## (19) DANMARK

# (10) **DK/EP 2614333 T3**



(12)

# Oversættelse af europæisk patentskrift

#### Patent- og Varemærkestyrelsen

US-A1- 2006 101 660 US-A1- 2009 248 345

(51)Int.Cl.: G 01 B 5/012 (2006.01) G 01 B 7/012 (2006.01) (45)Oversættelsen bekendtgjort den: 2021-11-01 (80)Dato for Den Europæiske Patentmyndigheds bekendtgørelse om meddelelse af patentet: 2021-08-11 Europæisk ansøgning nr.: 11813654.8 (86)Europæisk indleveringsdag: 2011-09-12 (86)(87)Den europæiske ansøgnings publiceringsdag: 2013-07-17 International ansøgning nr.: DE2011001719 (86)(87)Internationalt publikationsnr.: WO2012041274 Prioritet: 2010-09-10 DE 102010044972 2011-04-29 DE 102011100075 (30)Designerede stater: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV (84)MC MK MT NL NO PL PT RO RS SE SI SK SM TR (73)Patenthaver: Carl Zeiss 3D Automation GmbH, Carl-Zeiss-Strasse 32, 73431 Aalen, Tyskland Opfinder: RICHTER, Frank, Säntisweg 3, 89522 Heidenheim, Tyskland (72)Fuldmægtig i Danmark: RWS Group, Europa House, Chiltern Park, Chiltern Hill, Chalfont St Peter, Bucks SL9 (74)9FG, Storbritannien (54)Benævnelse: FØLERSTIFTANORDNING (56)Fremdragne publikationer: DE-A1- 4 414 747 DE-A1-102008 028 986 US-A- 5 564 664 US-A-5 848 477 US-A1-2001 054 237

### Description

5

10

15

20

The present invention relates to what is claimed in the preamble and therefore relates to how improvements can be achieved in coordinate measuring machines.

Coordinate measuring machines serve to measure workpieces, for order to check the dimensional accuracy example workpieces during production. To this end, a probe pin is fastened to a movable arm of the coordinate measuring machine and is therefore guided in contact with the workpiece. The position which the arm has when the probe pin touches the workpiece is ascertained and a surface point on the workpiece is determined therefrom. Conclusions can then be drawn about the surface contour of the workpiece to be measured from a multiplicity of measurements of points sensed in this way. Further measuring methods, in which the surface is measured by way of a coordinate measuring machine, not in a manner which makes contact at points, but rather, for example, in a manner which tracks line by line, are to be mentioned for the sake of completeness. It will be obvious that the arrangement which is described in the following text can be used for all known coordinate measuring machines.

25 A problem in the case of conventional coordinate measuring machines then consists in that complexly shaped workpieces also have to be sensed, for example engine blocks including the holes which are provided therein. This requires the probe pin to optionally be arranged in an inclined manner with 30 respect to the arm, for instance in order to be introduced into an oblique hole. Here, the required inclination, the spacing of a probe pin tip from the arm, etc. are different from workpiece to workpiece. Spacer and aligning elements have therefore been placed up to now between the probe pin carrier 35 on the arm and the probe pin tip which is typically composed of very hard material and can be formed, for example, as a ruby ball. Accordingly, the tip of the probe pin is typically arranged on a suitable, thin rod which can be formed, for

example, from carbon fiber reinforced plastic or hard metal, said rod in turn being anchored in a screw-in thread, by way of which the entire probe pin which is formed in this way can be fastened to one intermediate element, designed as spacer or aligning element, or to the arm.

5

10

15

20

25

30

35

It is then a problem if the probe pin with the small tube axis neither stands perpendicularly on the coordinate measuring machine-side support face of the arm, from which support face the arm rises up slightly upon contact, nor is exactly perpendicular with respect to said bearing face. In a case of this type, it is namely necessary to arrange the probe pin itself in an inclined or pivoted manner with respect to the probe pin carrier of the coordinate measuring machine. Here, inclinations about at least one axis have to be fixed in two directions; this requires the spacer elements to be of suitable configuration.

Probe pins are then subject to wear. Said wear can be a result both of reaming or abrasion on the probe pin ball during scanning measurement and of mechanical destruction, etc. As a result, a change of the probe pins becomes necessary. After a change of this type, the probe pin ball of a new probe pin has to be arranged exactly in the same, reproduced position as previously in the case of the old probe pin, in order to avoid measuring errors. If this is not ensured, the measured values are also no longer reproducible after a change of the probe pin, which possibly results in considerable calibration work. It will be obvious that the probe pin also has to be aligned as previously.

Clamping elements have previously been used to achieve an inclined arrangement, by way of which the pivoted or inclined position of a probe pin receptacle was fixed frictionally. The corresponding arrangements were difficult to set, that is to say imprecise, which is very disruptive, in particular, in the case of a change between different workpieces to be measured and, moreover, entails low reproducibility despite high costs

of the element.

10

20

30

US 5,848,477 has disclosed a coordinate measuring machine, in the case of which the probe pin is attached to a ball which is provided with depressions which are spaced apart from one another. The probe pin can be oriented by way of selection of a depression which is pressed against a fixing. Further coordinate measuring machines and probe tips suitable for them are disclosed, for example, in US 2001/054237 A1 and DE 44 14 747 A1.

US 2006/101660 A1 describes a detector securing mechanism.

US 5 564 664 A has disclosed a spherical suspension means for a technical instrument.

DE 10 2008 028 986 A1 has disclosed a holding device for holding a calibration body for the calibration of a measuring sensor of a coordinate measuring instrument, the holding device having a setting device which is configured to set an orientation of the calibration body which is held on the holding device by way of actuation of a user.

US 2009/248345 Al describes a method for calibration of an analogue feeler or sensing feeler.

It is desirable to provide an option, by way of which probe tips can be arranged obliquely with respect to probe pin carriers of a coordinate measuring machine in a simple, inexpensive and reproducible way.

It is the object of this invention to provide something novel for industrial use.

35 The solution of this problem is claimed in independent form. Preferred embodiments are found in the subclaims. Accordingly the invention relates to a method for producing an intermediate element according to Claim 1 and to an

intermediate element according to Claim 4.

5

10

15

20

25

The present invention therefore proposes, in a first basic intermediate element which an during use configured to be arranged between a probe pin carrier on the arm of a coordinate measuring machine and a probe pin which is aligned obliquely with respect to the probe pin carrier, namely inclined in a reproducible rotational alignment and additionally in a fixed manner, having a base body with a probe pin end and a machine end, the machine end having a element which is configured to couple coupling intermediate element to a counterpiece on the coordinate measuring machine side, and which machine end has an axis, about which the intermediate element can be rotationally aligned relative to the probe pin carrier of the coordinate measuring machine, and the machine end being provided with a rotational alignment means which is configured to ensure a reproducible rotational alignment of the intermediate element with respect to the probe pin carrier, the probe pin end having a bearing face which is inclined in a fixed manner with respect to the axis of the coupling element, is arranged on a general ball segment form which, however, is flattened by the planar bearing face, and which bearing face is provided with a positively locking means and/or frictional means which is configured to enter into a positively locking and/or frictional engagement with a fastening end of a probe pin, which fastening end is to be arranged in contact with the bearing face.

A first essential aspect of the invention can therefore be seen in the fact that, in order to define the probe pin arrangement, that is to say the alignment here of the probe pin with respect to the probe pin carrier, an inclined bearing face is provided on the intermediate element, against which bearing face the probe pin can be brought into positively locking engagement. A high degree of reproducibility is ensured in this way by the reproducibility of the positively locking connection, even upon a change of the probe pin, since

firstly the contact of the probe pin end with the intermediate element defines very accurately by the positively locking connection and secondly the bearing face also ensures a high degree of stability. A bearing face is preferably understood to be inclined when the deviation from a perpendicular to a probe pin axis or from the probe pin axis is more than at least 4°, preferably lies between 10° and 85° or above from 95 to, for example, 120°, in order to correspond to a required setpoint inclination.

10

15

20

25

5

According to the invention, the intermediate element is formed with a single-piece base body which is also assigned at any rate fixing elements, for instance for fixing of the swivel coupling element to a counterpiece which is closer to the machine. This allows a very favorable configuration of the entire intermediate element, which in turn makes a rapid and change possible in accordance with а inclination and/or rotational alignment. A multiplicity of intermediate elements, for instance as an intermediate element set, can therefore be provided and/or the base bodies can be provided in a dedicated manner for a respective application, which is preferred. The milling of the inclined bearing face from the base body allows very inexpensive production, in particular without requiring additional tools in those firms which make classic use of coordinate measuring machines.

The coupling element is preferably a swivel coupling element.

It is possible and particularly preferred if the swivel coupling element is configured as a journal, about which the bearing face can be rotated. The configuration as journal makes it possible, in addition to the inclination, to also provide a swivel element which can be produced with very low costs. Precisely the combination of a swivel coupling element, which has one of journal hole and journal, with the inclined bearing face affords considerable advantages with regard to the production costs and the prefabrication of blanks. It is to be mentioned that there are various options here. It is

particularly preferable if the intermediate element can be pushed at the journal against a surface, via which a region of the intermediate element, which region surrounds the journal radially and is possibly inclined conically, moves away during rotational alignment. This permits repeated adjustment. As an alternative, a one-time swivel element alignment is possible, for example using a journal which is to be adhesively bonded in. The use of a journal of this type by way of adhesive bonding at the site of an end user who has previously predetermined the inclination on an intermediate element by milling is considered to be inventive per se.

5

10

15

20

25

30

35

If the swivel coupling element is configured as a journal, it is therefore particularly preferable if said journal has a depression or groove, against which clamping means can be pushed, for example in the form of grub screws or the like which press the journal into the journal hole bearing. As an alternative, in the case of a configuration of the swivel coupling element as a journal hole, a receptacle will be provided for clamping means of this type. It is obvious that machine-side counterpiece will be formed correspondingly complementary manner. It is to be mentioned as particularly advantageous to configure spacer pieces for spacing apart machine arm and probe pin in such a way that the complementarily shaped counterpiece for a probe pin swivel coupling element is connected fixedly to the tube or rod element which produces the spacing. This is advantageous because the otherwise required and rather unstable screw connection of the swivel coupling element to a thread-bearing part which is provided on the tube or rod element can be avoided, which increases the stability while reducing the costs. Here, both the correspondingly configured spacer piece and also an overall system which uses said spacer piece (in particular, with the intermediate piece according to the invention for producing the inclination) are considered in each case to be inventive per se and capable of being claimed. Here, a reproducible rotational alignment is then preferably ensured, for example, by non-rotationally symmetrical

positively locking means pairs with in each case one pair part on the side of the coordinate measuring machine arm and on the side of the spacer piece.

It is preferred if the swivel coupling element can be pushed 5 against a bearing face, in particular in a connection. Ιt is avoided in this way that, during the insertion of the intermediate element, a rotation occurs during the clamping by fixing said intermediate element to the 10 counterpiece which is closer to the machine. It is readily possible by way of an arrangement of this type to carry out a setting operation which fixes the rotational direction, to bring about the fixing and afterward to bring the probe pin into contact with the bearing face. The positively locking means is preferably formed as a threaded hole which can 15 readily be drilled into the bearing face, in particular perpendicularly. This drilling operation can be performed, in particular, while a semifinished intermediate element to be machined is still clamped in. As an alternative, a milled through hole can be provided instead of a threaded hole. If 20 said milled through hole is formed for guiding through a fastening screw or the like without play, a positively locking definition of the position and, after tightening, a frictional connection are achieved.

25

30

35

Instead of a configuration of the swivel coupling element as a journal which can be (pre-)fixed, for example, by way of grub screws, there are also other options. Thus, for example, the blank can be introduced directly into a receiving opening on a machine-side small tube or rod or can be fixed there, for example by adhesive bonding. If this takes place while a gauge is used, by way of which the, once again machine-side, end of the small tube or rod can be aligned accurately, and correct fastening is ensured by means at the machine-side end of the small tube or rod, such as a journal/journal hole pair which is dimensionally complementary with respect to the fastening point on the machine, even adhesive bonding or the like can also take place in an exactly aligned position in an operating

mode which utilizes coordinate measuring machines.

5

No separate probe pin carrier is therefore used, as is customary, for example, in order to achieve a radial spacing of the probe pin tip from the machine arm, but rather the element according to the invention is used as a part which is connected fixedly but is aligned exactly with respect thereto in terms of rotational direction.

10 A method is also claimed for producing an intermediate element which can be arranged between a probe pin carrier on the arm of a coordinate measuring machine and a probe pin which is aligned obliquely with respect to the probe pin carrier, namely inclined in a reproducible rotational alignment and 15 additionally in a fixed manner, the intermediate element being produced in such a way that a machine end is formed which has a coupling element, by way of which the intermediate element can be coupled in a rotationally aligned manner to a counterpiece on the coordinate measuring machine arm side, in such a way that a rotational alignment means is formed which 20 ensures a reproducible rotational alignment about a rotational axis, and in such a way that a probe pin end is formed, on which a planar bearing face is produced which is inclined in a fixed manner with respect to the rotational axis, the method 25 comprising that first of all blanks are produced, which blanks have the coupling element which is on the machine side during use after completion, the rotational alignment means and a spherical cap-shaped region where the bearing face for the probe pin is to be produced, and the method comprising, 30 furthermore, that the blanks are rotationally aligned using the rotational alignment means, and the inclined bearing face is produced on a spherical cap-shaped region by way of milling off of the rotationally aligned blank. It is obvious that the swivel coupling element is preferably formed here for a reproducible alignment with respect to the machine arm. 35

Face milling is preferably used as milling method, to which end the workpiece is clamped into an angle holder or the like

and/or is placed on the latter, with the result that face milling operations are performed at the correct angle by way of the definition of the support face. Either dedicated metal parts or the like can be used as angle holders or supports for face milling can be used, or else an adjustable holder. The use of an adjustable holder affords advantages in comparison with the case, in which an individual intermediate element would have to be adjustable and therefore, with the same costs, allows the use of a possibly also more complicated face milling holder.

10

A blank is typically provided which is spherical or circular segment-shaped before the milling in the region of the support face to be formed, which makes a constantly large support face possible independently of the angle of inclination. After 15 milling, the support face will typically correspond largely exactly to the support face of the probe pin fastening end and will otherwise be (circularly) round. However, the sphericity does not necessarily have to be completely and wholly round, which permits low production costs. The blank is otherwise 20 typically configured opposite the support face to be formed and parallel to the coupling element axis with a planar face for support on the angle holder, the clamping tool for the face milling or the like. This can also facilitate the 25 alignment of the rotational position.

In the following text, the invention will be described only by way of example using the drawings, in which:

- fig. 1 shows an exploded view of the probe pin fastening means for a coordinate measuring machine having an intermediate element according to the invention,
- fig. 2 shows the arrangement from figure 1 35 in the assembled, partially transparent state,
  - fig. 3 shows the arrangement of figure 1 in the assembled state,

| fig. 4  | 4     |      |                     |       | shows |      | а    | first |      | illustration |    |    | of   | the  |
|---------|-------|------|---------------------|-------|-------|------|------|-------|------|--------------|----|----|------|------|
| interme | ediat | e    | elemen <sup>.</sup> | t of  | the   | pr   | esei | nt    | inve | ention       | in | an | expl | oded |
| view wi | ith a | ı ma | achine-             | -side | cour  | ntei | rpie | ece   | ,    |              |    |    |      |      |

5

fig. 5 shows a view of the elements figure 4 in the assembled, partially transparent state,

10

fig. 6 shows the parts of figure 4 and 5 in the non-transparent state,

fig. 7 shows а section through arrangement to be produced with an intermediate element and a machine-side counterpiece,

15

fig. 8 shows two machining steps be carried out successively during the production in diagrammatically indicated form, namely the face milling of the blank which is attached on an oblique support and the subsequent drilling of said blank perpendicularly into the bearing face,

20

fig. 9 shows for an angle gauge the rotational alignment of the intermediate element with a cutopen tube,

25

fig. 10 shows a gauge for adhesively bonding an intermediate element according to the invention directly into a spacer piece,

30

fig. 11 shows a sectional view through the transition region of a support means and adapter,

fig. 12 35

- shows a probe pin fastening means for a coordinate measuring machine, in accordance with fig. 3,
- fig. 13 shows an exploded view of a probe pin fastening means for a coordinate measuring machine with a

variant of the intermediate element according to the invention,

fig. 14 shows the arrangement from fig. 13 in the assembled state,

5

15

20

figs. 15a, b show blanks for the intermediate element according to the invention of figs. 13 and 14, and

10 figs. 16a, b show the intermediate element of figs. 15a and 15b after production of the bearing face.

According to figure 1, an intermediate element, denoted generally by 1, for the arrangement of a probe pin 2 with respect to the probe pin carrier 3 of a coordinate measuring machine (not shown) a probe pin end 1a and a machine end 1b, the machine end 1b being provided with a swivel coupling element 1b1 and the probe pin end 1a being configured with a bearing face 1a1, which is inclined with respect to the swivel coupling axis 1b2, and a positively locking means 1a2 for the positively locking engagement with a fastening end 2a of the test pin 2 in contact with the bearing face 1a1.

In the present case, the probe pin carrier 3 has projections 3b, 3c which project in a generally opposite radial manner from a coordinate measuring machine arm axis 3a. Toward the coordinate measuring machine, the coordinate measuring machine arm is provided with a disk-like plate 3d which is configured for reacting to the contact of a workpiece (not shown) with a probe tip 2d and for generating a signal if the disk-like plate 3d is raised out of the plane 3d1, which can take place as a result of pressure in the axial direction of the axis 3a or by pressure transversely with respect thereto.

In the present exemplary embodiment, the probe pin 2 has a probe tip 2b which is formed here with an aluminum oxide ball, for example a ruby ball, the ball 2b being formed on a rod 2c made from sufficiently rigid and temperature-insensitive

material 2c, that is to say expands at any rate marginally with temperature changes, such as hard metal, ceramic or carbon fiber composite material (CFC). The rod is in turn arranged on a metallic thickened portion 2a, for example made from stainless steel or tool steel or titanium, which has a thread 2d on the machine side, which thread 2d is provided with a threaded hole 1a2 for the positively locking engagement. The threaded hole 1a2 is drilled perpendicularly into the bearing face 1a1 in the intermediate element 1, cf. figure 7.

5

10

15

20

25

30

35

As can be seen from figure 1, the intermediate element 1 is arranged on an element which protrudes radially from an arm projection 3e, said element having, toward the intermediate element 1 of the present invention, a receptacle for the journal 1b which forms the swivel coupling element 1b. The 1b is provided with a circumferential groove 1b1a which in turn is beveled on its flanks 1b1b in such a way that a pushing means 3b1 which is provided in the counterpiece 3b can be pushed into the swivel journal receptacle, in the form of a grub screw 3b2 here, cf. figure 4, which penetrates into a corresponding thread 3b3. The intermediate element 1 provided with an oblique shoulder 1c which runs around the circumference and is provided around the journal receptacle on a complementarily formed bearing face in the counterpiece 3b. The counterpiece 3b for fastening the intermediate element 1 according to the invention is formed from metal here and, on the machine end side here, has an adhesive bonding face which matches a GFRP or CFRP pipe and is sufficiently temperaturestable. Any desired customary machine-side parts can provided here. The intermediate element 1 has a flat rear face 1d, cf. figure 7, which is provided generally on the opposite side of the bearing face 1a1 and lies generally parallel to the axis 1b2 of the swivel coupling journal 1b.

That end of the intermediate element 1 on the probe pin side is rounded around the bearing face, a blank having a general ball segment shape in the region of the future bearing face.

Here, the corresponding ball segment region of the corresponding blank shape is such that the ball or the ball segment which can be milled off in order to form the support face lal can be formed with an inclination away from the machine arm and also toward it. In other words, the center point of the ball radius lies spaced apart somewhat from the swivel coupling element axis, as indicated by radius r in figure 7. Here, the blank is dimensioned in the ball segment region in such a way that a support face for the probe pin is formed by milling, having that diameter which is required for the probe pin as support face.

Here, the threaded hole 1a2 is a standard threaded hole for standard threads of probe pins; the support face around said threaded hole is of planar design in the present case, in accordance with the customary probe pin shape around the thread.

The arrangement is used as follows:

20

25

30

35

10

15

First of all, intermediate element blanks are produced which have a grooved swivel coupling element journal, a flat support face 1d and a region in the shape of a spherical cap, from which the bearing face for a probe pin which is arranged in an inclined manner with respect to a probe pin carrier 3 of a coordinate measuring machine can be formed by milling. Said blanks are produced in a series-like manner identically in relatively large quantities and are sent to users of coordinate measuring machine. There, a desired probe pin geometry is determined for a suitable given measuring task, typically takes place using CAD programs. intermediate elements can be defined readily here as CAD elements. In accordance with the task-specific or applicationspecific definition of the angle of inclination, an angle holder gauge prepared, is then into or onto which individual blank or a multiplicity of identical blanks inserted or placed, and face milling is carried out for the partial removal of the spherical cap until the desired angle of inclination. Threaded holes are then introduced perpendicularly into the flat faces which are formed in this way. As a result of the use of a suitable angle holder, this is possible without great outlay in apparatus terms, cf. figure 8.

5

10

15

30

35

Afterward, the finished intermediate element can first of all be inserted on the machine end side into the journal receptacle, can be aligned, and afterward can be pushed in a clamping or frictional manner into the desired position by the grub screws which are distributed equidistantly around the circumference, for example, by three grub screws here. Here, the rotational alignment itself takes place with only a small amount of force, as long as the screws are not yet tightened. The setting can therefore be performed with high accuracy. Correct alignment is possible without problems by way of successive tightening of the grub screws.

Fig. 9 shows that the element 3c can be inserted into a rotary gauge which firstly exactly defines the position of a flattened portion on the intermediate element 1 by way of a support 10 and secondly exactly fixes the position of the intermediate piece 3c, even with regard to the rotational alignment, via a complementary shaping means 11 with journal/journal hole pair such as on the machine arm at 3e1a and 3e1b.

Here, the gauge is formed in such a way that the receptacle 11a for the journals on the support means 3c1 of the spacer piece 3c is provided here in a rotatable element 12 which can be rotated practically without play; it can be set exactly by means of a pointer 13 which can move and is driven over an angle scale which is attached around the circumference. It goes without saying that the body 12 which is shown in cross section and its support 14 can be rotated relative to one another, that is to say there is rotational symmetry about the indicated axis 15 to this extent.

Afterward, if desired, fixing of the rotational position can also be performed beyond that dimension which is already ensured by the grub screws. This can take place, for example, by means of adhesive. To this end, in a deviation from what is described above, adhesive, for example, can be introduced into the region between the intermediate element and the receptacle; an adhesive will be selected which cures more slowly than the time which is required to set the rotational alignment; as an alternative, an adhesive can be used which, for example, cures only under heat, it being possible for the arrangement to be heated after alignment of the rotational position, for instance by means of a warm air fan.

5

10

As an alternative and/or in addition, it is possible to provide other connecting methods, such as WIG welding or the like at one or more points around the circumference of the intermediate element/receiving piece transition region. As an alternative and/or in addition, a hole can also be made through the element 3b as far as into the intermediate element 20 by means of a simple, for example battery-operated, small drill, and a probe pin or the like can then be inserted. This also ensures the fixing of the rotational direction.

For a swivel coupling element of the present invention, it can therefore already be sufficient, depending on the desire of the applicant, if a one-off rotational alignment is made possible and otherwise machine attachment which reproduces the rotational direction is ensured.

30 The probe pin is subsequently screwed in, which then has an exactly defined desired inclination.

It is to be noted that the region around the swivel coupling element journal can possibly be provided with markings which facilitate a rotational alignment relative to the receptacle on the machine end side, if a corresponding marking is likewise provided there. For example, a 5° or 10° graduation can readily be provided on the blank. The machine-side

receptacle can likewise have a marking, for example in a nonius-like manner.

It is to be mentioned that the machine-side region can possibly also be formed as a round cylinder with a flattened portion which corresponds with a corresponding flattened portion on the machine-side receptacle. This allows an alignment of the rotational position to be ensured by simply bringing the flattened portions into alignment with one another. For example, in a similar manner to the inclination, the flattened portion can likewise be brought about by face milling on a suitable base with respect to the production gauge.

5

10

30

35

15 This is appropriate if it is ensured that the machine-side flattened portion on the pin carrier 3 for its part has a reproducible alignment with respect to the coordinate measuring machine arm axis. Although this is not readily ensured, advantages can nevertheless already be achieved by the present invention if this is not ensured; a flattened 20 portion can also still be advantageous when at least the intermediate elements are formed in each case identically situated flattened portion because, independently of the absolute position relative to the coordinate measuring 25 machine arm axis, reproducibility is then ensured at least until a change of the pin carrier 3.

However, it is also possible and preferred by way of simple means, even if it is not necessary, even if the rotational alignment of the intermediate element is still fixed precisely. The invention exhibits different measures for this purpose. As is shown in fig. 1 and has been described previously, the probe pin carrier has two projections 3b, 3c which protrude radially from a coordinate measuring machine arm axis 3a; the fact that two projections of this type are shown on one arm in fig. 1 is otherwise only exemplary and not necessary, and fewer or more projections can also be provided. It is then important that, as is to be explained by way of

example using the element 3c, the projections are typically formed in multiple pieces, namely as a rule with a machine-arm-side support means 3c1 which rests on a machine-arm-side support face, shown for the projection 3b as support face 3e1, merges into a spacer piece 3c2 away from the coordinate measuring machine arm axis, and is connected fixedly to said spacer piece 3c2, the receptacle 3c3 for the intermediate element of the present invention being provided in turn on the spacer piece 3c2 toward the probe pin. The receptacle 3c3 and the support means 3c1 are typically formed from tool steel, stainless steel or the like, whereas the spacer piece 3c2 can be composed of titanium, tool steel, hard metal, carbon fiber composite materials, glass fiber composite materials and the like.

15

20

25

30

35

10

5

Different methods are then customary in the prior art for connecting the spacer piece 3c2 to the support means 3c1 or the receptacle 3c3. Firstly, there is the option to make holes in the spacer piece 3c2 and to provide the receptacle 3c3 or the support means 3c1 with journals or the like 3c3a or 3c1a which penetrate into the respective holes, indicated at 3c2a, for example, are bonded adhesively to the Although an adhesive bond of this type is generally less preferred for reasons of stability, it affords the advantage for the application of the invention that the elements 3c1, 3c2 and 3c3 which are to be connected to one another can be moved and, in particular, can be rotated readily with respect to one another until the adhesive cures. If two complementary journal holes 3ela, 3elb are then provided on the support face 3el of the machine arm and the support means 3cl are equipped with complementary journals which penetrate without play or virtually without play into the journal holes 3e1a, 3e1b, the result is a defined, reproducible rotational alignment of the rigid spacer piece 3c. This can be utilized, in the case of the connection of the elements 3c1, 3c2 and 3c3, to achieve a correct and reproducible angle position of a flattened portion on the machine end side as described above in the machine-side receptacle 3c3. To this end, for example, first of all the spacer piece 3c2 is adhesively bonded fixedly to the support means 3c1 and afterward is clamped in a gauge which firstly ensures an exact alignment of the flattened portion of the receptacle 3c3 and secondly makes it possible that a correct position is achieved in a plugged into one another position of the receptacle 3c3 and spacer piece 3c2. This is advantageous when it is ensured that a defined rotational alignment regularly occurs very often at an end user, with the result that work can be carried out with spacer pieces which are fixed to this extent.

It is to prove advantageous that here, as can be seen, the spacer piece 3c2 and receptacle 3c3 are connected directly to the journals of the intermediate piece which serve to push the swivel coupling element in pushing means which serve as journal hole.

If, which is preferred for reasons of higher quality, the connection of the spacer piece 3c2 to firstly the receptacle 3c3 and secondly the support means 3c1 is not to be carried out by simple adhesive bonding, but rather by cutting threads, a rotational alignment of this type is not readily possible during production. However, there is the possibility here to first of all produce the connection fixedly between the elements 3c1, 3c2 and 3c3 and then only subsequently to machine the support face into the receptacle 3c3, which in turn to produce in a suitable gauge by milling, in which gauge a reproducible position is ensured by way of the journal position of the journals of the support means 3c1. Otherwise, it is to be mentioned that, instead of journals in the support and journal holes in the counterpiece, complementary reversed situation could also be used, or other suitable means and measures can be provided which make easy reproducibility of a rotational alignment possible.

35

5

10

15

20

25

30

A spacer piece 3c which is provided in a desired alignment with a cut tube as described above can then be inserted into a gauge, as shown in fig. 9, to achieve a correct rotational

alignment.

A gauge similar to that in fig. 9 can also be used if, which optionally possible in the case of lower requirements, direct adhesive bonding of the intermediate element 1 to the spacer piece 3c2 which is tubular here is to take place. To this end, fig. 10 shows an intermediate element 1' which is received with an accurate fit in the tube 3c2 via a simple, rotationally symmetrical journal 1'a. Although this embodiment is possibly not quite as stable as described above, it is even less expensive, just on account of simplification with respect to the above-described exemplary embodiments by way of the omission of the clamping fit with grub screws and the like.

15

20

25

30

35

10

5

Accordingly, the above text has therefore described an intermediate element for the arrangement of a probe pin in an inclined manner with respect to the probe pin carrier of a coordinate measuring machine, having a probe pin end and a machine end, the machine end being configured with a swivel coupling element and the probe pin end being configured with a bearing face which is inclined with respect to the swivel coupling axis and with a positively locking or frictional means for the positively locking and/or frictional engagement with a fastening end of the probe pin in contact with the bearing face.

Furthermore, an intermediate element as specified in the preceding variant has been described, which intermediate element is according to the invention formed with a single-piece base body.

Furthermore, an intermediate element as specified in one of the preceding variants has been described, the inclined bearing face being milled off from the base body.

Furthermore, an intermediate element as specified in one of the preceding variants has been described, the swivel coupling element being designed as a journal which is configured for being received in a journal bearing, preferably as a journal which can be adhesively bonded into a journal hole receptacle.

Furthermore, an intermediate element as specified in one of the preceding variants has been described, the journal having a depression, preferably a groove, by way of which the intermediate element can be pushed against a bearing face by a fixing means.

10

Furthermore, an intermediate element as specified in one of the preceding variants has been described, the positively locking or frictional means being formed as a threaded hole, into which the probe pin can be screwed.

15

Furthermore, an intermediate element as specified in one of the preceding variants has been described, the threaded hole being drilled perpendicularly into the bearing face.

- Furthermore, a method has been described for producing a multiplicity of intermediate elements as specified in one of the preceding variants, blanks being produced with a swivel coupling element and at least one face which is generally parallel to the swivel coupling element axis, and the blanks being milled as required in order to produce bearing faces of different inclination, a respective threaded hole or a milled through hole for a fastening screw being introduced, in
- Furthermore, a method as specified in the preceding variant has been described, the blank being clamped and/or placed in an angle holder and then being face milled.

particular after milling, perpendicularly the bearing face.

Furthermore, a method as specified in one of the preceding variants has been described, a blank being provided which, before milling, is generally spherical in the region of the bearing face to be formed.

Furthermore, a blank has been described for carrying out a method as specified in one of the preceding variants.

Furthermore, a spacer piece has been described for receiving the blank which has been machined further, having means for pushing the possibly machined blank into a position which fixes the rotational direction and/or having a receptacle for receiving the possibly machined blank in an adhesive bond which fixes the rotational direction.

10

15

20

25

5

In the case of the attachment of intermediate elements which bear inclined probe pins, their correct alignment is to be brought about, as has been explained. A correct alignment therefore also has to be ensured between an adapter from the coordinate measuring machine arm to the probe pin and its support means on the adapter.

It is to be noted here that the probe pins are to be changed regularly and it also has to be ensured permanently, in particular despite a multiplicity of changes, that a correct arrangement is obtained.

As has been described, a support means is provided for probe pin fastening, which support means bears, for example, a metal, carbon, ceramic or other tube which in turn is connected to elements which are specified as above and bring about the probe pin inclination. If said support means is not aligned correctly with respect to the adapter, the desired correct alignment of the probe pin does not result.

30

The present improvement aims by way of the aspect which is now being described at further facilitating the correct alignment.

Furthermore proposed therefore is a support means for attaching a probe pin to an adapter pin, which probe pin is provided, in particular, on an intermediate element as specified in the preceding text. It is provided here that the support means has positively locking elements which are free

from pressing force for the unambiguous orientation of the support means on their positively locking connection which is free of pressing forces with complementary elements on the adapter.

5

10

15

30

35

An essential basic concept of this proposal therefore consists in it firstly being possible to ensure a correct orientation of the support means, and therefore of the probe pin which is supported by way of it, by way of positively locking elements which admittedly make an unambiguous orientation possible, to say, in particular, are not rotationally is secondly to ensure that symmetrical, but the positively locking elements remain free from pressing forces when being supported on the adapter. This ensures that the positively locking elements are not loaded and deformed by possibly high pressing pressure and therefore become faulty, inaccurate and/or unusable.

It is possible and preferred that at least two differently shaped positively locking elements are provided which interact with respective complementary elements on the adapter. A particularly simple orientation is possible by virtue of the fact that differently shaped positively locking elements are used, which makes fault-free, correct and therefore reproducible probe pin mounting possible, even when under great working stress.

differently shaped positively locking elements will preferably interact with their respective complementary element in such a way that they come into engagement one after another, in particular by way of projections which protrude to different extents. Therefore, first of all the positively locking element/complementary element pair passes into engagement, and then only after this the second said pair. This is advantageous because canting which is caused by tilted approach with respect to the plug-on axis, with the risk of damage to the positively locking elements, can rather be avoided in this way, for example by rounding off or beveling of the projections.

It is otherwise to be noted that the projections which protrude to different extents can be provided on possibly the support means and/or the adapter. However, it is further to be noted that, regardless of this, projections on the support means are primarily addressed in the following text; however, this is not intended to restrict the disclosure, but rather to facilitate the comprehension of the disclosure, by the respective positively locking element/complementary element pairing alternatives not being mentioned and explained again in the case of each opportunity which arises, but rather being assumed to always be present in accordance with the above text in an obvious way.

15

20

25

30

35

10

It is preferred if at least that positively locking element the first to come into engagement with complementary element on the adapter is a round element which forms a round journal/round hole pair with its assigned complementary element. This allows an engagement of the round journal/round hole pair which protrudes further to first of all be brought about upon plugging of the support means onto the adapter, and then to bring about a rotational adjustment of the support means about the axis of the round journal/round hole pair with gradual approaching with an at any rate low pressure between the support means and the adapter, to be precise until the engagement of the further positively locking element or elements/complementary element or elements on the support means and the adapter, and only after this to bring about the fixed connection in the correct alignment, which is then easily possible.

It is preferred if at least two positively locking elements form round journal/round hole pairs with the respectively assigned complementary elements and both round journal/round hole pairs in each case have a different diameter. The configuration of also the second positively locking element/complementary element pair as a round journal/round

hole pair has advantages in terms of production technology on account of the simple producibility of the geometric shapes, and thus reduces the costs.

5 The support means is preferably screwed to the adapter, to which end a threaded hole which serves for fastening is preferably provided in the support means, into which threaded hole a screw which runs through the adapter can pass. In order that said screw can be held captively on the adapter without 10 problems, the adapter can have a threaded hole for screw securing, through which threaded hole the fastening screw which is provided with a thread only in its front region can be screwed. If said securing threaded hole is arranged on the adapter close to the interface to the support means, it is 15 preferred if the fastening threaded hole is depressed in the support means to such an extent that it is possible to seat the support means on the adapter before the screw engages.

It is preferred if pressing faces are provided for pressing the support means against the adapter in a defined manner, in particular are provided as projections or as a single, circumferential projection, the faces of this type being arranged, in particular, close to the edge on the support means.

25

30

35

In fig. 12, the adapter is denoted as Z1, and the support means is denoted as Z2. The function and arrangement of the further parts which are shown are evident to a person skilled in the art from the corresponding description of the figures as already specified in the preceding text, in so far as this is required at all.

According to fig. 11, the support means Z2 is provided, in order to fasten a probe pin to an adapter Z1, which probe pin can be arranged, in particular, on an intermediate element as already specified in the preceding text, and of which probe pin only a part, denoted by designation 3c2a, of a hollow tube is shown in the present case, which tube is adhesively bonded

on a projection of the support means or is attached in another manner as described in what has already been specified in the preceding text.

The support means Z2 has positively locking elements Z2a, Z2b which, for the unambiguous orientation of the support means in the case of a positively locking connection with complementary positively locking elements Z1a, Z1b, are formed on the adapter Z1 in such a way that they can enter into a positively locking connection in a manner which is free from pressing forces.

In the present case, as can be seen from fig. 12, the support means Z2 is formed as a generally round element, a circumferential projection Z2c in the direction of the adapter being provided close to the outer circumference of that side of the support means face which faces the adapter, which projection Z2c protrudes by a height h beyond the surface Z2d which faces the adapter Z1.

20

25

30

35

15

The journals Z2a and Z2b are both round journals, just as the complementary journal holes Z1a, Z1b in the adapter are round holes. The journals Z2b and Z2a have different diameters, with the result that the journal Z2b cannot be placed into the journal hole Z1a and, conversely, the journal Z2a would exhibit great play in the journal hole Z1b. Moreover, the thicker journal Z2b extends further away, in comparison with the journal Z2a, from that surface of the support means Z2 which faces the adapter Z1, by a spacing which is noticeable upon positioning. The journal hole Z1b is deeper than is required to receive the journal Z2b. In other words, the end face of the journal Z2b does not protrude as far as to the journal hole bottom Z1b1 of the journal Z1b. The same applies to the depth of the journal hole Z1a which is greater than the height of the journal Z2a above the surface of that side of the support means Z2 which faces the adapter Z1 upon use. The journal Z2a therefore also does not pass as far as into the bottom of the journal hole when the support means is placed onto the adapter.

10

15

20

30

35

The adapter Z1 is provided with a through hole Z1e, at the end of which, which faces the support means, a thread Z1e1 is cut and which is dimensioned in such a way that a screw Z3 for screwing the support means Z2 fixedly to the adapter Z2 can be advanced through the through hole Z1e as far as to the thread Z1e1, can be screwed through the threaded hole Z1e1 there with its thread Z3a which is provided only at the front end, is subsequently held captively and protrudes with a slight axial play. The support means has a blind threaded hole Z2e which is provided such that it is recessed from the surface which faces the adapter Z1 upon use, to be precise by a depression which corresponds at least to the height of the thread Z3a of the screw Z3 in the support means, with the result that, when the support means is placed onto the adapter Z1, the screw Z3 can be pulled away from the support means and, as a result, there is no engagement between the threaded hole Z2e and the screw thread Z3a, but rather the section of the screw Z3 with the thread Z3a can move freely to and fro by a slight amount in the depressed region Z2e1, and an engagement of the thread Z3a the thread Z2e also becoming possible only advancing of the screw Z3 in the direction of the arrow Z4.

25 The arrangement is used as follows:

After correct mounting of an intermediate element on the support means, to which end, in particular, the gauge which is described in the preceding text can be used, in particular with a correspondingly arranged gauge counterpiece for the support means which is described here, the support means is generally guided up to the adapter in such a way that first of all the journal Z2b which protrudes further passes in a positively locking connection into the journal hole Z1b on the adapter. With careful further approaching, the support means is then rotated around the journal Z2b which has already penetrated partially into the journal hole Z1b, until the second round journal/round hole pair Z1a, Z2a also come into

engagement. The support means is then fixed lightly under fingertip pressure against the adapter, the circumferential edge Z2c being seated on the adapter Z1 and the screw Z3 then being moved in the direction of the arrow Z4 and its thread Z3a being screwed into the blind threaded hole Z2e and being tightened firmly, pressing forces acting merely in the region of the circumferential edge Z2c, but not on the positively locking elements.

10 The arrangement can be readily released and a permanently wear-free change is possible.

A further variant is now to be described with reference to fig. 13 to fig. 16.

15

20

25

30

35

5

According to fig. 13, an intermediate element 13-1 which is denoted generally by 13-1 for the arrangement of a probe pin 13-2 with respect to the probe pin carrier 13-3 of a coordinate measuring machine comprises a base body 13-1a which is in a single piece here with a probe pin end 13-1a' which has a coupling element 13-1a'' and a means 13-1a''', in order to ensure a reproducible rotational alignment with respect to the probe pin carrier 13-3 of the coordinate measuring machine, and which has, at the probe pin end 13-1a, a bearing face which is inclined in a fixed manner with respect to the axis of the coupling element, is provided in a general ball segment form which is flattened by the bearing face, and is configured with a positively locking and/or frictional means for the positively locking and/or frictional engagement with a fastening end 13-2' of the probe pin in contact with the bearing face.

As can readily be seen from figs. 15a and 15b, the intermediate element 13-1 can have shanks  $13-1a^{V}$  of different lengths. Toward the machine end, the blank has a widened foot  $13-1a^{VI}$  which is formed integrally with the shank, is preferably formed with the latter by being milled from one solid piece. The same applies to the ball end  $13-1a^{VII}$  which is

likewise preferably formed integrally with the shank and the foot. However, it is likewise to be mentioned as a possibility that a fixed connection might be produced in the case of a multiple-piece construction and by welding, brazing, adhesive bonding, etc. before machining of the bearing face.

5

10

15

20

In a deviation from the abovementioned variants, the coupling element 13-1a<sup>III</sup> is then not realized as a swivel coupling element, but rather is realized by a single screw thread for a fastening screw 13-4, by way of which the intermediate element can be screwed fixedly to the machine end. The reproducible rotational alignment is ensured by two, preferably differently dimensioned journals which can penetrate into recesses in the intermediate element 13-1 or its bearing face and are seated without play in their receiving holes.

With regard to the production, it will be understandable from the preceding text that the bearing face can also be produced for the intermediate elements of the variant described in the preceding text by milling of the ball element with suitable fixing, for example in a gauge, of the intermediate element blanks which are to be machined.

The advantage of the present variant can be seen in the production which is simplified further. In many cases, as a result, the costs can be reduced for the provision of an intermediate piece which can still be aligned as desired.

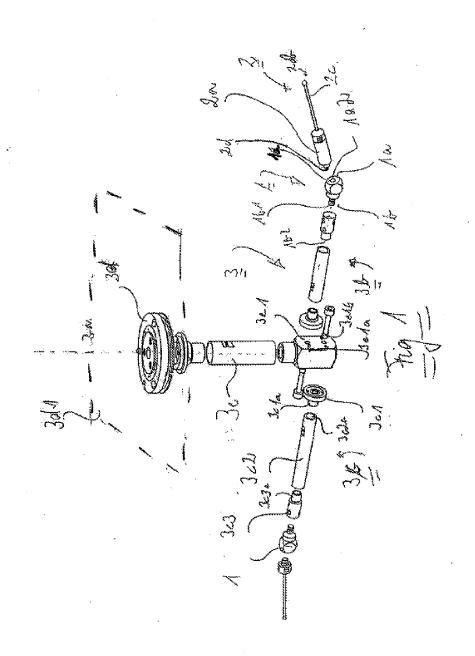
## Patentkrav

- 1. Fremgangsmåde til fremstilling af mellemelement (1), som kan placeres mellem en følerstiftbærer (3) på armen af en koordinatmålemaskine og en mod følerstiftbæreren (3) 5 nemlig i en reproducerbar drejelig justering og endvidere hældende justeret følerstift (2), permanent mellemelementet (1), som er dannet med et grundlegeme i ét stykke, fremstilles således, at der dannes en maskinende (1b), 10 som har et tilkoblingselement (Ib1), hvormed mellemelementet drejeligt justeret kan kobles på et modstykke på har koordinatmålemaskinarm, oq som et. drejeligt justeringsmiddel, som dannes således, der sikres at reproducerbar drejelig justering omkring en drejeakse (1b2), 15 og at der dannes en følerstiftende (1a), på hvilken der fremstilles en plan anlægsflade (1a1), som er permanent hældende mod drejeaksen (1b2), idet fremgangsmåden omfatter, at der i første omgang fremstilles emner med en i forhold til aksen på tilkoblingselementet (1b1) generelt parallel flade, som efter færdiggørelsen under brug har det tilkoblingselement 20 maskinen, det drejelige justeringsmiddel der, hvor kuglehætteformet område anlægsfladen (1a1) til følerstiften skal fremstilles, og fremgangsmåden endvidere omfatter, at emnerne spændes ind i og/eller lægges på en 25 vinkelholder, og der fremstilles en hældende anlægsflade (1a1) på et kuglehætteformet område ved at affræse det drejeligt justerede emne.
- 2. Fremgangsmåde til fremstilling af et mellemelement ifølge det foregående krav, kendetegnet ved, at der efter affræsningen af det kuglehætteformede område lodret i den dannede anlægsflade indføres henholdsvis et gevindhul eller et gennemfræsningshul til en fastgøringsskrue.
- 35 3. Fremgangsmåde til fremstilling af et stort antal mellemelementer (1), idet hvert mellemelement (1) fremstilles ifølge en fremgangsmåde ifølge et af de foregående krav, kendetegnet ved, at der i første omgang fremstilles en række

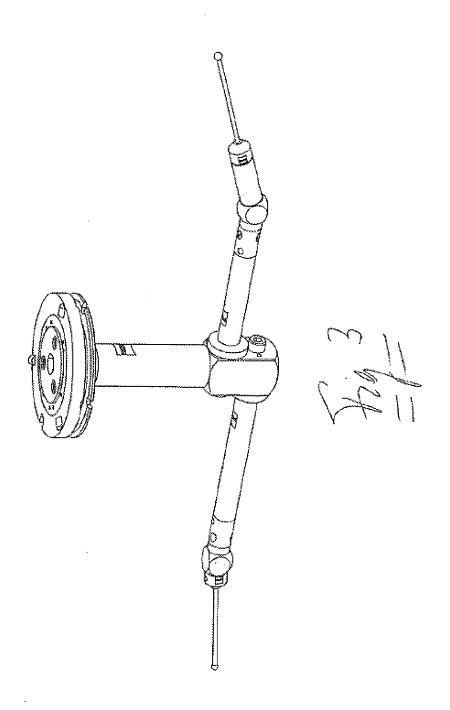
identiske emner, og derefter fremstilles forskellige mellemelementer (1) med hver især forskellige hældninger, idet et respektivt emne justeres drejeligt, og anlægsfladen (1a1) så fræses med hver gang påkrævet hældning.

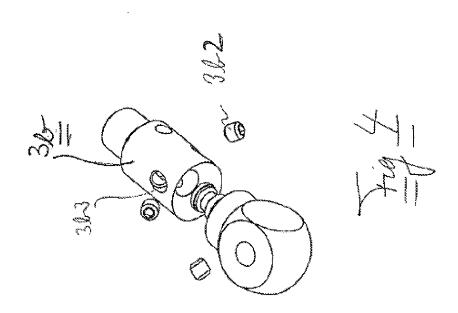
5

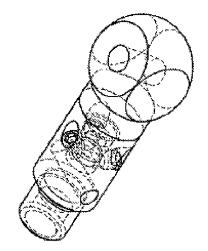
10


15


20

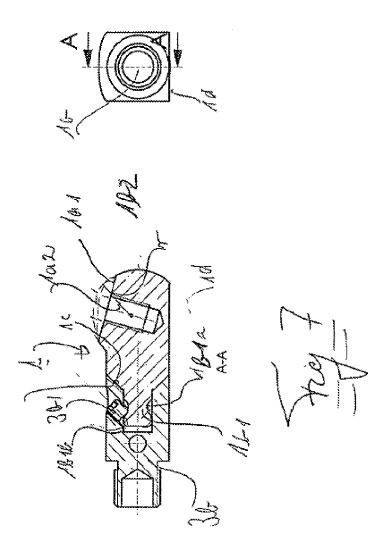

25

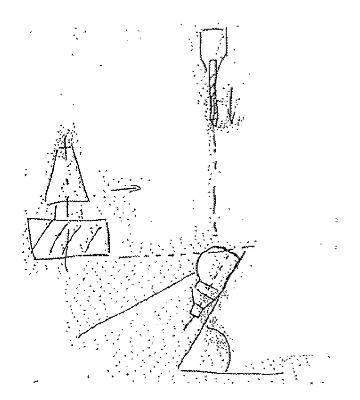

- 4. Mellemelement (1), som er udformet til at blive placeret følerstiftbærer (3)рå mellem armen koordinatmålemaskine og en mod følerstiftbæreren (3) skråt, nemlig i en reproducerbar drejelig justering og endvidere (2), hældende, justeret følerstift mellemelementet er dannet med et grundlegeme i ét stykke med en følerstiftende (1a) og en maskinende (1b), idet maskinenden (1b) har et tilkoblingselement (1), som er udformet til at koble et modstykke til koordinatmålemaskinen, og akse (1b2), omkring hvilken mellemelementet (1) i forhold til følerstiftbæreren (3) på koordinatmålemaskinen er drejeligt idet maskinenden (1b) oq er forsynet drejeligt justeringsmiddel, som er udformet til at sikre en reproducerbar drejelig justering af mellemelementet (1) mod følerstiftbæreren (3), følerstiftenden (1a) har en anlægsflade som hældende permanent mod aksen (1b2)tilkoblingselementet er placeret рå en kuglesegmentform, som dog flader ud ved hjælp af den plane anlægsflade (1a1), og idet anlægsfladen (1a1) er forsynet med et sikkert mekanisk og/eller friktionsindgrebsmiddel, som er udformet til at gå i et sikkert eller friktionsindgreb med en fastgøringsende på følerstiften, der skal placeres рå anlægsfladen (1a1) i anlægget.
- 30 5. Mellemelement (1) ifølge det foregående krav, kendetegnet ved, at tilkoblingselementet (1b1) er et drejeledselement.
- 6. Mellemelement (1) ifølge det foregående krav, kendetegnet ved, at midlet til at sikre en reproducerbar drejelig justering har en pardel af et ikke-rotationssymmetrisk mekanisk indgrebspar, som virker sammen med en komplementær pardel på maskinen.


- 7. Mellemelement (1) ifølge et af kravene 4 til 6, kendetegnet ved, at den hældende anlægsflade (1a1) er affræset fra grundlegemet.
- 5 8. Mellemelement (1) ifølge et af kravene 5 til 6, kendetegnet ved, at drejeledselementet er udformet som tap, der er udformet til optag i et tapleje, fortrinsvis som en tap (1b), der kan klæbes ind i et taphulsoptag.
- 9. Mellemelement (1) ifølge et af kravene 5 til 6 eller 8, kendetegnet ved, at drejeledselementet er udformet som tap, som er udformet til optag i et tapleje, og tappen (1b) har en fordybning, fortrinsvis en rille, hvormed mellemelementet (1) ved hjælp af et fikseringsmiddel (3b1) kan trykkes mod en anlægsflade (1a1).
- ifølge et 10. Mellemelement (1) af kravene til 9, kendetegnet ved, at det sikre mekaniske eller friktionsindgrebsmiddel er udformet som gevindhul, følerstiften kan skrues ind i, idet gevindhullet fortrinsvis 20 er boret lodret på anlægsfladen (1a1).



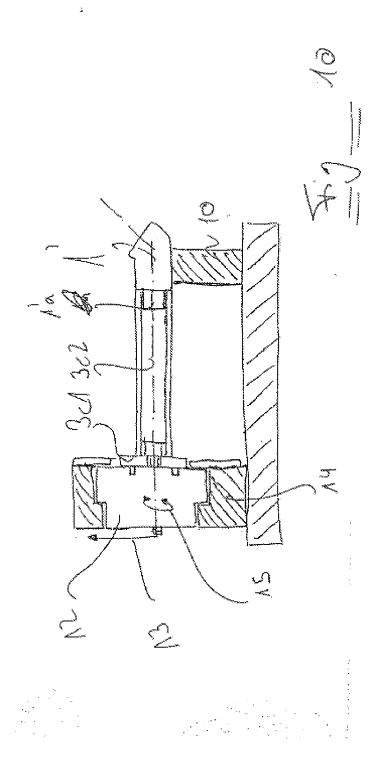


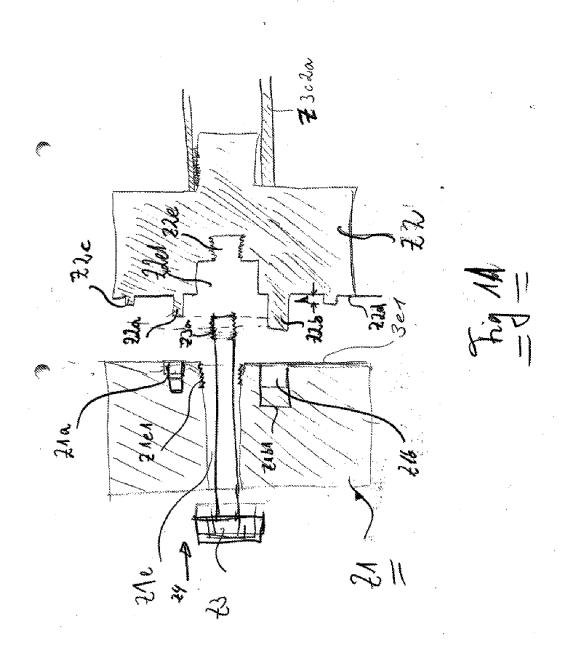



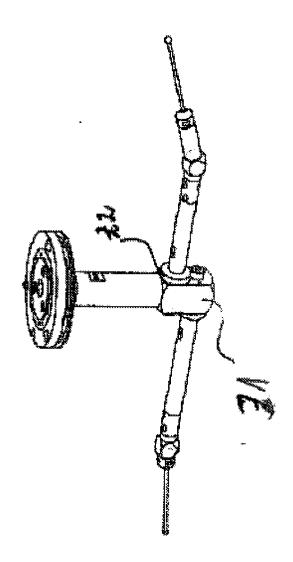



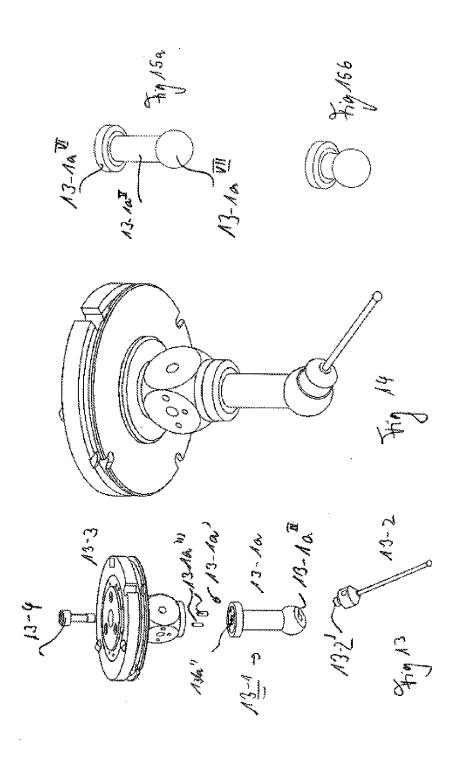



is in





F19. 8

