3.

[0439] In some embodiments, a given set of biomarkers
from Table N is used with the addition of one, two, three, four,
five, six, seven, eight, or nine or more additional biomarkers
from any one of Table 30, 31, 32, 33, 34, or 36 that are not
within the given set of biomarkers from Table N. In Table N,
accuracy, specificity, and senstitivity are described with ref-
erence to T_,, time point data described in Section 6.14.5,
below.

TABLE N

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET ACCURACY SPECIFICITY SENSISTIVITY
TLR4, ARG2, OSM 0.85 0.83 0.88
IRAK4, OSM, TNFSF10 0.83 0.79 0.87
PSTPIP2, SOCS3, TIMP1 0.82 0.81 0.83
FCGRI1A, IL6, MAP2K6 0.81 0.84 0.79
SOCS3, TNFSF10, NCR1 0.81 0.73 0.87
118, IL18R1, Beta2Microglobulin 0.81 0.79 0.82
OSM, NCR1, IL8 0.81 0.77 0.83
PFKFB3, MKNK1, FCGR1A 0.8 0.79 0.81
TIMP1, IL18R1, ARG2 0.8 0.78 0.83

FCGRI1A, MAP2K6, IRAK4 0.8 0.75 0.86
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TABLE N-continued

&3

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET ACCURACY SPECIFICITY SENSISTIVITY
Gene_ MMP9, IL8, GADD45B 0.8 0.75 0.84
INSL3, ANKRD22, MAP2K6, LDLR 0.87 0.83 0.9
PSTPIP2, ARG2, CRTAP, GADD45A 0.83 0.81 0.85
CEACAM1, GADD45B, GADD45A, OSM 0.83 0.75 091
OSM, CSF1R, IL10, ANKRD22 0.83 0.88 0.78
TIMP1, ARG2, GADD45B, VNN1 0.83 0.83 0.82
HLA-DRA, PSTPIP2, INSL3, MKNK1 0.83 0.79 0.86
CD86, TGFBI, ANKRD22, SOCS3 0.82 0.82 0.83
GADDA45A, PSTPIP2, GADD45B, IL18R1 0.82 0.76 0.86
ANKRD22, MAP2KS, Protein_ MMP9, 0.81 0.8 0.82
FAD104

IFNGRI1, FAD104, CSFIR, IL8 0.81 0.78 0.84
OSM, TDRD9, ARG2, HLA-DRA 0.81 0.77 0.85
ANKRD?22, CReactiveProtein, OSM, IL10 0.81 0.76 0.85
TDRD9, TNFSF13B, CReactiveProtein, 0.81 0.76 0.85
MAP2K6

TNFSF10, Gene_ MMP9, IL8, FCGR1A 0.8 0.79 0.81
IL10, NCR1, IL6, INSL3 0.8 0.79 0.81
CD86, FCGR1A, BCL2A1, LY96 0.8 0.79 0.81
IL8, VNN1, IL6, GADD45B 0.8 0.79 0.82
HLA-DRA, TNFSF10, OSM, MKNK1 0.8 0.76 0.84
PFKFB3, INSL3, IL10alpha, FCGR1A 0.8 0.76 0.84
TNFSF10, IRAK4, OSM, ARG2, MAPK 14 0.85 0.84 0.86
CD86, CEACAM]1, IL18R1, GADD45B, 0.83 0.85 0.81
CCL5

MCP1, CSF1R, GADD45B, Protein_ MMP9, 0.83 0.83 0.82
Beta2Microglobulin

IL8, CD8&6, IRAK?2, IL1RN, TIFA 0.82 0.84 0.81
IRAK4, OSM, INSL3, CEACAM]1, 0.82 0.82 0.82
TNFSF13B

CReactiveProtein, SOCS3, HLA-DRA, 0.82 0.76 0.88
GADD45B, OSM

CD86,NCR1, PRV1, ILIRN, GADD45B 0.82 0.77 0.86
TNFRSF6, ITGAM, PSTPIP2, ARG2, 0.82 0.77 0.87
BCL2A1

IRAK4, LDLR, OSM, PSTPIP2, GADD45A 0.81 0.81 0.82
Gene_ MMP9, SOD2, PFKFB3, ARG2, 0.81 0.78 0.84
CD86

CReactiveProtein, IL18R1, NCR1, CD86, 0.81 0.78 0.84
GADDA45A

IL8, IL18R1, LDLR, SOD2, PSTPIP2 0.81 0.77 0.84
Gene_ MMP9, CSF1R, TGFBI, MAP2KS6, 0.81 0.8 0.81
ANKRD22

CReactiveProtein, LDLR, IRAK2, OSM, 0.81 0.8 0.82
PSTPIP2

ITGAM, SOCS3, IL8, ARG2, JAK2 0.81 0.79 0.83
TNFSF10, LY96, IL10alpha, IL10, OSM 0.8 0.83 0.78
GADDA45B, IL6, INSL3, ANKRD22, IL8 0.8 0.81 0.8
CSF1R, IL6, ILIRN, TLR4, JAK2 0.8 0.79 0.81
TDRD9, OSM, ITGAM, ANKRD22, 0.8 0.73 0.87
Gene_ MMP9

IL8, TNFRSF6, CReactiveProtein, IRAK4, 0.8 0.79 0.81
PRV1

OSM, IL1RN, JAK?2, GADD45B, CSF1R 0.8 0.78 0.82
CDB86, Beta2Microglobulin, PFKFB3, 0.8 0.78 0.82
TNFSF13B, TNFRSF6

MAPK14, TGFBI, GADD45A, ANKRD22, 0.8 0.75 0.85
CReactiveProtein

MKNKI1, CD8&6, OSM, TIFA, HLA-DRA, 0.85 0.79 0.89
SOCS3

CD86, CEACAM1, LDLR, NCR1, 0.83 0.81 0.84
AlphaFetoprotein, IRAK2

INSL3, PRV1, LY96, Protein_ MMP9, IL8&, 0.82 0.82 0.82
OSM

FAD104, ARG2, FCGR1A, SOCS3, HLA- 0.82 0.8 0.84
DRA, ANXA3

CCLS5, TIMP1, ARG2, IL6, IFNGR1, SOD2 0.82 0.77 0.87
CRTAP, OSM, GADD45B, TNFSF10, 0.82 0.75 0.88

MKNKI1, TGFBI
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TABLE N-continued

&4

Exemplary sets of biomarkers used in the methods or kits referenced in
Sections 5.2 and 5.3

BIOMARKER SET ACCURACY SPECIFICITY SENSISTIVITY
LDLR, OSM, IL6, JAK2, INSL3, FCGR1A 0.82 0.82 0.81
Beta2Microglobulin, FAD104, TGFBI, 0.82 0.82 0.82
NCR1, ARG2, GADD45B

CSF1R, VNN1, MAP2K6, LY96, OSM, 0.82 0.81 0.82
Beta2Microglobulin

ApolipoproteinCIIL, HLA-DRA, GADD45A, 0.82 0.8 0.83
ITGAM, TNFRSF6, MAP2K6

PRV1, TGFBI, VNN1, GADD45B, IL1RN, 0.81 0.8 0.82
CSFIR

IRAK4, TIMP1, ANKRD22, GADD45B, 0.81 0.78 0.83
OSM, TLR4

SOD2, MKNK1, MCP1, OSM, TIFA, 0.81 0.77 0.84
SOCS3

FAD104, TGFBI, ANXA3, IL18R1, PRV1, 0.81 0.77 0.85
IL10alpha

FCGRI1A, IL8, Beta2Microglobulin, 0.81 0.83 0.79
GADD45B, ANKRD22, TNFSF10

TIFA, Beta2Microglobulin, IL18R1, 0.81 0.8 0.81
CRTAP, IL6, TGFBI

CDg86, IL10, MCP1, TIMP1, OSM, ANXA3 0.81 0.79 0.82
INSL3, FAD104, TGFBL, CEACAM]1, 0.81 0.77 0.85
CSF1R, PFKFB3

PRV1, IL8, TNFSF10, FCGR1A, IFNGRI1, 0.81 0.77 0.84
CReactiveProtein

ANKRD22, BCL2A1, CRTAP, NCR1, 0.81 0.72 0.88
SOCS3, IL18R1

INSL3, IRAK?2, CD86, JAK2, IL10, 0.8 0.84 0.77
FAD104

MCP1, PSTPIP2, AlphaFetoprotein, 0.8 0.81 0.8
CReactiveProtein, IL6, ApolipoproteinCIII

CSF1R, OSM, IFNGR1, TDRD?9, 0.8 0.8 0.8
Gene_ MMP9, FCGR1A

TIMP1, IFNGR1, TNFSF10, GADD45A, 0.8 0.8 0.81
BCL2A1, SOD2

FCGR1A, MKNK1, CRTAP, LDLR, 0.8 0.79 0.81
Gene_ MMP9, Beta2Microglobulin

ITGAM, AlphaFetoprotein, FCGR1A, 0.8 0.78 0.82
MCP1, MKNK1, GADD45A

MCP1, FCGR1A, OSM, PFKFB3, FAD104, 0.8 0.77 0.82
TDRD9

TNFSF10, Gene_ MMP9, FCGR1A, 0.86 0.85 0.86
AlphaFetoprotein, INSL3, CSF1R, IL8

OSM, Beta2Microglobulin, ANKRD22, 0.84 0.85 0.83
CSF1R, GADD45B, TNFRSF6,

ApolipoproteinCIIT

BCL2A1, TDRD9, OSM, PRV1, IRAK?, 0.84 0.83 0.85
TLR4, MAPK14

LDLR, OSM, ApolipoproteinCIII, IL6, 0.83 0.83 0.83
TIMP1, ARG2, TNFRSF6

IL1RN, TNFSF13B, AlphaFetoprotein, 0.83 0.8 0.85
MCP1, ANKRD22, ARG2, OSM

NCRI1, ARG2, PSTPIP2, GADD43A, LY96, 0.83 0.81 0.84
OSM, BCL2A1

FCGRI1A, TNFSF13B, INSL3, TIFA, 0.83 0.79 0.87
ApolipoproteinCIII, ITGAM, CD86

LY96, CReactiveProtein, FCGR1A, 0.82 0.85 0.8
Beta2Microglobulin, IL8, OSM, VNN1

PSTPIP2, ARG2, IRAK2, TNFSF13B, 0.82 0.85 0.8
GADD45A, 118, CRTAP

MCP1, SOCS3, HLA-DRA, 0.82 0.84 0.81
ApolipoproteinCIII, IL10alpha, GADD45A,

MAP2K6

IL18R1, MAPK14, Gene_ MMP9, TIFA, 0.82 0.75 0.89
FCGRI1A, SOCS3, MKNK1

Beta2Microglobulin, CRTAP, ARG2, 0.82 0.82 0.82
ANKRD?22, TNFRSF6, IRAK4, OSM

PFKFB3, IRAK?2, IRAK4, OSM, JAK?2, 0.82 0.82 0.82
Beta2Microglobulin, CEACAM1

TIFA, CRTAP, PFKFB3, JAK2, IL6, 0.82 0.82 0.82

TGFBI, CD86
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TABLE N-continued

&5

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET ACCURACY SPECIFICITY SENSISTIVITY
GADD45B, Gene_ MMP9, TNFSF13B, 0.82 0.76 0.88
IRAK?2, VNN1, TIFA, SOCS3

INSL3, IL6, CD86, IL.10alpha, 0.82 0.86 0.78
CReactiveProtein, TGFBL ITGAM

GADD45B, MCP1, INSL3, 0.82 0.81 0.82
CReactiveProtein, ARG2, CCL5, SOCS3

TNFSF10, IL8, ApolipoproteinCIII, TGFBI, 0.82 0.8 0.83
CSF1R, OSM, SOD2

PRV1, PSTPIP2, ARG2, TIMP1, 0.82 0.79 0.84
Protein_ MMP9, IL6, SOD2

CD86, LY96, MAP2K6, IL6, IL10, IRAK2, 0.81 0.78 0.84
TNFSF10

BCL2A1, MCP1, ARG2, SOCS3, NCR1, 0.81 0.8 0.81
IL10,LY96

SOCS3, ApolipoproteinCIII, NCR1, 0.81 0.8 0.82
CEACAMI1, ANKRD22, FCGR1A, IL6

INSL3, TNFSF10, SOD2, FCGRI1A, 0.81 0.77 0.85
PSTPIP2, 1110, IL8

FCGRI1A, OSM, Protein_ MMP9, 0.81 0.76 0.84
GADD45A, PSTPIP2, ARG2, Gene_ MMP9

TIMP1, SOCS3, LY96, CSFIR, 0.81 0.84 0.77
CReactiveProtein, CCL5, TNFSF13B

ANKRD22, CEACAM1, TLR4, 0.81 0.82 0.8
ApolipoproteinCIII, SOCS3, ITGAM, IL10

INSL3, IRAK?2, FCGR1A, MAP2KS6, 0.81 0.81 0.8
CRTAP, ITGAM, CSF1R

VNN1, SOCS3, Beta2Microglobulin, 0.81 0.81 0.81
MAP2KS6, IL6, ANKRD22, IL10

TNFSF10, TGFBI, CReactiveProtein, 0.81 0.8 0.82
Beta2Microglobulin, TNFRSF6, ARG2,

PRV1

IL18R1, IL6, CRTAP, IRAK4, GADD45A, 0.8 0.81 0.79
Protein_MMP9, TNFSF13B

AlphaFetoprotein, ARG2, NCR1, PSTPIP2, 0.8 0.8 0.81
ApolipoproteinCIII, CD86, GADD45B

ANKRD?22, TIFA, JAK?2, IL10, IL6, CCL5, 0.8 0.79 0.82
CSFIR

PRV1, TNFSF13B, TLR4, OSM, ARG2, 0.8 0.78 0.82
AlphaFetoprotein, HLA-DRA

CSF1R, TLR4, SOD2, FCGR1A, CRTAP, 0.8 0.78 0.83
TNFSF13B, GADD45A

JAK2, IRAK2, ITGAM, IL6, MKNK1, 0.8 0.77 0.83
Gene_ MMP9, FCGR1A

GADD45B, PRV1, CSF1R, NCR1, CD36, 0.8 0.76 0.83
MKNK1, JAK2

Beta2Microglobulin, TNFSF10, IL18R1, 0.8 0.75 0.85
GADD45B, Protein_ MMP9, FAD104,

PSTPIP2

MAPK14, TIFA, ITGAM, MKNK1, CSF1R, 0.8 0.73 0.86
IRAK4, Protein_ MMP9

TIFA, TNFSF13B, Y96, GADD45B, IL6, 0.8 0.8 0.8
INSL3, OSM

IL6, GADD45B, CEACAM1, IRAK4, 0.8 0.8 0.8
TGFBI, INSL3, TNFSF13B

GADD45B, ARG2, IL18R1, ANKRD22, 0.8 0.8 0.8
AlphaFetoprotein, IL10, PSTPIP2

TNFSF13B, IFNGR1, OSM, FAD104, 0.8 0.8 0.8
CSF1R, PSTPIP2, TIFA

TDRD9, ITGAM, TNFSF10, ANXA3, 0.8 0.8 0.8
ApolipoproteinCIII, MCP1, INSL3

SOCS3, Protein_MMP9, SOD2, LY96, 0.8 0.78 0.82
ARG2, IRAK2, OSM

CEACAM]1, IL10, TNFRSF6, IL18R1, 0.8 0.78 0.82
ARG2, FCGR1A, CReactiveProtein

CCL35, FCGR1A, CReactiveProtein, 0.8 0.74 0.86
ApolipoproteinCIII, IL18R1,

Protein_ MMP9, ITGAM

NCRI1, SOD2, IRAK?2, IL8, OSM, HLA- 0.86 0.89 0.84
DRA, ARG2, GADD45A

PFKFB3, PSTPIP2, GADD45B, INSL3, 0.85 0.86 0.84

FAD104, TNFRSF6, ARG2, IL10alpha
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TABLE N-continued

86

Exemplary sets of biomarkers used in the methods or kits referenced in
Sections 5.2 and 5.3

BIOMARKER SET ACCURACY SPECIFICITY SENSISTIVITY
CSF1R, CEACAM1, GADD45B, OSM, 0.84 0.86 0.82
LDLR, MCP1, ARG2, AlphaFetoprotein

TIFA, NCR1, BCL2A1, OSM, CCL5, TLR4, 0.82 0.82 0.82
CD86, CEACAM1

FAD104, LDLR, INSL3, IRAK4, 1.Y96, 0.82 0.81 0.83
TLR4, GADD45B, TIMP1

FAD104, JAK?2, TNFSF13B, ARG2, 0.82 0.79 0.85
CReactiveProtein, IL10alpha, TLR4, PRV1

CRTAP, LY96, TDRD9, Gene_ MMP9, 0.82 0.79 0.85
HLA-DRA, SOCS3, IL8, Protein_ MMP9

CRTAP, GADDA45B, TIFA, 0.81 0.83 0.8
ApolipoproteinCIII, LY96, IL8, GADD45A,

MKNK1

IL8, CSF1R, ARG2, TGFBL PRV1, 0.81 0.82 0.81
TNFRSF6, CEACAM1, JAK2

ARG?2, Beta2Microglobulin, GADD45 A, 0.81 0.79 0.83
IL6, INSL3, IL8, JAK?2, TIMP1

SOD2, IL10, IL8, ARG2, PSTPIP2, INSL3, 0.81 0.77 0.86
CSFIR, ANXA3

CD86, IL6, BCL2A1, CCL5, GADD45B, 0.81 0.86 0.76
IRAK4, LDLR, ARG2

ANXA3, MAP2K6, VNN1, GADD435A, 0.81 0.81 0.81
CSF1R, FAD104, IL6, IRAK2

IL8, GADD45A, TDRD9, 0.81 0.8 0.82
Beta2Microglobulin, ANKRD22,

GADD45B, PRV1, CSFIR

IRAK4, PRV1, GADD45A, IL8, 0.81 0.79 0.82
TNFSF13B, CD86, FCGR1A, TIMP1

IRAK4, MAPK14, GADD45B, HLA-DRA, 0.81 0.77 0.84
JAK2, PRV1, SOD2, IL6

IL18R1, IL6, GADD45B, MAPK14, IL10, 0.81 0.76 0.86
JAK?2, IL8, ANKRD22

TLR4, IRAK2, TNFRSF6, TGFBI, IL8, 0.81 0.88 0.74
ARG2, GADD45B, GADD45A

ANXA3, IFNGR1, SOCS3, VNNI1, TIFA, 0.81 0.8 0.81
CReactiveProtein, IRAK4, AlphaFetoprotein

ANKRD22, CCL5, TGFBIL, CEACAMI, 0.81 0.8 0.82
CD86, Gene_ MMP9, IFNGR1, GADD45B

NCRI1, ARG2, TIMP1, Beta2Microglobulin, 0.81 0.77 0.84
ANXA3, TIFA, BCL2A1, MAP2K6

OSM, TIMP1, IL1RN, IL8, BCL2A1, 0.81 0.76 0.84
IFNGR1, CSF1R, CD86

IL10, NCR1, IRAK?2,IL18R1, ARG2, 0.81 0.76 0.84
PSTPIP2, Gene_ MMP9, LY96

IL18R1, TNFSF10, SOCS3, 0.81 0.74 0.88
ApolipoproteinCIII, HLA-DRA, GADD45A,

Beta2Microglobulin, ARG2

IL10alpha, IL10, MKNK1, LY96, OSM, 0.8 0.8 0.81
JAK2, IFNGR1, CEACAM1

HLA-DRA, TIMP1, OSM, CD86, NCR1, 0.8 0.78 0.82
IL1RN, TNFSF10, FAD104

CSF1R, TNFSF13B, ANKRD22, IFNGR1, 0.8 0.77 0.82
Protein_ MMP9, PFKFB3, NCR1, TGFBI

ANXA3, IL10alpha, PSTPIP2, CSF1R, 0.8 0.77 0.83
IL1RN, FAD104, CD86, CReactiveProtein

CSF1R, ANKRD22, TGFBL, IRAK4, 0.8 0.77 0.83
Protein_ MMP9, TIMP1, HLA-DRA,

PFKFB3

TNFSF13B, JAK2, ARG2, CCL5, IL18R1, 0.8 0.76 0.85
GADD45B, CD86, GADD45A

GADD45B, BCL2A1, IL1RN, FCGR1A, 0.8 0.76 0.84
MAPK14, SOCS3, ITGAM, PRV1

116, JAK2, CReactiveProtein, MCP1, 0.8 0.85 0.76
TIMP1, BCL2A1, GADD45B, LY96

AlphaFetoprotein, ApolipoproteinCIII, 0.8 0.84 0.77
CEACAM1, CRTAP, IL18R1, NCR1,

TIMP1, TGFBI

ANXA3, FAD104, MKNK1, 0.8 0.82 0.78

CReactiveProtein, AlphaFetoprotein, CSF1R,
IRAK4,IL6

May 5, 2011



US 2011/0105350 Al

TABLE N-continued

87

Exemplary sets of biomarkers used in the methods or kits referenced in
Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

TIMP1, VNNI1, TIFA, CCL5, TDRD9,
FCGRI1A, ApolipoproteinCIIIL, ILIRN
TNFSF10, TLR4, JAK2, OSM,
Beta2Microglobulin, ITGAM, ILIRN, HLA-
DRA

ApolipoproteinCIII, MAPK14, IRAK?,
TNFSF13B, GADD45B, SOCS3,
CEACAM1, TNFSF10

IL1RN, ANKRD22, FCGR1A, GADD45A,
TGFBI, CSF1R, MCP1, MAPK 14

SOCS3, HLA-DRA, IRAK?2,

Protein_ MMP9, MAP2K6, INSL3,
CReactiveProtein, Gene_ MMP9

INSL3, BCL2A1, ARG2, GADD45B,
MAPK14, ITGAM, IRAK?2, LDLR
GADDA45B, Beta2Microglobulin,
Protein_MMP9, IFNGR1, IRAK?2, PSTPIP2,
IL8, FCGR1A

CSF1R, HLA-DRA, IRAK4, FAD104,
CRTAP, MCP1, GADD45B, CCL5, IL6
HLA-DRA, Gene_ MMP9, FAD104, IRAK?2,
TNFRSF6, 1.Y96, CReactiveProtein,
FCGRI1A, CD86

GADD45A, GADD45B, OSM, ARG2,
FAD104, MAPK14, IRAK?2, ITGAM,
MKNK1

IL6, IL18R1, IL1RN, HLA-DRA, CD86,
IRAK2, NCR1, TNFSF10, CCL5

CD86, IRAK2, ARG2, PFKFB3, MAPK 14,
PRV1, VNNI1, HLA-DRA, FAD104
TDRD9, FCGR1A, ARG2,
AlphaFetoprotein, JAK?2,
ApolipoproteinCIII, TIMP1, MAP2KS6,
CCL35

PFKFB3, CReactiveProtein, TDRD9, OSM,
IFNGRI1, CCL5, TIMP1, ARG2, ITGAM
NCRI1, CSF1R, MAP2K6, INSL3, IFNGRI1,
FAD104,1L6, ARG2, IL18R1

PSTPIP2, OSM, LDLR, Protein_ MMP9,
LY96, TNFSF13B, ANXA3, IL1IRN,
Beta2Microglobulin

FAD104, NCR1, VNN1, IRAK?,
ApolipoproteinCIII, IL10alpha, LDLR,
FCGRI1A, IRAK4

IL10alpha, HLA-DRA, TGFBI, FCGR1A,
CSF1R, IRAK?2, GADD45A, PFKFB3,
SOCS3

IL8, IRAK4, CSF1R, IL18R1,
AlphaFetoprotein, ILIRN, BCL2A1,
TNFSF13B, INSL3

SOCS3, MAP2K6, PSTPIP2, OSM,
MAPK14, MKNK1, ApolipoproteinCIII,
IL18R1, TLR4

TIMP1, IL&, PFKFB3, CD86, SOCS3,
JAK2, IRAK?2, IL10alpha, Protein_ MMP9
TIMP1, INSL3, TNFRSF6, PFKFB3, CD86,
JAK?2, IL8, CRTAP, Protein_ MMP9
IRAK4, MAPK 14, ApolipoproteinCIII, IL6,
MAP2K6, MCP1, TIFA, ARG2, CD86
TLR4, IL10alpha, IL8, GADD45A, IRAK?2,
MAP2K6, MCP1, HLA-DRA, MAPK14
LY96, MCP1, CD86, VNN1, OSM, ARG2,
TDRD9, CCL5, INSL3

CCLS5, CRTAP, ApolipoproteinCIII,

Gene_ MMP9, IFNGR1, TNFSF13B,
ANKRD22, GADD45A, OSM

MCP1, IL6, FCGR1A, PSTPIP2, VNN1,
TNFSF10, TIMP1, Protein_ MMP9,
CReactiveProtein

PFKFB3, IL6, NCR1, MAP2K6, FAD104,
CD86, TLR4, TDRD9, OSM

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.84

0.84

0.83

0.83

0.83

0.83

0.83

0.82

0.82

0.82

0.82

0.81

0.81

0.81

0.82

0.8

0.79

0.79

0.78

0.77

0.81

0.88

0.85

0.8

0.85

0.85

0.82

0.83

0.82

0.8

0.88

0.82

0.83

0.81

0.79

0.78

0.81

0.81

0.81

0.82

0.82

0.86

0.8

0.82

0.81

0.81

0.84

0.81

0.82

0.76

0.81

0.8

0.81

0.84
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TABLE N-continued

&8

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

ApolipoproteinCIII, CReactiveProtein,
TGFBI, MKNK1, PRV1, FAD104, HLA-
DRA, ARG2, TIMP1

IL10alpha, IL10, ANXA3, IL6, CSF1R,
TGFBI, PSTPIP2, IL8, INSL3

116, IRAK?2, CReactiveProtein, CCL5,
ANKRD22, MCP1, GADD45A, PFKFB3,
IL10alpha

TIFA, ILIRN, IL6, ITGAM,
CReactiveProtein, CCL5, TGFBI, IL10,
NCR1

CEACAM]1, IFNGR1, TNFSF10, INSL3,
BCL2A1, Beta2Microglobulin, IL10, ARG2,
SOCS3

SOCS3, LDLR, SOD2, FAD104, MAP2K6,
PSTPIP2, GADD45B, IRAK4, GADD45A
MKNK1, IL8, TNFSF13B, FAD104,
ITGAM, GADD45B, NCR1, IL18R1,
ApolipoproteinCIIT

IL8, Gene_ MMP9, TNFSF10, MKNK1,
MCP1, IL6, CCLS5, ApolipoproteinCIII,
SOD2

NCR1, PFKFB3, ApolipoproteinCIII,
INSL3, OSM, VNNI1, AlphaFetoprotein,
TNFSF10, CRTAP

FCGR1A, CReactiveProtein, PRV1, NCR1,
ARG?2, INSL3, IL10, TGFBI, MAPK 14
118, IRAK?2, PFKFB3, CEACAMI, TIFA,
Protein_ MMP9, IRAK4, CRTAP, TDRD9
ARG2, INSL3, CSF1R, TNFSF13B,
Beta2Microglobulin, PRV1, FCGR1A,
GADD45B, CRTAP

GADDA45A, 118, TIMP1, CReactiveProtein,
MAP2K6, TGFBI, CRTAP, TNFRSF6,
BCL2A1

HLA-DRA, ApolipoproteinCIII, INSL3,
FAD104, TIMP1, IRAK4, FCGR1A, IL6,
GADD45A

ARG?2, JAK2, IL1RN, VNN1, IRAK4,
CSF1R, ANKRD22, BCL2A1, TDRD9
CReactiveProtein, PFKFB3, CD86, IL1RN,
TLR4, Beta2Microglobulin, IRAK?,
TNFSF10, TNFRSF6

GADD45B, MAP2K6, JAK2, MAPK 14,
TIMP1, IRAK4, CReactiveProtein, TLR4,
TGFBI

JAK2, TLR4, CCL5, IL6, CReactiveProtein,
IFNGR1, ApolipoproteinCIII, GADD45B,
NCR1

CSF1R, TNFRSF6, INSL3, MKNK1, ILg,
MAP2K6, FAD104, NCR1, IL1RN, MCP1
IL8, PRV, SOCS3, IRAK2, ARG2,
IL10alpha, NCR1, CCL5, CReactiveProtein,
MKNK1

TNFSF13B, TLR4, ARG2, IL6, SOCS3,
Beta2Microglobulin, FAD104, MCP1, HLA-
DRA, PSTPIP2

IL6, MCP1, Beta2Microglobulin, ILIRN,
TDRD9, IFNGR1, ApolipoproteinCIII,
FCGRI1A, OSM, IL8

FCGRI1A, IL6, LY96, LDLR, IL18R1,
CSF1R, CCL5, NCR1, TNFRSF6, IRAK4
IL6, TGFBI, IL18R1, ANXA3, ILIRN,
GADD45B, ANKRD22, LDLR, TLR4,
CEACAM1

MAPK14, IL6, CSF1R, ILIRN, ITGAM,
Beta2Microglobulin, MAP2KS6, IL10,
PSTPIP2, FAD104

CReactiveProtein, FCGR1A, CCLS5,
ApolipoproteinCIII, OSM, IRAK2,
GADD45A, CRTAP, PFKFB3, ITGAM

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.86

0.85

0.84

0.84

0.83

0.83

0.77

0.82

0.8

0.78

0.75

0.83

0.78

0.75

0.8

0.79

0.77

0.84

0.8

0.73

0.85

0.86

0.8

0.82

0.81

0.84

0.86

0.86

0.8

0.82

0.84

0.86

0.78

0.83

0.86

0.81

0.82

0.84

0.77

0.8

0.87

0.86

0.83

0.86

0.87

0.82

0.8
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TABLE N-continued

&9

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

TNFSF10, AlphaFetoprotein, CCLS5, IL8,
IRAK4, OSM, IL10alpha, ARG2,
CReactiveProtein, TIFA

TDRD9, TNFSF10, GADD45B,
CReactiveProtein, IL8, ARG2, ANXA3,
TGFBL IL1RN, CCL5

IL10alpha, ANXA3, TNFSF10, IL1RN,
TGFBI, FAD104, INSL3, MAP2K6,
MAPK14, ApolipoproteinCIII

TIMP1, Beta2Microglobulin, ITGAM,
LDLR, MCP1, IL8, FCGR1A, TIFA,
IL10alpha, MAP2K6

TNFRSF6, TGFBI, JAK2, SOD2, ANXA3,
VNNI1, CCL5, INSL3, CSFIR, IL10
TDRD9, IL10alpha, MAPK14, NCR1,
LY96, GADD45B, IRAK?2,
CReactiveProtein, INSL3, ITGAM
LDLR, JAK2, IFNGR1, IRAK2, SOCS3,
ITGAM, Protein_ MMP9, INSL3,
ApolipoproteinCIII, CEACAM1

CSF1R, Beta2Microglobulin, IRAK4,
MKNK1, PRV1, TNFRSF6, PSTPIP2,
IL18R1, HLA-DRA, CCL5

BCL2A1, TLR4, IL8, TIMP1, SOD2,
CReactiveProtein, CRTAP,
ApolipoproteinCIII, GADD45B, FAD104

ARG2, OSM, TNFSF13B, CReactiveProtein,

AlphaFetoprotein, IL6, CRTAP,
Beta2Microglobulin, MCP1, TDRD9
FAD104, TNFSF13B, IL1IRN, GADD45B,

IFNGRI, IL18R1, TNFRSF6, MCP1, PRV,

L8

IL8, ITGAM, CSF1R, TNFRSF6, INSL3,
IL10alpha, IFNGR1, IL10, IL1RN, SOD2
MCP1, IFNGRI1, TNFRSF6, MAPK14,
FAD104,IL18R1, IRAK4, INSL3,
IL10alpha, Beta2Microglobulin

NCR1, PRV1, Protein_ MMP9, TIMP1,
ANKRD?22, INSL3, CD86, CCL5, MKNK1,
Gene_ MMP9

NCRI, INSL3, CEACAMI1, FAD104,
IL10alpha, TIFA, TNFSF13B, IL6, CCL5,
CReactiveProtein

CRTAP, IL1RN, IL18R1, FAD104, NCR1,
HLA-DRA, TGFBI, LY96, IL6, IRAK4
OSM, NCR1, IL8, GADD45B,

Protein_ MMP9, TNFRSF6, TNFSF13B,
Beta2Microglobulin, ILIRN, IRAK?2
CDB86, IL10alpha, CSF1R, IRAK?2,
ANKRD22, OSM, AlphaFetoprotein,
Gene_ MMP9, IL10, IRAK4

ARG2, IRAK4, GADD45A, VNN1, IL18R1,

JAK?2, ANXA3, CSFIR, HLA-DRA,
PFKFB3

LY96, TDRD9, NCR1, TNFRSF6, CSF1R,
PRV1,IL18R1, ARG2, Beta2Microglobulin,
IL10alpha

INSL3, TDRD9, CRTAP, TNFRSF6,
IRAK4, SOD2, LDLR, ANKRD22, OSM,
CSFIR

FAD104, PFKFB3, IL18R1, IL10, MAPK14,

ARG2, CD86, ILIRN, CCL5, GADD45A
TNFSF10, CSF1R, TNFSF13B, MKNK1,
ITGAM, PFKFB3, AlphaFetoprotein,
SOCS3, TNFRSF6, FAD104

CSF1R, PFKFB3, ApolipoproteinCIII,
TLR4, ARG2, PRV1, ANKRD22, ITGAM,
TIFA, TNFRSF6

TGFBI, IL10, TDRD9, PFKFB3, INSL3,
CSF1R, PSTPIP2, MKNK1, NCR1, HLA-
DRA

0.82

0.82

0.82

0.82

0.82

0.82

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.79

0.85

0.82

0.8

0.79

0.77

0.86

0.82

0.78

0.74

0.86

0.8

0.8

0.79

0.79

0.75

0.83

0.81

0.8

0.85

0.78

0.81

0.83

0.84

0.86

0.77

0.8

0.84

0.88

0.76

0.82

0.83

0.83

0.88

0.79

0.8

0.81
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TABLE N-continued

90

Exemplary sets of biomarkers used in the methods or kits referenced in
Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

ANKRD?22, TIMP1, CRTAP, HLA-DRA,
ApolipoproteinCIII, CD86, TNFRSF6,
Gene_ MMP9, VNN1, IL10

ARG2, NCR1, IRAK4, FCGR1A, FAD104,
TNFRSF6, PFKFB3, MAP2K6, TGFBI,
MKNK1

TLR4, ANKRD?22, IL.10alpha, VNNI1,
Protein_ MMP9, TNFRSF6, ARG2,
TNFSF10, OSM, FCGR1A

FAD104, PRV, Protein_ MMP9, IL.10alpha,
ARG?2, TNFSF13B, FCGR1A, CEACAM]1,
CCL5, ILIRN

TNFRSF6, IL6, TGFBI, PSTPIP2, ANXA3,
ANKRD?22, ApolipoproteinCIII, OSM,
SOCS3, MAPK14

IL8, OSM, IRAK4, TDRD9, LDLR,
TNFSF13B, IL10, IFNGR1, ARG2, SOD2
PSTPIP2, BCL2A1, CD86, ANXA3,
IL10alpha, SOD2, OSM, INSL3,
TNFSF13B, GADD45B

IL6, ANXA3, SOCS3, MAP2K6, TGFBI,
ANKRD?22, CRTAP, BCL2A1, CCL5, TLR4
HLA-DRA, CSF1R, TGFBI, MAP2KS6,
BCL2A1, CD86, TLR4, IL1RN, IL6,
ApolipoproteinCIIT

ApolipoproteinCIII, CCL5, SOCS3, TIMP1,
Gene_ MMP9, AlphaFetoprotein, ITGAM,
INSL3, CEACAM1, LDLR

IL8, TNFRSF6, IL6, IL1IRN, PSTPIP2,
ApolipoproteinCIII, CD86, JAK2, TLR4,
Protein_ MMP9

IL10alpha, JAK2, MCP1, CEACAMI,
ApolipoproteinCIII, BCL2A1, PRV1,
Protein_MMP9, MAP2K6, IFNGR1
FCGRI1A, LY96, JAK2, GADD45B, LDLR,
IL6, VNN1, MCP1, Gene_ MMP9, SOD2
CSF1R, TNFRSF6, INSL3, MKNK1, ILg,
MAP2K6, FAD104, NCR1, IL1RN, MCP1
IL8, PRV, SOCS3, IRAK2, ARG2,
IL10alpha, NCR1, CCL5, CReactiveProtein,
MKNK1

LDLR, CD86, NCR1, IRAK4, IL18R1,
Protein__MMP9, PRV1, GADD45B, ARG2,
LY96, AlphaFetoprotein

MAP2K6, CD86, INSL3,
ApolipoproteinCIII, IL8, OSM, TNFSF13B,
IL1RN, BCL2A1, FAD104, GADD45A
NCR1, GADD45B, TNFSF10, IL10alpha,
FAD104,1Y96, IL6, IL10, ARG2,
CReactiveProtein, TGFBI

CD86, CEACAM1, INSL3, PFKFB3,
IL10alpha, FAD104, SOD2, Gene_ MMP9,
SOCS3, ApolipoproteinCIII, FCGR1A
SOCS3, ARG2, ApolipoproteinCIII, IRAKA4,
PFKFB3, IFNGR1, NCR1, IL8,
CReactiveProtein, VNN1, TDRD9

ARG2, OSM, CReactiveProtein, SOD2,
CEACAM1, FCGR1A, TIMP1, IL10,
IL18R1, ANKRD22, IRAK2

TGFBI, SOD2, IL10, CD86, CEACAM]1,
TDRD9, IRAK4, ANXA3, LDLR, OSM,
ARG2

CReactiveProtein, IL10alpha, TIMP1, LY96,
IL8, SOD2, MAP2K6, MAPK14, TLR4,
PSTPIP2, INSL3

ARG2, PSTPIP2, SOD2, INSL3, FAD104,
JAK?2, TIFA, PFKFB3, IRAK?, IL6,
ANXA3

PSTPIP2, CEACAMI1, GADD45A,
ApolipoproteinCIII, ITGAM, PRV1, TLR4,
IL10alpha, ARG2, SOCS3, NCR1

0.81

0.81

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.86

0.85

0.84

0.83

0.83

0.83

0.83

0.78

0.77

0.83

0.81

0.84

0.82

0.81

0.79

0.77

0.85

0.86

0.87

0.86

0.83

0.83

0.8

0.84

0.83

0.84

0.78

0.8

0.77

0.78

0.79

0.81

0.82

0.86

0.83

0.82

0.81

0.83

0.83

0.82

May 5, 2011



US 2011/0105350 Al

TABLE N-continued

91

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

OSM, SOCS3, CSF1R, IRAK2, VNN1, IL6,
SOD2, LDLR, BCL2A1, ANKRD22, CD86
CRTAP, LDLR, TGFBI, INSL3, TIFA,
FAD104, AlphaFetoprotein, IL8, JAK?2,
IRAK4, BCL2A1

CD86, ITGAM, PSTPIP2, IL18R1, IL6,
IFNGR1, GADD45B, IL10,
Beta2Microglobulin, FCGR1A, FAD104
PRV1, Beta2Microglobulin, IL1RN, NCR1,
CSFIR, IFNGR1, TIMP1, SOCS3, LDLR,
TIFA, ARG2

IL10alpha, GADD45A, LDLR, SOCS3,
MAP2K6, Y96, CSF1R, Protein_ MMP9,
MCP1, TDRD9, IL8

CSF1R, TDRD9, TIMP1, SOD2, FCGR1A,
IFNGRI1, INSL3, CD86, TNFRSF6, HLA-
DRA, MAP2K6

118, IL18R1, BCL2A1, MKNKI1,
CReactiveProtein, CCL5, IL6, SOCS3,
FCGRI1A, PSTPIP2, ApolipoproteinCIIT
ANXA3, IL6, CD86, SOD2, CEACAM1,
FCGR1A, ANKRD22, NCR1, PSTPIP2, IL8,
MAPK14

Protein_MMP9, TNFRSF6, ITGAM,
CSFI1R, INSL3, TIFA, BCL2A1, IL1RN,
TGFBI, FCGR1A, ApolipoproteinCIIT
ANKRD?22, IL10alpha, SOCS3, IRAK4,
OSM, INSL3, TGFBI, MCP1, IL8,
TNFSF13B, PRV1

ANKRD22, LDLR, VNN1, TIMP1, IRAK?2,
IL10alpha, GADD45B, ARG2, MAPK14,
CSF1R, TNFRSF6

TIFA, ARG2, TNFSF10, INSL3, CD86, IL8,
IRAK2, OSM, CSFIR, HLA-DRA, ITGAM
ANKRD?22, TIFA, PSTPIP2, CCLS5,

Gene_ MMP9, Beta2Microglobulin, NCR1,
FCGR1A, INSL3, SOCS3, IL10alpha
ApolipoproteinCIII, AlphaFetoprotein,
NCRI1, CCL5, GADD45A, IL18R1, JAK2,
TDRD9, OSM, TLR4, Gene_ MMP9
CReactiveProtein, IL18R1, TGFBI,
TNFSF10, MAP2K6, LDLR, FAD104,
ARG?2, HLA-DRA, GADD45B, ANXA3
IL18R1, IRAK4, LY96, INSL3, TNFRSF6,
CReactiveProtein, CD86, GADD45B,
CRTAP, IL8, MAPK14

IL8, FCGR1A, CSF1R, VNNI, IL10alpha,
PSTPIP2, IL6, ILIRN, TLR4, GADD45B,
LY96

HLA-DRA, IL6, FAD104, GADD45A,
INSL3, ITGAM, CSF1R, IFNGRI1,
Protein_MMP9, SOCS3, NCR1

IL10, LDLR, AlphaFetoprotein, IL1RN,
INSL3, ApolipoproteinCIII, PSTPIP2,
CCL5, SOD2, TGFBL, VNN1

Protein_ MMP9, IL10, TGFBI, INSL3,
IRAK?2, TNFRSF6, IL&, PSTPIP2, OSM,
AlphaFetoprotein, NCR1

IL8, TLR4, MCP1, ApolipoproteinCIII,
Beta2Microglobulin, IL6, IL10, VNNI,
CDg86, PSTPIP2, ITGAM

FAD104, GADD45A, SOCS3, PSTPIP2,
IL6, TGFBI, TIMP1, HLA-DRA, TNFSF10,
IL10alpha, MKNK1

PRV1, IL8, FCGR1A, GADD45A, IRAK?2,
VNNI1, CD86, IL18R1, Protein_ MMP9,
MAP2K6, ITGAM

CRTAP, JAK2, IRAK?2, CEACAM1, PRV1,
CCL5, SOD2, BCL2A1, SOCS3, IL1RN,
ApolipoproteinCIIT

0.83

0.83

0.83

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.82

0.82

0.77

0.83

0.83

0.82

0.8

0.79

0.76

0.85

0.79

0.82

0.8

0.8

0.85

0.79

0.79

0.84

0.83

0.81

0.79

0.83

0.83

0.87

0.81

0.82

0.83

0.85

0.88

0.8

0.84

0.81

0.83

0.78

0.84

0.84

0.78

0.79

0.81

0.82
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Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

MCP1, CCL5, HLA-DRA, IRAK4, OSM,
LDLR, PFKFB3, CReactiveProtein,
MKNK1, GADD45A, LY96

ARG2, INSL3, IL6, ITGAM, TGFBI, LDLR,
IL10, CD86, IL8, TNFSF13B, IL10alpha
Protein_MMP9, CD86, GADD45B, LY96,
SOD2, FCGRI1A, IL8, AlphaFetoprotein,
CSF1R, FAD104, CRTAP

TNFSF13B, ApolipoproteinCIII, LDLR,
TDRD9, CEACAMI, AlphaFetoprotein,
IRAK4, INSL3, GADD45A, CRTAP,
IFNGR1

MKNK]1, PSTPIP2, Beta2Microglobulin,
ANKRD?22, TIFA, IL10alpha, TGFBI,
AlphaFetoprotein, NCR1, PRV1, SOCS3
TIFA, MKNK1, IL6, ANXA3, FAD104,
PSTPIP2, TNFSF13B, LDLR, INSL3,
SOD2, JAK2

TNFSF13B, IFNGR1, IL18R1, CD86,
Beta2Microglobulin, TGFBI, CSF1R,
CReactiveProtein, CRTAP, MCP1, JAK2
TNFSF13B, Beta2Microglobulin, CSF1R,
JAK?2, CRTAP, IL1RN, IL10, SOCS3,
ANKRD?22, PFKFB3, LDLR

TNFRSF6, OSM, PRV, INSL3, TLR4,
MKNK1, IRAK4, HLA-DRA, VNN1,
IL10alpha, FCGR1A

IL8, ApolipoproteinCIII, GADD45B,
SOCS3, ARG2, TNFSF13B, IL1RN, CCLS5,
ANXAS3, CReactiveProtein, TIFA
TNFSF13B, SOCS3, Protein_ MMP9, SOD2,
TNFRSF6, NCR1, FAD104, IL6, OSM,
CCL5, TDRD9

CD86, INSL3, ANXA3, GADD45B, VNN1,
IFNGRI1, IL6, PFKFB3, PSTPIP2,
Beta2Microglobulin, IRAK2

IL6, Gene_ MMP9, FAD104, TIFA, TGFBI,
Beta2Microglobulin, IL10alpha, ANXA3,
IL18R1, NCR1, INSL3

CEACAM]1, JAK2, MCP1, OSM, IL18R1,
MKNK1, ANKRD22, TLR4, CSF1R,
PSTPIP2, ILIRN

CSF1R, AlphaFetoprotein, HLA-DRA,
TDRD9, ITGAM, SOCS3, FCGR1A,
IRAK2, TIFA, TNFSF10, Protein_ MMP9
CSFI1R, IL10alpha, TNFRSF6, TNFSF13B,
LDLR, INSL3, AlphaFetoprotein, IL10,
TIFA, VNN1, HLA-DRA

IL18R1, MCP1, ANKRD22, TGFBI, ARG2,
ANXA3, GADD45A, IL1RN, TNFRSF6,
PSTPIP2, IRAK2

IL10alpha, IFNGR1, MAPK14, FCGR1A,
Gene_ MMP9, GADD45A, VNN1,
ANKRD22, TNFSF13B, CCL3, IRAK2
11.8, CReactiveProtein, CSF1R, TLR4,
TNFRSF6, Gene_ MMP9, TDRD9, OSM,
PFKFB3, IFNGR1, ApolipoproteinCIII,
PSTPIP2

JAK?2, OSM, GADD45B, MCP1, IL1RN,
ANKRD?22, IL18R1, Gene_ MMP9, ITGAM,
NCR1, ApolipoproteinCIII, PFKFB3
TNFSF10, MKNK1, PFKFB3, ANXA3,
CRTAP, CD86, MAPK 14, IL8, OSM,
GADD45B, HLA-DRA, INSL3

ILIRN, AlphaFetoprotein, ARG2, MAP2KS6,
CEACAM1, GADD45B, CRTAP, ANXA3,
INSL3, ApolipoproteinCIII, NCR1, FAD104
IL6, LDLR, TDRDY, TNFRSF6, NCR1,
ITGAM, AlphaFetoprotein, FCGR1A,
ARG?2, TNFSF10, OSM, BCL2A1

0.81

0.81

0.81

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.85

0.85

0.83

0.83

0.76

0.82

0.82

0.82

0.82

0.77

0.77

0.84

0.82

0.82

0.8

0.79

0.77

0.76

0.85

0.81

0.86

0.84

0.85

0.79

0.8

0.79

0.79

0.8

0.83

0.83

0.77

0.78

0.78

0.8

0.81

0.83

0.83

0.85

0.88

0.82

0.83
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Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

IL10, SOD2, GADD45A, TNFSF13B,
IRAK4,LY96, HLA-DRA, PSTPIP2, IL6,
IFNGR1, ARG2, LDLR

CCL5, CSF1R, LDLR, GADD45A, INSL3,
JAK2, AlphaFetoprotein, OSM,
Beta2Microglobulin, PRV1, HLA-DRA,
MKNK1

ANKRD22, TNFSF13B, TIMP1, VNNI,
IRAK4, FCGR1A, CEACAMI, IRAK?2,
ARG2, ANXA3, CD86, ILIRN

JAK2, AlphaFetoprotein, IL1IRN, SOCS3,
ANKRD?22, IL10alpha, IL8, TGFBIL, CD86,
1110, CSF1R, CReactiveProtein

VNNI1, GADD45B, MAP2K6, TNFSF13B,
IRAK?2, TLR4, CReactiveProtein, PSTPIP2,
MCP1, CSF1R, IL8, TDRD9

SOD2, IL.10, CReactiveProtein,
ApolipoproteinCIII, Beta2Microglobulin,
IFNGR1, OSM, TNFSF13B, VNNI,
GADD45B, CD86, PFKFB3

LDLR, CRTAP, PSTPIP2, GADD45B, IL8,
TNFRSF6, MAP2KS6, I1.10, ARG2, LY96,
MAPK14, IL18R1

IFNGRI1, NCR1, ApolipoproteinCIII,
ANXA3, CSF1R, CCL5, FCGR1A, TIFA,
TLR4, INSL3, IL8, ARG2

LY96, Beta2Microglobulin, CCL5, LDLR,
IRAK4, TIMP1, MKNK1,
ApolipoproteinCIII, IL8, SOCS3,
ANKRD22, PRV1

Protein_MMP9, MAPK14, IL1RN, SOCS3,
MKNK1, ApolipoproteinCIIL, IL10, OSM,
MAP2K6, TNFSF13B, NCR1, IL18R1
TNFSF13B, FAD104, OSM, TNFRSF6,
TDRD9, TIFA, IL10alpha, INSL3,
Protein_ MMP9, HLA-DRA,
Beta2Microglobulin, ApolipoproteinCIIT
TLR4, Protein_ MMP9, VNN1, IFNGR1,
ITGAM, MCP1, LY96, IRAK2, OSM,
TDRD9, IL8, ApolipoproteinCIII
MAP2K6, OSM, GADD45B, IL1RN,
MAPK14, ARG2, LY96, VNN1, TNFRSF6,
TGFBI, CD86, Beta2Microglobulin
MKNK1, ARG2, CEACAMI1, GADD45A,
AlphaFetoprotein, GADD45B, HLA-DRA,
CReactiveProtein, SOD2, TLR4, LDLR,
TNFRSF6

Protein_MMP9, TGFBI, PRV1,
Beta2Microglobulin, TNFSF13B, TLR4,
INSL3, Gene_ MMP9, ARG2,
ApolipoproteinCIIT, MKNKI1, IL10alpha
TLR4, TGFBI, FCGR1A, NCR1, LY96,
IL10, CCL3, IRAK2, INSL3, TDRD9, OSM,
BCL2A1

Gene_ MMP9, FCGR1A, PSTPIP2, TIFA,
CSF1R, SOD2, ITGAM, PFKFB3, JAK2,
118, LY96, OSM

CRTAP, MKNK1, TDRD9, LY96, TLR4,
TNFSF10, SOD2, JAK?2,
Beta2Microglobulin, CD86, PSTPIP2,
MAP2K6

TGFBI, TDRD9Y, ARG2, OSM, TNFSF13B,
CEACAM1, CCL35, CReactiveProtein,
TLR4, IL10alpha, LY96, SOCS3

IRAK?2, LDLR, ARG2, SOD2, IL10alpha,
ANKRD22, FCGR1A, Beta2Microglobulin,
FAD104, ITGAM, PRV1, OSM

FAD104, IL10alpha, INSL3, IL18R1,
IL1RN, MKNK1, MAP2K6, Gene_ MMP9,
IRAK?2, PSTPIP2, CEACAMI, IL6

0.83

0.83

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.81

0.81

0.81

0.81

0.81

0.81

0.86

0.8

0.83

0.79

0.77

0.82

0.78

0.81

0.78

0.81

0.81

0.81

0.81

0.8

0.78

0.83

0.81

0.86

0.82

0.85

0.86

0.82

0.86

0.83

0.85

0.81

0.82

0.82

0.82

0.84

0.79
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TABLE N-continued

94

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

VNNI1, ApolipoproteinCIIIL, IL10, JAK?2,
Protein_ MMP9, INSL3, Beta2Microglobulin,
OSM, IRAK4, MAP2K6, IL1RN,
AlphaFetoprotein

BCL2A1, GADD45A, JAK2, FCGR1A,
FAD104, Gene_ MMP9, CRTAP, TDRD?9,
MAP2K6, CSF1R, PRV1, Protein_ MMP9
INSL3, TIFA, LY96, FAD104, PSTPIP2,
PFKFB3, Beta2Microglobulin, TIMP1,
IL18R1, GADD45A, IL6, AlphaFetoprotein
TDRD9, PFKFB3, CSF1R, ITGAM, MCP1,
ARG?2, TNFSF13B, PSTPIP2, MAP2K6,
ANXA3, OSM, TGFBI

TNFSF10, TNFRSF6, Beta2Microglobulin,
PRV1, SOCS3, IL8, VNN1, TDRD9,
CReactiveProtein, GADD45B, TNFSF13B,
CDg6

MAP2K6, IFNGR1, LY96,
Beta2Microglobulin, GADD45B,
ANKRD22, SOCS3, ANXA3, INSL3,
Protein_ MMP9, CD86, HLA-DRA

SOD2, TIMP1, ApolipoproteinCIII,
Protein__MMP9, FAD104, ANXA3, TLR4,
CCL5, ITGAM, IRAK4, SOCS3, HLA-DRA
ITGAM, INSL3, FCGR1A, ARG2, IRAK?2,
FAD104, IRAK4, MAPK14, LY96, TIMP1,
PRV1, TLR4, CD86

PRV1, MKNKI1, IL.8, FAD104, VNNI1,
SOCS3, ARG2, MAP2K6, IL1RN, SOD2,
IL18R1, NCR1, BCL2A1

NCR1, CEACAMI, IRAK4, ARG2,
TNFSF13B, PFKFB3, OSM, TNFRSF6,
SOCS3, HLA-DRA, TNFSF10, JAK2,
SOD2

MCP1, Protein_ MMP9, IL.10alpha, FAD104,
FCGRI1A, ITGAM, TGFBI,
ApolipoproteinCIII, ARG2, PRV1, CRTAP,
TIFA, LDLR

ARG2, ANKRD22, GADD45B, IRAK?,
OSM, MKNK 1, ANXA3, IL18R1,
TNFRSF6, MAP2K6, AlphaFetoprotein,
MCP1, ApolipoproteinCIII

HLA-DRA, NCR1, CEACAM1,
Beta2Microglobulin, VNN1,
AlphaFetoprotein, MCP1, IL6, FCGR1A,
OSM, CSF1R, IRAK2, CRTAP
CReactiveProtein, SOD2, GADD45A,
ARG?2, IRAK4, FCGR1A, IL18R1, TLR4,
JAK?2, BCL2A1, IL10alpha, TGFBI,
AlphaFetoprotein

ApolipoproteinCIII, HLA-DRA, TNFSF10,
TLR4, IL10, GADD45B, BCL2A1, IL6,
CCL5, INSL3, MAP2K6, LDLR, IFNGR1
TIFA, JAK2, HLA-DRA, SOCS3, ARG2,
OSM, AlphaFetoprotein, MAPK14, IRAK?,
IFNGR1, FCGR1A, MAP2K6, PRV1
Beta2Microglobulin, IRAK2, MKNK1,
ANKRD?22, CD86, OSM, CSF1R, TNFSF10,
IFNGRI1, TLR4, MCP1, FAD104, TGFBI
VNNI1, FCGR1A, ANKRD22, CRTAP,
ANXA3, IL8, PFKFB3, NCR1, TLR4,
AlphaFetoprotein, TIFA, IRAK4, CD86
Gene_ MMP9, INSL3, FCGR1A, LDLR,
OSM, PFKFB3, ANKRD22, IL1RN, ILg,
IFNGR1, TDRD9Y, BCL2A1, TNFSF13B
PFKFB3, AlphaFetoprotein, IRAK4, NCR1,
TNFSF10, TDRD9, JAK2, FAD104,
IL10alpha, PRV1, CReactiveProtein, TGFBI,
Protein_ MMP9

Gene_ MMP9, MAP2K6, MAPK 14,
CReactiveProtein, PFKFB3, CCL5, CSF1R,

0.81

0.81

0.81

0.81

0.81

0.85

0.85

0.84

0.84

0.83

0.83

0.83

0.83

0.82

0.82

0.81

0.8

0.79

0.77

0.76

0.82

0.84

0.81

0.83

0.86

0.83

0.82

0.81

0.76

0.8

0.81

0.83

0.84

0.85

0.88

0.86

0.87

0.85

0.81

0.83

0.84

0.84

0.88
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TABLE N-continued

95

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

INSL3, MKNK1, ARG2, FAD104, SOD2,
Protein_ MMP9

IL8, TNFSF13B, ARG2, TIFA, CRTAP,
OSM, IL18R1, MCP1, IRAK4, LY96,
AlphaFetoprotein, TDRD9,
CReactiveProtein

PSTPIP2, CEACAMI1, GADD45B,
MAPK14, ARG2, FCGR1A, ITGAM,
TGFBI, IL10alpha, OSM, PRV1, IL8, TLR4
OSM, CReactiveProtein, CD86, Y96,
IL10alpha, FAD104, TDRD9, IL6,
ApolipoproteinCIII, LDLR, CSF1R, IL18R1,
MCP1

JAK?2, IL8, ARG2, OSM, BCL2A1, TIFA,
IL6, Gene_ MMP9, PRV1, TLR4, ILIRN,
LY96, IRAK2

IL6, INSL3, BCL2A1, TLR4, HLA-DRA,
IL10alpha, MKNK1, TDRD9, GADD45A,
OSM, SOCS3, CCL5, MAPK14

LDLR, FCGR1A, SOD2, LY96, MKNK1,
PRV1, MAP2K6, NCR1, Protein_ MMP9,
SOCS3, AlphaFetoprotein, IFNGR1, INSL3
TNFRSF6, ARG2, INSL3, ANXA3, IL10,
TIFA, ITGAM, VNN1, SOD2, TIMP1,
CSFI1R, Protein_ MMP9, SOCS3
IL10alpha, TNFRSF6, ARG2, TIMP1, IL8§,
CSF1R, MAP2K6, IRAK4, PFKFB3,
FCGRI1A, AlphaFetoprotein, OSM, HLA-
DRA

Protein_ MMP9, CD86, IFNGR1, TIMP1,
IL1RN, FCGR1A, ARG2, TIFA, IL8,
CRTAP, CSF1R, IL6, ITGAM

CEACAMI1, ANKRD22, CCL5, TLR4,
IRAK4, Beta2Microglobulin, MAP2KS6,
PRV1, TGFBI, FAD104, SOD2, JAK2,
MCP1

CD86, VNN1, PSTPIP2, PFKFB3,
CReactiveProtein, IL6, TLR4, CCL5,
FCGR1A, TDRD9, TNFRSF6, CSF1R,
CRTAP

LDLR, OSM, MCP1, CD86, ILIRN,
Protein_MMP9, MAP2K 6, FCGRI1A, IL8,
CEACAM1, PFKFB3, IRAK4, LY96
CReactiveProtein, TNFSF13B,
ApolipoproteinCIII, IRAK2, VNNI1,
FCGR1A, PFKFB3, HLA-DRA, ANKRD22,
SOD2, CD86, TGFBI, Beta2Microglobulin
LY96, TNFSF10, PRV1, PSTPIP2, SOCS3,
TIMP1, IFNGR1, ARG2, CEACAM1,
CCL5, TNFSF13B, LDLR,
ApolipoproteinCIIT

PRV1, JAK2, FCGR1A, VNN1, SOCS3,
TIFA, CRTAP, INSL3, IFNGR1, TDRD9,
CEACAM]1, Protein_ MMP9, IL8
GADD45A, SOCS3, OSM, CD86, ITGAM,
ApolipoproteinCIII, FAD104, INSL3,
PSTPIP2, IL18R1, AlphaFetoprotein,
TDRD9, MAP2K6

PSTPIP2, VNNI1, ILIRN, CSF1R, CD&6,
TLR4, IRAK4, IFNGR1, CRTAP, TNFSF10,
SOD2, TIFA, TDRD9

TNFRSF6, IFNGR1, TNFSF13B, MAP2KS6,
MKNK1, ANXA3, TGFBI, OSM, ARG2,
Beta2Microglobulin, CReactiveProtein,
LY96, ApolipoproteinCIII, TIFA

CSF1R, TLR4, IL6, TNFSF13B,
Beta2Microglobulin, IRAK4, FCGR1A,
CCL5, ITGAM, VNNI1, TIFA, CRTAP,
PFKFB3, TDRD9

CReactiveProtein, IL6, MAP2K6, OSM,
ARG2, ANKRD22, JAK2, HLA-DRA,

0.82

0.82

0.82

0.82

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.85

0.84

0.85

0.83

0.81

0.77

0.85

0.81

0.86

0.83

0.79

0.79

0.77

0.88

0.82

0.79

0.8

0.82

0.87

0.78

0.81

0.77

0.78

0.83

0.83

0.85

0.83

0.85
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TABLE N-continued

96

Exemplary sets of biomarkers used in the methods or kits referenced in
Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

ApolipoproteinCIII, MAPK14, TLR4,
TNFSF13B, IFNGR1, IL10alpha

VNNI1, GADD45B, IRAK?2, TGFBI, NCR1,
IL6, CEACAM1, CRTAP, Gene_ MMP9,
TNFRSF6, CD&6, TDRD9,
CReactiveProtein, I1.10

CRTAP, IL18R1, Beta2Microglobulin,
ANXA3, TDRD9, MKNK1, Protein_ MMP9,
IL6, TNFSF10, OSM, MCP1, PFKFB3,
ApolipoproteinCIII, VNN1

PSTPIP2, IL8, IL18R1, CEACAMI1, HLA-
DRA, OSM, NCR1, MCP1, FCGR1A,
TNFRSF6, TLR4, IRAK?, Protein_ MMP9,
CReactiveProtein

PRV1, IRAK4, FAD104, TGFBI,

Protein_ MMP9, INSL3, AlphaFetoprotein,
CD86, VNN1, CSF1R, Beta2Microglobulin,
GADD45B, BCL2A1, IL10

CD86, MAP2K6, PSTPIP2, TNFSF10,
OSM, GADD45B, TLR4, HLA-DRA, LY96,
TNFSF13B, ARG2, SOD2, PRV1,
Beta2Microglobulin

TIFA, CSF1R, IL10alpha, IFNGR1,
CEACAMI1, CRTAP, ANKRD22, FCGRI1A,
MAP2K6, FAD104, PSTPIP2, MAPK 14,
ARG2, IRAK2

CReactiveProtein, TDRD9, IL8, ITGAM,
IL10alpha, TNFRSF6, SOD2, MCP1,
SOCS3, MKNK1, FAD104, MAP2K6,
IFNGR1, AlphaFetoprotein

TLR4, ANKRD?22, IL.10alpha,
CReactiveProtein, ApolipoproteinCIII,
BCL2A1, FCGR1A, SOD2, OSM, IFNGR1,
TGFBI, TIFA, VNN1, CEACAM1
FCGR1A, IRAK4, MAP2K6, ANXA3,
MAPK14, INSL3, AlphaFetoprotein, ILS8,
MKNK1, ARG2, VNN1, TIMP1, CSF1R,
GADD45A

ANKRD22, HLA-DRA, IFNGR1,
GADD45A, TNFSF13B, FAD104, LDLR,
IL10alpha, IL6, MAPK 14,
ApolipoproteinCIII, PRV1,
CReactiveProtein, TIMP1

IL10, PSTPIP2, INSL3, LY96, NCR1,
MAPK14, VNN1, MCP1, PRV1,
ApolipoproteinCIII, TIMP1, Protein_ MMP9,
TDRD9, PFKFB3

TNFRSF6, TGFBI, LY96, TDRD9, CRTAP,
AlphaFetoprotein, TNFSF10, CCL5, JAK?2,
IL6, IRAK?2, HLA-DRA, OSM,
ApolipoproteinCIIT

TIFA, Gene_ MMP9, IL18R1, TDRD9,
SOCS3, TIMP1, IL6, CCL5, ARG2, CSF1R,
OSM, IL10alpha, IL8, TNFSF13B
PSTPIP2, PRV1, MAPK14, OSM, CRTAP,
IFNGRI1, IL6, FAD104, IL18R1, JAK2,
GADD45B, LY96, BCL2A1, TLR4
GADDA45A, 116, TGFBL, BCL2A1, CRTAP,
CCL5, TIFA, TLR4, CD86, PRV1, FAD104,
TDRD9, TNFSF10, SOCS3
Beta2Microglobulin, JAK?2, TDRD9,
PSTPIP2, HLA-DRA, IL1RN, TGFB],
INSL3, ARG2, LDLR, AlphaFetoprotein,
IRAK2, SOD2, MAPK 14

CD86, FAD104, AlphaFetoprotein,

Gene_ MMP9, MCP1, HLA-DRA, INSL3,
PSTPIP2, ILIRN, ITGAM, TIMP1,
Protein_ MMP9, IL6, IRAK4

ANKRD22, MAPK14, GADD45A, TDRD9,
IL10alpha, Protein_ MMP9, ARG2, CD86,

0.84

0.83

0.83

0.83

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.82

0.77

0.79

0.83

0.77

0.86

0.86

0.81

0.85

0.84

0.82

0.8

0.79

0.77

0.88

0.89

0.86

0.82

0.87

0.78

0.79

0.84

0.79

0.8

0.82

0.85

0.86

0.75
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TABLE N-continued

97

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

TIMP1, IRAK2, TIFA, VNN1, OSM,
ITGAM

SOCS3, ILIRN, CEACAM1, FCGRI1A,
LDLR, CCL35, CReactiveProtein,
AlphaFetoprotein, ARG2, IL6, CD86,
MCP1, INSL3, IL18R1

ANKRD22, FAD104, ApolipoproteinCIII,
IRAK?2, TNFSF13B, TGFBI, TLR4,
CRTAP, MCP1, LDLR, JAK2, SOD2,
PSTPIP2, Protein_ MMP9

BCL2A1, ILIRN, FCGR1A, GADD43A,
JAK2, NCR1, TDRD9, TIFA, TNFSF10,
Protein_MMP9, CRTAP, CSF1R, IL6,
INSL3

SOD2, ITGAM, ApolipoproteinCIII,
ANXA3, FAD104, IL6, ARG2, CD86,
TGFBI, SOCS3, OSM, TDRD9, IL18R1,
LY96

VNN1, IRAK?2, ApolipoproteinCIII, 1110,
TDRD9, FCGR1A, IL8, TIMP1, MCP1,
JAK?2, TIFA, TGFBI, OSM, MAPK14
ApolipoproteinCIII, IL10, TDRD9, ARG2,
IRAK4, ANXA3, TNFRSF6,
CReactiveProtein, INSL3, JAK2, IL.1IRN,
IL6, NCR1, Gene_ MMP9

CD86, CSF1R, TNFSF13B, FCGR1A,
MCP1, GADD45A, LDLR, IRAK?2, CCLS5,
Beta2Microglobulin, SOCS3, MAP2KS,
LY96, INSL3

MCP1, NCR1, TGFBI, TDRD9, MAP2K6,
ApolipoproteinCIII, INSL3, LY96, IFNGR1,
JAK?2, Protein_ MMP9, GADD45B, IRAK4,
CCL35

Beta2Microglobulin, FCGR1A, TNFSF13B,
OSM, IRAK4, IRAK?2, IL8, MAPK14,
PSTPIP2, TIFA, TIMP1, ApolipoproteinCIII,
MAP2K6, TLR4

TNFSF13B, LY96, OSM, MAP2K6, IRAK 2,
CRTAP, JAK?2, PFKFB3, BCL2A1,
CReactiveProtein, INSL3, GADD45A,
TIFA, IL10alpha

OSM, JAK2, GADD45A, CEACAM1,
ARG2, NCR1, TLR4, PRV1, PFKFB3, IL8,
Beta2Microglobulin, GADD45B, HLA-
DRA, INSL3

LY96, TIFA, CSF1R, IL10, SOCS3, ARG2,
IRAK4, CD86, IL10alpha, Protein_ MMP9,
TNFSF10, ITGAM, Gene_ MMP9, LDLR
AlphaFetoprotein, ApolipoproteinCIII,
SOD2, PSTPIP2, CSF1R,
Beta2Microglobulin, NCR1, GADD45B,
FCGRI1A, CReactiveProtein, CEACAM1,
CD86, Protein_ MMP9, HLA-DRA
MAPK14, ARG2, TNFSF10, TNFSF13B,
FAD104, ANKRD22, GADD45A, ANXA3,
CReactiveProtein, NCR1, IFNGR1, OSM,
Protein_ MMP9, IL18R1

VNNI, NCR1, IL10alpha, ARG2, IL6,
LY96, CReactiveProtein, JAK2, TGFBI,
SOCS3, CRTAP, ITGAM, IRAK4, PRV1
TNFSF13B, CReactiveProtein, INSL3,
CEACAM1, Beta2Microglobulin, CD86,
1L6, JAK2, ApolipoproteinCIII, IL18R1,
ANXA3, PSTPIP2, SOD2, ILIRN

IRAK?2, FCGR1A, Gene_ MMP9, BCL2A1,
TGFBI, PSTPIP2, CEACAM1, GADD45A,
CCL5, TNFSF13B, ARG2, IL.8, TIFA,
IL18R1

0.82

0.82

0.82

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.81

0.85

0.84

0.8

0.83

0.83

0.82

0.82

0.79

0.78

0.84

0.78

0.79

0.79

0.83

0.79

0.8

0.8

0.81

0.83

0.84

0.79

0.84
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[0440] In some embodiments, the methods or kits respec-
tively described or referenced in Section 5.2 and Section 5.3
use any one of the subsets of biomarkers listed in Table O. The
subsets of biomarkers listed in Table O were identified in the
computational experiments described in Section 6.14.5,
below, in which 4600 random subcombinations of the biom-
arkers listed in Table I were tested. Table O lists some of the
biomarker sets that provided high accuracy scores against the
validation population described in Section 6.14.5. Each row
of Table O lists a single set of biomarkers that can be used in
the methods and kits respectively referenced in Sections 5.2
and 5.3. In other words, each row of Table O describes a set of
biomarkers that can be used to discriminate between sepsis
and SIRS subjects. In some embodiments, nucleic acid forms
of the biomarkers listed in Table O are used in the methods

May 5, 2011

and kits respectively referenced in Sections 5.2 and 5.3. In
some embodiments, protein forms of the biomarkers listed in
Table O are used. In some embodiments, some of the biom-
arkers in a biomarker set from Table O are in protein form and
some of the biomarkers in the same biomarker set from Table
O are innucleic acid form in the methods and kits respectively
referenced in Sections 5.2 and 5.3.

[0441] In some embodiments, a given set of biomarkers
from Table O is used with the addition of one, two, three, four,
five, six, seven, eight, or nine or more additional biomarkers
from any one of Table 30, 31, 32, 33, 34, or 36 that are not
within the given set of biomarkers from Table O. In Table O,
accuracy, specificity, and senstitivity are described with ref-
erence to T_,, time point data described in Section 6.14.6,
below.

TABLE O

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET ACCURACY SPECIFICITY SENSISTIVITY
SOCS3, ApolipoproteinCIII, NCR1 0.81 0.75 0.85
IL8, PRV1, CEACAM1 0.8 0.79 0.8
PSTPIP2, TLR4, GADD45B 0.8 0.72 0.87
ARG2, PRV1, MKNK1 0.79 0.71 0.85
CD86, SOCS3, TLR4 0.79 0.74 0.82
PRV1, GADD45B, TNFSF13B, ITGAM 0.83 0.73 0.91
PRV1, ApolipoproteinCIII, FCGR1A, 0.81 0.78 0.84
LDLR

TNFRSF6, MAP2K6, PRV1, ANKRD22 0.81 0.77 0.85
PRV1, ARG2, CD86, CEACAM1 0.81 0.8 0.82
GADD45B, CReactiveProtein, PRV1, CD86 0.81 0.73 0.88
GADD45B, TNFSF13B, FAD104, PFKFB3 0.81 0.73 0.86
PRV1, FAD104, IL18R1, MCP1 0.8 0.69 0.88
PRV1, IRAK?2, PSTPIP2, ANXA3 0.8 0.68 0.87
FCGRI1A, JAK2, MKNK1, PRV1 0.8 0.65 0.91
IL10, TNFSF13B, GADD45B, CEACAM1 0.79 0.73 0.85
Beta2Microglobulin, GADD45B, ARG2, 0.81 0.73 0.88
TNFSF13B, OSM

CD8&6, BCL2A1, PSTPIP2, PRV1, JAK2 0.8 0.71 0.89
GADD45A, GADD45B, CSF1R, MAP2K6, 0.8 0.69 0.88
PSTPIP2

AlphaFetoprotein, CReactiveProtein, 0.8 0.76 0.82
GADD45B, MAPK 14, ANXA3

PRV1, FCGR1A, NCR1, CReactiveProtein, 0.8 0.74 0.84
TNFRSF6

MAPK14, CSF1R, OSM, ILIRN, TLR4 0.8 0.74 0.84
IRAK4, MAPK14, GADD45B, TNFSF13B, 0.8 0.71 0.86
CSFIR

ITGAM, ANXA3, Beta2Microglobulin, 0.79 0.76 0.82
PRV1, IRAK2

NCR1, MCP1, PRV1, CD8&6, FCGR1A 0.79 0.72 0.86
CRTAP, Beta2Microglobulin, TDRD9, 0.79 0.65 0.91
GADD45A, PRV1

PRV1, PFKFB3, FCGR1A, TIFA, 0.79 0.73 0.84
ANKRD22

PRV1, ApolipoproteinCIII, FCGR1A, 0.79 0.72 0.85
Protein_ MMP9, TIMP1

FCGRI1A, IRAK2, TNFSF13B, OSM, 0.84 0.79 0.89
CRTAP, PFKFB3

ANXA3, CEACAMI, PRV1, OSM, MCP1, 0.81 0.77 0.84
CCL5

IRAK4, TNFSF10, MCP1, PRV1, MKNKI1, 0.81 0.75 0.84
SOCS3

TGFBI, CEACAMI1, CD86, MAPK14, 0.8 0.76 0.83
LDLR, PRV1

MCP1, GADD45B, CEACAM1, TIMP1, 0.8 0.76 0.83
MAP2K6, IFNGR1

LY96, PRV1, MCP1, IRAK?, CD86, 0.8 0.76 0.83
TNFSF10

BCL2A1, PRV1, LDLR, TNFSF10, 0.8 0.73 0.85

IL18R1, SOCS3
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Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET ACCURACY SPECIFICITY SENSISTIVITY
SOCS3, ApolipoproteinCIII, FCGR1A, 0.79 0.7 0.87
TNFSF13B, IFNGR1, Beta2Microglobulin

ARG2, PSTPIP2, TNFRSF6, GADD45B, 0.79 0.82 0.77
MAPK14, TIMP1

NCRI1, IL8, FCGR1A, ILIRN, 0.79 0.73 0.84
ApolipoproteinCIII, IFNGR1

LDLR, MAP2K6, PRV1, TIMP1, HLA- 0.79 0.72 0.85
DRA, CCL35

TIFA, GADD45B, HLA-DRA, CEACAMI, 0.79 0.74 0.83
OSM, ARG2

TIMP1, GADD45A, MKNK1, SOCS3, 0.79 0.73 0.83
LDLR, TNFSF10

SOD2, LY96, PRV1, FAD104, BCL2A1, 0.79 0.72 0.83
GADD45A

CEACAM]I, BCL2A1, IRAK4, LDLR, 0.79 0.69 0.85
TIFA, IL10alpha

TNFSF10, TIFA, GADD45B, ANXA3, 0.78 0.65 0.88
BCL2A1, TNFRSF6

Beta2Microglobulin, TIMP1, GADD45A, 0.78 0.79 0.77
CRTAP, FAD104, GADD45B

ApolipoproteinCIIL, IL18R1, CSFIR, 0.78 0.72 0.83
LDLR, FCGR1A, MCP1

MKNK1, GADD45B, IL1RN, NCR1, IL10, 0.78 0.71 0.83
LDLR

CD86, IL10, IFNGR1, SOCS3, TDRD9, 0.78 0.7 0.85
MCP1

PRV1, SOD2, INSL3, TIFA, IRAK2, MCP1 0.78 0.7 0.84
AlphaFetoprotein, Protein_ MMP9, 0.83 0.79 0.87
ANKRD22, HLA-DRA, MAP2KS6,

GADD45B, CEACAM1

TNFSF13B, OSM, PRV1, CSF1R, IFNGRI1, 0.83 0.79 0.85
TNFRSF6, FCGR1A

FCGR1A, CCL5, TNFSF13B, 0.81 0.83 0.8
Gene_ MMP9, IL6, MAP2K6, OSM

GADD45B, IL1RN, Beta2Microglobulin, 0.81 0.68 0.91
VNNI1, PRV1, CD86, IL.10

IL8, TIFA, IL18R1, SOD2, CSF1R, 0.8 0.81 0.8
FAD104, PRV1

MAP2K6, SOD2, IL18R1, LDLR, ANXA3, 0.8 0.78 0.82
CD86, GADD45B

ANKRD22, PRV1, TIMP1, NCR1, 0.8 0.75 0.84
GADD45A, FCGR1A, TNFSF13B

IL10alpha, CRTAP, IL10, TIMP1, TIFA, 0.8 0.73 0.87
PRV1, ARG2

TNFRSF6, TLR4, LY96, CSF1R, 0.8 0.7 0.88
GADD45B, CCL5, INSL3

TDRD9, ANXA3, TNFSF10, TNFRSF6, 0.8 0.68 0.9
PRV1, CCL5, IFNGR1

CDg86, GADD45B, CReactiveProtein, 0.8 0.82 0.78
LDLR, CCL5, FAD104, IL8

IRAK4, TGFBL, PRV1, CEACAM1, 0.8 0.75 0.83
IFNGRI1, PSTPIP2, TLR4

OSM, Gene_ MMP9, TLR4, TDRD9, CCLS5, 0.8 0.72 0.84
CRTAP, HLA-DRA

CRTAP, CEACAM1, FAD104, GADD45A, 0.79 0.72 0.84
PRV1, MAP2K6, TNFSF10

TNFRSF6, MKNK1, SOD2, TGFBI, MCP1, 0.79 0.72 0.86
GADD45B, ANKRD22

TIMP1, BCL2A1, TNFSF10, PRV1, HLA- 0.79 0.7 0.86
DRA, CRTAP, PFKFB3

INSL3, ANXA3, Beta2Microglobulin, 0.79 0.7 0.86
GADD45B, TNFRSF6, ANKRD22, LDLR

TIFA, GADD45B, HLA-DRA, CD86, IL10, 0.79 0.72 0.83
IL10alpha, MCP1

FCGR1A, CReactiveProtein, BCL2A1, 0.79 0.71 0.83
GADD45B, PRV1, PFKFB3, MAP2K6

IL8, INSL3, ANKRD22, TNFSF10, HLA- 0.79 0.7 0.85
DRA, PFKFB3, CSFIR

IL10alpha, MCP1, SOD2, TNFSF13B, 0.78 0.75 0.81

CRTAP, MAP2K6, PRV1
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100

Exemplary sets of biomarkers used in the methods or kits referenced in

Sections 5.2 and 5.3

BIOMARKER SET ACCURACY SPECIFICITY SENSISTIVITY
FAD104, SOD2, LY96, IL8, IRAK4, PRV1, 0.78 0.73 0.83
Protein_ MMP9

MAPK14, OSM, PRV1, CRTAP, 0.78 0.7 0.85
IL10alpha, MKNK1, IFNGR1

OSM, AlphaFetoprotein, IFNGR1, SOD2, 0.78 0.73 0.82
GADD45A, CEACAM1, MKNK1

IL18R1, TDRDY, INSL3, JAK2, 0.78 0.7 0.85
Protein_ MMP9, TNFRSF6, NCR1

IFNGR1, CEACAM1, JAK2, SOD2, HLA- 0.83 0.82 0.84
DRA, MAPK14, PRV1, VNN1

NCRI1, IRAK2, MAP2K6, 0.83 0.83 0.82
CReactiveProtein, FCGR1A, ARG2, CD86,

SOCS3

GADD45B, ARG2, GADD45A, IL10alpha, 0.81 0.75 0.84
TDRD9, PFKFB3, CReactiveProtein, OSM

PRV1, ITGAM, IL1RN, MAPK14, 0.81 0.74 0.85
TNFSF10, SOD2, ARG2, PFKFB3

TNFRSF6, Beta2Microglobulin, PSTPIP2, 0.81 0.73 0.87
IL8, SOCS3, GADD45B, CRTAP, IFNGR1

CReactiveProtein, LY96, MAP2KS6, 0.8 0.78 0.82
IL18R1, INSL3, OSM, CSF1R, IL6

ITGAM, PRV1, MAP2K6, IL8, OSM, 0.8 0.74 0.86
SOD2, IRAK4, CCL5

CReactiveProtein, OSM, PSTPIP2, 0.8 0.73 0.85
TNFSF10, ANKRD22, TDRD9, INSL3,

CDg6

ANKRD?22, CD86, PRV1, ANXA3, IL10, 0.79 0.81 0.78
TNFSF13B, TIFA, AlphaFetoprotein

ApolipoproteinCIIL, MKNK1, FCGR1A, 0.79 0.75 0.82
PSTPIP2, VNN1, TNFRSF6,

AlphaFetoprotein, OSM

PRV1, CCL5, PFKFB3, TNFSF13B, 0.79 0.74 0.83
TIMP1, LDLR, ANKRD22, MAP2K6

ARG2, VNN1, ANKRD22, IFNGR1, 0.79 0.74 0.85
IL1RN, CD8&6, FAD104, GADD45B

IL10, PFKFB3, NCR1, TNFSF13B, MCP1, 0.79 0.7 0.86
MAPK14, PRV1, TIMP1

ApolipoproteinCIII, INSL3, IL10alpha, 0.79 0.74 0.83
FCGR1A, IL1RN, IL6, TNFRSF6, IL8

IL10, FAD104, CCL5, SOCS3, CD86, 0.79 0.79 0.78
HLA-DRA, LDLR, GADD45A

PFKFB3, CReactiveProtein, MAPK 14, 0.79 0.74 0.81
TNFSF10, BCL2A1, ITGAM, IL10alpha,

TDRD9

Beta2Microglobulin, TNFSF13B, 0.78 0.73 0.82
ANKRD22, MCP1, TDRD9, IRAK4,

TIMP1, OSM

PSTPIP2, MAP2K6, AlphaFetoprotein, 0.78 0.69 0.84
TDRD9, PFKFB3, IL8, ANXA3, PRV1

TIFA, AlphaFetoprotein, PRV1, IL18R1, 0.78 0.68 0.87
Gene_ MMP9, VNN1, TDRD9, TNFRSF6

IRAK?2, FAD104, PRV1, GADD45A, TIFA, 0.78 0.72 0.83
MCP1, TIMP1, SOD2

IL6, CSF1IR, MAP2K6, ANXA3, MCP1, 0.78 0.72 0.82
PRV1, ITGAM, AlphaFetoprotein

CCL5, IL10alpha, GADD45B, LDLR, 0.78 0.69 0.84
PSTPIP2, CD86, HLA-DRA, TLR4

LDLR, CRTAP, NCR1, TNFRSF6, 0.78 0.69 0.84
ApolipoproteinCIII, MAPK14, FCGR1A,

IRAK?2

TGFBI, ANXA3, IL18R1, MAP2KS6, 0.78 0.67 0.87
FCGR1A, IL10, OSM, PRV1

NCRI1, JAK2, ANKRD22, ILIRN, ANXA3, 0.82 0.78 0.86
LDLR, CD86, IFNGR1, OSM

CSF1R, TDRD9, FAD104, TNFSF10, 0.82 0.79 0.84
OSM, LDLR, MAPK14, TIFA, BCL2A1

TNFSF10, IFNGR1, TNFRSF6, GADD45B, 0.82 0.75 0.87
CCL5, TNFSF13B, ANXA3, JAK2, PRV1

TNFSF13B, CD86, TIFA, SOCS3, 0.81 0.68 0.91

GADDA45B, ARG2, TNFSF10, IRAK4,
IL10

May 5, 2011



US 2011/0105350 Al

TABLE O-continued

101

Exemplary sets of biomarkers used in the methods or kits referenced in
Sections 5.2 and 5.3

BIOMARKER SET

ACCURACY

SPECIFICITY  SENSISTIVITY

FCGR1A, PSTPIP2, CEACAMI, IL1RN,
FAD104, IL6, INSL3, CSF1R, PRV1
ILIRN, SOD2, TGFBI, ApolipoproteinCIII,
JAK?2, CEACAMI, IRAK?2, IFNGR1, OSM
TDRD9, CD86, Protein_ MMP9, TNFRSF6,
SOCS3, MCP1, AlphaFetoprotein, TIFA,
INSL3

BCL2A1, TGFBI, TLR4, IL8, LDLR,
ANKRD22, TNFSF13B, IL10, GADD45B
TNFSF13B, AlphaFetoprotein, TDRD9,
MAPK14, SOCS3, ANXA3, ILIRN,
CRTAP, TNFRSF6

IL6, TNFRSF6, MCP1, JAK2, GADDA45A,
TIFA, ARG2, FCGR1A, ANKRD22
PSTPIP2, ANXA3, MCP1, FAD104, PRV1,
ANKRD22, NCR1, HLA-DRA, FCGR1A
IL8, PRV1, TDRD9, Beta2Microglobulin,
IL10alpha, VNN1, INSL3, TIFA, CSF1R
GADD45B, TNFRSF6, OSM, IRAK4,
AlphaFetoprotein, ILIRN, TNFSF13B,
MCP1, FAD104

ANKRD22, OSM, INSL3, IFNGR1,
MKNK1, GADD45B, TDRD9, MAP2KS6,
IRAK4

NCRI1, JAK2, ANKRD22, ILIRN, ANXA3,
LDLR, CD86, IFNGR1, OSM
ApolipoproteinCIII, ANXA3, IL18R1,
PRV1, CD86, LDLR, TDRD9,
CReactiveProtein, MAP2K6, CSF1R,
CRTAP

CCL35, Protein_MMP9, NCR1, PRV1,
TNFRSF6, TGFBI, HLA-DRA, FCGR1A,
IFNGR1, CSF1R, MCP1

GADD45B, CSF1R, IL1RN, PSTPIP2,
PRV1, ApolipoproteinCIII, ARG2, SOCS3,
FAD104, ITGAM, TIMP1

JAK2, MKNK1, CRTAP, GADD45B,
OSM, INSL3, TIMP1, TIFA, TNFRSF6,
AlphaFetoprotein, CD86
ApolipoproteinCIII, CD86, FCGR1A,
ARG?2, GADD45B, IL8, CRTAP, IFNGR1,
TIMP1, ANXA3, HLA-DRA

MCP1, IL8, TNFSF13B, AlphaFetoprotein,
LDLR, Protein_ MMP9, JAK?2, FAD104,
IRAK?2, TNFRSF6, GADD45B

TLR4, NCR1, CCL3, IL6,
CReactiveProtein, IRAK4,
AlphaFetoprotein, FCGR1A,
ApolipoproteinCIII, GADD45B, PRV1
ANKRD22, OSM, VNN1, LDLR,
ApolipoproteinCIII, ILIRN, SOCS3,
MAPK14, GADD45B, JAK?2, ITGAM
NCR1, ARG2, GADD45B, GADD43A,
CD86, TNFSF10, CCL5, PSTPIP2,
Beta2Microglobulin, CRTAP, LDLR
SOCS3, JAK?2, IL1RN, IFNGR1, CRTAP,
TIMP1, Protein_ MMP9, VNN1, TNFRSF6,
CD86, ANKRD22

OSM, PSTPIP2, IL1RN, AlphaFetoprotein,
PRV1,IL6, LY96, IL18R1, CSFIR,
TNFSF13B, LDLR

IL10alpha, CReactiveProtein, TIFA, NCR1,
CRTAP, TGFBI, PFKFB3, LDLR, IRAK4,
GADD45B, TDRD9

ApolipoproteinCIII, ANXA3, IL18R1,
PRV1, CD86, LDLR, TDRD9,
CReactiveProtein, MAP2K6, CSF1R,
CRTAP

0.81

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.82

0.84

0.81

0.81

0.81

0.81

0.8

0.8

0.8

0.8

0.8

0.79

0.83

0.78

0.75

0.73

0.73

0.78

0.73

0.81

0.79

0.73

0.76

0.81

0.76

0.86

0.75

0.83

0.78

0.82

0.84

0.86

0.86

0.86

0.93

0.81

0.83

0.88

0.85

0.8

0.84

0.75

0.84
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[0442] In some embodiments, the methods or kits respec-
tively described or referenced in Section 5.2 and Section 5.3
use at least two different biomarkers that each contain a
probeset listed in any one of FIG. 6, 14, 17, or 26. In a
particular embodiment, a biomarker profile comprises at least
two different biomarkers that each contain one of the
probesets listed in any one of FIG. 6,14, 17, or 26, biomarkers
that each contain the complement of one of the probesets of
any one of FIG. 6, 14, 17, or 26, or biomarkers that each
contain an amino acid sequence encoded by a gene that either
contains one of the probesets of any one of FIG. 6, 14, 17, or
26, or the complement of one of the probesets of any one of
FIG. 6, 14, 17, or 26. Such biomarkers can be, for example,
mRNA transcripts, cDNA or some other nucleic acid, for
example, amplified nucleic acid, or proteins. The biomarker
profile further comprises a respective corresponding feature
for the at least two biomarkers. Generally, the at least two
biomarkers are derived from at least two different genes. In
the case where a biomarker is based upon a gene that includes
the sequence of a probeset listed in any one of FIG. 6, 14,17,
or 26, the biomarker can be, for example, a transcript made by
the gene, a complement thereof, or a discriminating fragment
or complement thereof, or a cDNA thereof, or a discriminat-
ing fragment of the cDNA, or a discriminating amplified
nucleic acid molecule corresponding to all or a portion of the
transcript or its complement, or a protein encoded by the
gene, or a discriminating fragment of the protein, or an indi-
cation of any of the above. Further still, the biomarker can be,
for example, a protein encoded by a gene that includes a
probeset sequence described in any one of FIG. 6, 14, 17, or
26, or a discriminating fragment of the protein, or an indica-
tion of any of the above. Here, a discriminating molecule or
fragment is a molecule or fragment that, when detected, indi-
cates presence or abundance of the above-identified tran-
script, cDNA, amplified nucleic acid, or protein. In some
embodiments, the biomarker profile comprises at least 2, 3, 4,
5,6,7,8,9, or 10 different biomarkers that each contains a
probeset listed in any one of FIG. 6, 14, 17, or 26.

[0443] In some embodiments, the methods or kits respec-
tively described or referenced in Section 5.2 and Section 5.3
use at least two different biomarkers listed in any one of FIG.
39, 43, 52, 53, or 56. In a particular embodiment, the biom-
arker profile comprises at least two different biomarkers
listed in any one of FIG. 39, 43, 52, 53, or 56. The biomarker
profile further comprises a respective corresponding feature
for the at least two biomarkers. Generally, the at least two
biomarkers are derived from at least two different genes. In
the case where a biomarker in the at least two different biom-
arkers is listed in any one of FIG. 39, 43, 52, 53, or 56, the
biomarker can be, for example, a transcript made by the listed
gene, a complement thereof, or a discriminating fragment or
complement thereof, or a cDNA thereof, or a discriminating
fragment of the cDNA, or a discriminating amplified nucleic
acid molecule corresponding to all or a portion of the tran-
script or its complement, or a protein encoded by the gene, or
a discriminating fragment of the protein, or an indication of
any of the above. Further still, the biomarker can be, for
example, a protein encoded by a gene listed in any one of FIG.
39, 43, 52, 53, or 56, or a discriminating fragment of the
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protein, or an indication of any of the above. Here, a discrimi-
nating molecule or fragment is a molecule or fragment that,
when detected, indicates presence or abundance of the above-
identified transcript, cDNA, amplified nucleic acid, or pro-
tein. In accordance with this embodiment, the biomarker
profiles of the present invention can be obtained using any
standard assay known to those skilled in the art, or in an assay
described herein, to detect a biomarker. Such assays are
capable, for example, of detecting the products of expression
(e.g., nucleic acids and/or proteins) of a particular gene or
allele of a gene of interest (e.g., a gene disclosed in Table 30).
In one embodiment, such an assay utilizes a nucleic acid
microarray. In some embodiments, the biomarker profile
comprises at least two different biomarkers from any one of
FIG. 39, 43, 52, 53, or 56. In some embodiments, the biom-
arker profile comprises at least 2, 3,4, 5,6,7,8,9,10, 11,12,
13,14,15,16, 17,18, 19, or 20 different biomarkers from any
one of FIG. 39, 43, 52, 53, or 56.

[0444] In some embodiments, the methods or kits respec-
tively described or referenced in Section 5.2 and Section 5.3
use specific biomarkers containing probes from any one of the
probeset collections listed in Table P. In a particular embodi-
ment, a biomarker profile comprises at least two different
biomarkers that each contain one of the probesets listed in any
one of the probeset collections of Table P, biomarkers that
each contain the complement of one of the probesets from any
one of the probeset collections of Table P, or biomarkers that
each contain an amino acid sequence encoded by a gene that
either contains one of the probesets from any one of the
probeset collections of Table P, or the complement of one of
the probesets of any one of the probeset collections of Table P.
Such biomarkers can be, for example, mRNA transcripts,
c¢DNA or some other nucleic acid, for example, amplified
nucleic acid, or proteins. The biomarker profile further com-
prises a respective corresponding feature for the at least two
biomarkers. Generally, the at least two biomarkers are derived
from at least two different genes. In the case where a biom-
arker is based upon a gene that includes the sequence of a
probeset listed in any one of the probeset collections of Table
P, the biomarker can be, for example, a transcript made by the
gene, a complement thereof, or a discriminating fragment or
complement thereof, or a cDNA thereof, or a discriminating
fragment of the cDNA, or a discriminating amplified nucleic
acid molecule corresponding to all or a portion of the tran-
script or its complement, or a protein encoded by the gene, or
a discriminating fragment of the protein, or an indication of
any of the above. Further still, the biomarker can be, for
example, a protein encoded by a gene that includes a probeset
sequence from any one of the probeset collections listed in
Table P, or a discriminating fragment of the protein, or an
indication of any of the above. Here, a discriminating mol-
ecule or fragment is a molecule or fragment that, when
detected, indicates presence or abundance of the above-iden-
tified transcript, cDNA, amplified nucleic acid, or protein. In
some embodiments, the biomarker profile comprises at least
2,3,4,5,6,7,8, 9, or 10 different biomarkers that each
contains a probeset from any one of probeset collections
listed in Table P.
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TABLE P
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Exemplary probesets

PROBESET

COLLECTION IDENTITY OF PROBE IN PROBESET COLLECTION

1

X206513_at, X214681__at, X235359__at, X221850_x_ at, X213524_s_ at,
X225656_a,X200881__s_at, X229743__at, X215178_x_ at, X215178_x_ at,
X216841_s_ at, X216841_at, X244158_ at, X238858__at, X205287_s_ at,
X233651_s_at, X229572_ at, X214765_s_ at.

X206513_at, X213524_s_ at, X200881_s_ at, X218992_ at, X238858__ at,
X221123_x_ at, X228402__at, X230585__at, X209304_ x_ at, X214681 __at.
X204102_s_at, X236013__at, X213668__s_ at, X1556639__at, X218220__at,
X207860__at, X232422_ at, X218578_at, X205875_s_ at, X226043_ at,
X225879__at, X224618__at, X216316_x_ at, X243159_x_ at,
X202200_s_ at, X201936_s_ at, X242492_ at, X216609__at, X214328_s_ at,
X228648__at, X223797__at, X225622__ at, X205988__at, X201978_s_ at,
X200874_s_at, X210105_s_ at, X203913_s_ at, X204225_ at, X227587_ at,
X220865_s_at, X206682__at, X222664__at, X212264_s_ at, X219669__ at,
X221971_x_ at, X1554464__a_ at, X242590_ at, X227925_ at,
X221926_s_at, X202101_s_ at, X211078_s_ at, X44563__at, X206513__at,
X215178_x_ at, X235359__at, X225656__at, X244158__at, X214765_s_ at,

X229743__at, X214681.

[0445] In some embodiments, the methods or kits respec-
tively described or referenced in Section 5.2 and Section 5.3
use at least two different biomarkers listed in any one of the
biomarker sets in Table Q. In a particular embodiment, the
biomarker profile comprises at least two different biomarkers
listed in any one of the biomarker sets in Table Q. The biom-
arker profile further comprises a respective corresponding
feature for the at least two biomarkers listed in any of the
biomarker sets in Table Q. Generally, the at least two biom-
arkers are derived from at least two different genes. In the case
where a biomarker in the at least two different biomarkers is
listed in any one of biomarker sets of Table Q, the biomarker
can be, for example, a transcript made by the listed gene, a
complement thereof;, or a discriminating fragment or comple-
ment thereof, or a cDNA thereof, or a discriminating frag-

molecule or fragment is a molecule or fragment that, when
detected, indicates presence or abundance of the above-iden-
tified transcript, cDNA, amplified nucleic acid, or protein. In
accordance with this embodiment, the biomarker profiles of
the present invention can be obtained using any standard
assay known to those skilled in the art, or in an assay
described herein, to detect a biomarker. Such assays are
capable, for example, of detecting the products of expression
(e.g., nucleic acids and/or proteins) of a particular gene or
allele of a gene of interest (e.g., a gene disclosed in any on of
the biomarker sets of Table Q). In one embodiment, such an
assay utilizes a nucleic acid microarray. In some embodi-
ments, a biomarker profile comprising at least 2 or 3 different
biomarkers from any one of the biomarker sets of Table Q is
used.

TABLE Q

Exemplary biomarker sets

BIOMARKER

SET NUMBER IDENTITY OF BIOMARKERS

Bowro o~

IL18R1, ARG2, FCGR1A

ITGAM, TGFB1, TLR4, TNFSF, FCGR1A, IL18R1, ARG2

ARG2, TGFB1, MMP9, TLR4, ITGAM, IL18R1, TNFSF, ILIRN, FCGR1A
OSM, GADD45B, ARG2, IL18R1, TDRD9, PFKFB3, MAPK14,
PRV1, MAP2K6, TNFRSF6, FCGR1A, INSL3, LY96, PSTPIP2,
ANKRD22, TNFSF10, HLA-DRA, FNDC3B, TIFA, GADD45A,
VNNI1, ITGAM, BCL2A1, TLR4, TNFSF13B, SOCS3, ILIRN,
CEACAMI, SOD2

ARG2, GADD45B, OSM, LY96, INSL3, ANKRD22, MAP2KG,
PSTPIP2, TGFB1, GADD45B, TDRDY, MAP2K6, OSM, TNFSF10,
ANKRD22

ment of the cDNA, or a discriminating amplified nucleic acid
molecule corresponding to all or a portion of the transcript or
its complement, or a protein encoded by the gene, or a dis-
criminating fragment of the protein, or an indication of any of
the above. Further still, the biomarker can be, for example, a
protein encoded by a gene listed in any one of the biomarker
sets in Table Q, or a discriminating fragment of the protein, or
an indication of any of the above. Here, a discriminating

6. EXAMPLES

[0446] The following examples are representative of the
embodiments encompassed by the present invention and in no
way limit the subject embraced by the present invention. In
the following examples, data was collected at twenty-four
hour time intervals from each subject in a population of
subjects. The population included two subject types. The first
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subject type was those that initially had SIRS and developed
sepsis at a terminal time point in the analysis. The second
subject type was those that initially had SIRS and did not
develop sepsis at the terminal time point in the analysis. For
subjects that initially had SIRS and developed sepsis,a T_,,
time point was defined as the time frame immediate prior to
the onset of clinically-diagnosed sepsis. In practice, the T_,,
time point for each respective sepsis subject was the day the
last blood sample was collected from the respective subject
prior to being diagnosed with sepsis.

[0447] For each time point, two types of analyses were
performed, a static and a baseline analysis. In the static analy-
sis, only data from a single time point was considered. In
particular, univariate and/or multivariate techniques were
used to identify biomarkers whose abundance on correspond-
ing microarray probesets on the U133 plus 2.0 (Affymetrix,
Santa Clara, Calif.) discriminate between those subjects that
develop sepsis from those subjects that do not develop sepsis
during the study. To illustrate, consider the case in which there
are two subjects in the population, subject A, who develops
sepsis shortly after time period T_, ,, and subject B, who does
not develop sepsis in any of the observed time points. In the
static analysis, microarray biomarker abundance data from
the two subjects that was collected at a particular single time
point is evaluated in order to identify those biomarkers that
have different abundance levels in the two subjects, as deter-
mined by a U133 plus 2.0 microarray experiment. In fact, in
the present examples, a whole population of subjects of type
A and type B are evaluated and parametric and/or nonpara-
metric statistical techniques are used to identify those biom-
arkers whose abundance levels discriminate between subjects
that develop sepsis at some point during the observation
period and subjects that do not develop sepsis during the
observation period. Here, an observation period refers to a
time period that was a matter of hours, days, or weeks.
[0448] Inaddition to static analyses, baseline analyses were
performed in the examples below. In a baseline analysis,
rather than identifying biomarkers whose corresponding fea-
tures (e.g. abundance value) at a single time point discrimi-
nate between sepsis subjects (subjects that develop sepsis at
some point during the observation time period) and subjects
that do not develop sepsis during the observed time frame,
biomarkers whose change in abundance value across two or
more time points discriminates between the two populations
types were identified. For example, again consider subject A,
who develops sepsis shortly after time period T_,,, and sub-
ject B, who does not develop sepsis in any of the observed
time points. In the basesline analysis, what were needed are
biomarker abundance values for each subject from two dif-
ferent time points (e.g., time point 1 and time point 2). For
each respective biomarker considered, the difference in the
abundance of the biomarker at the two different time points
was computed. These differential abundances from each of
the subjects is then used to determine which corresponding
biomarkers, expressed as a differential between two different
time points, discriminate between subjects that develop sep-
sis during the observation period and subjects that do not
develop sepsis during the observation time period.

6.1 Data Collection

[0449] SIRS positive subjects admitted to an ICU were
recruited for the study. Subjects were eighteen years of age or
older and gave informed consent to comply with the study
protocol. Subjects were excluded from the study if they were
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(1) pregnant, (ii) taking antibiotics to treat a suspected infec-
tion, (iii) were taking systemic corticosteroids (total dosage
greater than 100 mg hydrocortisone or equivalent in the past
48 hours prior to study entry), (iv) had a spinal cord injury or
other illness requiring high-dose corticosteroid therapy, (v)
pharmacologically immunosuppressed (e.g., azathioprine,
methotrexate, cyclosporin, tacrolimus, cyclophosphamide,
etanercept, anakinra, infliximab, leuflonamide, mycophe-
nolic acid, OKT3, pentoxyphylin, etc.), (vi) were an organ
transplant recipient, (vii) had active or metastatic cancer,
(viii) had received chemotherapy or radiation therapy within
8 weeks prior to enrollment, and/or (ix) had taken investiga-
tional use drugs within thirty days prior to enrollment.
[0450] In the study SIRS criteria were evaluated daily.
APACHE II and SOFA scoring was performed following ICU
admission. APACHE 11 is a system for rating the severity of
medical illness. APACHE stands for “Acute Physiology And
Chronic Health Evaluation,” and is most frequently used to
predict in-hospital death for patients in an intensive care unit.
See, for example, Gupta et al., 2004, Indian Journal of Medi-
cal Research 119, 273-282, which is hereby incorporated
herein by reference in its entirety. SOFA is a test to measure
the severity of sepsis. See, for example, Vincent et al., 1996,
Intensive Care Med. 22, 707-710, which is hereby incorpo-
rated herein by reference in its entirety. Patients were moni-
tored daily for up to two weeks for clinical suspicion of sepsis
including, but not limited to, any of the following signs and
symptoms:

[0451] pneumonia: temperature >38.3° C. or <36°
C.+white blood cell count (WBC)>12,000/mm> or
<4,000/mm>+new-onset of purulent sputum+new or
progressive infiltrate on chest radiograph (3 out of 4
findings);

[0452] wound infection: temperature >38.3° C. or <36°
C.+pain+erythema+purulent discharge (3 out of 4 find-
ings);

[0453] wurinary tract infection: temperature >38.3° C. or
WBC>12,000/mm?® or <4,000/mm>+bacteruria and
pyuria (>10 WBC/hpfor positive leukocyte esterase) (all
findings);

[0454] line sepsis: temperature >38.3° C. or <36°
C.+erythema/pain/purulence at catheter exit site (3 out
of 4 findings, including fever);

[0455] intra-abdominal abscess: temperature >38.3° C.
or <36° C.+WBC >12,000/mm? or <4,000/mm>+radio-
graphic evidence of fluid collection (2 out of 3 criteria);

[0456] CNS Infection: temperature >38.3° C. or <36°
C.+WBC >12,000/mm> or <4,000/mm>+CSF pleocyto-
sis via LP or Ventricular drainage.

[0457] Blood was drawn daily for a minimum of four con-
secutive days beginning within 24 hours following study
entry. Patients were followed and blood samples were drawn
daily for a maximum of fourteen consecutive days unless
clinical suspicion of infection occurred. The maximum vol-
ume of blood drawn from any one subject did not exceed 210
mlL over the course of a 14 day study maximum. Blood draws
for the study were discontinued if the loss of blood posed risk
to the patient as defined by physician’s judgment. Each
patient had two Paxgene (RNA) tubes drawn on each day. One
tube was used for the microarray analysis described in Sec-
tion 6.2. The other tube was used for the RT-PCR analysis
described in Section 6.10.

6.2 Microarray Analysis

[0458] RNA was extracted from each blood sample
described in Section 6.1, labeled, reversed transcribed to gen-
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erate cDNA which was labeled, and the labeled cDNA was
hybridized to Affymetrix (Santa Clara, Calif.) U133 plus 2.0
human genome chips containing 54,675 probesets. To
enhance detection sensitivity of the microarray, globin
mRNA molecules were removed from the total RNA
extracted from the blood samples using the methods
described in, for example, U.S. Patent Publication
20050221310, filed Aug. 9, 2004, and 10/948,635, filed Sep.
24,2004, both entitled “Methods of Enhancing Gene Expres-
sion Analysis,” each of which is incorporated by reference
herein in its entirety. The U133 plus 2.0 has 62 probesets
designed for special functions, such as measuring supple-
mentally added transcripts. This leaves 54,613 probesets
designed specifically for the detection of human genes. The
Aftymetrix human genome U133 (HG-U133) set, consisting
of two microarrays, contains almost 45,000 probesets repre-
senting more than 39,000 transcripts derived from approxi-
mately 33,000 human genes. This set design uses sequences
selected from GenBank, dbEST, and RefSeq. As used herein,
the abundance value measured for each of the biomarkers that
bind to these probesets is referred to as a feature. The
examples below discuss abundance values of biomarkers that
bind to particular probesets in the U133 plus 2.0 human
genome chip.

6.3 Static T_;4 Data Analysis

[0459] In one experiment, a T_;, static analysis was per-
formed. In the T_; static analysis, biomarkers features are
determined using a specific blood sample, designated the
T_;¢ blood sample, from each subject in a training population.
The identity of this specific blood sample from each respec-
tive subject in the training population is dependent upon
whether the subject was a SIRS subject (did not develop
sepsis during the observation period) or was a sepsis subject
(did develop sepsis during the observation period). In the case
of'a sepsis subject, the T_, sample is defined as the second to
last blood sample taken from the subject before the subject
acquired sepsis. Identification of T_,4 samples in the SIRS
subjects in the training population was more discretionary
than for the sepsis counterpart subjects because there was no
significant event in which the SIRS subjects became septic.
Because of this, the identity of the T_5 samples for the sepsis
subjects in the training population was used to identify the
T_5¢ samples in the SIRS subjects in the training population.
Specifically, T_;4 time points (blood samples) for SIRS sub-
jects in the training population were identified by “time-
matching” a septic subject and a SIRS subject. For example,
consider the case in which a subject that entered the study
became clinically-defined as septic on their sixth day of
enrollment. For this subject, T_; is day four of the study, and
the T_,, blood sample is the blood sample that was obtained
on day four of the study. Likewise, T_;4 for the SIRS subject
that was matched to this sepsis subject is deemed to be day
four of the study on this paired SIRS subject.

[0460] Although SIRS subjects did not progress on to
develop sepsis, they did have changes in their expressed genes
(and proteins, etc.) over time. Thus, a one-to-one time match-
ing of sepsis subjects to SIRS subjects for the purpose of
obtaining a relevant set of T_ blood samples from the SIRS
subjects was sought in the manner described above. Just as
subjects who progressed to become septic did so at varying
rates, this time matching was done to mimic feature variabil-
ity in SIRS subjects. While time matching between arbitrary
pairs of SIRS and sepsis subjects was done to identify T_;
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blood samples for as many of the SIRS subjects in the training
population as possible, in some instances, T_;, samples from
SIRS subjects had to be selected from time points based on
sample availability.

[0461] Forthe T_; static analysis there were 54,613 biom-
arkers measured on 84 samples for a total of 84 corresponding
microarray experiments from 84 different subjects. Each
sample was collected from a different subject in the popula-
tion of 84 subject. Of the 54,613 probesets measured in each
microarray experiment, 30,464 were transformed by log
transformations. The log transformation is described in
Draghici, 2003, Data Analysis Tools for DNA Microarrays,
Chapman & Hall/CRC, Boca Raton, pp. 309-311, which is
hereby incorporated by reference in its entirety. Further, of
the 54,613 probesets in each microarray experiment, 2317
were transformed by a square root transformation. The square
root transformation is described in Ramdas, 2001, Genome
Biology 2, 47.1-47.7, which is hereby incorporated by refer-
ence in its entirety. The remaining 21,832 probesets in each
microarray experiment were not transformed.

[0462] The 84 member population was initially split into a
training set (n=64) and a validation set (n=20). The training
set was used to estimate the appropriate classification algo-
rithm parameters while the trained algorithm was applied to
the validation set to independently assess performance. Of the
64 training samples, 35 were Sepsis, meaning that the sub-
jects developed sepsis at some point during the observation
time period, and 29 were SIRS, meaning that they did not
develop sepsis during the observation time period. Table 1
provides distributions of the race, gender and age for these
samples.

TABLE 1

Distributions of the race, gender, and age for the training data

Group Gender Black Caucasian Other

Sepsis Male 10 13 1
Female 0 10 1

SIRS Male 5 17 0
Female 0 7 0

Group Minimum Mean Median Maximum

Sepsis 18 42 41 80

SIRS 18 43 40 90

[0463] For the 20 validation samples, 9 were Sepsis and 11

were SIRS. Table 2 provides distributions of the race, gender
and age for these samples.

TABLE 2

Distributions of the race, gender, and age for the validation data

Group Gender Black Caucasian Other
Sepsis Male 1 7 0
Female 0 3 0
SIRS Male 0 6 0
Female 0 3 0
Group Minimum Mean Median Maximum
Sepsis 18 41.8 43 81
SIRS 19 477 51 77
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[0464] Each sample in the training data was randomly
assigned to one of ten groups used for cross-validation. The
number of training samples in these groups ranged from 6 to
7. The samples were assigned in way that attempted to bal-
ance the number of sepsis and SIRS samples across folds. As
described in more detail below, several different methods
were used to judge whether select biomarkers, which bind to

May 5, 2011

which is hereby incorporated by reference in its entirety. The
biomarkers are ordered by their g-values and if a biomarker
has a q-value of X, then this biomarker and all others more
significant have a combined false discovery rate of X. How-
ever, the false discovery rate for any one biomarker may be
much larger. There were 2431 significant markers using this
method (see Table 3).

TABLE 3

Cumulative number of significant calls for the three methods.

=le-04 =0.001 =0.01 =0.025 =005 =0.1 =1
p-value 0 1362 4210 6637 9520 13945 54613
(unadjusted)
p-value 0 0 0 584 1618 3315 54613
(adjusted)
g-value 0 0 0 1055 2431 4785 54613

Note that all 84 samples (training and validation) were used to compare converters and nonconverters. Missing
biomarker values were not included in the analyses.

particular probesets in the microarray, discriminate between
the Sepsis and SIRS groups.

[0465] Wilcoxon and Q-value tests. The first method used
to identify discriminating biomarkers was a Wilcoxon test
(unadjusted). The Wilcoxon test is a distribution-free test is
resistant to extreme values. The Wilcoxon test is described in
Agresti, 1996, An Introduction to Categorical Data Analysis,
John Wiley & Sons, Inc, New York, Chapter 2, which is
hereby incorporated by reference in its entirety. The Wil-
coxon test produces a p value. The abundance value for a
given biomarker from all samples in the training data is sub-
jected to the Wilcoxon test. The Wilcoxon test considers both
group classification (sepsis versus SIRS) and abundance
value in order to compute a p value for the given biomarker.
The p value provides an indication of how well the abundance
value for the given biomarker across the samples collected in
the training set discriminates between the sepsis and SIRS
state. When the p value is less than a specific confidence level,
such as 0.05, an inference is made that the biomarker dis-
criminates between Sepsis and SIRS. There were 9520 sig-
nificant biomarkers using this method (see Table 3).

[0466] The second method used to identify discriminating
biomarkers was the Wilcoxon Test (adjusted). Due to the
large number of biomarkers, 54613, and the relatively small
number of samples, 84, there was a high risk of finding falsely
significant biomarkers. An adjusted p-value was used to
counter this risk. In particular, the method of Benjamini and
Hochberg, 1995, J.R. Statist. Soc. B 57, pp 289-300, which is
hereby incorporated by reference in its entirety, was used to
control the false discovery rate. Here, the false discovery rate
is defined as the number of biomarkers truly significant
divided by the number of biomarkers declared significant. For
example, if the adjusted p-value is less than 0.05, there is a 5%
chance that the biomarker is a false discovery. Results using
this test are reported in Table 3. There were 1618 significant
biomarkers using this method (see Table 3). As used, herein,
a biomarker is considered significant if the feature values
corresponding to the biomarker have a p-value of less than
0.05 as determined by the Wilcoxon test (adjusted).

[0467] The third method used to identify discriminating
biomarkers was the use of Q values. Q-values are described in
Storey, 2002, J.R. Statist. Soc. B 64, Part 3, pp. 4'79-498,

[0468] CART. In addition to analyzing the microarray data
using Wilcoxon test and Q-value tests in order to identify
biomarkers that discriminate between the sepsis and SIRS
subpopulations in the training set, classification and regres-
sion tree (CART) analysis was used. CART is described in
Section 5.5.1, above. Specifically, the data summarized above
was used to predict the disease state by iteratively partitioning
the data based on the best single-variable (feature of biomar-
ker across training set) split of the data. In other words, at each
stage of the tree building process, the biomarker whose abun-
dance value across the training population best discriminates
between the sepsis and SIRS population was invoked as a
decision branch. Cross-validation was carried out, with the
optimal number of splits estimated independently in each of
the 10 iterations. The final tree is depicted in FIG. 1. In FIG.
1, decision 102 makes a decision based on the abundance of
the biomarker that binds to X204319_s_at. If the biomarker
that binds to X204319_s_at has an abundance that is greater
than 2.331 units in a biological sample from a subject to be
diagnosed (test biological sample), then control passes to
decision 104. If, on the other hand, the biomarker that binds to
probeset X204319_s_at has abundance that is less than 2.331
units in the test biological sample, decision control passes to
decision 106. Decisions are made in this manner until a ter-
minal leaf of the decision tree is reached, at which point
diagnoses of sepsis or SIRS is made. The decision tree in FIG.
1 makes use of the biomarkers that bind to the following five
probesets: X204319_s_at, X1562290_at, X1552501_a_at,
X1552283_s_at, and X117_at.

[0469] FIG. 2 shows the distribution of the biomarkers that
bind to the five probesets used in the decision tree between the
sepsis and SIRS groups in the training data set. In FIG. 2, the
top of each box denotes the 757 percentile of the data across
the training set and the bottom of each box denotes the 25”
percentile, and the median value for each biomarker across
the training set is drawn as a line within each box. The con-
fusion matrix for the training data where the predicted clas-
sifications were made from the cross-validated model is given
in Table 4. From this confusion matrix, the overall accuracy
was estimated to be 70.3% with a 95% confidence interval of
57.6% to 81.1%. The estimated sensitivity was 60% and the
estimated specificity was 82.8%.
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TABLE 4

Confusion matrix for training samples using the cross-validated CART
algorithm of FIG. 1.

True Diagnosi

Predicted Sepsis SIRS
Sepsis 21 5
SIRS 14 24

[0470] For the 20 validation samples held back from train-
ing data set, the overall accuracy was estimated to be 70%
with a 95% confidence interval 0f45.7% to 88.1%, sensitivity
88.9% and specificity 54.5%. Table 5 shows the confusion
matrix for the validation samples.

TABLE §

Confusion matrix for validation samples using the cross-validated
CART algorithm of FIG. 1.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 8 5
SIRS 1 6

[0471] Random Forests. Another decision rule that can be
developed using biomarkers of the present invention is a
Random Forests decision tree. Random Forests is a tree based
method that uses bootstrapping instead of cross-validation.
For each iteration, a random sample (with replacement) is
drawn and the largest tree possible is grown. Each tree
receives a vote in the final class prediction. To fit a random
forest, the number of trees (e.g. bootstrap iterations) is speci-
fied. No more than 500 were used in this example, but at least
50 are needed for a burn-in period. The number of trees was
chosen based on the accuracy of the training data. For this
data, 500 trees were used to train the algorithm (see FIG. 3).
In FIG. 3, curve 302 is a smoothed estimate of overall accu-
racy as a function of tree number. Curve 304 is a smoothed
curve of tree sensitivity as a function of tree number. Curve
306 is a smoothed curve of tree specificity as a function of tree
number. Using this algorithm, 901 biomarkers had non-zero
importance and were used in the model. The random forest
algorithm gauges biomarker importance by the average
reduction in the training accuracy. The biomarkers were
ranked by this method and are shown in FIG. 4. In FIG. 4, the
biomarkers are labeled by the name of the U133 plus 2.0
probeset to which they bind. The figure only reflects the 50
most important biomarkers found by using Random Forest
analysis. However, 901 biomarkers were actually found to
have discriminating significance. The random forest method
uses a number of different decision trees. A biomarker is
considered to have discriminating significance if it served as
adecision branch of a decision tree from a significant random
forest analysis. As used herein, a significant random forest
analysis is one where the lower 95% confidence interval on
accuracy by cross validation on a training data set is greater
than 50% and the point estimate for accuracy on a validation
set is greater than 65%.

[0472] The predicted confusion matrix for the training
dataset using the decision tree developed using the Random
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Forest method is given in Table 6. From this confusion matrix,
the overall accuracy was estimated to be 68.8% (confidence
intervals cannot be computed when using the bootstrap accu-
racy estimate). The estimated sensitivity was 74.3% and the
estimated specificity was 62.1%.

TABLE 6

Confusion matrix for training samples against the decision tree
developed using the Random Forest method.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 18 9
SIRS 11 26

[0473] For the 20 validation samples held back from train-
ing, the overall accuracy was estimated to be 65% with a 95%
confidence interval of 40.8% to 84.6%, sensitivity 66.7% and
specificity 63.6%. Table 7 shows the confusion matrix for the
validation samples.

TABLE 7

Confusion matrix for the 20 validation samples against the
decision tree developed using the Random Forest method.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 6 4
SIRS 3 7

[0474] PAM. Yet another decision rule developed using the
biomarkers of the present invention is predictive analysis of
microarrays (PAM), which is described in Section 5.5.2,
above. In this method, a shrinkage parameter that determines
the number of biomarkers used to classify samples is speci-
fied. This parameter was chosen via cross-validation. There
were no biomarkers with missing values. Based on cross-
validation, the optimal threshold value was 2.07, correspond-
ing to 258 biomarkers. FIG. 5 shows the accuracy across
different thresholds. In FIG. 5, curve 502 is the overall accu-
racy (with 95% confidence interval bars). Curve 504 shows
decision rule sensitivity as a function of threshold value.
Curve 506 shows decision rule specificity as a function of
threshold value. Using the threshold 0f2.07, the overall accu-
racy for the training samples was estimated to be 73.4% with
95% a confidence interval of 61.4% to 82.8%. The estimated
sensitivity was 79.3% and the estimated specificity was
68.6%.

TABLE 8

Confusion matrix for training samples using cross-validated PAM
algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 23 11
SIRS 6 24

[0475] For the twenty validation samples held back from
training, the overall accuracy was estimated to be 70% with a
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95% confidence interval of 45.7% to 88.1%, sensitivity
66.7% and specificity 72.7%. Table 9 shows the confusion
matrix for the validation samples.

TABLE 9

Confusion matrix for training samples using cross-validated PAM
algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 6 3
SIRS 3 8

[0476] FIG. 6 shows the selected biomarkers, ranked by
their relative discriminatory power, and their relative impor-
tance in the model. FIG. 6 only shows the fifty most important
biomarkers found using the PAM analysis. However, 258
important biomarkers were found. The biomarkers in FIG. 6
are labeled based upon the U133 plus 2.0 probeset to which
they bind.

[0477] FIG.7 provides a summary of the CART, PAM, and
random forests classification algorithm (decision rule) per-
formance and associated 95% confidence intervals. Fifty dis-
tinct biomarkers were selected from across all the algorithms
illustrated in FIG. 7. FIG. 8 illustrates the number of times
that common biomarkers were selected across the techniques
of Wilcoxon (adjusted), CART, PAM, and RF. FIG. 9 illus-
trates an overall ranking of biomarkers for the T-36 data set.
For the selected biomarkers, the x-axis depicts the percentage
of times that it was selected. Within the percentage of times
that biomarkers were selected, the biomarkers are ranked.
The biomarkers in FI1G. 7 are labeled based upon the probeset
(oligonucleotide identity) to which they bind.

6.4 Static T_,, Data Analysis

[0478] In another experiment, a T_,, static analysis was
performed. In the T_,, static analysis, biomarkers features
were measured using a specific blood sample, designated the
T_,, blood sample, obtained from each subject in the training
population. The identity of this specific blood sample from a
given subject in the training population was dependent upon
whether the subject was a SIRS subject (did not develop
sepsis during the observation period) or a sepsis subject (did
develop sepsis during the observation period). In the case of a
sepsis subject, the T_,, sample was defined as the last blood
sample taken from the subject before the subject acquired
sepsis. Identification of T_,, samples in the SIRS subjects in
the training population was more discretionary than for the
sepsis counterpart subjects because there was no significant
event in which the SIRS subjects became septic. Because of
this, the identity of the T_, , samples for the sepsis subjects in
the training population was used to identify the T_,, samples
in the SIRS subjects in the training population. Specifically,
T_,, time points (blood samples) for SIRS subjects in the
training population were identified by “time-matching” a sep-
tic subject and a SIRS subject. For example, consider the case
in which a subject that entered the study became clinically-
defined as septic on their sixth day of enrollment. For this
subject, T_,, was day five of the study (1-24 hours prior to
sepsis), and the T_, , blood sample was the blood sample that
was obtained on day five of the study. Likewise, T_,, for the
SIRS subject that was matched to this sepsis subject was
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deemed to be day five of study on this paired SIRS subject.
While time matching between arbitrary pairs of SIRS and
sepsis subjects was done to identify T_, , blood samples for as
many of the SIRS subjects in the training population as pos-
sible, in some instances, T_, , samples from SIRS subjects had
to be selected from the time points based on sample availabil-
ity.

[0479] FortheT_,, static analysis, there were 54,613 biom-
arkers measured on 90 samples for a total of 90 corresponding
microarray experiments from 90 different subjects. Each
sample was collected from a different member the popula-
tion. Of the 54,613 probesets in each microarray experiment,
31,047 were transformed by log transformations. Further, of
the 54,613 probesets in each microarray experiment, 2518
were transformed by a square root transformation. The
remaining 21,048 probesets in each microarray experiment
were not transformed.

[0480] The 90 member population was initially split into a
training set (n=69) and a validation set (n=21). The training
set was used to estimate the appropriate classification algo-
rithm parameters while the trained algorithm was applied to
the validation set to independently assess performance. Of the
69 training samples, 34 were labeled Sepsis, meaning that the
subjects developed sepsis at some point during the observa-
tion time period, and 35 were SIRS, meaning that they did not
develop sepsis during the observation time period. Table 10
provides distributions of the race, gender and age for these
samples.

TABLE 10

Distributions of the race, gender, and age for the training data

Group Gender Black Caucasian Other

Sepsis Male 9 13 1
Female 0 10 1

SIRS Male 5 20 0
Female 0 10 0

Group Minimum Mean Median Maximum

Sepsis 18 42.1 39 80

SIRS 18 44.1 40 90

[0481] For the 21 validation samples, 11 were labeled Sep-

sis and 10 were labeled SIRS. Table 11 provides distributions
of the race, gender and age for these samples.

TABLE 11

Distributions of the race, gender, and age for the validation data

Group Gender Black Caucasian Other

Sepsis Male 0 7 0
Female 0 3 0

SIRS Male 2 6 0
Female 0 3 0

Group Minimum Mean Median Maximum

Sepsis 18 433 40 81

SIRS 19 53 52 85

[0482] Each sample in the training data was randomly

assigned to one of ten groups used for cross-validation. The
number of training samples in these groups ranged from 6 to
8. The samples were assigned in way that attempted to bal-
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ance the number of sepsis and SIRS samples across folds. As
described in more detail below, several different methods
were used to judge whether select biomarkers discriminate
between the Sepsis and SIRS groups.

[0483] Wilcoxon and Q-value tests. The first method used
to identify discriminating biomarkers was a Wilcoxon test
(unadjusted). The abundance value for a given biomarker
across the samples in the training data was subjected to the
Wilcoxon test. The Wilcoxon test considers both group clas-
sification (sepsis versus SIRS) and abundance value in order
to compute a p value for the given biomarker. The p value
provides an indication of how well the abundance value for
the given biomarker across the samples collected in the train-
ing set discriminates between the sepsis and SIRS state. The
lower the p value, the better the discrimination. When the p
value is less than a specific confidence level, such as 0.05, an
inference is made that the biomarker discriminates between
the sepsis and SIRS phenotype. There were 19,791 significant
biomarkers using this method (see Table 12).

[0484] The second method used to identify discriminating
biomarkers was the Wilcoxon Test (adjusted). Due to the
large number of biomarkers, 54613, and the relatively small
number of samples, 90, there was a high risk of finding falsely
significant biomarkers. An adjusted p-value was used to
counter this risk. In particular, the method of Benjamini and
Hochberg, 1995, J.R. Statist. Soc. B 57, pp 289-300, which is
hereby incorporated by reference in its entirety, was used to
control the false discovery rate. Here, the false discovery rate
is defined as the number of biomarkers truly significant
divided by the number of biomarkers declared significant. For
example, if the adjusted p-value is less than 0.05, there is a 5%
chance that the biomarker is a false discovery. Results using
this test are reported in Table 12. There were 11851 signifi-
cant biomarkers using this method (see Table 12). As used,
herein, a biomarker is considered significant if it has a p-value
of less than 0.05 as determined by the Wilcoxon test (ad-
justed).

[0485] The third method used to identify discriminating
biomarkers was the use of Q values. In such an approach, the
biomarkers are ordered by their g-values and if a respective
biomarker has a q-value of X, then respective biomarker and
all others more significant have a combined false discovery
rate of X. However, the false discovery rate for any one
biomarker may be much larger. There were 11851 significant
biomarkers using this method (see Table 12).

TABLE 12
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[0486] CART. In addition to analyzing the microarray data
using Wilcoxon test and Q-value tests in order to identify
biomarkers that discriminate between the sepsis and SIRS
subpopulations in the training set, classification and regres-
sion tree (CART) analysis was used. CART is described in
Section 5.5.1, above. Specifically, the data summarized above
was used to predict the disease state by iteratively partitioning
the data based on the best single-variable split of the data. In
other words, at each stage of the tree building process, the
biomarker whose expression values across the training popu-
lation best discriminate between the sepsis and SIRS popu-
lation was invoked as a decision branch. Cross-validation was
carried out, with the optimal number of splits estimated inde-
pendently in each of the 10 iterations. The final tree is
depicted in FIG. 10. In FIG. 10, decision 1002 makes a
decision based on the abundance of the biomarker that binds
to probeset X214681_at. If biomarker X214681_at has an
abundance that is greater than 7.862 units in a biological
sample from a subject to be diagnosed (test biological
sample), than control passes to decision 1004. If, on the other
hand, if the biomarker that binds to probeset (U133 plus 2.0
oligonucleotide) X214681_at has an abundance that is less
than 7.862 units in the test biological sample, decision control
passes to decision 1006. Decisions are made in this manner
until a terminal leaf of the decision tree is reached, at which
point diagnoses of sepsis or SIRS is made. The decision tree
in FIG. 10 makes use of the biomarkers that bind to the
following four probesets: X214681_at, X1560432_at,
X230281_at, and X1007_s_at.

[0487] FIG. 11 shows the distribution of the four biomark-
ers used in the decision tree between the sepsis and SIRS
groups in the training data set. In FIG. 11, the top of each box
denotes the 75" percentile of the data across the training set
and the bottom of each box denotes the 257 percentile, and
the median value for each biomarker across the training set is
drawn as a line within each box. The biomarkers are labeled
in FIG. 11 based on the identity of the U133 plus 2.0 probes
to which they bind). The confusion matrix for the training
data where the predicted classifications were made from the
cross-validated model is given in Table 13. From this confu-
sion matrix, the overall accuracy was estimated to be 65.2%
with a 95% confidence interval of 52.8% to 76.3%. The
estimated sensitivity was 61.8% and the estimated specificity
was 68.6%.

Cumulative number of significant calls for the three methods.

=le-04 =0.001 =001 =0.025 =005 =0.1 =1
p-value 0 5417 11537 15769 19791 24809 54613
(unadjusted)
p-value 0 0 5043 8374 11851 16973 354613
(adjusted)
g-value 0 0 7734 12478 17820 24890 354613

Note that all 90 samples (training and validation) were used to compare Sepsis and SIRS groups. Missing

biomarker feature values were not included in the analyses.
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TABLE 13

Confusion matrix for training samples using the cross-validated
CART algorithm of FIG. 10

True Diagnosi

Predicted Sepsis SIRS
Sepsis 21 11
SIRS 13 24

[0488] For the 21 validation samples held back from train-
ing data set, the overall accuracy was estimated to be 71.4%
with a 95% confidence interval 0f47.8% to 88.7%, sensitivity
90.9% and specificity 50%. Table 14 shows the confusion
matrix for the validation samples.

TABLE 14

Confusion matrix for validation samples using the cross-validated
CART algorithm of FIG. 10

True Diagnosis
Predicted Sepsis SIRS
Sepsis 10 5
SIRS 1 5

[0489] Random Forests. Another decision rule that can be
developed using biomarkers of the present invention is a
Random Forests decision tree. Random Forests is a tree based
method that uses bootstrapping instead of cross-validation.
For each iteration, a random sample (with replacement) is
drawn and the largest tree possible is grown. Each tree
receives a vote in the final class prediction. To fit a random
forest, the number of trees (e.g. bootstrap iterations) is speci-
fied. No more than 500 were used in this example, but at least
50 are needed for a burn-in period. The number of trees was
chosen based on the accuracy of the training data. For this
data, 439 trees were used to train the algorithm (see FIG. 12).
In FIG. 12, curve 1202 is a smoothed estimate of overall
accuracy as a function of tree number. Curve 1204 is a
smoothed curve of tree sensitivity as a function of tree num-
ber. Curve 1206 is a smoothed curve of tree specificity as a
function of tree number. Using this algorithm, 845 biomark-
ers had non-zero importance and were used in the model. The
random forest algorithm gauges biomarker importance by the
average reduction in the training accuracy. The biomarkers
were ranked by this method and are shown in FIG. 13. The
figure only reflects the 50 most important biomarkers found
by using Random Forest analysis. However, 845 biomarkers
were actually found to have discriminating significance. The
random forest method uses a number of different decision
trees. A biomarker is considered to have discriminating sig-
nificance if it served as a decision branch of a decision tree
from a significant random forest analysis. As used herein, a
significant random forest analysis is one where the lower 95%
confidence interval on accuracy by cross validation on a train-
ing data set is greater than 50% and the point estimate for
accuracy on a validation set is greater than 65%.

[0490] The predicted confusion matrix for the training
dataset using the decision tree developed using the Random
Forest method is given in Table 15. From this confusion
matrix, the overall accuracy was estimated to be 75.4% (con-
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fidence intervals cannot be computed when using the boot-
strap accuracy estimate). The estimated sensitivity was
73.5% and the estimated specificity was 77.1%.

TABLE 15

Confusion matrix for training samples against the decision
tree developed using the Random Forest method.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 27 9
SIRS 8 25

[0491] For the 21 validation samples held back from train-
ing, the overall accuracy was estimated to be 95.2% with a
95% confidence interval of 76.2% to 99.9%, sensitivity 100%
and specificity 90%. Table 16 shows the confusion matrix for
the validation samples.

TABLE 16

Confusion matrix for the 20 validation samples against the
decision tree developed using the Random Forest method.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 11 1
SIRS 0 9

[0492] MART. Multiple Additive Regression Trees
(MART), also known as “gradient boosting machines,” was
used to simultaneously assess the importance of biomarkers
and classify the subject samples. Several fitting parameters
are specified in this approach including (i) number of trees,
(ii) step size (commonly referred to as “shrinkage™), and (iii)
degree of interaction (related to the number of splits for each
tree). More information on MART is described in Section
5.5.4 above. The degree of interaction was set to 1 to enforce
an additive model (e.g. each tree has one split and only uses
one biomarker).

[0493] Estimating interactions may require more data to
function well. The step size was set to 0.05 so that the model
complexity was dictated by the number of trees. The optimal
number of trees was estimated by leaving out a random subset
of cases at each fitting iteration, then assessing quality of
prediction on that subset. After fitting more trees than were
warranted, the point at which prediction performance stopped
improving was estimated as the optimal point.

[0494] The estimated model used 28 trees and 17 biomar-
kers across all trees. The MART algorithm also provides a
calculation of biomarker importance (summing to 100%),
which are given in FIG. 14. Biomarkers with zero importance
were excluded. In FIG. 14, biomarkers are labeled by the
U133 plus 2.0 oligonucleotide to which they bind. FIG. 15
shows the distribution of the selected biomarkers between the
Sepsis and SIRS groups. In FIG. 15, biomarkers are labeled
by the U133 plus 2.0 oligonucleotide to which they bind.
[0495] Cross-validation was carried out, with the optimal
number of trees estimated independently in each of the 10
iterations. The confusion matrix for the training data where
the predicted classifications were made from the cross-vali-
dated model is given in Table 17. From this confusion matrix,
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the overall accuracy was estimated to be 76.8% with a 95%
confidence interval of 65.1% to 86.1%. The estimated sensi-
tivity was 76.5% and the estimated specificity was 77.1%.

TABLE 17
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95% confidence interval of 76.2% to 99.9%, sensitivity 100%
and specificity 90%. Table 20 shows the confusion matrix for
the validation samples.

TABLE 20

Confusion matrix for the training samples using the
cross-validated MART algorithm

Confusion matrix for validation samples using cross-validated
PAM algorithm

True Diagnosis

True Diagnosis

Predicted Sepsis SIRS Predicted Sepsis SIRS
Sepsis 26 8 Sepsis 11 1
SIRS 8 27 SIRS 0 9

[0496] For the 21 validation samples held back from train-
ing, the overall accuracy was estimated to be 85.7% with a
95% confidence interval of 63.7% to 97%, sensitivity 80%
and specificity 90.9%. Table 18 shows the confusion matrix
for the validation samples.

TABLE 18

Confusion matrix for the validation samples using
the MART algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 8 1
SIRS 2 10

[0497] PAM Yet another decision rule developed using
biomarkers of the present invention is predictive analysis of
microarrays (PAM), which is described in Section 5.5.2,
above. In this method, a shrinkage parameter that determines
the number of biomarkers used to classify samples is speci-
fied. This parameter was chosen via cross-validation. There
were no biomarkers with missing values. Based on cross-
validation, the optimal threshold value was 2.1, correspond-
ing to 820 biomarkers. FIG. 16 shows the accuracy across
different thresholds. In FIG. 16, curve 1602 is the overall
accuracy (with 95% confidence interval bars). Curve 1604
shows decision rule sensitivity as a function of threshold
value. Curve 1606 shows decision rule specificity as a func-
tion of threshold value. Using the threshold of 2.1, the overall
accuracy for the training samples was estimated to be 80.9%
with a 95% confidence interval of 73.4% to 86.7%. The
estimated sensitivity was 85.7% and the estimated specificity
was 76.5%. Table 19 shows the confusion matrix for the
training data where the predicted classifications were made
from the cross-validated models.

TABLE 19

Confusion matrix for training samples using cross-validated
PAM algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 30 8
SIRS 5 26

[0498] For the 21 validation samples held back from train-
ing, the overall accuracy was estimated to be 95.2% with a

[0499] FIG. 17 shows the selected biomarkers, ranked by
their relative discriminatory power, and their relative impor-
tance in the model. FIG. 17 only shows the fifty most impor-
tant biomarkers found using the PAM analysis. However, 820
important biomarkers were found. In FIG. 17, biomarkers are
labeled by the U133 plus 2.0 oligonucleotide to which they
bind.

[0500] FIG. 18 provides a summary of the CART, MART,
PAM, and random forests (RF) classification algorithm (deci-
sion rule) performance and associated 95% confidence inter-
vals. Fifty distinct biomarkers were selected from across all
the algorithms illustrated in FIG. 18. The identity of these
fifty selected features is shown in FIG. 20.

[0501] FIG. 19 illustrates the number of times that common
biomarkers were selected across the techniques of CART,
MART, PAM, RF, and Wilcoxon (adjusted). FIG. 20 illus-
trates an overall ranking of biomarkers for the T_,, data set.
For the selected biomarkers, the x-axis depicts the percentage
of times that it was selected. Within the percentage of times
that biomarkers were selected, the biomarkers are ranked. In
FIG. 20, biomarkers are labeled by the U133 plus 2.0 oligo-
nucleotide to which they bind.

6.5 Baseline T_,, Data Analysis

[0502] In another example, a baseline T_,, analysis was
performed. Feature values for biomarkers in this example
were computed as the differential between two time points.
[0503] The two time points for each respective subject in a
training population were (i) the T_,, time point and (ii) the
first measurement, T, taken of the respective subject. It
will be appreciated that T, ,, could differ across the training
population. For example, in some subjects, T, was two days
before T_, ,,insome subjects Ty, was three days before T_, ,,
and so forth. To illustrate the computation of a feature value in
accordance with the T_, , baseline analysis, consider the case
in which biomarker A was evaluated. To compute a feature
value for biomarker A for the purposes of the baseline T_,,
analysis, the abundance of biomarker A in the T_,, blood
sample for a respective subject in the training population
[A] 7 ., was obtained. Further, the abundance of biomarker A
from the first blood sample taken for the respective subject,
[Al s, Was obtained. The feature value for A for this respec-
tive subject was then computed as AA=[A],. | ,—[A],,,- This
calculation was repeated for each subject in the training popu-
lation and for each biomarker under consideration.

[0504] For the baseline T_,, analysis, there were 54,613
probesets measured on 89 samples for a total of 89 corre-
sponding microarray experiments from 89 different subjects.
Each sample was collected from a different member of the
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population. Of the 54,613 probesets in each microarray
experiment, 31,047 were transformed by log transformations.
Further, of the 54,613 probesets in each microarray experi-
ment, 2518 were transformed by a square root transforma-
tion. The remaining 21,048 probesets in each microarray
experiment were not transformed.

[0505] The 89 member population was initially split into a
training set (n=68) and a validation set (n=21). The training
set was used to estimate the appropriate classification algo-
rithm parameters while the trained algorithm was applied to
the validation set to independently assess performance. Of the
68 training samples, 33 were Sepsis, meaning that the sub-
jects developed sepsis at some point during the observation
time period, and 35 were SIRS, meaning that they did not
develop sepsis during the observation time period. Table 21
provides distributions of the race, gender and age for these
samples.

TABLE 21

Distributions of the race, gender, and age for the training data

Group Gender Black Caucasian Other

Sepsis Male 9 12 1
Female 0 10 1

SIRS Male 5 20 0
Female 0 10 0

Group Minimum Mean Median Maximum

Sepsis 18 42.7 39 80

SIRS 18 44.1 40 90

[0506] Forthe 21 validation samples, 11 were Sepsis and 10

were SIRS. Table 22 provides distributions of the race, gender
and age for these samples.

TABLE 22

Distributions of the race, gender, and age for the validation data

Group Gender Black Caucasian Other

Sepsis Male 0 7 0
Female 0 3 0

SIRS Male 2 6 0
Female 0 3 0

Group Minimum Mean Median Maximum

Sepsis 18 433 40 81

SIRS 19 53 52 85

[0507] Each sample in the training data was randomly

assigned to one of ten groups used for cross-validation. The

May 5, 2011

112

number of training samples in these groups ranged from 6 to
8. The samples were assigned in way that attempted to bal-
ance the number of sepsis and SIRS samples across folds. As
described in more detail below, several different methods
were used to judge whether select biomarkers discriminate
between the Sepsis and SIRS groups.

[0508] Wilcoxon and Q-value tests. The first method used
to identify discriminating biomarkers was a Wilcoxon test
(unadjusted). The abundance value for a given biomarker
from all samples in the training data was subjected to the
Wilcoxon test. The Wilcoxon test considers both group clas-
sification (sepsis versus SIRS) and abundance value in order
to compute a p value for the given biomarker. The p value
provides an indication of how well the abundance value for
the given biomarker across the samples collected in the train-
ing set discriminates between the sepsis and SIRS state. The
lower the p value, the better the discrimination. When the p
value is less than a specific confidence level, such as 0.05, an
inference is made that the biomarker discriminates between
the sepsis and SIRS phenotype. There were 6427 significant
biomarkers using this method (see Table 23).

[0509] The second method used to identify discriminating
biomarkers was the Wilcoxon Test (adjusted). Due to the
large number of biomarkers, 54613, and the relatively small
number of samples, 89, there was a high risk of finding falsely
significant biomarkers. An adjusted p-value was used to
counter this risk. In particular, the method of Benjamini and
Hochberg, 1995, J.R. Statist. Soc. B 57, pp 289-300, which is
hereby incorporated by reference in its entirety, was used to
control the false discovery rate. Here, the false discovery rate
is defined as the number of biomarkers truly significant
divided by the number of biomarkers declared significant. For
example, if the adjusted p-value is less than 0.05, there is a 5%
chance that the biomarker is a false discovery. Results using
this test are reported in Table 12. There were 482 significant
biomarkers using this method (see Table 23). As used, herein,
a biomarker is considered significant if it has a p-value ofless
than 0.05 as determined by the Wilcoxon test (adjusted).
[0510] The third method used to identify discriminating
biomarkers was the use of Q values. The biomarkers are
ordered by their g-values and if a biomarker has a q-value of
X, then this biomarker and all others more biomarkers have a
combined false discovery rate of X. However, the false dis-
covery rate for any one biomarker may be much larger. There
were 482 significant biomarkers using this method (see Table
23).

TABLE 23

Cumulative number of significant calls for the three methods.

=le-04 =0.001 =0.01 =0.025 =005 =0.1 =1
p-value 0 808 2486 4230 6427 10051 54613
(unadjusted)
p-value 0 0 0 0 482 1035 34613
(adjusted)
g-value 0 0 0 0 606 1283 54613

Note that all 89 samples (training and validation) were used to compare Sepsis and SIRS groups. Missing
biomarker values were not included in the analyses.



US 2011/0105350 Al

[0511] CART. In addition to analyzing the microarray data
using Wilcoxon test and Q-value tests in order to identify
biomarkers that discriminate between the sepsis and SIRS
subpopulations in the training set, classification and regres-
sion tree (CART) analysis was used. CART is described in
Section 5.5.1, above. Specifically, the data summarized above
was used to predict the disease state by iteratively partitioning
the data based on the best single-variable (biomarker) split of
the data. In other words, at each stage of the tree building
process, the biomarker whose abundance value across the
training population best discriminates between the sepsis and
SIRS population was invoked as a decision branch. Cross-
validation was carried out, with the optimal number of splits
estimated independently in each of the 10 iterations. The final
tree is depicted in FIG. 21. In FIG. 21, decision 2102 makes
a decision based on the abundance of the biomarker that bind
to U133 plus 2.0 probe X210119_at. If this biomarker that
binds to X210119_at has an abundance that is less than
-0.03669 units in a biological sample from a subject to be
diagnosed (test biological sample), then control passes to
decision 2104. If, on the other hand, the biomarker that binds
to probeset X210119_at has an abundance that is greater than
-0.03669 units in the test biological sample, decision control
passes to decision 2106. Decisions are made in this manner
until a terminal leaf of the decision tree is reached, at which
point diagnoses of sepsis or SIRS is made. The decision tree
in FIG. 21 makes use of the biomarkers that bind to the
following five U133 plus 2.0 oligonucleotides: X210119_at,
X1552554_a_at, X1554390_s_at, X1552301_a_at, and
X1555868_at.

[0512] FIG. 22 shows the distribution of the five biomark-
ers used in the decision tree between the sepsis and SIRS
groups in the training data set. In FIG. 22, the top of each box
denotes the 75" percentile of the data across the training set
and the bottom of each box denotes the 257 percentile, and
the median value for each biomarker across the training set is
drawn as a line within each box. In FIG. 22, biomarkers are
labeled by the U133 plus 2.0 oligonucleotides to which they
bind. The confusion matrix for the training data where the
predicted classifications were made from the cross-validated
model is given in Table 24. From this confusion matrix, the
overall accuracy was estimated to be 80.9% with a 95%
confidence interval of 69.5% to 89.4%. The estimated sensi-
tivity was 93.9% and the estimated specificity was 68.6%.

TABLE 24
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TABLE 25

Confusion matrix for validation samples using the cross-validated
CART algorithm of FIG. 21.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 10 5
SIRS 1 5

[0514] Random Forests. Another decision rule that can be
developed using biomarkers is a Random Forests decision
tree. To fit a random forest, the number of trees (e.g. bootstrap
iterations) is specified. No more than 500 were used in this
example, but at least 50 are needed for a burn-in period. The
number of trees was chosen based on the accuracy of the
training data. For this data, 482 trees were used to train the
algorithm (see FIG. 23). In FIG. 23, curve 2302 is a smoothed
estimate of overall accuracy as a function of tree number.
Curve 2304 is a smoothed curve of tree sensitivity as a func-
tion of tree number. Curve 2306 is a smoothed curve of tree
specificity as a function of tree number. Using this algorithm,
482 biomarkers had non-zero importance and were used in
the model. The random forest algorithm gauges biomarker
importance by the average reduction in the training accuracy.
The biomarkers were ranked by this method and are shown in
FIG. 24. The figure only reflects the 50 most important biom-
arkers found by using Random Forest analysis. However, 893
biomarkers were actually found to have discriminating sig-
nificance. The random forest method uses a number of dif-
ferent decision trees. A biomarker is considered to have dis-
criminating significance if it served as a decision branch of a
decision tree from a significant random forest analysis. As
used herein, a significant random forest analysis is one where
the lower 95% confidence interval on accuracy by cross vali-
dation on a training data set is greater than 50% and the point
estimate for accuracy on a validation set is greater than 65%.
[0515] The predicted confusion matrix for the training
dataset using the decision tree developed using the Random
Forest method is given in Table 26. From this confusion
matrix, the overall accuracy was estimated to be 61.8% (con-
fidence intervals cannot be computed when using the boot-
strap accuracy estimate). The estimated sensitivity was
57.6% and the estimated specificity was 65.7%.

TABLE 26

Confusion matrix for training samples using the cross-validated CART
algorithm of FIG. 21.

Confusion matrix for training samples against the decision
tree developed using the Random Forest method.

True Diagnosi

True Diagnosis

Predicted Sepsis SIRS Predicted Sepsis SIRS
Sepsis 31 11 Sepsis 23 14
SIRS 2 24 SIRS 12 19

[0513] For the 21 validation samples held back from train-
ing data set, the overall accuracy was estimated to be 71.4%
with a 95% confidence interval 0f47.8% to 88.7%, sensitivity
72.7% and specificity 70%. Table 25 shows the confusion
matrix for the validation samples.

[0516] For the 21 validation samples held back from train-
ing, the overall accuracy was estimated to be 72.6% with a
95% confidence interval of 52.8% to 91.8%, sensitivity
63.9% and specificity 90%. Table 27 shows the confusion
matrix for the validation samples.
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TABLE 27

Confusion matrix for the 20 validation samples against the
decision tree developed using the Random Forest method.

True Diagnosi

Predicted Sepsis SIRS
Sepsis 7 1
SIRS 4 9

[0517] PAM Yet another decision rule developed using
biomarkers is predictive analysis of microarrays (PAM),
which is described in Section 5.5.2, above. In this method, a
shrinkage parameter that determines the number of biomar-
kers used to classify samples is specified. This parameter was
chosen via cross-validation. There were no biomarkers with
missing values. Based on cross-validation, the optimal
threshold value was 1.62, corresponding to 269 biomarkers.
FIG. 25 shows the accuracy across different thresholds. In
FIG. 25, curve 2502 is the overall accuracy (with 95% con-
fidence interval bars). Curve 2504 shows decision rule sensi-
tivity as a function of threshold value. Curve 2506 shows
decision rule specificity as a function of threshold value.
Using the threshold of 1.62, the overall accuracy for the
training samples was estimated to be 67.7% with a 95%
confidence interval of 55.9% to 77.6%. The estimated sensi-
tivity was 68.6% and the estimated specificity was 66.7%.
Table 28 shows the confusion matrix for the training data
where the predicted classifications were made from the cross-
validated models.

TABLE 28

Confusion matrix for training samples using cross-validated
PAM algorithm

True Diagnosi

Predicted Sepsis SIRS
Sepsis 24 11
SIRS 11 22

[0518] For the 21 validation samples held back from train-
ing, the overall accuracy was estimated to be 81% with a 95%
confidence interval of 58.1% to 94.6%, sensitivity 72.7% and
specificity 100%. Table 26 shows the confusion matrix for the
validation samples.

TABLE 29

Confusion matrix for validation samples using cross-validated
PAM algorithm

True Diagnosi

Predicted Sepsis SIRS
Sepsis 8 1
SIRS 3 9

[0519] FIG. 26 shows the selected biomarkers, ranked by
their relative discriminatory power, and their relative impor-
tance in the model. FIG. 26 only shows the fifty most impor-
tant biomarkers found using the PAM analysis. However, 269
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biomarker were found. In FIG. 26, biomarkers are labeled by
the U133 plus 2.0 oligonucleotides to which they bind.

[0520] FIG. 27 provides a summary of the CART, PAM and
random forests classification algorithm (decision rule) per-
formance and associated 95% confidence intervals. Fifty dis-
tinct biomarkers were selected from across all the algorithms
illustrated in FIG. 27. FIG. 28 illustrates the number of times
that common biomarkers were selected across the techniques
of CART, PAM, RF, and Wilcoxon (adjusted). In FIG. 28,
biomarkers are labeled by the U133 plus 2.0 oligonucleotide
to which they bind. FIG. 29 illustrates an overall ranking of
biomarkers forthe T base data set. In FIG. 29, biomarkers are
labeled by the U133 plus 2.0 oligonucleotide to which they
bind. For the selected biomarkers, the x-axis depicts the per-
centage of times that it was selected. Within the percentage of
times that biomarkers were selected, the biomarkers are
ranked.

6.6 Select Biomarkers

[0521] Sections 6.3 through 6.5 describe experiments in
which blood samples from SIRS positive subjects have been
tested using Affymetrix U133 plus 2.0 human genome chips
containing 54,613 probesets. This section describes the cri-
teria applied to the data described in Sections 6.3 through 6.5
in order to identify a list of biomarkers that discriminate
between subjects likely to develop sepsis in a defined time
period (sepsis subjects) and subjects not likely to develop
sepsis in a defined time period (SIRS subjects). FIG. 30
illustrates the filters applied to identify this list of biomarkers.

[0522] A firstcriterion that was imposed was a requirement
that a biomarker discriminate between SIRS and sepsis with
a p value of 0.05 or less, as determined by the Wilcoxon test
after correction for multiple comparisons, at any time point
measured or the biomarker was used in a multivariate analysis
with significant classification performance where significant
classification performance is defined by having a lower 95%
percentile for accuracy on a training data set that is greater
than 50% and a point estimate for accuracy on the validation
set greater than 65% at any time point measured. At T_,
(Section 6.3), 1,618 biomarkers met this criterion. At T_,,
(Section 6.4), 12,728 biomarkers met this criterion. Some
biomarkers met this criterion at both T_,, and T_;4 time
points. In total, there were 14,346 biomarkers (including
duplicates from T_,, and T_; 4 time points) that discriminated
between the sepsis and SIRS states. Thus, the first filter cri-
terion reduced the number of eligible biomarkers from 54,613
to 14,346.

[0523] The second criterion that was imposed was a
requirement that each respective biomarker under consider-
ation exhibit at least a 1.2x fold change between the median
value for the respective biomarker among the subjects that
acquired sepsis during a defined time period (sepsis subjects)
and the median value for the respective biomarker among
subjects that do not acquire sepsis during the defined time
period (SIRS subjects) at the T_; 4 time or the T_ , time point
period. Furthermore, to satisfy the second criterion, the biom-
arker must have been used in at least one multivariate analysis
with significant classification performance where significant
classification performance is defined by having a lower 95
percentile for accuracy on a training data set that is greater
than 50% and a point estimate for accuracy on the validation
set that is greater then 65% at any time point measured. As
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noted in FIG. 30, application of the third filter criterion
reduced the number of eligible biomarkers from 14,346 to
626.

[0524] In column one of Table 30, each biomarker is listed
by a gene name, such as, for example, a Human Gene Nomen-
clature Database (HUGO) symbol set forth by the Gene
Nomenclature Committee, Department of Biology, Univer-
sity College London. As is known in the art, some human
genome genes are represented by more than one probeset in
the U133 plus 2.0 array. Furthermore, some of the oligonucle-
otides in the U133 plus 2.0 array represent expressed
sequence tags (ESTs) that do not correspond to a known gene
(see column two of Table 30). Where known, the names of the
different human genes are listed in column three of Table 30.
[0525] In the case where a biomarker is based upon a gene
that includes the sequence of a probeset listed in Table 30 or
a complement thereof, the biomarker can be, for example, a
transcript made by the gene, a complement thereof, or a
discriminating fragment or complement thereof, or a cDNA
thereof, or a discriminating fragment of the cDNA, or a dis-
criminating amplified nucleic acid molecule corresponding
to all or a portion of the transcript or its complement, or a
protein encoded by the gene, or a discriminating fragment of
the protein, or an indication of any of the above. Further still,
the biomarker can be, for example, a protein encoded by a
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gene that includes a probeset sequence described in Table 30
ora discriminating fragment ofthe protein, or an indication of
the above. Here, a discriminating molecule or fragment is a
molecule or fragment that, when detected, indicates presence
or abundance of the above-identified transcript, cDNA,
amplified nucleic acid, or protein. In one embodiment, a
biomarker profile of the present invention comprises a plu-
rality of biomarkers that contain at least five, at least ten at
least fifteen, at least twenty, at least thirty, between 2 and 5,
between 3 and 7, or less than 15 of the sequences of the
probesets of Table 30, or complements thereof, or genes
including one of at least five of the sequences or complements
thereof, or a discriminating fragment thereof, or an amino
acid sequence encoded by any of the foregoing nucleic acid
sequences, or any discriminating fragment of such an amino
acid sequence. Such biomarkers can be mRNA transcripts,
c¢DNA or some other form of amplified nucleic acid or pro-
teins. In some embodiments a biomarker is any gene that
includes the sequence in an Affymetrix probeset given in
Table 30, or any gene that includes a complement of the
sequence in an Affymetrix probeset given in Table 30, or any
mRNA, cDNA or other form of amplified nucleic acid of the
foregoing, for any discriminating fragment of the foregoing,
or any amino acid sequence coded by the foregoing, or any
discriminating fragment of such a protein.

TABLE 30
Exemplary biomarkers that discriminate between responders and
nonresponders
Gene Protein
Affymetrix Accession Accession
Gene Symbol Probeset name  Gene Name Number Number
Column Column Column Column Column
1 2 3 4 5
FLJ20445 218582_at HYPOTHETICAL PROTEIN NM_ 017824
FLJ20445
3'HEXO 231852_at HISTONE MRNA 3' END NM_153332 NP__699163
EXORIBONUCLEASE
3'HEXO 226416_at HISTONE MRNA 3' END NM_153332 NP__699163
EXORIBONUCLEASE
ABCA2 212772_s_at ATP-BINDING CASSETTE, NM_001606 NP_001597
SUB-FAMILY A (ABC1), NM_212533 NP_997698
MEMBER 2
ABHD?2 228490_ at ABHYDROLASE DOMAIN NM__007011 NP__008942
CONTAINING 2 NM_152924 NP__690888
ACN9Y 218981 _at ACN9 HOMOLOG (S. CEREVISIAE) NM_020186 NP_064571
ACSL1 201963 _at ACYL-COA SYNTHETASE NM_ 001995 NP_001986
LONG-CHAIN FAMILY
MEMBER 1
ACSL3 201660_at ACYL-COA SYNTHETASE NM__004457NM__203372 NP_004448
LONG-CHAIN FAMILY NP_ 976251
MEMBER 3
ACSL4 202422_s_at ACYL-COA SYNTHETASE NM__004458 NP__004449
LONG-CHAIN FAMILY NM_022977 NP_075266
MEMBER 4
ACTR3 213101_s_at ARP3 ACTIN-RELATED NM_005721 NP_005712
PROTEIN 3 HOMOLOG
(YEAST)
ADM 202912_at ADRENOMEDULLIN NM_ 001124 NP_001115
ADORA2A 205013_s_at ADENOSINE A2 NM__000675 NP__000666
RECEPTOR
AIM2 206513_at ABSENT IN MELANOMA 2 NM__004833 NP_004824
ALOX5AP 204174_at ARACHIDONATE 5- NM_ 001629 NP__001620
LIPOXYGENASE-
ACTIVATING PROTEIN
AMPD2 212360_at ADENOSINE NM__004037 NP_004028
MONOPHOSPHATE NM__139156 NP__ 631895
DEAMINASE 2 (ISOFORM NM__203404 NP_981949
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TABLE 30-continued

Exemplary biomarkers that discriminate between responders and

nonresponders
Gene Protein
Affymetrix Accession Accession
Gene Symbol Probeset name  Gene Name Number Number
Column Column Column Column Column
1 2 3 4 5
ANKRD22 238439_at ANKYRIN REPEAT NM__144590 NP_653191
DOMAIN 22
ANKRD22 239196_at ANKYRIN REPEAT NM__144590 NP_653191
DOMAIN 22
ANXA3 209369_at ANNEXIN A3 NM_005139 NP_005130
APG3L 220237_at APG3 AUTOPHAGY 3-LIKE NM__ 022488 NP_ 071933
(S. CEREVISIAE)
ARHGAP8 47069_at RHO GTPASE NM_015366 NP_056181
ACTIVATING PROTEIN & NM_017701 NP_060171
NM__ 181333 NP__851850
NM_181334 NP__851851
NM_181335 NP__851852
ARID5B 212614_at AT RICH INTERACTIVE XM_ 084482 XP_ 084482
DOMAIN 5B (MRF1-LIKE)
ASAHL 214765_s_at N-ACYLSPHINGOSINE NM_ 014435 NP_055250
AMIDOHYDROLASE-LIKE
PROTEIN
ASAHL 232072_at N-ACYLSPHINGOSINE NM_ 014435 NP__055250
AMIDOHYDROLASE-LIKE
PROTEIN
ASAHL 227135_at N-ACYLSPHINGOSINE NM_ 014435 NP_055250
AMIDOHYDROLASE-LIKE
PROTEIN
ASPH 242037_at ASPARTATE BETA- NM_004318 NP__004309
HYDROXYLASE NM_ 020164 NP__064549
NM__ 032466 NP__115855
NM_ 032467 NP_115856
NM_ 032468 NP_115857
ATP11B 1554557_at ATPASE, CLASS VI, TYPE XM_ 087254 XP_ 087254
11B
ATP11B 1564064_a_at ATPASE, CLASS VI, TYPE XM_ 087254 XP_ 087254
11B
ATP11B 1554556_a_at ATPASE, CLASS VI, TYPE XM_ 087254 XP_ 087254
11B
ATP11B 212536_at ATPASE, CLASS VI, TYPE XM_ 087254 XP_ 087254
11B
ATP11B 1564063_a_at ATPASE, CLASS VI, TYPE XM_ 087254 XP_ 087254
11B
ATP6V1C1 202872_at ATPASE, H+ NM_001007254 NP_001007255
TRANSPORTING, NM_ 001695 NP_001686
LYSOSOMAL, 42-KD, V1
SUBUNIT C, ISOFORM 1
ATP6V1C1 202874_s_at ATPASE, H+ NM_001007254 NP_001007255
TRANSPORTING, NM_ 001695 NP_001686
LYSOSOMAL, 42-KD, V1
SUBUNIT C, ISOFORM 1
ATP6V1C1 226463_at ATPASE, H+ NM_001007254 NP_001007255
TRANSPORTING, NM_ 001695 NP_001686
LYSOSOMAL, 42-KD, V1
SUBUNIT C, ISOFORM 1
ATP9A 212062_at ATPASE, CLASSII, TYPE XM_ 030577 XP_ 030577
9A
BAGALTS 221485_at BETA-1,4- NM__ 004776 NP__004767
GALACTOSYLTRANSFERASE
BASP1 202391_at BRAIN-ABUNDANT NM_006317 NP__006308
SIGNAL PROTEIN
BATS 224756_s_at  HLA-B ASSOCIATED NM_021160 NP__066983
TRANSCRIPT 5
BATF 205965_at BASIC LEUCINE ZIPPER NM_ 006399 NP__006390
TRANSCRIPTION FACTOR,
ATF-LIKE
BAZIA 217986_s_at  BROMODOMAIN NM_013448 NP_038476
ADJACENT TO ZINC NM__182648 NP__872589
FINGER DOMAIN, 1A
BAZIA 217985_s_at  BROMODOMAIN NM_013448 NP_038476
ADJACENT TO ZINC NM__182648 NP__872589

FINGER DOMAIN, 1A
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TABLE 30-continued

Exemplary biomarkers that discriminate between responders and

nonresponders
Gene Protein
Affymetrix Accession Accession
Gene Symbol Probeset name  Gene Name Number Number
Column Column Column Column Column
1 2 3 4 5
BCL2A1 205681_at BCL2-RELATED PROTEIN NM_004049 NP__004040
Al
BCL3 204908_s_at B-CELL CLL/LYMPHOMA 3 NM_005178 NP_005169
BCL3 204907_s_at B-CELL CLL/LYMPHOMA 3 NM_005178 NP_005169
BCLS6 203140_at B-CELL LYMPHOMA 6 NM_001706 NP_001697
NM__ 138931 NP__620309
BCLS6 215990_s_at B-CELL LYMPHOMA 6 NM_001706 NP_001697
NM_138931 NP__620309
BIK 205780_at BCL2-INTERACTING NM_001197 NP_001188
KILLER (APOPTOSIS-
INDUCING)
BMX 206464 _at BONE MARROW KINASE, NM_001721 NP_001712
X-LINKED NM_ 203281 NP_975010
C130rf12 217769_s_at CHROMOSOME 13 OPEN NM_ 015932 NP_057016
READING FRAME 12
Cl4orfl01 225675_at CHROMOSOME 14 OPEN NM_017799 NP_060269
READING FRAME 101
Cl4orfl01 219757_s_at CHROMOSOME 14 OPEN NM_ 017799 NP__060269
READING FRAME 101
Cl4orf147 213508_at CHROMOSOME 14 OPEN NM_138288 NP_612145
READING FRAME 147
C160rf30 219315_s_at CHROMOSOME 16 OPEN NM__024600 NP_078876
READING FRAME 30
Cl6orf7 205781_at CHROMOSOME 16 OPEN- NM_ 004913 NP__004904
READING FRAME 7
C1GALT1 219439_ at CORE 1 SYNTHASE, NM_ 020156 NP__064541
GLYCOPROTEIN-N-
ACETYLGALACTOSAMINE
3-BETA-
GALACTOSYLTRANSFERASE
C1GALTIC1 219283_at C1GALT1-SPECIFIC NM_001011551 NP_001011551
CHAPERONE 1 NM_152692 NP__689905
C1GALTIC1 238989_ at C1GALT1-SPECIFIC NM_ 001011551 NP_001011551
CHAPERONE 1 NM_152692 NP__689905
Clorf8 200620_at CHROMOSOME 1 OPEN NM_ 004872 NP__004863
READING FRAME 8
CIRL 218983_at COMPLEMENT NM_ 016546 NP__057630
COMPONENT 1,R
SUBCOMPONENT-LIKE
C200rf24 217835_x_at CHROMOSOME 20 OPEN NM_ 018840 NP_061328
READING FRAME 24 NM__199483 NP_955777
NM_199484 NP_955778
NM__199485 NP_955779
C200rf24 223880_x_at CHROMOSOME 20 OPEN NM_ 018840 NP_061328
READING FRAME 24 NM__199483 NP_955777
NM_199484 NP_955778
NM__199485 NP_955779
C200rf32 1554786_at CHROMOSOME 20 OPEN- NM_ 020356 NP__065089
READING FRAME 32
C2lorf91 220941_s_at CHROMOSOME 21 OPEN NM_ 017447 NP_059143
READING FRAME 91
C2orf25 217883_at CHROMOSOME 2 OPEN NM_015702 NP_056517
READING FRAME 25
C2orf33 223354_x_at CHROMOSOME 2 OPEN NM_ 020194 NP_064579
READING FRAME 33
Cé6orf83 225850_at CHROMOSOME 6 OPEN NM__ 145169 NP__ 660152
READING FRAME 83
C9Yorf19 225604_s_at CHROMOSOME 9 OPEN NM_ 022343 NP_071738
READING FRAME 19
C9Yorfa6 218992_ at CHROMOSOME 9 OPEN NM__ 018465 NP__060935
READING FRAME 46
C9Yorf84 1553920_at CHROMOSOME 9 OPEN NM_173521 NP_775792
READING FRAME 84
CA4 206208_at CARBONIC ANHYDRASE NM__ 000717 NP__000708
%
CA4 206209_s_at CARBONIC ANHYDRASE NM_000717 NP__000708

v
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TABLE 30-continued

Exemplary biomarkers that discriminate between responders and

nonresponders
Gene Protein
Affymetrix Accession Accession

Gene Symbol Probeset name  Gene Name Number Number

Column Column Column Column Column

1 2 3 4 5

CAB39 217873_at CALCIUM BINDING NM_016289 NP_057373
PROTEIN 39

CACNAIE 236013_at CALCIUM CHANNEL, NM_ 000721 NP_000712
VOLTAGE-DEPENDENT,
ALPHA 1E SUBUNIT

CACNA2D3 219714_s_at CALCIUM CHANNEL, NM_ 018398 NP__060868
VOLTAGE-DEPENDENT,
ALPHA 2/DELTA 3
SUBUNIT

CAPZA2 1569450__at CAPPING PROTEIN (ACTIN NM__ 006136 NP_006127
FILAMENT) MUSCLE Z-
LINE, ALPHA 2

CARDI12 1552553_a_at CASPASE RECRUITMENT NM_021209 NP_067032
DOMAIN FAMILY,
MEMBER 12

CASP4 209310_s_at CASPASE 4, APOPTOSIS- NM_001225 NP_001216
RELATED CYSTEINE NM_ 033306 NP__150649
PROTEASE NM__ 033307 NP__150650

CCL5 1555759_a_at CHEMOKINE (C-C MOTIF) NM_ 002985 NP_002976
LIGAND 5

CCPG1 221511_x_at CELL CYCLE NM_ 004748 NP_004739
PROGRESSION 1 NM__ 020739 NP__065790

CD4 203547_at CD4 ANTIGEN (P55) NM_000616 NP__000607

CD48 237759_at CD48 ANTIGEN (B-CELL NM_001778 NP_001769
MEMBRANE PROTEIN)

CD58 211744_s_at CD58 ANTIGEN, NM_ 001779 NP__001770
(LYMPHOCYTE
FUNCTION-ASSOCIATED
ANTIGEN 3)

CD58 205173_x_at CD58 ANTIGEN, NM_001779 NP_001770
(LYMPHOCYTE
FUNCTION-ASSOCIATED
ANTIGEN 3)

CD58 216942_s_at CD58 ANTIGEN, NM_001779 NP_001770
(LYMPHOCYTE
FUNCTION-ASSOCIATED
ANTIGEN 3)

CD59 228748 _at CD59 ANTIGEN P18-20 NM_ 000611 NP__000602
(ANTIGEN IDENTIFIED BY NM_ 203329 NP_976074
MONOCLONAL NM_203330 NP_976075
ANTIBODIES 16.3A5, EJ16, NM_ 203331 NP_976076
EJ30, EL32 AND G344)

CD59 200985_s_at CD59 ANTIGEN P18-20 NM_ 000611 NP__000602
(ANTIGEN IDENTIFIED BY NM_ 203329 NP_976074
MONOCLONAL NM__ 203330 NP_ 976075
ANTIBODIES 16.3A5, EJ16, NM_ 203331 NP_976076
EJ30, EL32 AND G344)

CD59 200984_s_at CD59 ANTIGEN P18-20 NM_ 000611 NP__000602
(ANTIGEN IDENTIFIED BY NM_ 203329 NP_976074
MONOCLONAL NM_203330 NP_976075
ANTIBODIES 16.3A5, EJ16, NM_ 203331 NP_976076
EJ30, EL32 AND G344)

CD59 212463_at CD59 ANTIGEN P18-20 NM__ 000611 NP__000602
(ANTIGEN IDENTIFIED BY NM_ 203329 NP_976074
MONOCLONAL NM_203330 NP_976075
ANTIBODIES 16.3A5, EJ16, NM_ 203331 NP_976076
EJ30, EL32 AND G344)

CD74 209619_at CD74 ANTIGEN NM_ 004355 NP_004346
(INVARIANT
POLYPEPTIDE OF MAJOR
HISTOCOMPATIBILITY
COMPLEX, CLASS IT
ANTIGEN-ASSOCIATED)

CD74 1567628 _at CD74 ANTIGEN NM__ 004355 NP__004346
(INVARIANT
POLYPEPTIDE OF MAJOR

HISTOCOMPATIBILITY
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TABLE 30-continued

Exemplary biomarkers that discriminate between responders and

nonresponders
Gene Protein
Affymetrix Accession Accession
Gene Symbol Probeset name  Gene Name Number Number
Column Column Column Column Column
1 2 3 4 5
COMPLEX, CLASS IT
ANTIGEN-ASSOCIATED)
CD86 210895_s_at CD8&6 ANTIGEN (CD28 NM_006889 NP__008820
ANTIGEN LIGAND 2, B7-2 NM__175862 NP__787058
ANTIGEN)
CDKN3 209714_s_at CYCLIN-DEPENDENT NM_ 005192 NP__005183
KINASE INHIBITOR 3
(CDK2-ASSOCIATED
DUAL SPECIFICITY
PHOSPHATASE)
CEACAMI1 209498 _at CARCINOEMBRYONIC NM_001712 NP_001703
ANTIGEN-RELATED CELL
ADHESION MOLECULE 1
CEACAMI1 206576_s_at CARCINOEMBRYONIC NM_ 001712 NP__001703
ANTIGEN-RELATED CELL
ADHESION MOLECULE 1
CEACAMI1 211889_x_at CARCINOEMBRYONIC NM_001712 NP_001703
ANTIGEN-RELATED CELL
ADHESION MOLECULE 1
CEACAMI1 211883_x_at CARCINOEMBRYONIC NM_001712 NP_001703
ANTIGEN-RELATED CELL
ADHESION MOLECULE 1
CEACAM3 208052_x_at CARCINOEMBRYONIC NM_001815 NP__001806
ANTIGEN-RELATED CELL
ADHESION MOLECULE 3
CECR1 219505_at CAT EYE SYNDROME NM_ 017424 NP_059120
CHROMOSOME REGION, NM__177405 NP_803124
CANDIDATE 1
CHCHD7 222701_s_at COILED-COIL-HELIX NM_001011667 NP_001011667
DOMAIN-CONTAINING NM_001011668 NP_001011668
PROTEIN 7 NM_001011669 NP_001011669
NM_001011670 NP_001011670
NM_ 001011671 NP_001011671
NM_ 024300 NP_077276
CHSY1 203044_at CARBOHYDRATE NM_014918 NP_055733
SYNTHASE 1
CIR 209571_at CBF1 INTERACTING NM__004882 NP__004873
COREPRESSOR NM__199075 NP_951057
CKLF 223451_s_at CHEMOKINE-LIKE NM_016326 NP_057410
FACTOR NM_016951 NP_058647
NM__181640 NP__857591
NM_181641 NP__857592
CKLF 219161_s_at CHEMOKINE-LIKE NM_016326 NP_057410
FACTOR NM_016951 NP_058647
NM__181640 NP__857591
NM_181641 NP__857592
CKLF 221058_s_at CHEMOKINE-LIKE NM_016326 NP_057410
FACTOR NM_016951 NP_058647
NM__181640 NP__857591
NM_181641 NP__857592
CKLFSF1 235286_at CHEMOKINE-LIKE NM_ 052999 NP__443725
FACTOR SUPER FAMILY 1 NM_181268 NP__851785
NM__ 181269 NP__851786
NM_181270 NP__851787
NM_181271 NP_851788
NM__ 181272 NP__851789
NM_181283 NP__851800
NM_181285 NP__851802
NM_181286 NP__851803
NM__ 181287 NP__851804
NM_181288 NP__851805
NM_181289 NP__851806
NM_181290 NP__851807
NM__ 181292 NP__851809
NM_181293 NP__851810
NM_181294 NP_851811
NM_181295 NP_851812
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TABLE 30-continued

Exemplary biomarkers that discriminate between responders and

nonresponders
Gene Protein
Affymetrix Accession Accession
Gene Symbol Probeset name  Gene Name Number Number
Column Column Column Column Column
1 2 3 4 5
NM_181296 NP__851813
NM_181297 NP_851814
NM_181298 NP__851815
NM_181299 NP_851816
NM_181300 NP_851817
NM__ 181301 NP__ 851818
CLEC10A 206682_at C-TYPE LECTIN DOMAIN NM_ 006344 NP__006335
FAMILY 10, MEMBER A NM__182906 NP__878910
CLEC4D 1552772_at C-TYPE LECTIN DOMAIN NM_080387 NP_525126
FAMILY 4, MEMBER D
CLECAE 219859_at C-TYPE LECTIN DOMAIN NM_014358 NP_055173
FAMILY 4, MEMBER E
CLEC5A 219890_at C-TYPE LECTIN DOMAIN NM_013252 NP_037384
FAMILY 5, MEMBER A
COLAA3BP 223465_at COLLAGEN, TYPE IV, NM_005713 NP__005704
ALPHA 3 (GOODPASTURE NM_031361 NP_112729
ANTIGEN) BINDING
PROTEIN
COP1 1552701_a_at CARD ONLY PROTEIN NM_ 052889 NP_443121
COX15 235204_at COX15 HOMOLOG, NM_ 004376 NP_004367
CYTOCHROME C NM_ 078470 NP_510870
OXIDASE ASSEMBLY
PROTEIN (YEAST)
CPD 201941_at CARBOXYPEPTIDASE D NM_001304 NP_001295
CPD 201940_at CARBOXYPEPTIDASE D NM_001304 NP_001295
CPEB4 242384 at CYTOPLASMIC NM__ 030627 NP__085130
POLYADENYLATION
ELEMENT BINDING
PROTEIN 4
CPEB4 224829_at CYTOPLASMIC NM_ 030627 NP_085130
POLYADENYLATION
ELEMENT BINDING
PROTEIN 4
CPVL 208146_s_at CARBOXYPEPTIDASE, NM_019029 NP_061902
VITELLOGENIC-LIKE NM_031311 NP_112601
CR1 206244 _at COMPLEMENT NM_000573 NP__000564
COMPONENT (3B/4B) NM__000651 NP__000642
RECEPTOR 1, INCLUDING
KNOPS BLOOD GROUP
SYSTEM
CRTAP 1554464 _a_at CARTILAGE-ASSOCIATED NM__ 006371 NP__006362
PROTEIN
CRTAP 1555889_a_at CARTILAGE-ASSOCIATED NM_ 006371 NP_006362
PROTEIN
CSFIR 203104_at COLONY STIMULATING NM_ 005211 NP__005202
FACTOR 1 RECEPTOR,
FORMERLY MCDONOUGH
FELINE SARCOMA VIRAL
(V-FMS) ONCOGENE
HOMOLOG
CTGLF1 221850_x_at CENTAURIN, GAMMA- NM__133446 NP_597703
LIKE FAMILY, MEMBER 1
CYP4F2 210452_x_at CYTOCHROME P450, NM_001082 NP_001073
FAMILY 4, SUBFAMILY F,
POLYPEPTIDE 2
DCP2 235258_at DCP2 DECAPPING NM_152624 NP__689837
ENZYME HOMOLOG (S. CEREVISIAE)
DDAH2 202262_x_at DIMETHYLARGININE NM_ 013974 NP_039268
DIMETHYLAMINOHYDROLASE 2
DDAH2 215537_x_at DIMETHYLARGININE NM_013974 NP_039268
DIMETHYLAMINOHYDROLASE 2
DDAH2 214909_s_at DIMETHYLARGININE NM_013974 NP_039268
DIMETHYLAMINOHYDROLASE 2
DDX26 222239_s_at DEAD/H (Asp-Glu-Ala- NM_ 012141 NP_ 036273

Asp/His) BOX
POLYPEPTIDE 26
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TABLE 30-continued

Exemplary biomarkers that discriminate between responders and

nonresponders
Gene Protein
Affymetrix Accession Accession
Gene Symbol Probeset name  Gene Name Number Number
Column Column Column Column Column
1 2 3 4 5
DHRS9 223952_x_at MEMBRANE PROTEIN, NM_ 005771 NP_005762
PALMITOYLATED 3; MPP3 NM_199204 NP_954674
DHRS9 224009_x_at MEMBRANE PROTEIN, NM_ 005771 NP_005762
PALMITOYLATED 3; MPP3 NM_199204 NP_954674
DHRS9 219799_s_at MEMBRANE PROTEIN, NM_ 005771 NP_005762
PALMITOYLATED 3; MPP3 NM__199204 NP_ 954674
DKFZP564B1023  228385_at KINESIN FAMILY XM_ 375825 XP_ 375825
MEMBER 14 (KIF14)
DKFZP566M1046  223637_s_at HYPOTHETICAL PROTEIN NM_032127 NP__115503
DKFZP566M1046
DKFZp667F0711 1559756_at HYPOTHETICAL PROTEIN XM_374767 XP_ 374767
DKFZp667F0711
DLGAP1 239421_at DISCS, LARGE NM_ 001003809 NP__001003809
(DROSOPHILA) NM__004746 NP__004737
HOMOLOG-ASSOCIATED
PROTEIN 1
DNAJAL 200881_s_at DNAJ (HSP40) HOMOLOG, NM_001539 NP_001530
SUBFAMILY A, MEMBER 1
DR1 216652_s_at DOWN-REGULATOR OF NM_001938 NP_001929
TRANSCRIPTION 1, TBP-
BINDING (NEGATIVE
COFACTOR 2)
E2F3 203693_s_at E2F TRANSCRIPTION NM_001949 NP__001940
FACTOR 3
EFHC1 225656_at EF-HAND DOMAIN (C- NM_018100 NP__060570
TERMINAL) CONTAINING 1
EGFL5 212831_at EGF-LIKE-DOMAIN, XM_ 376905 XP_ 376905
MULTIPLE 5
EIFAE 201435_s_at EUKARYOTIC NM_001968 NP_001959
TRANSLATION
INITIATION FACTOR 4E
EIF4E3 225941_at EUKARYOTIC NM_173359 NP__775495
TRANSLATION
INITIATION FACTOR 4E
MEMBER 3
EIF4E3 225940_at EUKARYOTIC NM_173359 NP__775495
TRANSLATION
INITIATION FACTOR 4E
MEMBER 3
EIF4E3 238461_at EUKARYOTIC NM_173359 NP__775495
TRANSLATION
INITIATION FACTOR 4E
MEMBER 3
EIFAG3 201935_s_at EUKARYOTIC NM_003760 NP_003751
TRANSLATION
INITIATION FACTOR 4-
GAMMA, 3
EIFAG3 201936_s_at EUKARYOTIC NM_003760 NP_003751
TRANSLATION
INITIATION FACTOR 4-
GAMMA, 3
EIFAG3 243149_at EUKARYOTIC NM_003760 NP_003751
TRANSLATION
INITIATION FACTOR 4-
GAMMA, 3
EMILIN2 242288_s_at ELASTIN MICROFIBRIL NM__ 032048 NP__114437
INTERFACER 2
ETS2 201328_at V-ETS NM_ 005239 NP__005230
ERYTHROBLASTOSIS
VIRUS E26 ONCOGENE
HOMOLOG 2 (AVIAN)
EXOSC4 91684_g at EXOSOME COMPONENT 4 NM_019037 NP_061910
EXOSC4 218695_at EXOSOME COMPONENT 4 NM_019037 NP_061910
EXOSC4 58696__at EXOSOME COMPONENT 4 NM_ 019037 NP_061910
FAD104 244022_at FIBRONECTIN TYPE III NM_ 022763 NP_073600
DOMAIN CONTAINING 3B

(FNDC3B)
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TABLE 30-continued

Exemplary biomarkers that discriminate between responders and

nonresponders
Gene Protein
Affymetrix Accession Accession
Gene Symbol Probeset name  Gene Name Number Number
Column Column Column Column Column
1 2 3 4 5
FAMS53C 218023_s_at FAMILY WITH SEQUENCE NM_ 016605 NP_057689
SIMILARITY 53, MEMBER C
FAS 204781_s_at FAS (TNF RECEPTOR NM_000043 NP__000034
SUPERFAMILY, MEMBER NM_152871 NP__690610
6) NM_152872 NP__690611
NM__152873 NP__690612
NM_152874 NP__690613
NM__152875 NP__690614
NM__152876 NP__690615
NM__152877 NP__690616
FAS 204780_s_at  FAS (TNF RECEPTOR NM_000043 NP__000034
SUPERFAMILY, MEMBER NM_152871 NP__690610
6) NM_152872 NP__690611
NM__152873 NP__690612
NM_152874 NP__690613
NM__152875 NP__690614
NM__152876 NP__690615
NM__152877 NP__690616
FBXL13 1553798_a_at F-BOX AND LEUCINE- NM__145032 NP__659469
RICH REPEAT PROTEIN 13
FBXO09 1559094 _at F-BOX PROTEIN 9 NM_012347 NP_036479
NM__ 033480 NP__ 258441
NM_ 033481 NP__258442
FBXO09 1559096_x_at F-BOX PROTEIN 9 NM_012347 NP_036479
NM_ 033480 NP__258441
NM__ 033481 NP__ 258442
FCAR 211307_s_at FC FRAGMENT OF IGA, NM_002000 NP_001991
RECEPTOR FOR NM_133269 NP__579803
NM_133271 NP__579805
NM_133272 NP__579806
NM_133273 NP__579807
NM_133274 NP__579808
NM__ 133277 NP_ 579811
NM_133278 NP_579812
NM_133279 NP_579813
NM_133280 NP_579814
FCAR 211306_s_at FC FRAGMENT OF IGA, NM__002000 NP__001991
RECEPTOR FOR NM_133269 NP__579803
NM_133271 NP__579805
NM_133272 NP__579806
NM__ 133273 NP__579807
NM_133274 NP__579808
NM_133277 NP_579811
NM_133278 NP_579812
NM__ 133279 NP_ 579813
NM_133280 NP_579814
FCAR 207674_at FC FRAGMENT OF IGA, NM_002000 NP_001991
RECEPTOR FOR NM_133269 NP__579803
NM_ 133271 NP__579805
NM_133272 NP__579806
NM_133273 NP__579807
NM_ 133274 NP__579808
NM_133277 NP_579811
NM_133278 NP_579812
NM__ 133279 NP_ 579813
NM_133280 NP_579814
FCAR 211305_x_at FC FRAGMENT OF IGA, NM_002000 NP_001991
RECEPTOR FOR NM__ 133269 NP__579803
NM_133271 NP__579805
NM_133272 NP__579806
NM__ 133273 NP__579807
NM_133274 NP__579808
NM_133277 NP_579811
NM__ 133278 NP_579812
NM_133279 NP_579813
NM_133280 NP_579814
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Gene Protein
Affymetrix Accession Accession

Gene Symbol Probeset name  Gene Name Number Number

Column Column Column Column Column

1 2 3 4 5

FCGR1A 216950_s_at FC FRAGMENT OF IGG, NM_000566 NP__000557
HIGH AFFINITY IA

FCGR1A 216951_at FC FRAGMENT OF IGG, NM_000566 NP__000557
HIGH AFFINITY IA

FCGR1A 214511_x_at

LOC440607

FEMI1C 213341_at FEM-1 HOMOLOG C NM_020177 NP_064562
(C. ELEGANS)

FLJ10213 219906_at HYPOTHETICAL PROTEIN NM_018029 NP__060499
FLJ10213

FLJ10521 1570511_at HYPOTHETICAL PROTEIN NM_001011722 NP_001011722
FLJ10521 NM_018125 NP__060595

FLJ11011 222657_s_at  HYPOTHETICAL PROTEIN NM_001001481 NP__001001481
FLJ11011 NM_ 001001482 NP__001001482

NM_018299 NP_060769

FLJ11259 218627_at HYPOTHETICAL PROTEIN NM_018370 NP__060840
FLJ11259

FLJ11795 220112_at HYPOTHETICAL PROTEIN NM__ 024669 NP__078945
FLJ11795

FLJ12770 226059_at HYPOTHETICAL PROTEIN NM_032174 NP__115550
FLJ12770

FLJ13154 218060_s_at HYPOTHETICAL PROTEIN NM__ 024598 NP_078874
FLJ13154

FLJ13448 219397_at HYPOTHETICAL PROTEIN NM_ 025147 NP_079423
FLJ13448

FLJ14001 238983_at HYPOTHETICAL PROTEIN NM__ 024677 NP__078953
FLJ14001

FLJ20273 218035_s_at RNA-BINDING PROTEIN NM_019027 NP__061900

FLJ20273 222496_s_at RNA-BINDING PROTEIN NM_019027 NP__061900

FLJ20481 227889_at HYPOTHETICAL PROTEIN NM_017839 NP__060309
FLJ20481

FLJ20481 222833_at HYPOTHETICAL PROTEIN NM_017839 NP__060309
FLJ20481

FLJ20701 219093_at HYPOTHETICAL PROTEIN NM_017933 NP__060403
FLJ20701

FLJ22833 219334_s_at HYPOTHETICAL PROTEIN NM_ 022837 NP_073748
FLJ22833

FLJ22833 233085_s_at HYPOTHETICAL PROTEIN NM_ 022837 NP_073748
FLJ22833

FLJ22833 222872_x_at HYPOTHETICAL PROTEIN NM_ 022837 NP_073748
FLJ22833

FLJ23231 218810_at MCP-1 TREATMENT- NM_025079 NP_079355
INDUCED PROTEIN
(MCPIP)

FLJ25416 228281 _at HYPOTHETICAL PROTEIN NM__ 145018 NP__659455
FLJ25416

FLJ31033 228152_s_at HYPOTHETICAL PROTEIN XM_ 037817 XP_ 037817
FLJ31033 XM_ 376353 XP_ 376353

FLJ36031 226756_at HYPOTHETICAL PROTEIN NM__175884 NP__787080
FLJ36031

FLJ37858 227354_at FLJ37858 PROTEIN NM_ 001007549 NP__001007550

FLOT1 210142_x_at FLOTILLIN1 NM__005803 NP__005794

FNDC3B 225032_at FIBRONECTIN TYPE III NM_ 022763 NP_073600
DOMAIN CONTAINING 3B

FNDC3B 222692_s_at FIBRONECTIN TYPE III NM_ 022763 NP__073600
DOMAIN CONTAINING 3B

FNDC3B 222693_at FIBRONECTIN TYPE III NM_ 022763 NP_073600
DOMAIN CONTAINING 3B

FNDC3B 229865_at FIBRONECTIN TYPE III NM_ 022763 NP_073600
DOMAIN CONTAINING 3B

FNDC3B 218618 _s_at FIBRONECTIN TYPE III NM_ 022763 NP__073600
DOMAIN CONTAINING 3B

FTS 218373_at FUSED TOES HOMOLOG NM_001012398 NP_001012398
(MOUSE) NM__ 022476 NP_ 071921

FYB 227266_s_at FYN BINDING PROTEIN NM_001465 NP_001456
(FYB-120/130) NM_199335 NP_955367
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1 2 3 4 5
FYB 211795_s_at  FYN BINDING PROTEIN NM_001465 NP_001456
(FYB-120/130) NM_199335 NP_955367
GOS2 213524_s_at PUTATIVE LYMPHOCYTE NM_015714 NP_056529
G0/G1 SWITCH GENE
GAB2 238405_at GRB2-ASSOCIATED NM_012296 NP_036428
BINDING PROTEIN 2 NM__ 080491 NP__536739
GADDA45A 203725_at GROWTH ARREST AND NM_001924 NP_001915
DNA-DAMAGE-
INDUCIBLE, ALPHA
GADD45B 209304_x_at GROWTH ARREST-AND NM_ 015675 NP__056490
DNA DAMAGE-
INDUCIBLE GENE
GADD45
GADD45B 207574_s_at GROWTH ARREST-AND NM_ 015675 NP__056490
DNA DAMAGE-
INDUCIBLE GENE
GADD45
GALNT3 203397_s_at UDP-N-ACETYL-ALPHA-D- NM__ 004482 NP__004473
GALACTOSAMINE:POLYPEPTIDE
N-
ACETYLGALACTOSAMINYL
TRANSFERASE 3
(GALNAC-T3)
GBA 210589_s_at GLUCOSIDASE, BETA; NM_ 000157 NP_000148
ACID (INCLUDES NM_001005741 NP__001005741
GLUCOSYLCERAMIDASE) NM_ 001005742 NP__001005742
NM_001005749 NP__001005749
NM_001005750 NP__001005750
GBA 209093_s_at GLUCOSIDASE, BETA; NM_ 000157 NP_000148
ACID (INCLUDES NM_001005741 NP__001005741
GLUCOSYLCERAMIDASE) NM_001005742 NP__001005742
NM_001005749 NP__001005749
NM__001005750 NP__001005750
GBP2 242907_at GUANYLATE BINDING NM_ 004120 NP_004111
PROTEIN 2, INTERFERON-
INDUCIBLE
GCA 203765_at GRANCALCIN, EF-HAND NM_ 012198 NP__036330
CALCIUM BINDING
PROTEIN
GCLM 203925_at GLUTAMATE-CYSTEINE NM_002061 NP_002052
LIGASE, MODIFIER
SUBUNIT
GK 214681_at GLYCEROL KINASE NM_ 000167 NP_000158
NM_ 203391 NP_976325
GK 207387_s_at GLYCEROL KINASE NM__ 000167 NP__000158
NM_ 203391 NP_976325
GK 217167_x_at GLYCEROL KINASE NM_ 000167 NP_000158
NM_ 203391 NP_976325
GK 216316_x_at GLYCEROL KINASE NM__ 000167 NP__000158
NM_ 203391 NP_976325
GK 215977_x_at GLYCEROL KINASE NM_ 000167 NP_000158
NM_ 203391 NP_ 976325
GNAI3 201180_s_at GUANINE NUCLEOTIDE NM_ 006496 NP__006487
BINDING PROTEIN (G
PROTEIN), ALPHA
INHIBITING ACTIVITY
POLYPEPTIDE 3
GNG3 207157_s_at GUANINE NUCLEOTIDE NM__ 005274 NP__005265
BINDING PROTEIN (G
PROTEIN), GAMMA 3
GNS 212335_at GLUCOSAMINE (N- NM__002076 NP__002067
ACETYL)-6-SULFATASE
(SANFILIPPO DISEASE
1ID)
GPR160 223423_at G PROTEIN-COUPLED NM_014373 NP_055188

RECEPTOR 160
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1 2 3 4 5
GPR43 221345_at G PROTEIN-COUPLED NM_005306 NP_005297
RECEPTOR 43
GPR84 223767_at G PROTEIN-COUPLED NM_ 020370 NP_065103
RECEPTOR 84
GPR97 220404_at G PROTEIN-COUPLED NM_170776 NP__740746
RECEPTOR 97
GTDC1 219770_at GLYCOSYLTRANSFERASE- NM_001006636 NP__001006637
LIKE DOMAIN NM_ 024659 NP_078935
CONTAINING 1
GTF2B 208066_s_at GENERAL NM_ 001514 NP__001505
TRANSCRIPTION FACTOR
1B
GYG 201554_x_at GLYCOGENIN NM_ 004130 NP_004121
GYG 211275_s_at  GLYCOGENIN NM__004130 NP_ 004121
HAGH 205012_s_at  HYDROXYACYLGLUTATHIONE NM_ 005326 NP_005317
HYDROLASE
HDAC4 204225_at HISTONE DEACETYLASE 4 NM_006037 NP__006028
HGF 209960__at HEPATOCYTE GROWTH NM__000601 NP__000592
FACTOR (HEPAPOIETIN A; NM_001010931 NP_001010931
SCATTER FACTOR) NM_ 001010932 NP_001010932
NM_001010933 NP_001010933
NM_ 001010934 NP__001010934
HIP1 226364_at HUNTINGTIN NM_ 005338 NP_005329
INTERACTING PROTEIN 1
HIP1 205425_at HUNTINGTIN NM_ 005338 NP_005329
INTERACTING PROTEIN 1
HIP1 205426_s_at HUNTINGTIN NM_ 005338 NP_005329
INTERACTING PROTEIN 1
HIST1H2BD 209911_x_at HISTONE 1, H2BD NM_021063 NP__066407
NM__138720 NP_619790
HIST2H2AA 214290_s_at HISTONE 2, H2AA NM_003516 NP__003507
HLA-DMA 217478 _s_at  HLA-D NM_ 006120 NP_006111
HISTOCOMPATIBILITY
TYPE
HLA-DMB 203932_at MAJOR NM_002118 NP_002109
HISTOCOMPATIBILITY
COMPLEX, CLASS I, DM
BETA
HLA-DPA1 211990_at MAJOR NM_ 033554 NP_291032
HISTOCOMPATIBILITY
COMPLEX, CLASS II, DP
ALPHA 1
HLA-DPA1 211991_s_at MAJOR NM_ 033554 NP_291032
HISTOCOMPATIBILITY
COMPLEX, CLASS II, DP
ALPHA 1
HLA-DPB1 201137_s_at  MAJOR NM_002121 NP_002112
HISTOCOMPATIBILITY
COMPLEX, CLASS II, DP
BETA 1
HLA-DQBI1 209823_x_at MAIJOR NM_002123 NP_002114
HISTOCOMPATIBILITY
COMPLEX, CLASS II, DQ
BETA 1
HLA-DQBI1 211656_x_at MAIJOR NM_ 002123 NP_002114
HISTOCOMPATIBILITY
COMPLEX, CLASS II, DQ
BETA 1
HLA-DRA 208894 _at MAJOR NM_002123 NP_002114
HISTOCOMPATIBILITY
COMPLEX, CLASS II, DR
ALPHA
HLA-DRA 210982_s_at MAJOR NM_002123 NP_002114
HISTOCOMPATIBILITY

COMPLEX, CLASS II, DR
ALPHA
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1 2 3 4 5
HLA-DRB1 208306_x_at MAIJOR NM_002124 NP_002115
HISTOCOMPATIBILITY
COMPLEX, CLASS II, DR
BETA 1
HLA-DRB1 204670_x_at MAIJOR NM_002124 NP_002115
HISTOCOMPATIBILITY
COMPLEX, CLASS II, DR
BETA 1
HLA-DRB1 209312_x_at MAJOR NM_002124 NP_002115
HISTOCOMPATIBILITY
COMPLEX, CLASS II, DR
BETA 1
HLA-DRB1 215193_x_at MAJOR NM_002124 NP_002115
HISTOCOMPATIBILITY
COMPLEX, CLASS II, DR
BETA 1
HNRPLL 241692_at HETEROGENEOUS NM_138394 NP__612403
NUCLEAR
RIBONUCLEOPROTEIN L-
LIKE
HPGD 203913_s_at  HYDROXYPROSTAGLAND NM__000860 NP__000851
IN DEHYDROGENASE 15-
(NAD)
HRPT2 218578 _at HYPERPARATHYROIDISM NM_ 024529 NP__078805
2 (WITH JAW TUMOR)
HSPC163 228306_at HSPC163 PROTEIN NM_ 014184 NP__054903
HSPC163 218728_s_at HSPC163 PROTEIN NM_014184 NP__054903
HSPC163 228437_at HSPC163 PROTEIN NM_014184 NP__054903
HSPC163 223993_s_at HSPC163 PROTEIN NM_014184 NP__054903
HSPC163 243051_at HSPC163 PROTEIN NM_014184 NP__054903
HSPCA 214328_s_at HEAT SHOCK 90 KDA NM_ 005348 NP__005339
PROTEIN 1, ALPHA
HTATIP2 209448 _ at HIV-1 TAT INTERACTIVE NM__ 006410 NP__006401
PROTEIN 2, 30 KDA
HTATIP2 210253_at HIV-1 TAT INTERACTIVE NM_ 006410 NP__006401
PROTEIN 2, 30 KDA
IDI1 204615_x_at ISOPENTENYL- NM_ 004508 NP__004499
DIPHOSPHATE DELTA
ISOMERASE
IDI1 208881_x_at ISOPENTENYL- NM_ 004508 NP__004499
DIPHOSPHATE DELTA
ISOMERASE
IFNARI1 225669_at INTERFERON (ALPHA, NM_000629 NP__000620
BETA AND OMEGA)
RECEPTOR 1
IFNARI1 225661_at INTERFERON (ALPHA, NM_000629 NP__000620
BETA AND OMEGA)
RECEPTOR 1
IFNAR2 204786_s_at INTERFERON (ALPHA, NM_000874 NP__000865
BETA AND OMEGA) NM_ 207584 NP_997467
RECEPTOR 2 NM__ 207585 NP__997468
IFNGR1 202727_s_at INTERFERON GAMMA NM_000416 NP__000407
RECEPTOR 1
IGSF2 207167_at IMMUNOGLOBULIN NM__ 004258 NP__004249
SUPERFAMILY, MEMBER 2
IL10RA 204912_at INTERLEUKIN 10 NM_001558 NP_001549
RECEPTOR, ALPHA
IL18R1 206618_at INTERLEUKIN 18 NM_003855 NP_003846
RECEPTOR 1
IL1R1 202948 _at INTERLEUKIN 1 NM__000877 NP__000868
RECEPTOR, TYPE I
IL1R2 211372_s_at INTERLEUKIN 1 NM_004633 NP_004624
RECEPTOR, TYPE II NM__173343 NP__775465
IL1R2 205403_at INTERLEUKIN 1 NM_004633 NP_004624
RECEPTOR, TYPE II NM_173343 NP__775465
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ILIRAP 205227_at INTERLEUKIN 1 NM_002182 NP_002173
RECEPTOR ACCESSORY NM__134470 NP__608273
PROTEIN
INSL3 214572_s_at INSULIN-LIKE 3 (LEYDIG NM_ 005543 NP_005534
CELL)
IRAK2 231779_at INTERLEUKIN-1 NM__ 001570 NP_001561
RECEPTOR-ASSOCIATED
KINASE 2
IRAK3 220034_at INTERLEUKIN-1 NM_007199 NP_009130
RECEPTOR-ASSOCIATED
KINASE 3
IRAK4 219618_at INTERLEUKIN-1 NM_016123 NP_057207
RECEPTOR-ASSOCIATED
KINASE 4
ITGAM 205786_s_at INTEGRIN,ALPHA M NM_000632 NP__000623
(COMPLEMENT
COMPONENT RECEPTOR
3, ALPHA; ALSO KNOWN
AS CD11B (P170),
MACROPHAGE ANTIGEN
ALPHA POLYPEPTIDE)
ITGB3 216261_at INTEGRIN, BETA 3 NM__ 000212 NP__000203
(PLATELET
GLYCOPROTEIN IIIA,
ANTIGEN CD61)
IVNS1ABP 201362_at INFLUENZA VIRUS NS1A NM__006469 NP__006460
BINDING PROTEIN NM_016389 NP_057473
JAK2 205842_s_at JANUS KINASE 2 (A NM_ 004972 NP__004963
PROTEIN TYROSINE
KINASE)
JAK2 205841_at JANUS KINASE 2 (A NM_ 004972 NP__004963
PROTEIN TYROSINE
KINASE)
JAK3 211108_s_at JANUS KINASE 3 (A NM_000215 NP__000206
PROTEIN TYROSINE
KINASE, LEUKOCYTE)
JAK3 227677_at JANUS KINASE 3 (A NM_000215 NP__000206
PROTEIN TYROSINE
KINASE, LEUKOCYTE)
JUNB 201473_at JUN B PROTO-ONCOGENE NM_ 002229 NP_002220
KCNE1 236407_at POTASSIUM VOLTAGE- NM_000219 NP__000210
GATED CHANNEL, ISK-
RELATED FAMILY,
MEMBER 1
KCNIJ15 238428 _at POTASSIUM INWARDLY- NM__ 002243 NP_002234
RECTIFYING CHANNEL, NM_170736 NP_733932
SUBFAMILY J, MEMBER NM_170737 NP__733933
15
KCNIJ15 210119_at POTASSIUM INWARDLY- NM_ 002243 NP_002234
RECTIFYING CHANNEL, NM_170736 NP_733932
SUBFAMILY J, MEMBER NM__170737 NP__733933
15
KIAA0040 203144_s_at  KIAA0040 NM_014656 NP_055471
KIAA0103 203584 _at KIAA0103 NM_ 014673 NP__055488
KIAA0182 212057_at KIAA0182 PROTEIN NM_014615 NP__055430
KIAA0261 212264_s_at  KIAA0261 NM_ 015045 NP__055860
KIAA0635 206003__at CENTROSOMAL PROTEIN 4 NM__025009 NP_079285
KIAA0746 212314_at KIAA0746 PROTEIN NM_015187 NP_056002
KIAA1160 223831_x_at KIAA1160 PROTEIN NM_ 020701 NP_065752
KIAA1533 244808__at KIAA1533 NM__020895 NP__065946
KIAA1533 224807_at KIAA1533 NM_020895 NP_065946
KIAA1600 226155_at KIAA1600 NM_020940 NP_065991
KIAA1632 227638_at KIAA1632 NM__ 020964 NP__066015
KIAA1991 242808_at HYPOTHETICAL PROTEIN XM_ 495886 XP__ 495886

KIAA1991
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KIF1B 225878 _at KINESIN FAMILY NM_015074 NP__055889
MEMBER 1B NM_183416 NP_904325
KIF1B 209234_at KINESIN FAMILY NM_015074 NP__055889
MEMBER 1B NM_183416 NP_904325
KIF1B 241216_at KINESIN FAMILY NM_015074 NP__055889
MEMBER 1B NM__183416 NP_ 904325
KLF11 218486_at KRUPPEL-LIKE FACTOR NM_ 003597 NP_003588
11
KLF7 204334_at KRUPPEL-LIKE FACTOR 7 NM_003709 NP__003700
(UBIQUITOUS)
KLHL2 219157_at KELCH-LIKE 2, MAYVEN NM_ 007246 NP_009177
(DROSOPHILA)
KLHLS6 1560396__at KELCH-LIKE 6 NM__130446 NP_569713
(DROSOPHILA)
KPNA4 225267_at KARYOPHERIN ALPHA 4 NM_ 002268 NP_002259
(IMPORTIN ALPHA 3)
KPNA4 209653_at KARYOPHERIN ALPHA 4 NM_ 002268 NP_002259
(IMPORTIN ALPHA 3)
KREMEN1 227250_at KRINGLE CONTAINING NM_ 032045 NP_114434
TRANSMEMBRANE NM_153379 NP__700358
PROTEIN 1
KREMEN1 235370_at KRINGLE CONTAINING NM__ 032045 NP__114434
TRANSMEMBRANE NM_153379 NP__700358
PROTEIN 1
KREMEN1 224534 _at KRINGLE CONTAINING NM_ 032045 NP_114434
TRANSMEMBRANE NM__ 153379 NP__700358
PROTEIN 1
LDLR 202068_s_at LOW DENSITY NM_000527 NP_000518
LIPOPROTEIN RECEPTOR
LFNG 228762_at LUNATIC FRINGE NM_ 002304 NP_002295
HOMOLOG (DROSOPHILA)
LGALS8 208934_s_at LECTIN, GALACTOSIDE- NM_006499 NP__006490
BINDING, SOLUBLE, & NM_ 201543 NP_963837
(GALECTIN 8) NM_201544 NP_963838
NM_ 201545 NP_963839
LIMK?2 1561654_at LIM DOMAIN KINASE 2 NM_ 005569 NP__005560
NM_ 016733 NP_057952
LIMK?2 202193_at LIM DOMAIN KINASE 2 NM_ 005569 NP__005560
NM_016733 NP_057952
LIMK?2 210582_s_at LIM DOMAIN KINASE 2 NM_ 005569 NP__005560
NM_ 016733 NP_057952
LIMK?2 217475_s_at  LIM DOMAIN KINASE 2 NM_ 005569 NP__005560
NM_016733 NP_057952
LIN7A 240027_at LIN-7 HOMOLOG A (C. ELEGANS) NM_ 004664 NP__004655
LIN7A 206440__at LIN-7 HOMOLOG A (C. ELEGANS) NM__ 004664 NP__004655
LIRY 1555634_a_at LEUKOCYTE NM_021250 NP_067073
IMMUNOGLOBULIN-LIKE NM_181879 NP__870994
RECEPTOR, SUBFAMILY B NM_181985 NP_871714
(WITH TM AND ITIM NM__181986 NP_871715
DOMAINS), MEMBER 7
(LILRB7)
LMNB1 203276_at LAMIN B1 NM__005573 NP__005564
LMTK2 226375_at LEMUR TYROSINE NM_014916 NP_055731
KINASE 2
LOC145758 226513_at HYPOTHETICAL PROTEIN
LOC145758
LOC153561 232889_at HYPOTHETICAL PROTEIN NM_ 207331 NP_997214
LOC153561
LOC199675 235568_at HYPOTHETICAL PROTEIN NM_174918 NP_777578
LOC199675
LOC220929 229743_at HYPOTHETICAL PROTEIN NM__182755 NP__877432
LOC220929
LOC285771 237870_at HYPOTHETICAL PROTEIN
LOC285771
LOC286044 222662_at HYPOTHETICAL PROTEIN

LOC286044
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LOC338758 238893_at HYPOTHETICAL PROTEIN
LOC338758
LOC401152 224602_at HCV F-TRANSACTIVATED NM_ 001001701 NP_001001701
PROTEIN 1
L0OC440731 237563_s_at LOC440731 XM__ 498838 XP_ 498838
LOC440823 227168_at
LOC57149 203897_at HYPOTHETICAL PROTEIN NM_ 020424 NP_065157
A-211C6.1
LOC88523 214748 _at CGO16 NM_033111 NP__149102
LRG1 228648 _at LEUCINE-RICH ALPHA-2- NM_ 052972 NP__ 443204
GLYCOPROTEIN 1
LRPAP1 201186_at LOW DENSITY NM_ 002337 NP_002328
LIPOPROTEIN RECEPTOR-
RELATED PROTEIN
ASSOCIATED PROTEIN 1
LRRC17 1560527_at LEUCINE RICH REPEAT NM_ 005824 NP__005815
CONTAINING 17
LTB4R 236172_at LEUKOTRIENE B4 NM__ 181657 NP__858043
RECEPTOR
LTBP2 204682_at LATENT TRANSFORMING NM_ 000428 NP_000419
GROWTH FACTOR BETA
BINDING PROTEIN 2
LY86 205859_at LYMPHOCYTE ANTIGEN NM_ 004271 NP_004262
86
LY96 206584 _at LYMPHOCYTE ANTIGEN NM_015364 NP_056179
96
MAP2K1IP1 217971_at MITOGEN-ACTIVATED NM_021970 NP__068805
PROTEIN KINASE KINASE
1 INTERACTING PROTEIN 1
MAP2K6 205698_s_at  MITOGEN-ACTIVATED NM_002758 NP_002749
PROTEIN KINASE KINASE 6 NM_031988 NP__114365
MAPK14 210449_x_at MAPK14 MITOGEN- NM_001315 NP_001306
ACTIVATED PROTEIN NM__ 139012 NP__ 620581
KINASE 14 NM_139013 NP__620582
NM_139014 NP__620583
MAPK14 211561_x_at MAPKI14 MITOGEN- NM_001315 NP_001306
ACTIVATED PROTEIN NM__ 139012 NP__ 620581
KINASE 14 NM_139013 NP__620582
NM_139014 NP__620583
MAPK14 211087_x_at MAPKI14 MITOGEN- NM_001315 NP_001306
ACTIVATED PROTEIN NM__ 139012 NP__ 620581
KINASE 14 NM_139013 NP__620582
NM_139014 NP__620583
MAPK14 202530_at MAPK14 MITOGEN- NM_001315 NP_001306
ACTIVATED PROTEIN NM__ 139012 NP__ 620581
KINASE 14 NM_139013 NP__620582
NM_139014 NP__620583
MARCKSL1 200644 _at MARCKS-LIKE 1 NM_ 023009 NP_075385
MCTP2 220603_s_at MULTIPLE C2-DOMAINS NM_ 018349 NP__060819
WITH TWO
TRANSMEMBRANE
REGIONS 2
MCTP2 229005_at MULTIPLE C2-DOMAINS NM_018349 NP__060819
WITH TWO
TRANSMEMBRANE
REGIONS 2
MCTP2 239893_at MULTIPLE C2-DOMAINS NM_018349 NP__060819
WITH TWO
TRANSMEMBRANE
REGIONS 2
MEF2A 214684 _at MADS BOX NM__005587 NP__005578
TRANSCRIPTION
ENHANCER FACTOR 2,
POLYPEPTIDE A
(MYOCYTE ENHANCER

FACTOR 2A)
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TABLE 30-continued

Exemplary biomarkers that discriminate between responders and

nonresponders
Gene Protein
Affymetrix Accession Accession

Gene Symbol Probeset name  Gene Name Number Number

Column Column Column Column Column

1 2 3 4 5

MEF2C 236395_at MADS BOX NM_ 002397 NP_002388
TRANSCRIPTION
ENHANCER FACTOR 2,

POLYPEPTIDE C
(MYOCYTE ENHANCER
FACTOR 2C)

MGC11324 224480_s_at HYPOTHETICAL PROTEIN NM_032717 NP_116106
MGC11324

MGC15619 226879_at HYPOTHETICAL PROTEIN NM_ 032369 NP__115745
MGC15619

MGC15887 226448 _at HYPOTHETICAL GENE NM__198552 NP__940954
SUPPORTED BY BC009447

MGC17301 227055_at HYPOTHETICAL PROTEIN NM_152637 NP__689850
MGC17301

MGC23280 226121_at HYPOTHETICAL PROTEIN NM__144683 NP_653284
MGC23280

MKNK1 209467_s_at MAP KINASE NM_ 003684 NP_003675
INTERACTING NM__198973 NP_ 945324
SERINE/THREONINE
KINASE 1

MLKL 238025_at MIXED LINEAGE KINASE NM__152649 NP__689862
DOMAIN-LIKE

MLLT2 201924_at MYELOID/LYMPHOID OR NM_ 005935 NP_005926
MIXED-LINEAGE
LEUKEMIA (TRITHORAX
HOMOLOG,

DROSOPHILA);
TRANSLOCATED TO, 2

MMP9 203936_s_at MATRIX NM_004994 NP__004985
METALLOPROTEINASE 9
(GELATINASE B, 92 KDA
GELATINASE, 92 KDA
TYPE IV COLLAGENASE)

MOBK1B 201298_s_at MOBI, MPS ONE BINDER NM_018221 NP_060691
KINASE ACTIVATOR-LIKE
1B (YEAST)

MOBKL2C 227066_ at MOBI, MPS ONE BINDER NM__ 145279 NP__ 660322
KINASE ACTIVATOR-LIKE NM_ 201403 NP__958805
2C (YEAST)

MPEG1 226818_at MACROPHAGE XM_ 166227 XP_ 166227
EXPRESSED GENE 1

MPEG1 226841_at MACROPHAGE XM_ 166227 XP_ 166227
EXPRESSED GENE 1

MSL3L1 207551_s_at MALE-SPECIFIC LETHAL NM__006800 NP_006791
3-LIKE 1 (DROSOPHILA) NM_ 078628 NP_ 523352

NM_078629 NP_523353
NM_ 078630 NP_523354

MSL3L1 214009_at MALE-SPECIFIC LETHAL NM__006800 NP_006791

3-LIKE 1 (DROSOPHILA) NM_ 078628 NP_ 523352
NM_078629 NP_523353
NM_ 078630 NP_523354

MSRB2 218773_s_at METHIONINE SULFOXIDE NM_ 012228 NP__036360
REDUCTASE B2

MTF1 227150_at METAL-REGULATORY NM_005955 NP__005946
TRANSCRIPTION FACTOR 1

MTMR6 214429_ at MYOTUBULARIN NM_004685 NP_004676
RELATED PROTEIN 6

MYO10 201976_s_at  MYOSINX NM_ 012334 NP__036466

NALP1 210113_s_at NACHT, LEUCINE RICH NM_ 014922 NP_055737
REPEAT AND PYD (PYRIN NM_ 033004 NP__127497
DOMAIN) CONTAINING 1 NM__033006 NP__127499

NM_033007 NP__127500

NALP1 211824_x_at NACHT, LEUCINE RICH NM_ 014922 NP_055737
REPEAT AND PYD (PYRIN NM__ 033004 NP__127497
DOMAIN) CONTAINING 1 NM_033006 NP__127499

NM_033007 NP__127500
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Exemplary biomarkers that discriminate between responders and

nonresponders
Gene Protein
Affymetrix Accession Accession
Gene Symbol Probeset name  Gene Name Number Number
Column Column Column Column Column
1 2 3 4 5
NARF 219862_s_at NUCLEAR PRELAMIN A NM_012336 NP_036468
RECOGNITION FACTOR NM_031968 NP_114174
NBS1 202906_s_at NIIMEGEN BREAKAGE NM_ 002485 NP_002476
SYNDROME 1 (NIBRIN)
NBS1 217299_s_at NIIMEGEN BREAKAGE NM_ 002485 NP_002476
SYNDROME 1 (NIBRIN)
NCR1 207860_at NATURAL NM_ 004829 NP__004820
CYTOTOXICITY
TRIGGERING RECEPTOR 1
NDST2 203916_at N-DEACETYLASE/N- NM__ 003635 NP__003626
SULFOTRANSFERASE
(HEPARAN
GLUCOSAMINYL) 2
NDUFA1 202298 _at NADH DEHYDROGENASE NM__ 004541 NP__004532
(UBIQUINONE) 1 ALPHA
SUBCOMPLEX, 1, 7.5 KDA
NDUFB3 203371_s_at NADH DEHYDROGENASE NM_ 002491 NP_002482
(UBIQUINONE) 1 BETA
SUBCOMPLEX, 3, 12 KDA
NFKBIZ 223218_s_at NUCLEAR FACTOR OF NM_001005474 NP__001005474
KAPPA LIGHT NM_031419 NP_113607
POLYPEPTIDE GENE
ENHANCER IN B-CELLS
INHIBITOR, ZETA
NMI 203964 _at N-MYC (AND STAT) NM_004688 NP_004679
INTERACTOR
NT5C2 209155_s_at 5-NUCLEOTIDASE, NM_012229 NP_036361
CYTOSOLIC I
NTNG2 233072_at NETRIN G2 NM_ 032536 NP_115925
NUPL1 204435_at NUCLEOPORIN LIKE 1 NM_ 001008564 NP__001008564
NM_ 001008565 NP__001008565
NM_ 014089 NP__054808
OACT2 226726_at O-ACYLTRANSFERASE NM__138799 NP_ 620154
(MEMBRANE BOUND)
DOMAIN CONTAINING 2
OAT 201599_at ORNITHINE NM_ 000274 NP__000265
AMINOTRANSFERASE
(GYRATE ATROPHY)
OMG 207093_s_at OLIGODENDROCYTE NM_ 002544 NP_002535
MYELIN GLYCOPROTEIN
OPLAH 222025_s_at  5-OXOPROLINASE (ATP- NM_ 017570 NP__060040
HYDROLYSING)
ORF1-FL49 224707_at PUTATIVE NUCLEAR NM_032412 NP_115788
PROTEIN ORF1-F149
OSM 230170_at ONCOSTATIN M NM__ 020530 NP_065391
OSTalpha 229230_at ORGANIC SOLUTE NM_152672 NP__689885
TRANSPORTER ALPHA
OTUD1 226140_s_at OTU DOMAIN XM_166659 XP__166659
CONTAINING 1
P2RX1 210401_at PURINERGIC RECEPTOR NM_002558 NP__002549
P2X, LIGAND-GATED ION
CHANNEL, 1
PAG 225622_at PHOSPHOPROTEIN NM_ 018440 NP__060910
ASSOCIATED WITH
GLYCOSPHINGOLIPID-
ENRICHED
MICRODOMAINS
PAM 202336_s_at PEPTIDYLGLYCINE NM__000919 NP__000910
ALPHA-AMIDATING NM__138766 NP_620121
MONOOXYGENASE NM_138821 NP_620176
NM__138822 NP_ 620177
PAPSS1 209043 _at 3'-PHOSPHOADENOSINE NM_ 005443 NP_005434
5'-PHOSPHOSULFATE
SYNTHASE 1
PBEF1 217738_at PRE-B-CELL COLONY NM_ 005746 NP_005737
ENHANCING FACTOR 1 NM__182790 NP_877591

May 5, 2011



US 2011/0105350 Al

132

TABLE 30-continued

Exemplary biomarkers that discriminate between responders and

nonresponders
Gene Protein
Affymetrix Accession Accession
Gene Symbol Probeset name  Gene Name Number Number
Column Column Column Column Column
1 2 3 4 5
PBEF1 217739_s_at PRE-B-CELL COLONY NM_ 005746 NP_005737
ENHANCING FACTOR 1 NM__182790 NP_877591
PBEF1 1555167_s_at PRE-B-CELL COLONY NM_ 005746 NP_005737
ENHANCING FACTOR 1 NM__182790 NP_877591
PBEF1 243296_at PRE-B-CELL COLONY NM_ 005746 NP_005737
ENHANCING FACTOR 1 NM__182790 NP__877591
PCGF5 227935_s_at  POLYCOMB GROUP RING NM_ 032373 NP__115749
FINGER 5
PCMT1 208857_s_at PROTEIN-L- NM_ 005389 NP__005380
ISOASPARTATE (D-
ASPARTATE) O-
METHYLTRANSFERASE
PCMT1 210156_s_at PROTEIN-L- NM_ 005389 NP__005380
ISOASPARTATE (D-
ASPARTATE) O-
METHYLTRANSFERASE
PCMT1 205202_at PROTEIN-L- NM_ 005389 NP__005380
ISOASPARTATE (D-
ASPARTATE) O-
METHYLTRANSFERASE
PDCDILG1 227458 _at CD274 ANTIGEN (CD274) NM_014143 NP_054862
PDCDILG1 223834_at CD274 ANTIGEN (CD274) NM_ 014143 NP__054862
PDESA 239556_at PHOSPHODIESTERASE 5A, NM_001083 NP_001074
CGMP-SPECIFIC NM_ 033430 NP_236914
NM_ 033437 NP_246273
NM_ 033431 NP_ 237223
PDK1 226452_at PYRUVATE NM_002610 NP_002601
DEHYDROGENASE
KINASE, ISOENZYME 1
PEA1S 200788_s_at PHOSPHOPROTEIN NM_003768 NP__003759
ENRICHED IN
ASTROCYTES 15
PFKFB2 209992_ at 6-PHOSPHOFRUCTO-2- NM_ 006212 NP__006203
KINASE/FRUCTOSE-2,6-
BIPHOSPHATASE 2
PFKFB2 226733_at 6-PHOSPHOFRUCTO-2- NM_006212 NP__006203
KINASE/FRUCTOSE-2,6-
BIPHOSPHATASE 2
PFKFB3 202464_s_at  6-PHOSPHOFRUCTO-2- NM_ 004566 NP_004557
KINASE/FRUCTOSE-2,6-
BISPHOSPHATASE 3
PFTK1 204604_at PFTAIRE PROTEIN NM_012395 NP_036527
KINASE 1
PGLYRP1 207384_at PEPTIDOGLYCAN NM_005091 NP__005082
RECOGNITION PROTEIN 1
PGM2 225366_at PHOSPHOGLUCOMUTASE 2 NM_018290 NP__060760
PGS1 219394_at PHOSPHATIDYLGLYCERO- NM_ 024419 NP_077733
PHOSPHATE SYNTHASE
PHTF1 210191_s_at PUTATIVE NM__006608 NP__006599
HOMEODOMAIN
TRANSCRIPTION FACTOR 1
PHTF1 215285_s_at PUTATIVE NM_006608 NP__006599
HOMEODOMAIN
TRANSCRIPTION FACTOR 1
PHTF1 205702_at PUTATIVE NM_006608 NP__006599
HOMEODOMAIN
TRANSCRIPTION FACTOR 1
PIK3AP1 226459_at PHOSPHOINOSITIDE-3- NM_152309 NP__689522
KINASE ADAPTOR
PROTEIN 1
PIK3CB 212688_at PHOSPHOINOSITIDE-3- NM_006219 NP_006210
KINASE, CATALYTIC,
BETA POLYPEPTIDE
PIM3 224739_ at PIM-3 ONCOGENE NM_ 001001852 NP__001001852
PIPSKI1A 235646_at PHOSPHATIDYLINOSITOL- NM_ 003557 NP_003548

4-PHOSPHATE 5-KINASE,
TYPE I, ALPHA
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Exemplary biomarkers that discriminate between responders and

nonresponders
Gene Protein
Affymetrix Accession Accession
Gene Symbol Probeset name  Gene Name Number Number
Column Column Column Column Column
1 2 3 4 5
PLSCR1 244315_at PHOSPHOLIPID NM_021105 NP_066928
SCRAMBLASE 1
PLSCR1 241916_at PHOSPHOLIPID NM_021105 NP_066928
SCRAMBLASE 1
POR 208928 _at P450 (CYTOCHROME) NM_000941 NP__000932
OXIDOREDUCTASE
PPPIR12A 201602_s_at PROTEIN PHOSPHATASE NM_002480 NP_002471
1, REGULATORY
(INHIBITOR) SUBUNIT
12A
PPP4R2 225519_at PROTEIN PHOSPHATASE NM__174907 NP_777567
4, REGULATORY SUBUNIT 2
PPP4R2 226317_at PROTEIN PHOSPHATASE NM__174907 NP_777567
4, REGULATORY SUBUNIT 2
PRO0149 225183_at PRO0149 PROTEIN NM_014117 NP_054836
PRV1 219669_at NEUTROPHIL-SPECIFIC NM_020406 NP_065139
ANTIGEN 1
(POLYCYTHEMIA RUBRA
VERA 1)
PSTPIP2 219938_s_at PROLINE/SERINE/THREONINE NM_ 024430 NP_077748
PHOSPHATASE-
INTERACTING PROTEIN 1
(PROLINE-SERINE-
THREONINE
PHOSPHATASE
INTERACTING PROTEIN 2)
PTDSR 212723_at CHROMOSOME 17 NM_015167 NP_055982
GENOMIC CONTIG,
ALTERNATE ASSEMBLY
(PHOSPHATIDYLSERINE
RECEPTOR)
PTDSR 212722_s_at CHROMOSOME 17 NM_015167 NP_055982
GENOMIC CONTIG,
ALTERNATE ASSEMBLY
(PHOSPHATIDYLSERINE
RECEPTOR)
PTGFR 207177_at CHROMOSOME 17 NM_ 015167 NP__055982
GENOMIC CONTIG,
ALTERNATE ASSEMBLY
(PHOSPHATIDYLSERINE
RECEPTOR)
PTPN1 202716_at PROTEIN TYROSINE NM_ 002827 NP_002818
PHOSPHATASE, NON-
RECEPTOR TYPE 1
PTX1 226422 at PTX1 PROTEIN NM_ 016570 NP_057654
QSCN6 201482_at QUIESCIN Q6 NM_001004128 NP_001004128
NM_ 002826 NP_002817
RABI10 222981_s_at RABI10, MEMBER RAS NM_016131 NP_057215
ONCOGENE FAMILY
RAB20 219622_at RAB20, MEMBER RAS NM_017817 NP__060287
ONCOGENE FAMILY
RAB24 225251_at RAB24, MEMBER RAS NM_130781 NP_570137
ONCOGENE FAMILY
RAB27A 209514_s_at RAB27A, MEMBER RAS NM_004580 NP_004571
ONCOGENE FAMILY NM_183234 NP__899057
NM_ 183235 NP__899058
NM_183236 NP__899059
RAB27A 210951_x_at RAB27A, MEMBER RAS NM_004580 NP_004571
ONCOGENE FAMILY NM_183234 NP__899057
NM_ 183235 NP__899058
NM_183236 NP__899059
RAB43 225632_s_at RAB43, MEMBER RAS NM__198490 NP__940892
ONCOGENE FAMILY
RABSB 219210_s_at RABSB, MEMBER RAS NM_ 016530 NP_ 057614
ONCOGENE FAMILY
RABGEF1 218310_at RAB GUANINE NM_ 014504 NP_055319

NUCLEOTIDE EXCHANGE
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Exemplary biomarkers that discriminate between responders and

nonresponders
Gene Protein
Affymetrix Accession Accession
Gene Symbol Probeset name  Gene Name Number Number
Column Column Column Column Column
1 2 3 4 5
FACTOR (RAB GUANINE
NUCLEOTIDE EXCHANGE
FACTOR (GEF) 1)
RAD23B 201222_s_at  RAD23 HOMOLOG B (S. CEREVISIAE) NM_ 002874 NP__002865
RALB 202101_s_at V-RAL SIMIAN LEUKEMIA NM_ 002881 NP_002872
VIRAL ONCOGENE
HOMOLOG B (RAS
RELATED; GTP BINDING
PROTEIN)
RAPGEFL1 218657_at RAP GUANINE NM_ 014504 NP_055319
NUCLEOTIDE EXCHANGE
FACTOR (GEF)-LIKE 1
RARA 228037_at RETINOIC ACID NM_000964 NP__000955
RECEPTOR, ALPHA
RASSF4 226436_at RAS ASSOCIATION NM_ 032023 NP_114412
(RALGDS/AF-6) DOMAIN NM__178145 NP__835281
FAMILY 4
RBICC1 202033_s_at RBI-INDUCIBLE COILED- NM_ 014781 NP__055596
COIL 1
RBMS1 225265_at RNA BINDING MOTIF, NM_ 002897 NP__002888
SINGLE STRANDED NM_016836 NP__058520
INTERACTING PROTEIN 1 NM_ 016839 NP__058523
RBMS1 238317_x_at RNA BINDING MOTIF, NM_ 002897 NP__002888
SINGLE STRANDED NM_016836 NP__058520
INTERACTING PROTEIN 1 NM_016839 NP_058523
RFWD2 234950_s_at RING FINGER AND WD NM__ 001001740 NP__001001740
REPEAT DOMAIN 2 NM_ 022457 NP_071902
Rgr 235816_s_at RAL-GDS RELATED NM_153615 NP__705843
PROTEIN RGR
RGS10 204319_s_at REGULATOR OF G- NM_001005339 NP__001005339
PROTEIN SIGNALLING 10 NM_ 002925 NP_002916
RHOT1 222148_s_at  RAS HOMOLOG GENE NM_018307 NP_060777
FAMILY, MEMBER T1
RIT1 209882_at RAS-LIKE WITHOUT NM_ 006912 NP__008843
CAAX 1
RNASE6 213566_at RIBONUCLEASE, RNASE A NM_ 005615 NP__005606
FAMILY, K6
RNASEL 229285_at RIBONUCLEASE L (2',5- NM_021133 NP_066956
OLIGOISOADENYLATE
SYNTHETASE-
DEPENDENT)
RNF13 201779_s_at RING FINGER PROTEIN 13 NM_ 007282 NP_009213
NM__183381 NP__899237
NM__183382 NP__899238
NM_ 183383 NP__899239
NM_183384 NP__899240
RNF13 201780_s_at RING FINGER PROTEIN 13 NM_ 007282 NP_009213
NM__183381 NP__899237
NM_ 183382 NP__899238
NM__183383 NP__899239
NM_183384 NP__899240
ROD1 224618_at ROD1 REGULATOR OF NM__ 005156 NP__005147
DIFFERENTIATION 1 (S. POMBE)
ROD1 214697_s_at RODI1 REGULATOR OF NM_005156 NP_005147
DIFFERENTIATION 1 (S. POMBE)
RRM2 209773_s_at RIBONUCLEOTIDE NM_001034 NP_001025
REDUCTASE M2
POLYPEPTIDE
RSBN1 213694_at ROUND SPERMATID NM_018364 NP__060834
BASIC PROTEIN 1
RTN1 203485_at RETICULON 1 NM_ 021136 NP__066959
NM_ 206852 NP_996734
NM_ 206857 NP_996739
RTN4 214629_x_at RETICULON4 NM__007008 NP__008939
NM_ 020532 NP_065393
NM_153828 NP__722550
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Gene Protein
Affymetrix Accession Accession
Gene Symbol Probeset name  Gene Name Number Number
Column Column Column Column Column
1 2 3 4 5
NM_ 207520 NP__997403
NM_ 207521 NP_997404
RY1 212438_at PUTATIVE NUCLEIC ACID NM_006857 NP__006848
BINDING PROTEIN RY-1
S100A12 205863_at $100 CALCIUM BINDING NM_ 005621 NP_005612
PROTEIN A12
(CALGRANULIN C)
SAMSN1 1555638 _a_at SAM DOMAIN, SH3 NM_022136 NP_071419
DOMAIN, AND NUCLEAR
LOCALIZATION SIGNALS, 1
SAMSN1 220330_s_at SAM DOMAIN, SH3 NM_022136 NP_071419
DOMAIN, AND NUCLEAR
LOCALIZATION SIGNALS, 1
SAP30L 219129_s_at  SIN3A ASSOCIATED NM__ 024632 NP__078908
PROTEIN P30-LIKE
SART2 218854_at SQUAMOUS CELL NM_013352 NP_037484
CARCINOMA ANTIGEN
RECOGNIZED BY T CELLS 2
SBNO1 218737_at SNO, STRAWBERRY NM_018183 NP__060653
NOTCH HOMOLOG 1
(DROSOPHILA)
SDF2 203090__at STROMAL CELL-DERIVED NM__006923 NP__008854
FACTOR 2
SDHC 238056_at SUCCINATE NM_003001 NP_002992
DEHYDROGENASE
COMPLEX, SUBUNIT C,
INTEGRAL MEMBRANE
PROTEIN, 15 KDA
SEC15L1 226259_at SEC15-LIKE 1 (S. CEREVISIAE) NM_ 019053 NP_061926
NM_001013848 NP__001013870
SEC15L1 233924_s_at SEC15-LIKE 1 (S. CEREVISIAE) NM_ 019053 NP_061926
NM_001013848 NP__001013870
SEC24A 212902_at SEC24 RELATED GENE XM_ 094581 XP_ 094581
FAMILY, MEMBER A (S. CEREVISIAE)
SELIL 202064_s_at SEL-1 SUPPRESSOR OF NM_005065 NP_005056
LIN-12-LIKE (C. ELEGANS)
SERPINB1 228726_at SERINE (OR CYSTEINE) NM__030666 NP__109591
PROTEINASE INHIBITOR,
CLADE B (OVALBUMIN),
MEMBER 1
SERPINB1 212268 _at SERINE (OR CYSTEINE) NM__030666 NP__109591
PROTEINASE INHIBITOR,
CLADE B (OVALBUMIN),
MEMBER 1
SF3B14 223416_at SPLICING FACTOR 3B, 14 KDA NM__ 016047 NP_ 057131
SUBUNIT
SH3GLB1 209091_s_at SH3-DOMAIN GRB2-LIKE NM_ 016009 NP_057093
ENDOPHILIN B1
SH3GLB1 210101_x_at SH3-DOMAIN GRB2-LIKE NM__ 016009 NP__057093
ENDOPHILIN B1
SIPA1L2 225056_at SIGNAL-INDUCED NM_ 020808 NP__065859
PROLIFERATION-
ASSOCIATED GENE 1
(SIGNAL-INDUCED
PROLIFERATION-
ASSOCIATED 1 LIKE 2)
SLA 203761_at SRC-LIKE-ADAPTOR NM_006748 NP_006739
SLA 244492 at SRC-LIKE-ADAPTOR NM__ 006748 NP__006739
SLC22A4 205896_at SOLUTE CARRIER NM_003059 NP__003050
FAMILY 22 (ORGANIC
CATION TRANSPORTER),
MEMBER 4
SLC25A28 221432_s_at SOLUTE CARRIER NM_031212 NP__112489
FAMILY 25, MEMBER 28
SLC26A8 237340_at SOLUTE CARRIER NM_ 052961 NP__ 443193
FAMILY 26, MEMBER 8 NM_138718 NP_619732
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Gene Symbol
Column
1

Affymetrix
Probeset name
Column

2

Gene Name
Column
3

Gene
Accession
Number
Column

4

Protein
Accession
Number
Column

5

SLC2A3

SLC2A3

SLC2A3

SLC2A3

SLC2A3

SLC2A3

SLC37A3

SLC38A2

SMPDL3A

SOCS3
SOCS3
SOD2

SP100
SPPL2A
SQRDL

SRPK1

ST3GAL4

ST6GALNAC4

STATSB

STK17B

STK3

202497_x_at

202498_s_ at

216236_s_ at

202499_s_ at

222088_s_ at

236571_at

223304 _at

220924 _s_ at

213624 at

227697 _at

206359__at

216841 _s_ at

202863__at
226353 _at
217995_at

202200_s_ at

203759__at

223285_s_ at

1555086__at

205214 _at

204068__at

SOLUTE CARRIER
FAMILY 2 (FACILITATED
GLUCOSE

TRANSPORTER), MEMBER 3
SOLUTE CARRIER

FAMILY 2 (FACILITATED
GLUCOSE

TRANSPORTER), MEMBER 3
SOLUTE CARRIER

FAMILY 2 (FACILITATED
GLUCOSE

TRANSPORTER), MEMBER 3
SOLUTE CARRIER

FAMILY 2 (FACILITATED
GLUCOSE

TRANSPORTER), MEMBER 3
SOLUTE CARRIER

FAMILY 2 (FACILITATED
GLUCOSE

TRANSPORTER), MEMBER 3
SOLUTE CARRIER

FAMILY 2 (FACILITATED
GLUCOSE

TRANSPORTER), MEMBER 3
SOLUTE CARRIER
FAMILY 37 (GLYCEROL-3-
PHOSPHATE
TRANSPORTER), MEMBER 3
SOLUTE CARRIER

FAMILY 38, MEMBER 2
SPHINGOMYELIN
PHOSPHODIESTERASE
ACID-LIKE 3A
SUPPRESSOR OF
CYTOKINE SIGNALING 3
SUPPRESSOR OF
CYTOKINE SIGNALING 3
SUPEROXIDE DISMUTASE
2, MITOCHONDRIAL
NUCLEAR ANTIGEN SP100
SIGNAL PEPTIDE
PEPTIDASE-LIKE 2A
SULFIDE QUINONE
REDUCTASE-LIKE

(YEAST)

PROTEIN KINASE,
SERINE/ARGININE-
SPECIFIC, 1 (SFRS

PROTEIN KINASE 1)

ST3 BETA-GALACTOSIDE
ALPHA-23-
SIALYLTRANSFERASE 4
ST6 (ALPHA-N-ACETYL-
NEURAMINYL-2,3-BETA-
GALACTOSYL-1,3)-N-
ACETYLGALACTOSAMINIDE
ALPHA-2,6-
SIALYLTRANSFERASE 4
SIGNAL TRANSDUCER
AND ACTIVATOR OF
TRANSCRIPTION 5B
SERINE/THREONINE
KINASE 17B (APOPTOSIS-
INDUCING)
SERINE/THREONINE
PROTEIN KINASE 3
(SERINE/THREONINE

NM_006931

NM_006931

NM_006931

NM_006931

NM_006931

NM_006931

NM_ 032295
NM_ 207113

NM_ 018976

NM_ 006714

NM_ 003955

NM_ 003955

NM_ 000636

NM_003113
NM_ 032802
NM_ 021199

NM_ 003137

NM_ 006278

NM_ 014403
NM_175039
NM__175040

NM_ 012448

NM_ 004226

NM_ 006281

NP__008862

NP__008862

NP__008862

NP__008862

NP__008862

NP__008862

NP_115671
NP_996996

NP_061849

NP__006705

NP_003946

NP_003946

NP__000627

NP_ 003104
NP_116191
NP_067022

NP_003128

NP_006269

NP_ 055218
NP__778204
NP__778205

NP__036580

NP_ 004217

NP_006272
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TABLE 30-continued

Exemplary biomarkers that discriminate between responders and

nonresponders
Gene Protein
Affymetrix Accession Accession
Gene Symbol Probeset name  Gene Name Number Number
Column Column Column Column Column
1 2 3 4 5
KINASE 3 (STE20
HOMOLOG, YEAST))
STOM 201060_x_at STOMATIN NM_004099 NP__004090
NM_198194 NP_937837
STX3A 209238_at SYNTAXIN 3A NM_004177 NP_004168
SULF2 233555_s_at SULFATASE 2 NM_ 018837 NP_ 061325
NM__198596 NP__940998
SULF2 224724_at SULFATASE 2 NM_ 018837 NP_061325
NM__198596 NP__940998
SULT1Al 203615_x_at SULFOTRANSFERASE NM_ 001055 NP__001046
FAMILY, CYTOSOLIC, 1A, NM_177529 NP__803565
PHENOL-PREFERRING, NM__177530 NP__803566
MEMBER 1 NM_177534 NP__803878
NM__177536 NP__803880
SULT1B1 207601_at SULFOTRANSFERASE NM_ 014465 NP__055280
FAMILY, CYTOSOLIC, 1B,
MEMBER 1
TBC1D15 218268 _at TBC1 DOMAIN FAMILY, NM_ 022771 NP_073608
MEMBER 15
TBC1D8 204526_s_at  TBC1 DOMAIN FAMILY, NM_007063 NP__008994
MEMBER & (WITH GRAM
DOMAIN)
TCTEL1 201999_s_at T-COMPLEX- NM_006519 NP__006510
ASSOCIATED-TESTIS-
EXPRESSED 1 (T-
COMPLEX-ASSOCIATED-
TESTIS-EXPRESSED 1-
LIKE 1
TCTEL1 242109_at T-COMPLEX- NM_006519 NP__006510
ASSOCIATED-TESTIS-
EXPRESSED 1 (T-
COMPLEX-ASSOCIATED-
TESTIS-EXPRESSED 1-
LIKE 1
TDRD9 228285_at TUDOR DOMAIN NM__153046 NP__694591
CONTAINING 9
TGFBL 201506_at TRANSFORMING NM_000358 NP__000349
GROWTH FACTOR, BETA-
1 (TRANSFORMING
GROWTH FACTOR, BETA-
INDUCED, 68 KDA)
TIAM2 222942_s_at T-CELL LYMPHOMA NM_ 001010927 NP__001010927
INVASION AND NM_012454 NP_036586
METASTASIS 2
TIFA 238858_at TRAF-INTERACTING NM__ 052864 NP__ 443096
PROTEIN WITH A
FORKHEAD-ASSOCIATED
DOMAIN
TIFA 226117_at TRAF-INTERACTING NM_ 052864 NP__443096
PROTEIN WITH A
FORKHEAD-ASSOCIATED
DOMAIN
TIFA 235971_at TRAF-INTERACTING NM_ 052864 NP__443096
PROTEIN WITH A
FORKHEAD-ASSOCIATED
DOMAIN
TLRS 210166_ at TOLL-LIKE RECEPTOR 5 NM__ 003268 NP__003259
TMEM?2 218113_at TRANSMEMBRANE NM_013390 NP_037522
PROTEIN 2
TMEMS33 235907_at TRANSMEMBRANE NM_ 018126 NP__060596
PROTEIN 33
TMOD3 223078_s_at TROPOMODULIN 3 NM_ 014547 NP_055362
(UBIQUITOUS)
TneRNA 214657_s_at  TROPHOBLAST-DERIVED

NONCODING RNA
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TABLE 30-continued

Exemplary biomarkers that discriminate between responders and

nonresponders
Gene Protein
Affymetrix Accession Accession
Gene Symbol Probeset name  Gene Name Number Number
Column Column Column Column Column
1 2 3 4 5
TNFAIP6 206026_s_at TUMOR NECROSIS NM_007115 NP__009046
FACTOR, ALPHA-
INDUCED PROTEIN 6
TNFAIP6 206025_s_at TUMOR NECROSIS NM_007115 NP__009046
FACTOR, ALPHA-
INDUCED PROTEIN 6
TNFAIP9 225987_at TUMOR NECROSIS NM_ 024636 NP_078912
FACTOR, ALPHA-
INDUCED PROTEIN 9
TNFSF10 202687_s_at TUMOR NECROSIS NM__ 003810 NP__003801
FACTOR (LIGAND)
SUPERFAMILY, MEMBER
10
TNFSF13B 223501_at TUMOR NECROSIS NM__006573 NP__006564
FACTOR (LIGAND)
SUPERFAMILY, MEMBER
13B
TOP1 208901_s_at TOPOISOMERASE (DNA) I NM__ 003286 NP_003277
TOSO 221602_s_at FAS APOPTOTIC NM_ 005449 NP__005440
INHIBITORY MOLECULE
(FAIM3)
TPARL 218095_s_at TPA REGULATED LOCUS NM_ 018475 NP__060945
TPCN1 242108_at TWO PORE SEGMENT NM_017901 NP_060371
CHANNEL 1
TPRT 220865_s_at TRANS- NM_014317 NP_055132
PRENYLTRANSFERASE
TRA@ 234013_at T CELL RECEPTOR ALPHA
LOCUS
TRA@ 211902_x_at T CELL RECEPTOR ALPHA
LOCUS
TRBC1 211796_s_at T CELL RECEPTOR BETA
CONSTANT 1
TRIB1 202241_at TRIBBLES HOMOLOG 1 NM_ 025195 NP_ 079471
(DROSOPHILA)
TRPMS6 224412_s_at TRANSIENT RECEPTOR NM_017662 NP_060132
POTENTIAL CATION
CHANNEL, SUBFAMILY
M, MEMBER 6
TN 240793_at TITIN NM_003319 NP_003310
NM_133378 NP__596869
NM__ 133379 NP__596870
NM_133432 NP_597676
NM_133437 NP_597681
TTYH2 223741_s_at TWEETY, DROSOPHILA, NM_ 032646 NP_116035
HOMOLOG OF, 2 NM__ 052869 NP_ 443101
TXN 208864_s_at THIOREDOXIN NM_ 003329 NP_003320
UBE2H 222421_at UBIQUITIN- NM_ 003344 NP_003335
CONJUGATING ENZYME NM__182697 NP__874356
E2H (UBC8 HOMOLOG,
YEAST)
UBE2J1 217826_s_at UBIQUITIN- NM_016021 NP_057105
CONJUGATING ENZYME
E2, J1 (UBC6 HOMOLOG,
YEAST)
UBQLN2 215884_s_at UBIQUILIN 2 NM_ 013444 NP_038472
UNC84B 229548 _at UNC-84 HOMOLOG B (C. ELEGANS) NM_015374 NP_056189
USP38 223289_s_at UBIQUITIN SPECIFIC NM_ 032557 NP__115946
PROTEASE 38
USP9IX 201099_at UBIQUITIN SPECIFIC NM_004652 NP__004643
PROTEASE 9, X-LINKED NM_021906 NP__068706
(FAT FACETS-LIKE,
DROSOPHILA)
VAV3 218807_at VAV 3 ONCOGENE NM_006113 NP_006104
WBP4 203598_s_at WW DOMAIN BINDING NM_ 007187 NP_009118
PROTEIN 4 (FORMIN

BINDING PROTEIN 21)
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TABLE 30-continued

Exemplary biomarkers that discriminate between responders and

nonresponders
Gene Protein
Affymetrix Accession Accession
Gene Symbol Probeset name  Gene Name Number Number
Column Column Column Column Column
1 2 3 4 5
WDFY3 212606_at WD REPEAT AND FYVE NM_ 014991 NP__055806
DOMAIN CONTAINING 3 NM__178583 NP__848698
NM__178585 NP__848700
WDFY3 212602_at WD REPEAT AND FYVE NM_ 014991 NP__055806
DOMAIN CONTAINING 3 NM__178583 NP__848698
NM__178585 NP__848700
WDFY3 212598 _at WD REPEAT AND FYVE NM_ 014991 NP__055806
DOMAIN CONTAINING 3 NM__178583 NP__848698
NM__178585 NP__848700
WSB1 227501_at WD REPEAT AND SOCS NM_ 015626 NP__056441
BOX-CONTAINING 1 NM_134264 NP__599026
NM__134265 NP__599027
WSB1 210561_s_at WD REPEAT AND SOCS NM_015626 NP_056441
BOX-CONTAINING 1 NM__ 134264 NP__599026
NM__134265 NP__599027
WSB1 201296_s_at WD REPEAT AND SOCS NM_015626 NP_056441
BOX-CONTAINING 1 NM_134264 NP__599026
NM__134265 NP__599027
XRN1 1555785_a_at 5'-3' EXORIBONUCLEASE 1 NM_ 019001 NP_061874
XRN1 233632_s_at 5'-3' EXORIBONUCLEASE 1 NM_ 019001 NP_061874
ZC3HAV1 225634_at ZINC FINGER CCCH TYPE, NM_020119 NP__064504
ANTIVIRAL 1 NM__ 024625 NP__078901
ZCSL2 225195_at ZINC FINGER, CSL NM_ 206831 NP_996662
DOMAIN CONTAINING 2
ZDHHC19 231122_x_at ZINC FINGER, DHHC NM__144637 NP_653238
DOMAIN CONTAINING 19
ZDHHC19 1553952__at ZINC FINGER, DHHC NM__144637 NP_653238
DOMAIN CONTAINING 19
ZFP276 213778_x_at ZINC FINGER PROTEIN 276 NM_152287 NP__689500
HOMOLOG (MOUSE)
ZFP36L2 201367_s_at ZINC FINGER PROTEIN 36, NM_006887 NP_008818
C3H TYPE-LIKE 2; ZFP361.2
ZFP36L2 201369_s_at ZINC FINGER PROTEIN 36, NM__006887 NP__008818
C3H TYPE-LIKE 2; ZFP361.2
ZNF167 206314_at ZINC FINGER PROTEIN 167 NM_018651 NP_061121
NM_ 025169 NP_079445
230585_at EST
200880_at EST
230267_at EST
215966_x_at EST
237071_at EST
230683_at EST
241388 _at EST
204166_at EST
241652_x_at EST
229968 _at EST
223596_at EST
240310_at EST
216609_ at EST
224604_at EST
223797_at EST
238973_s_at EST
230632_at EST
230575_at EST
1559777_at EST
244313_at EST
242582_at EST
233264_at EST
219253_at EST
235427_at EST
1555311_at EST
229934_at EST
231035_s_at EST
230999_ at EST
224261_at EST
239780_at EST
239669_at EST

May 5, 2011



US 2011/0105350 Al

TABLE 30-continued

May 5, 2011

140

Exemplary biomarkers that discriminate between responders and

nonresponders
Gene Protein

Affymetrix Accession Accession
Gene Symbol Probeset name  Gene Name Number Number
Column Column Column Column Column
1 2 3 4 5

213002__at EST

227925_at EST

235456__at EST

233312_at EST

239167_at EST

1569263__at EST

216198__at EST

232876_at EST

237387_at EST

216621__at EST

235352_at EST

1564933_at EST

222376_at EST

205922 at EST

1557626__at EST

228758_at EST

1557733_a_at EST

236898__at EST
[0526] Each of the sequences, genes, proteins, and the U133 plus 2.0 array. Furthermore, some of'the oligonucle-

probesets identified in Table 30 is hereby incorporated by
reference.

6.7 Exemplary Biomarker Combinations

[0527] In one embodiment of the present invention, an
additional criterion was applied to the set of biomarkers iden-
tified in Section 6.6. Specifically, the additional criterion that
was imposed was a requirement that each respective biomar-
ker under consideration exhibit at least a 1.2x fold change
between the median value for the respective biomarker
among the subjects that acquired sepsis during a defined time
period (sepsis subjects) and the median value for the respec-
tive biomarker among subjects that do not acquire sepsis
during the defined time period (SIRS subjects) at the T_,,
static time and at the T_; static time periods. Furthermore, to
satisfy the third criterion, the biomarker must have been used
in at least one multivariate analysis with significant classifi-
cation performance where significant classification perfor-
mance is defined by having a lower 95% percentile for accu-
racy on a training data set that is grater than 50% and a point
estimate for accuracy on the validation set that is greater than
65% at any time point measured. As noted in FIG. 30, appli-
cation of this third filter criterion reduced the number of
eligible biomarkers from 626 to 130. These biomarkers are
listed column two of Table 31. In column two of Table 31, the
biomarkers are indicated by the U133 plus 2.0 probeset to
which they bind. However, in some embodiments, each such
biomarker is, in fact, an mRNA, cDNA, or other such nucleic
acid molecule corresponding to the identified U133 plus 2.0
oligonucleotide probe listed in column two of Table 31.

[0528] In column one of Table 31, each biomarker is listed
by a gene name, such as, for example, a Human Gene Nomen-
clature Database (HUGO) symbol set forth by the Gene
Nomenclature Committee, Department of Biology, Univer-
sity College London. As is known in the art, some human
genome genes are represented by more than one probeset in

otides in the U133 plus 2.0 array represent expression
sequence tags (ESTs) that do not correspond to a known gene.
As a result, the 130 biomarkers listed in Table 31, in fact,
represent 95 different known genes (see FIG. 30). Where
known, the names of the 95 different human genes are listed
in column three of Table 31.

[0529] Incolumn four of Table 31, the median fold change
between the mean value of the biomarker measured fromT_,
samples of those subjects in the training population that
develop sepsis (sepsis subjects) versus the mean value of the
biomarker measured from T_, , samples of those subjects in
the training population that do not develop sepsis (SIRS sub-
jects) is given. In column five of Table 31, the direction of the
fold change, where “+” indicates that the mean value in the
sepsis subjects is greater than in the SIRS subjects, is given.

[0530] In column six of Table 31, the median fold change
between the mean value of the biomarker measured from T_; ¢
samples of those subjects in the training population that
develop sepsis (sepsis subjects) versus the mean value of the
biomarker measured from T_;, samples of those subjects in
the training population that do not develop sepsis (SIRS sub-
jects) is given. In column seven of Table 31, the direction of
the fold change, where “+” indicates that the mean value in
the sepsis subjects is greater than in the SIRS subjects, is
given.

[0531] In a particular embodiment, the biomarker profile
comprises at least two different biomarkers that each contain
one of the probesets of Table 32, biomarkers that contain the
complement of one of the probesets of Table 32, or biomar-
kers that contain an amino acid sequence encoded by a gene
that contains one of the probesets of Table 32. Such biomar-
kers can be, for example, mRNA transcripts, cDNA or some
other nucleic acid, for example amplified nucleic acid, or
proteins. The biomarker profile further comprises a respective
corresponding feature for the at least two biomarkers. Gen-
erally, the at least two biomarkers are derived from at least
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two different genes. In the case where a biomarker is based
upon a gene that includes the sequence of a probeset listed in
Table 32 or a complement thereof, the biomarker can be, for
example, a transcript made by the gene, a complement
thereof, or a discriminating fragment or complement thereof,
oracDNA thereof, or a discriminating fragment of the cDNA,
or a discriminating amplified nucleic acid molecule corre-
sponding to all or a portion of the transcript or its comple-
ment, or a protein encoded by the gene, or a discriminating
fragment of the protein, or an indication of any of the above.
Further still, the biomarker can be, for example, a protein
encoded by a gene that includes a probeset sequence
described in Table 32 or a discriminating fragment of the
protein, or an indication of the above. Here, a discriminating
molecule or fragment is a molecule or fragment that, when
detected, indicates presence or abundance of the above-iden-
tified transcript, cDNA, amplified nucleic acid, or protein. In
one embodiment, a biomarker profile of the present invention
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comprises a plurality of biomarkers that contain at least five,
at least ten at least fifteen, at least twenty, at least thirty,
between 2 and 5, between 3 and 7, or less than 15 of the
sequences of the probesets of Table 32, or complements
thereof, or genes including one of at least five of the
sequences or complements thereof, or a discriminating frag-
ment thereof, or an amino acid sequence encoded by any of
the foregoing nucleic acid sequences, or any discriminating
fragment of such an amino acid sequence. Such biomarkers
can be, for example, mRNA transcripts, cDNA or some other
nucleic acid, for example amplified nucleic acid, or proteins.
In some embodiments a biomarker is any gene that includes
the sequence in an Affymetrix probeset given in Table 31, or
any gene that includes a complement of the sequence in an
Aftymetrix probeset given in Table 32, or any mRNA, cDNA
or other form of amplified nucleic acid of the foregoing, for
any discriminating fragment of the foregoing, or any amino
acid sequence coded by the foregoing, or any discriminating
fragment of such a protein.

TABLE 31

Exemplary biomarkers that discriminate between converters and non-converters

T, Values T 1, Values
Affymetrix Median Median
Gene Symbol  Probeset name Gene Name FC Direction FC Direction
Column 1 Column 2 Column 3 Column 3 Column4 Column5 Column 6
1555785_a at  EST 1.34 Up 1.31 up
227150_at EST 1.45 Up 1.34 up
238973 _s_at EST 1.33 Up 1.25 up
239893 _at EST 1.89 Up 1.46 up
237563 _s_at EST 1.84 Up 1.60 up
244313 _at EST 1.87 Up 1.80 up
237071 _at EST 1.73 up 1.37 up
229934 _at EST 1.67 up 1.41 up
1555311 _at EST 1.31 up 1.21 up
233264 _at EST 1.52 up 1.36 up
239780_at EST 1.93 up 1.42 up
238405_at EST 3.02 up 2.23 up
3"HEXO 226416_at HISTONE MRNA 3' END 1.70 up 1.41 up
EXORIBONUCLEASE
3"HEXO 231852 _at 1.45 up 1.22 up
ADORA2A 205013_s_at ADENOSINE A2 RECEPTOR 1.32 up 1.33 up
ANXA3 209369_at ANNEXIN A3 2.82 up 2.23 up
ASAHL 214765_s_at N-ACYLSPHINGOSINE 1.28 down 1.29 down
AMIDOHYDROLASE-LIKE
PROTEIN
ASAHL 232072_at 1.23 down 1.31 down
ASAHL 227135 _at 1.24 down 1.26 down
ATP11B 1554557 _at ATPASE, CLASS VI, TYPE 11B 1.70 up 1.49 up
ATP6V1C1 202872_at ATPASE, H+ TRANSPORTING, 1.85 up 1.49 up
LYSOSOMAL, 42-KD, V1
SUBUNIT C, ISOFORM 1
B4GALTS 221485 _at BETA-1,4- 1.67 up 1.43 up
GALACTOSYLTRANSFERASE
BASP1 202391 _at BRAIN-ABUNDANT SIGNAL 1.42 up 1.23 up
PROTEIN
BAZ1A 217986_s_at BROMODOMAIN ADJACENT 1.89 up 1.57 up
TO ZINC FINGER DOMAIN, 1A
BCL6 203140_at B-CELL LYMPHOMA 6 1.46 up 1.33 up
BMX 206464 _at BONE MARROW KINASE, X- 1.87 up 1.52 up
LINKED
Cl6orf7 205781 _at CHROMOSOME 16 OPEN- 1.96 up 1.49 up
READING FRAME 7
C200rf32 1554786 _at CHROMOSOME 20 OPEN- 1.27 down 1.24 down
READING FRAME 32
C3F 203547 _at COMPLEMENT COMPONENT 3 1.28 down 1.26 down
C8FW 202241 _at C8FW GENE; 1.57 up 1.34 up

PHOSPHOPROTEIN.
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TABLE 31-continued

Exemplary biomarkers that discriminate between converters and non-converters

T_,, Values T_3 Values
Affymetrix Median Median
Gene Symbol  Probeset name Gene Name FC Direction FC Direction
Column 1 Column 2 Column 3 Column3 Column4 Column3 Column 6
CEACAM1 209498 _at CARCINOEMBRYONIC 2.78 up 2.20 up
ANTIGEN-RELATED CELL
ADHESION MOLECULE 1
CEACAM1 211883_x_at 1.87 up 1.61 up
CECR1 219505_at CAT EYE SYNDROME 1.25 down 1.26 down
CHROMOSOME REGION,
CANDIDATE 1
CHCHD7 222701_s_at COILED-COIL-HELIX 1.58 up 1.26 up
DOMAIN-CONTAINING
PROTEIN 7
CHSY1 203044 _at CARBOHYDRATE SYNTHASE 1 1.78 up 1.24 up
CKLF 223451 s at CHEMOKINE-LIKE FACTOR 1.59 up 1.40 up
CKLF 219161 _s_at 1.38 up 1.31 up
CL25022 217883 _at 1.36 up 1.31 up
CPD 201940_at CARBOXYPEPTIDASE D 1.61 up 1.38 up
CPD 201941 _at 1.61 up 1.35 up
CRTAP 1554464 _a_at CARTILAGE-ASSOCIATED 1.23 down 1.21 down
PROTEIN
DHRS9 219799_s_at MEMBRANE PROTEIN, 1.94 up 1.52 up
PALMITOYLATED 3; MPP3
EIF4G3 201936_s_at EUKARYOTIC 1.58 up 1.28 up
TRANSLATION INITIATION
FACTOR 4-GAMMA, 3
FAD104 218618 s at FIBRONECTIN TYPE IIT 1.61 up 1.38 up
FAD104 225032_at DOMAIN CONTAINING 3B 1.63 up 1.41 up
FAD104 222692 s at (FNDC3B 1.74 up 1.59 up
FAD104 222693 _at 1.88 up 1.92 up
FCGR1A 214511_x_at  FC FRAGMENT OF IGG, HIGH 2.37 up 1.71 up
FCGR1A 216950_s_at AFFINITY 1A 2.56 up 1.60 up
FLI11175 229005_at 1.77 up 1.50 up
FLI11175 220603_s_at 2.12 up 1.77 up
FLI11259 218627 _at 1.54 up 1.25 up
FLI11795 220112_at 1.80 up 1.62 up
FLI22833 219334 s at 1.49 up 1.28 up
GO0S2 213524 s at 1.69 up 1.30 up
GADD45B 207574 _s_at GROWTH ARREST- AND DNA 1.55 up 1.37 up
DAMAGE-INDUCIBLE GENE
GADD45
GADD45B 209304 _x_at 1.42 up 1.25 up
GK 214681 _at GLYCEROL KINASE 1.76 up 1.39 up
GPR160 223423 _at G PROTEIN-COUPLED 1.83 up 1.54 up
RECEPTOR 160
HLA-DMA 217478 _s_at HLA-D 1.32 down 1.27 down
HISTOCOMPATIBILITY TYPE
HLA-DMB 203932_at 1.29 down 1.27 down
HLA-DPA1 211991_s_at 1.34 down 1.27 down
HLA-DQBI1 209823 _x_at 1.31 down 1.20 down
HLA-DRA 210982 _s_at 1.25 down 1.24 down
HLA-DRA 208894 at 1.29 down 1.23 down
HLA-DRB1 215193 _x_at 1.30 down 1.30 down
HLA-DRB1 209312_x_at 1.27 down 1.30 down
HLA-DRB4 204670_x_at 1.25 down 1.27 down
HLA-DRB4 208306_x_at 1.27 down 1.27 down
HPGD 203913_s at 15- 2.01 up 1.57 up
HYDROXYPROSTAGLANDIN
DEHYDROGENASE
HRPT2 218578 _at HYPERPARATHYROIDISM 2 1.43 up 1.27 up
HSPC163 228437 _at HSPC163 PROTEIN 1.64 up 1.46 up
HSPC163 218728 s at 2.00 up 1.52 up
IDI1 204615_x_at  ISOPENTENYL- 1.51 up 1.31 up
DIPHOSPHATE DELTA-
ISOMERASE
IL18R1 206618 _at INTERLEUKIN 18 RECEPTOR 1 3.18 up 2.37 up
KCNE1 236407 _at POTASSIUM CHANNEL, 1.68 up 1.45 up

VOLTAGE-GATED, ISK-
RELATED SUBFAMILY
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TABLE 31-continued

Exemplary biomarkers that discriminate between converters and non-converters

T_,, Values T_3 Values
Affymetrix Median Median
Gene Symbol  Probeset name Gene Name FC Direction FC Direction
Column 1 Column 2 Column 3 Column3 Column4 Column3 Column 6
KIF1B 225878 _at KINESIN FAMILY MEMBER 1B; 2.04 up 1.62 up
KREMEN1 227250_at KRINGLE CONTAINING 2.11 up 1.32 up
TRANSMEMBRANE PROTEIN 1
LDLR 202068_s_at LOW DENSITY LIPOPROTEIN 1.55 up 1.52 up
RECEPTOR
LIMK?2 202193_at LIM DOMAIN KINASE 2 2.05 up 1.51 up
LOC199675 235568_at 291 up 2.03 up
LOC284829 225669_at 1.48 up 1.30 up
LOC285771 237870_at 1.40 up 1.34 up
LRG1 228648 _at LEUCINE-RICH ALPHA-2- 2.08 up 1.62 up
GLYCOPROTEIN 1
MGC22805 239196_at NOVEL GENE (MGC228035), 2.30 up 1.86 up
MGC22805 238439_at 3.38 up 2.24 up
MPEG1 226841 _at MACROPHAGE EXPRESSED 1.23 down 1.21 down
GENEI
OAT 201599_at ORNITHINE 1.53 up 1.44 up
AMINOTRANSFERASE
DEFICIENCY
ORF1-FL49 224707 _at 1.75 up 1.65 up
PDCDILG1 227458 _at PROGRAMMED CELL DEATH 2.22 up 1.86 up
1 LIGAND 1
PFKFB2 22673 3_at 6-PHOSPHOFRUCTO-2- 1.70 up 1.28 up
KINASE
PFKFB2 209992_at 1.65 up 1.43 up
PFKFB3 202464 _s_at 6-PHOSPHOFRUCTO-2- 3.02 up 1.95 up
KINASE/FRUCTOSE-2,6-
BISPHOSPHATASE 3
PGS1 219394 _at PHOSPHATIDYLGLYCERO- 2.32 up 1.70 up
PHOSPHATE SYNTHASE
PHTF1 205702_at PUTATIVE HOMEODOMAIN 1.37 up 1.20 up
TRANSCRIPTION FACTOR 1
PIK3AP1 226459_at PHOSPHOINOSITIDE 3- 1.64 up 1.39 up
KINASE ADAPTOR PROTEIN 1
PLSCR1 241916_at PHOSPHOLIPID 2.01 up 1.57 up
SCRAMBLASE 1
PRO2852 223797 _at 1.62 up 1.42 up
PRV1 219669_at NEUTROPHIL-SPECIFIC 7.08 up 4.72 up
ANTIGEN 1
PSTPIP2 219938_s_at PROLINE/SERINE/ 2.54 up 1.82 up
THREONINE PHOSPHATASE-
INTERACTING PROTEIN 1
PTDSR 212723 _at CHROMOSOME 17 GENOMIC 1.45 up 1.34 up
CONTIG, ALTERNATE
ASSEMBLY
RABGEF1 218310_at RAB GUANINE NUCLEOTIDE 2.03 up 1.59 up
EXCHANGE FACTOR
RARA 228037 _at RETINOIC ACID RECEPTOR, 1.54 up 1.20 up
ALPHA
RNASEL 229285_at RIBONUCLEASE L 1.68 up 1.36 up
SAMSN1 1555638_a_at SAM DOMAIN, SH3 DOMAIN, 2.22 up 1.42 up
AND NUCLEAR
LOCALIZATION SIGNALS 1
SAMSN1 220330_s_at 2.29 up 2.10 up
SEC15L1 226259_at SEC15-LIKE 1 1.64 up 1.43 up
(S. CEREVISIAE)
(SEC15L1), MRNA
SIPA1L2 225056_at SIGNAL-INDUCED 2.02 up 1.52 up
PROLIFERATION-
ASSOCIATED GENE 1
SLC26A8 237340_at 2.01 up 1.48 up
SLC2A3 202499_s_at SOLUTE CARRIER FAMILY 2 1.87 up 1.71 up
(FACILITATED GLUCOSE
TRANSPORTER), MEMBER 3
SOCS3 227697 _at SUPPRESSOR OF CYTOKINE 2.84 up 2.15 up
SIGNALING 3
SOD2 216841_s_at SUPEROXIDE DISMUTASE 2 1.56 up 1.55 up
SPPL2A 226353_at SIGNAL PEPTIDE 1.48 up 1.51 up

PEPTIDASE-LIKE 2A
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TABLE 31-continued

Exemplary biomarkers that discriminate between converters and non-converters

T_,, Values T_3 Values
Affymetrix Median Median

Gene Symbol  Probeset name Gene Name FC Direction FC Direction

Column 1 Column 2 Column 3 Column3 Column4 Column3 Column 6

SRPK1 202200_s_at PROTEIN KINASE, 1.80 up 1.46 up
SERINE/ARGININE-SPECIFIC, 1

STK3 204068 _at SERINE/THREONINE 1.74 up 1.33 up
PROTEIN KINASE 3

SULF2 224724 at SULFATASE 2 (SULF2), 1.36 down 1.35 down
TRANSCRIPT VARIANT 2

SULF2 233555 _s_at 1.37 down 1.30 down

T2BP 226117 _at TRAF-2 BINDING PROTEIN 2.90 up 1.90 up

T2BP 235971 _at 1.47 up 1.27 up

T2BP 238858 _at 1.32 up 1.21 up

TBC1D8 204526_s_at TBC1 DOMAIN FAMILY, MEMBER 8 1.55 up 1.40 up

TCTEL1 201999_s_at T-COMPLEX-ASSOCIATED- 1.46 up 1.22 up
TESTIS-EXPRESSED 1

TGFBI 201506_at TRANSFORMING GROWTH 1.38 down 1.41 down
FACTOR, BETA-1

TTYH2 223741 s at TWEETY, DROSOPHILA, 1.28 down 1.24 down
HOMOLOG OF, 2

WDFY3 212598 _at WD REPEAT AND FYVE 1.77 up 1.35 up
DOMAIN CONTAINING 3

WDFY3 212606_at 1.56 up 1.35 up

WSB1 201296_s_at WD REPEAT AND SOCS BOX- 1.74 up 1.52 up
CONTAINING 1

ZDHHC19 231122_x_at  ZINC FINGER, DHHC 2.08 up 2.13 up
DOMAIN CONTAINING 19
(ZDHHC19)

ZDHHC19 1553952_at 1.37 up 1.38 up

ZFP36L2 201367 _s_at ZINC FINGER PROTEIN 36, 1.23 down 1.28 down

C3H TYPE-LIKE 2; ZFP36L2

[0532] Each of the sequences, genes, proteins, and
probesets identified in Table 31 is hereby incorporated by
reference herein in its entirety.

[0533] Table 31, above, provides a list of select biomarkers
of the present invention. Where known, gene names are pro-
vided. Column two of Table 32, below, provides the Gen-
Bank® database accession numbers for the human nucleotide
sequences of the biomarkers listed in Table 31, where known.
Column three of Table 32 further provides the GenBank®
database accession numbers for the corresponding amino
acid sequences of the biomarkers of Table 31, where known.
The biomarkers of the present invention include, but are not
limited to, the genes and proteins identified by the accession
numbers of Table 32, splicing variants thereof, discriminating

fragments of mRNA, cDNA or other nucleic acids and/or
peptides corresponding to all or a discriminating portion of
such genes and proteins, etc.

[0534] These gene and protein accession numbers are pro-
vided in order to identify some of the biomarkers of the
present invention. GenBank® is the publicly available
genetic sequence database ofthe National Institutes of Health
(NIH), and is an annotated collection of all publicly available
DNA sequences (see, e.g., Nucleic Acids Research 2004 Jan.
1;32(1):23-26, which is incorporated by reference herein in
its entirety). GenBank® is part of the International Nucle-
otide Sequence Database Collaboration, which comprises the
DNA DataBank of Japan (DDBIJ), the European Molecular
Biology Laboratory (EMBL), and GenBank at the National
Center for Biotechnology Information (NCBI).

TABLE 32

Gene and protein accession numbers for exemplary biomarkers
that discriminate between converters and non-converters

Affymetrix
Gene Symbol  Probeset name
Column 1 Column 2

1555785_a_at
<NA> 227150_at
<NA> 238973_s_at
<NA> 239893_at
<NA> 237563_s_at

<NA> 244313_at

Gene Protein
Accession Accession
Gene Name Number Number
Column 3 Column 4 Column 5
EST
EST
EST
EST
EST
EST



US 2011/0105350 Al

TABLE 32-continued

145

Gene and protein accession numbers for exemplary biomarkers
that discriminate between converters and non-converters

Gene Protein
Affymetrix Accession Accession
Gene Symbol  Probeset name Gene Name Number Number
Column 1 Column 2 Column 3 Column 4 Column 5
<NA> 237071_at EST
<NA> 229934_at EST
<NA> 1555311_at EST
<NA> 233264_at EST
<NA> 239780_at EST
<NA> 238405_at EST
3'HEXO 226416_at HISTONE MRNA 3' END NM_ 153332 NP__ 699163
3'HEXO 231852_at EXORIBONUCLEASE
ADORA2A 205013_s_at ADENOSINE A2 RECEPTOR NM__000675 NP__000666
ANXA3 209369_at ANNEXIN A3 NM_ 005139 NP_005130
ASAHL 214765_s_at N-ACYLSPHINGOSINE NM__ 014435 NP__055250
ASAHL 232072_at AMIDOHYDROLASE-LIKE
ASAHL 227135_at PROTEIN
ATP11B 1554557 _at ATPASE, CLASS VI, TYPE 11B XM_087254 XP_ 087254
ATP6V1C1 202872_at ATPASE, H+ TRANSPORTING, NM__001695 NP__001686
LYSOSOMAL, 42-KD, V1 NM_001007254 NP_001007255
SUBUNIT C, ISOFORM 1
BAGALTS 221485_at BETA-1,4- NM__004776 NP_004767
GALACTOSYLTRANSFERASE
BASP1 202391_at BRAIN-ABUNDANT SIGNAL NM_006317 NP__006308
PROTEIN
BAZIA 217986_s_at BROMODOMAIN ADJACENT NM_ 013448 NP_038476
TO ZINC FINGER DOMAIN, 1A NM_ 182648 NP__872589
BCLS6 203140_at B-CELL LYMPHOMA 6 NM_001706 NP_001697
NM__138931 NP__620309
BMX 206464 _at BONE MARROW KINASE, X- NM_ 001721 NP_001712
LINKED NM_ 203281 NP_975010
Cl6orf7 205781 _at CHROMOSOME 16 OPEN- NM_004913 NP__004904
READING FRAME 7
C200rf32 1554786__at CHROMOSOME 20 OPEN- NM__020356 NP__065089
READING FRAME 32
C3F 203547_at COMPLEMENT COMPONENT 3 NM__005768 NP__005759
C8FW 202241_at C8FW GENE; NM_ 025195 NP_079471
PHOSPHOPROTEIN.
CEACAMI1 209498 _at CARCINOEMBRYONIC NM-001712 NP_001703
CEACAMI1 211883_x_at ANTIGEN-RELATED CELL
ADHESION MOLECULE 1
CECR1 219505_at CAT EYE SYNDROME NM_ 017424 NP_059120
CHROMOSOME REGION, NM__177405 NP_803124
CANDIDATE 1
CHCHD7 222701_s_at COILED-COIL-HELIX NM_001011667 NP_001011667
DOMAIN-CONTAINING NM_ 001011668 NP_ 001011668
PROTEIN 7 NM_001011669 NP_001011669
NM_001011670 NP_001011670
NM_001011671 NP_001011671
NM__024300 NP_077276
CHSY1 203044 _at CARBOHYDRATE NM_ 014918 NP_055733
SYNTHASE 1
CKLF 223451_s_at CHEMOKTNE-LIKE FACTOR NM_ 016326 NP_057410
CKLF 219161_s_at NM_ 016951 NP__058647
NM__181640 NP_857591
NM__181641 NP__857592
CL25022 217883_at C20RF25 NM_ 015702 NP_056517
CPD 201940__at CARBOXYPEPTIDASE D NM__001304 NP__001295
CPD 201941_at
CRTAP 1554464_a_at CARTILAGE-ASSOCIATED NM_006371 NP_006362
PROTEIN
DHRS9 219799_s_at MEMBRANE PROTEIN, NM_005771 NP_005762
PALMITOYLATED 3; MPP3 NM__199204 NP_954674
EIFAG3 201936_s_at EUKARYOTIC NM__003760 NP_003751
TRANSLATION INITIATION
FACTOR 4-GAMMA, 3
FAD104 218618_s_at FIBRONECTIN TYPE III NM_ 022763 NP_073600
FAD104 225032_at DOMAIN CONTAINING 3B
FAD104 222692_s_at (FNDC3B)
FAD104 222693_at
FCGR1A 214511_x_at FC FRAGMENT OF IGG, HIGH NM__000566 NP__000557
FCGR1A 216950_s_at  AFFINITY IA
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Gene and protein accession numbers for exemplary biomarkers
that discriminate between converters and non-converters

Gene Protein
Affymetrix Accession Accession
Gene Symbol  Probeset name Gene Name Number Number
Column 1 Column 2 Column 3 Column 4 Column 5
FLJ11175 229005_at NM_ 018349 NP__060819
FLJ11175 220603_s_at
FLJ11259 218627_at NM_018370 NP__060840
FLJ11795 220112_at NM__024669 NP__078945
FLJ22833 219334_s_at HYPOTHETICAL PROTEIN NM__022837
FLI22833
GOS2 213524_s_at NM_ 015714 NP__056529
GADD45B 207574_s_at GROWTH ARREST- AND DNA NM_ 015675 NP__056490
GADD45B 209304_x_at DAMAGE-INDUCIBLE GENE
GADD45
GK 214681_at GLYCEROL KINASE NM__000167 NP__000158
NM_203391 NP_976325
GPR160 223423_at G PROTEIN-COUPLED NM_ 014373 NP_055188
RECEPTOR 160
HLA-DMA 217478_s_at  HLA-D NM__006120 NP_006111
HLA-DMB 203932_at HISTOCOMPATIBILITY TYPE NM_ 002118 NP_002109
HLA-DPA1 211991_s_at NM_ 033554 NP_291032
HLA-DQBI1 209823_x_at NM_ 002123 NP_002114
HLA-DRA 210982_s_ at NM_ 002123 NP_002114
HLA-DRA 208894 _at
HLA-DRB1 215193_x_at NM_ 002124 NP_002115
HLA-DRB1 209312_x_at
HLA-DRB4 204670_x_ at NM_ 021983 NP__068818
HLA-DRB4 208306_x_at
HPGD 203913_s_at  15- NM__000860 NP__000851
HYDROXYPROSTAGLANDIN
DEHYDROGENASE
HYDROXYPROSTAGLANDIN
DEHYDROGENASE 15-(NAD)
HRPT2 218578_at HYPERPARATHYROIDISM 2 NM__024529 NP__078805
HSPC163 228437_at HSPC163 PROTEIN NM_ 014184 NP__054903
HSPC163 218728 _s_at
IDI1 204615_x_at ISOPENTENYL- NM__004508 NP__004499
DIPHOSPHATE DELTA-
ISOMERASE
IL18R1 206618_at INTERLEUKIN 18 RECEPTOR 1 NM__003855 NP_003846
KCNE1 236407_at POTASSIUM CHANNEL, NM__000219 NP__000210
VOLTAGE-GATED, ISK-
RELATED SUBFAMILY
KIF1B 225878 _at KINESIN FAMILY MEMBER 1B NM_ 015074 NP__055889
NM__183416 NP_904325
KREMEN1 227250_at KRINGLE CONTAINING NM_032045 NP_114434
TRANSMEMBRANE PROTEIN 1 NM__153379 NP__700358
LDLR 202068_s_at LOW DENSITY LIPOPROTEIN NM__000527 NP_000518
RECEPTOR
LIMK?2 202193_at LIM DOMAIN KINASE 2 NM__005569 NP__005560
NM_ 016733 NP_057952
LOC199675 235568_at HYPOTHETICAL PROTEIN NM__174918 NP_777578
LOC284829 225669_ at LOC199675
LOC285771 237870_at HYPOTHETICAL PROTEIN
LOC285771)
LRG1 228648 _at LEUCINE-RICH ALPHA-2- NM__052972 NP__ 443204
GLYCOPROTEIN 1
MGC22805 239196_at NOVEL GENE (MGC228035),
MGC22805 238439_ at
MPEG1 226841_at MACROPHAGE EXPRESSED XM_ 166227 XP_ 166227
GENE 1
OAT 201599_ at ORNITHINE NM__000274 NP__000265
AMINOTRANSFERASE
DEFICIENCY
ORF1-FL49 224707_at PUTATIVE NUCLEAR NM__ 032412 NP_115788
PROTEIN ORF1-FLA49
PDCDILG1 227458 _at PROGRAMMED CELL DEATH NM_ 014143 NP_054862
1 LIGAND 1
PFKFB2 226733_at 6-PHOSPHOFRUCTO-2- NM_006212 NP__006203
PFKFB2 209992_ at KINASE
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Gene and protein accession numbers for exemplary biomarkers
that discriminate between converters and non-converters

Gene Protein
Affymetrix Accession Accession
Gene Symbol  Probeset name Gene Name Number Number
Column 1 Column 2 Column 3 Column 4 Column 5
PFKFB3 202464_s_at  6-PHOSPHOFRUCTO-2- NM__004566 NP_004557
KINASE/FRUCTOSE-2,6-
BISPHOSPHATASE 3
PGS1 219394_at PHOSPHATIDYLGLYCERO- NM_ 024419 NP_077733
PHOSPHATE SYNTHASE
PHTF1 205702_at PUTATIVE HOMEODOMAIN NM__006608 NP__006599
TRANSCRIPTION FACTOR 1
PIK3AP1 226459_at PHOSPHOINOSITIDE 3- NM__152309 NP__689522
KINASE ADAPTOR PROTEIN 1
PLSCR1 241916_at PHOSPHOLIPID NM_021105 NP_066928
SCRAMBLASE 1
PRO2852 223797_at HYPOTHETICAL PROTEIN
PRO2852
PRV1 219669__at NEUTROPHIL-SPECIFIC NM__020406 NP_065139
ANTIGEN 1 (POLYCYTHEMIA
RUBRAVERA 1)
PSTPIP2 219938_s_at PROLINE/SERINE/ NM__024430 NP_077748
THREONINE PHOSPHATASE-
INTERACTING PROTEIN 1
(PROLINE-SERINE-
THREONINE PHOSPHATASE
INTERACTING PROTEIN 2)
PTDSR 212723___at CHROMOSOME 17 GENOMIC NM_ 015167 NP__055982
CONTIG, ALTERNATE
ASSEMBLY
(PHOSPHATIDYLSERINE
RECEPTOR)
RABGEF1 218310_at RAB GUANINE NUCLEOTIDE NM_ 014504 NP_055319
EXCHANGE FACTOR (RAB
GUANINE NUCLEOTIDE
EXCHANGE FACTOR (GEF) 1)
RARA 228037_at RETINOIC ACID RECEPTOR, NM__000964 NP__000955
ALPHA
RNASEL 229285_at RIBONUCLEASE L NM_ 021133 NP__066956
SAMSN1 1555638 _a_at SAM DOMAIN, SH3 DOMAIN, NM_ 022136 NP_071419
AND NUCLEAR
SAMSN1 220330_s_at LOCALIZATION SIGNALS 1
SEC15L1 226259_at SEC15-LIKE 1 NM__019053 NP_ 061926
(S. CEREVISIAE) (SEC15L1),
MRNA
SIPA1L2 225056_at SIGNAL-INDUCED NM__020808 NP__065859
PROLIFERATION-
ASSOCIATED GENE 1
(SIGNAL-INDUCED
PROLIFERATION-
ASSOCIATED 1 LIKE 2)
SLC26A8 237340_at SOLUTE CARRIER FAMILY NM_052961 NP__ 443193
26, MEMBER 8 NM__138718 NP_619732
SLC2A3 202499_s_at SOLUTE CARRIER FAMILY 2 NM_006931 NP__008862
(FACILITATED GLUCOSE
TRANSPORTER), MEMBER 3
SOCS3 227697_at SUPPRESSOR OF CYTOKINE NM_003955 NP_003946
SIGNALING 3
SOD2 216841_s_at SUPEROXIDE DISMUTASE 2 NM__000636 NP__000627
SPPL2A 226353_at SIGNAL PEPTIDE NM__032802 NP_116191
PEPTIDASE-LIKE 2A
SRPK1 202200_s_at PROTEIN KINASE, NM__ 003137 NP_003128
SERTNE/ARGININE-SPECIFIC, 1
(SFRS PROTEIN KINASE 1)
STK3 204068 _at SERINE/THREONINE NM__006281 NP_006272
PROTEIN KINASE 3
SULF2 224724 _at SULFATASE 2 (SULF2), NM__198596 NP__940998
SULF2 233555_s_at TRANSCRIPT VARIANT 2
T2BP 226117_at TRAF-2 BINDING PROTEIN NM_052864 NP__443096
T2BP 235971_at (TRAF-INTERACTING
T2BP 238858 _at PROTEIN WITH A

FORKHEAD-ASSOCIATED
DOMAIN)
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TABLE 32-continued

Gene and protein accession numbers for exemplary biomarkers
that discriminate between converters and non-converters

Gene Protein
Affymetrix Accession Accession
Gene Symbol  Probeset name Gene Name Number Number
Column 1 Column 2 Column 3 Column 4 Column 5
TBC1D8 204526_s_at TBC1 DOMAIN FAMILY, NM__007063 NP__008994
MEMBER 8
TCTEL1 201999_s_at T-COMPLEX-ASSOCIATED- NM__006519 NP_006510
TESTIS-EXPRESSED 1
TGFBI 201506__at TRANSFORMING GROWTH NM__000358 NP__000349
FACTOR, BETA-1
TTYH2 223741_s_at TWEETY, DROSOPHILA, NM__032646 NP_116035
HOMOLOG OF, 2 NM__052869 NP_443101
WDFY3 212598_at WD REPEAT AND FYVE NM__ 014991 NP_055806
WDFY3 212606__at DOMAIN CONTAINING 3 NM__178583 NP__848698
NM__178585 NP__848700
WSBI1 201296_s_at WD REPEAT AND SOCS BOX- NM__015626 NP_056441
CONTAINING 1 NM__134264 NP__599026
NM__134265 NP_599027
ZDHHC19 231122 _x_at ZINC FINGER, DHHC NM__144637 NP__ 653238
ZDHHC19 1553952 at DOMAIN CONTAINING 19
(ZDHHC19)
ZTFP36L2 201367_s_at ZINC FINGER PROTEIN 36, NM__006887 NP_008818
C3H TYPE-LIKE 2; ZFP36L.2
[0535] Each of the sequences, genes, proteins, and [0537] Table 33 lists biomarkers in one exemplary combi-

probesets identified in Table 32 is hereby incorporated by
reference herein in its entirety.

6.8 Biomarker Combinations Based on Additional
Filtering Criteria

[0536] Section 6.6 describes exemplary biomarkers that
discriminate between converters and nonconverters. Section
6.7 describes one exemplary combination of the biomarkers
of Section 6.6. The biomarkers of Section 6.7 were identified
by the application of an additional filtering criterion to the
biomarkers of Section 6.6. This section describes additional
combinations of the biomarkers identified in Section 6.7. The
subsections identified in this section discriminate between
converters and nonconverters.

nation. The combination detailed in Table 33 was identified
by taking the list of biomarkers in Table 31 and imposing
additional filtering criteria. These additional criteria include a
requirement that each respective biomarker under consider-
ation exhibit at least a 1.2x fold change between the median
feature value for the respective biomarker among the subjects
that acquired sepsis during a defined time period (sepsis sub-
jects) and the median value for the respective biomarker
among subjects that do not acquire sepsis during the defined
time period (SIRS subjects) in the T_,, baseline data
described in Section 6.5. Furthermore, the summation of the
PAM score, CART score, and RF score for the biomarker in
the T_, , baseline data time period had to exceed unity. Appli-
cation of these additional filtering criteria reduced the biom-
arkers from the 130 found in Table 31, to ten biomarkers.

TABLE 33

Exemplary combination of biomarkers that discriminate between

converters and non-converters

T_> Values T 3 Values
Gene Affymetrix Median Median
Symbol Probeset name  Gene Name FC Direction FC Direction
Column 1 Column 2 Column 3 Column 4 Column35  Column 6 Column 7
1555785_a_at EST 134  up 131  up
CL25022 217883_at 136  up 131  up
IDI1 204615_x_at ISOPENTENYL- 151  up 131  up
DIPHOSPHATE
DELTA-ISOMERASE
MGC22805 239196_at NOVEL GENE 230 up 1.86 up
(MGC22805)
ORF1- 224707_at 1.75  up 1.65 up
FL49
ZDHHC19 1553952 at 137  up 138 up
CHSY1 203044_at CARBOHYDRATE 1.78 up 124 up

SYNTHASE 1
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Exemplary combination of biomarkers that discriminate between

converters and non-converters

T_,, Values T 14 Values

Gene Affymetrix Median Median
Symbol Probeset name Gene Name FC Direction FC Direction
Column 1 Column 2 Column 3 Column4 Column5  Column 6 Column 7
SLC2A3 202499_s_at SOLUTE CARRIER 1.87 up 1.71 up

FAMILY 2

(FACILITATED

GLUCOSE

TRANSPORTER),

MEMBER 3
FAD104 225032_at 1.63 up 1.41 up
T2BP 235971_at 1.47  up 1.27  up
[0538] Each of the sequences, genes, proteins, and that such a gene has a known biological function. Methods,

probesets identified in Table 33 is hereby incorporated by
reference.

[0539] Table 34 lists biomarkers in yet another exemplary
combination of biomarkers. The combination detailed in
Table 34 was identified by taking the list of biomarkers in
Table 31 and imposing the additional requirement that each
biomarker is annotated with a corresponding known gene and

tables, software and other resources for addressing this latter
question are available from the Gene Ontology Consortium,
(www.geneontology.org), which is hereby incorporated by
reference in its entirety. Application of these additional filter-
ing criteria reduced the biomarkers from the 130 found in the
setof Table 31, to 52 biomarkers, representing 42 unique gene

sequences (see FIG. 30).

TABLE 34

Exemplary combination of biomarkers that discriminate
between converters and non-converters

Gene Symbol

Corresponding Gene Name

(BCL6 na)
(HLA-DRBI,
3,4,5)
(RABGEF1 na)

3HEXO
ADORA2A
ANKRD22
ANXA3
ATP11B
ATP6V1C1
BASP1
BAZ1A
Cl6orf7
CD4
CEACAM1

CECRI1
CKLF

CPD
EIF4G3
FCGRIA
GOS2
GADD45B
HLA-DMB
HLA-DPA1
HLA-DQB1
HLA-DRA

LDLR
PDCDILGI1
PHTF1
PRV1
PTDSR
RARA

(B-cell CLL/lymphoma 6 (zinc finger protein 51) LOC389185)
(major histocompatibility complex class I DR beta 1 3, 4, 5)

(LOC401368 LOC402538 RAB guanine nucleotide

exchange factor (GEF) 1)
3 exoribonuclease

adenosine A2a receptor

ankyrin repeat domain 22

annexin A3

ATPase Class VI type 11B

ATPase H+ transporting lysosomal 42 kDa VI subunit C isoform 1
brain abundant membrane attached signal protein 1
bromodomain adjacent to zinc finger domain 1A
chromosome 16 open reading frame 7

CD4 antigen (p55)

carcinoembryonic antigen-related cell adhesion molecule 1 (biliary
glycoprotein)

cat eye syndrome chromosome region candidate 1
chemokine-like factor

carboxypeptidase D

eukaryotic translation initiation factor 4 gamma 3

Fc fragment of IgG high affinity Ia receptor for (CD64)
putative lymphocyte GO/G1 switch gene

growth arrest and DNA-damage-inducible beta

major histocompatibility complex class Il DM beta

major histocompatibility complex class II DP alpha 1

major histocompatibility complex class II DQ beta 1

major histocompatibility complex class II DR alpha
hydroxyprostaglandin dehydrogenase 15-(NAD)

interleukin 18 receptor 1

potassium voltage-gated channel Isk-related family member 1
low density lipoprotein receptor (familial hypercholesterolemia)
programmed cell death 1 ligand 1

putative homeodomain transcription factor 1

polycythemia rubra vera 1

phosphatidylserine receptor

retinoic acid receptor alpha
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Exemplary combination of biomarkers that discriminate
between converters and non-converters

Gene Symbol  Corresponding Gene Name

RNASEL ribonuclease L (25-oligoisoadenylate synthetase-dependent)
SEC15L1 SEC15-like 1 (S. cerevisiae)

SLC26A8 solute carrier family 26 member 8

SLC2A3 solute carrier family 2 (facilitated glucose transporter) member 3
STK3 serine/threonine kinase 3 (STE20 homolog yeast)

TGFBI transforming growth factor beta-induced 68 kDa

XRN1 5-3 exoribonuclease 1

ZFP36L2 zine finger protein 36 C3H type-like 2

[0540] Each of the sequences, genes, proteins, and

probesets identified in Table 34 is hereby incorporated by
reference.

[0541] In one embodiment, the biomarker profile com-
prises a plurality of biomarkers that collectively contain at
least five, at least ten at least fifteen, at least twenty, at least
thirty, between 2 and 5, between 3 and 7, or less than 15 of the
sequences of the probesets of Table 32, or complements
thereof, or genes including one of at least five of the
sequences or complements thereof, or a discriminating frag-
ment thereof, or an amino acid sequence encoded by any of
the foregoing nucleic acid sequences, or any discriminating
fragment of such an amino acid sequence. Such biomarkers
can be mRNA transcripts, cDNA or some other form of
amplified nucleic acid or proteins.

[0542] In one embodiment, the biomarker profile com-
prises a plurality of biomarkers that collectively contain at
least five, at least ten at least fifteen, at least twenty, at least
thirty, between 2 and 5, between 3 and 7, or less than 15 of the
sequences of the probesets of Table 33, or complements
thereof, or genes including one of at least five of the
sequences or complements thereof, or a discriminating frag-
ment thereof, or an amino acid sequence encoded by any of
the foregoing nucleic acid sequences, or any discriminating
fragment of such an amino acid sequence. Such biomarkers
can be, for example, mRNA transcripts, cDNA or some other
nucleic acid, for example amplified nucleic acid, or proteins.
[0543] In one embodiment, the biomarker profile com-
prises a plurality of biomarkers that collectively contain at
least five, at least ten at least fifteen, at least twenty, at least
thirty, between 2 and 5, between 3 and 7, or less than 15 of the
sequences of the probesets of Table 34, or complements
thereof, or genes including one of at least five of the
sequences or complements thereof, or a discriminating frag-
ment thereof, or an amino acid sequence encoded by any of
the foregoing nucleic acid sequences, or any discriminating
fragment of such an amino acid sequence. Such biomarkers
can be, for example, mRNA transcripts, cDNA or some other
nucleic acid, for example amplified nucleic acid, or proteins.
[0544] In one embodiment, the biomarker profile com-
prises a plurality of biomarkers that collectively contain at
least five, at least ten at least fifteen, at least twenty, at least
thirty, between 2 and 5, between 3 and 7, or less than 15 of the
sequences of the probesets of Table 33 or Table 34, or comple-
ments thereof, or genes including one of at least five of the
sequences or complements thereof, or a discriminating frag-
ment thereof, or an amino acid sequence encoded by any of
the foregoing nucleic acid sequences, or any discriminating
fragment of such an amino acid sequence. Such biomarkers

can be, for example, mRNA transcripts, cDNA or some other
nucleic acid, for example amplified nucleic acid, or proteins.

[0545] In one embodiment, the biomarker profile com-
prises a biomarker that has the sequence of U133 plus 2.0
probeset SLC2A3 or a complement thereof, or a gene includ-
ing the sequence of the probeset SLC2A3 or a complement
thereof, or a discriminating fragment thereof, or an amino
acid sequence encoded by any of the foregoing nucleic acid
sequences, or any discriminating fragment of such an amino
acid sequence. Such biomarkers can be, for example, mRNA
transcripts, cDNA or some other nucleic acid, for example
amplified nucleic acid, or proteins.

[0546] In the case where a biomarker is based upon a gene
that includes the sequence of a probeset listed in Table 30, 31,
32, 33, or 34 or a complement thereof, the biomarker can be,
for example, a transcript made by the gene, a complement
thereof, or a discriminating fragment or complement thereof,
oracDNA thereof, or a discriminating fragment of the cDNA,
or a discriminating amplified nucleic acid molecule corre-
sponding to all or a portion of the transcript or its comple-
ment, or a protein encoded by the gene, or a discriminating
fragment of the protein, or an indication of any of the above.
Further still, the biomarker can be, for example, a protein
encoded by a gene that includes a probeset sequence
described in Table 30, 31, 32, 33 or 34, or a discriminating
fragment of the protein, or an indication of the above. Here, a
discriminating molecule or fragment is a molecule or frag-
ment that, when detected, indicates presence or abundance of
the above-identified transcript, cDNA, amplified nucleic
acid, or protein.

6.9 Differential Gene Expression in the Th1/Th2
Pathway in Sirs and Sepsis Patients

[0547] This section describes methods used to identify a set
of biomarkers that discriminate between converters and non-
converters, using the methods described, e.g., in Section 5.10,
supra. Briefly, 97 SIRS subject were admitted to critical care
units of a major university trauma center were evaluated using
the methods described in Section 6.1. Comparisons were
madeusing T_;;and T_,, static data described in Sections 6.3
and 6.4, respectively. The subjects were divided into two
classes: converters (47) and nonconverters (50). Blood
samples drawn from converters were time matched to
samples from nonconverters in order to perform compari-
sons, as described in Sections 6.3 and 6.4, respectively. The
blood samples were collected and analyzed as described in
Section 6.2.
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[0548] Biomarkers that discriminated between converters
and nonconverters with (i) a Wilcoxon (adjusted) p value of TABLE 35-continued

0.05 or less and (ii) an exhibited a mean fold differential

. U133 plus 2.0 Probesets i involved i
expression value between converters and nonconverters of Lo FOPESTS L gEres Ve ved 1

the Th1/Th2 cell differentiation pathway.

1.2 or greater in either the T_,, or the T_,, static test were

selected as the set of discriminating biomarkers. This set of U133 +2.0 P value
discriminating biomarkers was then filtered using an annota- Symbol probeset (adjusted)
tion data based filtering rule imposed by DAVID 2.0, which is HLA-DRB3 217362_x_at 0.0472
available from the National Institutes of Health (see, http:// HLA-DRB3 215193_x_at 0.0034
appsl.niaid.nih.gov/david/, the contents of which are incor- HLA-DRB3 215193 x_at 0.0187
porated by reference herein in their entirety). Specifically. HLA-DRB3 209728 _at
. . . : ; > HLA-DRB3 204670_x_at 0.0034
that annotation data based filtering rule imposed by David 2.0 HLA-DRB3 204670-x_at 0.0187
had the form of annotation rule 4 in Section 5.10, reproduce HLA-DRB3 208306_x_at 0.0034
below HLA-DRB3 208306_x_at 0.0187
HLA-DRB3 209312_x_at 0.0034
HLA-DRB3 209312 x_at 0.0187
HLA-DRB3 215666 _at
HLA-DRB3 215669 _at
Annotation rule 4. HLA-DRB4 221491 _x_at
HLA-DRB4 217323 _at
Select all biomarkers that are in biological pathway X. HIL.A-DRB4 217362 x_at 0.0034
HLA-DRB4 217362_x_at 0.0472
HLA-DRB4 215193_x_at 0.0034
The specific form of'this annotation data based filtering rule in HLA-DRB4 215193_x_at 0.0187
this example was HLA-DRB4 209728 _at
HLA-DRB4 204670_x_at 0.0034
HLA-DRB4 204670_x_at 0.0187
HLA-DRB4 208306_x_at 0.0034
HLA-DRB4 208306_x_at 0.0187
Select all biomarkers that are in the Th1/Th2 biological HIL.A-DRB4 209312 x_at 0.0034
pathway (cell differentiation pathway). HIL.A-DRB4 209312 x at 0.0187
HLA-DRB4 215666 _at
HLA-DRB4 215669 _at
Table 35 below lists the Affymetrix U133 plus 2.0 probesets HLA-DRBS 221491_x_at
that are in genes known to be involved in this Th1/Th2 cell giiggz ;3;23—“ . 0.0034
: : : - X__ Al .
differentiation pathway. HLA-DRBS 217362 x_at 0,047
HLA-DRBS3 215193 _x_at 0.0034
TABLE 35 HLA-DRBS3 215193 _x_at 0.0187
HLA-DRBS3 209728 _at
U133 plus 2.0 Probesets in genes involved in HLA-DRBS 204670_x__at 0.0034
the Th1/Th2 cell differentiation pathway. HLA-DRBS 204670_x__at 0.0187
HLA-DRBS3 208306_x_at 0.0034
U133+ 2.0 P value HLA-DRBS 208306_x_ at 0.0187
Symbol probeset (adjusted) HLA-DRBS 209312_x_ at 0.0034
HLA-DRBS3 209312_x_at 0.0187
CD28 211856 _x_at 0.018 HLA-DRBS3 215666 _at
CD28 211861 _x_at HLA-DRBS3 215669 _at
CD28 206545 _at IFNG 210354_at
CD86 205685_at 0.0034 IFNGR1 211676_s_at 0.00342
CD86 205685 _at 0.0187 IFNGR1 242903 _at 0.0034
CD86 210895 s at 0.0034 IFNGR1 202727 s _at 0.0054
CD86 210895 s at 0.0187 IFNGR2 231696 _x_at
CD86 205686_s_at 0.0114 IFNGR2 201642_at 0.0034
HLA-DRA 210982 s at 0.0034 IL12A 207160_at
HLA-DRA 210982 s at 0.0187 IL12B 207901 _at
HLA-DRA 208894 _at 0.0034 IL12RB1 239522 at
HLA-DRA 208894 _at 0.0187 IL12RB1 206890_at
HLA-DRB1 221491 x_at IL12RB2 206999 _at
HLA-DRB1 217323 _at IL18 206295 _at
HLA-DRBI1 217362_x_at 0.0034 ILL.18R1 206618 _ at 0.0034
HLA-DRBI1 217362_x_at 0.0472 IL18R1 206618 at 0.0187
HLA-DRBI1 215193_x_ at 0.0034 1.2 207849  at
HLA-DRB1 215193 _x_at 0.0187 IL2RA 211269 s_at
HLA DRB1 204670 st 00034 IL2RA 206341 00247
HLA-DRB1 204670 _x_at 0.0187 gi ;832;3*? at
HLA-DRB1 208306_x_at 0.0034 ——
HLA-DRBI1 208306_x_at 0.0187 ILAR 203233_at 0.0034
HLA-DRBI 209312 x_at 0.0034 IL4R 203233_at 0.0187
HLA-DRBI 209312 % at 0.0187 TNFRSF5 222292_at 0.0126
HLA-DRB1 215666 at TNFRSF3 215346_at
HLA-DRB1 215669 at TNFRSF5 205153_s_ at
HLA-DRB3 221491_x_ at TNFRSF5 35150_at 0.0086
HLA-DRB3 217323 _at TNFSF5 207892_at 0.0034

HLA-DRB3 217362_x_at 0.0034
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[0549] Table 36 below identifies the genes that contain the
probesets that remained in the set of discriminating biomar-
kers upon application of the annotation data based filtering
rule.

May 5, 2011

-continued

## remove missing values
X <- X[-rm.idx]
y <- y[-rm.idx]

TABLE 36 ## update length
1 <- length(x)
Identified genes. } N
R <= (n*sum(x*y)-sum(x)*sum(y))/(sqrt((n*sum(x 2) -
Fold-change (sum(x)) 2)*(n*sum(y 2) - (sum(y)) 2)))
Datasource  Adjusted  (Median sepsis vs.  Relative return(R)
Gene name (static) p value Median SIRS) regulation
CD86 T o 0.003 1.56 Down
T 36 0.019 1.23 Down [0552] FIG. 31 shows the correlation between IL18R1
HLA-DRA T 0.003 1.29 Down expression, as determined by RT-PCR, and the intensity of the
T s 0.019 1.23 Down X206618_at probeset, as determined using the techniques
?IZA;DRBL ?12 8'8?3 3; gggﬁ described in Section 6.2, using all available time points across
IFNGR1 sz 0.003 130 Up the training population. Each point in FIG. 31 is the gene
IFNGR2 T 5 0.003 1.25 Up expression value for a given subject in the training population
IL18R1 T_p» 0.003 3.17 Up from the RT-PCR data and the microarray data. Substantial
T s 0.019 2.37 Up correlation between the RT-PCR and the microarray data was
IL4R ?12 8'8?3 }'gé gp found. In particular, the overall correlation between expres-
-6 : : P sion of IL18R1 as determined by RT-PCR and microarray
data for X206618_at was 0.85.
[0550] The genes in Table 36 represent biomarkers that [0553] FIG. 32 shows the correlation between FCGRIA

discriminate between converters and converters. Further,
these genes are in the Th1/Th2 cell differentiation pathway.
The results in the table show that, although clinically similar,
SIRS patients who subsequently developed sepsis expressed
genes related to Th1/Th2 Cells differently than SIRS patients
who remained uninfected. These differences occurred prior to
the onset of clinical sepsis. For a discussion of Th1/Th2 cell
differentiation pathway genes and related genes, see, e.g.,
Abbas et al., 1996, Functional diversity of helper T lympho-
cytes, Nature 383:787-793; Fearon and Locksley, 1996, Sci-
ence 272:50-53; and Mossman and Sad, 1996, Immunol.
Today 17:138-146; each of which is hereby incorporated by
reference in its entirety.

6.10 RT-PCR

[0551] InSection 6.1, it was noted that two Paxgene (RNA)
tubes were drawn from each subject in the study on each day
of the study. One tube was used for microarray analysis as
described in Section 6.2. The other tube was used for RT-PCR
analysis. In this section, the correlation between the gene
expression values obtained by RT-PCR and the gene expres-
sion values obtained by microarray is presented for three of
the genes listed in Table 30, IL18R1, FCGR1A, and MMP9.
In this comparison, static expression data from both assays
(RT-PCR and microarray) for all time points measured in the
subject were correlated to obtain a correlation coefficient. The
correlations were computed within ‘R’, a public domain sta-
tistical computing language (http://www.r-project.org/,
which is hereby incorporated by reference), using the follow-
ing code:

corCale <- function(x,y){
n <- length(x)
## if there are any missing values in the data
if(any(is.na(x)) |1 any(is.na(y))){
## index where missing values occur
rm.idx <- which(is.na(x))
m.idx <- c(rm.idx,which(is.na(y)))

expression, as determined by RT-PCR, and the intensity of the
X214511_x_at, X216950_s_at and X216951_at probesets,
as determined using the techniques described in Section 6.2,
using all available time points in the training population. Each
point in FIG. 32 is the gene expression value for a given
subject in the training population from the RT-PCR data and
the microarray data. As is evident in FIG. 32, the overall
correlation between expression of FCGR1A and each of the
two FCGR1A probesets that are found in Table 30, X214511_
x_at and X216950_s_at, was significant. In particular the
correlation coefficient between FCGR1A and X214511_x_at
was 0.88. Likewise, the correlation coefficient between and
FCGR I A and X216950_s_at was 0.88. The overall correla-
tion between expression of FCGR1A and the FCGRIA
probeset not found in Table 30, X216951_at, was 0.53, which
was not as significant as the other two probesets.

[0554] FIG. 33 shows the correlation between MMP9
expression, as determined by RT-PCR, and the intensity of the
X203936_s_at probeset, as determined using the techniques
described in Section 6.2, using all available time points in the
training population. Each point in FIG. 32 is the gene expres-
sion value for a given subject in the study from the RT-PCR
data and the microarray data. Substantial correlation between
the RT-PCR and the microarray data was found. In particular,
the overall correlation between expression of MMP?9 as deter-
mined by RT-PCR and microarray data for X203936_s_at
was 0.87.

[0555] FIG. 34 shows the correlation between CDS86
expression, as determined by RT-PCR, and the intensity of the
X205685_at, X205686_s_at, and X210895_s_at probesets,
as determined using the techniques described in Section 6.2,
using all available time points. Each point in FIG. 34 is the
gene expression value for a given subject in the study from the
RT-PCR data and the microarray data. As is evident in FIG.
34, the overall correlation between expression of CD86 and
CD86 probeset that is found in Table 30, 210895_s_at, was
significant (correlation coefficient of 0.71). The overall cor-
relation between expression of CD86 and the probesets not
found in Table 30, X205685_at, X205686_s_at, was not as
significant (correlation coefficient of 0.66 and 0.56, respec-
tively).
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[0556] In one embodiment, a biomarker profile of the
present invention comprises a plurality of biomarkers
selected from Table 30, including at least one sequence of a
probeset in the set of:

[0557] {X206618_at, X214511_x_at, X216950_s_at,
X203936_s_at, and 21 0895_s_at}

or complements thereof, or genes including the sequence or a
complement of the sequence thereof, or a discriminating frag-
ment thereof, or an amino acid sequence encoded by any of
the foregoing nucleic acid sequences, or any discriminating
fragment of such an amino acid sequence. Such biomarkers
can be, for example, mRNA transcripts, cDNA or some other
nucleic acid, for example, amplified nucleic acid or proteins.
In one embodiment, a biomarker profile the of the present
invention comprises a nucleic acid that codes for TGFBI1,
IL18R1, or FCGRI1A, a discriminating portion of TGFB1,
IL18R1, or FCGR1A, complements of such nucleic acids,
proteins encoded by such nucleic acids, or antibodies that
selectively bind to any of the foregoing.

6.11 Discovery of Select Nucleic Acid Biomarkers

[0558] The experiments described above identified a num-
ber of biomarkers that discriminate between sepsis and SIRS.
In this example, a discovery process was performed in order
to confirm which biomarkers differentiate between patients
who subsequently develop sepsis (“sepsis patients™) and
patients who do not (“SIRS patients”). In the discovery pro-
cess, samples from SIRS patients and sepsis patients taken at:
(1) date of entry, (i1) T_g,, (iii) T_;4, and (iv) T_, , data points
were studied by RT-PCR, as described in Section 6.11.1 and
by Aftymetrix gene chip analysis, as described in Section
6.11.2.

6.11.1 RT-PCR Analysis

[0559] Biomarkers in multiple samples were measured by
RT-PCR at multiple time points and analyzed in several dif-
ferent ways: static time of entry, static T_g, static T_5, base-
line T_g,, baseline T_;,, and baseline T_,, data points. RT-
PCR 1is described in Section 5.4.1.2, and 6.10, above.
Representative of these analyses is the static T_ |, data analy-
sis which is described in detail below. Inthe T_ |, static analy-
sis, biomarkers features were measured using a specific blood
sample, designated the T_, , blood sample, as defined in Sec-
tion 6.4, above.

[0560] FortheT_,, static analysis, there were 72 biomark-
ers measured on 96 samples. Each sample was collected from
a different member the population. Of these features, 15 were
transformed by log transformations, 5 by square root trans-
formations and the remaining 52 were not transformed.

[0561] The 96 member population was initially split into a
training set (n=73) and a validation set (n=23). The training
set was used to estimate the appropriate classification algo-
rithm parameters while the trained algorithm was applied to
the validation set to independently assess performance. Of the
73 training samples, 36 were labeled Sepsis, meaning that the
subjects developed sepsis at some point during the observa-
tion time period, and 37 were SIRS, meaning that they did not
develop sepsis during the observation time period. Table 37
provides distributions of the race, gender and age for these
samples.

TABLE 37

May 5, 2011

Distributions of the race, gender, and age for the training data

Group Gender Black Caucasian Other
Sepsis Male 10 14 1
Female 0 10 1
SIRS Male 5 22 0
Female 0 10 0
Group Minimum Mean Median Maximum
Sepsis 18 43.2 40 80
SIRS 18 44.6 40 90
[0562] For the 23 validation samples, 12 were labeled Sep-

sis and 11 were labeled SIRS. Table 38 provides distributions
of the race, gender and age for these samples.

TABLE 38

Distributions of the race, gender, and age for the validation data

Group Gender Black Caucasian Other

Sepsis Male 0 7 0
Female 0 4 0

SIRS Male 2 6 0
Female 0 4 0

Group Minimum Mean Median Maximum

Sepsis 18 434 43 81

SIRS 19 51.9 51.5 85

[0563] Each sample in the training data was randomly

assigned to one of ten groups used for cross-validation. The
number of training samples in these groups ranged from 6 to
8. The samples were assigned in way that attempted to bal-
ance the number of sepsis and SIRS samples across folds. As
described in more detail below, several different methods
were used to judge whether select biomarkers discriminate
between the Sepsis and SIRS groups.

[0564] Wilcoxon and Q-value tests. The first method used
to identify discriminating biomarkers was a Wilcoxon test
(unadjusted). The abundance value for a given biomarker
across the samples in the training data was subjected to the
Wilcoxon test. The Wilcoxon test considers both group clas-
sification (sepsis versus SIRS) and abundance value in order
to compute a p value for the given biomarker. The p value
provides an indication of how well the abundance value for
the given biomarker across the samples collected in the train-
ing set discriminates between the sepsis and SIRS state. The
lower the p value, the better the discrimination. When the p
value is less than a specific confidence level, such as 0.05, an
inference is made that the biomarker discriminates between
the sepsis and SIRS phenotype. There were 33 significant
biomarkers using this method (see Table 39).

[0565] The second method used to identify discriminating
biomarkers was the Wilcoxon Test (adjusted). Due to the
large number of biomarkers, 72, and the relatively small
number of samples, 96, there was a high risk of finding falsely
significant biomarkers. An adjusted p-value was used to
counter this risk. In particular, the method of Benjamini and
Hochberg, 1995, J.R. Statist. Soc. B 57, pp 289-300, which is
hereby incorporated herein by reference in its entirety, was
used to control the false discovery rate. Here, the false dis-
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covery rate is defined as the number of biomarkers truly
significant divided by the number of biomarkers declared
significant. For example, if the adjusted p-value is less than
0.05, there is a 5% chance that the biomarker is a false dis-
covery. Results using this test are reported in Table 39. There
were 11851 significant biomarkers using this method (see
Table 39). As used, herein, a biomarker is considered signifi-
cant if it has a p-value of less than 0.05 as determined by the
Wilcoxon test (adjusted).

[0566] The third method used to identify discriminating
biomarkers was the use of Q values. In such an approach, the
biomarkers are ordered by their g-values and if a respective
biomarker has a Q value of X, then respective biomarker and
all others more significant have a combined false discovery
rate of X. However, the false discovery rate for any one
biomarker may be much larger. There were 27 significant
biomarkers using this method (see Table 39).

TABLE 39

May 5, 2011

TABLE 40

Confusion matrix for training samples using
the cross-validated CART algorithm of FIG. 36

True Diagnosis

Predicted Sepsis SIRS
Sepsis 26 13
SIRS 10 24

[0569] For the 23 validation samples held back from train-
ing data set, the overall accuracy was estimated to be 78.3%
with a 95% confidence interval of 56.3% to 92.5%, sensitivity
66.7% and specificity 90.9%. Table 41 shows the confusion
matrix for the validation samples.

TABLE 41

Confusion matrix for validation samples
using the cross-validated CART algorithm

Cumulative number of significant calls for the three methods.
Note that all samples (training and validation) were used to
compare Sepsis and SIRS groups. Missing biomarker

True Diagnosis

feature values were not included in the analyses. Predicted Sepsis SIRS
Sepsis 8 1
=le-04 =0.001 =0.01 =0.025 =005 =01 =1 SIRS 4 10

p-value 0 22 25 29 33 38 72
(unadjusted)

p-value 0 16 25 25 27 3 72
(adjusted)

g-value 0 0 28 38 47 59 72
[0567] CART. In addition to analyzing the microarray data

using Wilcoxon and Q-value tests in order to identify biom-
arkers that discriminate between the sepsis and SIRS sub-
populations in the training set, classification and regression
tree (CART) analysis was used. CART is described in Section
5.5.1, above. Specifically, the data summarized above was
used to predict the disease state by iteratively partitioning the
databased on the best single-variable split ofthe data. In other
words, at each stage of the tree building process, the biomar-
ker whose expression values across the training population
best discriminate between the sepsis and SIRS population
was invoked as a decision branch. Cross-validation was car-
ried out, with the optimal number of splits estimated indepen-
dently in each ofthe 10 iterations. The final tree is depicted in
FIG. 36, and uses seven biomarkers: TNFSF13B, FCGR1A,
HMOX1, MMP9, APAF1, APAF1.1, and CCL3.

[0568] FIG. 37 shows the distribution of the seven biomar-
kers used in the decision tree between the sepsis and SIRS
groups in the training data set. In FIG. 37, the top of each box
denotes the 75" percentile of the data across the training set
and the bottom of each box denotes the 257 percentile, and
the median value for each biomarker across the training set is
drawn as a line within each box. The confusion matrix for the
training data where the predicted classifications were made
from the cross-validated model is given in Table 40. From this
confusion matrix, the overall accuracy was estimated to be
68.5% with a 95% confidence interval of 56.6% to 78.9%.
The estimated sensitivity was 72.2% and the estimated speci-
ficity was 64.9%.

[0570] Random Forests. Another decision rule that can be
developed using biomarkers of the present invention is a
Random Forests decision tree. Random Forests is a tree based
method that uses bootstrapping instead of cross-validation.
For each iteration, a random sample (with replacement) is
drawn and the largest tree possible is grown. Each tree
receives a vote in the final class prediction. To fit a random
forest, the number of trees (e.g. bootstrap iterations) is speci-
fied. No more than 500 were used in this example, but at least
50 are needed for a burn-in period. The number of trees was
chosen based on the accuracy of the training data. For this
data, 462 trees were used to train the algorithm (see FIG. 38).
In FIG. 38, curve 3202 is a smoothed estimate of overall
accuracy as a function of tree number. Curve 3804 is a
smoothed curve of tree sensitivity as a function of tree num-
ber. Curve 3806 is a smoothed curve of tree specificity as a
function of tree number. Using this algorithm, 49 biomarkers
had non-zero importance and were used in the model. The
random forest algorithm gauges biomarker importance by the
average reduction in the training accuracy. The biomarkers
were ranked by this method and are shown in FIG. 39. The
random forest method uses a number of different decision
trees. A biomarker is considered to have discriminating sig-
nificance if it served as a decision branch of a decision tree
from a significant random forest analysis. As used herein, a
significant random forest analysis is one where the lower 95%
confidence interval on accuracy by cross validation on a train-
ing data set is greater than 50% and the point estimate for
accuracy on a validation set is greater than 65%.

[0571] The predicted confusion matrix for the training
dataset using the decision tree developed using the Random
Forest method is given in Table 42. From this confusion
matrix, the overall accuracy was estimated to be 76.7% (con-
fidence intervals cannot be computed when using the boot-
strap accuracy estimate). The estimated sensitivity was
77.8% and the estimated specificity was 75.7%.
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TABLE 44

Confusion matrix for training samples against the decision
tree developed using the Random Forest method.

Confusion matrix for the training samples
using the cross-validated MART algorithm.

True Diagnosis

True Diagnosis

Predicted Sepsis SIRS Predicted Sepsis SIRS
Sepsis 28 8 Sepsis 26 8
SIRS 9 28 SIRS 10 29
[0572] For the 23 validation samples held back from train- [0577] For the 23 validation samples held back from train-

ing, the overall accuracy was estimated to be 78.3% with a
95% confidence interval of 56.3% to 92.5%, sensitivity 75%
and specificity 81.8%. Table 43 shows the confusion matrix
for the validation samples.

TABLE 43

Confusion matrix for the validation samples against the
decision tree developed using the Random Forest method.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 9 2
SIRS 3 9

[0573] MART. Multiple Additive Regression Trees
(MART), also known as “gradient boosting machines,” was
used to simultaneously assess the importance of biomarkers
and classify the subject samples. Several fitting parameters
are specified in this approach including (i) number of trees,
(i1) step size (commonly referred to as “shrinkage™), and (iii)
degree of interaction (related to the number of splits for each
tree). More information on MART is described in Section
5.5.4 above. The degree of interaction was set to 1 to enforce
an additive model (e.g. each tree has one split and only uses
one biomarker).

[0574] Estimating interactions may require more data to
function well. The step size was set to 0.05 so that the model
complexity was dictated by the number of trees. The optimal
number of trees was estimated by leaving out a random subset
of cases at each fitting iteration, then assessing quality of
prediction on that subset. After fitting more trees than were
warranted, the point at which prediction performance stopped
improving was estimated as the optimal point.

[0575] The estimated model used 15 trees and 6 biomarkers
across all trees. The MART algorithm also provides a calcu-
lation of biomarker importance (summing to 100%), which
are given in FIG. 40. Biomarkers with zero importance were
excluded. FIG. 41 shows the distribution of the selected
biomarkers between the Sepsis and SIRS groups.

[0576] Cross-validation was carried out, with the optimal
number of trees estimated independently in each of the 10
iterations. The confusion matrix for the training data where
the predicted classifications were made from the cross-vali-
dated model is given in Table 44. From this confusion matrix,
the overall accuracy was estimated to be 75.3% with a 95%
confidence interval of 63.9% to 84.7%. The estimated sensi-
tivity was 72.2% and the estimated specificity was 78.4%.

ing, the overall accuracy was estimated to be 78.3% with a
95% confidence interval of 56.3% to 92.5%, sensitivity
81.8% and specificity 75%. Table 45 shows the confusion
matrix for the validation samples.

TABLE 45

Confusion matrix for the validation
samples using the MART algorithm.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 9 3
SIRS 2 9
[0578] PAM. Yet another decision rule developed using

biomarkers of the present invention is predictive analysis of
microarrays (PAM), which is described in Section 5.5.2,
above. In this method, a shrinkage parameter that determines
the number of biomarkers used to classify samples is speci-
fied. This parameter was chosen via cross-validation. There
were no biomarkers with missing values. Based on cross-
validation, the optimal threshold value was 2.12, correspond-
ing to 5 biomarkers. FIG. 42 shows the accuracy across dif-
ferent thresholds. In FIG. 42, curve 4202 is the overall
accuracy (with 95% confidence interval bars). Curve 4204
shows decision rule sensitivity as a function of threshold
value. Curve 4206 shows decision rule specificity as a func-
tion of threshold value. Using the threshold of 2.12, the over-
all accuracy for the training samples was estimated to be
80.8% with a 95% confidence interval of 70.9% to 87.9%.
The estimated sensitivity was 89.2% and the estimated speci-
ficity was 72.2%. Table 46 shows the confusion matrix for the
training data where the predicted classifications were made
from the cross-validated models.

TABLE 46

Confusion matrix for training samples
using cross-validated PAM algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 33 10
SIRS 4 26
[0579] For the 23 validation samples held back from train-

ing, the overall accuracy was estimated to be 82.6% with a
95% confidence interval of 61.2% to 95%, sensitivity 91.7%
and specificity 72.7%. Table 47 shows the confusion matrix
for the validation samples.
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TABLE 47

Confusion matrix for validation samples
using cross-validated PAM algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 11 3
SIRS 1 8

[0580] FIG. 43 shows the selected biomarkers, ranked by
their relative discriminatory power, and their relative impor-
tance in the model.
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[0581] FIG. 44 provides a summary of the CART, MART,
PAM, and random forests (RF) classification algorithm (deci-
sion rule) performance and associated 95% confidence inter-
vals. Fifty distinct biomarkers were selected from across all
the algorithms illustrated in FIG. 44. The identity of these
fifty selected features is found in FIG. 45, which further
illustrates an overall ranking of these biomarkers forthe T_ ,
data set. For the selected biomarkers, the x-axis depicts the
percentage of times that it was selected. Within the percent-
age of times that biomarkers were selected, the biomarkers
are ranked.

[0582] From the analysis of the T_, , data set and the other
data sets, biomarkers were ranked according to how often
they were included in the CART, MART, PAM, random for-
ests. The results of this ranking is summarized in Table 48
below:

TABLE 48

Top ranked biomarkers as determined by RT-PCR

Gene Protein
Gene Accession Accession T 5 T 36
symbol Gene Name Number Number Hours  Hours
FCGR1A FC FRAGMENT OF IGG, HIGH NM_000566  NP_000557 1 1
AFFINITY 1A
MMP9 MATRIX NM__ 004994  NP_ 004985 2 5
METALLOPROTEINASE 9
(GELATINASE B, 92 KDA
GELATFNASE, 92 KDA TYPE IV
COLLAGENASE)
IL18R1 INTERLEUKIN 18 RECEPTOR 1 NM__003855  NP_003846 3 2
ARG2 ARGINASE TYPE II NM_001172  CAG38787 4 3
ILIRN INTERLEUKIN-1 RECEPTOR NM_000577, AAN8&7150 4 4
ANTAGONIST GENE NM_173841,
NM_173842,
NM__173843
TNFSF13B  TUMOR NECROSIS FACTOR NM_006573  NP_006564 4 5
(LIGAND) SUPERFAMILY,
MEMBER 13B
ITGAM INTEGRIN, ALPHA M NM_000632  NP_000623 5 7
(COMPLEMENT COMPONENT
RECEPTOR 3, ALPHA; ALSO
KNOWNAS CD11B (P170),
MACROPHAGE ANTIGEN
ALPHA POLYPEPTIDE)
CD4 CD4 ANTIGEN (P55) NM_000616  NP_000607 6 7
TGFBL TRANSFORMING GROWTH NM_000358  NP_000349 6 9
FACTOR, BETA-1
(TRANSFORMING GROWTH
FACTOR, BETA-INDUCED,
68 KDA)
CD8&6 CD86 ANTIGEN (CD28 NM_006889  NP_008820 6 6
ANTIGEN LIGAND 2, B7-2 NM_175862  NP_787058
ANTIGEN)
TLR4 TOLL-LIKE RECEPTOR 4 AH009665 AAF05316 6 6
IFI16 INTERFRON, GAMMA- NM_005531  AAH17059 6 9
INDUCIBLE PROTEIN 16
ICAM1 INTERCELLULAR ADHESION NM_010493  NP_000192, 6 10
MOLECULE 1 AAQ14902,
AAQ14901
TGFBR2 TRANSFORMING GROWTH NM_003242  AAF27281 6 8
FACTOR, BETA RECEPTOR II
PLA2G7 PLATELET-ACTIVATING NM_ 005084  CAH73907 7 6
FACTOR ACETYLHYDROLASE
IL-10 INTERLEUKIN 10 NM_000572  CAH73907 8 7
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[0583] As Table 48 indicates, in general, important biom-
arkers at T_, , were also important biomarkers at earlier time
points. The ten biomarkers that are italicized in Table 48 were
carried forward to confirmation as described in Section 6.12.
1, below. CD4 was excluded in this embodiment because it
was found to be different on day of entry.

6.11.2 Discovery Affymetrix Gene Chip Analysis

[0584] The patients were also analyzed using Affymetrix
gene chip analysis. Such an analysis is described in Section
6.2 Biomarkers in multiple samples were measured by
[0585] Aftymetrix gene chip analysis at multiple time
points and analyzed in several different ways: static time of
entry, static T_g, static T_;4, baseline T_g,, baselineT_;, and
baseline T_, , data points. The Affymetrix gene chip assay is
described in Section 6.2, above. Representative of these
analyses is the static T_,, data analysis described in detail
below. In the T_,, static analysis, biomarkers features were
measured using a specific blood sample, designated the T_,,
blood sample, as defined in Section 6.4, above.

[0586] FortheT_,, static analysis, there were 54,613 biom-
arkers measured on 90 samples. Each sample was collected
from a different member the population. Of these features,
31,047 were transformed by log transformations, 2518 by
square root transformations and the remaining 21,048 were
not transformed.

[0587] The 90 member population was initially split into a
training set (n=69) and a validation set (n=21). The training
set was used to estimate the appropriate classification algo-
rithm parameters while the trained algorithm was applied to
the validation set to independently assess performance. Of the
69 training samples, 34 were labeled Sepsis, meaning that the
subjects developed sepsis at some point during the observa-
tion time period, and 35 were SIRS, meaning that they did not
develop sepsis during the observation time period. Table 49
provides distributions of the race, gender and age for these
samples.

TABLE 49

Distributions of the race, gender, and age for the training data

Group Gender Black Caucasian Other
Sepsis Male 9 13 1
Female 0 10 1
SIRS Male 5 20 0
Female 0 10 0
Group Minimum Mean Median Maximum
Sepsis 18 44.1 39 80
SIRS 18 44.1 40 90

[0588] For the 21 validation samples, 11 were labeled Sep-
sis and 10 were labeled SIRS. Table 50 provides distributions
of the race, gender and age for these samples.

TABLE 50

Distributions of the race, gender, and age for the validation data

Group Gender Black Caucasian Other
Sepsis Male 0 7 0
Female 0 3 0

May 5, 2011

TABLE 50-continued

Distributions of the race, gender, and age for the validation data

SIRS Male 2 6 0
Female 0 3 0
Group Minimum Mean Median Maximum
Sepsis 18 434 40 81
SIRS 19 53 52 85

[0589] Each sample in the training data was randomly
assigned to one of ten groups used for cross-validation. The
number of training samples in these groups ranged from 6 to
8. The samples were assigned in way that attempted to bal-
ance the number of sepsis and SIRS samples across folds. As
described in more detail below, several different methods
were used to judge whether select biomarkers discriminate
between the Sepsis and SIRS groups.

[0590] Wilcoxon and Q-value tests. The first method used
to identify discriminating biomarkers was a Wilcoxon test
(unadjusted). The abundance value for a given biomarker
across the samples in the training data was subjected to the
Wilcoxon test. The Wilcoxon test considers both group clas-
sification (sepsis versus SIRS) and abundance value in order
to compute a p value for the given biomarker. The p value
provides an indication of how well the abundance value for
the given biomarker across the samples collected in the train-
ing set discriminates between the sepsis and SIRS state. The
lower the p value, the better the discrimination. When the p
value is less than a specific confidence level, such as 0.05, an
inference is made that the biomarker discriminates between
the sepsis and SIRS phenotype. There were 19791 significant
biomarkers using this method (see Table 51).

[0591] The second method used to identify discriminating
biomarkers was the Wilcoxon Test (adjusted). Due to the
large number of biomarkers, 54613, and the relatively small
number of samples, 90, there was a high risk of finding falsely
significant biomarkers. An adjusted p-value was used to
counter this risk. In particular, the method of Benjamini and
Hochberg, 1995, J.R. Statist. Soc. B 57, pp 289-300, which is
hereby incorporated herein by reference in its entirety, was
used to control the false discovery rate. Here, the false dis-
covery rate is defined as the number of biomarkers truly
significant divided by the number of biomarkers declared
significant. For example, if the adjusted p value is less than
0.05, there is a 5% chance that the biomarker is a false dis-
covery. Results using this test are reported in Table 51. There
were 11851 significant biomarkers using this method (see
Table 51). As used, herein, a biomarker is considered signifi-
cant if it has a p-value of less than 0.05 as determined by the
Wilcoxon test (adjusted).

[0592] The third method used to identify discriminating
biomarkers was the use of Q values. In such an approach, the
biomarkers are ordered by their g-values and if a respective
biomarker has a Q value of X, then respective biomarker and
all others more significant have a combined false discovery
rate of X. However, the false discovery rate for any one
biomarker may be much larger. There were 11581 significant
biomarkers using this method (see Table 51).
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Cumulative number of significant calls for the three methods. Note that all

96 samples (training and validation) were used to compare Sepsis and SIRS groups.
Missing biomarker feature values were not included in the analyses.

=le-04 =0.001 =001 =0.025 =005 =0.1 =1
p-value (unadjusted) 0 5417 11537 15769 19791 24809 54613
p-value 0 0 5043 8374 11851 16973 54613
(adjusted)
q-value 0 0 7734 12478 17820 24890 54613
[0593] CART. In addition to analyzing the microarray data chosen based on the accuracy of the training data. For this

using Wilcoxon and Q-value tests in order to identify biom-
arkers that discriminate between the sepsis and SIRS sub-
populations in the training set, classification and regression
tree (CART) analysis was used. CART is described in Section
5.5.1, above. Specifically, the data summarized above was
used to predict the disease state by iteratively partitioning the
databased on the best single-variable split ofthe data. In other
words, at each stage of the tree building process, the biomar-
ker whose expression values across the training population
best discriminate between the sepsis and SIRS population
was invoked as a decision branch. Cross-validation was car-
ried out, with the optimal number of splits estimated indepen-
dently in each of the 10 iterations. The final tree uses four
probesets: X214681_at, X230281_at, X1007_s_at, and
X1560432_at, where each given probeset is the U133 plus 2.0
Aftymetrix probe set name. The confusion matrix for the
training data, based on the final tree from the cross-validated
CART algorithm is given in Table 52. From this confusion
matrix, the overall accuracy was estimated to be 65.2% with
a 95% confidence interval of 52.8% to 76.3%. The estimated
sensitivity was 61.8% and the estimated specificity was
68.6%.

TABLE 52

Confusion matrix for training samples using
the cross-validated CART algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 21 11
SIRS 13 24
[0594] For the 21 validation samples held back from train-

ing data set, the overall accuracy was estimated to be 71.4%
with a 95% confidence interval 0f47.8% to 88.7%, sensitivity
90.9% and specificity 50%. The confusion matrix for the
validation samples was predicted Sepsis/true Sepsis 10, pre-
dicted SIRS/true Sepis 1, predicted Sepsis/true SIRS 5, pre-
dicted SIRS/true SIRS 5.

[0595] Random Forests. Another decision rule that can be
developed using biomarkers of the present invention is a
Random Forests decision tree. Random Forests is a tree based
method that uses bootstrapping instead of cross-validation.
For each iteration, a random sample (with replacement) is
drawn and the largest tree possible is grown. Each tree
receives a vote in the final class prediction. To fit a random
forest, the number of trees (e.g. bootstrap iterations) is speci-
fied. No more than 500 were used in this example, but at least
50 are needed for a burn-in period. The number of trees was

data, 439 trees were used to train the algorithm. Using this
algorithm, 845 biomarkers had non-zero importance and
were used in the model. The random forest algorithm gauges
biomarker importance by the average reduction in the training
accuracy.

[0596] The random forest method uses a number of differ-
ent decision trees. A biomarker is considered to have dis-
criminating significance if it served as a decision branch of a
decision tree from a significant random forest analysis. As
used herein, a significant random forest analysis is one where
the lower 95% confidence interval on accuracy by cross vali-
dation on a training data set is greater than 50% and the point
estimate for accuracy on a validation set is greater than 65%.
[0597] The predicted confusion matrix for the training
dataset using the decision tree developed using the Random
Forest method is given in Table 53. From this confusion
matrix, the overall accuracy was estimated to be 75.4% (con-
fidence intervals cannot be computed when using the boot-
strap accuracy estimate). The estimated sensitivity was
73.5% and the estimated specificity was 77.1%.

TABLE 53

Confusion matrix for training samples against the decision
tree developed using the Random Forest method.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 27 9
SIRS 8 25

[0598] For the 21 validation samples held back from train-
ing, the overall accuracy was estimated to be 76.2% with a
95% confidence interval of 76.2% to 99.9%, sensitivity 100%
and specificity 90%. Table 54 shows the confusion matrix for
the validation samples.

TABLE 54

Confusion matrix for the validation samples against the
decision tree developed using the Random Forest method.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 11 1
SIRS 0 9

[0599] MART. Multiple Additive Regression Trees
(MART), also known as “gradient boosting machines,” was
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used to simultaneously assess the importance of biomarkers
and classify the subject samples. Several fitting parameters
are specified in this approach including (i) number of trees,
(i1) step size (commonly referred to as “shrinkage™), and (iii)
degree of interaction (related to the number of splits for each
tree). More information on MART is described in Section
5.5.4 above. The degree of interaction was set to 1 to enforce
an additive model (e.g. each tree has one split and only uses
one biomarker).

[0600] Estimating interactions may require more data to
function well. The step size was set to 0.05 so that the model
complexity was dictated by the number of trees. The optimal
number of trees was estimated by leaving out a random subset
of cases at each fitting iteration, then assessing quality of
prediction on that subset. After fitting more trees than were
warranted, the point at which prediction performance stopped
improving was estimated as the optimal point.

[0601] The estimated model used 28 trees and 17 biomar-
kers across all trees. The MART algorithm also provides a
calculation of biomarker importance (summing to 100%).
Biomarkers ranked in decreasing order of importance to the
model, with the most important biomarker first were:
X206513_at, X214681_at, X235359_at, X221850_x_at,
X213524_s_at, X225656_a, X200881_s_at, X229743_at,
X215178_x_at, X215178 x_at, X216841_s_at, X216841_
at, X244158_at, X238858_at, X205287_s_at, X233651_s_
at, X229572_at, X214765_s_at.

[0602] Cross-validation was carried out, with the optimal
number of trees estimated independently in each of the 10
iterations. The confusion matrix for the training data where
the predicted classifications were made from the cross-vali-
dated model is given in Table 55. From this confusion matrix,
the overall accuracy was estimated to be 76.8% with a 95%
confidence interval of 65.1% to 86.1%. The estimated sensi-
tivity was 76.5% and the estimated specificity was 77.1%.

TABLE 55

Confusion matrix for the training samples
using the cross-validated MART algorithm.
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[0604] PAM. Yet another decision rule developed using
biomarkers of the present invention is predictive analysis of
microarrays (PAM), which is described in Section 5.5.2,
above. In this method, a shrinkage parameter that determines
the number of biomarkers used to classify samples is speci-
fied. This parameter was chosen via cross-validation. There
were no biomarkers with missing values. Based on cross-
validation, the optimal threshold value was 2.1, correspond-
ing to 820 biomarkers.

[0605] Using the threshold of 2.1, the overall accuracy for
the training samples was estimated to be 80.9% with a 95%
confidence interval of 73.4% to 86.7%. The estimated sensi-
tivity was 85.7% and the estimated specificity was 76.5%.
Table 57 shows the confusion matrix for the training data
where the predicted classifications were made from the cross-
validated models.

TABLE 57

Confusion matrix for training samples
using cross-validated PAM algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 11 1
SIRS 0 9
[0606] For the 21 validation samples held back from train-

ing, the overall accuracy was estimated to be 95.2% with a
95% confidence interval of 76.2% to 99.9%, sensitivity 100%
and specificity 90%. Table 58 shows the confusion matrix for
the validation samples.

TABLE 58

Confusion matrix for validation samples
using cross-validated PAM algorithm

True Diagnosis

Predicted Sepsis SIRS
True Diagnosis
Sepsis 11 1
Predicted Sepsis SIRS SIRS 0 9
Sepsis 26 8
SIRS 8 27 [0607] The top ten biomarkers identified by PAM, ranked

[0603] For the 21 validation samples held back from train-
ing, the overall accuracy was estimated to be 85.7% with a
95% confidence interval of 63.7% to 97%, sensitivity 80%
and specificity 90.9%. Table 56 shows the confusion matrix
for the validation samples.

TABLE 56

Confusion matrix for the validation
samples using the MART algorithm.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 8 1
SIRS 2 10

from most important to

[0608] least important were: X206513_at, X213524_s_at,
X200881_s_at, X218992_at, X238858_at, X221123_x_at,
X228402_at, X230585_at, X209304_x_at, X214681 _at.

[0609] FIG. 46 provides a summary of the CART, MART,
PAM, and random forests (RF) classification algorithm (deci-
sion rule) performance and associated 95% confidence inter-
vals using T_,, static data obtained from an Affymetrix gene
chip discovery training population. Fifty distinct biomarkers
were selected from across all the algorithms illustrated in
FIG. 46. The identity of the top 50 biomarkers, ranked from
most to least significant is: X204102_s_at, X236013_at,
X213668_s_at, X1556639_at, X218220_at, X207860_at,
X232422_at, X218578_at, X205875_s_at, X226043_at,
X225879_at, X224618_at, X216316_x_at, X243159_x_at,
X202200_s_at, X201936_s_at, X242492_at, X216609_at,
X214328_s_at, X228648_at, X223797_at, X225622_at,
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X205988_at, X201978_s_at, X200874_s_at, X210105_s_at,
X203913_s_at, X204225_at, X227587_at, X220865_s_at,
X206682_at, X222664_at, X212264_s_at, X219669_at,
X221971_x_at, X1554464_a_at, X242590_at, X227925_at,
X221926_s_at, X202101_s_at, X211078_s_at, X44563_at,
X206513_at, X215178_x_at, X235359_at, X225656_at,
X244158_at, X214765_s_at, X229743 _at, X214681.

[0610] From the analysis of the T_, , data set and the other
data sets, the 34 biomarkers indicated in Table 59 below were
selected for confirmation. As indicated in Table 59, biomar-
kers were selected based on the Affymetrix gene chip analysis
for one of three criteria, biological relevance (BR), high fold
change (HF), or statistical importance (SI) in the Affymetrix
gene chip analysis.

TABLE 59

Nucleic acid based biomarkers selected for confirmation from Affymetrix Assay

Gene Symbol

Gene Protein
Accession Accession Selection
Gene Name Number Number Criterion

BCL2A1
CCLS

CSFIR

GADDA45SA

GADD45B

IFNGR1

IL1I0RA

IRAK2

IRAK4

JAK2

LY%96

MAP2K6

MAPK14

MKNK1

OSM
SOCS3

TDRD9

TNFRSF6

TNFSF10

ANKRD22

ANXA3

CEACAM1

LDLR

BCL2-RELATED PROTEIN A1 NM_ 004049 NP_ 004040 BR
CHEMOKINE (C-C MOTIF) NM_ 002985 NP_002976 BR
LIGAND 5

COLONY STIMULATING NM_ 005211 NP_005202 BR

FACTOR 1 RECEPTOR,

FORMERLY MCDONOUGH

FELINE SARCOMA VIRAL

(V-FMS) ONCOGENE

HOMOLOG

GROWTH ARREST AND NM_001924 NP_001915 BR

DNA-DAMAGE-

INDUCIBLE, ALPHA

GROWTH ARREST- AND NM_ 015675 NP_056490 BR

DNA DAMAGE-

INDUCIBLE GENE

GADD45

INTERFERON GAMMA NM__ 000416 NP_000407 BR

RECEPTOR I

INTERLEUKIN 10 NM__ 001558 NP_001549 BR

RECEPTOR, ALPHA

INTERLEUKIN-1 NM__ 001570 NP_001561 BR

RECEPTOR-ASSOCIATED

KINASE 2

INTERLEUKIN-1 NM_ 016123 NP_057207 BR

RECEPTOR-ASSOCIATED

KINASE 4

JANUS KINASE 2 (A NM__ 004972 NP_004963 BR

PROTEIN TYROSINE

KINASE)

LYMPHOCYTE ANTIGEN 96 NM_ 015364 NP_056179 BR

MITOGEN-ACTIVATED NM__ 002758 NP_002749 BR

PROTEIN KINASE KINASE 6 NM_ 031988 NP_ 114365

MAPK14 MITOGEN- NM_001315 NP_001306 BR

ACTIVATED PROTEIN NM__ 139012 NP_ 620581

KINASE 14 NM__139013 NP_ 620582
NM__139014 NP_ 620583

MAP KINASE NM__ 003684 NP_003675 BR

INTERACTING NM__198973 NP_ 945324

SERINE/THREONINE

KINASE 1

ONCOSTATIN M NM__ 020530 NP_065391 BR

SUPPRESSOR OF NM_003955 NP_003946 BR

CYTOKINE SIGNALING 3

TUDOR DOMAIN NM_ 153046 NP_694591 BR

CONTAINING 9

TUMOR NECROSIS NM__ 152877 NP_000034 BR

FACTOR RECEPTOR

SUPERFAMILY, MEMBER 6

TUMOR NECROSIS NM__ 003810 NP_003801 BR

FACTOR (LIGAND)

SUPERFAMILY, MEMBER 10

ANKYRIN REPEAT NM__ 144590 NP_ 653191 HF

DOMAIN 22

ANNEXIN A3 NM_005139 NP_005130 HF

CARCINOEMBRYONIC NM_ 001712 NP_001703 HF

ANTIGEN-RELATED CELL

ADHESION MOLECULE 1

LOW DENSITY NM_000527 NP_000518 HF
LIPOPROTEIN RECEPTOR
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TABLE 59-continued

Nucleic acid based biomarkers selected for confirmation from Affymetrix Assay

Protein
Accession
Number

Gene
Accession
Number

Gene Symbol  Gene Name

Selection
Criterion

PFKFB3 6-PHOSPHOFRUCTO-2-
KINASE/FRUCTOSE-2,6-
BISPHOSPHATASE 3
NEUTROPHIL-SPECIFIC
ANTIGEN 1
(POLYCYTHEMIA RUBRA
VERA 1)
PROLINE/SERINE/
THREONINE PHOSPHATASE-
INTERACTING PROTEIN 1
(PROLINE-SERINE-
THREONINE PHOSPHATASE
INTERACTING PROTEIN 2)
TRAF-INTERACTING
PROTEIN WITH A
FORKHEAD-ASSOCIATED
DOMAIN

VANIN 1

NATURAL
CYTOTOXICITY
TRIGGERING RECEPTOR 1
FIBRONECTIN TYPE III
DOMAIN CONTAINING 3B
(FNDC3B)

INSULIN-LIKE 3 (LEYDIG
CELL)
CARTILAGE-ASSOCIATED
PROTEIN

MAJOR
HISTOCOMPATIBILITY
COMPLEX, CLASS II, DR
ALPHA

SUPEROXIDE DISMUTASE
2, MITOCHONDRIAL

NM_ 004566 NP_004557

PRV1 NM_020406 NP_ 065139

PSTPIP2 NM_024430 NP_077748

TIFA NM__ 052864 NP_ 443096

VNN1
NCR1

NM__ 004666
NM__ 004829

NP0O04657
NP__004820

FAD104 NM_022763 NP_073600

INSL3 NM_005543 NP_ 005534

CRTAP NM_006371 NP_006362

HLA-DRA NM_002123 NP_002114

SOD2 NM_000636 NP_000627

HF

HF

HF

HF

HF

SI

SI

SI

SI

SI

6.12 Confirmation of Select Nucleic Acid
Biomarkers

[0611] In this example, a confirmatory process was per-
formed in order to confirm which biomarkers differentiate
between patients who subsequently develop sepsis (“sepsis
patients”) and patients who do not (“SIRS patients™).

6.12.1 Confirmatory Analysis of Biomarkers
Identified by RT-PCR

[0612] The biomarkers identified by italicizes in Table 48
of'Section 6.11.1, namely FCGR1A, MMP9, IL.18R1, ARG2,
IL1IRN, TNFSF13B, ITGAM, TGFBI1, CD86, and TLR4,
were analyzed using RT-PCR at multiple time points and
analyzed in several different ways: static time of entry, static
T_¢0, static T_54, baseline T_g,, baseline T_,, and baseline
T_,, data points. RT-PCR is described in Section 5.4.1.2,
above. Representative of these analyses is the static T_, , data
analysis described in detail below. Inthe T_, , static analysis,
biomarkers features were measured using a specific blood
sample, designated the T_, , blood sample, as defined in Sec-
tion 6.4, above.

[0613] For the T_,, static analysis, the biomarkers
FCGR1A, MMP9, IL18R1, ARG2, ILIRN, TNFSF13B,
ITGAM, TGFB1, CD86, and TLR4, were measured from 50
samples. Each sample was collected from a different member

of the population. Of these biomarkers, seven were trans-
formed by log transformations, and three by square root trans-
formations.

[0614] The 50 member population was initially split into a
training set (n=39) and a validation set (n=11). The training
set was used to estimate the appropriate classification algo-
rithm parameters while the trained algorithm was applied to
the validation set to independently assess performance. Of the
50 training samples, 23 were labeled Sepsis, meaning that the
subjects developed sepsis at some point during the observa-
tion time period, and 16 were SIRS, meaning that they did not
develop sepsis during the observation time period. Table 60
provides distributions of the race, gender and age for these
samples.

TABLE 60

Distributioas of the race, gender, and age for the training data

Group Gender Black Caucasian Other

Sepsis Male 3 13 0
Female 0 7 0

SIRS Male 5 7 1
Female 0 2 0
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TABLE 60-continued

Distributioas of the race, gender, and age for the training data

Group Minimum Mean Median Maximum

Sepsis 20 52.3 56 80

SIRS 20 39.9 325 79
[0615] For the 11 validation samples, five were labeled

Sepsis and six were labeled SIRS. Table 61 provides distri-
butions of the race, gender and age for these samples.

TABLE 61

Distributions of the race, gender, and age for the validation data

Group Gender Black Caucasian Other

Sepsis Male 2 1 0
Female 0 3 0

SIRS Male 0 3 0
Female 0 2 0

Group Minimum Mean Median Maximum

Sepsis 18 51.7 59.5 76

SIRS 24 47.2 43 76

[0616] Each sample in the training data was randomly

assigned to one of ten groups used for cross-validation. The
number of training samples in these groups ranged from three
to five. The samples were assigned in way that attempted to
balance the number of sepsis and SIRS samples across folds.
As described in more detail below, several different methods
were used to judge whether select biomarkers discriminate
between the Sepsis and SIRS groups.

[0617] Wilcoxon and Q-value tests. The first method used
to identify discriminating biomarkers was a Wilcoxon test
(unadjusted). The abundance value for a given biomarker
across the samples in the training data was subjected to the
Wilcoxon test. The Wilcoxon test considers both group clas-
sification (sepsis versus SIRS) and abundance value in order
to compute a p value for the given biomarker. The p value
provides an indication of how well the abundance value for
the given biomarker across the samples collected in the train-
ing set discriminates between the sepsis and SIRS state. The
lower the p value, the better the discrimination. When the p
value is less than a specific confidence level, such as 0.05, an
inference is made that the biomarker discriminates between
the sepsis and SIRS phenotype. There were nine significant
biomarkers using this method (see Table 62).

[0618] The second method used to identify discriminating
biomarkers was the Wilcoxon Test (adjusted). Due to the
large number of biomarkers, 10, and the relatively small
number of samples, 50, there was a high risk of finding falsely
significant biomarkers. An adjusted p value was used to
counter this risk. In particular, the method of Benjamini and
Hochberg, 1995, J.R. Statist. Soc. B 57, pp 289-300, which is
hereby incorporated herein by reference in its entirety, was
used to control the false discovery rate. Here, the false dis-
covery rate is defined as the number of biomarkers truly
significant divided by the number of biomarkers declared
significant. For example, if the adjusted p value is less than
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0.05, there is a 5% chance that the biomarker is a false dis-
covery. Results using this test are reported in Table 62. There
were nine significant biomarkers using this method (see Table
62). As used, herein, a biomarker is considered significant if
it has a p value of less than 0.05 as determined by the Wil-
coxon test (adjusted).

[0619] The third method used to identify discriminating
biomarkers was the use of Q values. In such an approach, the
biomarkers are ordered by their Q values and if a respective
biomarker has a Q value of X, then respective biomarker and
all others more significant have a combined false discovery
rate of X. However, the false discovery rate for any one
biomarker may be much larger. There were nine significant
biomarkers using this method (see Table 62).

TABLE 62

Cumulative number of significant calls for the three methods.
Note that all samples (training and validation) were used to
compare Sepsis and SIRS groups. Missing biomarker feature
values were not included in the analyses.

=le-04 =0.001 =0.01 =0.025 =0.05 =01 =1
p-value 0 7 9 9 9 9 10
(unadjusted)
p-value 0 7 9 9 9 9 10
(adjusted)
g-value 0 0 0 0 0 0 10
[0620] CART. In addition to analyzing the microarray data

using Wilcoxon and Q-value tests in order to identify biom-
arkers that discriminate between the sepsis and SIRS sub-
populations in the training set, classification and regression
tree (CART) analysis was used. CART is described in Section
5.5.1, above. Specifically, the data summarized above was
used to predict the disease state by iteratively partitioning the
databased on the best single-variable split of the data. Inother
words, at each stage of the tree building process, the biomar-
ker whose expression values across the training population
best discriminate between the sepsis and SIRS population
was invoked as a decision branch. Cross-validation was car-
ried out, with the optimal number of splits estimated indepen-
dently in each of the 10 iterations. The final tree uses three
biomarkers which are listed in order of importance 1[.18R1,
ARG2,and FCGR1A, where IL.18R 1 was the most important.
The confusion matrix for the training data, based on the final
tree from the cross-validated CART algorithm is given in
Table 63. From this confusion matrix, the overall accuracy
was estimated to be 82.1% with a 95% confidence interval of
66.5% t0 92.5%. The estimated sensitivity was 82.6% and the
estimated specificity was 81.2%.

TABLE 63

Confusion matrix for training samples using
the cross-validated CART algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 19 3
SIRS 4 13
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[0621] For the 11 validation samples held back from train-
ing data set, the overall accuracy was estimated to be 100%
with a 95% confidence interval of 71.5% to 100%, sensitivity
100% and specificity 100%. Table 64 shows the confusion
matrix for the validation samples.

TABLE 64

Confusion matrix for validation samples
using the cross-validated CART algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 5 0
SIRS 0 6

[0622] Random Forests. Another decision rule that can be
developed using biomarkers of the present invention is a
Random Forests decision tree. Random Forests is a tree based
method that uses bootstrapping instead of cross-validation.
For each iteration, a random sample (with replacement) is
drawn and the largest tree possible is grown. Each tree
receives a vote in the final class prediction. To fit a random
forest, the number of trees (e.g. bootstrap iterations) is speci-
fied. For this data, 1000 trees were used to train the algorithm.
Using this algorithm, 9 of the 10 biomarkers had non-zero
importance and were used in the model. Biomarker impor-
tance, from greatest to smallest, was: TGFB1, MMP9, TLR4,
IL1RN, TNFSF, ARG2, FCGR1A, and IL18R1.

[0623] The random forest method uses a number of differ-
ent decision trees. A biomarker is considered to have dis-
criminating significance if it served as a decision branch of a
decision tree from a significant random forest analysis. As
used herein, a significant random forest analysis is one where
the lower 95% confidence interval on accuracy by cross vali-
dation on a training data set is greater than 50% and the point
estimate for accuracy on a validation set is greater than 65%.
[0624] The predicted confusion matrix for the training
dataset using the decision tree developed using the Random
Forest method is given in Table 65. From this confusion
matrix, the overall accuracy was estimated to be 79.5% with
a 95% confidence interval between 63.5% and 90.7%. The
estimated sensitivity was 87% and the estimated specificity
was 68.8%.

TABLE 65
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TABLE 66

Confusion matrix for the 11 validation samples against the
decision tree developed using the Random Forest method.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 6 0
SIRS 2 3

[0626] MART. Multiple Additive Regression Trees
(MART), also known as “gradient boosting machines,” was
used to simultaneously assess the importance of biomarkers
and classify the subject samples. Several fitting parameters
are specified in this approach including (i) number of trees,
(ii) step size (commonly referred to as “shrinkage™), and (iii)
degree of interaction (related to the number of splits for each
tree). More information on MART is described in Section
5.5.4 above. The degree of interaction was set to 1 to enforce
an additive model (e.g. each tree has one split and only uses
one biomarker).

[0627] Estimating interactions may require more data to
function well. The step size was set to 0.05 so that the model
complexity was dictated by the number of trees. The optimal
number of trees was estimated by leaving out a random subset
of cases at each fitting iteration, then assessing quality of
prediction on that subset. After fitting more trees than were
warranted, the point at which prediction performance stopped
improving was estimated as the optimal point.

[0628] Theestimated model used 30 trees and 7 biomarkers
across all trees. The MART algorithm also provides a calcu-
lation of biomarker importance (summing to 100%). Biom-
arkers ranked in decreasing order of importance to the model,
with the most important biomarker first were: ITGAM,
TGFB1, TLR4, TNFSF, FCGR1A, IL18R1, and ARG2.

[0629] Cross-validation was carried out, with the optimal
number of trees estimated independently in each of the 10
iterations. The confusion matrix for the training data where
the predicted classifications were made from the cross-vali-
dated model is given in Table 67. From this confusion matrix,
the overall accuracy was estimated to be 74.4% with a 95%
confidence interval of 57.9% to 87%. The estimated sensitiv-
ity was 73.8% and the estimated specificity was 68.8%.

TABLE 67

Confusion matrix for training samples against the decision
tree developed using the Random Forest method.

Confusion matrix for the training samples
using the cross-validated MART algorithm.

True Diagnosis

True Diagnosis

Predicted Sepsis SIRS Predicted Sepsis SIRS
Sepsis 20 5 Sepsis 18 5
SIRS 3 11 SIRS 5 11

[0625] For the 11 validation samples held back from train-
ing, the overall accuracy was estimated to be 81.8% with a
95% confidence interval of 48.2% to 97.7%, sensitivity 60%
and specificity 100%. Table 66 shows the confusion matrix
for the validation samples.

[0630] For the 11 validation samples held back from train-
ing, the overall accuracy was estimated to be 74.4% with a
95% confidence interval of 57.9% to 87%, sensitivity 78.3%
and specificity 68.8%. Table 68 shows the confusion matrix
for the validation samples.
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TABLE 68

Confusion matrix for the validation
samples using the MART algorithm.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 6 2
SIRS 0 3

[0631] PAM. Yet another decision rule developed using
biomarkers of the present invention is predictive analysis of
microarrays (PAM), which is described in Section 5.5.2,
above. In this method, a shrinkage parameter that determines
the number of biomarkers used to classify samples is speci-
fied. This parameter was chosen via cross-validation.

There were no biomarkers with missing values. Based on
cross-validation, the optimal threshold value was 0.55, cor-
responding to 9 biomarkers.

[0632] Using the threshold of 0.55, the overall accuracy for
the training samples was estimated to be 82.3% with a 95%
confidence interval of 68.8% to 90.7%. The estimated sensi-
tivity was 68.8% and the estimated specificity was 91.3%.
Table 69 shows the confusion matrix for the training data
where the predicted classifications were made from the cross-
validated models.

TABLE 69

Confusion matrix for training samples
using cross-validated PAM algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 11 2
SIRS 21

[0633] For the 11 validation samples held back from train-
ing, the overall accuracy was estimated to be 72.67% with a
95% confidence interval of 39% to 94%, sensitivity 40% and
specificity 100%. Table 70 shows the confusion matrix for the
validation samples.

TABLE 70

Confusion matrix for validation samples
using cross-validated PAM algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 2 0
SIRS 3 6

[0634] The top nine biomarkers identified by PAM, ranked
from most important to least important were: ARG2, TGFB1,
MMP9, TLR4, ITGAM, IL18R1, TNFSF, ILIRN, and
FCGRI1A. FIG. 47 provides a summary of the CART, MART,
PAM, and random forests (RF) classification algorithm (deci-
sion rule) performance and associated 95% confidence inter-
vals using T_, static data obtained from an Affymetrix gene
chip confirmatory training population. Based on the results of
the RT-PCR analysis summarized in FIG. 47 and at other time
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points, all ten biomarkers under study in this confirmation
process were significant. Some of the biomarkers discrimi-
nated as early as T_,.

6.12.2 Confirmatory Analysis of Biomarkers
Identified by Aftymetrix Gene Chip Analysis

[0635] The biomarkers identified in Table 59 of Section
6.11.2 and the ten biomarkers identified in Table 48 of Section
6.11.1 (FCGR1A, MMP9, IL18RI1, ARG2, ILIRN,
TNFSF13B, ITGAM, TGFB1, CD86, and TLR4), a total of
44 biomarkers, were analyzed using RT-PCR at multiple time
points and analyzed in several different ways: static time of
entry, static T_g, static T_;4, baseline T_g,, baselineT_;, and
baseline T_,, data points. RT-PCR is described in Section
5.4.1.2, above. Representative of these analyses is the static
T_,, data analysis described in detail below. Inthe T_ | , static
analysis, biomarkers features were measured using a specific
blood sample, designatedthe T_, , blood sample, as defined in
Section 6.4, above.

[0636] Forthe T_,, static analysis, the 44 biomarkers were
measured from 37 samples. Each sample was collected from
adifferent member of the population. Of these biomarkers, 23
were transformed by log transformations, and 21 by square
root transformations.

[0637] The 37 member population was initially split into a
training set (n=28) and a validation set (n=9). The training set
was used to estimate the appropriate classification algorithm
parameters while the trained algorithm was applied to the
validation set to independently assess performance. Of the 28
training samples, 14 were labeled Sepsis, meaning that the
subjects developed sepsis at some point during the observa-
tion time period, and 14 were SIRS, meaning that they did not
develop sepsis during the observation time period. Table 71
provides distributions of the race, gender and age for these
samples.

TABLE 71

Distributions of the race, gender, and age for the training data

Group Gender Black Caucasian Other

Sepsis Male 1 7 0
Female 0 6 0

SIRS Male 4 6 1
Female 0 2 0

Group Minimum Mean Median Maximum

Sepsis 28 58 56 76

SIRS 20 42.5 39.5 79

[0638] For the 9 validation samples, five were labeled Sep-

sis and four were labeled SIRS. Table 72 provides distribu-
tions of the race, gender and age for these samples.

TABLE 72

Distributions of the race, gender, and age for the validation data

Group Gender Black Caucasian Other

Sepsis Male 2 0 0
Female 0 3 0

SIRS Male 0 2 0
Female 0 2 0
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TABLE 72-continued TABLE 73
Distributions of the race, gender, and age for the validation data Cumulative number of significant calls for the three methods.
Note that all samples (training and validation) were used to
Group Minimum Mean Median Maximum compare sepsis and SIRS groups. Missing biomarker feature
values were not included in the analyses.
Sepsis 18 49.8 >8 76 =le-04 =0.001 =001 =0025 =005 =01 =I
SIRS 24 45.8 41.5 76
p-value 0 27 38 38 38 38 44
(unadjusted)
[0639] Each sample in the training data was randomly E’a;ﬁz; n 0 3 38 38 38 38 a4
assigned to one of ten groups used for cross-validation. The g-value 0 36 38 39 39 39 44
number of training samples in these groups ranged from two
to four. The samples were assigned in way that attempted to . . .
p £ Y p [0643] CART. In addition to analyzing the microarray data

balance the number of sepsis and SIRS samples across folds.
As described in more detail below, several different methods
were used to judge whether select biomarkers discriminate
between the Sepsis and SIRS groups.

[0640] Wilcoxon and Q-value tests. The first method used
to identify discriminating biomarkers was a Wilcoxon test
(unadjusted). The abundance value for a given biomarker
across the samples in the training data was subjected to the
Wilcoxon test. The Wilcoxon test considers both group clas-
sification (sepsis versus SIRS) and abundance value in order
to compute a p value for the given biomarker. The p value
provides an indication of how well the abundance value for
the given biomarker across the samples collected in the train-
ing set discriminates between the sepsis and SIRS state. The
lower the p value, the better the discrimination. When the p
value is less than a specific confidence level, such as 0.05, an
inference is made that the biomarker discriminates between
the sepsis and SIRS phenotype. There were 38 significant
biomarkers using this method (see Table 73).

[0641] The second method used to identify discriminating
biomarkers was the Wilcoxon Test (adjusted). Due to the
large number of biomarkers, 44, and the relatively small
number of samples, 37, there was a high risk of finding falsely
significant biomarkers. An adjusted p value was used to
counter this risk. In particular, the method of Benjamini and
Hochberg, 1995, J.R. Statist. Soc. B 57, pp 289-300, which is
hereby incorporated herein by reference in its entirety, was
used to control the false discovery rate. Here, the false dis-
covery rate is defined as the number of biomarkers truly
significant divided by the number of biomarkers declared
significant. For example, if the adjusted p value is less than
0.05, there is a five percent chance that the biomarker is a false
discovery. Results using this test are reported in Table 73.
There were 38 significant biomarkers using this method (see
Table 73). As used, herein, a biomarker is considered signifi-
cant if it has a p value of less than 0.05 as determined by the
Wilcoxon test (adjusted).

[0642] The third method used to identify discriminating
biomarkers was Q values. In this third approach, the biomar-
kers were ordered by their Q values and if a respective biom-
arker has a Q value of X, then respective biomarker and all
others more significant have a combined false discovery rate
of X. However, the false discovery rate for any one biomarker
may be much larger. There were 38 significant biomarkers
using this method (see Table 73).

using Wilcoxon and Q-value tests in order to identify biom-
arkers that discriminate between the sepsis and SIRS sub-
populations in the training set, classification and regression
tree (CART) analysis was used. CART is described in Section
5.5.1, above. Specifically, the data summarized above was
used to predict the disease state by iteratively partitioning the
databased on the best single-variable split of the data. Inother
words, at each stage of the tree building process, the biomar-
ker whose expression values across the training population
best discriminate between the sepsis and SIRS population
was invoked as a decision branch. Cross-validation was car-
ried out with the optimal number of splits estimated indepen-
dently in each of the 10 iterations. The final tree uses three
biomarkers which are listed in order of importance OSM,
HLA-DRA, and IL-18, where OSM was the most important.
The confusion matrix for the training data, based on the final
tree from the cross-validated CART algorithm is given in
Table 74. From this confusion matrix, the overall accuracy
was estimated to be 67.9% with a 95% confidence interval of
47.6% 1o 84.1%. The estimated sensitivity was 64.3% and the
estimated specificity was 71.4%.

TABLE 74

Confusion matrix for training samples using
the cross-validated CART algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 9 4
SIRS 5 10
[0644] Forthe 9 validation samples held back from training

data set, the overall accuracy was estimated to be 88.9% with
a95% confidence interval 0o 51.8% to 99.7%, sensitivity 75%
and specificity 100%. Table 75 shows the confusion matrix
for the validation samples.

TABLE 75

Confusion matrix for validation samples
using the cross-validated CART algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 3 0
SIRS 1 5




US 2011/0105350 Al

[0645] Random Forests. Another decision rule that can be
developed using biomarkers of the present invention is a
Random Forests decision tree. Random Forests is a tree based
method that uses bootstrapping instead of cross-validation.
For each iteration, a random sample (with replacement) is
drawn and the largest tree possible is grown. Each tree
receives a vote in the final class prediction. To fit a random
forest, the number of trees (e.g. bootstrap iterations) is speci-
fied. For this data, 1000 trees were used to train the algorithm.
Using this algorithm, 35 of the 44 biomarkers had non-zero
importance and were used in the model. Biomarker impor-
tance, from greatest to smallest, was: OSM, GADDA45B,
ARG2, IL18R1, TDRD9Y, PFKFB3, MAPKI14, PRVI,
MAP2K6, TNFRSF6, FCGR1A, INSL3, LY96, PSTPIP2,
ANKRD22, TNFSF10, HLA-DRA, FNDC3B, TIFA,
GADD45A, VNNI1, ITGAM, BCL2A1, TLR4, TNFSF13B,
SOCS3, ILIRN, CEACAMI, and SOD2.

[0646] The random forest method uses a number of differ-
ent decision trees. A biomarker is considered to have dis-
criminating significance if it served as a decision branch of a
decision tree from a significant random forest analysis. As
used herein, a significant random forest analysis is one where
the lower 95% confidence interval on accuracy by cross vali-
dation on a training data set is greater than 50% and the point
estimate for accuracy on a validation set is greater than 65%.

[0647] The predicted confusion matrix for the training
dataset using the decision tree developed using the Random
Forest method is given in Table 76. From this confusion
matrix, the overall accuracy was estimated to be 78.6%. The
estimated sensitivity was 78.6% and the estimated specificity
was also 78.6%.

TABLE 76

Confusion matrix for training samples against the decision
tree developed using the Random Forest method.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 11 3
SIRS 3 11

[0648] For the 9 validation samples held back from train-
ing, the overall accuracy was estimated to be 77.8% with a
95% confidence interval of 40.0% to 97.2%, sensitivity 50%
and specificity 100%. Table 77 shows the confusion matrix
for the validation samples.

TABLE 77

Confusion matrix for validation samples against the decision
tree developed using the Random Forest method.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 5 0
SIRS 2 2

[0649] MART. Multiple Additive Regression Trees
(MART), also known as “gradient boosting machines,” was
used to simultaneously assess the importance of biomarkers
and classify the subject samples. Several fitting parameters
are specified in this approach including (i) number of trees,
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(ii) step size (commonly referred to as “shrinkage™), and (iii)
degree of interaction (related to the number of splits for each
tree). More information on MART is described in Section
5.5.4 above. The degree of interaction was set to 1 to enforce
an additive model (e.g. each tree has one split and only uses
one biomarker).

[0650] Estimating interactions may require more data to
function well. The step size was set to 0.05 so that the model
complexity was dictated by the number of trees. The optimal
number of trees was estimated by leaving out a random subset
of cases at each fitting iteration, then assessing quality of
prediction on that subset. After fitting more trees than were
warranted, the point at which prediction performance stopped
improving was estimated as the optimal point.

[0651] Theestimated modelused 21 trees and 9 biomarkers
across all trees. The MART algorithm also provides a calcu-
lation of biomarker importance (summing to 100%). Biom-
arkers ranked in decreasing order of importance to the model,
with the most important biomarker first were: ARG2,
GADD45B, OSM, LY96, INSL3, ANKRD22, MAP2K6,
PSTPIP2, and TGFBI.

[0652] Cross-validation was carried out, with the optimal
number of trees estimated independently in each of the 10
iterations. The confusion matrix for the training data where
the predicted classifications were made from the cross-vali-
dated model is given in Table 78. From this confusion matrix,
the overall accuracy was estimated to be 75% with a 95%
confidence interval of 55.1 to 89.3%. The estimated sensitiv-
ity was 71.4% and the estimated specificity was 78.6%.

TABLE 78

Confusion matrix for the training samples
using the cross-validated MART algorithm.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 10 3
SIRS 4 11
[0653] For the 9 validation samples held back from train-

ing, the overall accuracy was estimated to be 88.9% with a
95% confidence interval of 51.8% to 99.7%, sensitivity 100%
and specificity 75%. Table 79 shows the confusion matrix for
the validation samples.

TABLE 79

Confusion matrix for the validation
samples using the MART algorithm.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 5 1
SIRS 0 3
[0654] PAM. Yet another decision rule developed using

biomarkers of the present invention is predictive analysis of
microarrays (PAM), which is described in Section 5.5.2,
above. In this method, a shrinkage parameter that determines
the number of biomarkers used to classify samples is speci-
fied. This parameter was chosen via cross-validation. There
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were no biomarkers with missing values. Based on cross-
validation, the optimal threshold value was 2.05, correspond-
ing to 6 biomarkers.

[0655] Using the threshold of 2.05, the overall accuracy for
the training samples was estimated to be 82.5% with a 95%
confidence interval of 68.7% to 91%. The estimated sensitiv-
ity was 78.6% and the estimated specificity was 85.7%. Table
80 shows the confusion matrix for the training data where the
predicted classifications were made from the cross-validated
models.

TABLE 80

Confusion matrix for training samples
using cross-validated PAM algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 11 2
SIRS 3 12

[0656] For the 9 validation samples held back from train-
ing, the overall accuracy was estimated to be 77.8% with a
95% confidence interval of 40% to 97.2%, sensitivity 50%
and specificity 100%. Table 81 shows the confusion matrix
for the validation samples.

TABLE 81

Confusion matrix for validation samples
using cross-validated PAM algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 2 0
SIRS 2 5

[0657] The top six biomarkers identified by PAM, ranked
from most important to least important were: GADD45B,
TDRD9, MAP2K6, OSM, TNFSF10, and ANKRD22. FIG.
48 provides a summary of the CART, MART, PAM, and
random forests (RF) classification algorithm (decision rule)
performance and associated 95% confidence intervals using
T_,, static data for the 44 biomarkers analyzed in this Section.
Based on the results of the RT-PCR analysis summarized in
FIG. 48 and at other time points, all forty-four biomarkers
under study in this confirmation process were significant.
Some of the biomarkers discriminated as early as T_g,.

6.13 Select Protein Biomarkers

[0658] In this example, experiments were performed in
order to confirm which protein based biomarkers differentiate
between patients who subsequently develop sepsis (“sepsis
patients) and patients who do not (“SIRS patients). In the
discovery process, samples were analyzed by a bead based
protein immunoassay, as described in Section 6.13.1.

6.13.1 Discovery of Protein Biomarkers Using a
Bead Based Protein Immunoassay

[0659] Multiplex Analysis. A set of biomarkers was ana-
lyzed simultaneously in real time, using a multiplex analysis
method described in U.S. Pat. No. 5,981,180 (“the *180
patent™), herein incorporated by reference in its entirety, and
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in particular for its teachings of the general methodology,
bead technology, system hardware and antibody detection.
For this analysis, a matrix of microparticles was synthesized,
where the matrix consisted of different sets of microparticles.
Each set of microparticles had thousands of molecules of a
distinct antibody capture reagent immobilized on the micro
particle surface and was color-coded by incorporation of
varying amounts of two fluorescent dyes. The ratio of the two
fluorescent dyes provided a distinct emission spectrum for
each set of microparticles, allowing the identification of a
microparticle within a set following the pooling of the various
sets of microparticles. U.S. Pat. Nos. 6,268,222 and 6,599,
331 also are incorporated herein by reference in their entirety,
and in particular for their teachings of various methods of
labeling microparticles for multiplex analysis.

[0660] The sets oflabeled beads were pooled and combined
with a plasma sample from individuals. The labeled beads
were identified by passing them single file through a flow
device that interrogated each microparticle with a laser beam
that excited the fluorophore labels. An optical detector then
measured the emission spectrum of each bead to classity the
beads into the appropriate set. Because the identity of each
antibody capture reagent was known for each set of micro-
particles, each antibody specificity was matched with an indi-
vidual microparticle that passes through the flow device. U.S.
Pat. No. 6,592,822 is also incorporated herein by reference in
its entirety, and in particular for its teachings of multi-analyte
diagnostic system that can be used in this type of multiplex
analysis.

[0661] To determine the amount of analyte that bound a
given set of microparticles, a reporter molecule was added
such that it formed a complex with the antibodies bound to
their respective analyte. In the present example, the reporter
molecule was a fluorophore-labeled secondary antibody. The
fluorophore on the reporter was excited by a second laser
having a different excitation wavelength, allowing the fluo-
rophore label on the secondary antibody to be distinguished
from the fluorophores used to label the microparticles. A
second optical detector measured the emission from the fluo-
rophore label on the secondary antibody to determine the
amount of secondary antibody complexed with the analyte
bound by the capture antibody. In this manner, the amount of
multiple analytes captured to beads could be measured in a
single reaction.

[0662] Data Analysis and Results. For each sample, the
concentrations of analytes that bound several different anti-
bodies were measured. Each analyte is a biomarker, and the
concentration of each analyte in the sample can be a feature of
that biomarker. The biomarkers were analyzed with select
antibody reagents listed in Table 14 of United States Patent
Publication Number U.S. 2004/0096917 A1, which is hereby
incorporated herein by reference in its entirety. These anti-
body reagents are commercially available from Rules Based
Medicine (Austin, Tex.). The antibody reagents are catego-
rized as specifically binding either (1) circulating protein
biomarker components of blood, (2) circulating antibodies
that normally bind molecules associated with various patho-
gens (identified by the pathogen that each biomarker is asso-
ciated with, where indicated), or (3) autoantibody biomarkers
that are associated with various disease states. Various
approaches may be used to identify features that can inform a
decision rule to classify individuals into the SIRS or sepsis
groups. The methods chosen were CART, MART, PAM and
random forests.
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[0663] Biomarkers in multiple samples were measured
using the above described assay at multiple time points and
analyzed in several different ways: static time of entry, static
T_¢0, static T_54, baseline T_g,, baseline T_,, and baseline
T_,, data points. Representative of these analyses is the static
T_,, data analysis which is described in detail below. In the
T_,, static analysis, biomarkers features were measured
using a specific blood sample, designated the T_,, blood
sample, as defined in Section 6.4, above.

[0664] FortheT_,, static analysis, there were 60 biomark-
ers measured on 97 samples. Each sample was collected from
a different member the population. Of these features, 53 were
transformed by log transformations, 11 by square root trans-
formations and the remaining 2 were not transformed.
[0665] The 97 member population was initially split into a
training set (n=74) and a validation set (n=23). The training
set was used to estimate the appropriate classification algo-
rithm parameters while the trained algorithm was applied to
the validation set to independently assess performance. Of the
74 training samples, 36 were labeled Sepsis, meaning that the
subjects developed sepsis at some point during the observa-
tion time period, and 38 were labeled SIRS, meaning that they
did not develop sepsis during the observation time period.
Table 82 provides distributions of the race, gender and age for
these samples.

TABLE 82

Distributions of the race, gender, and age for the training data

Group Gender Black Caucasian Other

Sepsis Male 10 14 1
Female 0 10 1

SIRS Male 5 24 0
Female 0 9 0

Group Minimum Mean Median Maximum

Sepsis 18 43.2 40 80

SIRS 18 44.9 40 90

[0666] For the 23 validation samples, 12 were labeled Sep-

sis and 11 were labeled SIRS. Table 83 provides distributions
of the race, gender and age for these samples.

TABLE 83

Distributions of the race, gender, and age for the validation data

Group Gender Black Caucasian Other

Sepsis Male 0 7 0
Female 0 4 0

SIRS Male 2 6 0
Female 0 4 0

Group Minimum Mean Median Maximum

Sepsis 18 43.4 43 81

SIRS 19 51.9 51.5 85

[0667] Each sample in the training data was randomly

assigned to one of ten groups used for cross-validation. The
number of training samples in these groups ranged from 6 to
8. The samples were assigned in way that attempted to bal-
ance the number of sepsis and SIRS samples across folds. As
described in more detail below, several different methods
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were used to judge whether select biomarkers discriminate
between the Sepsis and SIRS groups.

[0668] Wilcoxon and Q-value tests. The first method used
to identify discriminating biomarkers was a Wilcoxon test
(unadjusted). The abundance value for a given biomarker
across the samples in the training data was subjected to the
Wilcoxon test. The Wilcoxon test considers both group clas-
sification (sepsis versus SIRS) and abundance value in order
to compute a p value for the given biomarker. The p value
provides an indication of how well the abundance value for
the given biomarker across the samples collected in the train-
ing set discriminates between the sepsis and SIRS state. The
lower the p value, the better the discrimination. When the p
value is less than a specific confidence level, such as 0.05, an
inference is made that the biomarker discriminates between
the sepsis and SIRS phenotype. There were 24 significant
biomarkers using this method (see Table 84).

[0669] The second method used to identify discriminating
biomarkers was the Wilcoxon Test (adjusted). Due to the
large number of biomarkers, 60, in combination with the
relatively small number of samples, 97, there was a high risk
of finding falsely significant biomarkers. An adjusted p-value
was used to counter this risk. In particular, the method of
Benjamini and Hochberg, 1995, J.R. Statist. Soc. B 57, pp
289-300, which is hereby incorporated herein by reference in
its entirety, was used to control the false discovery rate. Here,
the false discovery rate is defined as the number of biomarkers
truly significant divided by the number of biomarkers
declared significant. For example, if the adjusted p-value is
less than 0.05, there is a 5% chance that the biomarker is a
false discovery. Results using this test are reported in Table
84. There were 16 significant biomarkers using this method
(see Table 84). As used, herein, a biomarker is considered
significant if it has a p-value of less than 0.05 as determined
by the Wilcoxon test (adjusted).

[0670] The third method used to identify discriminating
biomarkers was the use of Q values. In such an approach, the
biomarkers are ordered by their g-values and if a respective
biomarker has a g-value of X, then respective biomarker and
all others more significant have a combined false discovery
rate of X. However, the false discovery rate for any one
biomarker may be much larger. There were 16 significant
biomarkers using this method (see Table 84).

TABLE 84

Cumulative number of significant calls for the three methods.
Note that all samples (training and validation) were used to
compare Sepsis and SIRS groups. Missing biomarker
feature values were not included in the analyses.

=le-04 =0.001 =0.01 =0.025 =0.05 =01 =1

p-value 0 6 14 20 24 25 60
(unadjusted)

p-value 0 0 6 13 16 24 60
(adjusted)

g-value 0 0 13 20 25 31 60
[0671] CART. In addition to analyzing the microarray data

using Wilcoxon and Q-value tests in order to identify biom-
arkers that discriminate between the sepsis and SIRS sub-
populations in the training set, classification and regression
tree (CART) analysis was used. CART is described in Section
5.5.1, above. Specifically, the data summarized above was
used to predict the disease state by iteratively partitioning the
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databased on the best single-variable split ofthe data. In other
words, at each stage of the tree building process, the biomar-
ker whose expression values across the training population
best discriminate between the sepsis and SIRS population
was invoked as a decision branch. Cross-validation was car-
ried out, with the optimal number of splits estimated indepen-
dently in each ofthe 10 iterations. The final tree is depicted in
FIG. 49, and uses ten biomarkers: MIP1 beta, thrombopoi-
etin, C reactive protein, 1[.-10, IL-16, beta-2 microglobulin,
alpha fetoprotein, 1[.-6, adiponectin, and ICAM1.

[0672] FIG. 50 shows the distribution of the ten biomarkers
used in the decision tree between the sepsis and SIRS groups
in the training data set. In FI1G. 50, the top of each box denotes
the 75 percentile of the data across the training set and the
bottom of each box denotes the 25” percentile, and the
median value for each biomarker across the training set is
drawn as a line within each box. The confusion matrix for the
training data where the predicted classifications were made
from the cross-validated model is given in Table 85. From this
confusion matrix, the overall accuracy was estimated to be
63.5% with a 95% confidence interval of 51.5% to 74.4%.
The estimated sensitivity was 66.7% and the estimated speci-
ficity was 60.5%.

TABLE 85

Confusion matrix for training samples using cross-validated CART

True Diagnosis

Predicted Sepsis SIRS
Sepsis 24 15
SIRS 12 23
[0673] For the 23 validation samples held back from train-

ing data set, the overall accuracy was estimated to be 65.2%
with a 95% confidence interval 0f42.7% to 83.6%, sensitivity
66.7% and specificity 63.6%. Table 86 shows the confusion
matrix for the validation samples.

TABLE 86

Confusion matrix for validation samples
using cross-validated CART

True Diagnosis

Predicted Sepsis SIRS
Sepsis 8 1
SIRS 4 10

[0674] Random Forests. Another decision rule that can be
developed using biomarkers of the present invention is a
Random Forests decision tree. Random Forests is a tree based
method that uses bootstrapping instead of cross-validation.
For each iteration, a random sample (with replacement) is
drawn and the largest tree possible is grown. Each tree
receives a vote in the final class prediction. To fit a random
forest, the number of trees (e.g. bootstrap iterations) is speci-
fied. No more than 500 were used in this example, but at least
50 are needed for a burn-in period. The number of trees was
chosen based on the accuracy of the training data. For this
data, 64 trees were used to train the algorithm (see FIG. 51).
In FIG. 51, curve 4802 is a smoothed estimate of overall
accuracy as a function of tree number. Curve 4804 is a
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smoothed curve of tree sensitivity as a function of tree num-
ber. Curve 4806 is a smoothed curve of tree specificity as a
function of tree number. Using this algorithm, 34 biomarkers
had non-zero importance and were used in the model. The
random forest algorithm gauges biomarker importance by the
average reduction in the training accuracy. The biomarkers
were ranked by this method and are shown in FIG. 52. The
random forest method uses a number of different decision
trees. A biomarker is considered to have discriminating sig-
nificance if it served as a decision branch of a decision tree
from a significant random forest analysis. As used herein, a
significant random forest analysis is one where the lower 95%
confidence interval on accuracy by cross validation on a train-
ing data set is greater than 50% and the point estimate for
accuracy on a validation set is greater than 65%.

[0675] The predicted confusion matrix for the training
dataset using the decision tree developed using the Random
Forest method is given in Table 87. From this confusion
matrix, the overall accuracy was estimated to be 70.3% (con-
fidence intervals cannot be computed when using the boot-
strap accuracy estimate). The estimated sensitivity was
69.4% and the estimated specificity was 71.1%.

TABLE 87

Confusion matrix for training samples against the decision
tree developed using the Random Forest method.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 27 11
SIRS 11 25

[0676] For the 23 validation samples held back from train-
ing, the overall accuracy was estimated to be 60.9% with a
95% confidence interval of 38.5% to 80.3%, sensitivity
83.3% and specificity 36.4%. Table 88 shows the confusion
matrix for the validation samples.

TABLE 88

Confusion matrix for the 23 validation samples against
the decision tree developed using the Random Forest method.

True Diagnosis

Predicted Sepsis SIRS
Sepsis 10 7
SIRS 2 4

[0677] MART. MART was used to simultaneously assess
the importance of biomarkers and classify the subject
samples. Several fitting parameters are specified in this
approach including (i) number of trees, (ii) step size (com-
monly referred to as “shrinkage”), and (iii) degree of interac-
tion (related to the number of splits for each tree). More
information on MART is described in Section 5.5.4 above.
The degree of interaction was set to 1 to enforce an additive
model (e.g. each tree has one split and only uses one biom-
arker).

[0678] The degree of interaction was set to 1 to enforce an
additive model (e.g. each tree has one split and only uses one
feature), because this often works well even when a weak
interaction is present. Moreover, estimating interactions may



US 2011/0105350 Al

require more data to function well. The step size was set to
0.05 so that the model complexity was dictated by the number
of trees. The optimal number of trees was estimated by leav-
ing out a random subset of cases at each fitting iteration, then
assessing quality of prediction on that subset. After fitting
more trees than were warranted, the point at which prediction
performance stopped improving was estimated as the optimal
point.

[0679] The estimated model used 11 trees and 4 biomarkers
across all trees. The MART algorithm also provides a calcu-
lation of biomarker importance (summing to 100%), which
are given in FIG. 53. Biomarkers with zero importance were
excluded. FIG. 54 shows the distribution of the selected
biomarkers between the Sepsis and SIRS groups.

[0680] Cross-validation was carried out, with the optimal
number of trees estimated independently in each of the 10
iterations. The confusion matrix for the training data where
the predicted classifications were made from the cross-vali-
dated model is given in Table 89. From this confusion matrix,
the overall accuracy was estimated to be 70.3% with a 95%
confidence interval of 58.5% to 80.3%. The estimated sensi-
tivity was 63.9% and the estimated specificity was 76.3%.

TABLE 89
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all accuracy for the training samples was estimated to be 74.9
with a 95% confidence interval of 65.3% to 82.5%. The
estimated sensitivity was 78.9% and the estimated specificity
was 69.4%. Table 91 shows the confusion matrix for the
training data where the predicted classifications were made
from the cross-validated models.

TABLE 91

Confusion matrix for training samples
using cross-validated PAM algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 30 11
SIRS 8 25

[0683] For the 23 validation samples held back from train-
ing, the overall accuracy was estimated to be 65.2% with a
95% confidence interval of 42.7% to 83.6%, sensitivity
91.7% and specificity 36.4%. Table 92 shows the confusion
matrix for the validation samples.

TABLE 92

Confusion matrix for the training samples using
the cross-validated MART algorithm.

Confusion matrix for validation samples
using cross-validated PAM algorithm

True Diagnosis

True Diagnosis

Predicted Sepsis SIRS Predicted Sepsis SIRS
Sepsis 23 9 Sepsis 11 7
SIRS 13 29 SIRS 1 4

[0681] For the 23 validation samples held back from train-
ing, the overall accuracy was estimated to be 73.9% with a
95% confidence interval of 51.6% to 89.8%, sensitivity
63.6% and specificity 83.3%. Table 90 shows the confusion
matrix for the validation samples.

TABLE 90

Confusion matrix for the validation samples
using the MART algorithm

True Diagnosis

Predicted Sepsis SIRS
Sepsis 7 2
SIRS 4 10

[0682] PAM. Yet another decision rule developed using
biomarkers of the present invention is predictive analysis of
microarrays (PAM), which is described in Section 5.5.2,
above. In this method, a shrinkage parameter that determines
the number of biomarkers used to classify samples is speci-
fied. This parameter was chosen via cross-validation. There
were no biomarkers with missing values. Based on cross-
validation, the optimal threshold value was 0.08, correspond-
ing to 59 biomarkers. FIG. 55 shows the accuracy across
different thresholds. In FIG. 55, curve 5202 is the overall
accuracy (with 95% confidence interval bars). Curve 5204
shows decision rule sensitivity as a function of threshold
value. Curve 5206 shows decision rule specificity as a func-
tion of threshold value. Using the threshold of 0.08, the over-

[0684] FIG. 56 shows the selected biomarkers, ranked by
their relative discriminatory power, and their relative impor-
tance in the model.

[0685] FIG. 57 provides a summary of the CART, MART,
PAM, and random forests (RF) classification algorithm (deci-
sion rule) performance and associated 95% confidence inter-
vals. Fifty distinct biomarkers were selected from across all
the algorithms illustrated in FIG. 58. The identity of these
fifty selected features is found in FIG. 58.

[0686] FIG. 58 illustrates an overall ranking of biomarkers
for the T_,, data set. For the selected biomarkers, the x-axis
depicts the percentage of times that it was selected. Within the
percentage of times that biomarkers were selected, the biom-
arkers are ranked.

[0687] From the analysis of the T_, , data set and the other
data sets, ten protein based biomarkers were selected for
confirmation using the methodology described in Section
16.3.2. These biomarkers are listed in Table 93, below.

TABLE 93

Protein based biomarkers selected for
confirmation from immunoassay

Gene Protein
Gene Accession Accession
Symbol Gene Name Number Number
1L-6 INTERLEUKIN 6 NM__000600  NP_ 000591
1L-8 INTERLEUKIN & M28130 AAA59158
CRP C Reactive protein CAA39671 NM__000567
IL-10 INTERLEUKIN 10 NM_000572  CAH73907
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TABLE 93-continued

Protein based biomarkers selected for
confirmation from immunoassay

Gene Protein

Gene Accession Accession
Symbol Gene Name Number Number
APOC3 APOLIPOPROTEIN CIII NM__000040 CAA25648
MMP9 MATRIX NM__004994  NP_004985

METALLOPROTEINASE 9

(GELATINASE B, 92 KDA

GELATINASE, 92 KDA

TYPE IV COLLAGENASE)
TIMP1 TISSUE INHIBITOR OF NM_003254  AAA75558

METALLOPROTEINASE 1
MCP1 MONOCYTE AT493698, AAQT5526

CHEMOATTRACTANT AT493697

PROTEIN 1
ATFP ALPHA-FETOPROTEIN NM_ 001134  CAAT79592
B2M BETA-2 MICROGLOBULIN NM__ 004048  AAAS1811
[0688] Each of the sequences, genes, proteins, and

probesets identified in Table 93 is hereby incorporated by
reference.

6.13.2 Confirmation of Protein Biomarkers Using a
Bead Based Protein Immunoassay

[0689] Confirmation of the biomarkers identified in Table
93 was performed using the same assay described in Section
6.13.1 at multiple time points and analyzed in several differ-
ent ways: static time of entry, static T_, static T_;, baseline
T_go, baseline T_,, and baseline T_,, data points. Represen-
tative of these analyses is the static T_,, data analysis which
is described in detail below. In the T_, , static analysis, biom-
arkers features were measured using a specific blood sample,
designated the T_,, blood sample, as defined in Section 6.4,
above. FIG. 59 illustrates the results of the analysis of static
T_,, bead based protein assay, using CART, MART, PAM and
random forests, where the static T_,, time point is as
described in Section 6.4. The best decision tree in both the
training and validation datasets for CART used six biomark-
ers. For both the training data and the validation data, the
estimated model for MART used 4 biomarkers across all
trees. A total of 7 biomarkers were of significance in both the
training and the validation sets using PAM. Using random
forest, 4 biomarkers under study were actually found to have
discriminating significance in both the training and validation
data sets. Based on the results of the analysis of the bead based
protein immunoassay summarized in FIG. 59, each ofthe ten
protein based biomarkers identified in Section 6.13.1 were
confirmed by this experiment.

6.13.3 Confirmation of Protein Biomarkers Using
BD Cytometric Bead Array Assay

[0690] IL-6,IL-8, and IL.-10 proteins were confirmed using
the BD™ Cytometric Bead Array (CBA) assay as embodied
in the BD™ CBA Human Inflammation Kit. Flow cytometry
is an analysis tool that allows for the discrimination of differ-
ent particles on the basis of size and color. Multiplexing is the
simultaneous assay of many analytes in a single sample. CBA
employs a series of particles with discrete fluorescence inten-
sities to simultaneously detect multiple soluble analytes.
CBA is combined with flow cytometry to create a multiplexed
assay. The BD CBA system uses the sensitivity of amplified
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fluorescence detection by flow cytometry to measure soluble
analytes in a particle-based immunoassay. Each bead in a
CBA provides a capture surface for a specific protein and is
analogous to an individually coated well in an ELISA plate.
The BD CBA capture bead mixture is in suspension to allow
for the detection of multiple analytes in a small volume
sample.

[0691] The combined advantages of the broad dynamic
range of fluorescent detection via flow cytometry and the
efficient capturing of analytes via suspended particles enable
CBA to use fewer sample dilutions and to obtain the value of
an unknown in substantially less time (compared to conven-
tional ELISA). The BD™ CBA Human Inflammation Kit can
be used to quantitatively measure Interleukin-8 (IL-8), Inter-
leukin-1P (IL-1 Interleukin-6 (IL-6), Interleukin-10 (IL.-10),
Tumor Necrosis Factor (TNF), and Interleukin-12p70 (IL-
12p70) protein levels in a single sample. The kit performance
has been optimized for analysis of specific proteins in tissue
culture supernatants, EDTA plasma, and serum samples.
[0692] Six bead populations with distinct fluorescence
intensities have been coated with capture antibodies specific
forIL-8,IL-1f, IL-6,IL.-10, TNF, and IL.-12p70 proteins. The
six bead populations are mixed together to form the BD™
CBA which is resolved in the F1.3 channel of a flow cytometer
such as the BD FACScan™ or BD FACSCalibur™ flow
cytometer. The capture beads, PE-conjugated detection anti-
bodies, and recombinant standards or test samples are incu-
bated together to form sandwich complexes. Following
acquisition of sample data using the flow cytometer, the
sample results are generated in graphical and tabular format
using the BD™ CBA Analysis Software. More details about
the BD™ CBA Human Inflammation Kit are described in the
BD™ CBA Human Inflammation Kit Instruction Manual,
catalog number 551811, available from BD biosciences,
which is hereby incorporated by reference herein in its
entirety. Using the BD™ CBA Human Inflammation Kit, the
biomarkers IL.-6, IL-8, and IL-10 were confirmed as discrimi-
nating between sepsis and SIRS.

6.14 Assessing Subcombinations of the Biomarkers
Identified in Table I

[0693] One embodiment of the present invention encom-
passes any 2 or more of the 53 biomarkers listed in Table I as
predictors for classifying a subject as sepsis or SIRS. One
embodiment of the present invention encompasses any 3 or
more of the 53 biomarkers listed in Table I as predictors for
classifying a subject as sepsis or SIRS. As such, the present
invention further encompasses any subcombination of the 53
biomarkers listed in Table I as predictors for classifying a
subject as sepsis or SIRS provided that there are at least 2 or
3 biomarkers in the subcombination. This section discloses
experiments that demonstrate the predictive power of exem-
plary subcombinations of the 53 biomarkers listed in Table I.
Several thousand subcombinations were tested and the vast
majority of those subcombinations had an accuracy of at least
seventy percent. This indicates that the vast majority of the
possible subcombinations of the 53 biomarkers listed in Table
I will discriminate between sepsis and SIRS subjects.

6.14.1 Subcombinations of Nucleic Acid Biomarkers
atT_,

[0694] There are a total of 44 biomarkers for which RT-
PCR nucleic acid data is available as reported in Table J. A
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total of 4800 different subcombinations of this set of biom-
arkers were constructed using the T_,, time point data
described in Section 6.12. Each different subcombination
was then tested for its ability to discriminate between sepsis
subjects and SIRS subjects. The 4800 subcombinations rep-
resent a random sampling of the total number of possible
subcombinations possible for the 44 biomarkers of the
present invention reported in Table J. Randomness of the
4800 subcombinations was ensured using the following algo-
rithm:

CONSIDER 2 to 25 biomarkers from Table J

{
LET the current number be k;
DO the following 200 times
SELECT k biomarkers at random from Table J;
LET the current set of biomarkers be S;
)
DO the following 10 times
{
FOR biomarker set S, randomly set aside 10% of patients as a
validation population and 90% as a training population;
FIT a model to the training population using Random Forest
with T ;5
time point data;
PREDICT results for the validation population;
CALCULATE agreement with the known status of the validation
population;
AVERAGE the ten agreement rates and report;
SET k =k+1;
IF k > 10 then END; ELSE return to top;
END
[0695] There were a total of 152 patients for which T_,,

data was available from a combination of discovery and con-
firmatory data described above. Of these 152 patients, 80
were sepsis and 72 were SIRs. The calculations described
above test 200 subcombinations at each interval 2 through 25.
In other words, 200 subcombinations each consisting of two
biomarkers randomly selected from Table J were tested, 200
subcombinations each consisting of three biomarkers ran-
domly selected from Table ] were tested, and so forth, through
200 subcombinations each consisting of twenty-five biomar-
kers randomly selected from Table J for a total of 24 families
of subcombinations, where each family of subcombinations
consists of 200 subcombinations of biomarkers each having k
biomarkers, where k is a number in the set 2 through 25.

[0696] The data set with assay results for all biomarkers
under consideration was maintained in memory, as were a list
of unique biomarker names. To evaluate subsets of a specific
size (say, k=three), then that many (three) biomarker names
were selected randomly from the set of unique biomarker
names, using a pseudorandom number generators provided in
the R software package. See Venables and Smith, An Intro-
duction to R, ISBN 0-9541617-4-2, which is hereby incorpo-
rated by reference in its entirety. A matrix of assay results for
the selected biomarker names was constructed. This matrix
could have more columns than the number of selected biom-
arker names, since some biomarkers have more than one
assay result. An estimate of true predictive accuracy, when
using the modeling technique “Random Forest,” was then
constructed for this matrix. The Random Forest algorithm
was implemented as described in Breiman, 2001, “Random
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Forests,” Machine Learning 45(1), pp. 5-32, which is hereby
incorporated by reference in its entirety.

[0697] For a given data matrix, the prediction of true pre-
dictive accuracy was calculated as follows: 10% of patients
were randomly selected in a balanced manner, i.e., 10% of
septic patients and 10% of SIRS patients were selected.
Selected patients were set aside for the validation population,
and a random forest model was fitted to the remaining data
(the training population). If there were any missing values in
the training data or the set-aside data, a recursive partitioning
model was fitted to other assay results as well as the Sepsis/
SIRS information in order to predict assay values. The recur-
sive partitioning model is described in Breiman et al., 1984,
Classification and Regression Trees, Wadsworth, which is
hereby incorporated by reference in its entirety. Missing val-
ues were then replaced with their predicted values. Missing
values in the set-aside data were replaced with predictions
from the recursive-partition model fitted to the training data,
so that knowledge of the SIRS/Sepsis status for the validation
population was not used in any way to classify validation
patients.

[0698] By comparing the true status of the 10% set aside
(the validation population) with the predicted status accord-
ing to the random forest model fitted to the other 90% (the
training population), sensitivity, specificity, and agreement
were calculated. This process was repeated 10 times, and the
final sensitivity, specificity, and agreement estimates (also
termed accuracy, also termed performance) for the given
marker subset were those values averaged across the 10 itera-
tions. This process was applied to every subset. For each size
considered (k value, i.e., number of biomarkers), 200 random
subsets were selected and evaluated. These 200 performance
(accuracy) estimates form an estimate of the distribution of
performances of all subsets of biomarkers of a given size (k
value).

[0699] FIG. 60 plots the accuracy of each of these 24 fami-
lies of subcombinations as bar graphs. FIG. 61 plots the
accuracy (performance) of each individual subcombination
in each of the 24 families of subcombinations. Thus, FIG. 61
plots the accuracy (performance) of a total of 4800 subcom-
binations of the set of biomarkers listed in Table J.

[0700] FIGS. 60 and 61 indicate that for k>5, the distribu-
tions are Gaussian, (bell-shaped), indicating that each respec-
tive family (k=5, . . ., 24) is an accurate depiction of the
subcombination space represented by the family. For k<=5, a
handful of subsets give lower accuracy (performance) esti-
mates. However, the results available for k<=5 indicate that
this class of biomarker subcombinations discriminate
between sepsis and SIRS as well. The results reported in
FIGS. 60 and 61 show that, with as few as two biomarkers
randomly selected from Table J, an accuracy (performance)
estimate above 50% was virtually always obtained. Table 94
contains the number of subcombinations in each family (k=2,
4,...,25)that performed with a threshold accuracy of greater
than 60% (column 2), greater than 70% (column 3), greater
than 80% (column 4), greater than 90% (column 5), or an
accuracy of less than 60% (column 6). The data summarized
in FIGS. 60 and 61, as well as Table 94, demonstrates that, for
time T_,, data, almost all subcombinations of biomarkers
comprising between 2 and 25 biomarkers from Table J will
discriminate between sepsis and SIRs subjects.
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-continued

Number of subcombinations from Table J that performed with
a given threshold accuracy using T 5 nucleic acid data

AVERAGE the ten agreement rates and report;
SET k =k+1;

Column1 Column2 Column3 Column4 Column5 Column 6 IF k > 10 then END; ELSE return to top;
Number of  Greater Greater Greater Greater  Less than }
Biomarkers than 60% than 70% than 80% than 90% 60% END
2 197 145 17 0 3
i }gg }gi §§ 8 } [0702] Computations were performed as described in fur-
5 200 186 o 0 0 ther detail in Section 6.14.1. There were a total of 152 patients
6 200 194 50 0 0 for which T_,, data was available from a combination of
7 200 195 48 0 0 discovery and confirmatory data described above. Of these
8 200 194 64 0 0 152 patients, 80 were sepsis and 72 were SIRs. For some
13 588 fgg 2411 é 8 biomarkers in Table K, there were multiple data sources. For
1 200 196 7 0 0 instance, there is IL.-6, I1.-8, and IL.-10 protein data from three
B 200 199 70 0 0 different labs. Thus, there is a complex pattern of incidence
13 200 199 73 0 0 among patients. Some patients may be tested by one lab,
14 200 198 67 0 0 others by two, etc. This was determined by how the project
15 200 198 79 0 0 evolved and what samples were available (some patient
16 200 198 70 0 0 samples were exhausted before they could be tested with
17 200 198 64 0 0 . .
18 200 199 o4 0 0 assays developed later). To handle this complex incidence,
19 200 197 83 0 0 the fqllowing strategy was us.ed. In any given iteration, if a
20 200 199 82 0 0 protein that was tested in multiple labs was selected, all assay
21 200 199 85 0 0 results for the protein were selected. A missing-value impu-
22 200 198 80 0 0 tation scheme was then used to fill out missing values, making
ii ;88 fgg g 8 8 it look like all patients were tested with all assays. This data
35 200 198 &1 0 0 was then fed into the Random Forest model as correlated

6.14.2 Subcombinations of Protein Biomarkers at
T,

[0701] There are a total of 10 biomarkers for which protein
abundance data is available as reported in Table K. A total of
1600 different subcombinations of this set of biomarkers
were constructed using the T_, , time point data described in
Section 6.13. Each different subcombination was then tested
for its ability to discriminate between sepsis and SIRS sub-
jects. The 1600 subcombinations represent a random sam-
pling of the total number of possible subcombinations pos-
sible for the 10 biomarkers of the present invention reported
in Table K. Randomness of the 1600 subcombinations was
ensured using the following algorithm:

CONSIDER 3 to 10 biomarkers from Table K

LET the current number be k;
DO the following 200 times

SELECT k biomarkers at random from Table K;
LET the current set of biomarkers be S;

DO the following 10 times

{
FOR biomarker set S, randomly set aside 10% of patients as a
validation population and 90% as a training population;
FIT a model to the training population using Random Forest
with T >
time point data;
PREDICT results for the validation population;
CALCULATE agreement with the known status of the validation
population;

inputs that measure the same underlying compound. Thus,
consider the case where k is equal to 3 and one of the ran-
domly chosen proteins from Table K is IL-8, from 3 different
laboratories, and the other 2 proteins are unique meaning that
they are each from only one laboratory. The data from all
three IL-8 sources are selected, plus the other two unique
assays for the other two proteins, for a total of five assays. The
missing-value imputation scheme is then used to fill out miss-
ing values, making it look like all patients had results from
three different sources for a total of nine assays.

[0703] The calculations described above test 200 subcom-
binations at each interval 3 through 10. In other words, 200
subcombinations each consisting of three randomly selected
biomarkers from Table K were tested, 200 subcombinations
each consisting of four biomarkers randomly selected from
Table K were tested, and so forth, through 200 subcombina-
tions each consisting of ten biomarkers randomly selected
from Table K for a total of 8 families of subcombinations,
where each family of subcombinations consists of 200 sub-
combinations of biomarkers all having k biomarkers, where k
is anumber in the set 3 through 10. FIG. 62 plots the accuracy
of each of these eight families of subcombinations as bar
graphs. FIG. 63 plots the accuracy (performance) of each
individual subcombination in each of the eight families of
subcombinations. Thus, FIG. 63 plots the accuracy (perfor-
mance) of a total of 1600 subcombinations of the set of
biomarkers listed in Table K.

[0704] FIGS. 62 and 63 show that the distribution for each
family of subcombinations is Gaussian (bell-shaped), indi-
cating that each respective family (k=3, 4, . . ., 10) is an
accurate depiction of the subcombination space represented
by the family. The results reported in FIGS. 62 and 63 show
that, with as few as three biomarkers randomly selected from
Table K, an accuracy (performance) estimate above 50% was
virtually always obtained. Table 95 contains the number of
subcombinations in each family (k=3, 4, . . ., 10) that per-
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formed with a threshold accuracy of greater than 60% (col-
umn 2), greater than 70% (column 3), greater than 80% (col-
umn 4), greater than 90% (column 5), or an accuracy of less
than 60% (column 6). The data summarized in FIGS. 62 and
63, as well as Table 95, demonstrates that, for time T_,, data,
almost all subcombinations of biomarkers comprising
between 3 and 10 biomarkers from Table K will discriminate
between sepsis and SIRs subjects.

TABLE 95

Number of subcombinations from Table K that performed with
a given threshold accuracy using T ;5 protein data

Column1l Column2 Column3 Column4 Column5 Column 6
Number of Greater Greater Greater Greater  Less than
Biomarkers than 60% than 70% than 80%  than 90% 60%

3 192 58 0 0 8
4 196 106 1 0 4
5 200 117 1 0 0
6 200 136 0 0 0
7 200 151 1 0 0
8 200 172 1 0 0
9 200 188 1 0 0
10 200 187 0 0 0

6.14.3 Subcombinations of Protein Biomarkers at
T—36

[0705] A total of 1600 different subcombinations of the set
of biomarkers of Table K were constructed for the T_;¢ time
point using the protein based data described in Section 6.13.
Each different subcombination was then tested for its ability
to discriminate between sepsis and SIRS subjects. There were
a total of 142 patients for which T_,; data was available from
a combination of discovery and confirmatory data described
above. Of these 142 patients, 79 were sepsis and 63 were
SIRs. The 1600 subcombinations represent a random sam-
pling of the total number of possible subcombinations pos-
sible for the 10 biomarkers of the present invention reported
in Table K. Randomness of the 1600 subcombinations was
ensured using the algorithm identified in Section 6.14.2, the
only difference being that T_, data ratherthan T _, , data was
used. Computations were performed as described in further
detail in Section 6.14.1. FIG. 64 plots the accuracy of each of
these eight families of subcombinations as bar graphs. FIG.
65 plots the accuracy (performance) of each individual sub-
combination in each of the eight families of subcombinations.
Thus, FIG. 65 plots the accuracy (performance) of a total of
1600 subcombinations of the set of biomarkers listed in Table
K

[0706] The results reported in FIGS. 64 and 65 show that,
with as few as three biomarkers randomly selected from Table
K, an accuracy (performance) estimate above 60% was typi-
cally obtained. Table 95 contains the number of subcombina-
tions in each family (k=3, 4, . . ., 10) that performed with a
threshold accuracy of greater than 60% (column 2), greater
than 70% (column 3), greater than 80% (column 4), greater
than 90% (column 5), or an accuracy of less than 60% (col-
umn 6). The data summarized in FIGS. 64 and 65, as well as
Table 95, demonstrates that, fortime T_; data, most subcom-
binations of biomarkers comprising between 3 and 10 biom-
arkers from Table K will discriminate between sepsis and
SIRs subjects.
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TABLE 96

Number of subcombinations from Table K that performed with

a given threshold accuracy using T ;4 protein data

Column1l Column2 Column3 Column4 Column5 Column 6
Number of Greater Greater Greater Greater  Less than
Biomarkers than 60% than 70% than 80% than 90% 60%

3 138 23 0 0 62

4 152 25 0 0 48

5 171 32 0 0 29

6 180 30 0 0 20

7 188 37 0 0 12

8 194 40 0 0 6

9 194 27 0 0 6

10 199 20 0 0 1

6.14.4 Subcombinations of Nucleic Acid Biomarkers
atT 5

[0707] A total of 4600 different subcombinations of the set
of biomarkers of Table J were constructed for the T_;4 time
point using the nucleic acid based data described in Section
6.13. Each different subcombination was then tested for its
ability to discriminate between sepsis and SIRS subjects.
There were a total of 142 patients for which T_,, data was
available from a combination of discovery and confirmatory
data described above. Of these 142 patients, 79 were sepsis
and 63 were SIRs. The 4600 subcombinations represent a
random sampling of the total number of possible subcombi-
nations possible for the 44 biomarkers of the present inven-
tion reported in Table J at the T_ 4 time point. Randomness of
the 4600 subcombinations was ensured using the algorithm
identified in Section 6.14.1, the only difference being that
T_5¢ data rather than T_,, data was used and that the mini-
mum k value was 3. Computations were performed as
described in further detail in Section 6.14.1. FIG. 66 plots the
accuracy of each of these 23 families of subcombinations as
bar graphs. FIG. 67 plots the accuracy (performance) of each
individual subcombination in each of the 23 families of sub-
combinations. Thus, FIG. 67 plots the accuracy (perfor-
mance) of a total of 4600 subcombinations of the set of
biomarkers listed in Table J.

[0708] The results reported in FIGS. 66 and 67 show that,
with as few as three biomarkers randomly selected from Table
J, an accuracy (performance) estimate above 60% was typi-
cally obtained. Table 97 contains the number of subcombina-
tions in each family (k=3, 4, . . ., 25) that performed with a
threshold accuracy of greater than 60% (column 2), greater
than 70% (column 3), greater than 80% (column 4), greater
than 90% (column 5), or an accuracy of less than 60% (col-
umn 6). The data summarized in FIGS. 66 and 67, as well as
Table 97, demonstrate that, for time T_; 4 data, most subcom-
binations of biomarkers comprising between 3 and 25 biom-
arkers from Table J will discriminate between sepsis and SIRs
subjects.
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-continued

Number of subcombinations from Table J that performed with
a given threshold accuracy using T 1. nucleic acid data

Column1l Column2 Column3 Column4 Column5 Column 6
Number of Greater Greater Greater Greater  Less than
Biomarkers than 60% than 70% than 80%  than 90% 60%

3 194 115 4 0 6
4 196 128 8 0 4
5 200 159 6 0 0
6 200 161 6 0 0
7 200 173 10 0 0
8 200 182 10 0 0
9 200 189 8 0 0
10 200 188 10 0 0
11 200 194 10 0 0
12 200 193 13 0 0
13 200 190 19 0 0
14 200 192 24 0 0
15 200 196 20 0 0
16 200 195 16 0 0
17 200 196 22 0 0
18 200 195 18 0 0
19 200 196 14 0 0
20 200 194 14 0 0
21 200 197 14 0 0
22 200 197 11 0 0
23 200 200 15 0 0
24 200 199 20 0 0
25 200 199 19 0 0

6.14.5 Subcombinations of Combined Nucleic Acid
and Protein Biomarker Dataat T_,

[0709] There are a total of 53 biomarkers listed Table I. A
total of 4600 different subcombinations of this set of biom-
arkers were constructed using all available T_,, time point
data. For the subset of biomarkers in Table I that are listed in
Table J, the T_,, time point data consisted of RT-PCR data
described above. For the subset of biomarkers that are listed
in Table K, the T_,, time point data consisted of bead based
data described above. The one exception to this was “MMP9”
for which both protein and gene-expression data was avail-
able. Therefore, MMP9 gene and protein abundance data was
treated as separate biomarkers. To accomplish this, MMP9
nucleic data was termed “MMP9.GE” and MMP9 protein
abundance data from the bead based assays was termed
MMP9.Protein.

[0710] Each different subcombination was tested for its
ability to discriminate between sepsis subjects and SIRS sub-
jects. The 4600 subcombinations represent a random sam-
pling of the total number of possible subcombinations pos-
sible for the 53 biomarkers of the present invention reported
in Table I. Randomness of the 4600 subcombinations was
ensured using the following algorithm:

FOR biomarker set S, randomly set aside 10% of patients as a
validation population and 90% as a training population;

FIT a model to the training population using Random Forest
with T_,, time point data;

PREDICT results for the validation population;

CALCULATE agreement with the known status of the validation
population;

AVERAGE the ten agreement rates and report;
SET k =k+1;
IF k > 10 then END; ELSE return to top;

END

[0711] There were a total of 152 patients for which T_,,
data was available from a combination of discovery and con-
firmatory data described above. Of these 152 patients, 80
were sepsis and 72 were SIRs. Computations were performed
as described in further detail in Section 6.14.1. The calcula-
tions described above test 200 subcombinations at each inter-
val 2 through 25. In other words, 200 subcombinations each
consisting of three biomarkers randomly selected from Table
1 were tested, 200 subcombinations each consisting of four
biomarkers randomly selected from Table I were tested, and
so forth, through 200 subcombinations each consisting of
twenty-five biomarkers randomly selected from Table I for a
total of 23 families of subcombinations, where each family of
subcombinations consists of 200 subcombinations of biom-
arkers each having k biomarkers, where k is a number in the
set 3 through 25. FIG. 68 plots the accuracy of each of these
23 families of subcombinations as bar graphs. FIG. 69 plots
the accuracy (performance) of each individual subcombina-
tion in each of'the 23 families of subcombinations. Thus, FIG.
69 plots the accuracy (performance) of a total of 4600 sub-
combinations of the set of biomarkers listed in Table I.
[0712] FIGS. 68 and 69 indicate that for k>5, the distribu-
tions are Gaussian, (bell-shaped), indicating that each respec-
tive family (k=5, . . ., 25) is an accurate depiction of the
subcombination space represented by the family. For k<=5, a
handful of subsets give lower accuracy (performance) esti-
mates. The results reported in FIGS. 68 and 69 show that, with
as few as three biomarkers randomly selected from Table I, an
accuracy (performance) estimate above 50% was virtually
always obtained. Table 98 contains the number of subcombi-
nations in each family (k=3, 4, . . ., 25) that performed with
a threshold accuracy of greater than 60% (column 2), greater
than 70% (column 3), greater than 80% (column 4), greater
than 90% (column 5), or an accuracy of less than 60% (col-
umn 6). The data summarized in FIGS. 68 and 69, as well as
Table 98, demonstrate that, for time T_,, data, almost all
subcombinations of biomarkers comprising between 3 and 25
biomarkers from Table I will discriminate between sepsis and
SIRs subjects.

TABLE 98

CONSIDER 3 to 25 biomarkers from Table I

{

LET the current number be k;
DO the following 200 times

SELECT k biomarkers at random from Table I;
LET the current set of biomarkers be S;

)
DO the following 10 times

{

Number of subcombinations from Table I that
performed with a given threshold accuracy using
T ;5> combined nucleic acid and protein data

Column1l Column2 Column3 Column4 Column5 Column 6
Number of Greater Greater Greater Greater  Less than
Biomarkers than 60% than 70% than 80% than 90% 60%

3 200 157 11 0 0
4 200 166 12 0 0
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TABLE 98-continued

Number of subcombinations from Table I that
performed with a given threshold accuracy using
T_,, combined nucleic acid and protein data

Column1l Column2 Column3 Column4 Column5 Column 6
Number of Greater Greater Greater Greater  Less than
Biomarkers than 60% than 70% than 80%  than 90% 60%

5 200 191 25 0 0

6 200 191 30 0 0

7 200 195 33 0 0

8 200 198 44 0 0

9 200 200 49 0 0
10 200 198 63 0 0
11 200 199 65 0 0
12 200 200 71 0 0
13 200 200 64 0 0
14 200 200 66 0 0
15 200 200 74 0 0
16 200 199 74 0 0
17 200 200 73 0 0
18 200 200 76 0 0
19 200 200 87 0 0
20 200 199 94 0 0
21 200 200 77 0 0
22 200 200 84 0 0
23 200 200 81 0 0
24 200 200 93 0 0
25 200 200 85 0 0

6.14.6 Subcombinations of Combined Nucleic Acid
and Protein Biomarker Data at T_5¢

[0713] Subcombinations of biomarkers were selected as
described in Section 6.14.5, the only difference being that
T_,4 data rather than T_,, data was used. A total of 4600
different subcombinations of Table I were constructed using
all available T_, time point data. There were a total of 142
patients for which T_; ¢ data was available from a combination
of'discovery and confirmatory data described above. Of these
142 patients, 79 were sepsis and 63 were SIRs. Computations
were performed as described in further detail in Section 6.14.
1. The calculations described above test 200 subcombinations
at each interval 3 through 25. In other words, 200 subcombi-
nations each consisting of three biomarkers randomly
selected from Table I were tested, 200 subcombinations each
consisting of four biomarkers randomly selected from Table |
were tested, and so forth, through 200 subcombinations each
consisting of twenty-five biomarkers randomly selected from
Table I for a total of 23 families of subcombinations, where
each family of subcombinations consists of 200 subcombina-
tions of biomarkers each having k biomarkers, where k is a
number in the set 3 through 25. FIG. 70 plots the accuracy of
each of these 23 families of subcombinations as bar graphs.
FIG. 71 plots the accuracy (performance) of each individual
subcombination in each of the 23 families of subcombina-
tions. Thus, FIG. 71 plots the accuracy (performance) of a
total of 4600 subcombinations of the set of biomarkers listed
in Table I.

[0714] FIGS. 70 and 71 indicate that for k>5, the distribu-
tions are Gaussian, (bell-shaped), indicating that each respec-
tive family (k=5, . . ., 25) is an accurate depiction of the
subcombination space represented by the family. Fork<=5, a
handful of subsets give lower accuracy (performance) esti-
mates. The results reported in FIGS. 70 and 71 show that, with
as few as three biomarkers randomly selected from Table I, an
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accuracy (performance) estimate above 50% was virtually
always obtained. Table 99 contains the number of subcombi-
nations in each family (k=3, 4, . . ., 25) that performed with
athreshold accuracy of greater than 60% (column 2), greater,
than 70% (column 3), greater than 80% (column 4), greater
than 90% (column 5), or an accuracy of less than 60% (col-
umn 6). The data summarized in FIGS. 70 and 71, as well as
Table 99, demonstrate that, for time T_; data, almost all
subcombinations of biomarkers comprising between 3 and 25
biomarkers from Table I will discriminate between sepsis and
SIRs subjects.

TABLE 99

Number of subcombinations from Table I that
performed with a given threshold accuracy using
T 1. combined nucleic acid and protein data

Column1l Column2 Column3 Column4 Column5 Column 6
Number of Greater Greater Greater Greater  Less than
Biomarkers than 60% than 70% than 80% than 90% 60%
3 187 96 4 0 13
4 199 127 5 0 1
5 200 145 7 0 0
6 200 149 9 0 0
7 200 148 9 0 0
8 200 157 8 0 0
9 200 175 13 0 0
10 199 179 7 0 1
11 200 180 11 0 0
12 200 175 11 0 0
13 200 184 15 0 0
14 200 184 10 0 0
15 200 180 5 0 0
16 200 190 17 0 0
17 200 191 16 0 0
18 200 190 15 0 0
19 200 191 8 0 0
20 200 196 13 0 0
21 200 198 15 0 0
22 200 195 9 0 0
23 200 195 14 0 0
24 200 195 10 0 0
25 200 196 18 0 0

6.15 Mean Expression Value of Biomarkers in Sepsis
and Sirs Patients Identified in Table I

[0715] The mean expression values of the biomarkers of
Table 1 were determined for subjects that acquired sepsis
(Sepis subjects) and subjects that did not acquire sepsis (SIRS
subjects) in the populations described in Sections 6.11.2,
6.12.2 (Affymetrix data), 611.1, 6.12.1 (RT-PCR data), 6.1-
3.3 (bead data), and 6.13.1 and 6.13.2 (bead data) at the T_, ,,
T 56, and T_,, time points. This data is set forth in Table 100
below. In Table 100, a biomarker with the _Affy extension
represents the combined data of Sections 6.11.2 and 6.11.2
(Affymetrix data), a biomarker with the 0.18S extension rep-
resents the combined data of Sections 6.11.1 and 6.12.1 (RT-
PCR data), a biomarker with the BDB extension represents
the data of Section 6.13.3, and a biomarker with the RBM
extension represents the data of Sections 6.13.1 and 6.13.2.

[0716] For nucleic acid biomarkers in Table 100 that were
identified by gene arrays (.Affy), the values in Table 100
represent mean relative fluorescence intensity units obtained
for the specific probe sequences examined. As such, they are
not actual units of measure, just relative quantity of one group
to another. Additionally, as part of the data analysis, some of
these values may have undergone a log transformation or
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other adjustment, prior to being reported. The expression
values for the nucleic acid biomarkers (0.18S) found in Table
100 are defined by the relative “cycle-time to threshold.” As
such, they do not cite actual units of measure, just relative
quantity of one group to another. A sample with a higher
amount of nucleic acid will become positive sooner (fewer
cycles) than one with less nucleic acid, which will require
more cycles before the resultant signal crosses a positivity
threshold. For the protein biomarkers in Table 101, the units
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were as follows alphafetoprotein (AFP) pg/ml (micrograms
per milliliter of plasma), Beta-2-Microglobulin B2M) ug/ml.,
Interleukin-6 (IL-6) pg/mL (picograms/milliliter), Interleu-
kin-8 (IL-8) pg/mL, Interleukin-10 (IL-10) pg/mL., Monocyte
Chemoatractant Protein 1 (MCP) pg/mL, Matrix Metallopro-
teinase 9 (MMP9) ng/ml. (nanogram/milliliter), Tissue
Inhibitor of Metalloproteinase 1 (TIMP 1) ng/ml (nanogram/
mL), C Reactive protein (CRP) ug/ml., and Apoliprotein CIII

png/mlL.

TABLE 100

Mean expression values for the biomarkers of Table I as measured in the

experimental Affymetrix, RT-PCR, and bead data of Section 6.

SIRS Sepsis SIRS Sepsis SIRS Sepsis
Marker T T Ts6 Ts6 T 6o Tso
ANKRD22__Affy 8.33 9.72 8.28 9.27 8.51 9.17
ANXA3_ Affy 10.06 11.28 10.19 11.197 10.49 11.14
BCL2A1_Affy 8.55 9.87 8.73 9.48 9.01 9.60
CCL5_Afty 11.69 11.30 11.73 11.22 11.49 11.29
CD86__Affy 8.59 8.10 8.68 8.13 8.57 8.20
CEACAMI__Affy 7.81 8.74 7.83 8.43 7.91 8.43
CRTAP__Affy 9.30 8.81 9.31 8.87 9.31 8.96
CSF1R_Afty 9.36 8.79 9.34 8.93 9.40 8.89
FAD104__Affy 7.89 8.63 8.04 8.39 8.18 8.36
FCGRI1A__Afty 7.38 8.10 7.34 7.90 7.53 7.76
GADDA45A_Affy 8.26 9.03 8.36 8.95 8.53 9.01
GADD45B__Affy 8.81 9.40 8.80 9.21 8.91 9.20
HLA.DRA_ Affy 11.91 11.22 11.80 11.13 11.78 11.28
IFNGRI1_Affy 11.20 11.51 11.25 11.53 11.38 11.52
IL18RI1_Affy 6.65 8.23 6.81 7.90 7.00 7.95
INSL3_Afty 6.93 7.37 7.01 7.31 7.10 7.23
IRAK2_ Affy 7.13 7.66 7.20 7.52 7.19 7.50
IRAK4__Afty 7.76 8.052 7.90 7.90 7.88 7.96
ITGAM_Affy 11.26 11.80 11.36 11.78 11.53 11.78
JAK2__Affy 6.85 7.523 7.02 7.35 7.08 7.38
LDLR__Affy 7.05 7.788 7.09 7.76 7.12 7.75
LY96__Affy 9.50 10.26 9.65 10.03 9.76 10.02
MAP2K6__Affy 8.261 9.17 8.49 9.02 8.59 9.05
MAPK14__Affy 8.75 9.75 8.99 9.51 9.16 9.48
MKNK1_ Affy 10.02 10.59 10.07 10.50 10.30 10.60
Gene_ MMP9__Affy 12.05 13.03 12.28 12.95 12.41 12.93
NCRI_Affy 5.64 5.94 5.645 5.90 5.77 591
OSM_Affy 6.70 7.51 6.79 7.25 7.00 7.32
PFKFB3__Affy 9.60 10.92 9.78 10.83 10.18 10.82
PRV1__Affy 9.79 11.99 9.89 11.81 10.58 11.72
PSTPIP2__Affy 8.63 9.64 8.68 9.45 8.90 9.44
SOCS3__Affy 7.26 8.43 7.31 8.10 7.69 8.12
SOD2__Affy 9.94 10.66 10.07 10.69 10.27 10.59
TDRD9__Affy 6.84 8.30 7.02 8.30 7.43 8.18
TGFBI_Affy 10.17 9.31 10.27 9.45 10.37 9.63
TIFA_Afty 5.99 6.51 5.94 6.31 6.01 6.27
TNFSF10__Affy 10.38 10.77 10.51 10.56 10.47 10.52
TNFSF13B__Affy 10.23 10.70 10.24 10.56 10.48 10.58
IL10alpha_ Affy 9.91 9.53 9.87 9.56 9.91 9.63
ANKRD22.18S 20.35 18.33 20.31 18.65 20.01 18.70
ANXA3.188 17.29 15.52 17.00 15.50 16.78 15.68
ARG2.188 20.36 19.09 20.12 19.26 19.93 19.13
BCL2A1.18S 18.58 17.00 18.20 17.05 17.84 17.04
CD86.18S 19.81 20.19 19.70 20.15 19.68 20.10
CEACAMI1.188 19.98 18.34 19.84 18.39 19.73 18.36
FCGR1A.18S 16.78 15.03 16.51 15.32 16.329 15.59
GADD45A.18S 19.73 18.46 19.69 18.45 19.38 18.53
GADDA45B.18S 16.72 15.52 16.61 15.65 16.50 15.86
IFNGRI.188 16.00 15.23 15.77 15.20 15.68 15.23
IL1RN.18S 17.24 16.01 17.03 16.05 16.95 16.27
IL18R1.18S 20.56 18.71 20.15 18.72 20.04 18.72
INSL3.18S 21.41 20.03 21.22 20.01 21.00 20.22
IRAK2.18S 20.45 19.20 20.28 19.29 20.32 19.49
IRAK4.18S 18.25 17.74 18.06 17.65 17.98 17.71
ITGAM.18S 15.45 14.51 15.27 14.57 15.12 14.60
JAK2.18S 17.77 16.90 17.56 16.97 17.50 17.06
LDLR.18S 20.34 19.31 20.19 19.10 20.28 19.24
LY96.18S 19.24 18.20 18.95 18.27 18.75 18.35
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TABLE 100-continued

Mean expression values for the biomarkers of Table I as measured in the
experimental Affymetrix, RT-PCR, and bead data of Section 6.

SIRS Sepsis SIRS Sepsis SIRS Sepsis
Marker T T Tss T Teo Teo
MAP2K6.18S 18.11 1678 17.86 16.62  17.73 16.74
MKNK1.188 17.61 1648 17.37 1648  17.22 1658
Gene_MMP9.18S 14.89 1340 1470 1327 1453 13.15
NCR1.188 21.89 2106 2179 2099 2182 2111
OSM.18S 19.98 1841 1971 1851 19.49 18.57
PFKFB3.188 17.83 1586 17.53 1585 17.18 16.00
PRV1.188 16.87 1349 16.28 13.08 1542 13.34
PSTPIP2.18S 17.45 16.18  17.24 1631 17.13 1637
SOCS3.188 16.83 15.09  16.57 1512 1620 1530
SOD2.188 13.62 1283 13.50 1287 1341 13.12
TDRD9.188 22.65 2064 22.32 2045 2195 2057
TIFA.18S 19.02 1740 18.89 17.69 1870 17.97
TLR4.18S 17.93 17.03  17.83 1724 17.73 17.33
TNFRSF6.188 17.31 1651 17.02 1674 17.05 16.88
TNFSF10.18S 1621 1532 15.98 1549 16.00 15.68
TNFSF13B.18S 1632 1543 16.16 1572 1601 15.71
VNN1.188 17.16 1539 16.70 1519 1651 15.12
AlphaFetoprotein_ RBM 377 422 3.70 434 3.34 4.01
Apolipoprotein_CIIL_RBM 59.72 3805 53.84 3834 5338  40.03
Beta2Microglobulin_ RBM 2.83 3.63 2.57 3.02 243 2.89
CReactiveProtein_ RBM 14695 26116 20621 25820 17176 24576
IL6_RBM 82.87 485872  99.21  308.50  98.28 34138
IL8_RBM 31.03 121.58  36.78 7893 30.15 69.30
IL10_RBM 21.92 6445  33.16 38.60  21.12  37.43
MCP1_RBM 237.84  796.87 259.82 50533 22004 55873
Protein_ MMP9_RBM 114325 1809.30  992.84  1390.05  961.12  1364.40
TIMP1_RBM 226.68 40690 237.22  351.29 23505  344.12
ARG2_SPM 21.34 2025 2130 2043 2132 2056
CD86_SPM 17.31 1795 1747 1790  17.53 17.87
FCGR1A_SPM 16.16 1448 15.98 1485 15.80 15.13
ILIRN_SPM 1575 1481 15.59 1495 1555 15.10
IL6_SPM 23.58 23.55 2371 23.67 2370 23.58
IL8_SPM 21.97 2199 22.46 2248 2268 2241
IL10_SPM 21.15 2002 2110 2026 2096 2024
IL18R1_SPM 1833 1654 18.06 1675 1804 1683
ITGAM_SPM 14.66 13.82 1437 13.84 1437 13.96
Gene_ MMP9__SPM 13.14 1171 12.90 1182 13.01 11.95
TIMP1_SPM 13.57 13.00  13.38 1295 1347 13.02
TLR4_SPM 14.86 1422 14.80 1435 1471 1441
TNFSF13B_SPM 14.63 1391 14.56 1413 1452 14.21
CReactiveProtein_SPM 23.19 2300 23.26 2320 2327 2325
IL6_BDB -0.15 059 -0.25 -0.02  -0.19 0.147
IL8_BDB -0.24 074 -0.30 024  -032 0.20
IL10_BDB -0.18 057  -0.27 035 -0.20 0.10
MCP1_BDB -0.18 058  -0.18 0.01  -025 0.20
[0717] The range of expression values of the biomarkers of data), a biomarker with the 0.18S extension represents the

Table 1 were determined for subjects that acquired sepsis
(Sepis subjects) and subjects that did not acquire sepsis (SIRS
subjects) in the populations described in Sections 6.11.2,
6.12.2 (Affymetrix data), 611.1, 6.12.1 (RT-PCR data), 6.1-
3.3 (bead data), and 6.13.1 and 6.13.2 (bead data) atthe T_, ,,
and T_;4 time points. This data is set forth in Table 101 below.
InTable 101, a biomarker with the _ Affy extension represents
the combined data of Sections 6.11.2 and 6.11.2 (Affymetrix

combined data of Sections 6.11.1 and 6.12.1 (RT-PCR data),
a biomarker with the BDB extension represents the data of
Section 6.13.3, and a biomarker with the RBM extension
represents the data of Sections 6.13.1 and 6.13.2. Time points
are given in column 6, where T-12 represents the T_,, time
point, and T-36 represents the T_¢ time point. Units in Table
101 are as described for Table 100.
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TABLE 101
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Expression value ranges for the biomarkers of Table I as measured in the
experimental Affymetrix, RT-PCR, and bead data of Section 6.

Maximum Maximum
value in Minimum value in
Minimum value sepsis value in SIRS SIRS

Biomarker in sepsis subjects subjects subjects subjects Time
1 2 3 4 5 6

ANKRD22__Affy 7.953749641 12.12893617 7.152671629 11.15686619 T-12
ANXA3_Affy 8.694223626 12.60070358 7.888396707 11.77082747 T-12
BCL2A1__Affy 7.44669819 11.98497181 6.831314584 10.15766376 T-12
CCL5_Affy 8.898803629 12.84470384 10.18676932 12.76079187 T-12
CD86__Affy 7.053070944 9.279967603 7.868508261 9.428684419  T-12
CEACAMI_ Affy 7.392836443 10.11429986 6.897178024 8.990696622  T-12
CRTAP__Affy 7.96569575 10.04792044 8.402744052 10.11557268 T-12
CSFI1R__Affy 8.12973354 9.802040206 8.308888545 10.10429638 T-12
FAD104__Affy 7.670795141 10.63246961 5.857923276 9.290926038  T-12
FCGRI1A__Affy 6.796282224 9.51719797 6.335911956 9.135545399  T-12
GADDA45A__Affy 7.874842459 10.63426409 6.244572007 9.859106279  T-12
GADDA45B__Affy 8.479965651 10.29001883 7.992247915 9.49903678 T-12
HLADRA_ Affy 9.174921757 1240164437 10.91664573 12.59721891 T-12
IFNGR1__Affy 9.881934243 12.20352664 10.20622485 12.04433802 T-12
IL18R1_Affy 5.617961135 10.58599306 5.401354816 8.680200674  T-12
INSL3_Affy 6.498476621 8.453102101 6.380834209 7.658960107  T-12
IRAK2_ Affy 6.875497116 9.68130844 6.749722992 8.274075293  T-12
IRAK4  Affy 7433778424 8.878566727 7.144224029 8.232236692  T-12
ITGAM__Affy 10.49945783 12.40537329 10.40124379 12.02696288 T-12
JAK2_ Affy 5.855248527 8.799277378 5.832795685 7.719583127  T-12
LDLR_Affy 6.257275326 9.674292614 6.131286337 7.912581783  T-12
LY96_ Affy 8.415332968 11.70570487 8.133946247 10.62910735 T-12
MAP2K6_Affy 7.596722579 10.56652274 7.340508485 9.871737402  T-12
MAPK14_ Affy 8.070466208 1092164826 7.114917424 10.02925699 T-12
MKNK1__Affy 9.279266935 11.72051891 8.987912062 11.32996284 T-12
Gene_ MMP9__Affy 11.53180146 14.23119077 10.53501559 13.54148736 T-12
NCR1_Affy 5.317900783 6.518234278 5.112152822 6.108537679  T-12
OSM_Affy 6.711016689 8.50414686 5.914544406 7.870308905  T-12
PFKFB3__Affy 8.872516729 12.35520872 8.119052014 11.65471067 T-12
PRV1__Affy 8.247231438 14.06000214 7.787420639 12.82213193 T-12
PSTPIP2__Affy 7.917121337 1093727651 7.633999161 10.56933315 T-12
SOCS3__Affy 6.800978821 10.18734767 6.095547925 8.999643638  T-12
SOD2_ Affy 9.638778614 11.7873112 8.477270195 11.33496413 T-12
TDRD9__Affy 5.982800228 10.55761021 5.394035579 9.208195372 T-12
TGFBI_Affy 7.954609344 11.19226116 8.973848308 11.1560402 T-12
TIFA_Affy 5.620694754 8.03295421 5.430693745 7.140866404  T-12
TNFSF10__Affy 9.847323138 11.63713214 9.035999538 11.33035464 T-12
TNFSF13B__Affy 8.585414556 11.79818987 8.90534601 11.34212616 T-12
IL10alpha_ Affy 8.690880784 10.54878771 9.024669305 10.52469989 T-12
ANKRD22.188 14.554 20.607 18.026 22.621 T-12
ANXA3.188 12.994 18.89 14.989 20.069 T-12
ARG2.188 16.703 22.511 17.729 23.054 T-12
BCL2A1.188 14.219 19.664 15.565 20.206 T-12
CD86.18S 18.391 22.429 18.245 21.426 T-12
CEACAMI.188 15.174 20.37 16.808 21.929 T-12
FCGR1A.188 12.273 17.502 14.289 19.097 T-12
GADDA45A.188 15.697 20.631 18.602 21.118 T-12
GADD45B.18S 14.214 17.599 15.52 18.143 T-12
IFNGR1.188 13.746 17.418 14.233 17.389 T-12
IL1RN.188 13.7 18.656 14.995 19.231 T-12
IL18R1.188 15.6 21.649 16.63 23.144 T-12
INSL3.188 18.077 22.515 19.735 23.106 T-12
TRAK?2.188 16.851 21.205 17.775 22.286 T-12
TRAK4.188 16.637 19.164 17.001 19.648 T-12
ITGAM.188 12.6 17.346 13.709 17.172 T-12
JAK2.188 15.292 19.228 16.431 19.001 T-12
LDLR.18S 16.909 21.4 18.195 22.081 T-12
1Y96.188 16.811 20.726 17.543 20.956 T-12
MAP2K6.188 14.062 18.942 16.2005 20.678 T-12
MKNK1.188 14.677 18.261 15.589 19.195 T-12
Gene_ MMP9.18S 10.128 16.281 12.644 17.265 T-12
NCR1.188 18.175 23.462 19.544 23.756 T-12
OSM.188 16.6 20.544 17.835 22.174 T-12
PFKFB3.18S 12.897 18.994 14.446 20.982 T-12
PRV1.188 9.4745 19.6 11.749 23.823 T-12
PSTPIP2.18S 14.243 18.013 16.098 18.792 T-12
SOCS3.188 13.312 18.094 14.603 18.51 T-12
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TABLE 101-continued

180

Expression value ranges for the biomarkers of Table I as measured in the

experimental Affymetrix, RT-PCR, and bead data of Section 6.

Maximum Maximum
value in Minimum value in
Minimum value sepsis value in SIRS SIRS

Biomarker in sepsis subjects subjects subjects subjects Time
1 2 3 4 5 6

SOD2.188 10.822 14.875 11.836 15.269 T-12
TDRD9.18S 17.069 23.9 20.012 25.404 T-12
TIFA.188 14.66 20.607 16.122 20.522 T-12
TLR4.18S 15.013 19.366 15.452 19.347 T-12
TNFRSF6.188 14.771 18.42 16.046 18.633 T-12
TNFSF10.188 14.175 16.71 14.913 18.005 T-12
TNFSF13B.18S 13.296 17.2755 14.113 18.23 T-12
VNN1.188 12.363 19.695 14.788 20.209 T-12
AlphaFetoprotein_ RBM 0.465 28.9 0.862 15 T-12
ApolipoproteinCIII_RBM 9.1 104 14 170 T-12
Beta2Microglobulin. RBM 0.912 17 0.815 14.2 T-12
CReactiveProtein_RBM 5.2 743 9.3 435 T-12
IL6_RBM 11.9 350000 5.85 1090 T-12
IL8_RBM 5.7 2430 4.6 136 T-12
IL10_RBM 9.4 1080 6.73 115 T-12
MCP1_RBM 68 20100 54 1860 T-12
Protein_ MMP9_ RBM 82.7 6100 37 5500 T-12
TIMP1_RBM 99.6 1670 91.7 777 T-12
ARG2_SPM 18.19 22.88 19.11 23.53 T-12
CD86_SPM 16.51 20.02 15.83 18.57 T-12
FCGRIA_SPM 11.78 16.69 13.448 18.43 T-12
ILIRN_SPM 12.82 17.055 12.92 17.13 T-12
IL6__SPM 22.71 24.493 22.61 24.22 T-12
IL8_SPM 17.728 23.645 19.218 24.27 T-12
IL10_SPM 16.905 22.09 17.41 23.38 T-12
IL18R1_SPM 13.69 19.36 13.628 20.7 T-12
ITGAM_SPM 12.33 16.26 12.21 16.24 T-12
Gene_ MMPY9__SPM 8.53 14.62 9.58 15.92 T-12
TIMP1_SPM 11.63 15.048 11.71 14.93 T-12
TLR4_SPM 12.5 16.64 13.61 16.06 T-12
TNFSF13B_SPM 12.29 15.86 12.37 15.998 T-12
CReactiveProtein__SPM 16.23 24.313 18.803 24.245 T-12
IL6_BDB -0.158501071 12.45941145  -0.166932601 -0.076083727 T-12
IL8_BDB -0.260734671 10.31273265  -0.284430649 -0.128681359 T-12
IL10_BDB -0.317504403 4487381808  -0.541755786 0.071431589  T-12
MCP1_BDB -0.215354271 11.61107183  -0.231122309 -0.10084064  T-12
IL6_CBA -0.674647421 5.170323126  -0.825867097 -0.022530263 T-12
IL8_CBA -0.620553789 5923519248 -0.821374574 2.902006709  T-12
IL10_CBA -0.661588916 474196577  -0.730146126 6.047793474  T-12
ANKRD22__Affy 7.396771628 11.57062629 7.129021339 9.443944368 T-36
ANXA3_ Affy 8.70013622 12.54023119 8.331913923 1210925762 T-36
BCL2A1__Affy 7.183882918 11.76715511 6.405590222 1037097944  T-36
CCL5_Affy 9.328902305 12.61675161 10.40637568 12.86027708  T-36
CD86__Affy 6.732706362 9.538835708 7.716006192 9.498278669 T-36
CEACAMI_ Affy 7.13157116 9.873881135 7.032079139 9.080997559  T-36
CRTAP__Affy 7.558590076 9.700256103 8.59265066 10.03618173  T-36
CSFI1R__Affy 7.837660302 9.949036275 8.464494614 1030550413 T-36
FAD104__Affy 7.014972123 10.15391937 6.239710352 8.845757597 T-36
FCGRI1A__Affy 6.911908197 9.049485977 6.738241369 8.397213121 T-36
GADDA45A__Affy 7.56337487 10.85396197 6.589642416 9.749741171  T-36
GADDA45B__Affy 8.51689696 10.06660743 8.254872004 9.532337644 T-36
HLADRA_ Affy 9.633249373 12.27644605 10.46875169 12.67263889  T-36
IFNGR1__Affy 10.57959732 12.27228887 9.808984607 11.81736908  T-36
IL18R1_Affy 5.49992437 10.36284472 5.348365647 9.056683263  T-36
INSL3_Affy 6.751235769 8.470974618 6.354223568 7.671828775  T-36
IRAK2_Affy 6.667783945 8.746281062 6.803703241 7.823003239  T-36
IRAK4_ Affy 7.263029682 8.81320843 7.431560803 8.530795242 T-36
ITGAM__Affy 10.78220173 12.65177246 10.81608481 11.95316198  T-36
JAK2_ Affy 6.39933742 8.609398755 6.113876348 7.761009287 T-36
LDLR_Affy 6.592115082 9.576882573 6.429539125 7.875471828 T-36
LY96__Affy 8.653718448 11.10873698 7.823465941 1099470657  T-36
MAP2K6_Affy 7.76590836 10.96462704 7.656234297 9.824692325  T-36
MAPK14_ Affy 8.115337243 10.65189637 8.035017587 10.2553217 T-36
MKNK1_ Affy 9.648189763 11.7078247 9.01371136 10.87910413  T-36
Gene_ MMP9__Affy 11.11827617 14.10554558 11.20801397 13.49402871  T-36
NCR1_Affy 5.193987983 6.909045684  5.005834897 6.207479976  T-36
OSM_Affy 6.580322029 7.935265514 6.196973735 7452713795 T-36
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TABLE 101-continued
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Expression value ranges for the biomarkers of Table I as measured in the

experimental Affymetrix, RT-PCR, and bead data of Section 6.

Maximum Maximum
value in Minimum value in
Minimum value sepsis value in SIRS SIRS

Biomarker in sepsis subjects subjects subjects subjects Time
1 2 3 4 5 6

PFKFB3__Affy 9.424977102 12.34048574 8.499191685 11.18985748  T-36
PRV1__Affy 8.075175165 13.89885359 7.885024966 13.11270704  T-36
PSTPIP2__Affy 8.014852906 10.87208092 7.546671853 9.463070109 T-36
SOCS3__Affy 7.377913606 9.55384035 6.2535144 8.311473326 T-36
SOD2__Affy 9.246088148 11.68031375 9.036280605 11.01924042  T-36
TDRD9__Affy 6.248252454 11.18511333 5.639880173 9.344436192 T-36
TGFBI_Affy 7.994695342 11.02064264 9.079527674 11.18636937  T-36
TIFA_Affy 5.521978531 7.303421302 5.384514217 6.593248984 T-36
TNFSF10_Affy 9.60197872 11.18227009 9.614398352 11.21902779  T-36
TNFSF13B_ Affy 9.376572388 11.47004606 8.423154647 11.14896209  T-36
IL10alpha_ Affy 8.838180931 10.20810676 9.056040579 10.61188847  T-36
ANKRD22.188 16.059 21.635 18.344 22.188 T-36
ANXA3.188 13.508 18.565 14.637 19.196 T-36
ARG2.188 16.7215 22.085 16.452 23.1025 T-36
BCL2A1.188 14.892 20.169 15.558 21.208 T-36
CD86.18S 18.109 22.671 17.734 21.408 T-36
CEACAMI.188 15.864 20.381 17.141 21.711 T-36
FCGR1A.188 12.919 17.238 13.773 18.616 T-36
GADDA45A.188 16.021 20.468 17.567 21.221 T-36
GADD45B.18S 14.051 16.799 15.43 18.189 T-36
IFNGR1.188 13.89 16.44 14.532 17.1035 T-36
IL1RN.188 14.2965 18.584 14.569 18.818 T-36
IL18R1.188 15.6475 21.683 17.068 21.9465 T-36
INSL3.188 18.708 21.952 19.775 23.714 T-36
TRAK?2.188 17.563 20.591 18.878 21.765 T-36
TRAK4.188 16.688 18.592 16.633 19.467 T-36
ITGAM.188 12.974 16.862 12.696 16.597 T-36
JAK2.188 15.659 18.42 16.185 18.67 T-36
LDLR.18S 16.925 20.765 18.764 21.351 T-36
1Y96.188 17.018 20.384 17.293 21.37 T-36
MAP2K6.188 14.375 19.44 15.5485 20.507 T-36
MKNK1.188 15.064 17.922 15.281 19.103 T-36
Gene_ MMP9.18S 10.4315 16.075 12.673 16.9025 T-36
NCR1.188 18.189 22.531 20.01 23.281 T-36
OSM.188 16.79 20.311 18.219 21.612 T-36
PFKFB3.18S 13.095 18.678 14.042 19.647 T-36
PRV1.188 9.732 18.921 10.63 20.57 T-36
PSTPIP2.18S 14.568 17.943 15.363 18.848 T-36
SOCS3.188 13.309 16.962 14.629 18.503 T-36
SOD2.188 11.004 15.117 12.246 14.872 T-36
TDRD9.18S 17.108 22.863 19.203 24.013 T-36
TIFA.188 15.498 20.069 16.808 20.769 T-36
TLR4.18S 15.77 19.352 15.578 19.604 T-36
TNFRSF6.188 14.782 17.867 15.952 18.014 T-36
TNFSF10.188 14.049 16.332 14.388 17.196 T-36
TNFSF13B.18S 13.898 16.896 13.276 18.038 T-36
VNN1.188 12.406 18.076 13.061 20.4895 T-36
AlphaFetoprotein_ RBM 0.0878 45.2 0.399 14 T-36
ApolipoproteinCIII_RBM 8.1 105 17 143 T-36
Beta2Microglobulin. RBM 0.857 13.4 0.953 10.6 T-36
CReactiveProtein_RBM 9.3 548 45 735 T-36
IL6_RBM 8.93 6140 5.85 1480 T-36
IL8_RBM 24 977 2.5 429 T-36
IL10_RBM 2.68 397 4.4 760 T-36
MCP1_RBM 77 4280 60 2170 T-36
Protein. MMP9_ RBM 59 9000 73 3840 T-36
TIMP1_RBM 89.9 1130 85.2 1050 T-36
ARG2_SPM 17.868 23.15 17.68 2342 T-36
CD86_SPM 16.15 20.528 16.36 18.78 T-36
FCGR1A_SPM 12.53 17.43 13.633 17.868 T-36
ILIRN_SPM 13.375 17.043 13.98 17.695 T-36
IL6__SPM 23.12 24.378 23.17 24.46 T-36
IL8_SPM 20.33 23.78 19.38 24.24 T-36
IL10__SPM 16.785 23.34 18.648 23.63 T-36
IL18R1_SPM 14.16 19.13 15.98 19.68 T-36
ITGAM_SPM 12.55 15.84 12.683 15.79 T-36
Gene_ MMPY9__SPM 9.163 15 10.66 14.91 T-36
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Expression value ranges for the biomarkers of Table I as measured in the

experimental Affymetrix, RT-PCR, and bead data of Section 6.

Maximum Maximum
value in Minimum value in
Minimum value sepsis value in SIRS SIRS

Biomarker in sepsis subjects subjects subjects subjects Time

1 2 3 4 5 6

TIMP1__SPM 11.53 14.895 11.77 15.08 T-36

TLR4_SPM 13.2 1591 13.52 16 T-36

TNFSF13B__SPM 12.56 15415 13.19 16.725 T-36

CReactiveProtein__SPM 19.6 23.97 20.8 24 T-36

IL6__BDB —-0.684465464 2.880494108 —-0.730942369 1.994658691 T-36

IL8_BDB -0.825836521 3.74397758 -1.025991342 0.789180774 T-36

I1L10_BDB —-1.371058252 8.324182809 —-1.079489666 2.72772331 T-36

MCP1_BDB —-0.80163532 2.625526703 —-0.828696306 2.820125749 T-36

7. REFERENCES CITED samples taken from a SIRS-positive human patient
. . . population that does not progress to sepsis;

[0718] Thepresent invention can be implemented as a com-

puter program product that comprises a computer program
mechanism embedded in a computer readable storage
medium. For instance, the computer program product could
contain the program modules shown in FIG. 35. These pro-
gram modules can be stored on a CD-ROM, DVD, magnetic
disk storage product, or any other computer readable data or
program storage product. The program modules can also be
embedded in permanent storage, such as ROM, one or more
programmable chip, or one or more application specific inte-
grated circuits (ASICs). Such permanent storage can be local-
ized in a server, 802.11 access point, 802.11 wireless bridge/
station, repeater, router, mobile phone, or other electronic
devices. The software modules in the computer program
product can also be distributed electronically, via the Internet
or otherwise, by transmission of a computer data signal (in
which the software modules are embedded) either digitally or
on a carrier wave.

[0719] Having now fully described the invention with ref-
erence to certain representative embodiments and details, it
will be apparent to one of ordinary skill in the art that changes
and modifications can be made thereto without departing
from the spirit or scope of the invention as set forth herein.
The specific embodiments described herein are offered by
way of example only, and the invention is to be limited only
by the terms of the appended claims, along with the full scope
of equivalents to which such claims are entitled.

1.-113. (canceled)
114. A method of predicting an increased likelihood of
developing sepsis in a human SIRS patient comprising:

obtaining a first blood sample from said patient, said
sample comprising biomarker mRNAs;

measuring the abundances of said biomarker mRNAs in
said first blood sample taken from said patient, wherein
said biomarker mRNAs comprise Major Histocompat-
ibility Complex, Class II, DR Alpha (HLA-DRA)
mRNA and mRNAs from at least four other biomarkers
listed in Table J;

comparing said abundances of said biomarker mRNAs in
said first blood sample to abundances of said biomarker
mRNAs in (i) blood samples taken 0-36 hours prior to
sepsis development in a SIRS-positive human patient
population that progresses to sepsis, and (ii) blood

wherein an increased likelihood of developing sepsis is
predicted in the SIRS patient when it is determined that
the biomarker mRNA abundances in the first blood
sample are statistically significantly similar to the biom-
arker mRNA abundances in the blood samples taken
from the SIRS-positive human patient population that
progresses to sepsis;

wherein a decreased likelihood of developing sepsis is

predicted in the SIRS patient when it is determined that
the mRNA abundances in the first blood sample are
statistically significantly similar to the mRNA abun-
dances in the blood samples taken from the SIRS-posi-
tive human patient population that does not progress to
sepsis; and

wherein said SIRS-positive human patient population that

progresses to sepsis and said SIRS-positive human
patient human population that does not progress to sep-
sis each comprises at least 20 individuals.
115. The method of claim 114, wherein said biomarker
mRNAs comprise a combination of biomarker mRNAs
selected from the combinations consisting of:
GADD45B, PFKFB3, PSTPIP2, FCGR1A, HLA-DRA,
ARG2;

HLA-DRA, INSL3, ARG2, CD86, CCL5, SOCS3;

GADD45A, PSTPIP2, BCL2A1, ANKRD22, HLA-DRA,
ANXA3;

INSL3, NCR1, PSTPIP2, PFKFB3, ANKRD22, HLA-
DRA, MKNK1;

FCGR1A, HLA-DRA, CSF1R, SOCS3, IRAK4, TIFA,
ARG2;

LDLR, INSL3, GADD45B, ARG2, PFKFB3, HLA-DRA,
ITGAM,;

IRAK4, INSL3, CSFIR, ITGAM, VNNI1, HLA-DRA,
IL18R1;

ANXA3, TNFSF10, CEACAMI1, FCGR1A, HLA-DRA,
IL.10alpha, 12, SOCS3;

HLA-DRA, CEACAMI, IFNGRI1, MKNKI1, LDLR,
GADD45B, 12, CSFIR;

FAD104, MAPK14, IFNGR1, IL18R1, TNFSF10, CDS86,
12, HLA-DRA,;

TIFA, ILIRN, MAP2K6, HLA-DRA, OSM, FAD104, 12,
INSL3;
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JAK2, IRAK2, PRV1, TNFSF13B, OSM, HLA-DRA, 12,
IFNGRI;

PRV1, TLR4, CSF1R, IL18R1, PSTPIP2, TDRD9Y, 12,
HLA-DRA;

ANKRD22, HLA-DRA, PRV1, NCR, CSF1R, PSTPIP2,
12, LY96;

INSL3, ARG2, LDLR, HLA-DRA, NCR1, TIFA, LY96,
ITGAM, SOCS3;

CDS86, CSFIR, SOD2, OSM, SOCS3, BCL2AI,
GADD45B, ARG2, HLA-DRA;

ARG2, CD86, MAP2K6, HLLA-DRA, 1L.10alpha, IRAK?2,
GADDA45B, MKNKI1, IL18R1;

GADD45B, ITGAM, PRV1, SOD2, TNFSFI3B, HLA-
DRA, FAD104, TNFRSF6, TLR4;

HLA-DRA, GADD45A, FCGR1A, ANKRD22, ARG2,
NCR, BCL2A1, IRAK2, SOCS3;

IL18R1, CSF1R, IRAK2, HLA-DRA, PFKFB3, CRTAP,
CD86, TIFA, TNFSF10;

PSTPIP2, ANKRD22, TNFSF10, INSL3, HLA-DRA,
NCR, TNFSF13B, CSF1R, Gene_ MMP9;

PSTPIP2, ANKRD22, TNFSF10, INSL3, HLA-DRA,
NCRI1, TNFSF13B, CSFIR, Gene_MMP9;

SOD2, PRV1, MKNKI1, FCGR1A, CD86, GADDA45A,
IL18R1, TNFSF13B, HLA-DRA;

NCR1, SOCS3, HLA-DRA, PFKFB3, FAD104, IRAK4,
VNNI1, CCLS5, MAP2K6;

CRTAP, ARG2, SOD2, TDRD9, TNFRSF6, TIFA, OSM,
Gene_ MMP9, HLA-DRA;

TNFSF13B, JAK2, IRAK4, TDRD9, HLA-DRA, SOCS3,
PSTPIP2, FAD104, SOD2;

Gene_MMP9, SOD2, JAK2, CD86, HLA-DRA, IRAK?2,
CEACAMI1, MAPK14, ANXA3;

GADDA45B, ITGAM, TLR4, NCR, CD86, TNFSF13B,
HLA-DRA, FCGR1A, OSM;

NCR1, HLA-DRA, BCL2A1, ARG2, SOCS3, IL18R1,
PSTPIP2, VNNI1, CD86, GADDA45A, CCLS5;

TGFBI1, SOCS3, MAP2K6, ANXA3, TLR4, IL1RN,
VNNI1, HLA-DRA, TIFA, JAK2, TDRD?9;

CRTAP, TNFRSF6, LDLR, VNNI1, HLA-DRA, SOCS3,
TGFB1, TNFSF10, IFNGR1, ARG2, FCGRIA;

HLA-DRA, BCL2A1, PSTPIP2, PFKFB3, JAK2,
TNFSF10, ARG2, CEACAMI, IL18R1, MAPK14,
CSF1R;

GADDA45B, TNFSF10, TNFSF13B, OSM, VNN1, PRV1,
MKNK1, Gene_MMP9, ANXA3, TGFB1, HLA-DRA;

VNNI1, SOD2, CCL5, BCL2A1, HLA-DRA, ANKRD22,
CD86, TDRD9Y, TLR4, FCGR1A, TNFSF10;

CSF1R,ITGAM, HLA-DRA, MAP2K6,JAK2, FCGRI1A,
OSM, LDLR, SOCS3, TNFRSF6, IL18R1;

OSM, GADD45A, TNFSF10, IFNGR1, CRTAP, JAK?2,
ANKRD22, HLA-DRA, TNFSF13B, SOCS3,
FCGRIA;

CCLS5, CD86, HLA-DRA, SOCS3, TGFB1, PSTPIP2,
ANXA3, GADDA45A, CSFIR, IRAK4, FADI104,
MAPK14;

TNFRSF6, IL.10alpha, PSTPIP2, HLA-DRA, CRTAP,
ARG2, MKNKI1, NCR1, OSM, INSL3, VNNI,
FAD104;

FCGRI1A, HLA-DRA, IFNGR1, CD86, LY96, ANXA3,
MAP2K6, TDRD9, IL18R1, PRV1, SOCS3, TIFA;

LDLR, MAP2K6, INSL3, TDRD9, NCR1, ILIRN, HLA-
DRA, ARG2, MKNK1, MAPK 14, OSM, PFKFB3;
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LY96, TNFSF13B, HLA-DRA, IRAK2, FCGRIA,
ANXA3, CEACAMI, FAD104, TDRDY, ILIRN,
ARG2, LDLR;

OSM, NCR1, HLA-DRA, TNFSF10, PSTPIP2, ILIRN,
SOCS3, INSL3, TNFRSF6, MAPK 14, Gene_ MMP9,
CEACAMI, IL18R1;

SOD2, JAK2, PSTPIP2, MAPK 14, MAP2K6, FCGRI1A,
CCLS, ITTGAM, CD86, GADD45B, ILIRN, HLA-
DRA, VNNT;

IRAK4, JAK2, SOD2, Gene_ MMP9, PSTPIP2, PFKFB3,
HLA-DRA, TNFRSF6, FAD104, ARG2, IFNGRI,
IRAK2, MAP2KG;

PSTPIP2, MAPK14, CCL5, Gene MMP9, TNFRSF6,
IL10alpha, LY96, ILIRN, ARG2, SOCS3, TLR4, OSM,
HLA-DRA;

TGFBI, ILIRN, INSL3, PSTPIP2, NC, FAD104, HLA-
DRA, CD86, IRAK4, IL10alpha, ARG2, CSFIR,
MAP2KG;

GADDA45A, HLA-DRA, INSL3, ANKRD22, ANXA3,
CD86, IRAK4, GADD45B, PFKFB3, ITGAM, VNNT,
NCR1, JAK2;

IFNGR1, TLR4, CRTAP, ANKRD22, Gene MMP9,
JAK2, INSL3, ITGAM, IRAK4, HLA-DRA, BCL.2A1,
OSM, TNFSF10, NCR;

CD86, FCGR1A, MKNK 1, TNFRSF6, GADD45B, Y96,
NCR, PSTPIP2, HLA-DRA, VNN1, ANXA3, IRAK4,
ARG?2, TGFBI;

ARG2, ANKRD22, OSM, LDLR, CCLS5, ILIRN,
FCGR1A, PFKFB3, CSFIR, ANXA3, HLA-DRA,
INSL3, NCR1, TIFA;

TLR4, MKNK1, SOD2, SOCS3, FAD104, HLA-DRA,
PSTPIP2, ANKRD22, TIFA, TNFRSF6, JAK?2,
TNFSF10, ARG2, CSFIR, TLR4;

TLR4, MKNK1, SOD2, SOCS3, FAD104, HLA-DRA,
PSTPIP2, ANKRD22, TIFA, TNFRSF6, JAK?2,
TNFSF10, ARG2, CSFIR, IRAK4;

NCR1, INSL3, HLA-DRA, TNFSF10, TNFRSF6,
FCGR1A, OSM, GADD45B, MKNK1, TNFSF13B,
CSFIR, LY96, MAPK 14, PRV1, CCL5;

IRAK?2, IL10alpha, INSL3, FADI104, TIFA, SOD2,
IFNGR1, ILIRN, HLA-DRA, LY96, IL.18R1, CCLS5,
CD86, TDRDY, TNFSF10;

SOD2, IFNGR1, CEACAM1, OSM, FAD104, HLA-
DRA, CRTAP, ILl10alpha, TGFB1, GADDA45A,
ITGAM, IL18R1, CCL5, TLR4, FCGRI1A;

MKNK1, CRTAP, PRV1, IL1RN, GADD45A, TNFRSF6,
FAD104, HLA-DRA, CEACAMI, PSTPIP2, OSM,
JAK2, IL18R1, LDLR, IRAK4;

FCGRI1A, BCL2A1, IFNGR1, CRTAP, VNNI, TIFA,
CCL5, NCR1, OSM, HLA-DRA, IRAK4, INSL3,
MAP2K6, TNFSF13B, ARG2;

HLA-DRA, IRAK2, FCGR1A, ANXA3, ITGAM, LY96,
TDRDY, SOCS3, ILIRN, PFKFB3, GADD45B,
TNFSF13B, TLR4, ARG2, CSF1R, FAD104;

GADDA45A, CSFIR, INSL3, BCL2A1, TDRDY, LDLR,
HLA-DRA, MAP2K6, PSTPIP2, CCLS5, ANXA3,
PRV1, TNFRSF6, TLR4, CD86, JAK2;

TNFSF10, PRV1, SOCS3, FAD104, TNFRSF6, ARG2,
Gene MMP9, FCGRIA, TGFB1, NCR, CRTAP,
MAP2K6, ANXA3, CSFIR, HLA-DRA, JAK2;

FAD104, OSM, LDLR, TNFSF10, GADD45B, HLA-
DRA, TNFRSF6, GADD45A, CD86, TDRDY, ITGAM,
ANXA3, IFNGR1, MAPK 14, CSFIR, TGFBI;
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PSTPIP2, ARG2, MAP2K6, INSL3, SOCS3, JAK2,
FAD104, ANKRD22, HLA-DRA, ITGAM,
GADDA45B, 1Y96, IRAK2, PFKFB3, TNFRSF6,
IFNGR1;

CSFIR, CCL5, ARG2, BCL2A1, FCGR1A, MKNKI,
TDRDY, IFNGR1, PFKFB3, ITGAM, JAK2, OSM,
GADDA45B, FAD104, NCR1, HLA-DRA;

CEACAMI, ILI18R1, SOCS3, CRTAP, LDLR, HLA-
DRA,LY96, ILIRN, IL 10alpha, BCL2A1, GADD45A,
TIFA, FAD104, ANKRD22, OSM, CCL5, IFNGR1;

FAD104, GADD45B, HLA-DRA, VNNI, IL10alpha,
CD86, JAK2, INSL3, TDRD9, TLR4, IRAK4, SOD2,
LDLR, CCL5, MKNK1, ARG2, IL18RI;

IRAK2, HLA-DRA, IFNGR1, MAP2K6, TLR4, ITGAM,
SOCS3, CD86, ARG2, VNN1, ILISRI, ANXA3,
FCGRIA, ILIRN, Gene_MMP9, TGFB1, IL10alpha;

IRAK2, MKNKI, PSTPIP2, ANXA3, HLA-DRA,
TNFSF10, IFNGR1, PFKFB3, OSM, PRV1, ILIRN,
IL10alpha, FADI104, CDS86, TIFA, BCL2Al,
TNFSF13B;

VNNI, IFNGRI, LY96, SOD2, ILI8R1, SOCS3,
FCGR1A, ARG2, CSFIR, Gene MMP9, IRAKA4,
MAP2K6, TIFA, FAD104, HLA-DRA, GADD45B,
ILIRN;

TNFSF13B, FAD104, PRV1, TIFA, SOD2, TDRDY,
TLR4, TNFRSF6, MKNK1, OSM, MAP2K6, CCLS5,
ARG2, LDLR, HLA-DRA, PSTPIP2, IL18R1;

IRAK2, OSM, MAP2K6, TNFSF13B, ANKRD22, HLA-
DRA, SOD2, TNFSF10, VNN1, ARG2, IRAK4, Y96,
IFNGR1, JAK2, BCL2A1, FCGRIA, CSFIR;

HLA-DRA, GADD45A, ANXA3, ARG2, FADI104,
PFKFB3, ITGAM, JAK2, MAPK14, OSM, CDS6,
LDLR, TIFA, CCL5, NCR1, IRAK2, SOD2, PRV1;

GADDA45A, INSL3, IRAK2, TNFSF10, TGFB1, IRAKA,
NCR, HLA-DRA, CEACAM1, GADD45B, MAPK 14,
CD86, IL18R1, CRTAP, ANKRD22, PSTPIP2, Y96,
PFKFB3;

BCL2A1, ANKRD22, OSM, CD86, ITGAM, ANXA3,
FCGR1A, CCLS5, TIFA, IRAK4, HLA-DRA, NCR,
CRTAP, TLR4, CEACAMI, FADI104, ARG2,
MAP2KG;

INSL3, TLR4, BCL2A1, ANKRD22, FAD104, MAP2KG,
GADD45B, ARG2, NCR, MKNK 1, ITGAM, CSFIR,
IL1RN, HLA-DRA, LDLR, CRTAP, PRV1, LY96;

CRTAP, HLA-DRA, ARG2, PSTPIP2, MKNK 1, INSL3,
TIFA, CEACAMI, JAK2, Gene MMPY9, TLR4,
IRAK4, CD86, FAD104, CCL5, TNFSF10, LDLR,
IFNGR1;

MAP2K6, CSFIR, HLA-DRA, ANKRD22, MKNKI,
SOCS3, TNFSF10, LDLR, FAD104, CEACAMI,
TNFSF13B, TDRDY, IRAK4, VNNT1, IL18R1, OSM,
PSTPIP2, Gene_ MMP9;

CCL5, SOD2, JAK?2, IRAK4, IRAK2, Gene MMP9,
IFNGR1, TLR4, GADDA45A, TNFSF10, CSFIR,
IL18R1, PRV1, TNFSF13B, HLA-DRA, LDLR, CDS86,
SOCS3, FAD104;

MAP2K6, TNFSF13B, SOD2, GADD45B, HLA-DRA,
CSFIR, CCL3, TIFA, NCR, IFNGR1, OSM, CDS86,
SOCS3, ARG2, IL10alpha, BCL2A1, TDRDY, LDLR,
GADDA45A,

ARG2, PRV1, IRAK4, TNFRSF6, MAP2K6, SOCS3,
IL18R1, HLA-DRA, IFNGR1, ANXA3, TNFSF10,
JAK2, FCGR1A, GADD45A, INSL3, ILIRN,
TNFSF13B, ITGAM, CSFIR;
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LDLR, INSL3, JAK2, TNFRSF6, PRV1, IFNGR1, OSM,
ITGAM, FCGRI1A, IL10alpha, NCR, TDRD?9,
MAP2K6, TNFSF13B, TIFA, HLA-DRA, ANKRD22,
GADDA45B, IL1RN;

SOD2, ARG2, HLA-DRA, LY96, Gene_ MMP9, VNNI,
CD86, IL10alpha, CSF1R, PSTPIP2, JAK2,
TNFSF13B, IRAK2, CCL5, ANKRD22, TLR4,
IL1RN, OSM, GADD45B;

SOCS3, TGFB1, FCGR1A, TDRD9, GADD45A, TIFA,
IFNGRI1, VNNI1, ITGAM, MAPK14, OSM, ANXA3,
TNFSF13B, IL1RN, HLA-DRA, ARG2, MAP2KS6,
TLR4, PSTPIP2;

CD86, INSL3, MAPK 14, TIFA, MAP2K6, Gene_ MMP9,
CRTAP, CSF1R, MKNK1, IL.10alpha, FAD104, PRV1,
BCL2A1, NCR, LDLR, IRAK4, HLA-DRA, IFNGRI1,
TDRD?Y;

IL1RN, TLR4, PSTPIP2, I1.18R1, GADD45A, IL.10alpha,
BCL2A1, MKNKI1, IRAK2, HLA-DRA, ANKRD22,
NCR, CEACAMI1, IRAK4, OSM, TIFA, SOD2,
TGFB1, Gene_ MMP9;

GADD45A, LY96, ITGAM, CCL5, TNFSF10,
TNFSF13B, HLA-DRA, CSF1R, TIFA, SOCS3,
MKNK1, ARG2, IFNGR1, IL1RN, BCL2A1, OSM,
PFKFB3, PSTPIP2, IRAK?2;

Gene_MMP9, GADD45A, PSTPIP2, INSL3, IRAK4,
HLA-DRA, CCL5, TGFB1, OSM, LY96, TDRD?9,
NCR, PFKFB3, IFNGRI1, IRAK2, VNNI1, CRTAP,
TIFA, CD86;

LDLR, ARG2, MAP2K6, MAPK 14, 1L.18R1, CCL5, PST-
PIP2, ANKRD22, OSM, TDRD9, HLA-DRA, SOCS3,
ANXA3, TNFRSF6, TIFA, CD86, FAD104, MKNK1,
BCL2A1, IRAK2;

FCGR1A, HLA-DRA, ARG2, CRTAP, CEACAMI,
TNFSF13B, OSM, ANXA3, ILIRN, Gene MMP9,
TNFRSF6, FAD104, JAK2, IFNGR1, MKNK1, LDLR,
IL10alpha, TGFB1, SOD2, CCLS;

GADD45A, MAPK14, ARG2, TDRD9, NCR1, IL18R1,
SOD2, ITGAM, FCGRI1A, SOCS3, HLA-DRA,
IRAK4, TNFRSF6, PRV1, CD86, TGFB1, TNFSF13B,
TIFA, VNNI1, FAD104;

HLA-DRA, ARG2, IL1RN, SOCS3, PSTPIP2, CCLS5,
IFNGR1, CD86, TLR4, TGFBI1, LY96, TNFRSF6,
OSM, MAP2K6, VNN1, ITGAM, TNFSF10, NCR1,
IRAK4, MAPK14;

GADDA45B, SOD2, CRTAP, OSM, TNFSF13B, CCLS5,
CD86, INSL3, HLA-DRA, TNFRSF6, TGFBI,
GADD45A, FCGRI1A, FADI104, JAK2, ILIRN,
PFKFB3, MAP2K6, CEACAMI1, TDRD9Y;

TLR4, GADD45A, JAK2, OSM, CD86, SOCS3,
CEACAMI1, IL18R1, MAP2K6, PRV1, FADI104,
BCL2A1, VNNI, INSL3, PSTPIP2, ANKRD22,
TNFSF10, IFNGR1, CRTAP, HLA-DRA;

FAD104, IL18R1, TIFA, TNFRSF6, Gene MMP9,
ARG2, OSM, TNFSF13B, FCGR1A, CD86,
CEACAMI, LY96, NCR1, TNFSF10, PFKFB3, PRV1,
GADDA45A, SOCS3, HLA-DRA, IRAK?2;

TDRD9, MKNK1, PFKFB3, IRAK2, INSL3, ITGAM,
MAPK14, JAK2, HLA-DRA, CSF1R, CRTAP, NCR1,
SOD2, TIFA, IRAK4, CD86, OSM, BCL2A1, LY96,
ANKRD22;

ANKRD22, CRTAP, NCR1, OSM, INSL3, CD86, CCLS5,
JAK2, CSFI1R, GADD45B, ANXA3, SOCS3, PST-
PIP2, FCGR1A, HLA-DRA, IRAK2, IL1RN, IL18R1,
PFKFB3, Gene_ MMP?9;



US 2011/0105350 Al

ILIRN, LY96, ARG2, PRV1, GADD45A, TNFSF10,
FCGRIA, IL10alpha, LDLR, PFKFB3, CRTAP, SOD2,
CEACAMI, IL18R1, CCL5, PSTPIP2, TLR4, VNNT,
HLA-DRA, JAK2, ANKRD22;

SOCS3, ITGAM, Gene MMP9, MKNKI, ARG2,
CRTAP, BCL2A1, PRVI, NCRI, HLA-DRA,
MAP2K6, FCGRIA, CD86, FAD104, CCLS, TGFBI,
TDRDY, OSM, GADDA45B, IRAK4, LY96;

INSL3, BCL2A1, PSTPIP2, OSM, MAP2K6, CCLS,
MKNK 1, FAD104, ITGAM, MAPK 14, IL.1RN, VNNT,
IRAK2, FCGR1A, CD86, PFKFB3, TDRDY, HLA-
DRA, ARG2, TLR4, CEACAMI;

TIFA, MKNKI, TNFSFI3B, CSFIR, HLA-DRA,
IL18R1, MAPK14, INSL3, PFKFB3, ANKRD22,
LDLR, ARG2, CCLS5, 1Y96, PSTPIP2, GADDA45A,
CEACAMI, JAK2, TGFB1, VNNI, IL1RN;

GADDA45A, CCLS5, LDLR, ARG2, IRAK2, SOCS3,
SOD2, PRV1, MAP2K6, INSL3, TNFSF10, IL18R1,
ILIRN, MAPK14, FAD104, IFNGR1, HLA-DRA,
PSTPIP2, ITGAM, CSF1R, IL10alpha;

CD86, TGFB1, ITGAM, ILl10alpha, JAK2, TIFA,
FAD104, CRTAP, ILIRN, BCL2Al, CCLS,
GADD45B, HLA-DRA, SOD2, OSM, NCR, VNNI,
IL18R1, ANXA3, Gene MMP9, PSTPIP2;

MAPK 14, SOD2, PRV1, GADD45B, MKNK1, IL18R1,
INSL3, NCR1, 1Y96, IRAK2, CSFIR, TNFRSF6,
HLA-DRA, VNN1, IRAK4, FAD 104, CEACAM 1,
IFNGR1, FCGR1A, TIFA, CD86;

HLA-DRA, PRV, GADD45A, ILIRN, ILISRI,
TNFRSF6, LDLR, IRAK4, BCL2A1, TIFA, PSTPIP2,
SOCS3, IL10alpha, FAD104, MKNK1, TNFSFI13B,
JAK2, TDRD9, TNFSF10, FCGR1A, CDS6;

INSL3, GADD45A, TGFB1, JAK2, IRAK2, OSM, TIFA,
TNFSF13B, HLA-DRA, FCGR1A, BCL2A1, PRV,
CEACAMI1, SOCS3, MAPK14, IRAK4, ANXA3,
TNFRSF6, FAD104, IFNGR1, Gene_MMP9;

BCL2A1, ANKRD22, IL10alpha, HLA-DRA, VNNI,
GADD45B, TNFRSF6, CSFIR, IRAK4, ITGAM,
IL1RN, IRAK2, Y96, MAPK 14, JAK2, Gene_ MMP9,
TLR4, ARG2, CCL5, SOCS3, MAP2KG;

TDRDY, VNN1, GADD45A, ANKRD22, PFKFB3,
TNFSF13B, SOCS3, IL18R1, ILIRN, ARG2, CSFIR,
HLA-DRA, PRVI, CEACAMI, CDS86, IFNGRI,
CCL5, MAP2K6, TGFBI, IL10alpha, Gene_ MMP9;

ANXA3, TNFRSF6, TDRDY, IRAK2, MAP2K6, INSL3,
FCGR1A, GADD45A, NCR, ARG2, VNNI, PRV,
MAPK14, IRAK4, SOCS3, ITGAM, HLA-DRA,
CD86, CEACAMI, 1Y96, GADD45B;

IL18R1, GADD45A, BCL2A1, HLA-DRA, PSTPIP2,
ANKRD22, CRTAP, FAD104, CD86, TNFRSF6, Gen-
e MMP9, IRAK2, SOD2, IL10alpha, IFNGRI,
FCGRIA, TIFA, OSM, CCL5, GADD45B, TGFBI,
TLR4;

TNFSF13B, LDLR, GADD45B, MAPK14, PFKFB3,
CRTAP, MAP2K6, NCR, CCL5, ARG2, SOD2,
BCL2A1, MKNK1, TIFA, ANKRD22, Gene_ MMP9,
TGFBI, IL1RN, HLA-DRA, IL18R1, VNN1, CSFIR;

TDRDY, CRTAP, ANKRD22, TNFSFI3B, ANXA3,
CCLS, FCGR1A, TNFSF10, TNFRSF6, PRV, IRAK?2,
CEACAMI1, SOCS3, CSFIR, FAD104, PSTPIP2,
VNNI1, ARG2, ILIRN, HLA-DRA, BCL2A1, INSL3;

GADDA45B, HLA-DRA, NCR, TGFB1, OSM, MKNKI1,
TLR4, ARG2, CCL5, LDLR, IFNGRI, SOCS3,
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INSL3, TIFA, TNFSF10, CDS86, IL10alpha,
GADDA45A, CSFIR, TDRD9, BCL2A1, ANXA3;

INSL3, PSTPIP2, MKNK1, FCGR1A, PFKFB3, OSM,
TGFB1, MAPK14, IRAK2, GADD45A, ANKRD22,
CCL5, HLA-DRA, ILl10alpha, SOCS3, CDS6,
IFNGR1, ARG2, Gene_MMP9, GADD45B, VNNI,
ILIRN;

ARG2, GADD45B, TNFSF10, IRAK2, MAPKI4,
IL1RN, MKNK1, CRTAP, TNFSF13B, PRV1, SOD2,
VNNI, ILI8R1, HLA-DRA, MAP2K6, INSL3,
CEACAMI, IL10alpha, LY96, SOCS3, FCGRIA,
ANKRD22;

IFNGR1, LDLR, ITGAM, VNNI, IL18R1, TGFBI,
SOCS3, ANKRD22, HLA-DRA, TIFA, OSM, TLR4,
IRAK4, INSL3, SOD2, TNFSFI13B, 1Y96, IRAK?2,
BCL2A1, MAPK 14, CCL5, MKNK1;

Gene MMP9, BCL2A1, TDRD9, OSM, MAPK14,
IRAK2, CRTAP, MAP2K6, TGFB1, ILISRI,
TNFSF10, ANXA3, IFNGR1, GADD45A, TIFA, PST-
PIP2, SOCS3, ITGAM, ARG2, HLA-DRA, FAD104,
IRAKA4;

IRAK?2, ILIRN, ITGAM, LY96, IFNGR1, TGFB1, TIFA,
PFKFB3, Gene_ MMP9, FAD104, TNFSF13B, VNNT,
LDLR, INSL3, HLA-DRA, NCR1, TDRD9, TNFRSF6,
ANXA3, CSFIR, SOCS3, IL18R1;

TNFRSF6, INSL3, LDLR, CD86, TGFB1, NCR1, Gene__
MMP9, CRTAP, HLA-DRA, BCL2A1, MKNKI,
IL18R1, TLR4, CEACAMI, PRV1, CCL5, OSM,
TDRD9, PFKFB3, IFNGR1, IRAK2, PSTPIP2;

PFKFB3, ITGAM, ANKRD22, MAPK 14, TGFB1, PST-
PIP2, BCL2A1, IFNGR1, MKNKI, NCR, ARG2,
HLA-DRA, INSL3, CRTAP, FCGRIA, LDLR, CCL5,
JAK?2, IRAK4, TLR4, LY96, IL10alpha;

TIFA, IFNGRI, HLA-DRA, Gene MMP9, PRVI,
FAD104, IL10alpha, GADD45B, IRAK4, ILIRN,
TDRDY, IL18R1, BCL2A1, CD86, GADD45A, CCLS5,
ANXA3, OSM, SOCS3, PFKFB3, LDLR, CSFIR;

GADD45A, CSFIR, ILI18R1, TGFB1, TNFSFI3B,
ANXA3, OSM, SOCS3, LY96, TDRD9, ITGAM,
FCGR1A, IFNGR1, FAD104, HLA-DRA, PSTPIP2,
MKNK1, CRTAP, GADD45B, Gene_MMP9, LDLR,
TLR4, VNN1;

MAP2K6, TGFB1, HLA-DRA, ILl10alpha, VNNI,
GADD45B, CEACAM1, PRV1,0SM, IRAK4, IRAK?2,
ITGAM, CSFIR, TDRD9, NCR, TNFSF13B, CRTAP,
BCL2A1, TIFA, IFNGR1, GADD45A, IL18R1, SOD2;

HLA-DRA, PFKFB3, IRAK4, MKNK 1, TGFB1, CRTAP,
ANXA3, CEACAMI, CCL5, JAK2, TNFSF10, IL1RN,
CSFIR, IFNGR1, ARG2, Y96, Gene_MMP9, PRV,
CD86, IRAK2, ITGAM, IL10alpha, OSM:;

FAD104, LY96, NCR1, TLR4, TNFSF13B, MAPK14,
MAP2K6, HLA-DRA, FCGR1A, CD86, ANKRD22,
LDLR, ILIRN, IFNGRI, TDRDY, TGFBI,
GADD45A, PRV1, PFKFB3, ITGAM, JAK2, PSTPIP2,
CRTAP;

CRTAP, OSM, TNFRSF6, IRAK2, VNNI1, IRAK4,
ANXA3, SOD2, ANKRD22, ITGAM, TLR4, MKNKI,
IL18R1, CEACAMI, TGFBI, PRV1, Gene MMP9,
TNFSF13B, BCL2A1, HLA-DRA, INSL3, NCRI,
CSFIR;

ARG2, MAPK14, IRAK4, LDLR, IL10alpha, Gene
MMP9, NCR1, OSM, CEACAMI, SOD2, CSFIR,
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CCLS, GADD45A, ITGAM, BCL2A1, HLA-DRA,
PFKFB3, TNFSF13B, TNFSF10, IRAK2, VNNI,
JAK2, PRV1;

VNNI1, SOCS3, ANKRD22, FAD104, ILI8R1, OSM,
ITGAM, CCL5, TGFB1, MAPK14, MKNK1, HLA-
DRA, LDLR, PSTPIP2, ARG2, CSFIR, IL10alpha,
MAP2K6, LY96, FCGR1A, TNFSF10, JAK2, TLR4;

CEACAMI, MAP2K6, ILISRI, TIFA, HLA-DRA,
FAD104, TGFB1, LDLR, ANKRD22, IL1RN, SOCS3,
TNFSF13B, NCR1, CD86, BCL2Al, IL10alpha,
TLR4, CRTAP, MKNK 1, ITGAM, JAK2, OSM, ARG2;

CCL3, ILIRN, TIFA, PRV1, TNFSF13B, INSL3, IRAK2,
MKNK1, MAPKI4, FCGR1A, SOCS3, JAK?2,
FAD104, IFNGR1, CRTAP, ILISR1, GADD45B,
SOD2, TNFSF10, HLA-DRA, TNFRSF6, ANKRD22,
LDLR;

TNFRSF6, TNFSF10, CD86, IL10alpha, ARG2, TLR4,
JAK2, MAP2K6, GADD45B, LDLR, TIFA, IRAK?2,
BCL2A1, SOD2, LY96, PFKFB3, HLA-DRA, CSFIR,
FAD104, CRTAP, FCGR1A, ANXA3, SOCS3;

NCR1, ILIRN, PRV1, IL18R1, HLA-DRA, BCL2Al,
GADD45A, FADI104, TLR4, OSM, FCGRIA,
TNFSF10, CRTAP, INSL3, GADD45B, LY96, IRAK?2,
CD86, VNNI, CCL5, JAK?2, IL10alpha, MKNKI,
IRAKA4;

GADDA45A, MKNK 1, ANXA3, TLR4, MAP2K6, TIFA,
FCGR1A, IRAK2, TDRD9, VNNI, CSFIR,
GADD45B, LDLR, IL1RN, ANKRD22, JAK2, HLA-
DRA, IL10alpha, PSTPIP2, Gene MMP9, CRTAP,
IL18R1, MAPK 14, ARG2;

ARG2, JAK2, CSFIR, NCR, LY96, HLA-DRA, ANXA3,
PSTPIP2, IRAK4, BCL2Al1, ILIRN, IFNGRI,
FCGR1A, VNNI, TNFSF10, MAPK14, TGFBI,
GADD45B, INSL3, IRAK2, OSM, CD86, CRTAP,
TNFSF13B;

HLA-DRA, INSL3, PRV1, MAP2K6, TIFA, NCR,
CSFIR, TDRD9, ILI8R1, MKNKI, TNFRSF6,
TNFSF10, LDLR, IRAK4, FAD104, ITGAM, PST-
PIP2, MAPK 14, TNFSF13B, GADD45B, CEACAMI,
IL1RN, ANXA3, PFKFB3;

VNNI1, LDLR, FAD104, HLA-DRA, ARG2, IFNGRI,
IRAK4, TNFRSF6, TIFA, MAP2K6, NCR1, OSM,
PRV1, CSFIR, INSL3, TNFSF13B, JAK2, MAPK 14,
BCL2A1, IRAK2, TLR4, PSTPIP2, TDRD9, ANXA3;

CDS86, TNFSF13B, PSTPIP2, IL10alpha, HLA-DRA,
MAP2K6, FCGRIA, Gene MMP9, JAK2, SOCS3,
CSFIR, TDRDY, ARG2, NCR1, OSM, FADI104,
BCL2A1, TNFRSF6, INSL3, VNN1, ITGAM, PRV,
TLR4, CEACAMI;

TNFSF10, ITGAM, MAP2KG6, TIFA, CSFIR, TDRDY,
FAD104, TLR4, GADD45B, HLA-DRA, IRAK2,
IRAK4, OSM, FCGRI1A, CCL5, SOD2, VNNI,
MKNK1, ARG2, Gene. MMP9, TGFB1, TNFSF13B,
MAPK 14, PFKFB3;

TNFSF10, CEACAMI, IFNGRI1, TIFA, MKNKI,
ANXA3, ILIRN, IL10alpha, IL18RI, HLA-DRA,
SOCS3, Gene MMP9, MAPK14, TGFBI, JAK?2,
IRAK2, TLR4, CSFIR, BCL2A1, PSTPIP2, MAP2KS,
CD86, ITGAM, SOD2;

May 5, 2011

SOD2, PFKFB3, MAP2K6, HLA-DRA, ANKRD22,
IL18R1, Gene MMP9, LDLR, ARG2, GADDA45A,
JAK2, MKNK1, PRV, FCGR1A, ITGAM, OSM,
NCR1, VNN1, LY96, IFNGRI1, TIFA, PSTPIP2,
IL1RN, TLR4;

GADDA45A, SOCS3, SOD2, TGFB1, HLA-DRA, VNNI,
CD86, CCL5, BCL2A1, CRTAP, MAP2K6, PRV,
IL18R1, CSFIR, OSM, IRAK2, PSTPIP2, TLR4,
FCGR1A, ANKRD22, CEACAMI, JAK2, INSL3,
TDRDY, TNFSF10;

SOCS3,VNNI,FCGR1A, SOD2, OSM, TNFSF10, Y96,
Gene MMP9, GADD45B, CRTAP, PRV 1, HLA-DRA,
GADDA45A, TLR4, ARG2, IRAK?2, FAD104, INSL3,
PSTPIP2, TIFA, TGFBI, IL18R1, MAP2K6, LDLR,
ANXA3;

PSTPIP2, CEACAMI, FAD104, TIFA, ANKRD22, OSM,
TNFSF13B, IRAK4, INSL3, GADD45A, IL10alpha,
CSFIR, HLA-DRA, SOCS3, GADD45B, CCL5, Gen-
e MMP9, LY96, TLR4, IFNGR1, TGFB1, BCL2A1,
MAP2K6, CD86, PFKFB3;

IFNGR1, VNN1, ANKRD22, FCGR1A, JAK2, MAP2KG,
SOD2, TNFSF13B, IRAK4, CEACAMI, LY96,
MAPK 14, INSL3, NCR1, Gene MMP9, CCL5, HLA-
DRA, LDLR, TNFRSF6, PFKFB3, ANXA3, SOCS3,
ARG2, ITGAM, CSFIR;

LDLR, GADDA45A, IFNGR1, ARG2, MAPK14, HLA-
DRA, CRTAP, OSM, TDRD?9, CSF1R, FCGR1A, Gene
MMP9, NCR, PRV, IRAK4, TGFB1, TLR4, LY96,
IL1RN, FAD104, SOD2, CCLS5, TNFRSF6, MAP2K6,
TNFSF13B; and

PSTPIP2, NCR1, MKNKI1, SOCS3, ILIRN, IFNGRI1,
IL18R1,CSFIR,ITGAM, LDLR, TIFA, CRTAP, OSM,
TLR4, CEACAMI, Gene_ MMP9, INSL3, MAP2K6,
CCLS, FAD104, HLA-DRA, PRV1, VNNI, PFKFB3,
JAK?2.

116. The method of claim 114, wherein said biomarker
mRNAs comprise a combination of biomarker mRNAs
selected from the combinations consisting of:

MKNK]1, CD86, OSM, TIFA, HLA-DRA, SOCS3;

FAD104,ARG2,FCGR1A, SOCS3,HLA-DRA, ANXA3;

CD86, IRAK2, ARG2, PFKFB3, MAPK 14, PRV1, VNNI,
HLA-DRA, FAD104;

IL10alpha, HLA-DRA, TGFBI, FCGRIA, CSFIR,
IRAK2, GADD45A, PFKFB3, SOCS3;

ARG2, IRAK4, GADD45A, VNNI, ILISRI, JAK?2,
ANXA3, CSFIR, HLA-DRA, PFKFB3;

TNFRSF6, OSM, PRV 1, INSL3, TLR4, MKNK 1, IRAKA4,
HLA-DRA, VNN, IL10alpha, FCGRIA; and

NCR1, CEACAMI, IRAK4, ARG2, TNFSF13B,
PFKFB3, OSM, TNFRSF6, SOCS3, HLA-DRA,
TNFSF10, JAK2, SOD2.

117. The method of claim 114, wherein said biomarker
mRNAs comprise a combination of biomarker mRNAs
selected from the combinations consisting of:

OSM, Gene MMP9, TLR4, TDRD9, CCLS, CRTAP,

HLA-DRA;

IFNGR1, CEACAMI, JAK2, SOD2, HLA-DRA,

MAPK14, PRV1, VNNI,; and
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CCL3, IL10alpha, GADD45B, LDLR, PSTPIP2, CD86,
HLA-DRA, TLR4.

118. The method of claim 114, wherein said first blood
sample is a whole blood sample or a plasma sample.

119. The method of claim 114, wherein the abundances of
said biomarker mRNAs are expressed in relative fluorescence
intensity units.

120. The method of claim 114, wherein the measuring step
comprises performing reverse-transcription-polymerase
chain reaction to make cDNA complimentary to said biom-
arker RNAs.
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121. The method of claim 114, wherein the measuring step
comprises contacting said biomarker mRNAs, or ¢cDNAs
thereof, to a nucleic acid array.

122. The method of claim 114, wherein the comparing step
comprises applying a decision rule to predict the increased or
decreased likelihood of sepsis in the SIRS patient.

123. The method of claim 120, wherein the comparing step
is performed on a computer.
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