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QUALITY PREDICTION USING PROCESS DATA

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of, and priority based on, 35 U.S.C. § 119 to U.S.
Provisional Application No. 63/223491, filed July 19, 2021 and U.S. Non-Provisional Application
No. 17/581,113, filed January 21, 2022, the disclosures of each of which are incorporated
herein by reference in their entirety.

TECHNICAL FIELD

The present disclosure relates generally to computer-generated predictions for bonding

operations.
BACKGROUND

Industries, such as manufacturing and construction, use bonding techniques to join
materials together (e.g., welding techniques). Quality assurance tests can be used to determine
the quality of a bond. For instance, in destructive testing a subset of bonds are destroyed to
make predictions regarding the quality of non-destroyed bonds. In conventional nondestructive
testing, testers manually inspect bonds to make predictions regarding the quality of the bond.

SUMMARY

In an example embodiment, a computer-program product tangibly embodied in a non-
transitory machine-readable storage medium is provided. The computer-program product
includes instructions operable to cause a computing system to access a machine learning
model trained on training data of first bonding operations. The first bonding operations
comprise operations to bond a first set of multiple wires to a first set of surfaces. The machine
learning model is trained by supervised learning comprising receiving the training data. The
training data comprises process data generated from measurements of the first bonding
operations; and statuses of the multiple wires after bonding to the first set of surfaces. Each
status of the statuses comprises one or more candidate outcomes for an objective related to
detecting one or more anomalies in the first bonding operations. The machine learning model is
trained by supervised learning comprising generating one or more weights for the process data
such that the process data input to the machine learning model predicts the one or more
candidate outcomes for the objective. The computer-program product includes instructions
operable to cause a computing system to receive input data indicating process data generated
from measurements of second bonding operations. The second bonding operations comprise
operations to bond a second set of multiple wires to a second set of surfaces. The second set
of multiple wires are different than the first set of multiple wires. The second set of surfaces are
different than the first set of surfaces. The computer-program product includes instructions
operable to cause a computing system to weight the input data according to the machine
learning model. The computer-program product includes instructions operable to cause a

computing system to generate an anomaly predictor indicating a risk for an anomaly occurrence
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in the second bonding operations based on weighting the input data according to the machine
learning model. The computer-program product includes instructions operable to cause a
computing system to output the anomaly predictor to control the second bonding operations.

In one or more embodiments, the first bonding operations bond wires of the first set of
multiple wires to corresponding surfaces of the first set of surfaces to form integrated circuit
chips. The one or more candidate outcomes comprise one or more defective chip outcomes for
the integrated circuit chips in the first bonding operations. The instructions are operable to
cause the computing system to generate the anomaly predictor for risk of the anomaly in an
integrated circuit chip manufacturing process in the second bonding operations.

In one or more embodiments, the instructions are operable to cause the computing
system to receive feedback indicating that the anomaly predictor correctly or incorrectly
predicted the anomaly in a particular chip manufactured in the second bonding operations. The
instructions are operable to cause the computing system to update the machine learning model
based on the feedback.

In one or more embodiments, the second bonding operations are performed by a chip
manufacturing system. The instructions are operable to cause the computing system to adjust
bonding operations subsequent to the second bonding operations by the chip manufacturing
system based on one or more of: the anomaly predictor indicating the risk for the anomaly
occurrence in the second bonding operations; and feedback indicating that the anomaly
predictor correctly or incorrectly predicted the anomaly occurrence in a particular chip
manufactured in the second bonding operations.

In one or more embodiments, the instructions are operable to cause the computing
system to receive the training data by selectively choosing a subset of parameter types
observed in the first bonding operations. The measurements of the first bonding operations are
measurements for the subset of parameter types.

In one or more embodiments, the training data comprises the process data generated by
deriving information from multiple different measurement types accounting for a relationship
between measurement types in the first bonding operations. The instructions are operable to
receive the input data indicating the process data generated from measurements of the second
bonding operations by deriving information from multiple measurement types accounting for a
relationship between measurement types in the second bonding operations.

Embodiments herein also include corresponding computer-program product, apparatus,
and methods.

For instance, in one embodiment, a computer-program product tangibly embodied in a
non-transitory machine-readable storage medium is provided. The computer-program product
includes instructions operable to cause a computing system to train a machine learning model
by receiving the training data. The training data comprises process data generated from

measurements of the first bonding operations; and statuses of the multiple wires after bonding
2
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to the first set of surfaces. Each status of the statuses comprises one or more candidate
outcomes for an objective related to detecting one or more anomalies in the first bonding
operations. The computer-program product includes instructions operable to cause a
computing system to train a machine learning model by generating one or more weights for the
process data such that the process data input to the machine learning model predicts the one or
more candidate outcomes for the objective.

In another example embodiment, a computing device is provided. The computing device
includes, but is not limited to, a processor and memory. The memory contains instructions that
when executed by the processor control the computing device to access a machine learning
model trained on training data of first bonding operations. The first bonding operations
comprise operations to bond a first set of multiple wires to a first set of surfaces. The machine
learning model is trained by supervised learning comprising receiving the training data. The
training data comprises process data generated from measurements of the first bonding
operations; and statuses of the multiple wires after bonding to the first set of surfaces. Each
status of the statuses comprises one or more candidate outcomes for an objective related to
detecting one or more anomalies in the first bonding operations. The machine learning model is
trained by supervised learning comprising generating one or more weights for the process data
such that the process data input to the machine learning model predicts the one or more
candidate outcomes for the objective. The memory contains instructions that when executed by
the processor control the computing device to receive input data indicating process data
generated from measurements of second bonding operations. The second bonding operations
comprise operations to bond a second set of multiple wires to a second set of surfaces. The
second set of multiple wires are different than the first set of multiple wires. The second set of
surfaces are different than the first set of surfaces. The computer-program product includes
instructions operable to cause a computing device to weight the input data according to the
machine learning model. The memory contains instructions that when executed by the
processor control the computing device to generate an anomaly predictor indicating a risk for an
anomaly occurrence in the second bonding operations based on weighting the input data
according to the machine learning model. The memory contains instructions that when
executed by the processor control the computing device to output the anomaly predictor to
control the second bonding operations.

In another example embodiment, a computing device is provided. The computing device
includes, but is not limited to, a processor and memory. The memory contains instructions that
when executed by the processor control the computing device to train a machine learning model
by receiving training data. The training data comprises process data generated from
measurements of first bonding operations; and statuses of multiple wires after bonding to a first
set of surfaces. Each status of the statuses comprises one or more candidate outcomes for an

objective related to detecting one or more anomalies in the first bonding operations. The
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computer-program product includes instructions operable to cause a computing device to train a
machine learning model by generating one or more weights for the process data such that the
process data input to the machine learning model predicts the one or more candidate outcomes
for the objective.

In one or more embodiments, a computing device is a computing system or is part of a
computing system.

In another example embodiment, a computer-implemented method, is provided. The
method comprises accessing a machine learning model trained on training data of first bonding
operations. The first bonding operations comprise operations to bond a first set of multiple
wires to a first set of surfaces. The machine learning model is trained by supervised learning
comprising receiving the training data. The training data comprises process data generated
from measurements of the first bonding operations; and statuses of the multiple wires after
bonding to the first set of surfaces. Each status of the statuses comprises one or more
candidate outcomes for an objective related to detecting one or more anomalies in the first
bonding operations. The machine learning model is trained by supervised learning comprising
generating one or more weights for the process data such that the process data input to the
machine learning model predicts the one or more candidate outcomes for the objective. The
method comprises receiving input data indicating process data generated from measurements
of second bonding operations. The second bonding operations comprise operations to bond a
second set of multiple wires to a second set of surfaces. The second set of multiple wires are
different than the first set of multiple wires. The second set of surfaces are different than the
first set of surfaces. The method comprises weighting the input data according to the machine
learning model. The method comprises generating an anomaly predictor indicating a risk for an
anomaly occurrence in the second bonding operations based on weighting the input data
according to the machine learning model. The method comprises outputting the anomaly
predictor to control the second bonding operations.

In another example embodiment, a computer-implemented method, is provided. The
method comprises training a machine learning model by receiving training data. The training
data comprises process data generated from measurements of first bonding operations; and
statuses of multiple wires after bonding to a first set of surfaces. Each status of the statuses
comprises one or more candidate outcomes for an objective related to detecting one or more
anomalies in the first bonding operations. The method comprises training a machine learning
model by generating one or more weights for the process data such that the process data input
to the machine learning model predicts the one or more candidate outcomes for the objective.

In any of these computer program product, apparatus, and methods, the one or more
candidate outcomes can comprise one or more destructive quality assurance tests for individual

wires or bonds in the first bonding operations. The anomaly predictor can be a predictor of an
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anomaly in an individual wire or bond in the second bonding operations without performing a
destructive quality assurance test on the individual wire or bond.

In any of these computer program product, apparatus, and methods, the first bonding
operations can comprise one of: ball bonding operations where the destructive quality
assurance tests comprise a ball shear test for testing a ball bond; and stitch bonding operations
where the destructive quality assurance tests comprise a stitch pull test for testing a stitch bond.

In any of these computer program product, apparatus, and methods, the one or more
anomalies can be associated with one or more of: floating condition; lead frame contamination;
and die filt.

In any of these computer program product, apparatus, and methods, the second bonding
operations can bond wires of the second set of multiple wires to form integrated circuit chips.
The process data generated from the measurements of the second bonding operations can
pertain holistically to a particular chip of the integrated circuit chips and is derived from
measurement data for wires associated with the particular chip and bonded in the second
bonding operations.

In any of these computer program product, apparatus, and methods, the input data can
comprise real-time sensor measurements received during the second bonding operations. For
a given wire of the second set of multiple wires, the sensor measurements can comprise one or
more of: heat measurements; power measurements; force measurements; electric flame-off
(EFO) measurements; and ultrasonic measurements.

In any of these computer program product, apparatus, and methods, the input data can
comprise real-time sensor measurements received during the second bonding operations. The
sensor measurements can comprise measurements of a bonding system involved in the second
bonding operations. The anomaly predictor can control the second bonding operations to
correct the one or more anomalies and/or reduce the occurrence of the one or more anomalies
in the bonding system involved in the second bonding operations.

In any of these computer program product, apparatus, and methods, the input data can
comprise received sensor measurements tagged with origin information indicating one or more
of an identity or location for a particular wire, die, or chip involved in the second bonding
operations. The anomaly predictor can identify the anomaly that occurred in the second
bonding operations and is correlated with the origin information to indicate the location of the
anomaly.

In any of these computer program product, apparatus, and methods, the input data can
include derived data comprising one or more of: a generated value indicating a median or
average value for measurements pertaining to multiple wires bonded in a particular chip in the
second bonding operations; a generated set of deviations comprising a deviation from the value
for each of the multiple wires; and a generated metric for the chip accounting for the set of

deviations.
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In any of these computer program product, apparatus, and methods, the training data
can comprise the process data generated from derived data comprising a generated singular
data value correlated with multiple different types of measurements and pertaining to a same
wire in the first bonding operations. The input data indicating the process data generated from
measurements of the second bonding operations can comprise a generated singular data value.
The generated singular data value can be correlated with the multiple different types of
measurements and pertain to a same wire in the second bonding operations.

In any of these computer program product, apparatus, and methods, the one or more
weights for the process data can be generated for a gradient boosting model of the training
data.

In any of these computer program product, apparatus, and methods, the machine
learning model can be further trained by multiple generated machine learning models and is
selected based on k-fold cross-validation.

In any of these computer program product, apparatus, and methods, the measurements
of the first and second bonding operations can comprise measurements associated with a
process of forming ball bonds.

In any of these computer program product, apparatus, and methods, the measurements
of the first and second bonding operations can comprise measurements gssociated with a
process of forming stitch bonds.

In any of these computer program product, apparatus, and methods, the anomaly
predictor can be a predictor of a defective bond between a wire of the second set of multiple
wires and a lead frame or die of the second set of surfaces.

Other features and aspects of example embodiments are presented below in the
Detailed Description when read in connection with the drawings presented with this application.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates a block diagram that provides an illustration of the hardware
components of a computing system, according to at least one embodiment of the present

technology.

Figure 2 illustrates an example network including an example set of devices
communicating with each other over an exchange system and via a network, according to at
least one embodiment of the present technology.

Figure 3 illustrates a representation of a conceptual model of a communications protocol
system, according to at least one embodiment of the present technology.

Figure 4 illustrates a communications grid computing system including a variety of
control and worker nodes, according to at least one embodiment of the present technology.

Figure 5 illustrates a flow chart showing an example process for adjusting a
communications grid or a work project in a communications grid after a failure of a node,

according to at least one embodiment of the present technology.
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Figure 6 illustrates a portion of a communications grid computing system including a
control node and a worker node, according to at least one embodiment of the present
technology.

Figure 7 illustrates a flow chart showing an example process for executing a data
analysis or processing project, according to at least one embodiment of the present technology.

Figure 8 illustrates a block diagram including components of an Event Stream
Processing Engine (ESPE), according to at least one embodiment of the present technology.

Figure 9 illustrates a flow chart showing an example process including operations
performed by an event stream processing engine, according to at least one embodiment of the
present technology.

Figure 10 illustrates an ESP system interfacing between a publishing device and multiple
event subscribing devices, according to at least one embodiment of the present technology.

Figure 11 illustrates a flow chart of an example of a process for generating and using a
machine-learning model according to at least one embodiment of the present technology.

Figure 12 illustrates an example of a machine-learning model as a neural network
according to at least one embodiment of the present technology.

Figures 13-14 illustrate example flow diagrams for manufacturing an integrated circuit
chip according to at least one embodiment of the present technology.

Figures 15A and 15B illustrate some example components of an integrated circuit chip
and respective bondings according to at least one embodiment of the present technology.

Figures 16A-16D illustrate an example bonding operation involved in manufacturing an
integrated circuit chip according to at least one embodiment of the present technology.

Figure 17 illustrates an example integrated circuit chip according to at least one
embodiment of the present technology.

Figures 18A-18C illustrate a destructive ball shear testing procedure for a ball bond.

Figures 19A-19C illustrate a destructive stitch pull testing procedure for a stitch bond.

Figure 20A illustrates an example block diagram of a training system in at least one
embodiment of the present technology.

Figure 20B illustrates an example block diagram of a control system in at least one
embodiment of the present technology.

Figure 21A is a flow diagram illustrating an example method for training a machine
learning model according to at least one embodiment of the present technology.

Figure 21B is a flow diagram illustrating an example method for controlling bonding
operations according to at least one embodiment of the present technology.

Figure 21C is a flow diagram illustrating an example method for updating the machine
learning model used to control bonding operations according to at least one embodiment of the

present technology.
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Figure 22A is a graph illustrating a relationship between motion feature patterns and a
location of a corresponding chip on a lead frame according to at least one embodiment of the
present technology.

Figure 22B illustrates example locations of the chips on a lead frame corresponding to
the graph of Figure 22A according to at least one embodiment of the present technology.

Figure 23A illustrates example Quality Assurance (QA) data comparing the training data
and the test data for predictive models for destructive testing of the bonds formed during
bonding operations.

Figure 23B illustrates an example method for generating a derived processing data
according to at least one embodiment of the present technology.

Figure 24 is a graph illustrating an example graph for deriving process data associated
with a bonding operations system according to at least one embodiment of the present
technology.

Figure 25 is a graph illustrating the correspondence between the predicted ball shear
values modeled according to the present embodiments to actual ball shear values obtained as a
result of destructive testing.

Figure 26 is a graph illustrating the correspondence between the predicted stitch pull
values modeled according to the present embodiments to actual stitch pull values obtained as a
result of destructive testing.

Figure 27A is a functional block diagram illustrating a stack for an Event Stream
Processing (ESP) system configured according to at least one embodiment of the present
technology.

Figure 27B is a flow diagram illustrating an example method for generating a machine
learning model according to at least one embodiment of the present technology.

Figure 28 is a functional block diagram of a computer program product according to at
least one embodiment of the present technology.

DETAILED DESCRIPTION

In the following description, for the purposes of explanation, specific details are set forth
in order to provide a thorough understanding of embodiments of the technology. However, it will
be apparent that various embodiments may be practiced without these specific details. The
figures and description are not intended to be restrictive.

The ensuing description provides example embodiments only, and is not intended to
limit the scope, applicability, or configuration of the disclosure. Rather, the ensuing description
of the example embodiments will provide those skilled in the art with an enabling description for
implementing an example embodiment. It should be understood that various changes may be
made in the function and arrangement of elements without departing from the spirit and scope

of the technology as set forth in the appended claims.
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Specific details are given in the following description to provide a thorough
understanding of the embodiments. However, it will be understood by one of ordinary skill in the
art that the embodiments may be practiced without these specific details. For example, circuits,
systems, networks, processes, and other components may be shown as components in block
diagram form in order not to obscure the embodiments in unnecessary detail. In other
instances, well-known circuits, processes, algorithms, structures, and techniques may be shown
without unnecessary detail in order to avoid obscuring the embodiments.

Also, it is noted that individual embodiments may be described as a process which is
depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block
diagram. Although a flowchart may describe the operations as a sequential process, many of
the operations can be performed in parallel or concurrently. In addition, the order of the
operations may be re-arranged. A process is terminated when its operations are completed, but
could have additional operations not included in a figure. A process may correspond to a
method, a function, a procedure, a subroutine, a subprogram, etc. When a process
corresponds to a function, its termination can correspond to a return of the function to the calling
function or the main function.

Systems depicted in some of the figures may be provided in various configurations. In
some embodiments, the systems may be configured as a distributed system where one or more
components of the system are distributed across one or more networks in a cloud computing
system.

Figure 1 is a block diagram that provides an illustration of the hardware components of a
data transmission network 100, according to embodiments of the present technology. Data
transmission network 100 is a specialized computer system that may be used for processing
large amounts of data where a large number of computer processing cycles are required.

Data transmission network 100 may also include computing environment 114.
Computing environment 114 may be a specialized computer or other machine that processes
the data received within the data transmission network 100. Data transmission network 100
also includes one or more network devices 102. Network devices 102 may include client
devices that attempt to communicate with computing environment 114. For example, network
devices 102 may send data to the computing environment 114 to be processed, may send
signals to the computing environment 114 to control different aspects of the computing
environment or the data it is processing, among other reasons. Network devices 102 may
interact with the computing environment 114 through a number of ways, such as, for example,
over one or more networks 108. As shown in Figure 1, computing environment 114 may include
one or more other systems. For example, computing environment 114 may include a database
system 118 and/or a communications grid 120.

In other embodiments, network devices may provide a large amount of data, either all at

once or streaming over a period of time (e.g., using event stream processing (ESP), described
9
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further with respect to Figures 8-10), to the computing environment 114 via networks 108. For
example, network devices 102 may include network computers, sensors, databases, or other
devices that may transmit or otherwise provide data to computing environment 114. For
example, network devices may include local area network devices, such as routers, hubs,
switches, or other computer networking devices. These devices may provide a variety of stored
or generated data, such as network data or data specific to the network devices themselves.
Network devices may also include sensors that monitor their environment or other devices to
collect data regarding that environment or those devices, and such network devices may
provide data they collect over time. Network devices may also include devices within the
internet of things, such as devices within a home automation network. Some of these devices
may be referred to as edge devices, and may involve edge computing circuitry. Data may be
transmitted by network devices directly to computing environment 114 or to network-attached
data stores, such as network-attached data stores 110 for storage so that the data may be
retrieved later by the computing environment 114 or other portions of data transmission network
100.

Data transmission network 100 may also include one or more network-attached data
stores 110. Network-attached data stores 110 are used to store data to be processed by the
computing environment 114 as well as any intermediate or final data generated by the
computing system in non-volatile memory. However in certain embodiments, the configuration
of the computing environment 114 allows its operations to be performed such that intermediate
and final data results can be stored solely in volatile memory (e.g., RAM), without a requirement
that intermediate or final data results be stored to non-volatile types of memory (e.g., disk). This
can be useful in certain situations, such as when the computing environment 114 receives ad
hoc gqueries from a user and when responses, which are generated by processing large
amounts of data, need to be generated on-the-fly. In this non-limiting situation, the computing
environment 114 may be configured to retain the processed information within memory so that
responses can be generated for the user at different levels of detail as well as allow a user to
interactively query against this information.

Network-attached data stores may store a variety of different types of data organized in
a variety of different ways and from a variety of different sources. For example, network-
attached data storage may include storage other than primary storage located within computing
environment 114 that is directly accessible by processors located therein. Network-attached
data storage may include secondary, tertiary or auxiliary storage, such as large hard drives,
servers, virtual memory, among other types. Storage devices may include portable or non-
portable storage devices, optical storage devices, and various other mediums capable of
storing, containing data. A machine-readable storage medium or computer-readable storage
medium may include a non-transitory medium in which data can be stored and that does not

include carrier waves and/or transitory electronic signals. Examples of a non-transitory medium
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may include, for example, a magnetic disk or tape, optical storage media such as compact disk
or digital versatile disk, flash memory, memory or memory devices. A computer-program
product may include code and/or machine-executable instructions that may represent a
procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software
package, a class, or any combination of instructions, data structures, or program statements. A
code segment may be coupled to another code segment or a hardware circuit by passing and/or
receiving information, data, arguments, parameters, or memory contents. Information,
arguments, parameters, data, etc. may be passed, forwarded, or transmitted via any suitable
means including memory sharing, message passing, token passing, network transmission,
among others. Furthermore, the data stores may hold a variety of different types of data. For
example, network-attached data stores 110 may hold unstructured (e.g., raw) data, such as
manufacturing data (e.g., a database containing records identifying products being
manufactured with parameter data for each product, such as colors and models) or product
sales databases (e.g., a database containing individual data records identifying details of
individual product sales).

The unstructured data may be presented to the computing environment 114 in different
forms such as a flat file or a conglomerate of data records, and may have data values and
accompanying time stamps. The computing environment 114 may be used to analyze the
unstructured data in a variety of ways to determine the best way to structure (e.g.,
hierarchically) that data, such that the structured data is tailored to a type of further analysis that
a user wishes to perform on the data. For example, after being processed, the unstructured
time stamped data may be aggregated by time (e.g., into daily time period units) to generate
time series data and/or structured hierarchically according to one or more dimensions (e.g.,
parameters, attributes, and/or variables). For example, data may be stored in a hierarchical
data structure, such as a ROLAP OR MOLAP database, or may be stored in another tabular
form, such as in a flat-hierarchy form.

Data transmission network 100 may also include one or more server farms 106.
Computing environment 114 may route select communications or data to the one or more sever
farms 106 or one or more servers within the server farms. Server farms 106 can be configured
to provide information in a predetermined manner. For example, server farms 106 may access
data to transmit in response to a communication. Server farms 106 may be separately housed
from each other device within data transmission network 100, such as computing environment
114, and/or may be part of a device or system.

Server farms 106 may host a variety of different types of data processing as part of data
transmission network 100. Server farms 106 may receive a variety of different data from
network devices, from computing environment 114, from cloud network 116, or from other
sources. The data may have been obtained or collected from one or more sensors, as inputs

from a control database, or may have been received as inputs from an external system or
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device. Server farms 106 may assist in processing the data by turning raw data into processed
data based on one or more rules implemented by the server farms. For example, sensor data
may be analyzed to determine changes in an environment over time or in real-time.

Data transmission network 100 may also include one or more cloud networks 116.
Cloud network 116 may include a cloud infrastructure system that provides cloud services. In
certain embodiments, services provided by the cloud network 116 may include a host of
services that are made available to users of the cloud infrastructure system on demand. Cloud
network 116 is shown in Figure 1 as being connected to computing environment 114 (and
therefore having computing environment 114 as its client or user), but cloud network 116 may
be connected to or utilized by any of the devices in Figure 1. Services provided by the cloud
network can dynamically scale to meet the needs of its users. The cloud network 116 may
include one or more computers, servers, and/or systems. In some embodiments, the
computers, servers, and/or systems that make up the cloud network 116 are different from the
user's own on-premises computers, servers, and/or systems. For example, the cloud network
116 may host an application, and a user may, via a communication network such as the
Internet, on demand, order and use the application.

While each device, server and system in Figure 1 is shown as a single device, it will be
appreciated that multiple devices may instead be used. For example, a set of network devices
can be used to transmit various communications from a single user, or remote server 140 may
include a server stack. As another example, data may be processed as part of computing
environment 114.

Each communication within data transmission network 100 (e.g., between client devices,
between a device and connection management system 150, between servers 106 and
computing environment 114 or between a server and a device) may occur over one or more
networks 108. Networks 108 may include one or more of a variety of different types of networks,
including a wireless network, a wired network, or a combination of a wired and wireless network.
Examples of suitable networks include the Internet, a personal area network, a local area
network (LAN), a wide area network (WAN), or a wireless local area network (WLAN). A
wireless network may include a wireless interface or combination of wireless interfaces. As an
example, a network in the one or more networks 108 may include a short-range communication
channel, such as a Bluetooth or a Bluetooth Low Energy channel. A wired network may include
a wired interface. The wired and/or wireless networks may be implemented using routers,
access points, bridges, gateways, or the like, to connect devices in the network 114, as will be
further described with respect to Figure 2. The one or more networks 108 can be incorporated
entirely within or can include an intranet, an extranet, or a combination thereof. In one
embodiment, communications between two or more systems and/or devices ¢an be achieved by
a secure communications protocol, such as secure sockets layer (SSL) or transport layer

security (TLS). In addition, data and/or transactional details may be encrypted.
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Some aspects may utilize the Internet of Things (loT), where things (e.g., machines,
devices, phones, sensors) ¢can be connected to networks and the data from these things can be
collected and processed within the things and/or external to the things. For example, the loT
can include sensors in many different devices, and high value analytics can be applied to
identify hidden relationships and drive increased efficiencies. This can apply to both big data
analytics and real-time (e.g., ESP) analytics. loT may be implemented in various areas, such as
for access (technologies that get data and move it), embed-ability (devices with embedded
sensors), and services. Industries in the 0T space may include automotive (connected car),
manufacturing (connected factory), smart cities, energy and retail. This will be described further
below with respect to Figure 2.

As noted, computing environment 114 may include a communications grid 120 and a
transmission network database system 118. Communications grid 120 may be a grid-based
computing system for processing large amounts of data. The transmission network database
system 118 may be for managing, storing, and retrieving large amounts of data that are
distributed to and stored in the one or more network-attached data stores 110 or other data
stores that reside at different locations within the transmission network database system 118.
The compute nodes in the grid-based computing system 120 and the transmission network
database system 118 may share the same processor hardware, such as processors that are
located within computing environment 114.

Figure 2 illustrates an example network including an example set of devices
communicating with each other over an exchange system and via a network, according to
embodiments of the present technology. As noted, each communication within data
transmission network 100 may occur over one or more networks. System 200 includes a
network device 204 configured to communicate with a variety of types of client devices, for
example client devices 230, over a variety of types of communication channels.

As shown in Figure 2, network device 204 can transmit a communication over a network
(e.g., a cellular network via a base station 210). The communication can be routed to another
network device, such as network devices 205-209, via base station 210. The communication
can also be routed to computing environment 214 via base station 210. For example, network
device 204 may collect data either from its surrounding environment or from other network
devices (such as network devices 205-209) and transmit that data to computing environment
214,

Although network devices 204-209 are shown in Figure 2 as a mobile phone, laptop
computer, tablet computer, temperature sensor, motion sensor, and audio sensor respectively,
the network devices may be or include sensors that are sensitive to detecting aspects of their
environment. For example, the network devices may include sensors such as water sensors,
power sensors, electrical current sensors, chemical sensors, optical sensors, pressure sensors,

geographic or position sensors (e.g., GPS), velocity sensors, acceleration sensors, flow rate
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sensors, among others. Examples of characteristics that may be sensed include force, torque,
load, strain, position, temperature, air pressure, fluid flow, chemical properties, resistance,
electromagnetic fields, radiation, irradiance, proximity, acoustics, moisture, distance, speed,
vibrations, acceleration, electrical potential, electrical current, among others. The sensors may
be mounted to various components used as part of a variety of different types of systems (e.g.,
an oil drilling operation). The network devices may detect and record data related to the
environment that it monitors, and transmit that data to computing environment 214.

As noted, one type of system that may include various sensors that collect data to be
processed and/or transmitted to a computing environment according to certain embodiments
includes an oil drilling system. For example, the one or more drilling operation sensors may
include surface sensors that measure a hook load, a fluid rate, a temperature and a density in
and out of the wellbore, a standpipe pressure, a surface torque, a rotation speed of a drill pipe,
a rate of penetration, a mechanical specific energy, etc. and downhole sensors that measure a
rotation speed of a bit, fluid densities, downhole torque, downhole vibration (axial, tangential,
lateral), a weight applied at a drill bit, an annular pressure, a differential pressure, an azimuth,
an inclination, a dog leg severity, a measured depth, a vertical depth, a downhole temperature,
etc. Besides the raw data collected directly by the sensors, other data may include parameters
either developed by the sensors or assigned to the system by a client or other controlling
device. For example, one or more drilling operation control parameters may control settings
such as a mud motor speed to flow ratio, a bit diameter, a predicted formation top, seismic data,
weather data, etc. Other data may be generated using physical models such as an earth model,
a weather model, a seismic model, a bottom hole assembly model, a well plan model, an
annular friction model, etc. In addition to sensor and control settings, predicted outputs, of for
example, the rate of penetration, mechanical specific energy, hook load, flow in fluid rate, flow
out fluid rate, pump pressure, surface torque, rotation speed of the drill pipe, annular pressure,
annular friction pressure, annular temperature, equivalent circulating density, etc. may also be
stored in the data warehouse.

In another example, another type of system that may include various sensors that collect
data to be processed and/or transmitted to a computing environment according to certain
embodiments includes a home automation or similar automated network in a different
environment, such as an office space, school, public space, sports venue, or a variety of other
locations. Network devices in such an automated network may include network devices that
allow a user to access, control, and/or configure various home appliances located within the
user's home (e.g., a television, radio, light, fan, humidifier, sensor, microwave, iron, and/or the
like), or outside of the user's home (e.g., exterior motion sensors, exterior lighting, garage door
openers, sprinkler systems, or the like). For example, network device 102 may include a home
automation switch that may be coupled with a home appliance. In another embodiment, a

network device can allow a user to access, control, and/or configure devices, such as office-
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related devices (e.g., copy machine, printer, or fax machine), audio and/or video related devices
(e.g., a receiver, a speaker, a projector, a DVD player, or a television), media-playback devices
(e.g., a compact disc player, a CD player, or the like), computing devices (e.g., a home
computer, a laptop computer, a tablet, a personal digital assistant (PDA), a computing device, or
a wearable device), lighting devices (e.g., a lamp or recessed lighting), devices associated with
a security system, devices associated with an alarm system, devices that can be operated in an
automobile (e.qg., radio devices, navigation devices), and/or the like. Data may be collected
from such various sensors in raw form, or data may be processed by the sensors to create
parameters or other data either developed by the sensors based on the raw data or assigned to
the system by a client or other controlling device.

In another example, another type of system that may include various sensors that collect
data to be processed and/or transmitted to a computing environment according to certain
embodiments includes a power or energy grid. A variety of different network devices may be
included in an energy grid, such as various devices within one or more power plants, energy
farms (e.g., wind farm, solar farm, among others) energy storage facilities, factories, homes and
businesses of consumers, among others. One or more of such devices may include one or
more sensors that detect energy gain or loss, electrical input or output or loss, and a variety of
other efficiencies. These sensors may collect data to inform users of how the energy grid, and
individual devices within the grid, may be functioning and how they may be made more efficient.

Network device sensors may also perform processing on data it collects before
transmitting the data to the computing environment 114, or before deciding whether to transmit
data to the computing environment 114. For example, network devices may determine whether
data collected meets certain rules, for example by comparing data or values calculated from the
data and comparing that data to one or more thresholds. The network device may use this data
and/or comparisons to determine if the data should be transmitted to the computing
environment 214 for further use or processing.

Computing environment 214 may include machines 220 and 240. Although computing
environment 214 is shown in Figure 2 as having two machines, 220 and 240, computing
environment 214 may have only one machine or may have more than two machines. The
machines that make up computing environment 214 may include specialized computers,
servers, or other machines that are configured to individually and/or collectively process large
amounts of data. The computing environment 214 may also include storage devices that
include one or more databases of structured data, such as data organized in one or more
hierarchies, or unstructured data. The databases may communicate with the processing
devices within computing environment 214 to distribute data to them. Since network devices
may transmit data to computing environment 214, that data may be received by the computing

environment 214 and subsequently stored within those storage devices. Data used by
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computing environment 214 may also be stored in data stores 235, which may also be a part of
or connected to computing environment 214.

Computing environment 214 can communicate with various devices via one or more
routers 225 or other inter-network or intra-network connection components. For example,
computing environment 214 may communicate with devices 230 via one or more routers 225.
Computing environment 214 may collect, analyze and/or store data from or pertaining to
communications, client device operations, client rules, and/or user-associated actions stored at
one or more data stores 235. Such data may influence communication routing to the devices
within computing environment 214, how data is stored or processed within computing
environment 214, among other actions.

Notably, various other devices can further be used to influence communication routing
and/or processing between devices within computing environment 214 and with devices outside
of computing environment 214. For example, as shown in Figure 2, computing environment 214
may include a web server 240. Thus, computing environment 214 can retrieve data of interest,
such as client information (e.g., product information, client rules, etc.), technical product details,
news, current or predicted weather, and so on.

In addition to computing environment 214 collecting data (e.g., as received from network
devices, such as sensors, and client devices or other sources) to be processed as part of a big
data analytics project, it may also receive data in real time as part of a streaming analytics
environment. As noted, data may be collected using a variety of sources as communicated via
different kinds of networks or locally. Such data may be received on a real-time streaming
basis. For example, network devices may receive data periodically from network device
sensors as the sensors continuously sense, monitor and track changes in their environments.
Devices within computing environment 214 may also perform pre-analysis on data it receives to
determine if the data received should be processed as part of an ongoing project. The data
received and collected by computing environment 214, no matter what the source or method or
timing of receipt, may be processed over a period of time for a client to determine results data
based on the client’s needs and rules.

Figure 3 illustrates a representation of a conceptual model of a communications protocol
system, according to embodiments of the present technology. More specifically, Figure 3
identifies operation of a computing environment in an Open Systems Interaction model that
corresponds to various connection components. The model 300 shows, for example, how a
computing environment, such as computing environment 320 (or computing environment 214 in
Figure 2) may communicate with other devices in its network, and control how communications
between the computing environment and other devices are executed and under what
conditions.

The model can include layers 302-314. The layers are arranged in a stack. Each layer

in the stack serves the layer one level higher than it (except for the application layer, which is
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the highest layer), and is served by the layer one level below it (except for the physical layer,
which is the lowest layer). The physical layer is the lowest layer because it receives and
transmits raw bites of data and is the farthest layer from the user in a communications system.
On the other hand, the application layer is the highest layer because it interacts directly with a
software application.

As noted, the model includes a physical layer 302. Physical layer 302 represents
physical communication and can define parameters of that physical communication. For
example, such physical communication may come in the form of electrical, optical, or
electromagnetic signals. Physical layer 302 also defines protocols that may control
communications within a data transmission network.

Link layer 304 defines links and mechanisms used to transmit (i.e., move) data across a
network. The link layer manages node-to-node communications, such as within a grid
computing environment. Link layer 304 can detect and correct errors (e.g., transmission errors
in the physical layer 302). Link layer 304 can also include a media access control (MAC) layer
and logical link control (LLC) layer.

Network layer 306 defines the protocol for routing within a network. In other words, the
network layer coordinates transferring data across nodes in a same network (e.g., such as a
grid computing environment). Network layer 306 can also define the processes used to structure
local addressing within the network.

Transport layer 308 can manage the transmission of data and the quality of the
transmission and/or receipt of that data. Transport layer 308 can provide a protocol for
transferring data, such as, for example, a Transmission Control Protocol (TCP). Transport layer
308 can assemble and disassemble data frames for transmission. The transport layer can also
detect transmission errors occurring in the layers below it.

Session layer 310 can establish, maintain, and manage communication connections
between devices on a network. In other words, the session layer controls the dialogues or
nature of communications between network devices on the network. The session layer may
also establish checkpointing, adjournment, termination, and restart procedures.

Presentation layer 312 can provide translation for communications between the
application and network layers. In other words, this layer may encrypt, decrypt and/or format
data based on data types known to be accepted by an application or network layer.

Application layer 314 interacts directly with software applications and end users, and
manages communications between them. Application layer 314 can identify destinations, local
resource states or availability and/or communication content or formatting using the
applications.

Intra-network connection components 322 and 324 are shown to operate in lower levels,
such as physical layer 302 and link layer 304, respectively. For example, a hub can operate in

the physical layer and a switch can operate in the link layer. Inter-network connection
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components 326 and 328 are shown to operate on higher levels, such as layers 306-314. For
example, routers can operate in the network layer and network devices can operate in the
transport, session, presentation, and application layers.

As noted, a computing environment 320 can interact with and/or operate on, in various
embodiments, one, more, all or any of the various layers. For example, computing environment
320 can interact with a hub (e.g., via the link layer) so as to adjust which devices the hub
communicates with. The physical layer may be served by the link layer, so it may implement
such data from the link layer. For example, the computing environment 320 may control which
devices it will receive data from. For example, if the computing environment 320 knows that a
certain network device has turned off, broken, or otherwise become unavailable or unreliable,
the computing environment 320 may instruct the hub to prevent any data from being transmitted
to the computing environment 320 from that network device. Such a process may be beneficial
to avoid receiving data that is inaccurate or that has been influenced by an uncontrolled
environment. As another example, computing environment 320 can communicate with a bridge,
switch, router or gateway and influence which device within the system (e.g., system 200) the
component selects as a destination. In some embodiments, computing environment 320 can
interact with various layers by exchanging communications with equipment operating on a
particular layer by routing or modifying existing communications. In another embodiment, such
as in a grid computing environment, a node may determine how data within the environment
should be routed (e.g., which node should receive certain data) based on certain parameters or
information provided by other layers within the model.

As noted, the computing environment 320 may be a part of a communications grid
environment, the communications of which may be implemented as shown in the protocol of
Figure 3. For example, referring back to Figure 2, one or more of machines 220 and 240 may
be part of a communications grid computing environment. A gridded computing environment
may be employed in a distributed system with non-interactive workloads where data resides in
memory on the machines, or compute nodes. In such an environment, analytic code, instead of
a database management system, controls the processing performed by the nodes. Data is co-
located by pre-distributing it to the grid nodes, and the analytic code on each node loads the
local data into memory. Each node may be assigned a particular task such as a portion of a
processing project, or to organize or control other nodes within the grid.

Figure 4 illustrates a communications grid computing system 400 including a variety of
control and worker nodes, according to embodiments of the present technology.
Communications grid computing system 400 includes three control nodes and one or more
worker nodes. Communications grid computing system 400 includes control nodes 402, 404,
and 406. The control nodes are communicatively connected via communication paths 451, 453,
and 455. Therefore, the control nodes may transmit information (e.g., related to the

communications grid or notifications), to and receive information from each other. Although
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communications grid computing system 400 is shown in Figure 4 as including three control
hodes, the communications grid may include more or less than three control nodes.

Communications grid computing system (or just “communications grid”) 400 also
includes one or more worker nodes. Shown in Figure 4 are six worker nodes 410-420.

Although Figure 4 shows six worker nodes, a communications grid according to embodiments of
the present technology may include more or less than six worker nodes. The number of worker
nodes included in a communications grid may be dependent upon how large the project or data
set is being processed by the communications grid, the capacity of each worker node, the time
designated for the communications grid to complete the project, among others. Each worker
node within the communications grid 400 may be connected (wired or wirelessly, and directly or
indirectly) to control nodes 402-406. Therefore, each worker node may receive information from
the control nodes (e.g., an instruction to perform work on a project) and may transmit
information to the control nodes (e.g., a result from work performed on a project). Furthermore,
worker nodes may communicate with each other (either directly or indirectly). For example,
worker nodes may transmit data between each other related to a job being performed or an
individual task within a job being performed by that worker node. However, in certain
embodiments, worker nodes may not, for example, be connected (communicatively or
otherwise) to certain other worker nodes. In an embodiment, worker nodes may only be able to
communicate with the control node that controls it, and may not be able to communicate with
other worker nodes in the communications grid, whether they are other worker nodes controlled
by the control node that controls the worker node, or worker nodes that are controlled by other
control nodes in the communications grid.

A control node may connect with an external device with which the control node may
communicate (e.g., a grid user, such as a server or computer, may connect to a controller of the
grid). For example, a server or computer may connect to control nodes and may transmit a
project or job to the node. The project may include a data set. The data set may be of any size.
Once the control node receives such a project including a large data set, the control node may
distribute the data set or projects related to the data set to be performed by worker nodes.
Alternatively, for a project including a large data set, the data set may be receive or stored by a
machine other than a control node (e.g., a Hadoop data node).

Control nodes may maintain knowledge of the status of the nodes in the grid (i.e., grid
status information), accept work requests from clients, subdivide the work across worker nodes,
coordinate the worker nodes, among other responsibilities. Worker nodes may accept work
requests from a control node and provide the control node with results of the work performed by
the worker node. A grid may be started from a single node (e.g., a machine, computer, server,
etc.). This first node may be assigned or may start as the primary control node that will control

any additional nodes that enter the grid.
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When a project is submitted for execution (e.g., by a client or a controller of the grid) it
may be assigned to a set of nodes. After the nodes are assigned to a project, a data structure
(i.e., a communicator) may be created. The communicator may be used by the project for
information to be shared between the project code running on each node. A communication
handle may be created on each node. A handle, for example, is a reference to the
communicator that is valid within a single process on a single node, and the handle may be
used when requesting communications between nodes.

A control node, such as control node 402, may be designated as the primary control
node. A server, computer or other external device may connect to the primary control node.
Once the control node receives a project, the primary control node may distribute portions of the
project to its worker nodes for execution. For example, when a project is initiated on
communications grid 400, primary control node 402 controls the work to be performed for the
project in order to complete the project as requested or instructed. The primary control node
may distribute work to the worker nodes based on various factors, such as which subsets or
portions of projects may be completed most efficiently and in the correct amount of time. For
example, a worker node may perform analysis on a portion of data that is already local (e.g.,
stored on) the worker node. The primary control node also coordinates and processes the
results of the work performed by each worker node after each worker node executes and
completes its job. For example, the primary control node may receive a result from one or more
worker nodes, and the control node may organize (e.g., collect and assemble) the results
received and compile them to produce a complete result for the project received from the end
user.

Any remaining control nodes, such as control nodes 404 and 406, may be assigned as
backup control nodes for the project. In an embodiment, backup control nodes may not control
any portion of the project. Instead, backup control nodes may serve as a backup for the primary
control node and take over as primary control node if the primary control node were to fail. If a
communications grid were to include only a single control node, and the control node were to
fail (e.g., the control node is shut off or breaks) then the communications grid as a whole may
fail and any project or job being run on the communications grid may fail and may not complete.
While the project may be run again, such a failure may cause a delay (severe delay in some
cases, such as overnight delay) in completion of the project. Therefore, a grid with multiple
control nodes, including a backup control node, may be beneficial.

To add another node or machine to the grid, the primary control node may open a pair of
listening sockets, for example. A socket may be used to accept work requests from clients, and
the second socket may be used to accept connections from other grid nodes). The primary
control node may be provided with a list of other nodes (e.g., other machines, computers,
servers) that will participate in the grid, and the role that each node will fill in the grid. Upon

startup of the primary control node (e.g., the first node on the grid), the primary control node
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may use a network protocol to start the server process on every other node in the grid.
Command line parameters, for example, may inform each node of one or more pieces of
information, such as: the role that the node will have in the grid, the host name of the primary
control node, the port number on which the primary control node is accepting connections from
peer nodes, among others. The information may also be provided in a configuration file,
transmitted over a secure shell tunnel, recovered from a configuration server, among others.
While the other machines in the grid may not initially know about the configuration of the grid,
that information may also be sent to each other node by the primary control node. Updates of
the grid information may also be subsequently sent to those nodes.

For any control node other than the primary control node added to the grid, the control
node may open three sockets. The first socket may accept work requests from clients, the
second socket may accept connections from other grid members, and the third socket may
connect (e.g., permanently) to the primary control node. When a control node (e.g., primary
control node) receives a connection from another control node, it first checks to see if the peer
node is in the list of configured nodes in the grid. If it is not on the list, the control node may
clear the connection. Ifitis on the list, it may then attempt to authenticate the connection. If
authentication is successful, the authenticating node may transmit information to its peer, such
as the port number on which a node is listening for connections, the host name of the node,
information about how to authenticate the node, among other information. When a node, such
as the new control node, receives information about another active node, it will check to see if it
already has a connection to that other node. If it does not have a connection to that node, it
may then establish a connection to that control node.

Any worker node added to the grid may establish a connection to the primary control
node and any other control nodes on the grid. After establishing the connection, it may
authenticate itself to the grid (e.g., any control nodes, including both primary and backup, or a
server or user controlling the grid). After successful authentication, the worker node may accept
configuration information from the control node.

When a node joins a communications grid (e.g., when the node is powered on or
connected to an existing node on the grid or both), the node is assigned (e.g., by an operating
system of the grid) a universally unique identifier (UUID). This unique identifier may help other
nodes and external entities (devices, users, etc.) to identify the node and distinguish it from
other nodes. When a node is connected to the grid, the node may share its unique identifier
with the other nodes in the grid. Since each node may share its unique identifier, each node
may know the unique identifier of every other node on the grid. Unique identifiers may also
designate a hierarchy of each of the nodes (e.g., backup control nodes) within the grid. For
example, the unique identifiers of each of the backup control nodes may be stored in a list of
backup control nodes to indicate an order in which the backup control nodes will take over for a

failed primary control node to become a new primary control node. However, a hierarchy of
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nodes may also be determined using methods other than using the unique identifiers of the
nodes. For example, the hierarchy may be predetermined, or may be assigned based on other
predetermined factors.

The grid may add new machines at any time (e.g., initiated from any control node).
Upon adding a new node to the grid, the control node may first add the new node to its table of
grid nodes. The control node may also then notify every other control node about the new
node. The nodes receiving the notification may acknowledge that they have updated their
configuration information.

Primary control node 402 may, for example, transmit one or more communications to
backup control nodes 404 and 406 (and, for example, to other control or worker nodes within
the communications grid). Such communications may sent periodically, at fixed time intervals,
between known fixed stages of the project’s execution, among other protocols. The
communications transmitted by primary control node 402 may be of varied types and may
include a variety of types of information. For example, primary control node 402 may transmit
snapshots (e.g., status information) of the communications grid so that backup control node 404
always has a recent snapshot of the communications grid. The snapshot or grid status may
include, for example, the structure of the grid (including, for example, the worker nodes in the
grid, unigue identifiers of the nodes, or their relationships with the primary control node) and the
status of a project (including, for example, the status of each worker node’s portion of the
project). The snapshot may also include analysis or results received from worker nodes in the
communications grid. The backup control nodes may receive and store the backup data
received from the primary control node. The backup control nodes may transmit a request for
such a snapshot (or other information) from the primary control node, or the primary control
node may send such information periodically to the backup control nodes.

As noted, the backup data may allow the backup control node to take over as primary
control node if the primary control node fails without requiring the grid to start the project over
from scratch. If the primary control node fails, the backup control node that will take over as
primary control node may retrieve the most recent version of the snapshot received from the
primary control node and use the snapshot to continue the project from the stage of the project
indicated by the backup data. This may prevent failure of the project as a whole.

A backup control node may use various methods to determine that the primary control
node has failed. In one example of such a method, the primary control node may transmit (e.g.,
periodically) a communication to the backup control node that indicates that the primary control
node is working and has not failed, such as a heartbeat communication. The backup control
node may determine that the primary control node has failed if the backup control node has not
received a heartbeat communication for a certain predetermined period of time. Alternatively, a

backup control node may also receive a communication from the primary control node itself
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(before it failed) or from a worker node that the primary control node has failed, for example
because the primary control node has failed to communicate with the worker node.

Different methods may be performed to determine which backup control node of a set of
backup control nodes (e.g., backup control nodes 404 and 406) will take over for failed primary
control node 402 and become the new primary control node. For example, the new primary
control node may be chosen based on a ranking or “hierarchy” of backup control nodes based
on their unique identifiers. In an alternative embodiment, a backup control node may be
assigned to be the new primary control node by another device in the communications grid or
from an external device (e.g., a system infrastructure or an end user, such as a server or
computer, controlling the communications grid). In another alternative embodiment, the backup
control node that takes over as the new primary control node may be designated based on
bandwidth or other statistics about the communications grid.

A worker node within the communications grid may also fail. If a worker node fails, work
being performed by the failed worker node may be redistributed amongst the operational worker
nodes. In an alternative embodiment, the primary control node may transmit a communication
to each of the operable worker nodes still on the communications grid that each of the worker
nodes should purposefully fail also. After each of the worker nodes fail, they may each retrieve
their most recent saved checkpoint of their status and re-start the project from that checkpoint to
minimize lost progress on the project being executed.

Figure 5 illustrates a flow chart showing an example process for adjusting a
communications grid or a work project in a communications grid after a failure of a node,
according to embodiments of the present technology. The process may include, for example,
receiving grid status information including a project status of a portion of a project being
executed by a node in the communications grid, as described in operation 502. For example, a
control node (e.g., a backup control node connected to a primary control node and a worker
node on a communications grid) may receive grid status information, where the grid status
information includes a project status of the primary control node or a project status of the worker
node. The project status of the primary control node and the project status of the worker node
may include a status of one or more portions of a project being executed by the primary and
worker nodes in the communications grid. The process may also include storing the grid status
information, as described in operation 504. For example, a control node (e.g., a backup control
node) may store the received grid status information locally within the control node.
Alternatively, the grid status information may be sent to another device for storage where the
control node may have access to the information.

The process may also include receiving a failure communication corresponding to a
node in the communications grid in operation 506. For example, a node may receive a failure
communication including an indication that the primary control node has failed, prompting a

backup control node to take over for the primary control node. In an alternative embodiment, a
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node may receive a failure that a worker node has failed, prompting a control node to reassign
the work being performed by the worker node. The process may also include reassigning a
node or a portion of the project being executed by the failed node, as described in operation
508. For example, a control node may designate the backup control node as a new primary
control node based on the failure communication upon receiving the failure communication. If
the failed node is a worker node, a control node may identify a project status of the failed worker
node using the snapshot of the communications grid, where the project status of the failed
worker node includes a status of a portion of the project being executed by the failed worker
node at the failure time.

The process may also include receiving updated grid status information based on the
reassignment, as described in operation 510, and transmitting a set of instructions based on the
updated grid status information to one or more nodes in the communications grid, as described
in operation 512. The updated grid status information may include an updated project status of
the primary control node or an updated project status of the worker node. The updated
information may be transmitted to the other nodes in the grid to update their stale stored
information.

Figure 6 illustrates a portion of a communications grid computing system 600 including a
control node and a worker node, according to embodiments of the present technology.
Communications grid 600 computing system includes one control node (control node 602) and
one worker node (worker node 610) for purposes of illustration, but may include more worker
and/or control nodes. The control node 602 is communicatively connected to worker node 610
via communication path 650. Therefore, control node 602 may transmit information (e.g., related
to the communications grid or notifications), to and receive information from worker node 610
via path 650.

Similar to in Figure 4, communications grid computing system (or just “communications
grid”) 600 includes data processing nodes (control node 602 and worker node 610). Nodes 602
and 610 include multi-core data processors. Each node 602 and 610 includes a grid-enabled
software component (GESC) 620 that executes on the data processor associated with that node
and interfaces with buffer memory 622 also associated with that node. Each node 602 and 610
includes a database management software (DBMS) 628 that executes on a database server
(not shown) at control node 602 and on a database server (not shown) at worker node 610.

Each node also includes a data store 624. Data stores 624, similar to network-attached
data stores 110 in Figure 1 and data stores 235 in Figure 2, are used to store data to be
processed by the nodes in the computing environment. Data stores 624 may also store any
intermediate or final data generated by the computing system after being processed, for
example in non-volatile memory. However in certain embodiments, the configuration of the grid
computing environment allows its operations to be performed such that intermediate and final

data results can be stored solely in volatile memory (e.g., RAM), without a requirement that
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intermediate or final data results be stored to non-volatile types of memory. Storing such data in
volatile memory may be useful in certain situations, such as when the grid receives queries
(e.g., ad hoc) from a client and when responses, which are generated by processing large
amounts of data, need to be generated quickly or on-the-fly. In such a situation, the grid may be
configured to retain the data within memory so that responses can be generated at different
levels of detail and so that a client may interactively query against this information.

Each node also includes a user-defined function (UDF) 626. The UDF provides a
mechanism for the DMBS 628 to transfer data to or receive data from the database stored in the
data stores 624 that are managed by the DBMS. For example, UDF 626 can be invoked by the
DBMS to provide data to the GESC for processing. The UDF 626 may establish a socket
connection (not shown) with the GESC to transfer the data. Alternatively, the UDF 626 ¢can
transfer data to the GESC by writing data to shared memory accessible by both the UDF and
the GESC.

The GESC 620 at the nodes 602 and 620 may be connected via a network, such as
network 108 shown in Figure 1. Therefore, nodes 602 and 620 can communicate with each
other via the network using a predetermined communication protocol such as, for example, the
Message Passing Interface (MPI). Each GESC 620 can engage in point-to-point
communication with the GESC at another node or in collective communication with multiple
GESCs via the network. The GESC 620 at each node may contain identical (or nearly identical)
software instructions. Each node may be capable of operating as either a control node or a
worker node. The GESC at the control node 602 can communicate, over a communication path
652, with a client device 630. More specifically, control node 602 may communicate with client
application 632 hosted by the client device 630 to receive queries and to respond to those
queries after processing large amounts of data.

DMBS 628 may control the creation, maintenance, and use of database or data structure
(not shown) within a nodes 602 or 610. The database may organize data stored in data stores
624. The DMBS 628 at control node 602 may accept requests for data and transfer the
appropriate data for the request. With such a process, collections of data may be distributed
across multiple physical locations. In this example, each node 602 and 610 stores a portion of
the total data managed by the management system in its associated data store 624.

Furthermore, the DBMS may be responsible for protecting against data loss using
replication technigues. Replication includes providing a backup copy of data stored on one node
on one or more other nodes. Therefore, if one node fails, the data from the failed node can be
recovered from a replicated copy residing at another node. However, as described herein with
respect to Figure 4, data or status information for each node in the communications grid may
also be shared with each node on the grid.

Figure 7 illustrates a flow chart showing an example method for executing a project

within a grid computing system, according to embodiments of the present technology. As
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described with respect to Figure 6, the GESC at the control node may transmit data with a client
device (e.g., client device 630) to receive queries for executing a project and to respond to
those queries after large amounts of data have been processed. The query may be transmitted
to the control node, where the query may include a request for executing a project, as described
in operation 702. The gquery can contain instructions on the type of data analysis to be
performed in the project and whether the project should be executed using the grid-based
computing environment, as shown in operation 704.

To initiate the project, the control node may determine if the query requests use of the
grid-based computing environment to execute the project. If the determination is no, then the
control node initiates execution of the project in a solo environment (e.g., at the control node),
as described in operation 710. If the determination is yes, the control node may initiate
execution of the project in the grid-based computing environment, as described in operation
706. In such a situation, the request may include a requested configuration of the grid. For
example, the request may include a number of control nodes and a number of worker nodes to
be used in the grid when executing the project. After the project has been completed, the
control node may transmit results of the analysis yielded by the grid, as described in operation
708. Whether the project is executed in a solo or grid-based environment, the control node
provides the results of the project in operation 712.

As noted with respect to Figure 2, the computing environments described herein may
collect data (e.qg., as received from network devices, such as sensors, such as network devices
204-209 in Figure 2, and client devices or other sources) to be processed as part of a data
analytics project, and data may be received in real time as part of a streaming analytics
environment (e.g., ESP). Data may be collected using a variety of sources as communicated
via different kinds of networks or locally, such as on a real-time streaming basis. For example,
network devices may receive data periodically from network device sensors as the sensors
continuously sense, monitor and track changes in their environments. More specifically, an
increasing number of distributed applications develop or produce continuously flowing data from
distributed sources by applying queries to the data before distributing the data to geographically
distributed recipients. An event stream processing engine (ESPE) may continuously apply the
queries to the data as it is received and determines which entities should receive the data.
Client or other devices may also subscribe to the ESPE or other devices processing ESP data
50 that they can receive data after processing, based on for example the entities determined by
the processing engine. For example, client devices 230 in Figure 2 may subscribe to the ESPE
in computing environment 214. In another example, event subscription devices 1024a-c,
described further with respect to Figure 10, may also subscribe to the ESPE. The ESPE may
determine or define how input data or event streams from network devices or other publishers
(e.g., network devices 204-209 in Figure 2) are transformed into meaningful output data to be

consumed by subscribers, such as for example client devices 230 in Figure 2.
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Figure 8 illustrates a block diagram including components of an Event Stream
Processing Engine (ESPE), according to embodiments of the present technology. ESPE 800
may include one or more projects 802. A project may be described as a second-level container
in an engine model managed by ESPE 800 where a thread pool size for the project may be
defined by a user. Each project of the one or more projects 802 may include one or more
continuous queries 804 that contain data flows, which are data transformations of incoming
event streams. The one or more continuous queries 804 may include one or more source
windows 806 and one or more derived windows 808.

The ESPE may receive streaming data over a period of time related to certain events,
such as events or other data sensed by one or more network devices. The ESPE may perform
operations associated with processing data created by the one or more devices. For example,
the ESPE may receive data from the one or more network devices 204-209 shown in Figure 2.
As noted, the network devices may include sensors that sense different aspects of their
environments, and may collect data over time based on those sensed observations. For
example, the ESPE may be implemented within one or more of machines 220 and 240 shown in
Figure 2. The ESPE may be implemented within such a machine by an ESP application. An
ESP application may embed an ESPE with its own dedicated thread pool or pools into its
application space where the main application thread can do application-specific work and the
ESPE processes event streams at least by creating an instance of a model into processing
objects.

The engine container is the top-level container in @ model that manages the resources of
the one or more projects 802. In an illustrative embodiment, for example, there may be only one
ESPE 800 for each instance of the ESP application, and ESPE 800 may have a unique engine
name. Additionally, the one or more projects 802 may each have unique project names, and
each query may have a unique continuous query name and begin with a uniquely named source
window of the one or more source windows 806. ESPE 800 may or may not be persistent.

Continuous query modeling involves defining directed graphs of windows for event
stream manipulation and transformation. A window in the context of event stream manipulation
and transformation is a processing node in an event stream processing model. A window in a
continuous query can perform aggregations, computations, pattern-matching, and other
operations on data flowing through the window. A continuous query may be described as a
directed graph of source, relational, pattern matching, and procedural windows. The one or
more source windows 806 and the one or more derived windows 808 represent continuously
executing queries that generate updates to a query result set as new event blocks stream
through ESPE 800. A directed graph, for example, is a set of nodes connected by edges, where
the edges have a direction associated with them.

An event object may be described as a packet of data accessible as a collection of

fields, with at least one of the fields defined as a key or unique identifier (ID). The event object
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may be created using a variety of formats including binary, alphanumeric, XML, etc. Each event
object may include one or more fields designated as a primary identifier (ID) for the event so
ESPE 800 can support operation codes (opcodes) for events including insert, update, upsert,
and delete. Upsert opcodes update the event if the key field already exists; otherwise, the event
is inserted. For illustration, an event object may be a packed binary representation of a set of
field values and include both metadata and field data associated with an event. The metadata
may include an opcode indicating if the event represents an insert, update, delete, or upsert, a
set of flags indicating if the event is a normal, partial-update, or a retention generated event
from retention policy management, and a set of microsecond timestamps that can be used for
latency measurements.

An event block object may be described as a grouping or package of event objects. An
event stream may be described as a flow of event block objects. A continuous query of the one
or more continuous queries 804 transforms a source event stream made up of streaming event
block objects published into ESPE 800 into one or more output event streams using the one or
more source windows 806 and the one or more derived windows 808. A continuous query can
also be thought of as data flow modeling.

The one or more source windows 806 are at the top of the directed graph and have no
windows feeding into them. Event streams are published into the one or more source windows
806, and from there, the event streams may be directed to the next set of connected windows
as defined by the directed graph. The one or more derived windows 808 are all instantiated
windows that are not source windows and that have other windows streaming events into them.
The one or more derived windows 808 may perform computations or transformations on the
incoming event streams. The one or more derived windows 808 transform event streams based
on the window type (that is operators such as join, filter, compute, aggregate, copy, pattern
match, procedural, union, etc.) and window settings. As event streams are published into ESPE
800, they are continuously queried, and the resulting sets of derived windows in these queries
are continuously updated.

Figure 9 illustrates a flow chart showing an example process including operations
performed by an event stream processing engine, according to some embodiments of the
present technology. As noted, the ESPE 800 (or an associated ESP application) defines how
input event streams are transformed into meaningful output event streams. More specifically,
the ESP application may define how input event streams from publishers (e.g., network devices
providing sensed data) are transformed into meaningful output event streams consumed by
subscribers (e.g., a data analytics project being executed by a machine or set of machines).

Within the application, a user may interact with one or more user interface windows
presented to the user in a display under control of the ESPE independently or through a
browser application in an order selectable by the user. For example, a user may execute an

ESP application, which causes presentation of a first user interface window, which may include
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a plurality of menus and selectors such as drop down menus, buttons, text boxes, hyperlinks,
etc. associated with the ESP application as understood by a person of skill in the art. As further
understood by a person of skill in the art, various operations may be performed in parallel, for
example, using a plurality of threads.

At operation 900, an ESP application may define and start an ESPE, thereby
instantiating an ESPE at a device, such as machine 220 and/or 240. In an operation 902, the
engine container is created. For illustration, ESPE 800 may be instantiated using a function call
that specifies the engine container as a manager for the model.

In an operation 904, the one or more continuous queries 804 are instantiated by ESPE
800 as a model. The one or more continuous queries 804 may be instantiated with a dedicated
thread pool or pools that generate updates as new events stream through ESPE 800. For
illustration, the one or more continuous queries 804 may be created to model business
processing logic within ESPE 800, to predict events within ESPE 800, to model a physical
system within ESPE 800, to predict the physical system state within ESPE 800, etc. For
example, as noted, ESPE 800 may be used to support sensor data monitoring and
management (e.g., sensing may include force, torque, load, strain, position, temperature, air
pressure, fluid flow, chemical properties, resistance, electromagnetic fields, radiation, irradiance,
proximity, acoustics, moisture, distance, speed, vibrations, acceleration, electrical potential, or
electrical current, etc.).

ESPE 800 may analyze and process events in motion or “event streams.” Instead of
storing data and running queries against the stored data, ESPE 800 may store queries and
stream data through them to allow continuous analysis of data as it is received. The one or
more source windows 806 and the one or more derived windows 808 may be created based on
the relational, pattern matching, and procedural algorithms that transform the input event
streams into the output event streams to model, simulate, score, test, predict, etc. based on the
continuous query model defined and application to the streamed data.

In an operation 906, a publish/subscribe (pub/sub) capability is initialized for ESPE 800.
In an illustrative embodiment, a pub/sub capability is initialized for each project of the one or
more projects 802. To initialize and enable pub/sub capability for ESPE 800, a port number
may be provided. Pub/sub clients can use a host name of an ESP device running the ESPE
and the port number to establish pub/sub connections to ESPE 800.

Figure 10 illustrates an ESP system 1000 interfacing between publishing device 1022
and event subscribing devices 1024a-c, according to embodiments of the present technology.
ESP system 1000 may include ESP device or subsystem 1001, event publishing device 1022,
an event subscribing device A 1024a, an event subscribing device B 1024b, and an event
subscribing device C 1024¢. Input event streams are output to ESP device 1001 by publishing
device 1022. In alternative embodiments, the input event streams may be created by a plurality

of publishing devices. The plurality of publishing devices further may publish event streams to
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other ESP devices. The one or more continuous queries instantiated by ESPE 800 may analyze
and process the input event streams to form output event streams output to event subscribing
device A 1024a, event subscribing device B 1024b, and event subscribing device C 1024¢. ESP
system 1000 may include a greater or a fewer number of event subscribing devices of event
subscribing devices.

Publish-subscribe is a message-oriented interaction paradigm based on indirect
addressing. Processed data recipients specify their interest in receiving information from ESPE
800 by subscribing to specific classes of events, while information sources publish events to
ESPE 800 without directly addressing the receiving parties. ESPE 800 coordinates the
interactions and processes the data. In some cases, the data source receives confirmation that
the published information has been received by a data recipient.

A publish/subscribe APl may be described as a library that enables an event publisher,
such as publishing device 1022, to publish event streams into ESPE 800 or an event subscriber,
such as event subscribing device A 1024a, event subsctribing device B 1024b, and event
subscribing device C 1024c¢, to subscribe to event streams from ESPE 800. For illustration, one
or more publish/subscribe APls may be defined. Using the publish/subscribe API, an event
publishing application may publish event streams into a running event stream processor project
source window of ESPE 800, and the event subscription application may subscribe to an event
stream processor project source window of ESPE 800.

The publish/subscribe API provides cross-platform connectivity and endianness
compatibility between ESP application and other networked applications, such as event
publishing applications instantiated at publishing device 1022, and event subscription
applications instantiated at one or more of event subscribing device A 1024a, event subscribing
device B 1024b, and event subscribing device C 1024c.

Referring back to Figure 9, operation 906 initializes the publish/subscribe capability of
ESPE 800. In an operation 908, the one or more projects 802 are started. The one or more
started projects may run in the background on an ESP device. In an operation 910, an event
block object is received from one or more computing device of the event publishing device
1022.

ESP subsystem 1001 may include a publishing client 1002, ESPE 800, a subscribing
client A 1004, a subscribing client B 1006, and a subscribing client C 1008. Publishing client
1002 may be started by an event publishing application executing at publishing device 1022
using the publish/subscribe API. Subscribing client A 1004 may be started by an event
subscription application A, executing at event subscribing device A 1024a using the
publish/subscribe API. Subscribing client B 1006 may be started by an event subscription
application B executing at event subscribing device B 1024b using the publish/subscribe API.
Subscribing client C 1008 may be started by an event subscription application C executing at

event subscribing device C 1024¢ using the publish/subscribe API.
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An event block object containing one or more event objects is injected into a source
window of the one or more source windows 806 from an instance of an event publishing
application on event publishing device 1022. The event block object may be generated, for
example, by the event publishing application and may be received by publishing client 1002. A
unigue ID may be maintained as the event block object is passed between the one or more
source windows 806 and/or the one or more derived windows 808 of ESPE 800, and to
subscribing client A 1004, subscribing client B 1006, and subscribing client C 1008 and to event
subscription device A 10244, event subscription device B 1024b, and event subscription device
C 1024c¢. Publishing client 1002 may further generate and include a unigue embedded
transaction ID in the event block object as the event block object is processed by a continuous
query, as well as the unigue ID that publishing device 1022 assigned to the event block object.

In an operation 912, the event block object is processed through the one or more
continuous queries 804. In an operation 914, the processed event block object is output to one
or more computing devices of the event subscribing devices 1024a-c. For example, subscribing
client A 1004, subscribing client B 1006, and subscribing client C 1008 may send the received
event block object to event subscription device A 1024a, event subscription device B 1024b,
and event subscription device C 1024c¢, respectively.

ESPE 800 maintains the event block containership aspect of the received event blocks
from when the event block is published into a source window and works its way through the
directed graph defined by the one or more continuous gqueries 804 with the various event
translations before being output to subscribers. Subscribers can correlate a group of
subscribed events back to a group of published events by comparing the unique ID of the event
block object that a publisher, such as publishing device 1022, attached to the event block object
with the event block ID received by the subscriber.

In an operation 916, a determination is made concerning whether or not processing is
stopped. If processing is not stopped, processing continues in operation 910 to continue
receiving the one or more event streams containing event block objects from the, for example,
one or more network devices. If processing is stopped, processing continues in an operation
918. In operation 918, the started projects are stopped. In operation 920, the ESPE is
shutdown.

As noted, in some embodiments, big data is processed for an analytics project after the
data is received and stored. In other embodiments, distributed applications process
continuously flowing data in real-time from distributed sources by applying queries to the data
before distributing the data to geographically distributed recipients. As noted, an event stream
processing engine (ESPE) may continuously apply the queries to the data as it is received and
determines which entities receive the processed data. This allows for large amounts of data
being received and/or collected in a variety of environments to be processed and distributed in

real time. For example, as shown with respect to Figure 2, data may be collected from network
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devices that may include devices within the internet of things, such as devices within a home
automation network. However, such data may be collected from a variety of different resources
in a variety of different environments. In any such situation, embodiments of the present
technology allow for real-time processing of such data.

Aspects of the current disclosure provide technical solutions to technical problems, such
as computing problems that arise when an ESP device fails which results in a complete service
interruption and potentially significant data loss. The data loss can be catastrophic when the
streamed data is supporting mission critical operations such as those in support of an ongoing
manufacturing or drilling operation. An embodiment of an ESP system achieves a rapid and
seamless failover of ESPE running at the plurality of ESP devices without service interruption or
data loss, thus significantly improving the reliability of an operational system that relies on the
live or real-time processing of the data streams. The event publishing systems, the event
subscribing systems, and each ESPE not executing at a failed ESP device are not aware of or
effected by the failed ESP device. The ESP system may include thousands of event publishing
systems and event subscribing systems. The ESP system keeps the failover logic and
awareness within the boundaries of out-messaging network connector and out-messaging
network device.

In one example embodiment, a system is provided to support a failover when event
stream processing (ESP) event blocks. The system includes, but is not limited to, an out-
messaging network device and a computing device. The computing device includes, but is not
limited to, a processor and a computer-readable medium operably coupled to the processor.
The processor is configured to execute an ESP engine (ESPE). The computer-readable
medium has instructions stored thereon that, when executed by the processor, cause the
computing device to support the failover. An event block object is received from the ESPE that
includes a unique identifier. A first status of the computing device as active or standby is
determined. When the first status is active, a second status of the computing device as newly
active or not newly active is determined. Newly active is determined when the computing
device is switched from a standby status to an active status. When the second status is newly
active, a last published event block object identifier that uniquely identifies a last published
event block object is determined. A next event block object is selected from a non-transitory
computer-readable medium accessible by the computing device. The next event block object
has an event block object identifier that is greater than the determined last published event
block object identifier. The selected next event block object is published to an out-messaging
network device. When the second status of the computing device is not newly active, the
received event block object is published to the out-messaging network device. When the first
status of the computing device is standby, the received event block object is stored in the non-

transitory computer-readable medium.
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Figure 11 is a flow chart of an example of a process for generating and using a machine-
learning model according to some aspects. Machine learning is a branch of artificial intelligence
that relates to mathematical models that can learn from, categorize, and make predictions about
data. Such mathematical models, which can be referred to as machine-learning models, can
classify input data among two or more classes; cluster input data among two or more groups;
predict a result based on input data; identify patterns or trends in input data; identify a
distribution of input data in a space; or any combination of these. Examples of machine-
learning models can include (i) neural networks; (ii) decision trees, such as classification trees
and regression trees; (iii) classifiers, such as Naive bias classifiers, logistic regression
classifiers, ridge regression classifiers, random forest classifiers, least absolute shrinkage and
selector (LASSO) classifiers, and suppotrt vector machines; (iv) clusterers, such as k-means
clusterers, mean-shift clusterers, and spectral clusterers; (v) factorizers, such as factorization
machines, principal component analyzers and kernel principal component analyzers; and (vi)
ensembles or other combinations of machine-learning models. In some examples, neural
networks can include deep neural networks, feed-forward neural networks, recurrent neural
networks, convolutional neural networks, radial basis function (RBF) neural networks, echo
state neural networks, long short-term memory neural networks, bi-directional recurrent neural
networks, gated neural networks, hierarchical recurrent neural networks, stochastic neural
networks, modular neural networks, spiking neural networks, dynamic neural networks,
cascading neural networks, neuro-fuzzy neural networks, or any combination of these.

Different machine-learning models may be used interchangeably to perform a task.
Examples of tasks that can be performed at least partially using machine-learning models
include various types of scoring; bioinformatics; cheminformatics; software engineering; fraud
detection; customer segmentation; generating online recommendations; adaptive websites;
determining customer lifetime value; search engines; placing advertisements in real time or near
real time; classifying DNA sequences; affective computing; performing natural language
processing and understanding; object recognition and computer vision; robotic locomotion;
playing games; optimization and metaheuristics; detecting network intrusions; medical diagnosis
and monitoring; or predicting when an asset, such as a machine, will need maintenance.

Any number and combination of tools can be used to create machine-learning models.
Examples of toals for creating and managing machine-learning models can include SAS®
Enterprise Miner, SAS® Rapid Predictive Modeler, and SAS® Model Manager, SAS Cloud
Analytic Services (CAS) ®, SAS Viya ® of all which are by SAS Institute Inc. of Cary, North
Carolina.

Machine-learning models can be constructed through an at least partially automated
(e.g., with little or no human involvement) process called training. During training, input data
can be iteratively supplied to a machine-learning model to enable the machine-learning model to

identify patterns related to the input data or to identify relationships between the input data and
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output data. With training, the machine-learning model can be transformed from an untrained
state to a trained state. Input data can be split into one or more training sets and one or more
validation sets, and the training process may be repeated multiple times. The splitting may
follow a k-fold cross-validation rule, a leave-one-out-rule, a leave-p-out rule, or a holdout rule.
An overview of training and using a machine-learning model is described below with respect to
the flow chart of Figure 11.

In block 1104, training data is received. In some examples, the training data is received
from a remote database or a local database, constructed from various subsets of data, or input
by a user. The training data can be used in its raw form for training a machine-learning model
or pre-processed into another form, which can then be used for training the machine-learning
model. For example, the raw form of the training data can be smoothed, truncated, aggregated,
clustered, or otherwise manipulated into another form, which can then be used for training the
machine-learning model.

In block 1106, a machine-learning model is trained using the training data. The
machine-learning model can be trained in a supervised, unsupervised, or semi-supervised
manner. In supervised training, each input in the training data is correlated to a desired output.
This desired output may be a scalar, a vector, or a different type of data structure such as text
or an image. This may enable the machine-learning model to learn a mapping between the
inputs and desired outputs. In unsupervised training, the training data includes inputs, but not
desired outputs, so that the machine-learning model has to find structure in the inputs on its
own. In semi-supervised training, only some of the inputs in the training data are correlated to
desired outputs.

In block 1108, the machine-learning model is evaluated. For example, an evaluation
dataset can be obtained, for example, via user input or from a database. The evaluation
dataset can include inputs correlated to desired outputs. The inputs can be provided to the
machine-learning model and the outputs from the machine-learning model can be compared to
the desired outputs. If the outputs from the machine-learning model closely correspond with the
desired outputs, the machine-learning model may have a high degree of accuracy. For
example, if 90% or more of the outputs from the machine-learning model are the same as the
desired outputs in the evaluation dataset, the machine-learning model may have a high degree
of accuracy. Otherwise, the machine-learning model may have a low degree of accuracy. The
90% number is an example only. A realistic and desirable accuracy percentage is dependent on
the problem and the data.

In some examples, if the machine-learning model has an inadequate degree of accuracy
for a particular task, the process can return to block 1106, where the machine-learning model
can be further trained using additional training data or otherwise maodified to improve accuracy.
If the machine-learning model has an adequate degree of accuracy for the particular task, the

process can continue to block 1110.
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In block 1110, new data is received. In some examples, the new data is received from a
remote database or a local database, constructed from various subsets of data, or input by a
user. The new data may be unknown to the machine-learning model. For example, the
machine-learning model may not have previously processed or analyzed the new data.

In block 1112, the trained machine-learning model is used to analyze the new data and
provide a result. For example, the new data can be provided as input to the trained machine-
learning model. The trained machine-learning model can analyze the new data and provide a
result that includes a classification of the new data into a particular class, a clustering of the new
data into a particular group, a prediction based on the new data, or any combination of these.

In block 1114, the result is post-processed. For example, the result can be added to,
multiplied with, or otherwise combined with other data as part of a job. As another example, the
result can be transformed from a first format, such as a time series format, into another format,
such as a count series format. Any number and combination of operations can be performed on
the result during post-processing.

A more specific example of a machine-learning model is the neural network 1200 shown
in Figure 12. The neural network 1200 is represented as multiple layers of interconnected
heurons, such as neuron 1208, that can exchange data between one another. The layers
include an input layer 1202 for receiving input data, a hidden layer 1204, and an output layer
1206 for providing a result. The hidden layer 1204 is referred to as hidden because it may not
be directly observable or have its input directly accessible during the normal functioning of the
neural network 1200. Although the neural network 1200 is shown as having a specific number
of layers and neurons for exemplary purposes, the neural network 1200 can have any number
and combination of layers, and each layer can have any number and combination of neurons.

The neurons and connections between the neurons can have numeric weights, which
can be tuned during training. For example, training data can be provided to the input layer 1202
of the neural network 1200, and the neural network 1200 can use the training data to tune one
or more numeric weights of the neural network 1200. In some examples, the neural network
1200 can be trained using backpropagation. Backpropagation can include determining a
gradient of a particular numeric weight based on a difference between an actual output of the
neural network 1200 and a desired output of the neural network 1200. Based on the gradient,
one or more numeric weights of the neural network 1200 can be updated to reduce the
difference, thereby increasing the accuracy of the neural network 1200. This process can be
repeated multiple times to train the neural network 1200. For example, this process can be
repeated hundreds or thousands of times to train the neural network 1200.

In some examples, the neural network 1200 is a feed-forward neural network. In a feed-
forward neural network, every neuron only propagates an output value to a subsequent layer of
the neural network 1200. For example, data may only move one direction (forward) from one

neuron to the next neuron in a feed-forward neural network.
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In other examples, the neural network 1200 is a recurrent neural network. A recurrent
heural network can include one or more feedback loops, allowing data to propagate in both
forward and backward through the neural network 1200. This can allow for information to
persist within the recurrent neural network. For example, a recurrent neural network can
determine an output based at least partially on information that the recurrent neural network has
seen before, giving the recurrent neural network the ability to use previous input to inform the
output.

In some examples, the neural network 1200 operates by receiving a vector of numbers
from one layer; transforming the vector of numbers into a new vector of numbers using a matrix
of numeric weights, a nonlinearity, or both; and providing the new vector of numbers to a
subsequent layer of the neural network 1200. Each subsequent layer of the neural network
1200 can repeat this process until the neural network 1200 outputs a final result at the output
layer 1206. For example, the neural network 1200 can receive a vector of numbers as an input
at the input layer 1202. The neural network 1200 can multiply the vector of numbers by a matrix
of numeric weights to determine a weighted vector. The matrix of numeric weights can be tuned
during the training of the neural network 1200. The neural network 1200 can transform the
weighted vector using a nonlinearity, such as a sigmoid tangent or the hyperbolic tangent. In
some examples, the nonlinearity can include a rectified linear unit, which can be expressed
using the following equation:

y = max(x, 0)
where y is the output and x is an input value from the weighted vector. The transformed output
can be supplied to a subsequent layer, such as the hidden layer 1204, of the neural network
1200. The subsequent layer of the neural network 1200 can receive the transformed output,
multiply the transformed output by a matrix of numeric weights and a nonlinearity, and provide
the result to yet another layer of the neural network 1200. This process continues until the
neural network 1200 outputs a final result at the output layer 12086.

Other examples of the present disclosure may include any number and combination of
machine-learning models having any number and combination of characteristics. The machine-
learning model(s) can be trained in a supervised, semi-supervised, or unsupervised manner, or
any combination of these. The machine-learning model(s) can be implemented using a single
computing device or multiple computing devices, such as the communications grid computing
system 400 discussed above.

Implementing some examples of the present disclosure at least in part by using
machine-learning models can reduce the total number of processing iterations, time, memory,
electrical power, or any combination of these consumed by a computing device when analyzing
data. For example, a neural network may more readily identify patterns in data than other

approaches. This may enable the neural network to analyze the data using fewer processing
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cycles and less memory than other approaches, while obtaining a similar or greater level of
accuracy.

Some machine-learning approaches may be more efficiently and speedily executed and
processed with machine-learning specific processors (e.g., not a generic CPU). Such
processors may also provide an energy savings when compared to generic CPUs. For
example, some of these processors can include a graphical processing unit (GPU), an
application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), an
artificial intelligence (Al) accelerator, a neural computing core, a neural computing engine, a
neural processing unit, a purpose-built chip architecture for deep learning, and/or some other
machine-learning specific processor that implements a machine learning approach or one or
more neural networks using semiconductor (e.g., silicon (Si), gallium arsenide(GaAs)) devices.
Furthermore, these processors may also be employed in heterogeneous computing
architectures with a number of and a variety of different types of cores, engines, nodes, and/or
layers to achieve various energy efficiencies, processing speed improvements, data
communication speed improvements, and/or data efficiency targets and improvements
throughout various parts of the system when compared to a homogeneous computing
architecture that employs CPUs for general purpose computing.

One or more embodiments of the present technology are useful for making predictions
regarding processes for joining together materials (e.g., bonding operations). There are many
different ways to join materials together including adhesive bonding, welding bonding, stitching
bonding, and soldering bonding. Bonding operations are used in many different industries
including manufacturing and construction. Bonding can be used to manufacturing various
products and their packaging, such as vehicles, user equipment, mobile devices, computers,
medical devices, clothing, and chemical products. Bonding can be used in construction such as
to form buildings, bridges, and electrical systems. In bonding operations, it can be difficult to
know the quality of a bond, and consequently the quality of the formed product, without
destroying the bond itself. Predictions regarding the bonding operation can be useful for making
determinations regarding a bonding operation without destroying manufactured products. For
instance, one or more embodiments are useful for manufacturing an integrated computer (IC)
chip.

As those of ordinary skill in the art are aware, the semiconductor manufacturing process
for an IC chip is typically performed in two stages commonly referred to as the “front-end” and
the “back-end.” The front-end refers to the manufacturing process for fabricating a silicon wafer
from a blank wafer. Once completed, the fabricated silicon wafer has a plurality of IC chips
thereon. The “back-end” refers to the manufacturing processes that occur after all the ICs chips
have been created on the silicon wafer. For purposes of describing example embodiments,

example “back-end” processes will be described in greater detail.
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Figures 13 and 14 illustrate an overview of an example “back-end” semiconductor
manufacturing process for manufacturing an IC chip according to one embodiment. In
particular, Figure 13 illustrates an example method 1300 for performing the “back-end” of the
semiconductor manufacturing process. Figure 14 further graphically illustrates a method 1400
for performing the back-end semiconductor manufacturing process and some of the
components associated with the back-end of the semiconductor manufacturing process. Such
components include, by way of example, a silicon wafer 1402 having a plurality of dies 1404
thereon. Each die 1404 comprises a block of semiconductor material inside an 1C chip on which
functional circuits are fabricated. Therefore, each die 1404 is a fully functional IC chip that has
not yet been packaged.

As seen in Figure 13, example method 1300 begins with a wafer grinding stage (box
1302). In this stage, the thickness of silicon wafer (e.g., silicon wafer 1402 of Figure 14) is
reduced to a desired thickness (e.g., 50-75um) by an abrasive grinding wheel. The grinding
may be implemented, for example, in multiple steps. For instance, in a first step, a grinding
wheel (not shown) may use a coarse grit to first coarsely grind a silicon wafer (e.q., silicon wafer
1402 of Figure 14) and remove most its excess thickness. In a second step the grinding wheel
may use a different grit (e.g., a much finer grit) to finish grinding the silicon wafer. The finer grit
is used to accurately grind the silicon wafer to the desired thickness and to polish the silicon
wafer.

Once grinding is complete, method 1300 of Figure 13 separates the dies (e.g., dies 1404
of Figure 14) from each other in g wafer sawing stage (box 1304). Wafer sawing, also known as
“‘wafer dicing,” is the process by which the die are separated from each other on the silicon
wafer (e.g., silicon wafer 1402 of Figure 14). Generally, wafer dicing is accomplished by
mechanically sawing a silicon wafer in the areas that lie between the die. As seen in Figure 14,
example “areas” for sawing are indicated using vertical and horizontal lines 1406, 1408,
respectively, and are commonly referred to as “dicing streets” or “scribe lines.” The excess
areas around the die can be further removed or reduced by additional sawing or grinding.

The separated die (e.g., die 1404 of Figure 14) are then attached or “bonded” to a lead
frame (e.g., lead frame 1410 of Figure 14) in a die bonding stage of Figure 13 (box 1306). A
“lead frame” can be a metallic (e.g., copper) conductive structure inside a chip package
configured to carry signals from the die to the “outside world” or vice versa. In Figure 14, the die
1404 is bonded to the lead frame 1410 using an epoxy adhesive or solder. Particularly, the
epoxy adhesive or solder is placed on the lead frame 1410 in a predetermined pattern.
Individual die 1404a, 1404b, 1404c, which were separated from each other in the wafer sawing
stage, are then picked and placed onto the dispensed epoxy adhesive or solder and cured. The
curing hardens the epoxy or solder so that each die 1404a, 1404b, 1404¢ remain attached to
the lead frame 1410, and so that each die 1404a, 1404b, 1404¢ achieves the desired

mechanical and electrical properties.
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Those of ordinary skill in the art will readily appreciate that the present disclosure is not
limited solely to the use of an epoxy adhesive or solder for bonding the die 1404 to lead frame
1410. In other embodiments, for example, the die 1404 are bonded to the lead frame 1410
using a well-known thermocompression die bonding technique. Thermocompression die
bonding does not use adhesive materials to attach the die 1404 to lead frame 1410. Rather,
heat and a force are applied to the die 1404 in order to form a metallic bond with the underlying
lead frame 1410.

The next stage in the back-end process of Figure 13 is the wire bonding stage (box
1308). In this stage, a wire bonding machine (not shown), for example, creates an electrical
connection between a die (e.g., die 1404a) and a lead frame (e.g., lead frame 1410) using a
plurality of wires. As is described more fully below, each connection involves two bonds
referred to herein as “ball bonds” and “stitch bonds.” The ball bond is made between a wire and
a die, while the stitch bond is made between a lead frame the wire. Any number of wires can be
used in this stage to bond a die to lead frame. For example, depending on the manufacturer,
different numbers of wires can be used (e.g., >5, >10, >20 or > 100) to electrically connect a die
to a lead frame.

Once the wire bonding stage is complete, a molding stage is performed in Figure 13
(box 1310). This stage helps protect a die (e.q., die 1404) mechanically (e.g., from damage
resulting from one or more physical impacts), as well as environmentally (e.g., from particulates
and other impurities). As seen in Figure 14, the molding stage encapsulates the die 1404 by
wrapping it in a predetermined material, such as plastic epoxy material, for example. The
molding process can be, for example, any of a number of well-known molding methods. For
example, in a first method (i.e., a hermetic method), a ceramic plate or metal lid is attached to
the die 1404, thereby forming a seal. In a second method, a plastic epoxy material is melted
onto die 1404 and cured to form the seal. Regardless of the particular method used in the
molding stage, however, the molding compound is cured using heat.

The next stage after the molding stage in Figure 13 can include an enhancement stage
(box 1312). For instance, a plating operation can be used to help protect the lead frame 1410
from corrosion and abrasion by applying a thin layer of metal over the leads of a lead frame
(e.g., lead frame 1410) to mechanically and electrically connect and couple the lead frame to an
underlying substrate, such as a printed circuit board (PCB), for example. As another example,
an etching operation can be used to enhance the electrical conductivity of lead frames.

After the enhancement stage is complete, a marking stage is performed in Figure 13
(box 1314). In this stage, the manufacturer marks the housing of the IC chip with a variety of
identifiers and other distinguishing information, such as the manufacturer’'s name and logo, the
name of the IC chip, a date code, a lot identifier, and the like. Any number of methods, such as
ink-based and laser-based methods, for example, can be used to mark the housings. However,

in at least one embodiment of the present technology, laser-based methods are preferred.
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Regardless of the particular method used in the marking stage, though, the markings enable
identification of the IC chip and the source and facilitate traceability.

The next stage in the back-end process is the trim & form stage in Figure 13 (box 1316).
In this stage, metallic struts commonly referred to as called “dambars” connecting the leads
extending from the housing of the IC chip are cut away. Additionally, the leads are bent or
otherwise formed into an appropriate shape for placement onto an underlying substrate. Finally,
the trimmed and formed IC chip is inspected, tested, and packaged for distribution in a stage of
Figure 13 (box 1318).

Figures 13 and 14 show example stages that can be performed as part of a
semiconductor manufacturing process. Each stage could have one or more operations.
Further, different, more, or fewer stages could be performed (e.g., stages could be combined or
in different order). Thus, the methods 1300 and 1400 illustrated in Figures 13 and 14 are
merely examples for describing an example bonding operation for an IC chip. Regardless, as
previously described, a wire bonding machine can use a plurality of wires to create the electrical
connection between the die 1404 and the lead frame 1410 of Figure 14 in the wire bonding
stage (box 1308). Figures 15A and 15B illustrate an example of some of the components of an
IC chip and bondings according to at least one embodiment of the present technology.
Particularly, Figures 15A and 15B illustrate an exemplary lead frame 1410 bonded to an
underlaying substrate 1500. Also attached to substrate 1500 are the conductive “legs” or “pins”
of lead frame 1410. In this embodiment, Figure 15A illustrates lead frame 1410 as having three
(3) conductive legs 1410a, 1410b, 1410c. However, this is for illustrative purposes only. Those
of ordinary skill in the art will readily appreciate that there may be more or fewer legs coupled to
lead frame 1410 as needed or desired. Regardless of the number of conductive legs, however,
the legs 14104, 1410b, 1410c¢ of lead frame 1410, as seen in Figure 15B, can be bent during
the trim and form stage (box 1316 of Figure 13) so that the conductive legs make appropriate
physical contact with an underlying substrate, such as a printed circuit board (PCB) for example.

As seen in Figure 15A, a thin metal wire 1504 extends between a bond pad 1506
disposed on the surface of die 1404a and a target pad 1508 disposed on each leg 1410a,
1410b, 1410c of lead frame 1410. In some embodiments, a conductive film layer 1502 may be
disposed between target pad 1508 and each leg 1410a, 1410b, 1410c¢ of lead frame 1410.

Both the bond pad 1506 and the target pad 1508 comprise a thin conductive, metallic layer or
film, such as silver, for example. However, as those of ordinary skill in the art will understand, it
is possible that one or both of the bond pad 1506 and the target pad 1508 is comprised of a
conductive material other than silver. Regardless of their composition, however, wire 1504 is
attached to bond pad 1506 via a “ball bond” 1510, and to the target pad 1508 via a “stitch bond”
1512. The wire 1504, the ball bond 1510, and the stitch bond 1512 provide the physical means

that create the electrical connection between the die 1404a and the legs of the lead frame 1410.

40

SUBSTITUTE SHEET (RULE 26)



10

15

20

25

30

35

WO 2023/003595 PCT/US2022/013319

Figures 16A-16D illustrate an example method 1600 for forming the ball bond 1510 and
the stitch bond 1512 according to one embodiment of the present disclosure. As seen in these
figures, a feeder wire 1604 extends through a bore of a capillary tool 1602. Generally, the
feeder wire 1604 comprises a conductive material such as gold, copper, or aluminum, for
example.

To create the ball bond 1510, a high voltage electrical charge is applied to the feeder
wire 1604 (Figure 16A). This charge melts the terminal end of the feeder wire 1604. However,
rather than drip or fall away, surface tension causes the melted feeder wire 1604 to form into a
ball 1606 at the tip of capillary tool 1602. The capillary tool 1602 is then lowered towards die
1404a such that the molten ball 1606 is pressed onto bond pad 1506, which in some cases may
be heated (Figure 16B). Heat (e.g., thermo-compression) and/or ultrasound energy (e.g.,
ultrasonic energy), for example, are then applied along with the downward pressure of capillary
tool 1602 to form the ball bond 1510.

The capillary tool 1602 is then lifted away from ball bond 1510 and moved towards a
target pad 1508 of lead frame 1410. Capillary tool 1602 then descends to contact target pad
1508 thereby crushing the feeder wire 1604 between the tip of the capillary tool 1602 and the
surface of target pad 1508 (Figure 16C). The pressure applied on the feeder wire 1604 by
capillary tool 1602, along with heat and/or ultrasound energy, forms the stitch bond 1512. So
formed, the capillary tool 1602 is then lifted away from the target pad 1508, which causes the
feeder wire 1604 to tear, and moved to the next bond pad 1506 to form the next ball bond 1510
(Figure 16D).

Wire bonding is a very complex procedure made even more complex by likely multiple
dies on an IC chip. Embodiments of the present disclosure read and record multiple process
parameters during bonding. According to the present embodiments, and as described more
fully below, the process parameters can be used to generate an anomaly indicator indicating a
risk that an anomaly occurred during such bonding operations.

Figure 17 is a perspective view of an example IC chip 1700 that has undergone the
back-end of the semiconductor manufacturing process previously described. As seen in Figure
17, 1C chip 1700 comprises a plurality of die 1404a, 1404b, 1404c, and 1404d. Each die 1404a,
1404b, 1404c¢, 1404d has its own bonding connections to lead frame 1410, and thus, is
physically and electrically connected to lead frame 1410 via wires 1504 and the ball and stitch
bonds 1510, 1512, respectively, as previously described. This embodiment illustrates a wire
layout of 40 wires 1504. However, those of ordinary skill in the art should readily appreciate that
this if merely for illustrative purposes. Such wire layouts may comprise more or fewer wires
1504, as needed or desired.

In one embodiment, dies 1404a, 1404b, 1404c, 1404d all have the same number of
wires 1504 connecting them to lead frame 1410. However, this is not required. Dies 1404a,

1404b, 1404c, and 1404d may not necessarily have the same number of wires 1504. For
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example, die 1404a may have a first number of wires 1504 connecting it to lead frame 1410,
and die 1404¢c may have a second, different number of wires 1504 connecting it to lead frame
1410. One or both of the other die 1404b, 1404d may also have the same or different number
of wires than the other die on IC chip 1700.

As explained above, the back-end of the semiconductor manufacturing process may
include an inspection and testing stage (e.g., box 1318 in Figure 13). During this stage, the
quality of the ball bonds 1510 and the stitch bonds 1512 that were created in the wire bonding
stage (e.g., box 1308 in Figure 13) are tested. Such testing is not petformed on all completed
IC chips, but rather, on a representative sample of IC chips from each lot.

In general, there are different types of tests for determining the quality of a wire bond -
non-destructive and destructive. Non-destructive tests generally involve a visual inspection of
the ball bonds 1508 and stitch bonds 1512 and infer the quality of those bond by their respective
diameters. Provided they pass the visual inspection, the IC chips can be placed back into the
workflow for distribution. Visual inspection, though, can be an inaccurate, error-prone way in
which to infer the quality of a bond.

Destructive tests, in contrast, break a bond by damaging or deforming the ball and stitch
bonds 1510, 1512 and/or the wire 1504 such that the IC chips under inspection cannot be
returned for distribution. Therefore, although destructive tests are useful for determining an
exact paint of failure of a given ball and/or stitch bond 1510, 1512, they are necessarily time
consuming and expensive, and are often conducted by separate testing machines. Further,
since the bond is destroyed it can only be used to make inferences regarding the quality of other
bonded chips that did not undergo destructive testing.

Generally, the semiconductor manufacturing industry relies on two particular destructive
tests. These are the “ball shear” tests and the “stitch pull” tests. For details on these tests, the
interested reader is directed to government mandated standards for microelectronic devices
(e.g., United States government standards in Revision K of MIL-STD-883C entitled “Test
Method Standard — Microcircuits” released April 25, 2016 for military and aerospace electronic
systems, which is incorporated herein by reference in its entirety). Briefly, however, “ball shear”
testing is used for testing the quality of the ball bonds 1508, while “stitch pull” testing is used for
testing the quality of the stitch bonds 1512,

Figures 18A-18C are perspective views illustrating an example method 1800 for
performing ball shear testing. As seen in these figures, the ball bond 1510 is bonded to the
bond pad 1506 (Figure 18A). A tool arm 1802 is positioned above the bond pad 1506 and
moved laterally into pressing contact with the ball bond 1510 (Figure 18B). The tool arm 1802
continues to move laterally against the ball bond 1510 until the force applied by the tool arm
1802 causes the ball bond 1510 to separate (i.e., shear) from the bond pad 1506 (Figure 18C).

The shearing destroys the bond. The shear force applied by the tool arm 1802 is measured
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throughout testing (e.g., in grams). Therefore, at the end of testing, the exact amount of shear
force needed to shear the ball bond 1510 away from the bond pad 1506 is known.

Figures 19A-19C are perspective views illustrating an example method 1900 for
performing stitch pull testing. As above, the stitch bond 1512 is attached to the target pad 1508
and the ball bond 1510 is attached to the bond pad 1506.

In stitch pull testing, a hook tool 1902 is lowered and placed under the wire 1504 (Figure
19A). So positioned, the hook tool 1902 is then raised into contact with the wire 1504 (Figure
19B). The hook tool 1902 continues to move upward so that it applies an upward force on wire
1504. Eventually, this upward force pulls the stitch bond 1512 away from the target pad 1508,
effectively pulling the wire 1504 away from the lead frame 1410 (Figure 19C) and destroying the
bond. The upward force applied by hook tool 1902 is measured throughout testing (e.g., in
grams). As such, at the end of testing, the exact amount of upward force needed to lift the stitch
bond away from the target pad 1508 can be determined.

To perform these destructive tests, selected IC chips are physically moved from
whatever machine is performing the wire bonding stage to another machine configured to
perform the testing. Often times, these actions are performed manually. Further, not all ball
bonds 1510 and stitch bonds 1512 of a given IC chip are tested. In contrast, only a
representative sample of those bonds are tested.

Because these tests are so destructive, the IC chips under test are destroyed — even
though not all bonds on the IC chip are tested. Therefore, chip manufacturers usually take a
representative sample of IC chips from a given lot and then perform these destructive tests on
that representative sample. The results achieved from testing the sample(s) are then stored and
subsequently used to make inferences about the quality of the IC chips in that lot.

Such tests, however, are very time consuming and can slow the integrated chip
manufacturing process. Further, because these tests destroy the IC chips, they must be
discarded rather than sold. Destructive testing, therefore, is also costly.

Additionally, a question arises as to which wires 1504 on a given IC chip should be
selected for testing. Ideally, IC chips with poor quality wires and/or bonds should be identified
prior to leaving the factory floor. However, there is no guarantee that a given random sample of
IC chips and their corresponding wires and bonds will include such IC chips. Moreover, it is still
possible that the random sample of IC chips and wires incorrectly certifies a given lot to be of
acceptable quality. Currently, there is no informed method for identifying IC chips having poor
quality bond connections. Therefore, there is no current way to identify the particular wires, or
subset of wires, to undergo quality testing.

Similar problems occur in other types of bonding situations. As such, a bonder will either
have 1o opt for destructive testing, which destroys the bond under study, or non-destructive
testing. Previous, conventional testing techniques for non-destructive testing were likely to be

inaccurate and time-consuming requiring manual, visual inspections. Further, previous testing
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approaches are often conducted on only a small subset of the products in a given lot. Therefore,
there are typically issues with determining which products to test.

Embodiments of the present disclosure, therefore, address these and other concerns by
providing a model specifically for predicting possible anomalies without having to destroy the
bond (e.g., predicting the forces needed for shearing the ball bond 1510 from the bond pad
1506, and for separating the stitch bond 1512 from the target pad 1508 without having to
conduct the quality assurance test). Techniques can use feature engineering to select and
transform relevant variables derived from raw data measurements to process data for a model
(e.g., a predictive model designed using machine learning or statistical modeling). Feature
engineering can involve creating of features by identifying raw variables that will be useful
predictive variables for a predictive model and/or creating derived features from manipulating
raw variables (e.g., addition, subtraction, multiplication, and ratios). Feature engineering can
involve transformations by further manipulating created predictor variables to perform model
performance (e.g., ensuring variables are on a same scale, or are within an acceptable range
for a model). Feature engineering can involve feature extraction by automatic creating of new
variables from raw data; and feature selection by using algorithms to analyze, judge, and rank
features to determine features for a model (e.g., to remove irrelevant or redundant features).

Particularly, the embodiments disclosed herein utilize the process data measured during
the bonding operations (e.g., wire bonding) to develop analytical models. Process parameters
obtained through feature engineering may be referred to herein as “motion features”. The
analytical models allow users to accurately estimate the ball shear and stitch pull forces (i.e.,
values) that, until now, were obtainable only through destructive testing. Thus, the present
embodiments can accurately predict the quality of the wire bonds based on the motion feature
data.

Such accurate predictions provide benefits and advantages that conventional testing
methods do not provide. For example, analytical models generated according to the present
embodiments can reduce the amount of inspection that is performed and can eliminate it
altogether in some instances. Even in situations where a certain amount of inspections or
destructive testing is required for contractional reasons, approaches herein can enable a
manufacturer to be strategic in the product population for sampling. For instance, IC chips that
are predicted by the present embodiments to have poor quality bonds may be scraped from the
population for shipping, and thus from the sampled population. Sampling a better population
may provide an overall improvement in field quality and may improve efficiency (e.g., by
reducing the chance of recall or rejection of a shipped and sampled set).

As stated previously, one or more embodiments described herein are explained in the
context of bonding for an integrated circuit merely as an example. One of ordinary skill in the art
will appreciate that techniques described herein can be applied to other types of bonding

operations.
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Figure 20A illustrates an example block diagram of a training system 2000. For
example, the training system may be useful for training a computer model to make predictions
regarding a bonding operation. For instance, the bonding operation could be a bonding
operation described herein such as an adhesive bonding operation (e.g., to adhere a windshield
to a vehicle or in wafer bonding) or a welding bonding (e.g., for wire bonding) to name a few.
There are many types and sub-types of bonding. For instance, with welding bonding there are
sub-types including tungsten inert gas (TIG) welding, also known as heliarc and gas tungsten
arc welding (GTAW); flux-cored arc welding (FCAW); stick welding, also known as shielding-
metal arc welding (SMAW), metal inert gas (MIG) welding, also known as gas metal arc welding
(GMAW), laser beam welding, electron-beam welding, plasma arc welding, atomic hydrogen
welding, and electroslag welding. For brevity, different possible bonding operations or hybrid
bonding operations are referred to herein as simply a bonding operation.

Training system 2000 includes a computing device 2002. The training system 2000 is
configured to exchange information between devices in the system (e.g., via wired and/or
wireless transmission). For example, a network (not shown) can connect one or more devices
of training system 2000 to one or more other devices of training system 2000.

For instance, in one or more embodiments, the training system 2000 includes one or
more input devices 2004A for receiving information pertaining to a bonding operations 2040A
via one or more input interfaces 2005 (e.qg., for training the computing device 2002). For
example, if the training system is training a system to make predictions regarding a bonding
operation, the bonding operations 2040A may include a system for bonding operations.

Bonding operations occur in many different environments (e.g., manufacture or construction
environments). For instance, in an integrated circuit manufacture environment, bonding may be
used to bond one or more wires to a surface {(e.g., using ball, wedge, stitch, and/or compliant
boding). The bonding operations 2040A can comprise bonding wires of a first set of multiple
wires to corresponding surfaces of a first set of surfaces to form integrated circuit chips. The
bonding operations 2040A may have different types of bonding operations. For example, the
environment 2040A may include ball bonding operations 2042A and/or stitch bonding
operations 2044B.

In one or more embodiments, the computing device 2002 may receive model information
2030 for building a model to represent the bonding operations 2040A or a subsequent
environment. As an example, the computing system may receive training data 2032 for building
a model.

The training data 2032 may include measurements 2038 of the bonding operations
2040A. Additionally, or alternatively, the training data 2032 may include process data 2034, the
process data may be generated from the measurements 2038. For instance, the process data
may comprise a measurement of the measurements 2038 or be generated information for one

or more measurements, or measurement types. For instance, if the bonding operations 2040A
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is a part of a physical environment, an input device such as a sensor 2020A may capture
measurements 2038 about the physical environment such as heat measurements for heating a
bonded surface or bonding agent and/or force measurements for force used to bond materials.
Alternatively, or alternatively, the environment may be a simulated environment or comprise
additional simulated actions or computations for a physical environment (e.g., a simulated
aspects of bonding operations 2040A or inferred information from measurements 2038) and a
computing system component (e.g., computing device 2002 or computing system 2024) may
generate information about the physical or simulated environment (e.g., process data 2034).
Additionally, or alternatively, the computing device 2002 itself may derive process data 2034
(e.g., using process data application 2012).

Additionally, or alternatively, the training data 2032 comprises statuses of bonding. As
an example, each status of the statuses could comprise one or more candidate outcomes for an
objective related to detecting one or more anomalies in the bonding operations 2040A. For
instance, if the bonding operations 2040A comprise operations to bond a first set of multiple
wires to a first set of surfaces, the statuses could be statuses of the multiple wires after bonding
to the first set of surfaces (e.g., a quality status or a performance status). The candidate options
could comprise one or more defective chip outcomes for the integrated circuit chips in the
bonding operations 2040A. The candidate options could also be on an individual wire level
(e.g., a quality assurance test outcome for an individual wire level).

Additionally, the training system 2000 includes one or more output devices 2052 for
outputting via one or more output interfaces 2006 information based on the bonding operations
2040A. For instance, the computing device 2002 can output a machine learning model 2050
implementing a predictive model based on training data 2032 related to the bonding operations
2040A. For instance, the computing device 2002 may generate one or more weights for the
process data such that the process data input to the machine learning model predicts the one or
more candidate outcomes for an objective (e.g., an objective related to detecting one or more
anomalies in the bonding operations 2040A).

As an example, the machine learning model 2050 can be trained by supervised learning
based on receiving the training data and using it to generate one or more weights such that the
machine learning model can predict the candidate outcomes. For example, if a set of
measurements is received for a wire and that wire is then tested and given a status of normal or
anomaly, the measurements can be weighted to predict that status as normal or anomaly for
future measurements where the status may be unknown (e.g., where the test would destroy or
damage a bond from a bonding operation).

The computing device 2002 has a computer-readable medium 2010 and a processor
2008. Computer-readable medium 2010 is an electronic holding place or storage for
information so the information can be accessed by processor 2008. Computer-readable medium

2010 can include, but is not limited to, any type of random access memory (RAM), any type of
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read only memory (ROM), any type of flash memory, etc. such as magnetic storage devices
(e.g., hard disk, floppy disk, magnetic strips), optical disks (e.g., compact disc (CD), digital
versatile disc (DVD)), smart cards, flash memory devices, etc.

Processor 2008 executes instructions (e.g., stored at the computer-readable medium
2010). The instructions can be carried out by a special purpose computer, logic circuits, or
hardware circuits. In one or more embodiments, processor 2008 is implemented in hardware
and/or firmware. Processor 2008 executes an instruction, meaning it performs or controls the
operations called for by that instruction. The term “execution” is the process of running an
application or the carrying out of the operation called for by an instruction. The instructions can
be written using one or more programming language, scripting language, assembly language,
etc. Processor 2008 in one or more embodiments can retrieve a set of instructions from a
permanent memory device and copy the instructions in an executable form to a temporary
memory device that is generally some form of RAM, for example. Processor 2008 operably
couples with components of computing device 2002 (e.g., input interface 2005, with output
interface 2006 and with computer-readable medium 2010) to receive, to send, and to process
information.

In one or more embodiments, computer-readable medium 2010 stores instructions for
execution by processor 2008. For example, in one or more embodiments, the computer-
readable medium 2010 comprises instructions for a process data application 2012 to select or
derive process data 2034 and machine learning model application 2014 to derive a machine
learning model 2050 as described herein.

In one or more embodiments, one or more applications stored on computer-readable
medium 2010 are implemented in software (e.g., computer-readable and/or computer-
executable instructions) stored in computer-readable medium 2010 and accessible by processor
2008 for execution of the instructions. The one or more applications can be integrated with
other analytic tools such as that offered by SAS Institute Inc. of Cary, N.C., USA. Merely for
illustration, the applications are implemented using or integrated with one or more SAS software
tools such as JMP®, Base SAS, SAS® Enterprise Miner™, SAS/STAT®, SAS® Event Stream
Processing, SAS® High Performance Analytics Server, SAS® Visual Data Mining and Machine
Learning, SAS® LASR™ SAS® In-Database Products, SAS® Scalable Performance Data
Engine, SAS® Cloud Analytic Services, SAS/OR®, SAS/ETS®, SAS® Inventory Optimization,
SAS® Inventory Optimization Workbench, SAS® Visual Analytics, SAS® Viya™, SAS In-
Memory Statistics for Hadoop®, SAS® Forecast Server, and SAS/IML® all of which are
developed and provided by SAS Institute Inc. of Cary, N.C., USA.

In one or more embodiments, fewer, different, and additional components can be
incorporated into computing device 2002 or a system comprising computing device 2002. For
instance, in one or more embodiments, there are multiple input devices 2004. In the same or

different embodiments, there are multiple output devices 2052. As another example, the same
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interface supports both input interface 2005 and output interface 2006. For example, a touch
screen provides a mechanism for user input and for presentation of output to the user.
Alternatively, the input interface 2005 has more than one input interface that uses the same or
different interface technology. Alternatively, or additionally, the output interface 2006 has more
than one output interface that uses the same or different interface technology. In one or more
embodiments, the functionality of the one or more input devices 2004 or one or more output
devices 2052 are integrated into computing device 2002. One or more applications can be
combined or further broken into separate applications.

A machine learning model 2050 can be used by a control system to make predictions
about or control another environment. Figure 20B illustrates an example block diagram of a
control system 2060 for bonding operations 2040B. In this example, bonding operations 2040A
and the bonding operations 2040B are different bonding operations. For instance, bonding
operations 2040A can be a first set of bonding operations comprising operations to bond a first
set of multiple wires to a first set of surfaces and bonding operations 2040B can be a second
bonding operations comprising operations to bond a second set of multiple wires to a second
set of surfaces. The second set of multiple wires may be different than the first set of multiple
wires. For instance, the first set of wires may have been destroyed to determine statuses
pertaining to the bonding operations 2040A or the bonding operations 2040A and 2040B may
be at different manufacturing locations or be performed at different times. The second set of
surfaces may be different than the first set of surfaces (e.g., the second set of surfaces may
pertain to a different batch of integrated chips than the first set of surfaces). Embodiments
herein provide a framework for making predictions about bonding operations based on training
received in a previous bonding operation. Using this framework bonds need not be destroyed to
make predictions about their quality and/or to control bonding operations to ensure quality
bonds.

The control system 2060 is configured to exchange information between devices in the
control system 2060 (e.g., via wired and/or wireless transmission). For example, a network (not
shown) can connect one or more devices of control system 2060 to one or more other devices
of control system 2060. Alternatively, or additionally, the control system 2060 is integrated into
one device (e.g., the computing device 2002 may be at a manufacturing plant or construction
site and comprise equipment to capture information pertaining to both the bonding operations
2040A and the bonding operations 2040B). In this example, the control system 2060 comprises
the computing device 2002 of Figure 20A. In other examples, the control system 2060
comprises a different computing device. For example, a computing device for the training
system 2000 may be in the bonding operations 2040A and another computing device for the
control system 2060 may be in another environment (e.g., a different manufacturing plant or
construction site). For instance, the computing device 2002 could instead be an output device

2052 or receive a machine learning model 2050 from output device 2052. Regardless the
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computing device 2002 has access to a machine learning model. In this example, computer-
readable medium 2010 has machine learning model 2050 trained on training data 2032 of the
bonding operations 2040A.

In one or more embodiments, the control system 2060 includes one or more input
devices 2004B for receiving information pertaining to a bonding operations 2040B via one or
more input interfaces 2005 (e.g., for making predictions regarding the bonding operations
2040B). For instance, the computing device 2002 may receive input data 2070. The input data
2070 may indicate process data 2074 generated from measurements 2072 of the bonding
operations 2040B.

The input data 2070 may be generated from measurements of the same type as training
data 2032. For instance, the process data 2074 may comprise a measurement of the
measurements 2038 or be generated information for one or more measurements, or
measurement types. For instance, if the bonding operations 2040B is a part of a physical
environment, an input device such as a sensor 2020B may capture measurements 2072 about
the physical environment such as heat measurements for heating a bonded surface or bonding
agent and/or force measurements for force used to bond materials. Alternatively, or
alternatively, the environment may be a simulated environment or comprise additional simulated
actions or computations for a physical environment (e.g., a simulated aspects of bonding
operations 2040B or inferred information from measurements 2072) and a computing system
component (e.g., computing device 2002 or computing system 2024) may generate information
about the physical or simulated environment (e.g., process data 2074). Additionally, or
alternatively, the computing device 2002 itself may derive process data 2074.

Additionally, or alternatively, input data 2070 may include or be derived from less, more,
or different measurement types as training data 2032. For instance, a manufacturing location
may update the machine learning model 2050 to consider less, more, or different measurement
types.

In one or more embodiments, the control system 2060 includes one or more output
devices 2094 for outputting via one or more output interfaces 2006 information based on the
bonding operations 2040B. For instance, the information may comprise bonding operations
control information 2090 for controlling the bonding operations 2040B (e.g., the control
information 2090 can indicate to stop or adjust the bonding operations due to predicted quality
issues with the bonding operations 2040B). For example, the bonding operations control 2090
may comprise an anomaly predictor 2052 indicating a risk for an anomaly occurrence in the
bonding operations 2040B. For instance, if the bonding operations 2040B comprise bonding
operations to bond wires of a set of multiple wires to form integrated circuit chips, an anomaly
predictor may indicate a risk of an anomaly in an integrated circuit chip manufacturing process
in the bonding operations 2040B.
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In one or more embodiments, the computing device has a computer-readable medium
2010 and a processor 2008 for generating an anomaly predictor 2052. For example, in one or
more embodiments, the computer-readable medium 2010 comprises instructions for a machine
learning model application (e.g., machine learning model application 2014) to access a machine
learning model trained on training data of first bonding operations (e.g., machine learning model
2050 trained on bonding operations 2040A), weight the input data 2070 according to the
machine learning model, and generate the anomaly predictor 2052 based on weighting the input
data 2070 according to the machine learning model.

In one or more embodiments, a computing system (e.g., a computing device 2002, the
training system 2000 and/or the control system 2060) implements a method as described herein
(e.g., a method shown in Figures 21A-21C). For example, the computing system may be a part
of an Internet of Things (IoT) system that has devices with sensors for observing an
environment (e.g., a manufacturing or construction environment) and for exchanging data with
other devices or systems over the internet (e.g., feedback from the environment).

Figure 21A illustrates an example flow diagram of a method 2100 for training a machine
learning model (e.g., machine learning model 2050). The method 2100 comprises an operation
2101 for receiving the training data (e.g., training data 2032). The training data comprises
process data generated from measurements of the first bonding operations. The training data
comprises statuses of the multiple wires after bonding to the first set of surfaces. Each status of
the statuses comprising one or more candidate outcomes for an objective related to detecting
one or more anomalies in the first bonding operations. For instance, the machine learning
model may be trained to predict aspects related to the quality of a bond produced in a bonding
operation. In this case, the one or more candidate outcomes may comprise one or more quality
assurance tests for individual wires or bonds in the first bonding operations. As another
example, the machine learning model may be trained to predict aspects related to a normal or
defective product produced as a result of a bonding operation. In this case, the one or more
candidate outcomes may comprise one or more defective chip outcomes for the integrated
circuit chips in the first bonding operations. In scenarios in which the bonding operations
comprising multiple bonds (e.g., a stitch bond and ball bond), predictions can be made for an
individual bond (e.g., a stitch bond), a component (e.g., a wire), or product (e.g., a chip) based
on measurements of parameters of the stitch bond, and/or the ball bond. For instance, in the
situation where a wire is bonded at both ends to form a single path, there may be merit in
including parameters for both bonds in the training data.

The method 2100 comprises an operation 2102 for generating one or more weights for
the process data such that the process data input to the machine learning model predicts the
one or more candidate outcomes for the objective. For instance, weighting can be used within
the model to have certain variables or observations influence an algorithm more. For example,

one or more weights for process data can be generated for a gradient boosting model of training
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data (e.g., assigning a weight of 0 to an excluded variable and the highest weight to a most
important variable).

Figure 21B is a flow diagram illustrating an example method 2130 for controlling bonding
operations. The method 2130 comprises an operation 2131 for accessing a machine learning
model trained on training data of first bonding operations (e.g., the machine learning model
generated according to method 2100). The first bonding operations comprise operations to
bond a first set of multiple wires to a first set of surfaces. The machine learning model is trained
by supervised learning.

The method 2130 comprises an operation 2132 for receiving input data indicating
process data generated from measurements of second bonding operations. The second
bonding operations comprise operations to bond a second set of multiple wires to a second set
of surfaces. The second set of multiple wires are different than the first set of multiple wires.
The second set of surfaces are different than the first set of surfaces.

For instance, the input data can comprise real-time sensor measurements received
during the second bonding operations (e.g., on a given wire of an integrated computer chip).
Sensor measurements can enable oversight of bonding process quality without human
oversight or destruction of bonds. However, input data can also include operator observations.
The sensor measurements can comprise measurements of a bonding system involved in the
second bonding operations. The measurements can comprise, to name a few for example, heat
measurements, power-related measurements, force measurements, electric flame-off (EFO)
measurements, ulirasonic measurements, ball stitch-related measurements, and ball bond-
related measurements.

The method 2130 comprises an operation 2133 for weighting the input data according to
the machine learning model. For instance, the model developed on training data can be used to
predict anomalies in subsequent bonding operations. The method 2130 comprises an operation
2134 for generating an anomaly predictor indicating a risk for an anomaly occurrence in the
second bonding operations based on weighting the input data according to the machine learning
model. For instance, the anomaly predictor could be a predictor of a defect of a component of a
bond (e.g., a defective bond between a wire and a lead frame or die), or a defective product
(e.g., because of abnormal process conditions such as one or more of floating condition,
material contamination such as lead frame contamination, and die tilt). The method 2130
comprises an operation 2135 for optionally outputting the anomaly predictor to control the
second bonding operations. For instance, the anomaly predictor can control the second
bonding operations to correct the one or more anomalies or reduce the occurrence of the one or
more anomalies in the bonding system involved in the second bonding operations (e.qg.,
indicating a likelihood of defects in a batch of products to either alert to further investigate the

batch or alter the process for future batches).
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In one or more embodiments, the anomaly predictor predicts an anomaly in an individual
wire or bond in the second bonding operations without performing a destructive quality
assurance test on the individual wire or bond. In this way, a bond need not be destroyed before
there is some indication as to a defect in a bond of the product. For instance, a bonding
operation described herein can comprise a ball bonding operation, and the destructive quality
assurance tests comprise a ball shear test for testing a ball bond, which would shear off the ball
bond. As another example, a bonding operation described herein can comprise a stitch bonding
operation, and wherein the destructive quality assurance tests comprise a stitch pull test for
testing a stitch bond, which would pull-out the stitch bond.

In one or more embodiments, a predive algorithm can be improved during subsequent
bonding operations. Figure 21C is a flow diagram illustrating an example method 2160 for
updating the machine learning model used to control bonding operations.

The method 2160 comprises an operation 2161 for receiving feedback indicating that the
anomaly predictor correctly or incorrectly predicted the anomaly in a particular chip
manufactured in the second bonding operations. The method 2160 comprises an operation
2162 for updating the machine learning model based on the feedback (e.g., weighting differently
input data or selecting different or additional input data types).

The method 2160 optionally comprises an operation 2163 for adjusting bonding
operations. For instance, when the second bonding operations are performed by a chip
manufacturing system, the operation 2163 comprises adjusting bonding operations subseguent
to the second bonding operations by the chip manufacturing system based on one or more of:
the anomaly predictor indicating the risk for the anomaly occurrence in the second bonding
operations; and feedback indicating that the anomaly predictor correctly or incorrectly predicted
the anomaly occurrence in a particular chip manufactured in the second bonding operations.
For instance, bonding operations can be halted based on indicating a high percentage of
suspected errors (e.g., to check process components or manufactured products). Different
materials or force for bonding the materials can be used based on consistently indicated
problems. Or a particular product can be located for correcting a product suspected of having
problems. For instance, in one or more embodiments, input data comprises received sensor
measurements tagged with origin information indicating one or more of an identity or location for
a particular wire, die, or chip involved in the second bonding operations. The anomaly predictor
identifies the anomaly that occurred in the second bonding operations and is correlated with the
origin information to indicate the location of the anomaly. This can be useful for correcting an
individual defective chip or process.

For instance, Figure 22A is a graph 2200 illustrating a relationship between motion
feature patterns and a location of a corresponding chip on a lead frame. The waveforms shown
relates to continuous process measurements (e.g., force or power measurements) for each wire

from 0 to n in a bonding operation. The waveforms’ location in the graph correlates to an
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arrangement of integrated circuits being manufactured in a facility. Figure 22B illustrates a map
2250 of example locations of the chips on a lead frame corresponding to the graph of Figure
22A. In this example, the lead frame in Figure 22B has 16 dies (four per vertical position
identifier). The horizontal position identifier and wire number correlates to a particular wire
location in map 2250 (e.g., HID 1-2, W1-n). The vertical position identifier (VID) correlates to a
particular chip (e.g., VID 1-4) in map 2250. A graphical user interface can be used to display
graphs and maps (e.g., graph 2200 and map 2250) to help in developing a model (e.g., to
receive a user indication of important variables for building a model) and observing real-time
process behavior for correcting a defective chip or process. A particular wire can have a key or
identifier corresponding to a lead frame identifier, vertical position identifier, horizontal identifier,
and/or wire number. In this example, there was significant variation across wire number, but for
a given column number, process measurements exhibit similar patterns.

Figure 23A illustrates example Quality Assurance (QA) data comparing the training data
and the test data for predictive models for destructive testing of the bonds formed during
bonding operations.

In one or more embodiments, process data (subsequently, input data or training data)
includes derived data such as a generated value indicating a median or average value for
measurements pertaining to multiple wires bonded in a particular chip in the second bonding
operations and a generated set of deviations comprising a deviation from the value for each of
the multiple wires.

Figure 23B illustrates an example method for generating a derived processing data. In
this example, for each of considered factors for the machine learning model (e.g., a maximum
measured impedance of a wire), a data table 2350 shows one or more derived values were
computed for each selected wire number 2351 and corresponding horizontal position identifier
number 2352. All the wires of a bonding operation could be considered or selectively
considered. For instance, measurement data could be constrained to wires having the largest
number of a target varigble under consideration, such as most normal operation or poorest
quality. In this example data table 2350, N is the total number of wires on a particular chip.

In this example, a first derived value was computed as the median normal value 2353 for
a measurement under consideration. The median normal value is computed by taking the
median of measurements with a given unique wire location (e.g., measurements for horizontal
position identifier 2352 and wire number 2351 in Figures 22A and 23B) for a wire that passed
the quality tests. A second derived value (e.g., delta value (normal) 2354 is computed by
subtracting the median value from the actual measurement value for a particular wire and
position identifier. Other derived values can be computed such as a delta value abnormal 2355
based on a median value including wires that exhibited abnormal behavior for quality tests.

Additionally, or alternatively, input data includes derived data such as a generated metric

for a product accounting for sets of deviations (e.g., on a chip level accounting for deviations of
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bonded wires of a chip). Figure 24 is an example graph 2400 for deriving process data
associated with a bonding operations system on a chip level. In this example, one or more
metrics can be computed. For example, positive sums, negative sums and number of zero
crossings were used to discriminate between normal and abnormal conditions when taken one
variable at a time and using wires whose bond results indicated passing quality. A positive sum
value is computed by averaging the areas above the median value, i.e., Pos_sum = EL JDel

De

Erony

where i >0. A negative sum value is computed by averaging the areas below the median

!

value, i.e., Neg_sums= =si=1 Dely ; where D#{; <0. N is the total number of wires on a

considered chip. The total number of zero crossings (e.g., zero crossing 2402) is 4. A model
can be trained on these features to identify abnormal conditions. Fewer, less, or different chip
metrics could be considered (e.g., a maximum, minimum or average value chip manufacture
process measurement). In this example, analysis was done at a chip level to identify the nature
of abnormal conditions. Derived process data related holistically to a particular chip of an
integrated circuit chips and was derived from measurement data for wires associated with a
particular chip and bonded in the second bonding operations. Measurements and anomaly
detection could be done with some other granularity such as on a wire or die level.

In one or more embodiments, process data is generated from derived data comprise a
generated singular data value correlated with multiple different types of measurements and
pertaining to a same wire. For example, measurements in a bonding operation could comprise
voltage (V) and current (I) measurements for a wire, but a resistance (R) value could be derived
(e.g., according to the equation V=IR). In this way this one value can account for a relationship
between different measurement types.

Accordingly, in one or more embodiments, the training data comprising the process data
can be generated from derived data comprising a generated singular data value can be
correlated with multiple different types of measurements and pertain to a same wire in first
bonding operations. The input data indicating the process data generated from measurements
of second or subsequent bonding operations can comprise a generated singular data value
correlated with the multiple different types of measurements and pertaining to a same wire in
the second bonding operations.

Additionally, or alternatively, the training data comprising the process data can be
generated by deriving information from multiple different measurement types accounting for a
relationship between measurement types in the first bonding operations. The input data
indicating the process data generated from measurements of the second bonding operations
can comprise deriving information from multiple measurement types accounting for a

relationship between measurement types in the second bonding operations.
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In one or more embodiments, the process data can be used to predict information about
a quality predictor for a bonding operation. For instance, the measurements in the first and
second operation can comprise measurements associated with a process of forming stitch
bonds and/or a process of forming ball bonds.

Figure 25 is a graph 2500 illustrating the correspondence between the predicted ball
shear values modeled according to the present embodiments to actual ball shear values
obtained as a result of destructive testing.

Specification limits are used for final acceptance or rejection of a product. In this
example, divider 2510 represents & lower bound and divider 2512 represents an upper bound
for specification limits for ball shear test measurements (e.g., in grams). Control limits may be
used that are stricter than specification limits. Control limits are used for process control
purposes to ensure that products result within specification limits. In this example, divider 2520
represents a lower bound and divider 2522 represents an upper bound for control limits for ball
shear test measurements. Dividers have corresponding values on the predicted ball shear axis
2530 (e.g., the lower specification limit can be at A, the lower control limit can be at B, the upper
control limit can be at C, and the upper specification limit can be at D on both axes of graph
2500). Test results for each of the destructive tests for ball shear were plotted against plotted
predicted values for ball shear for different objective targets identified by the key including
different normal conditions and abnormal conditions (Material Contamination (MC), Old Cap
(OC), and Floating Conditions (FC)).

The accuracy of the model was evaluated. TP stand for true positives and represents
bad quality bonds identified by model as Bad. TN stands for true negative and represents good
guality bonds identified by model as Good. As shown in the table 2550 the graph shows most
predictions where correct (291 TP and 11,922 TN). FN stands for false negative and represents
bad quality bonds identified by model as Good. FP stands for false positive and represents
good quality bonds identified by model as Bad. There were only a handful of false predictions
(27FP and 40 FN)

Some metrics are more important for different industries. For instance, false negatives
may be important in integrated circuit construction because these types of bonds can lead to
increase in field returns and warranty claims. According, Benign False Negatives (B_FN) were
also considered. These represent bonds with bond strength between lower (upper) spec limit
and lower (upper) control limit. These False Negatives do not have poor quality with respect to
specification limits. Most of the false negatives were benign false negatives (32 of 40). The
models can be evaluated using statistical tools like precision, recall, and f1. For instance,
precision can be computed as the number of true positives divided by the sum of the number of

true positives and the number of false positives:
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Recall can be computed as the number of true positives divided by the sum of the
number of true positives and the number of false negatives:
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F1 is the harmonic mean of precision and recall. For instance, it can be computed as:
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The model in this example performed well for prediction with a precision rate of 0.91509,
a recall of 0.8795, and a F1 of 0.89676. In this case, by using the prediction, a user could
potentially avoid conducting destructive quality tests and have a close understanding of
integrated circuit outcomes. Higher model accuracy can result if the 32 benign false negatives
are removed from the calculation.

Figure 26 is a graph illustrating the correspondence between the predicted stitch pull
values modeled according to the present embodiments to actual stitch pull values obtained as a
result of destructive testing. In this case there was only one target value. Divider 2610
represents a lower bound for specification limits for stitch pull test measurements (e.g., in
grams). An upper bound is not shown on the graph because it is far above the plotted values.
Divider 2620 represents a lower bound and divider 2622 represents an upper bound for control
limits for the stitch pull test measurements. Dividers have corresponding values on the
predicted stitch pull axis 2530 (e.g., the lower specification limit is at E, the lower control limit is
at F, the upper control limit is at G, and the upper specification limit is beyond the chart on both
axes of graph 2600). This model also performed well with all accurate predictions as shown in
table 2650 with the exception of 7 outlier wires that were excluded due to problems in the stitch
pull testing having a precision, recall and F1 of 1. In addition to this model being an accurate
model without the need for destructive testing, the predictive capabilities of models described
herein are not susceptible to human error like occurred in the manual testing.

In the examples in Figures 25 and 26 a gradient boosting model was used that consisted
of multiple decision trees. A predictive model defines a relationship between input variables and
a target variable. The purpose of a predictive model is to predict a target value from inputs.

The model is created by using training data in which the target values are known. The model
can then be applied to observations in which the target is unknown. If the predictions fit the new
data well, the model is said to generalize well. Good generalization is the primary goal of

predictive tasks. A predictive model might fit the training data well but generalize poorly.
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A decision tree is a type of predictive model that has been developed independently in
the statistics and artificial intelligence communities. A gradient boosting procedure can be used
to create a predictive model by fitting a set of additive trees (e.g., using the GRADBOOST
related software provided by SAS Institute Inc. of Cary, NC).

The quality of the predictive model may depend on the values for various options that
govern the training process; these options are called hyperparameters. The default values of
these hyperparameters might not be suitable for all applications and a unique combination of
values of these hyperparameters may be selected to minimize the objective function or some
measure of accuracy. Other or additional approaches to building a model could be used then
described herein. For instance, different models can be generated of different on the same type
and one of the trained models selected using a validation procedure (e.g., using k-fold cross
validation). Additionally other target values can be used beyond quality assurance targets.

For instance, there are multiple abnormal conditions which can be present in the wire
bonding machine. These abnormal conditions can move the distribution of measured features
or quality assurance values (such as pertaining to ball sheer and stitch pull) or they can also
lead to defective wires. Early identification of abnormal conditions is necessary so that
appropriate corrective action can be taken and reduce amount of bad quality products. Normal
target variables could relate to normal operations such as indicators of a stable process, in a
state of control, in- and/or out-of specification rates, and absence of any systemic cause of
disturbance. Abnormal conditions such as Die Tilt (DT), Material Contamination (MC), Old Cap
(OC), and Floating Conditions (FC) can be predicted based on detected abnormalities in the
process data.

For instance, with die tilt, a die attach process can be used for connection between die,
device, and the rest of the system in electronic packaging. During this process, the die moves
under the capillary force induced by the liquidus solder. Such a die tilt phenomenon usually
occurs and strongly worsens the reliability and performances of devices. Predictors can be
used to understand the quality of the bond from the liquidus solder. With floating conditions
there can be non-sticking due to a die floating.

One type of material contamination can be lead frame contamination where there is a
presence of surface organics, organic compounds and or residues on the lead frame. This can
also be correlated with quality issues in the bonding.

Early action can lead to increase in the process yield that do not have these
abnormalities. For instance, using the data described with respect to Figures 25-26, model
accuracy was significant. The table below shows mean absolute percentage error (MAPE) also
known as mean absolute percentage deviation (MAPD) which is a measure of prediction
accuracy over observations from 5 batch productions of integrated circuit chips.

Observation | Target Variable | MAPE
1 Normal 3.64%
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2 Normal 3.74%

3 Abnormal_FC | 3.62%

5 Normal 3.72%

6 Abnormal_MC | 12.22%
Table 1

In the example of Table 1, the overall map for the different target variables was 4.39%.
Observation 6 had four outlier points leading to a larger MAPE. If these points are excluded, the
MAPE for observation 6 reduces to 5.67% and the overall MAPE drops to 3.84%.

The model to detect abnormal conditions used a gradient bosting approach on chip level
features. These features are extracted using the sensor variable’s (or motion feature’s) chip-
level waveform. The waveform has wire number on x axis and motion feature value on the y
axis. The gradient boosting model has nominal target in this case. In other cases, interval
target values could be used. In this example, abnormal target variables related to floating
conditions (FC) and material contamination (MC). Other types of abnormal conditions may also
be predicted such as die tilt.

Figure 27A is a functional block diagram illustrating a stack for an Event Stream
Processing (ESP) system 2700 configured for streaming and edge analytics. ESP component
2702 may comprise one or more ESP engines as described herein (e.g., in Figure 8). For
instance, the ESP component may be used to provide one or more of data quality,
preprocessing, Al scoring, prediction, and anomaly predictors, real-time prescriptive alerts, train
in-stream, federated Al, deploy customer models and operating system, decisioning to
manufacturing execution system (MES). Accordingly, ESP component 2702 can exchange
information with client services 2704 devices and systems and data management systems
2706. Model manager 2708 can be used to manage, develop, and update a model described
herein based on data received (e.g., by client services 2704 and/or ESP component 2702).
Artificial intelligence and machine learning component 2710 can be used to train and update a
model described herein (e.g., as instructed by model manager 2708). Gradient boosting was
given as an example approach for constructing a model. However, additional, or different model
approaches can be employed (e.g., random forest, linear regression, and neural network).
Model manager 2708 and Artificial intelligence and machine learning component 2710 can
exchange information with client services 2704 and data management 2706. Accordingly,
embodiments described herein, e.g., the system in Figure 27A can be used to develop
analytical models to predict wire bond quality, including moving from random testing (that can
often involve destructive testing) to model suggested risk-based targeted testing. Developed
models can provide early indication of presence of abnormal conditions (or faults) in the
manufacturing process and with lower reject rates and increase throughput rate. Edge

processing can provide on-site guidance.

58

SUBSTITUTE SHEET (RULE 26)



10

15

20

25

30

35

WO 2023/003595 PCT/US2022/013319

Figure 27B is a flow diagram illustrating an example method 2750 for generating a
machine learning model according to one embodiment of the present disclosure. As seen in
Figure 27B, method 2750 comprises an operation for developing an Extract, Transform, and
Load (ETL) process to read the input data and to create the datasets used to generate the
machine learning models (box 2752). In one embodiment, for example, the ETL process
comprises one or more coding scripts that, when executed by the processing circuitry of a
computer, extracts and combines datasets from the input data. The input data read by the ETL
process may be in any form needed or desired, but in one embodiment, is formatted in a .csv
file and comprises the data values that were measured during the wire bonding stage (box 1308
in Figure 13).

Method 2750 next performs one or more quality checks on the input data (box 2754) to
ensure that the input data and the datasets are of a sufficient quality to generate the machine
learning models. For example, as stated above, the wire bonding machine that performs the
ball and stitch bonding procedures (box 1308 in Figure 13) is configured to measure different
operating parameters while performing that process. The parameters are measured for each
“run” of the back-end semiconductor manufacturing process with each run comprising a plurality
of parameters representing a “lot.”

According to the present disclosure, the input data is obtained in lots with each lot being
analyzed to determine the quality of its data. For example, at least one aspect of the present
embodiments identifies a number of different variables, variable names, and variable
distributions in each lot. That data is then compared to the data associated with one or more
previously obtained lots (or baseline lots having known, good data) to determine whether there
are any dramatic changes in the values of the parameters (e.g., the values are not within a
predefined tolerance range or are dramatically different from the baseline values). Such
dramatic changes in the data may, for example, indicate that the input data is not suitable for
use in generating the models.

However, even in cases where the data may be unusable, determining that dramatic
differences between the parameter values exist according to the present disclosure is still
beneficial. For example, die tilt and machine reading errors are some common examples of the
types of things that can lead to the measurement and collection of unusable parameter values.
Knowing that these errors exist, however, can enable an operator to more quickly identify and
correct the issues that led to recording the input data.

As another example, the quality checks may indicate that the range of the values being
measured do not adequately reflect all the values that may be produced during actual
operations. Armed with this information, an operator can alter the monitoring/measurement
procedures for the wire bonding stage to ensure that the appropriate operating range is
adequately covered. Ensuring that the monitoring and measuring procedures adequately cover

the operating ranges actually seen during production will help ensure that the values of the
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parameters being measured are accurate and suitable for generating the datasets and the
machine learning models.

According to the present disclosure, any of the parameters related to operations during
the wire bonding stage may be monitored and measured. However, in one embodiment of the
present disclosure one or more of the following parameters are measured to determine
anomalies related to one or more of abnormal conditions such as floating conditions and lead
frame contamination.

Provided that the input data is deemed to be of sufficient quality, method 2750
transforms and/or creates one or more variables (box 2756). For example, one or more of the
coding scripts that comprise the ETL process may be configured to transform variables in the
input data (e.g., between units, scale values up or down, etc.). Additionally, or alternatively, one
or more of the coding scripts comprising the ETL process may calculate one or more derived
variables from the input data. In one example, the transformed variables and/or the calculated
derived variables are used by the present embodiments to generate one or more modeling
datasets. Training datasets and/or testing datasets may also be generated by the present
embodiments using the transformed and/or the calculated derived variables.

Additionally, or alternatively, embodiments of the present disclosure perform an analysis
on the input data to obtain distributions of predictor and target variables, as well as one or more
different plots and tables of the data to indicate various statistics. In at least one embodiment, a
correlation analysis is conducted on the input data to determine whether there is any correlation
between the previously recorded “baseline” parameter values and those produced by one or
more sensors measuring the wire bonding operations. Such analyses provide a better
understanding of the input data and is very beneficial in generating the machine learning
models.

With the input data appropriately processed, method 2750 next generates the machine
learning models used to predict the wire quality parameters (box 2758). These models include
one or more predictive models used to estimate the results of a destructive ball shear test (i.e.,
the force needed to shear a ball bond 1410 off of a bond pad 1508) and those of a stitch pull
test (i.e., the force needed to separate the wire 1504 from the target pad 1512). Any of a variety
of techniques may be utilized to generate the predictive models including, but not limited to,
linear regression techniques, random forest techniques, gradient boosting techniques, and
neural network techniques. In one example embodiment generating the predictive model using
the gradient boosting techniques provided the most accurate results. In this embodiment,
model hyperparameters were tuned using autotune with K-fold cross validation.

Method 2750 performs model stability checks to help ensure that the model provides
accurate predictions across different data conditions (box 2760). In this step, the stability of the
model hyperparameters is checked after the model has been trained. For example, in one

embodiment, the tuned hyperparameters are used on a plurality of random train/test splits (i.e.,
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the number of “runs”). The hyperparameter values can be used to train the train split and then
to score the test split. The performance of the model is determined on each test split. To
accomplish this, one embodiment of the present disclosure evaluates a predetermined set of
model performance statistics. Some examples of the performance statistics being include, but
are not limited to, an F1 ratio and a mean squared error.

Further, in some embodiments of the present disclosure, a performance evaluation
summary table is generated. The summary table provides the performance evaluation using
each performance statistic across all test splits. This table can have any structure needed or
desired, but in at least one embodiment, this table has one or more of the following data
elements (e.g., table columns): performance statistic; number of runs; Minimum; Maximum,
and/or Average for particular performance metrics.

Once the model is completed, it can be used to estimate the presence or absence of
abnormal conditions. For instance, the presence or absence of abnormal conditions can be
determined based on observation scores by edge devices (box 2762). In some embodiments,
the model will provide information that indicates the particular abnormal condition that exists.
Figure 27B shows an example method of stages comprising one or more operations. One of
ordinary skill in the art will appreciate that the method could have fewer or more stages or be
performed in a different order or recursively (e.g., to keep refining a model).

In one or more embodiments, several different measurements can be observed and a
computing system receives training data and/or input data by selectively choosing a subset of
parameter types observed in the bonding operations. The measurements used for deriving the
model can be measurements for the subset of parameter types. Figure 28 is a functional block
diagram of a computer program product. In one embodiment, the computer program product
comprises a control program, for example, executed by the processing circuitry of a computing
device.

In more detail, Figure 28 illustrates the processing circuitry 2900 of a computing device,
as well as the units/modules that it executes. The various units/modules can be implemented
by hardware and/or by software code that is executed by a processor or processing circuit. In
this embodiment, the units/modules include a machine learning model access unit/module 2910,
an input data receive unit/module 2920, an input data weighting unitmodule 2930, an anomaly
indicator generating unit/module 2940, and an anomaly indicator output unit/module 2950.

In this embodiment, the machine learning model access unit/module 2910 configures the
processing circuitry 2900 to access one or more machine learning models trained on the
training data of first bonding operations. In at least one embodiment, the first bonding
operations are those in which a first set of multiple wires is bonded to a first set of surfaces
(e.g., the ball and stitch bonds to the bond pad and the target pad, respectively). Additionally,
the machine learning model is trained by supervised learning. For example, in some

embodiments, the supervised training comprises receiving training data. The training data
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includes process data generated from measurements of the first bonding operations and
statuses of the multiple wires after bonding to the first set of surfaces. Each status comprises
one or more candidate outcomes for an objective related to detecting one or more anomalies in
the first bonding operations. Additionally, one or more weights are generated for the process
data such that the process data input to the machine learning model predicts the one or more
candidate outcomes for the objective.

The input data receive unit/module 2920 configures the processing circuitry 2900 to
receive input data that indicates process data generated from the measurements of second
bonding operations in which a second set of multiple wires is bonded to a second set of
surfaces (e.g., the ball and stitch bonds to the bond pad and the target pad, respectively). The
second set of multiple wires are different than the first set of multiple wires, and the second set
of surfaces are different than the first set of surfaces.

The input data weighting unit/module 2930 configures the processing circuitry 2900 to
weight the input data according to the machine learning model.

The anomaly indicator generating unit/module 2940 configures the processing circuitry
2900 to generate an anomaly predictor indicating a risk for an anomaly occurrence in the
second bonding operations based on the weighting of the input data according to the machine
learning model.

The anomaly indicator output unit/module 2950 configures the processing circuitry 2900

to output the anomaly predictor to control the second bonding operations.
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CLAIMS
What is claimed is:
1. A computer-program product tangibly embodied in a non-transitory machine-readable
storage medium, the computer-program product including instructions operable to cause a
computing system (2002, 2060) to:
access a machine learning model (2050) trained on training data (2032) of first bonding
operations (1308, 2040A), wherein the first bonding operations comprise operations to
bond a first set of multiple wires (1504) to a first set of surfaces (1506, 1508), and
wherein the machine learning model is trained by supervised learning comprising:
receiving the training data (2032), wherein the training data comprises:
process data (2034) generated from measurements of the first bonding operations
(2040A); and
statuses (2036) of the multiple wires after bonding to the first set of surfaces, each
status of the statuses comprising one or more candidate outcomes for an
objective related to detecting one or more anomalies in the first bonding
operations; and
generating one or more weights for the process data such that the process data input to
the machine learning model predicts the one or more candidate outcomes for the
objective;
receive input data (2070) indicating process data (2074) generated from measurements of
second bonding operations (2040B), wherein the second bonding operations comprise
operations to bond a second set of multiple wires to a second set of surfaces, wherein
the second set of multiple wires are different than the first set of multiple wires, and
wherein the second set of surfaces are different than the first set of surfaces;
weight the input data according to the machine learning model;
generate an anomaly predictor (2052) indicating a risk for an anomaly occurrence in the
second bonding operations based on weighting the input data according to the machine
learning model; and

output the anomaly predictor to control the second bonding operations.

2. The computer-program product of claim 1,
wherein the one or more candidate outcomes comprise one or more destructive quality
assurance tests (1800, 1900) for individual wires (1504) or bonds (1510, 1512) in the
first bonding operations; and
wherein the anomaly predictor (2052) is a predictor of an anomaly in an individual wire or
bond in the second bonding operations without performing a destructive quality

assurance test on the individual wire or bond.
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3. The computer-program product of claim 2, wherein the first bonding operations
comprises one of:
ball bonding operations, and wherein the destructive quality assurance tests comprise a ball
shear test (1800) for testing a ball bond (1510); and
stitch bonding operations, and wherein the destructive quality assurance tests comprise a
stitch pull test (1900) for testing a stitch bond (1512).

4, The computer-program product of claim 1,
wherein the first bonding operations bond wires (1504) of the first set of multiple wires to
corresponding surfaces of the first set of surfaces to form integrated circuit chips (1700);
wherein the one or more candidate outcomes comprise one or more defective chip
outcomes for the integrated circuit chips in the first bonding operations; and
wherein the instructions are operable to cause the computing system to generate the
anomaly predictor for risk of the anomaly in an integrated circuit chip manufacturing

process in the second bonding operations.

5. The computer-program product of claim 1, wherein the one or more anomalies are
associated with one or more of:

floating condition;

lead frame contamination; and

die tilt.

6. The computer-program product of claim 1,
wherein the second bonding operations bond wires of the second set of multiple wires to
form integrated circuit chips (1700); and
wherein the process data generated from the measurements of the second bonding
operations pertains holistically to a particular chip of the integrated circuit chips and is
derived from measurement data for wires associated with the particular chip and bonded

in the second bonding operations.

7. The computer-program product of claim 1,
wherein the input data comprises real-time sensor measurements (2200) received during
the second bonding operations; and
wherein for a given wire of the second set of multiple wires, the real-time sensor
measurements comprise one or more of:
heat measurements;
power measurements;

force measurements;
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electric flame-off (EFO) measurements; and

ultrasonic measurements.

8. The computer-program product of claim 1,
wherein the input data comprises real-time sensor measurements (2200) received during
the second bonding operations;
wherein the sensor measurements comprise measurements of a bonding system involved in
the second bonding operations; and
wherein the anomaly predictor controls the second bonding operations to correct the one or
more anomalies or reduce the occurrence of the one or more anomalies in the bonding

system involved in the second bonding operations.

9. The computer-program product of claim 1,
wherein the input data comprises received sensor measurements tagged with origin
information indicating one or more of an identity or location for a particular wire, die, or
chip involved in the second bonding operations; and
wherein the anomaly predictor identifies the anomaly that occurred in the second bonding
operations and is correlated with the origin information to indicate the location of the
anomaly.

10. The computer-program product of claim 1, wherein the instructions are operable to
cause the computing system to:
receive feedback indicating that the anomaly predictor correctly or incorrectly predicted the
anomaly in a particular chip manufactured in the second bonding operations; and

update the machine learning model based on the feedback.

11. The computer-program product of claim 1,
wherein the second bonding operations are performed by a chip manufacturing system; and
wherein the instructions are operable to cause the computing system to adjust bonding
operations subsequent to the second bonding operations by the chip manufacturing
system based on one or more of:
the anomaly predictor indicating the risk for the anomaly occurrence in the second
bonding operations; and
feedback indicating that the anomaly predictor correctly or incorrectly predicted the
anomaly occurrence in a particular chip manufactured in the second bonding
operations.
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12. The computer-program product of claim 1, wherein the input data includes derived data
comprising one or more of:
a generated value indicating a median (2353) or average value for measurements pertaining
to multiple wires bonded in a particular chip (1700) in the second bonding operations;
a generated set of deviations (2354) comprising a deviation from the value for each of the
multiple wires; and

a generated metric for the chip accounting for the set of deviations.

13. The computer-program product of claim 1,

wherein the training data comprises the process data generated from derived data
comprising a generated singular data value correlated with multiple different
types of measurements and pertaining to a same wire in the first bonding
operations; and

wherein the input data indicating the process data generated from measurements of the
second bonding operations comprises a generated singular data value, wherein
the generated singular data value is correlated with the multiple different types of

measurements and pertains to a same wire in the second bonding operations.

14, The computer-program product of claim 1,
wherein the training data comprises the process data generated by deriving information
from multiple different measurement types accounting for a relationship between
measurement types in the first bonding operations; and
wherein the instructions are operable to receive the input data indicating the process
data generated from measurements of the second bonding operations by
deriving information from multiple measurement types accounting for a

relationship between measurement types in the second bonding operations.

15. The computer-program product of claim 1,
wherein the instructions are operable to cause the computing system to receive the
training data by selectively choosing a subset of parameter types observed in the
first bonding operations; and
wherein the measurements of the first bonding operations are measurements for the

subset of parameter types.

16. The computer-program product of claim 1, wherein the one or more weights for the

process data are generated for a gradient boosting model of the training data.

66



10

15

20

25

30

35

WO 2023/003595 PCT/US2022/013319

17. The computer-program product of claim 1, wherein the machine learning model is further
trained by multiple generated machine learning models and is selected based on k-fold cross-

validation.

18. The computer-program product of claim 1, wherein the measurements of the first and
second bonding operations comprise measurements associated with a process of forming ball
bonds (1510).

19. The computer-program product of claim 1, wherein the measurements of the first and
second bonding operations comprise measurements associated with a process of forming stitch
bonds (1512).

20. The computer-program product of claim 1, wherein the anomaly predictor is a predictor
of a defective bond between a wire of the second set of multiple wires and a lead frame or die of

the second set of surfaces.

21. A computer-implemented method (2130) comprising:
accessing (2131) a machine learning model (2050) trained on training data of first bonding
operations (1308, 2040A), wherein the first bonding operations comprise operations to
bond a first set of multiple wires (1504) to a first set of surfaces (1506, 1508), and
wherein the machine learning model is trained by supervised learning comprising:
receiving (2101) the training data (2032), wherein the training data comprises:
process data (2034) generated from measurements of the first bonding operations
(2040A); and
statuses (2036) of the multiple wires after bonding to the first set of surfaces, each
status of the statuses comprising one or more candidate outcomes for an
objective related to detecting one or more anomalies in the first bonding
operations; and
generating (2102) one or more weights for the process data such that the process data
input to the machine learning model predicts the one or more candidate outcomes
for the objective;
receiving (2132) input data (2070) indicating process data (2074) generated from
measurements of second bonding operations (2040B), wherein the second bonding
operations comprise operations to bond a second set of multiple wires to a second set of
surfaces, wherein the second set of multiple wires are different than the first set of
multiple wires, and wherein the second set of surfaces are different than the first set of

surfaces;
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22.

23.

24.

25.

weighting (2133) the input data according to the machine learning model;

generating (2134) an anomaly predictor (2052) indicating a risk for an anomaly occurrence
in the second bonding operations based on weighting the input data according to the
machine learning model; and

outputting (2135) the anomaly predictor to control the second bonding operations.

The computer-implemented method of claim 21,

wherein the one or more candidate outcomes comprise one or more destructive quality
assurance tests (1800, 1900) for individual wires (1504) or bonds (1510, 1512) in the
first bonding operations; and

wherein the anomaly predictor (2052) is a predictor of an anomaly in an individual wire or
bond in the second bonding operations without performing a destructive quality

assurance test on the individual wire or bond.

The computer-implemented method of claim 21,

wherein the first bonding operations bonds wires (1504) of the first set of multiple wires to
form integrated circuit chips (1700);

wherein the one or more candidate outcomes comprise one or more defective chip
outcomes for the integrated circuit chips in the first bonding operations; and

wherein generating the anomaly predictor comprises generating the anomaly predictor for
risk of the anomaly in an integrated circuit chip manufactured in the second bonding
operations.

The computer-implemented method of claim 21,

wherein the second bonding operations bonds wires of the second set of multiple wires to
form integrated circuit chips (1700); and

wherein the process data generated from the measurements of the second bonding
operations pertains holistically to a particular chip of the integrated circuit chips, and is
derived from measurement data for wires associated with the particular chip and that are
bonded in the second bonding operations.

The computer-implemented method of claim 21,
further comprising receiving real-time sensor measurements (2200) during the second
bonding operations; and
wherein for a given wire (1504) of the second set of multiple wires, the real-time sensor
measurements comprise one or more of:
heat measurements;

power measurements;
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force measurements;
electric flame-off (EFO) measurements; and

ultrasonic measurements.

26. The computer-implemented method of claim 21,
wherein the receiving input data comprises receiving real-time sensor measurements (2200)
during the second bonding operations, and wherein the sensor measurements comprise
measurements of a bonding system involved in the second bonding operations; and
wherein the anomaly predictor controls the second bonding operations to correct the one or
more anomalies or reduce the occurrence of the one or more anomalies in the bonding

system involved in the second bonding operations.

27. The computer-implemented method of claim 21,
wherein the input data comprises received sensor measurements tagged with origin
information indicating one or more of an identity or location for a particular wire, die, or
chip involved in the second bonding operations; and
wherein the anomaly predictor identifies the anomaly that occurred in the second bonding
operations and is correlated with the origin information to indicate the location of the

anomaly.

28. The computer-implemented method of claim 21, further comprising:
receiving (2161) feedback indicating that the anomaly predictor correctly or incorrectly
predicted the anomaly in a particular chip manufactured in the second bonding
operations; and

updating (2162) the machine learning model based on the feedback.

29. The computer-implemented method of claim 21, wherein the input data includes derived
data comprising one or more of:
a generated value indicating a median (2353) or average value for measurements pertaining
to multiple wires bonded in a particular chip in the second bonding operations;
a generated set of deviations (2354) comprising a deviation from the value for each of the
multiple wires; and

a generated metric for the particular chip (1700) accounting for the set of deviations.
30. A computing device (2002) comprising processor (2008) and memory (2010), the

memory containing instructions executable by the processor wherein the computing device is

configured to:
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access a machine learning model (2050) trained on training data of first bonding operations
(1308, 2040A), wherein the first bonding operations comprise operations to bond a first
set of multiple wires (1504) to a first set of surfaces (1506, 1508), and wherein the
machine learning model is trained by supervised learning comprising:
receiving the training data (2032), wherein the training data comprises:
process data (2034) generated from measurements of the first bonding operations
(2040A); and
statuses (2036) of the multiple wires after bonding to the first set of surfaces, each
status of the statuses comprising one or more candidate outcomes for an
objective related to detecting one or more anomalies in the first bonding
operations; and
generating one or more weights for the process data such that the process data input to
the machine learning model predicts the one or more candidate outcomes for the
objective;
receive input data (2070) indicating process data (2074) generated from measurements of
second bonding operations (2040B), wherein the second bonding operations comprise
operations to bond a second set of multiple wires to a second set of surfaces, wherein
the second set of multiple wires are different than the first set of multiple wires, and
wherein the second set of surfaces are different than the first set of surfaces;
weight the input data according to the machine learning model;
generate an anomaly predictor (2052) indicating a risk for an anomaly occurrence in the
second bonding operations based on weighting the input data according to the machine
learning model; and

output the anomaly predictor to control the second bonding operations.
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