Office de la Proprieté Canadian CA 2861257 C 2017/06/27

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 861 257
Un organisme An agency of 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 2013/01/11 (51) CLInt./Int.Cl. GO6F 771/07(2006.01),
(87) Date publication PCT/PCT Publication Date: 2013/07/18 GO6F 9/06(2006.01)
- . (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2017/06/27 PARRA VAN OMAR. US:
(85) Entree phase nationale/National Entry: 2014/0/7/14 WILLIAMS, DOUGLAS H., US
(86) N° demande PCT/PCT Application No.: US 2013/021145| (73) Propriétaire/Owner:
(87) N° publication PCT/PCT Publication No.: 2013/106649 NETSUITE INC., US
(30) Priorité/Priority: 2012/01/13 (US61/586,472) (74) Agent: OYEN WIGGS GREEN & MUTALA LLP

(54) Titre : TOLERANCE AUX FAUTES POUR OPERATIONS COMPLEXES DE TRAITEMENT DISTRIBUE
54) Title: FAULT TOLERANCE FOR COMPLEX DISTRIBUTED COMPUTING OPERATIONS

i =~ — =P
|

| Tenant A Te!ir:g:iln Object Business Lata
| Managed PRICE API Interface Obiject Storage
Resources =Xecution Proxy Layer Layer
Environment
Tenant A
. Fault
Settings Interpreter Tolerance
240 256
Method 0 Data
Scripts 215 — - mmmmm e 224
Inst . : Business : Business
netance . . Object | Cbject
240 - 3 252 | 220
Modiles | | | —— —# | m—m—m—m—m—— | T 777
. . . Dat
204 . Method » . Staorz
. ., 215| | ;=== 224
. Inst ;- . Business | Business
nstance | Object Object
240 ! | 252, 220
Tenant Z S Y
204
236 212 248 218 216
i
Custom Tenant | Distributed Computing Service Platform \ 508
Resources ,
- - — - -

(57) Abréegée/Abstract:

A method for enabling a distributed computing system to tolerate system faults during the execution of a client process. The
method includes instantiating an execution environment relating to the client process; executing instructions within the execution
environment, the instructions causing the execution environment to issue further instructions to the distributing computing system,
the further instructions relating to actions to be performed with respect to data stored on the distributed computing system. An
object interface proxy receives the further instructions and monitors the received to determine If the execution environmentis in a
desired save-state condition; and, If so, save a current state of the execution environment in a data store.

SRR VNEEEN
R 5. sas ALy
O
A

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

(43) International Publication Date

CA 02861257 2014-07-14

Organization
International Bureau

WIPOIPCT

18 July 2013 (18.07.2013)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2013/106649 A3

(1)

(21)

(22)

(25)

(26)
(30)

(71)

(72)

(74)

(81)

w0 2013/106649 A3 | {10 RW S0 OO0 0 0RO 01

International Patent Classification:
GO6F 11/07 (2006.01) GO6F 9/06 (2006.01)

International Application Number:
PCT/US2013/021145

International Filing Date:
11 January 2013 (11.01.2013)

Filing Language: English
Publication Language: English
Priority Data:

61/586,472 13 January 2012 (13.01.2012) US

Applicant: NETSUITE INC. [US/US]; 2955 Campus
Drive, Suite 100, San Mateo, CA 94403-2511 (US).

Inventors: PARRA. Ivan, Omar; 488 Moorpark Way,
Mountain View, CA 94041 (US). WILLIAMS, Douglas,
H.; 900 Laurence Ave., Capitola, CA 95010 (US).

Agents: MINSK, Alan, D. et al.; Lane Powell, P.C., 1420
Fifth Ave, Suite 4100, Seattle, WA 98101 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, FE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

- — -
(

(84)

HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

(83)

with international search report (Art. 21(3))

before the expiration of the time [imit for amending the
claims and to be republished in the event of receipt of

amendments (Rule 48.2(h))

Date of publication of the international search report:
6 September 2013

(534) Title: FAULT TOLERANCE FOR COMPLEX DISTRIBUTED COMPUTING OPERATIONS

Tenant A T?ir;r:ign Object Business Data
Managed Ei%cution API Interface Object Storage
Resources Ervironment FProxy Layer Layer
Tenant A
_ Fault
Settings Interpreter Tolerance
240 256
Method == SDtitrZ
Scripts 215 TREEEEELEE
Inst . Business : Business
nstance . Object | Object
240 ‘ i 252 220
Modules | | | — — | —mm———— | T 7777
204 . Method gtzt;
25| | -0y 224
Inst Business : Business
nstance Object ! Object
240 2952, 220
TfepantZ | | —mmoremerveo— —, | V7077
204
236 212 248 218 216
|
Custom Tenant | Distributed Computing Service Platform 208
Resources : .
- —— - Figure 2

(57) Abstract: A method for enabling a distributed computing system to tolerate system faults during the execution of a client pro -
cess. The method includes mstantiating an execution environment relating to the client process; executing instructions within the ex-
ecution environment, the mstructions causing the execution environment to i1ssue further mstructions to the distributing computing
system, the further instructions relating to actions to be pertformed with respect to data stored on the distributed computing system.
An object interface proxy receives the further instructions and monitors the received to determine if the execution environment 1s in
a desired save-state condition; and, if so, save a current state of the execution environment 1n a data store.

10

15

20

25

30

CA 02861257 2016-03-08

Fault Tolerance for Complex Distributed Computing

Operations

[0001]

BACKGROUND

[0002] It has become commonplace to use computers, and networks of
computers, to facilitate a wide variety of activities including work and
recreation. Modern computer networks incorporate layers of virtualization so
that physically remote computers and computer components can be allocated
to a particular task and then reallocated when the task is done. Users
sometimes speak in terms of computing “clouds” because of the way groups
of computers and computing components can form and split responsive to
user demand, and because users often never see the computing hardware
that ultimately provides the computing services. More recently, different types
of computing clouds and cloud services have begun emerging.

[0003] Cloud service platforms vary in the types of services they provide and
the types of applications they are intended to support. At one end of the
spectrum are “low level” services, such as platforms that provide access to
the operating system, one or more development frameworks, databases and
other like facilities. A primary goal for these platforms is to reduce hardware
and IT costs without otherwise restricting the application developer's choice of
technical solution or application space. At the other end of the spectrum are
platforms that provide facilities to create applications in the context of a
preexisting application with a well-defined purpose. Such “high level” cloud
services typically focus on one or more well-defined end user applications

such as business applications. A goal of these platforms is to enable the

10

15

20

25

30

WO 2013/106649

CA 02861257 2014-07-14

creation of extensions to a core application. The services provided in this
case are typically skewed toward the context of the embedding application
and away from low-level services and choice of technical solution. Some high
level cloud services provide an ability to customize and/or extend one or more
of the end user applications they provide, however high level cloud services
typically do not provide direct access to low level computing functions. This
can be problematic with respect to fault tolerance, for example, maintenance
of data and/or behavioral integrity after experiencing an unexpected or
iInterrupting event such as a power or communications network failure, since
conventional approaches typically use low level computing functions to
iImplement fault tolerance.

[0004] Figure 1 depicts aspects of an example computing environment 100
that may benefit from at least one embodiment of the invention. A variety of
client applications (not shown) incorporating and/or incorporated into a variety
of computing devices 104 may communicate with a multi-tenant distributed
computing service 108 through one or more networks 112. Examples of
suitable computing devices 104 include personal computers, server
computers, desktop computers, laptop computers, notebook computers,
personal digital assistants (PDAs), smart phones, cell phones, computers,
and consumer electronics incorporating one or more computing device
components such as one or more processors. Examples of suitable networks
iInclude networks including wired and wireless communication technologies,
networks operating in accordance with any suitable networking and/or
communication protocol, private intranets and/or the Internet.

[0005] The multi-tenant distributed computing service 108 may include
multiple processing tiers including a user interface tier 116, an application tier
120 and a data storage tier 124. The user interface tier 116 may maintain
multiple user interfaces 128 including graphical user interfaces and/or web-
based interfaces. The user interfaces 128 may include a default user
interface for the service, as well as one or more user interfaces customized by
one or more tenants of the service. The default user interface may include
components enabling tenants to maintain custom user interfaces and

otherwise administer their participation in the service. Each tier may be

PCT/US2013/021143

10

15

20

235

30

WO 2013/106649

CA 02861257 2014-07-14

implemented by a distributed set of computers and/or computer components
including computer servers. The data storage tier 124 may include a core

service data store 132 as well as a data store (or data stores) 136 for storing
fenant data.

[0006] The application tier 120 of the muiti-tenant distributed computing
service 108 may provide application servers 140 for executing customizable
and/or extendible end user applications. For example, the application tier
may enable customization with a programmatic language such as a scripting
language. Custom program code may be executed in a controlled execution
environment instantiated 144 by the application servers 140. For example,

custom scripts may be executed by a scripting language interpreter.

[0007] Conventional attempts to enable customization of high level cloud
services, such as the multi-tenant distributed computing service shown in

Figure 1, while addressing fault tolerance issues are inefficient, ineffective
and/or have undesirable side effects or other drawbacks.

[0008] For example, programs running under a conventional computer
operating system can typically use low-level mechanisms provided by a
database to ensure that data consistency is maintained in the presence of
unexpected interruptions. For particularly long running processes, other
mechanisms may be employed to track the progress of a program in order to
support recovery from unexpected events such as power loss, network
Interruptions or other system failures. For example, a program performing a
repeated operation on a homogenous list of data objects can encapsulate
each identical operation in a database transaction and include information to
indicate completion of each unit of work. [f the process is interrupted, when
the system restarts, the program can query for the unprocessed objects and
resume without sacrificing consistency in the data.

[0009] A process running on a cloud-based platform may not, however,
have access to the same low-level facilities available to one written directly on
the operating system. On such a system, data consistency may only be
guaranteed within a scope of one system-level data access operation, such
as the read or write of a business object. Even in a case where a long-

PCT/US2013/021143

10

15

20

235

30

WO 2013/106649

CA 02861257 2014-07-14

running process is built from multiple identical computational units, these units
may Iinclude more than a single data access operation. This can leave the
process vulnerable to data inconsistencies if an unexpected interruption
occurs, not between computational units, but in the midst of a single

computational unit.

[0010] Users of low-level platforms are in a position to manage consistency
iIssues because they typically have access to facilities available to
conventional (non-Cloud, on-premise, etc.) development environments. For
example, the transactional nature of a relational database may be combined
with an architecture that minimizes a number of operations performed in a

single transaction as the basis for ensuring consistent, durable data state.

[0011] On high level platforms, however, a program may not have direct
access to a database transaction. Instead, the underlying database
transactions may be used to ensure consistency of data access to the higher
level business objects that these platforms interact with. In order to create an
atomic process that spans multiple high-level data access operations, these'
platforms may provide a restricted form of transaction management that
spans a small number of accesses and/or impose further limits on the types of
platform services that may be utilized during the transaction.

[0012] Such a high level platform, such as the multi-tenant distributed
computing service shown in Figure 1, may be susceptible to intermittent
interruptions including system failure, a resource governance mechanism,
planned system restart, and monitoring-initiated restart. Resource
governance may include resource utilization tracking on a per tenant basis by
the platform and resource utilization limitation in accordance with an
agreement between the tenant and the platform service provider. However,
advantageously to the service provider, interruptions need not be guaranteed
to provide signals that allow a client process to safely shut down. Such
interruptions can be classified as (1) those occurring during a data write
operation and (ii) those occurring outside a data write operation. In the former
case, interruptions occurring inside a data write operation may not leave a

business object in an inconsistent state because they are protected by an

PCT/US2013/021143

10

15

20

25

30

WO 2013/106649

CA 02861257 2014-07-14

underlying database transaction. However, during the latter type of

Interruption, data consistency between business objects may be lost.

[0013] Embodiments of the invention are directed toward solving these and
other problems individually and collectively.

SUMMARY

[0014] This summary is a high-level overview of various aspects of the
present methods and systems for enabling fault tolerance in a distributed
computing system executing a client process and introduces some of the
concepts that are further described in the Detailed Description section below.
This summary is not intended to identify key or essential features of the
claimed subject matter, nor is it intended to be used to determine the scope of
the claimed subject matter.

[0015] Particularly, various aspects of the embodiments described below are
directed to methods which may include the steps of instantiating an execution
environment relating to said client process and executing instructions within
sald execution environment. The executed instructions in turn cause the
execution environment to issue further Instructions to the distributed
computing system relating to actions to be performed with respect to data
stored on the distributed computing system. Those instructions are received
by an object interface proxy and at least one of the instructions is a save-state
instruction, which causes the object interface proxy to save a current state of
the execution environment in a data store.

[0016] Other aspects of the various embodiments described below are
directed to systems which may include an execution environment instantiated
on a distributed computing system; an object interface proxy having a fault
tolerance module and also running on the distributed computing system; and
a data store. The execution environment may execute instructions on at least
one software object in accordance with a client process and the object
interface proxy acts as an interface for routing those instructions from the
execution environment to the software object. The fault tolerance module

PCT/US2013/021143

10

15

20

25

WO 2013/106649

CA 02861257 2014-07-14

may receive a save state instruction from the execution environment, which

will cause the fault tolerance module to save a current state of said execution
environment to the data store.

[0017] Other aspects of the various embodiments described below are
directed to methods which may include the steps of instantiating an execution
environment relating to a client process running on a distributed computing
system and executing instructions within the execution environment. The
instructions cause the execution environment to issue further instructions
relating to actions to be performed with respect to data stored on the
distributed computing system. An object interface proxy receives and
monitors those instructions and determines whether the execution
environment is in a desired save-state condition. If so, the current state of the
execution environment is saved to a data store.

[0018] Other aspects of the various embodiments described below are
directed to systems which may include an execution environment instantiated
on a distributed computing system; an object interface proxy having a fault
tolerance module and also running on the distributed computing system; and
a data store. The execution environment may execute instructions on at least
one software object in accordance with a client process and the object
interface proxy acts as an interface for routing those instructions from the
execution environment to the software object. The fault tolerance module is
configured to monitor each instruction received by the fauit tolerance module
and determine if execution of the instruction places the execution environment
in a desired save-state condition and, if so, save the current state of the

execution environment in the data store.

[0019] Other objects and advantages of the present invention will be
apparent to one of ordinary skill in the art upon review of the detailed
description of the present invention and the included figures.

PCT/US2013/021143

10

13

20

25

30

WO 2013/106649

CA 02861257 2014-07-14

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] Various embodiments in accordance with the present disclosure will
be described with reference to the drawings, in which:

[0021] Figure 1 is a schematic diagram depicting aspects of an example
computing environment in accordance with at least one embodiment of the
invention;

[0022] Figure 2 is a schematic diagram depicting aspects of an example
high level distributed computing service platform in accordance with at least
one embodiment of the invention:;

[0023] Figure 3 is an Interaction diagram depicting aspects of example
Interactions in accordance with at least one embodiment of the invention;

[0024] Figures 4a and 4b are high-level process flow diagrams depicting
aspects of save state and restore state operations in accordance with at least
one embodiment of the invention:

[0025] Figures 5a and 5b are high-level process flow diagrams depicting
aspects of save state and restore state operations in accordance with at least
one alternative embodiment of the invention:

[0026] Figure 6 is a high-level process flow diagram depicting aspects of
save state and restore state operations in accordance with at least one
alternative embodiment of the invention;

[0027] Figure 7 is a flowchart depicting example steps for fault tolerance in
accordance with at least one embodiment of the invention;

[0028] Figure 8 is a schematic diagram depicting aspects of an example
computer in accordance with at least one embodiments of the invention.

[0029] Note that the same numbers are used throughout the disclosure and
figures to reference like components and features.

PCT/US2013/021143

10

15

20

25

30

WO 2013/106649

CA 02861257 2014-07-14

DETAILED DESCRIPTION

[0030] The subject matter of embodiments of the present invention is
described here with specificity to meet statutory requirements, but this
description is not necessarily intended to limit the scope of the claims. The
claimed subject matter may be embodied in other ways, may include different
elements or steps, and may be used in conjunction with other existing or
future technologies. This description should not be interpreted as implying
any particular order or arrangement among or between various steps or

elements except when the order of individual steps or arrangement of
elements is explicitly described.

[0031] I[n accordance with at least one embodiment of the invention, fault
tolerance for complex distributed computing operations is enabled. The save
state mechanism may persist the controlled execution environment, and the
saved state may be restored should the controlled execution environment
detect that an interruption has occurred. The save state mechanism may act
responsive to an explicit “save state” call or message and/or when a suitable
execution state is detected. Control over the save state mechanism may be
exposed to custom program code developers, for example, with a
programmatic interface.

[0032] In accordance with at least one embodiment of the invention, the
platform provides access to platform functionality with business objects having
programmatic interfaces (sometimes called application programming
interfaces or APIs). In a distributed computing environment, such interfaces
may be accessed, for example, with suitable function calls, remote function
calls and/or messaging protocols. The platform may guarantee the integrity of
individual interface element operations, but not necessarily complex and/or
compound operations involving activation of muitiple interface elements. A
business object interface access monitor may act as a call router or proxy for
such interface access. In addition, the monitor may incorporate the save state
mechanism, and make it accessible with a programmatic interface, for

example, having "save state” and “restore state” elements.

PCT/US2013/021143

10

15

20

235

30

WO 2013/106649

CA 02861257 2014-07-14

[0033] In accordance with at least one embodiment of the invention, a script
interpreter may execute a script causing multiple atomic, simple and/or
integral (collectively, “atomic”) transactions with respect to a set of business
objects. A monitor component may monitor script actions with respect to the
set of business objects and may save states of the script interpreter and/or
the business objects as a recovery point so that the script may be resumed at
the recovery point in case the set of multiple atomic transactions is
interrupted. The recovery points may be created responsive explicit
Instructions by the script and/or based at least in part on the monitored script
action with respect to the business objects.

[0034] Figure 2 depicts aspects of an example high level distributed
computing service platform 200 in accordance with at least one embodiment
of the invention. The platform may provide shared services and resources to
enable client processes 204 to interact with an embedded, hosted, multi-
tenant application 208. The client process 204 may interact with the
embedded application 208 through an application programming interface
(APIl) 212 that includes methods 215 to search, read and write data, methods
to communicate with external systems and other utility methods for in process
(non-data accessing) computations. [Information exchange between the
embedded application’s data store 216 and the client process 204 may occur
across the business object layer 218. For example, business objects 220
may correspond to multiple underlying database tables 224. Each data
access operation provided by the APl may advantageously have guaranteed
integrity, for example, corresponding to the atomicity, consistency, isolation
and durability (ACID) properties of database transactions. However, the
platform 200 may be susceptible to intermittent interruptions including system
failure, a resource governance mechanism, planned system restart, and

monitoring-initiated restart.

[0035] The platform may provide a high level application 208, such as a
business application, at least in part with a set of business objects 220 in the
business object layer 218. The high level application 208 may be customized
by tenants of the service with tenant managed resources including custom
settings, custom program code such as scripts, custom program modules,

PCT/US2013/021143

10

15

20

25

30

WO 2013/106649

CA 02861257 2014-07-14

and any suitable custom configuration components. EXxecution environments
236 may be instantiated for the custom program code and/or custom program
modules. For example, where the custom program code includes code
written using an interpreted programming language such as a scripting
language, an interpreter 240 may instantiate execution environments 236 for
scripts and/or associated tasks or jobs.

[0036] For example, the interpreter 240 may instantiate an execution
environment 236 for a script. The interpreter 240 may then execute the script
in the context of the instantiated execution environment 236. The script may
cause one or more application messages (e.g., business object interface calls
and/or messages) between the execution environment 236 and the business
object layer 220 to be received and/or intercepted by an object interface proxy
248. The messages may then be routed to the appropriate business object
220 by the proxy 248.

[0037] The custom code running in the application execution environments
236 may access business object interfaces 252 through an object interface
proxy 248. For example, the object interface proxy 248 may be a "thin proxy’
that merely monitors remote functional calls and/or associated protocol
messages (collectively “calls”), a load balancing or routing proxy that
distributes call load, and/or a caching proxy. In accordance with exemplary
embodiments of the present methods and systems, the object interface proxy
248 may further incorporate a fault tolerance module 256. For example, the
fault tolerance module 256 may provide “save state” and ‘restore state”
interface elements 260,264. Activation of the “save state” interface element
260 by program code in an application execution environment 236 may result
in a restorable “snapshot” of the state of the execution environment being
saved to a data store. Activation of the “restore state” interface element 260
with respect to an application execution environment 236 may result in the
application execution environment being restored to a state corresponding to
a previously saved “snapshot.” As described below, the fault tolerance
module 256 may further monitor calls to detect optimal and/or practical
moments to save the state of application execution environment instances.

10

PCT/US2013/021143

10

15

20

235

30

WO 2013/106649

CA 02861257 2014-07-14

[0038] In accordance with at least one embodiment of the present methods
and systems, the save state functionality of the object interface proxy 248
may capture the an inner state of a currently executing process, such as a
script executing in an execution environment 236, by encapsulating all native
calls made by the process to a thin APl layer. For example, many scripting
language interpreter engines include the native ability to capture a process’
current execution state. in accordance with embodiments of the present
methods and systems, this ability may be leveraged to serialize the binary
data representing process’ execution stack, including any residual data iIn
both the interpreter and native to the application, and write it to a data store.
Embodiments of the present methods and systems thus allow for both a
preservation of the current execution state as well as a reliable recovery point

In the event a failure occurs between API calls.

[0039] The layers and/or components of the distributed computing service
platform may be implemented, at least in part, with data stores and/or
computing resources (e.g., computer operating system resources) in a data
storage layer and a computer operating system layer.

[0040] Figures 3-6 depict various aspects of example platform component
interactions in accordance with at least one embodiment of the present
methods and systems. A high level cloud service 304, such as the multi-
tenant distributed computing service of Figure 1 including the functionality
described above in accordance with Figure 2, may initiate a process, task,
and/or job (collectively “process”) 306 on an application server by sending an
appropriate call, or command, 308 to the server, which may Initiate a
corresponding worker thread 312, representing a series of instructions
executed by the server in order to perform the desired process 306. The
process 306 may be associated and/or specified with a particular scripting
language and the worker thread 312 may therefore execute a call 313 to
instantiate an execution environment 316 via an interpreter engine to continue
executing the process 306. Consequently, the process 306, via the execution
environment 316, may make multiple calls 318, 319 to an object interface
proxy 320, such as object interface proxy 248 described above in reference to
Figure 2. Each call represents an instruction to perform a discrete unit of

11

PCT/US2013/021143

10

135

20

235

30

WO 2013/106649

CA 02861257 2014-07-14

work In the performance of the process 306. The calls 318 may, in turn, be
forwarded and/or routed to one or more suitable and/or specified business

objects 324, or, in the case of call 319, cause the object interface proxy 320 to
perform in accordance with the functionality of its fault tolerance module 325.

[0041] The object interface proxy 320 may receive a save state call 319
Instructing it to activate its “save state” functionality. Responsive to the save
state call 319, the object interface proxy 320 may serialize the execution
environment's current execution stack and its references (e.g., as maintained
by the interpreter engine), and save the serialized binary data to a data store
(not shown). Should an interruption and/or unexpected event be experienced,
this senalized state can be restored once the high-level cloud service 304 can
find a suitable execution environment.

[0042] Figure 4 depicts an exemplary process that should have resulted in
calls 418(a)-(f). However, the process experienced an interruption 420
following call 418(c), leading to the corruption of execution environment 426.
Since call 418(c) was a save state call, the state of the execution environment
was saved.

[0043] Figure 4b depicts the interrupted process shown in Figure 4a being
resumed following the interruption. Since a saved execution environment
state exists, the resumed process Iinstructs the worker thread 312 to
reinstantiate an execution environment 424. The object interface proxy 426
restores the reinstantiated execution environment 425 to the saved state 428
of the interrupted execution environment of Figure 4a. The resumed process
may continue as if there had not been an interruption, resulting in calls 418(d)-

().

[0044] Figures 5a and 5b depict another example. As shown in Figure 53,
the process should result in calls 518(a)-(g); however it Is interrupted 520
following call 518(f). The most recent save state call was call 518(c). As
shown in Figure Sb, since a saved execution environment state exists, the
resumed process instructs the worker thread 312 to reinstantiate the
execution environment 525. The object interface proxy 526 restores the
reinstantiated execution environment 425 to the saved state 528 of the

12

PCT/US2013/021143

10

15

20

25

30

WO 2013/106649

CA 02861257 2014-07-14

iInterrupted execution environment of Figure 5a. The resumed process then

continues from the restore point, resulting in calls 518(d)-(Q).

[0045] Figures 4a-b and 5a-b depict a save state call that is explicitly made
by the executing process. For example, a script being executed by the
interpreter engine may include scripting language statements that cause the
save state call. Alternatively, or in addition, the object interface proxy may
automatically save the execution environment state based at least in part by
Independently monitory the calls caused by the execution environment.

[0046] Figure © depicts an example in accordance with the present methods
and systems wherein the object interface proxy 604 routes a series of calls
606, 607 which may be calls relating only to data-read operations, e.g. calls
606, or calls relating to data-write operations, e.g. calls 607, from the
execution environment 608 to appropriate business objects 612. The object
interface proxy may accordingly monitor the calls 606, 607 and independently
perform a save state operation 616 to save the state of the execution
environment 608 following each of a particular type of call, such as the calls
607 relating to data-write operations. The object interface proxy 604 make
save state decisions based on any suitable attribute of a monitored call and/or
a monitored set of calls including call type, call volume, call frequency, call
pattern and call parameters. Such automatic state saving can yield higher
data integrity, less coding maintenance and/or a cleaner level of abstraction at

a cost of some performance.

[0047] Figure 7 depicts example steps 700 for enabling fault tolerance in a
high-level cloud service, such as the multi-tenant distributed computing
service of Figure 1, In accordance with exemplary embodiments of the
present methods and systems, such as shown and described in relation to
Figure 2. For a particular process, a tenant application execution environment
may be instantiated 704. For example, the interpreter may instantiate an
execution environment for a script as described above. The interpreter may
then execute the script 708 in the context of the instantiated execution
environment. The script may make one or more business object calls 712 to

13

PCT/US2013/021143

10

15

20

25

30

WO 2013/106649

CA 02861257 2014-07-14

an object Interface proxy and the messages may be routed 716 to the
appropriate business object by the proxy.

[0048] |f the object interface proxy is configured to create automatic
restoration points for the execution environment, as described with respect to
Figure 6, after receiving a call 712, the object interface proxy may test 720 the
progress of the process to detecting a save state condition. If a save state
condition is detected 724, the procedure may progress to saving 726 (e.q.,
persisting) the current state of the execution environment. The save state
operation may be performed prior to routing the call which triggered it, or in
parallel therewith. |f a save state condition is not detected 728, the object
interface proxy may proceed to receiving and routing the next business object
call. If the proxy is not configured to create automatic restoration points, as
depicted in Figures 4a-5b, (e.qg., for performance reasons), the execution
environment state may be saved 726 in response to explicit “set restore point”
messages. The object interface proxy then routes the next call to the
appropriate business object and processes the next call 730.

[0049] The various aspects and embodiments described above are specific
but not exclusive examples of how the present methods and systems may be
implemented and the advantages gained therefrom. However, persons
having ordinary skill in the art will recognize that the teachings present
methods and systems are equally applicable to other embodiments and/or
may be similarly described using alternate terminology. For example, the
above description of the fault tolerance module of the object interface proxy
can equally apply to any process running on a distributed computing system
that monitors, routes, or otherwise tracks the interaction between various
other software elements running on the system, tracks the current state of one
or more of those elements, or their number, type, frequency, etc., and causes
the state of one or more of those software elements to be saved, or otherwise
‘backed up,’ in response to a specific instruction from one of the software
elements or in accordance predefined rule set. In the event of a fault or other
interruption to normal operation, the most recently saved state (or states) can
be restored and operation of the various software elements can continue from

that point, rather than having to start over completely.

14

PCT/US2013/021143

10

13

20

23

30

WO 2013/106649

CA 02861257 2014-07-14

[0050] By way of a non-limiting example, Figure 8 depicts aspects of
elements that may be present in an exemplary computer architecture 800
which may be configured to implement at least some embodiments of the
present methods and systems. The architecture 800 includes subsystems
Interconnected via a system bus 802. The subsystems may include a printer
804, a keyboard 806, a fixed disk 808, and a monitor 810, which is coupled to
a display adapter 812. Peripherals and input/output (I/0O) devices, which
couple to an I/O controller 814, can be connected to the computer system by
any number of means known in the art, such as a universal serial bus (USB)
port 816. For example, the USB port 816 or an external interface 818 can be
utilized to connect the computer device 800 to further devices and/or systems
not shown in Figure 8 including a wide area network such as the Internet, a
mouse Input device, and/or a scanner. The interconnection via the system
bus 802 allows one or more processors 820 to communicate with each
subsystem and to control the execution of instructions that may be stored in a
system memory 822 and/or the fixed disk 808, as well as the exchange of
iInformation between subsystems. The system memory 822 and/or the fixed
disk 808 may embody a tangible computer-readable medium.

[0051] It should be understood that the present methods and systems as
described above can be implemented in the form of control logic using
computer software in a modular or integrated manner. Based on the
disclosure and teachings provided herein, a person of ordinary skill in the art
will know and appreciate other ways and/or methods to implement the present
methods and systems using hardware and a combination of hardware and
software.

[0052] Any of the software components, processes or functions described in
this application may be implemented as software code to be executed by a
processor using any suitable computer language such as, for example, Java,
C++, or Perl, using, for example, conventional or object-oriented techniques.
The software code may be stored as a series of instructions, or commands on
a computer readable medium, such as a random access memory (RAM) a
read-only memory (ROM), a magnetic medium such as a hard-drive, a solid-

state device such as a flash memory drive, or an optical medium such as a

15

PCT/US2013/021143

10

15

20

25

30

CA 02861257 2016-03-08

CD-ROM. Any such computer readable medium may reside on or within a
single computational apparatus, and may be present on or within different
computational apparatuses within a system or network.

[0053]

{0054] The use of the terms “a” and “an” and “the” and similar referents in
the specification and in the following claims are to be construed to cover both
the singular and the plural, unless otherwise indicated herein or clearly

L I { 3

contradicted by context. The terms “having,” “including,”

i

containing” and
similar referents in the specification and in the following claims are to be
construed as open-ended terms (e.g., meaning “including, but not limited to,”)
unless otherwise noted. Recitation of ranges of values herein are merely
indented to serve as a shorthand method of referring individually to each
separate value inclusively falling within the range, unless otherwise indicated
herein, and each separate value is incorporated into the specification as if it
were individually recited herein. All methods described herein can be
performed in any suitable order unless otherwise indicated herein or clearly
contradicted by context. The use of any and all examples, or exemplary
language (e.g., “such as”) provided herein, is intended merely to better
llluminate embodiments of the invention and does not pose a limitation to the
scope of the invention unless otherwise claimed. No language in the
specification should be construed as indicating any non-claimed element as

essential to each embodiment of the present invention.

[0055] Exemplary embodiments of the present methods and systems have
been described in detail above and in the accompanying figures for tllustrative
purposes. However, the scope of the present methods and systems are
defined by the claims below and are not [imited to the embodiments described
above or depicted in the figures. Embodiments differing from those described
and shown herein, but still within the scope of the defined methods and/or

systems are envisioned by the inventors and will be apparent to persons

16

CA 02861257 2014-07-14

WO 2013/106649 PCT/US2013/021143

having ordinary skill in the relevant art in view of this specification as a whole.
The inventors intend for the defined methods and/or systems to be practiced
other than as explicitly described herein. Accordingly, the defined methods
and systems encompass all modifications and equivalents of the subject
matter as permitted by applicable law.

17

CA 02861257 2016-03-08

THAT WHICH IS CLAIMED 1S:

1. A method for enabling fault tolerance in a distributed computing

system executing a client process, the method comprising:

(a) iInstantiating an execution environment relating to said client process:;

(b) executing instructions within said execution environment, said
Instructions causing said execution environment to issue further instructions to said
distributed computing system, said further instructions relating to actions to be

performed with respect to data stored on said distributed computing system; and

(c) receiving said further instructions by an object interface proxy,
wherein at least one of said further instructions is a save-state instruction, which
causes said object interface proxy to save a current state of said execution

environment in a data store.

2. The method of claim 1, wherein said object interface proxy functions

as an application programming interface for said distributed computing system.

3. The method of claim 1, further comprising the steps of:

(d) determining a fault has occurred with said client process:

(e) instantiating a new execution environment relating to said client

Process,

(f) receiving a restore-state instruction by an object interface proxy

indicating said client process has experienced said fault; and

(g) In response to said restore-state instruction, retrieving said current

state from said data store and placing said new execution environment in said current

state.

18

CA 02861257 2016-03-08

4. The method of claim 3, wherein said object interface proxy functions

as an application programming interface for said distributed computing system.

5. The method of claim 3, wherein any further instructions received
subsequent to said save-state instruction that are performed by said distributed
computing system prior to determining said fault has occurred are performed again

after said new execution environment is placed in said current state.

6. A system for enabling a distributed computing system to tolerate
system faults, the distributed computing system executing a client process, the system
comprising:

(a) a first execution environment instantiated on said distributed
computing system and executing instructions on at least one software object In
accordance with said client process;

(b) an object interface proxy running on said distributed computing
system and acting as an interface for routing instructions executed by said client
process to said at least one software object and having a fault tolerance module; and

(c) a data store for storing data relating to a state of said first execution

environment; and
wherein said fault tolerance module is configured to:

(i) receive a save state instruction from said first execution
environment, the receipt of which causes said fault tolerance module to save a current

state of said first execution environment to said data store.

7. The system of claim 6, wherein said object interface proxy functions

as an application programming interface for said distributed computing system.

8. The system of claim 6, wherein said fault tolerance module is further

configured to:

19

CA 02861257 2016-03-08

() receive a restore-state instruction from a second execution
environment, the receipt of which causes said fault tolerance module to place said

second execution environment in said current state of said first execution environment.

9. The system of claim 8, wherein said object interface proxy functions

as an application programming interface for said distributed computing system.

10. The system of claim 8, wherein any further instructions received
subsequent to said save-state instruction that are performed by said distributed
computing system prior to determining said fault has occurred are performed again

after said new execution environment is placed in said current state.

11. A method for enabling a distributed computing system to tolerate
system faults, the distributed computing system executing a client process, the method

comprising:
(a) instantiating an execution environment relating to said client process;

(b) executing Instructions within said execution environment, said
iInstructions causing said execution environment to issue further instructions to said

distributed computing system, said further instructions relating to actions to be

performed with respect to data stored on said distributed computing system;
(c) recelving said further instructions by an object interface proxy;

(d) monitoring said received further instructions and determining if said

execution environment is in a desired save-state condition; and

(e) If saild execution environment iIs in a desired save-state condition,

saving a current state of said execution environment in a data store.

20

CA 02861257 2016-03-08

12. The method of claim 11, wherein step (d) includes determining a

volume of further instructions received by said object interface proxy.

13. The method of claim 11, wherein step (d) includes determining a type

of further instruction received by said object interface proxy.

14. The method of claim 13, wherein step (d) includes determining a

frequency of said type of further instruction received by said object interface proxy.

15. The method of claim 11, wherein step (d) includes determining a sub-

parameter of a further instruction received by said object interface proxy.

16. A system for enabling a distributed computing system to tolerate
system faults, the distributed computing system executing a client process, the system
comprising:

(a) an execution environment instantiated on said distributed computing
system and executing instructions on at least one software object in accordance with
sald client process;

(b) an object interface proxy running on said distributed computing
system and acting as an interface for routing said instructions executed by said client

process to said at least one software object and having a fault tolerance module: and

(C) a data store for storing data relating to a state of said execution

environment: and

wherein said fault tolerance module is configured to:

() monitor said instructions and determining If said execution

environment 1s In a desired save-state condition; and

(i) If said execution environment is In a desired save-state

condition, saving a current state of said execution environment in said data store.

21

CA 02861257 2016-03-08

17. The system of claim 16, wherein step (i) includes determining a

volume of further instructions received by said object interface proxy.

18. The system of claim 16, wherein step (i) includes determining a type

of further instruction received by said object interface proxy.

19. The system of claim 18, wherein step (i) includes determining a

frequency of said type of further instruction received by said object interface proxy.

20. The system of claim 16, wherein step (i) includes determining a sub-

parameter of a further instruction received by said object interface proxy.

22

CA 02861257 2014-07-14

PCT/US2013/021143

WO 2013/106649

1 of 10

EEE—— —_— | ainbi4
_ aoinueg Bupndwo) pajnquisiq jueusi-yiny - 801

0
iz48 0ct
otl Sjual|d
alojsele(144 I B0
| 7 JUBUS | ~ JueuUa |)MLN
!
Opl =
- IEVVETS - T
n - 140)}
oclL " 8cl —
alolseleq] IN
|V jueus] Vv jueua} |
ovl
7CL 1POAIDG A —
alojsele 1]
9VIAIDS 2OIAIDS j
1401}
1ol] 91] SETR
abelo)g 19AIBS (S)aoeualu|
ejeq uoneolddy 198

PCT/US2013/021143

2 of 10

CA 02861257 2014-07-14

WO 2013/106649

Z 8inbiH - —--- >

| S90IN0SaY
80¢ / wiojeld adiAeg bunndwon peajnquisiq JUBUS| WOISN)
|
Ol 7 —
912 8l 8ve 4% €C
¥0c
————— - Z jueus |
0ce | 44 | | 0] 74 |
}o3[q0 | 10890 | aouelsu}
ssauishg | ssaulsng | | _ |
. S S12 L .
. . POUSI . 02
e __ _ ___ - _ S3|NPON _
- 0cc “ AT | . Ovc
. 108[g0 , welao . souesu| ”
- ssauisng “ ssauisng | - .
_ _ |]
. - - s1d1Iog
| | |oFe
| SOUEISI0L 19101d19)U| sbumes
| }ineH
{
Y JUBeua |
lahe] Jaken Axo.d . Ecmoc_ummw_“m_m_ S92JN0SaY
abelo)s 103[q0O aoeLalU| 1dY co_wmo__ ddvy pabeue
ejeq ssauisng 108lqO y.cmc.o._. JUBUD |

|
<4-—1-——>»

CA 02861257 2014-07-14

PCT/US2013/021143

WO 2013/106649

3 of 10

¢ ainbi4

_ 61E |

—

R e A A e ——

0¢€ Axo14 o1t
aoBaU|

JUSWUOIAUT]

190lq0 UOINDSXJ

pealy|
JO)IOAN

PCT/US2013/021143

4 of 10

CA 02861257 2014-07-14

WO 2013/106649

ey 01nbi

Y
8/\|

v0€
CRIINETS

PNoO

mA ﬂm | ..I.._ h

A7 —
12140 o0ea]U|
ssaulsng u—nu.w_.ﬂﬁU

JUBLWIUOIIAUT ummE._.
uonRnoax3 | 19)10MA

CA 02861257 2014-07-14

PCT/US2013/021143

WO 2013/106649

50of 10

gy 8inbiA

ssauisng

)Ly |

| m (3)8LY |

[| L L = I L & L

20Bia)u|
198[40

——

_ vey

4%3

vaEmEcthcm_ ¢l
UOIINDSX
pajenue)sulay

pealy|
JOMIOAN

0€
90IAI18S

PNo[O

CA 02861257 2014-07-14

PCT/US2013/021143

WO 2013/106649

6 of 10

eg ainbiH

m (9)815 _,A
|~ N
(e)glg |l
|
|
|

Axoid
199lqO aoBaU| JUSWUOIIAUT
ssauisng 198100 UOoINO3X3

— _ =
- 92INIBS

PNOID

CLE
pealy |

INJOAN

CA 02861257 2014-07-14

PCT/US2013/021143

WO 2013/106649

7 of 10

qG ainbiH

A
m (B)gLg

| (3815
_.Al -

(®)818

|
7 S —
| P (P)8LS

ssauisng

925 Axo.d

20elajU|
=1y

GCSjuawuoAug
uonnoax3
pajeljuelsuioy

_ cle

i

-+

peaiy |

IENTTY)

—

92IAI9S
PNoID

CA 02861257 2014-07-14

PCT/US2013/021143

WO 2013/106649

8 of 10

9 01nbiH

219
199[q0

ssauisng

ﬂa\nxogn_
soBSU|
193[q0

JUSWUOIIAUT
uoinoax3

pealyl
19)JOAN

S0IAI9S
pnoIo

CA 02861257 2014-07-14

WO 2013/106649 PCT/US2013/021143

9 of 10

Instantiate tenant
application execution
enviornment 704

Execute process-defined
script 708

Object interface proxy
receives call 2492

Configured to
automatically
generate restore
points?

Test Process

Condition
720

728
Save State

Condition?

Save State
Call?

Save State

72

Route call to business

object 730

Figure 7

CA 02861257 2014-07-14

WO 2013/106649 PCT/US2013/021143

10 of 10

/O Controller K——) K—=> Display Adapter K——> Monitor

814 812 | | 810

Memory) Kk—> Serial Port
822 816
BB

Processor(s) K—> Keyboard

820 806

B

Printer Fixed Disk

80 808

802

External Interface

18

% S

800 /

Figure 8

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - abstract drawing

