wO 2024/129644 A1 |0 F00 0 KOO0 0 0 0 0 0 00

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
20 June 2024 (20.06.2024)

(10) International Publication Number

WO 2024/129644 A1l

WIPO I PCT

(51) International Patent Classification:
GO6F 12/02 (2006.01)

(21) International Application Number:
PCT/US2023/083495

(22) International Filing Date:

12 December 2023 (12.12.2023)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
18/064,373 12 December 2022 (12.12.2022) US

(71) Applicant: GOOGLE LLC [US/US]; 1600 Amphitheatre
Parkway, Mountain view, California 94043 (US).

DEISS, Olivier; 1600 Amphitheatre
Mountain View, California 94043 (US).

(72) Inventors:
Parkway,

(74)

@81)

LYAKHOVITSKIY, Grigory Borisovich; 1600 Am-
phitheatre Parkway, Mountain View, California 94043
(US). KIMMEL, Dan; 1600 Amphitheatre Parkway,
Mountain View, California 94043 (US).

Agent: KRUEGER, Brett A.; 200 Ottawa Ave. NW, Suite
700, Grand Rapids, Michigan 49503 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ,DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE, KG,
KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY,
MA, MD, MG, MK, MN, MU, MW, MX, MY, MZ, NA,
NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
RS, RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,

(54) Title: GARBAGE COLLECTION IN LOG-BASED BLOCK DEVICES WITH SNAPSHOTS

FIG. 1

10 18

140

User

Compaction Controller 1

162

20

L 8I T T 1 T 1 T 1
220,
2202—n
(—
|
o

v/-100

146, 146P,

I'\j 56, 156a—n

2186,
216a—n

(57) Abstract: A method (400) for garbage-collection includes obtaining a request (20) to compact a plurality of log files (210) of a log-
structured volume (146P). Each log file includes fresh block runs (214) in use and stale block runs no longer in use. The log-structured
volume includes a plurality of snapshots (156). For each respective snapshot, the method includes determining, using a plurality of
interval maps (162), the fresh block runs of the plurality of log files used by the respective snapshot. For each respective log file, the
method includes writing the fresh block runs of the respective log file to a respective compacted log file and generating a respective
per-log diff file (220). The method includes, for each respective snapshot, generating a respective checkpoint (216) based on respective
per-log diff files (220) and deleting each respective log file of the plurality of log files.

[Continued on next page]

WO 2024/129644 A | [IN1I])00 0000000 0 0 0

TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,
GH, GM, KE,LR,LS, MW, MZ NA,RW, SC, SD, SL, ST,
SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

WO 2024/129644 PCT/US2023/083495

Garbage Collection in Log-based Block Devices with Snapshots

TECHNICAL FIELD
[0001] This disclosure relates to garbage collection in log-based block devices with

snapshots.

BACKGROUND
[0002] Log-based storage devices store data and metadata in one or more logs. That
is, data is written to disk sequentially rather than scanning blocks across the disk.
Because data is written sequentially, log-based storage devices may transform groups of
small, synchronous writes into a few large, asynchronous sequential write operations.
This can greatly increase write bandwidth by decreasing seek overhead. However, log-
structured volumes and file systems must include careful management of free space. As
the log begins to fill, garbage collection must be undertaken to free space in the log by

deleting data no longer in use.

SUMMARY
[0003] One aspect of the disclosure provides a computer-implemented method for
garbage collection of log-based block devices that, when executed by data processing
hardware, causes the data processing hardware to perform operations. The operations
include obtaining a request to compact a plurality of log files of a log-structured volume.
The log-structured volume includes a plurality of snapshots. Each snapshot of the
plurality of snapshots is representative of a state of the log-structured volume at a
different point in time. For each respective snapshot of the plurality of snapshots of the
log-structured volume, the operations include determining fresh block runs of the
plurality of log files used by the respective snapshot. For each respective log file of the
plurality of log files, the operations include writing the fresh block runs of the respective
log file to a respective compacted log file and generating a respective per-log diff file
mapping a location of the written fresh block runs at the respective log file to a location
of the written fresh block runs at the respective compacted log file. For each respective

snapshot of the plurality of snapshots of the log-structured volume, the operations include

1

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

generating a respective checkpoint based on respective per-log diff files and deleting each
respective log file of the plurality of log files.

[0004] Implementations of the disclosure may include one or more of the following
optional features. In some implementations, determining the fresh block runs includes
using a plurality of interval maps where each respective interval map of the plurality of
interval maps specifies the fresh block runs of a respective log file for each snapshot of
the plurality of snapshots and the operations further include generating, using the
plurality of log files and the plurality of snapshots, the plurality of interval maps. In
some of these implementations, generating the plurality of interval maps includes
scanning, for each snapshot of the plurality of snapshots, each log file of the plurality of
log files.

[0005] Optionally, each fresh block run and each stale block run includes a tuple
comprising a log file name, an offset, and a byte count. The operations further include, in
some examples, selecting the plurality of log files from a set of log files based on a ratio
of a sum of a size of the fresh block runs of each respective log file over a total size of
each respective log file. In some of these examples, the operations further include, for
each respective log file of the set of log files, determining the ratio for each respective log
file using a respective interval map of the plurality of interval maps.

[00006] In some implementations, each log file of the plurality of log files is frozen.
Obtaining the request to compact the plurality of log files may include determining a
threshold amount of time has passed since a previous compaction. Each respective per-
log diff file optionally includes an ordered list of tuples, each tuple representing a
respective fresh block run and including an offset, a log file name, and a byte count. In
some examples, the operations further include, for each deleted respective log file,
deleting the respective per-log diff file. In some examples, each log file of the plurality
of log files includes the fresh block runs representing contiguous blocks of data in use by
the log-structured volume and stale block runs representing contiguous blocks of data no
longer in use by the log-structured volume.

[0007] Another aspect of the disclosure provides a system for garbage collection of
log-based block devices. The system includes data processing hardware and memory

hardware in communication with the data processing hardware. The memory hardware
2

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

stores instructions that when executed on the data processing hardware cause the data
processing hardware to perform operations. The operations include obtaining a request to
compact a plurality of log files of a log-structured volume. The log-structured volume
includes a plurality of snapshots. Each snapshot of the plurality of snapshots is
representative of a state of the log-structured volume at a different point in time. For
each respective snapshot of the plurality of snapshots of the log-structured volume, the
operations include determining fresh block runs of the plurality of log files used by the
respective snapshot. For each respective log file of the plurality of log files, the
operations include writing the fresh block runs of the respective log file to a respective
compacted log file and generating a respective per-log diff file mapping a location of the
written fresh block runs at the respective log file to a location of the written fresh block
runs at the respective compacted log file. For each respective snapshot of the plurality of
snapshots of the log-structured volume, the operations include generating a respective
checkpoint based on respective per-log diff files and deleting each respective log file of
the plurality of log files.

[0008] This aspect may include one or more of the following optional features. In
some implementations, the operations further include generating, using the plurality of
log files and the plurality of snapshots, the plurality of interval maps. In some of these
implementations, generating the plurality of interval maps includes scanning, for each
snapshot of the plurality of snapshots, each log file of the plurality of log files.

[0009] Optionally, each fresh block run and each stale block run includes a tuple
comprising a log file name, an offset, and a byte count. The operations further include, in
some examples, selecting the plurality of log files from a set of log files based on a ratio
of a sum of a size of the fresh block runs of each respective log file over a total size of
each respective log file. In some of these examples, the operations further include, for
each respective log file of the set of log files, determining the ratio for each respective log
file using a respective interval map of the plurality of interval maps.

[0010] In some implementations, each log file of the plurality of log files is frozen.
Obtaining the request to compact the plurality of log files may include determining a
threshold amount of time has passed since a previous compaction. Each respective per-

log diff file optionally includes an ordered list of tuples, each tuple representing a
3

10

15

20

25

WO 2024/129644 PCT/US2023/083495

respective fresh block run and including an offset, a log file name, and a byte count. In
some examples, the operations further include, for each deleted respective log file,
deleting the respective per-log diff file. In some examples, each log file of the plurality
of log files includes the fresh block runs representing contiguous blocks of data in use by
the log-structured volume and stale block runs representing contiguous blocks of data no
longer in use by the log-structured volume.

[0011] The details of one or more implementations of the disclosure are set forth in
the accompanying drawings and the description below. Other aspects, features, and

advantages will be apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS
[0012] FIG. 1 is a schematic view of an example system for performing garbage
collection on log-based block devices with snapshots.
[0013] FIGS. 2A-2D are schematic views of exemplary log files during a compaction
event.
[0014] FIG. 3 is a schematic view of an exemplary snapshot statistics table.
[0015] FIG. 4 a flowchart of an example arrangement of operations for a method of
performing garbage collection on log-based block devices with snapshots.
[0016] FIG. 5 is a schematic view of an example computing device that may be used
to implement the systems and methods described herein.

[0017] Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION
[0018] Log-based storage devices and file systems store data and metadata in one or
more logs. That is, data is written to disk sequentially rather than scattering blocks across
the disk like most conventional file systems. Because data is written sequentially, log-
based storage devices may transform groups of small, synchronous writes into a few
large, asynchronous sequential write operations. This can greatly increase write
bandwidth by decreasing seek overhead. However, log-structured volumes and file

systems must include careful management of free space. As the log begins to fill,

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

garbage collection must be undertaken to free space in the log by deleting data no longer
in use.

[0019] Garbage collection of log-based block devices may be performed by
background workers. These workers first load a checkpoint representing a point-in-time
view of the device, and proceed to read the entirety of the device (e.g., all of the log files
representing the device). These log files are filled with both fresh data that is still in use
and stale data that is no longer in use. Next, the worker writes all of the fresh data out to
new log files. After this process, the new log files only contain in-use data and the
original input log files can be deleted.

[0020] The block device may support “snapshots.” A snapshot is a state of the block
device at a particular point in time. Snapshots serve many important functions, such as
data protection and availability. However, these snapshots increase the complexity of
garbage collection. Without performing garbage collection on the log files associated
with the snapshots, the amount of space consumed on the device will rapidly increase.
However, performing garbage collection on the snapshots is challenging due to the extra
storage and processing costs for the worker, especially when the worker is designed with
limited memory as a background process.

[0021] A naive implementation for garbage collection for such a system would
include opening and reading the log files for each snapshot, writing out a new log file,
and generating a new checkpoint for the snapshot. Each checkpoint defines, for each
snapshot, the location in the log file of respective block runs (i.e., contiguous ranges of
data blocks). However, building checkpoints in this manner requires a significant amount
of memory as the worker must track the location of many data blocks. Because it is
likely many snapshots “share” the same data (i.e., there may be little changes to the data
between snapshots), using such large amounts of memory to generate very similar
checkpoints is an inefficient use of resources.

[0022] Implementations herein are directed toward a compaction controller of a
computing system (e.g., a distributed system) that enables efficient garbage collection or
compaction of log-structured volumes (e.g., persistent disks) that employ snapshots. The
compaction controller performs a scan to determine, using an interval map, which blocks

of the log files are currently fresh or in use. The compaction controller writes all fresh
5

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

blocks to new log files, and each time a block is moved from a source log file to a new
log file, a record is added to a per-log diff file that indicates where the new data is now
stored. The compaction controller merges the compacted log files into the system by
writing a new checkpoint for each snapshot using the per-log diff files. The compaction
controller, instead of tracking all of the new locations of the new data blocks in each of
the different checkpoints, generates the per-log diff files per log file. Thus, each log file
that the compaction controller compacts has an associated per-log diff file and when
building the checkpoints, the compaction controller can go to the same per-log diff file
for each snapshot that uses the respective log file, thus leveraging the limited differences
in data between snapshots to greatly decrease the amount of resources required to
generate the checkpoints.

[0023] Referring to FIG. 1, in some implementations, an example data compaction
system 100 includes a remote system 140 in communication with one or more user
devices 10 via a network 112. The remote system 140 may be a single computer,
multiple computers, or a distributed system (e.g., a cloud environment) having scalable /
elastic resources 142 including computing resources 144 (e.g., data processing hardware)
and/or storage resources 146 (e.g., memory hardware). A data store (i.e., a remote
storage device) may be overlain on the storage resources 146 to allow scalable use of the
storage resources 146 by one or more of the clients (e.g., the user device 10) or the
computing resources 144.

[0024] The storage resources 146 include one or more persistent disks 146, 146P,
146Pa—n. Each persistent disk 146 represents a durable network storage device that
instances (e.g., virtual machines (VMs)) may access like a physical disk. Each persistent
disk 146P may be distributed across several physical disks (e.g., solid-state drives
(SSDs), hard disks, etc.). Each persistent disk 146P is a block-based log-structured
volume. That is, each persistent disk 146P stores data via one or more log files 210,
210a—n. The persistent disks 146P may be divided into one or more segments of any size
(e.g., 32 gigabytes per segment).

[0025] As the remote system 140 receives block runs 214, 214a—n to write to the
persistent disks 146P (e.g., from user 12, the remote system 140 itself, a VM, or any other

remote entity), the remote system 140 writes the block runs 214 to respective log files
6

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

210. Each block run 214 represents or is used to describe a location of a contiguous
range of data blocks 212, 212a—n (e.g., 4k blocks) of the log files 210 and/or persistent
disk 146P. In some examples, each block run 214 is a tuple that includes a log file name
(i.e., areference to which log file 210 the data blocks 212 are at), an offset (i.e, a
location with the respective log file 210), and a byte count (i.e., a length or size of the
range of data blocks 212). In some examples, depending on the file system in use on the
persistent disk 146P, the block runs 214 may represent some or all of a data file.
Periodically, or whenever certain conditions are satisfied, the remote system 140 captures
a snapshot 156, 156a—n of the persistent disk(s) 146P. Each snapshot 156 captures or
represents a state of the persistent disk 146P at the time of the snapshot 156 (i.e., the state
of the block runs 214 at the point in time the snapshot 156 is taken). As used herein,
snapshots 156 may also be referred to as “generations.” Using the snapshots, a user 12 or
the remote system 140 may recall the state of the persistent disk 146P at the point in time
the snapshot 156 was taken for various reasons (e.g., data recovery). The remote system
140 may capture any number of snapshots 156 at any intervals (e.g., after a threshold
period of time has passed since the last snapshot 156 was captured, whenever a threshold
amount of data has been written to the log files 210, etc.). The snapshots 156, which
represent a state of the block runs 214 at some point in the past, are contrasted against the
“live device,” which refers to the state of the block runs 214 of the persistent disk 146P at
the current point in time. That is, the user 12 may query the live device of the persistent
disk 146P to determine a current state of the block runs 214 stored at the persistent disk
146P or query a snapshot 156 to determine a state of the block runs 214 stored at the
persistent disk 146P for a particular point in time in the past.

[0026] To track the locations of the block runs 214 in the log files 210, each snapshot
156 (and the live device) may include one or more checkpoints 216, 216a—n (i.e.,
checkpoint regions) that include pointers to locations within the log files 210 relevant to
the locations of the block runs 214. In some examples, each checkpoint 216 is a mapping
of a logical block address to a location in a respective log file 210. Optionally, there is a
separate log file 210 per segment (e.g., per 32 gigabyte segment). When the remote
system 140 receives a read request to retrieve a particular block run 214 (e.g., from the

live device or a particular snapshot 156), the remote system 140 may reference the
7

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

appropriate checkpoint(s) 216 to determine the one or more log files 210 that include the
requested block run 214 and the location (e.g., an offset) within with the log files 210 that
include the block run 214 or points to the block run 214. Some or all of the checkpoints
216 may be cached to volatile memory of the remote system 140 to decrease access times
of reads and/or writes. In some examples, the remote system 140 uses other options to
reconstruct a device (e.g., tail scanning) when checkpoints 216 are unavailable.

[0027] As the log files 210 accumulate data from written block runs 214, a capacity
of the associated persistent disk 146P decreases. Without garbage collection (i.e.,
compaction), each persistent disk 146P will become unavailable for new data once the
log files 210 of the persistent disk 146P reach the end of the device’s capacity (e.g., a
capacity allotted to the persistent disk 146P by the remote system and/or a capacity
available to the remote system 140). To this end, the remote system 140 executes a
compaction controller 160 that manages garbage collection and/or compaction of the
block runs 214 stored within the log files 210.

[0028] The compaction controller 160 obtains a compaction request 20 to compact
one or more of the log files 210 of the remote system 140. The request may come from a
user 12, via another process or module of the remote system 140, or even generated by
the compaction controller 160. The request may be in response to any number of
compaction triggers being satisfied (e.g., a threshold amount of time having passed since
a previous compaction, an amount of data written, free capacity of the persistent disks
146P, deletion of data or a snapshot 156, etc.). The compaction request 20 may request
that all log files 210 be evaluated for compaction or, alternatively, only a subset of the log
files 210 be evaluated for compaction. For example, the compaction request 20 may
restrict the compaction to log files 210 associated with a particular user 12, a particular
process/module, particular persistent disks 146P located within a particular geographical
region, etc.

[0029] For each respective snapshot 156 included by the compaction request 20, the
compaction controller 160 determines, using one or more interval maps 162, fresh block
runs 214, 214F of the log files 210 used by the snapshot 156. Each interval map 162
specifies the fresh block runs 214F of a respective log file 210 for each snapshot 156.

More specifically, in some implementations, each interval map 162 is a mapping from an
8

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

offset in a respective log file 210 to data (e.g., metadata) about fresh block runs 214F.
The compaction controller 160 may maintain a separate interval map 162 for each log file
210. The compaction controller 160 may generate and/or update the interval maps 162.
For example, the compaction controller 160 scans, during a compaction event, for each
snapshot 156, each log file 210 to generate the interval maps 162.

[0030] The fresh block runs 214F refer to block runs 214 that are in use. That is,
fresh block runs 214F refer to block runs 214 that have not been modified (i.e.,
overwritten). This is in contrast to stale block runs 214, 2148, which refer to block runs
214 that are no longer in use. For example, a user 12 writes a block run 214 “foo.txt” to a
persistent disk 146P. The remote system 140 writes the block run 214 to an appropriate
log file 210 for the persistent disk 146P. This block run 214, at this point in time, is a
fresh block run 214F. At a later point in time, the user 12 modifies “foo.txt.” The remote
system writes the modified block run 214 to a log file 210. The new, modified block run
214 is a fresh block run 214F, however the original block run 214 is now a stale block
run 2148, That is, “foo.txt” now exists twice within the log files 210, with the first one
being stale (because the second one “overwrote” its data) and the second one being fresh.
[0031] After determining the fresh block runs 214F of the log files 210, the
compaction controller 160, for each respective log file 210, writes the fresh block runs
214F of the respective log file 210 to one or more respective new or compacted log files
210. The fresh block runs 214F from one respective log file 210, in some
implementations, are spread across multiple new or compacted log files 210. As
explained in more detail below, the new log files 210 include only the fresh block runs
214F and purposefully exclude any stale block runs 214S. Thus, the new log files 210
include only fresh block runs 214F from the original log files 210. The compaction
controller 160 also, for each respective log file 210, generates a respective per-log diff
file 220, 220a—n. Each respective per-log diff file 220 maps a location of the written
fresh block runs 214F at the original log file 210 to a location of the written fresh block
runs 214F at the new compacted log file 210.

[0032] The compaction controller 160, for each respective snapshot 156 (and for the
live device), generates a respective new checkpoint 216 for the snapshot 156 based on or

using the per-log diff file 220. That is, instead of reading or scanning the entirety of the
9

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

snapshot 156, which may take a substantial amount of memory and other computational
resources, the compaction controller 160 leverages the per-log diff file 220 when
updating or modifying the original checkpoints 216 or generating the new checkpoints
216 for the snapshots 156. In some implementations, the compaction controller 160
generates the checkpoints 216 sequentially for the snapshots 156 by starting with the
oldest snapshot 156 and finishing with the live device. After the compaction controller
160 generates all of the checkpoints 216, the new checkpoints 216 are merged into the
snapshots 156 and the live device (i.e., the live device (or controlling virtual machine,
etc.) 1s aware of the new mappings), the compaction controller 160 may delete the
original, non-compacted log files 210, thus freeing space for the persistent disk 146P. In
some implementations, the compaction controller 160 automatically deletes any log files
210 that are not referenced by any checkpoint 216. For example, once the updated
checkpoints 216 merge, the original log files 210 are no longer referenced, and the
compaction controller 160 may safely delete the unreferenced log files 210. The
checkpoints 216 may merge under any number of conditions. For example, a VM
regularly generates new checkpoints 216 (e.g., due to data written to the live device) and
merges the checkpoints 216 from the compaction controller 160 simultaneously. The
checkpoints 216 may merge during “offline compactions” (e.g., when the controlling VM
is offline). The checkpoints 216 may merge immediately upon generation or after a
period of time if certain conditions are satisfied.

[0033] Referring now to FIG. 2A, a schematic view 200a includes a simplified
example of a persistent disk 146P represented by two log files 210a-b (i.e., a “logl.log”
first log file 210a and a “log2.1og” second log file 210b). The example also includes two
checkpoints 216a—b that includes a “live device” first checkpoint 216a and a “snapshot 17
second checkpoint 216b. The first log file 210a includes four block runs 214 using six
data blocks 212. The block runs 214 include three fresh block runs 214Fa—c and one
stale block run 214Sa. The second log file 210b includes four block runs 214 that use
five data blocks 212. These block runs 214 include three fresh block runs 214Fd—f and
one stale block run 214Sb. Thus, the two log files 210a—b store a total of six fresh block
runs 214Fa—f and two stale block runs 214Sa-b. The stale block runs 214S represent an

opportunity for compaction or garbage collection.
10

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

[0034] Both checkpoints 216a—b include six regions 218, with each region 218
mapping to one of the six fresh block runs 214F. In this example, there were no changes
to the block runs 214 of the log files 210a-b in the time between when the snapshot
checkpoint 216b was created and the current live device checkpoint 216a (which
represents the current state of the live device). Accordingly, each of the corresponding
regions 218 between the two checkpoints 216a—b map to the same fresh block run 214F.
[0035] Referring now to FIG. 2B, a schematic view 200b continues the example of
FIG. 2A. Here, two additional data blocks 212 have been written to the second log file
210b such that the first log file 210a still has six data blocks 212 of data while the second
log file 210b now has seven data blocks 212 of data. Due to the addition of the new data,
the live device checkpoint 216a updates accordingly to include the mapping to the new
data of the log files 210. Due to the update, the mappings between the first checkpoint
216a (i.e., for the live device, which updated) and the second checkpoint 216b (i.e., for
the snapshot 156, which did not update) are no longer the same. Specifically, when an
area 250A of the live device checkpoint 216a mutated (i.e., updated), the snapshot
checkpoint 216b gained an area 250B that maps to two locations in the log files 210a—b
that the live device checkpoint 216a does not map to. While in a conventional log-
structured volume without snapshots, these two locations (i.e., fresh block runs 214Ff,
214Fg) would be marked stale and be compacted, in this example, the snapshot 156
continues to use the fresh block runs 214Ff, 214Fg even after the live device updates,
thus necessitating that the fresh block runs 214Ff, 214Fg stay fresh. As shown in
schematic view 200C of FIG. 2C, after the live device checkpoint 216a mutates in
response to the two new data blocks written to the second log file 210b, of the thirteen
data blocks 212 of the log files 210a-b, two are stale and may be compacted, two are in
use only by the snapshot 156, and the remaining nine are in use by the live device and/or
the snapshot 156.

[0036] Referring now to FIG. 2D, a schematic view 200D continues the examples of
FIGS. 2A-2C with an example of compacting the log files 210a-b. For clarity, each the
individual files of the log files 210 are not labeled. Here, the original log files 210a—b
include two stale block runs 214Sa—b. To compact these log files 210a-b, the

compaction controller 160, in this example, generates two new log files 210c—d (i.e.,
11

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

“log3.log” third log file 210c and “log3.1og” fourth log file 210d) that include all of the
fresh block runs 214F of the original two log files 210a—b that the live device checkpoint
216a references. Notably, the compaction controller 160 does not write the stale block
runs 214Sa-b to the new log files 210c—d. The compaction controller 160 must also
maintain the two fresh block runs 214Ff—g that the live device checkpoint 216a does not
reference but that the snapshot checkpoint 216b does reference. While the compaction
controller 160 may write these fresh block runs 214Ff-g to the log files 210c—d, in this
example, the compaction controller 160 generates a third new log file 210e (i.e.,
“log5.log” fifth log file 210¢) that includes only the fresh block runs 214Ff—g not
referenced by the live device checkpoint 216a. By segregating these fresh block runs
214Ff—g into a separate log file 210e, future compactions may be simpler, as when the
snapshot 156 associated with the snapshot checkpoint 216b is deleted, no other
checkpoints 216 will reference the associated log file 210e, and the log file 210e may be
deleted without any other compaction required.

[0037] While generating the new log files 210c—e, the compaction controller 160 also
generates a corresponding per-log diff file 220a—b for each of the original log files 210a—
b. Each per-log diff file 220 tracks movement of blocks still referenced by the live
device checkpoint 216 or any snapshot checkpoint 216 from the compacted log file 210
to the new destination (e.g., a newly generated log file 210). In some implementations,
each per-diff log file 220 includes an ordered list of tuples (e.g., a tuple includes an offset
element, a log file name element, and a byte count element). In some examples, each
tuple includes {offset, block run} elements. Here, the offset element refers to the offset
of the first data block 212 of the block run 214, and the block run 214 refers to a location
of a contiguous range of data blocks 212. Each block run 214 may define the data blocks
212 used by the persistent disk 146P. The block run 214, in some examples, includes a
tuple with <filename, offset, byte count> elements.

[0038] In the example of FIG. 2D, two log files 210a-b are compacted, and
accordingly, the compaction controller 160 generates two per-log diff files 220a—b. Here,
the first per-log diff file 220a corresponds to the first log file 210a and the second per-log
diff file 220b corresponds to the second log file 210b. The first per-log diff file 220a

maps each of the block runs 214 (or block runs) of the first log file 210a to their
12

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

destination locations in the new log files 210c—d. For example, the block run 214Fa
located at data block ‘0’ in the first log file 210a is now located at data block 3’ of the
first new log file 210c. Similarly, the second per-log diff file 220b maps the moved block
runs 214 and/or block runs of the second log file 210b to the new logs files 210c—d. For
example, the second per-log diff file 220b maps the fresh block run 214Fd located at data
block ‘1’ of the second log file 210b to data block ‘0’ of the first new log file 210c.
[0039] Optionally, the compaction controller 160 periodically deletes the per-log diff
files 220. For example, when the log file 210 the per-log diff file 220 is associated with
is deleted (i.e., because the live device and snapshots 156 do not reference the log file
210), the per-diff log file 220 is also deleted.

[0040] The per-log diff files 220 summarize the shuffling of data that happens for
each log file 210 during compaction. The per-log diff files 220 are relatively small (e.g,,
less than 10 mebibytes). Use of per-log diff files 220 instead of using one checkpoint
216 per compacted snapshot 156 is advantageous, as the per-log diff files 220 allow the
compaction controller 160 to scale compaction to any number of snapshots 156 without
requiring similarly scaling memory requirements. When using checkpoints 216 instead
of per-log diff files 220, when one block 212 is referenced by all snapshots 156, the
movement that occurs during the compaction of this block must be duplicated in all of the
in-memory maps (i.e., one per snapshot 156), which greatly increases memory usage.
[0041] Referring now to FIG. 3, in some implementations, the compaction controller
160 determines when to run a compaction (e.g., generate a compaction request 20) and/or
a type of compaction to execute (e.g., a standard compaction that only compacts the live
device versus a heavy compaction that compacts the live device and at least some
snapshots 156). In some implementations, the compaction controller 160 executes a
heavy compaction (i.e., compacts the snapshots 156) whenever a snapshot 156 is deleted.
However, in some scenarios (e.g., when snapshot 156 churn is high), this technique may
generate a large number of compactions. Additionally or alternatively, the compaction
controller 160 determines a frequency and/or a type of compaction based on an “IS-
density” of the live device and/or one or more snapshots 156. As used herein, the IS-
density refers to a ratio of bytes used by the live device or snapshot 156 over a total size

of the log file 210. Optionally, the compaction controller 160, during a compaction
13

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

event, selects the log files 210 eligible for compaction based on the IS-density of the
respective log file 210 (i.e., based on a ratio of a sum of a size of the fresh block runs of
each respective log file over a total size of each respective log file). In this way, only a
subset of available log files 210 may be compacted during any particular compaction
event. As described in more detail below, the compaction controller 160, in some
implementations, determines the [S-density using a respective interval map 162. In some
implementations, only “frozen” log files 210 associated with snapshots 156 are eligible
for compaction. Frozen log files 210 refer to log files 210 that are restricted from having
new data written. That is, the remote system 140 will not write data to frozen log files
210.

[0042] To determine or track the IS-density, in some examples, the compaction
controller 160 maintains a snapshot statistics table 300 for each log file 210. The
compaction controller 160 may generate a new snapshot statistics table 300 periodically
(e.g., whenever the compaction controller 160 executes a heavy compaction) and
otherwise will maintain the snapshot statistics table 300 until a new snapshot statistics
table 300 is generated.

[0043] In some implementations, the snapshot statistics table 300 stores a number of
statistics 302. For example, the snapshot statistics table 300 stores a span statistic 302,
302A,; a garbage statistic 302, 302B; and a new blocks statistic 302, 302C. The span
statistic 302A defines, per respective snapshot 156 (i.e. per “generation”), a number of
bytes in the log file 210 that are mapped or referenced by the respective snapshot 156 and
each previous snapshot 156 (i.e., snapshots captured at an earlier point in time relative to
the respective snapshot 156). The garbage statistic 302B defines, per respective snapshot
156, an amount of garbage bytes (i.e., bytes that are not referenced by any checkpoint
216) if the respective snapshot 156 and all previous snapshots 156 (i.e., snapshots
captured at an earlier point in time relative to the respective snapshot 156) were deleted.
The new block statistic 302C defines, per snapshot 156, a number of bytes in the log file
210 that are new relative to the previous snapshot 156.

[0044] Turning to the exemplary snapshot statistics table 300 of FIG. 3, here, the
snapshot statistics table 300 includes statistics for five snapshots 156 (i.e., generations 1—-

5) and for seventeen bytes (or, alternatively, blocks). The first snapshot 156 (i.e., “Gen
14

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

1) includes ten new data bytes (indicated by the cross-hatch) written to the associated
log file 210 (i.e., at byte locations 1-5, 8-10, 13, and 14) and seven byte locations are
still empty. Accordingly, the span statistic 302A and the new block statistic 302C for the
first snapshot 156 are ten. The garbage statistic 302B (which is four in this example),
requires knowledge from the next snapshot 156 to determine. The second snapshot
includes seven data bytes written to the associated log file (i.e., at byte locations 3—6, 9,
10, and 13). Four of the data bytes used by the first snapshot 156 are no longer used by
the second snapshot, and therefore the garbage statistic 302B for the first snapshot 156 is
four. The second snapshot 156 uses one additional data byte not used by the first
snapshot 156, so the span statistic 302A for the second snapshot (i.e., “Gen 2”) grows to
eleven while the new block statistic 302C is set to one. A third snapshot 156 includes
data bytes at byte locations 4, 5,9, 11, 12, 15, and 16. The four new bytes added (i.e., at
byte locations 11, 12, 15, and 16) set the span statistic 302A for the third snapshot 156 to
fifteen and the new block statistic 302C to four. The snapshot statistics table 300
continues in this fashion for each snapshot 156 that references the associated log file 210.
In some examples, the compaction controller 160 builds each snapshot statistics table 300
when performing a compaction (e.g., a heavy compaction) using the corresponding
interval maps 162 and checkpoints 216.

[0045] At the beginning of a compaction, the compaction controller 160 may
determine a number of checkpoints 216 and determine which checkpoints 216 have been
deleted. However, storing all possibilities in the snapshot statistics table 300 generally
requires significant resources as the number of snapshots 156 grows (i.e., in order to have
data in case any subset of snapshots 156 are deleted). Instead, in some examples, the
snapshot statistics table 300 is ideal for rolling schedules of snapshots 156 where the
older snapshots 156 are deleted first. For example, if all snapshots 156 with generation a
lower than N are removed, the compaction controller 160 determines a minimum number
of garbage bytes based on the garbage statistic 302B from the N-1 snapshot 156. This is
a minimum, as there may be potentially more garbage bytes from live device activity or
from other deleted snapshots 156 with a generation larger than N. Accordingly, the
compaction controller 160 may determine an upper bound of the IS-density of a

respective log with
15

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

L—garbage[N—1]
L

ISD = 1)

[0040] Here, ISD refers to the 1S-density, L refers to a size (e.g., in bytes) of the
respective log file 210, and garbage| N-1] refers to the garbage statistic 302B of the
previous snapshot 156.

[0047] Using the new block statistic 302C from the snapshot statistics table 300, the
compaction controller 160, in some examples, determines major changes in bytes mapped
by different snapshots 156. In the example snapshot statistics table 300 of FIG. 3, itis
clear that, while the third snapshot 156 (i.e., “Gen 37) reuses a lot of blocks used by
previous snapshots 156, the snapshot 156 also introduces a lot of fresh data. When two
adjacent snapshots 156 both introduce a lot of fresh data, deletion of the older snapshot
156 may indicate an appropriate time to execute a heavy compaction. The new block
statistic 302C can correctly be summed for adjacent snapshots. For example, when
generations [X, Y] are deleted and their summed new bytes (determined from the new
block statistic 302C) is significant (e.g., above a threshold amount), while the new block
statistic 302C for the snapshot 156 [Y+1] is also significant, then a compaction may also
yield significant byte savings.

[0048] FIG. 4 is a flowchart of an exemplary arrangement of operations for a method
400 of garbage collection in log-based block devices with snapshots. The computer-
implemented method 400, when executed by data processing hardware 144, causes the
data processing hardware 144 to perform operations. The method 400, at operation 402,
includes obtaining a request 20 to compact a plurality of log files 210 of a log-structured
volume 146P. Each log file 210 of the plurality of log files 210 may include fresh block
runs 214F in use by the log-structured volume 146P and stale block runs 164S no longer
in use by the log-structured volume 146P. The log-structured volume 146P includes a
plurality of snapshots 156. Each snapshot 156 of the plurality of snapshots 156 is
representative of a state of the log-structured volume 146P at a different point in time.
[0049] At operation 404, the method 400 includes, for each respective snapshot 156
of the plurality of snapshots 156 of the log-structured volume 146P, determining the fresh

16

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

block runs 214F of the plurality of log files 210 used by the respective snapshot 156.
Optionally, the method 400 includes using a plurality of interval maps 162 to determine
the fresh block runs 214F. Each respective interval map 162 of the plurality of interval
maps 162 specifies the fresh block runs 214F of a respective log file 210 for each
snapshot 156 of the plurality of snapshots 156. For each respective log file 210 of the
plurality of log files 210, the method 400, at operation 406, includes writing the fresh
block runs 214F of the respective log file 210 to a respective compacted log file 210 and
generating a respective per-log diff file 220 mapping a location of the written fresh block
runs 214F at the respective log file 210 to a location of the written fresh block runs 214F
at the respective compacted log file 210.

[0050] At operation 408, the method 400 includes, for each respective snapshot 156
of the plurality of snapshots 156 of the log-structured volume 146P, generating a
respective checkpoint 216 based on respective per-log diff files 220. At operation 410,
the method 400 includes deleting each respective log file 210 of the plurality of log files
210.

[0051] FIG. 5 is a schematic view of an example computing device 500 that may be
used to implement the systems and methods described in this document. The computing
device 500 is intended to represent various forms of digital computers, such as laptops,
desktops, workstations, personal digital assistants, servers, blade servers, mainframes,
and other appropriate computers. The components shown here, their connections and
relationships, and their functions, are meant to be exemplary only, and are not meant to
limit implementations of the inventions described and/or claimed in this document.
[0052] The computing device 500 includes a processor 510, memory 520, a storage
device 530, a high-speed interface/controller 540 connecting to the memory 520 and
high-speed expansion ports 550, and a low speed interface/controller 560 connecting to a
low speed bus 570 and a storage device 530. Each of the components 510, 520, 530, 540,
550, and 560, are interconnected using various busses, and may be mounted on a
common motherboard or in other manners as appropriate. The processor 510 can process
instructions for execution within the computing device 500, including instructions stored
in the memory 520 or on the storage device 530 to display graphical information for a

graphical user interface (GUI) on an external input/output device, such as display 580
17

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

coupled to high speed interface 540. In other implementations, multiple processors
and/or multiple buses may be used, as appropriate, along with multiple memories and
types of memory. Also, multiple computing devices 500 may be connected, with each
device providing portions of the necessary operations (e.g., as a server bank, a group of
blade servers, or a multi-processor system).

[0053] The memory 520 stores information non-transitorily within the computing
device 500. The memory 520 may be a computer-readable medium, a volatile memory
unit(s), or non-volatile memory unit(s). The non-transitory memory 520 may be physical
devices used to store programs (e.g., sequences of instructions) or data (e.g., program
state information) on a temporary or permanent basis for use by the computing device
500. Examples of non-volatile memory include, but are not limited to, flash memory and
read-only memory (ROM) / programmable read-only memory (PROM) / erasable
programmable read-only memory (EPROM) / electronically erasable programmable read-
only memory (EEPROM) (e.g., typically used for firmware, such as boot programs).
Examples of volatile memory include, but are not limited to, random access memory
(RAM), dynamic random access memory (DRAM), static random access memory
(SRAM), phase change memory (PCM) as well as disks or tapes.

[0054] The storage device 530 is capable of providing mass storage for the
computing device 500. In some implementations, the storage device 530 is a computer-
readable medium. In various different implementations, the storage device 530 may be a
floppy disk device, a hard disk device, an optical disk device, or a tape device, a flash
memory or other similar solid state memory device, or an array of devices, including
devices in a storage area network or other configurations. In additional implementations,
a computer program product is tangibly embodied in an information carrier. The
computer program product contains instructions that, when executed, perform one or
more methods, such as those described above. The information carrier is a computer- or
machine-readable medium, such as the memory 520, the storage device 530, or memory
on processor 510.

[0055] The high speed controller 540 manages bandwidth-intensive operations for the
computing device 500, while the low speed controller 560 manages lower bandwidth-

intensive operations. Such allocation of duties is exemplary only. In some
18

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

implementations, the high-speed controller 540 is coupled to the memory 520, the display
580 (e.g., through a graphics processor or accelerator), and to the high-speed expansion
ports 550, which may accept various expansion cards (not shown). In some
implementations, the low-speed controller 560 is coupled to the storage device 530 and a
low-speed expansion port 590. The low-speed expansion port 590, which may include
various communication ports (e.g., USB, Bluetooth, Ethernet, wireless Ethernet), may be
coupled to one or more input/output devices, such as a keyboard, a pointing device, a
scanner, or a networking device such as a switch or router, e.g., through a network
adapter.

[0056] The computing device 500 may be implemented in a number of different
forms, as shown in the figure. For example, it may be implemented as a standard server
500a or multiple times in a group of such servers 500a, as a laptop computer S00b, or as
part of a rack server system 500c.

[0057] Various implementations of the systems and techniques described herein can
be realized in digital electronic and/or optical circuitry, integrated circuitry, specially
designed ASICs (application specific integrated circuits), computer hardware, firmware,
software, and/or combinations thereof. These various implementations can include
implementation in one or more computer programs that are executable and/or
interpretable on a programmable system including at least one programmable processor,
which may be special or general purpose, coupled to receive data and instructions from,
and to transmit data and instructions to, a storage system, at least one input device, and at
least one output device.

[0058] A software application (i.e., a software resource) may refer to computer
software that causes a computing device to perform a task. In some examples, a software
application may be referred to as an “application,” an “app,” or a “program.” Example
applications include, but are not limited to, system diagnostic applications, system
management applications, system maintenance applications, word processing
applications, spreadsheet applications, messaging applications, media streaming
applications, social networking applications, and gaming applications.

[0059] These computer programs (also known as programs, software, software

applications or code) include machine instructions for a programmable processor, and can
19

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

be implemented in a high-level procedural and/or object-oriented programming language,
and/or in assembly/machine language. As used herein, the terms “machine-readable
medium” and “computer-readable medium” refer to any computer program product, non-
transitory computer readable medium, apparatus and/or device (e.g., magnetic discs,
optical disks, memory, Programmable Logic Devices (PLDs)) used to provide machine
instructions and/or data to a programmable processor, including a machine-readable
medium that receives machine instructions as a machine-readable signal. The term
“machine-readable signal” refers to any signal used to provide machine instructions
and/or data to a programmable processor.

[0060] The processes and logic flows described in this specification can be performed
by one or more programmable processors, also referred to as data processing hardware,
executing one or more computer programs to perform functions by operating on input
data and generating output. The processes and logic flows can also be performed by
special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an
ASIC (application specific integrated circuit). Processors suitable for the execution of a
computer program include, by way of example, both general and special purpose
microprocessors, and any one or more processors of any kind of digital computer.
Generally, a processor will receive instructions and data from a read only memory or a
random access memory or both. The essential elements of a computer are a processor for
performing instructions and one or more memory devices for storing instructions and
data. Generally, a computer will also include, or be operatively coupled to receive data
from or transfer data to, or both, one or more mass storage devices for storing data, e.g.,
magnetic, magneto optical disks, or optical disks. However, a computer need not have
such devices. Computer readable media suitable for storing computer program
instructions and data include all forms of non-volatile memory, media and memory
devices, including by way of example semiconductor memory devices, e.g., EPROM,
EEPROM, and flash memory devices;, magnetic disks, e.g., internal hard disks or
removable disks; magneto optical disks; and CD ROM and DVD-ROM disks. The
processor and the memory can be supplemented by, or incorporated in, special purpose

logic circuitry.

20

10

15

WO 2024/129644 PCT/US2023/083495

[0061] To provide for interaction with a user, one or more aspects of the disclosure
can be implemented on a computer having a display device, e.g., a CRT (cathode ray
tube), LCD (liquid crystal display) monitor, or touch screen for displaying information to
the user and optionally a keyboard and a pointing device, e.g., a mouse or a trackball, by
which the user can provide input to the computer. Other kinds of devices can be used to
provide interaction with a user as well; for example, feedback provided to the user can be
any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile
feedback; and input from the user can be received in any form, including acoustic,
speech, or tactile input. In addition, a computer can interact with a user by sending
documents to and receiving documents from a device that is used by the user; for
example, by sending web pages to a web browser on a user's client device in response to
requests received from the web browser.

[0062] A number of implementations have been described. Nevertheless, it will be
understood that various modifications may be made without departing from the spirit and
scope of the disclosure. Accordingly, other implementations are within the scope of the

following claims.

21

10

15

20

25

WO 2024/129644 PCT/US2023/083495

WHAT IS CLAIMED IS:
L. A computer-implemented method (400) executed by data processing hardware
(144) that causes the data processing hardware (144) to perform operations comprising:

obtaining a request (20) to compact a plurality of log files (210) of a log-
structured volume (146P), the log-structured volume (146P) comprising a plurality of
snapshots (156), each snapshot (156) of the plurality of snapshots (156) representative of
a state of the log-structured volume (146P) at a different point in time;

for each respective snapshot (156) of the plurality of snapshots (156) of the log-
structured volume (146P), determining fresh block runs (214) of the plurality of log files
(210) used by the respective snapshot (156);

for each respective log file (210) of the plurality of log files (210):

writing the fresh block runs (214) of the respective log file (210) to one or
more respective compacted log files (210); and
generating a respective per-log diff file mapping a location of the written

fresh block runs (214) at the respective log file (210) to a location of the written fresh
block runs (214) at the one or more respective compacted log files (210);

for each respective snapshot (156) of the plurality of snapshots (156) of the log-
structured volume (146P), generating a respective checkpoint (216) based on respective
per-log diff files (220); and

deleting each respective log file (210) of the plurality of log files (210).

2. The method (400) of claim 1, wherein:

determining the fresh block runs (214) comprises using a plurality of interval
maps (162), each respective interval map (162) of the plurality of interval maps (162)
specifying the fresh block runs (214) of a respective log file (210) for each snapshot
(156) of the plurality of snapshots (156); and

the operations further comprise generating, using the plurality of log files (210)
and the plurality of snapshots (156), the plurality of interval maps (162).

22

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

3. The method (400) of claim 2, wherein generating the plurality of interval maps
(162) comprises scanning, for each snapshot (156) of the plurality of snapshots (156),
each log file (210) of the plurality of log files (210).

4. The method (400) of any of claims 1-3, wherein each fresh block (212) run and
each stale block (212) run comprises a tuple comprising a log file name, an offset, and a

byte count.

5. The method (400) of any of claims 1-4, wherein the operations further comprise
selecting the plurality of log files (210) from a set of log files (210) based on a ratio of a
sum of a size of the fresh block runs (214) of each respective log file (210) over a total

size of each respective log file (210).

0. The method (400) of claim 5, wherein the operations further comprise, for each
respective log file (210) of the set of log files (210), determining the ratio for each
respective log file (210) using a respective interval map (162) specifying the fresh block
runs (214) of a respective log file (210) for each snapshot (156) of the plurality of
snapshots (156).

7. The method (400) of any of claims 1-6, wherein each log file (210) of the
plurality of log files (210) is frozen.

8. The method (400) of any of claims 1-7, wherein obtaining the request (20) to
compact the plurality of log files (210) comprises determining a threshold amount of time

has passed since a previous compaction.
9. The method (400) of any of claims 1-8, wherein each respective per-log diff file

(220) comprises an ordered list of tuples, each tuple representing a respective fresh block

(212) run and comprising an offset, a log file name, and a byte count.

23

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

10. The method (400) of any of claims 1-9, wherein the operations further comprise,

for each deleted respective log file (210), deleting the respective per-log diff file (220).

11. The method (400) of any of claims 1-10, wherein each log file (210) of the
plurality of log files (210) comprises the fresh block runs (214) representing contiguous
blocks of data in use by the log-structured volume (146P) and stale block runs (214)
representing contiguous blocks of data no longer in use by the log-structured volume

(146P).

12. A system (100) comprising:

data processing hardware (144); and

memory hardware (146) in communication with the data processing hardware
(144), the memory hardware (146) storing instructions that when executed on the data
processing hardware (144) cause the data processing hardware (144) to perform
operations comprising:

obtaining a request (20) to compact a plurality of log files (210) of a log-
structured volume (146P), the log-structured volume (146P) comprising a plurality of
snapshots (156), each snapshot (156) of the plurality of snapshots (156) representative of
a state of the log-structured volume (146P) at a different point in time;

for each respective snapshot (156) of the plurality of snapshots (156) of the log-
structured volume (146P), determining fresh block runs (214) of the plurality of log files
(210) used by the respective snapshot (156);

for each respective log file (210) of the plurality of log files (210):

writing the fresh block runs (214) of the respective log file (210) to one or
more respective compacted log files (210); and
generating a respective per-log diff file mapping a location of the written

fresh block runs (214) at the respective log file (210) to a location of the written fresh
block runs (214) at the one or more respective compacted log files (210);

for each respective snapshot (156) of the plurality of snapshots (156) of the log-
structured volume (146P), generating a respective checkpoint (216) based on respective

per-log diff files (220); and
24

10

15

20

25

30

WO 2024/129644 PCT/US2023/083495

deleting each respective log file (210) of the plurality of log files (210).

13. The system (100) of claim 12, wherein:

determining the fresh block runs (214) comprises using a plurality of interval
maps (162), each respective interval map (162) of the plurality of interval maps (162)
specifying the fresh block runs (214) of a respective log file (210) for each snapshot
(156) of the plurality of snapshots (156); and

the operations further comprise generating, using the plurality of log files (210)
and the plurality of snapshots (156), the plurality of interval maps (162).

14. The system (100) of claim 13, wherein generating the plurality of interval maps
(162) comprises scanning, for each snapshot (156) of the plurality of snapshots (156),
each log file (210) of the plurality of log files (210).

15. The system (100) of any of claims 12—14, wherein each fresh block (212) run and
each stale block (212) run comprises a tuple comprising a log file name, an offset, and a

byte count.

16. The system (100) of any of claims 12—15, wherein the operations further comprise
selecting the plurality of log files (210) from a set of log files (210) based on a ratio of a
sum of a size of the fresh block runs (214) of each respective log file (210) over a total

size of each respective log file (210).

17. The system (100) of claim 16, wherein the operations further comprise, for each
respective log file (210) of the set of log files (210), determining the ratio for each
respective log file (210) using a respective interval map (162) specifying the fresh block
runs (214) of a respective log file (210) for each snapshot (156) of the plurality of
snapshots (156).

18. The system (100) of any of claims 12—17, wherein each log file (210) of the

plurality of log files (210) is frozen.
25

10

15

WO 2024/129644 PCT/US2023/083495

19. The system (100) of any of claims 12—18, wherein obtaining the request (20) to
compact the plurality of log files (210) comprises determining a threshold amount of time

has passed since a previous compaction.

20. The system (100) of any of claims 12—19, wherein each respective per-log diff file
(220) comprises an ordered list of tuples, each tuple representing a respective fresh block

(212) run and comprising an offset, a log file name, and a byte count.

21. The system (100) of any of claims 12-20, wherein the operations further
comprise, for each deleted respective log file (210), deleting the respective per-log diff
file (220).

22, The system (100) of any of claims 12-21, wherein each log file (210) of the
plurality of log files (210) comprises the fresh block runs (214) representing contiguous
blocks of data in use by the log-structured volume (146P) and stale block runs (214)
representing contiguous blocks of data no longer in use by the log-structured volume

(146P).

26

PCT/US2023/083495

WO 2024/129644

1/8

Il
)|
«_=/
u—eQcc
‘0ce
1 1 1 1T T T

(014

¢
<))

09| Jojjonuo)d CO_“_OMQ wopd

u-egLz ‘olc

u-edor|
'dovl ‘orl

PCT/US2023/083495

WO 2024/129644

2/8

Vv00<Z .\\

w_‘N.\\

w_\N.\A

V¢ 9Old

. o134

Julodxoay9

| Joysdeusg

N~ Egl¢

Julodxoay9

201A8(Al

asyvlic
A {

1/ q0lc

Bo| zbo|

v/ eQlc
—\ O 6oL Bo|

PCT/US2023/083495

WO 2024/129644

3/8

d00¢ .\\

_ _ v/ a9lc
.\ uiodxyoey)n
8ie | Joysdeus
S N~ B9LT
ohe v/ V0GZ Julodyoey9
20IAa(] BAIT
HyleZ asvic
IR)
AN
_ R
Udvic . CE4%4 PIFIT RIS
AR "
qaole
+ \J Bo| z6o|
e F R R R R R R R TR
—— NRINNIINRIN — _
°dvic AR GEAWA CEARS
NNNNNNNNNNS "
{) 2oLz
9 G 14 e c | O 6oribol

PCT/US2023/083495

WO 2024/129644

4/8

¢ Ol

X~

IC 44
VA |

Yy

o134

Julodxoay9
| Joysdeusg

N~ Egl¢

Julodxoay9
hll-Tg =T\

CE|4%4

N
DODISSNSNNNN,
NN
DSONNNNNNNNNY,

000¢ .\\

—

pPdvLcC

SIS

Y

1/ q0lc

Bo| zbo|

RE 4%

G 1%

|

. e0lc

O 6oL Bo|

PCT/US2023/083495

WO 2024/129644

5/8

dc 9ld

I/! a9lc
Julodxoay9
| Joysdeusg
1//| BglLC
Julodo8yD
20IAa(] BAIT
801LC ~ y Dol gho i
T i
R asv iz
i d0lC~ idvic
UO\N./} « DO_VDO_ p— N @O_N@O_ N
NN A
9012~ NN
vw —yy 0o'cbo| v Bo| L Bo
BIV1C pIvic wwwwwwg N4

9 ¢ v ¢ ¢ |

aooc .\\

0 eolz—" 9

ivic

pielz 1L 0

BeSYIC

d0ce ‘02 ™~

[{{1} | ‘Bol'gbo| <=} "~

{{1} ‘0 ‘Bo|pbol<=1}]

&p.qBojzbo

B0ZC '02C

[{{1} 0 ‘Bor'gbol <= ¢} I {1} ‘¢ 'Bo|'gbo|<=0}]

&piq Boy 6oy

PCT/US2023/083495
6/8

WO 2024/129644

¢ Old

b Ll R S
[AR T il SR %
KR
v | oL | st €
N N S SRIEARALLRRICAARS 4
B

o | v | oL K b
lalstwnnler|alin|lo]lse|l el z|lols|v]|e|z L |ueo

LA

onm \ ﬂ<~om A
208 §zoe COF cle
MON e uedg

obeqies)

00€ .\

WO 2024/129644 PCT/US2023/083495

7/8

400
(-

OBTAINING A REQUEST TO COMPACT A PLURALITY OF LOG FILES
OF A LOG-STRUCTURED VOLUME, THE LOG-STRUCTURED
VOLUME INCLUDING A PLURALITY OF SNAPSHOTS, EACH

SNAPSHOT OF THE PLURALITY OF SNAPSHOTS REPRESENTATIVE

OF A STATE OF THE LOG-STRUCTURED VOLUME AT A DIFFERENT

POINT IN TIME

402

FOR EACH RESPECTIVE SNAPSHOT OF THE PLURALITY OF
SNAPSHOTS OF THE LOG-STRUCTURED VOLUME, DETERMINING
FRESH BLOCK RUNS OF THE PLURALITY OF LOG FILES USED BY

THE RESPECTIVE SNAPSHOT

404

FOR EACH RESPECTIVE LOG FILE OF THE PLURALITY OF LOG
FILES, WRITING THE FRESH BLOCK RUNS OF THE RESPECTIVE
LOG FILE TO A RESPECTIVE COMPACTED LOG FILE AND
GENERATING A RESPECTIVE PER-LOG DIFF FILE MAPPING A
LOCATION OF THE WRITTEN FRESH BLOCK RUNS AT THE
RESPECTIVE LOG FILE TO A LOCATION OF THE WRITTEN FRESH
BLOCK RUNS AT THE RESPECTIVE COMPACTED LOG FILE

40

Y

FOR EACH RESPECTIVE SNAPSHOT OF THE PLURALITY OF
SNAPSHOTS OF THE LOG-STRUCTURED VOLUME, GENERATING A
RESPECTIVE CHECKPOINT BASED ON RESPECTIVE PER-LOG DIFF

FILES 408

DELETING EACH RESPECTIVE LOG FILE OF THE PLURALITY OF
LOG FILES

41

FIG. 4

PCT/US2023/083495

WO 2024/129644

3009

G Old

049

09¢

0Gg

\ 0lS

0£S 0cs

oom.(\»

08G

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2023/083495

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F12/02

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

5 January 2021 (2021-01-05)

claims 1-23; figures 1-15

column 10, line 43 - column 38, line 42

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2022/066883 Al (WANG WENGUANG [US] ET 1-6,
AL) 3 March 2022 (2022-03-03) 8-17,
19-22
Y paragraph [0012] - paragraph [0086] 7,18
claims 1-21; figures 1-7
Y CN 115 421 648 A (UNIV TSINGHUA) 7,18
2 December 2022 (2022-12-02)
paragraph [0016] - paragraph [0115]
A US 10 885 022 Bl (TIAN SHIKUN [CN]) 1-22

-/—

|__K| Further documents are listed in the continuation of Box C.

‘z‘ See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

12 April 2024

Date of mailing of the international search report

26/04/2024

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Alvado Carcel, Lucia

Form PCT/ASA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2023/083495

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A LEE KWANGJIN ET AL: "Validity Tracking
Based Log Management for In-Memory
Databases",

IEEE ACCESS, IEEE, USA,

vol. 9, 9 August 2021 (2021-08-09), pages
111493-111504, XP011871767,

DOI: 10.1109/ACCESS.2021.3103862
[retrieved on 2021-08-12]

page 111496 - page 111499

figures 1-13

A US 7 925 856 Bl (GREENE CHRISTOPHER [US])
12 April 2011 (2011-04-12)

column 4, line 45 - column 4, line 62

1-22

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2023/083495
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2022066883 Al 03-03-2022 Us 2022066883 Al 03-03-2022
Us 2023251997 A1l 10-08-2023
CN 115421648 A 02-12-2022 NONE
US 10885022 Bl 05-01-2021 CN 115398874 A 25-11-2022
EP 3695586 A2 19-08-2020
SG 11202002732T A 29-04-2020
W 202111564 A 16-03-2021
Us 10885022 B1 05-01-2021
WO 2019228569 A2 05-12-2019
US 7925856 Bl 12-04-2011 NONE

Form PCT/ASA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report
	Page 39 - wo-search-report

