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(57) Abstract: The disclosure relates to technology for generating a compressed neural network weight tensor. A weight tensor is
received from a neural network to be compressed, and it is reordered to be compressed to have an inner two-dimensional (2D) shape
and a 2D sparse bitmap. A layered structure is generated that represents the reordered weight tensor, and the reordered weight tensor is
divided into a group of coefficients (GOCs). An encoding mode is selected to generate a quantized reordered weight tensor using one of
a codebook or direct quantization, and a column swapped quantized reordered weigh tensor is generated. A compressed neural network
is formed by encoding and the compressed representation of the neural network is transmitted to a target system for decompression.
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GENERATING A COMPRESSED REPRESENTATION OF A NEURAL NETWORK
WITH PROFICIENT INFERENCE SPEED AND POWER CONSUMPTION

CLAIM FOR PRIORITY

[0001] This application claims the benefit of priority to U.S. Provisional App.
Serial No. 62/697,251, filed July 12, 2018, the contents of which are hereby
incorporate in its entirety.

FIELD

[0002] The disclosure generally relates to generation of a compressed neural
network (NN), and in particular, to a compressed NN with increased inference speed

and lower power consumption.

BACKGROUND

[0003] Machine learning describes a wide range of algorithms by which a
computer can learn to solve a problem without being explicitly programmed. One class
of machine learning algorithm is artificial neural networks. An artificial neural network
comprises a set of interconnected nodes. One or more input nodes receive external
input data. The input nodes apply an activation function to the input and may output
the result to one or more other nodes (referred to as “hidden nodes”). The hidden
nodes receive input from one or more previous nodes (i.e., the input nodes or another
hidden node), applying different weighting factors to each input. The hidden nodes
then apply an activation function in much the same way as the input nodes. The output
is then passed on to additional nodes, which process it as input. This process
continues until the original input has propagated through the artificial neural network
and reaches one or more output nodes. An output node applies an activation function
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in the same manner as other nodes, but rather than passing its output to another node,

it outputs a result.

[0004] A common approach in building neural networks is to train them using
a training data set before using them to solve real problems. In the training phase,
input data for which the correct answer is already known is provided to the neural
network, and the resulting output is used to train the network by adjusting the input
weightings for one or more nodes. Many trained neural networks employ tens or
hundreds of millions of parameters to achieve good performance. Storing neural
networks that employ a large number of parameters takes significant amount of
storage space. Neural networks may be used on devices with limited storage space,
for example, mobile devices. Furthermore, these neural networks may have to be
transmitted via computer networks from one system to another. Transmitting such
large neural networks via computer networks from one system to another can be a
slow and inefficient process. Often times, in order to limit the size of the neural network
for storage or transmission, the neural network may be compressed for storage and
transmission, and decompressed by the computing device using the neural network.

BRIEF SUMMARY

[0005] According to one aspect of the present disclosure, there is provided a
computer-implemented method of generating a compressed neural network weight
tensor, comprising receiving a weight tensor from a neural network to be compressed;
reordering the weight tensor of the neural network to be compressed to have an inner
two-dimensional (2D) shape of a 2D sparse bitmap; generating a layered structure
comprising one or more layers to represent the reordered weight tensor; dividing the
reordered weight tensor into one or more group of coefficients (GOCs); selecting an
encoding mode to generate a quantized reordered weight tensor using one of a
codebook or direct quantization by computing an encoding rate distortion
measurement; generating a column swapped quantized reordered weight tensor by
swapping columns of the quantized reordered weight tensor according to a plurality of
column swapping indexes of the 2D sparse bitmap; encoding at least one of the
column swapped quantized reordered weight tensor, the 2D sparse bitmap according
to the layered structure, the codebook including a plurality of centroids, or the plurality
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of column swapping indexes to form a representation of the compressed neural
network; and transmitting the compressed representation of the neural network to a

target system.

[0006] Optionally, in any of the preceding aspects, the method further
comprises generating the codebook of the plurality of centroids in response to the
encoding mode selected to generate a quantized reordered weight tensor; and
generating the quantized reordered weight tensor using the codebook of the plurality
of centroids to represent the GOC by mapping the weight coefficients in the GOC to a

corresponding one of the plurality of centroids.

[0007] Optionally, in any of the preceding aspects, the method further
comprises generating the quantized reordered weight tensor using direct quantization.

[0008] Optionally, in any of the preceding aspects, the 2D sparse bitmap is
determined by matching an underlying matrix multiplication General Block Panel

Multiplication (GEBP) left-hand-side (Ihs) matrix blocking structure.

[0009] Optionally, in any of the preceding aspects, the layered structure
matches one of the underlying GEBP Ihs matrix blocking structure, a quad-tree block
structure, or is defined to efficiently represent the 2D sparse bitmap.

[0010] Optionally, in any of the preceding aspects, the encoding of the 2D
sparse bitmap comprises: a depth-wise binary tree scanning order when there are
more than one layer in the layered structure, and one of a row-wise raster order, a
column-wise raster order, a zigzag order, an order that follows the General Panel
Panel Multiplication (GEPP)/ General Block Panel Multiplication (GEBP) or a General
Panel Matrix Multiplication (GEPM)/GEBP matrix blocking structure when there is one
layer in the layered structure.

[0011] Optionally, in any of the preceding aspects, the GOC is an arbitrarily
predefined size or matches the sparse bitmap blocking structure when the reordered
weight tensor is divided into multiple GOCs; and the GOC is the size of the reordered
weight tensor when there is a single GOC for the reordered weight tensor.

[0012] Optionally, in any of the preceding aspects, the codebook of the

plurality of centroids is determined by a clustering algorithm.



WO 2020/014590 PCT/US2019/041566

[0013] Optionally, in any of the preceding aspects, the mapping of the weight
coefficients in the GOC further comprises: assigning each weight coefficient to a
corresponding one of the plurality of centroids based on a distance between the each
weight coefficient and the corresponding centroid; or determining whether the weight
coefficient is an escape coefficient, and assigning each of the weight coefficients to a
corresponding one of the plurality of centroids based on a distance between the weight
coefficient and the corresponding one of the plurality of centroids when the weight
coefficient is not an escape coefficient, and assigning the weight coefficient a special

value when the weight coefficient is an escape coefficient.

[0014] Optionally, in any of the preceding aspects, the special value is the
number of centroids in the codebook.

[0015] Optionally, in any of the preceding aspects, the generation of the
codebook, further comprising: defining a maximum allowable size for a palette
predictor having a plurality of centroids; initializing the codebook of the plurality of
centroids using the weight coefficients from one of the one or more GOCs; comparing
the codebook of the plurality of centroids with the palette predictor; replacing the
plurality of centroids in the codebook with the plurality of centroids in the palette
predictor based on a rate distortion selection; and iteratively updating the palette
predictor with the plurality of centroids in the codebook after encoding each of the one

or more GOCs.

[0016] Optionally, in any of the preceding aspects, the encoding rate distortion
measurement is set to optimize compression quality, inference speed and power

consumption.

[0017] According to still one other aspect of the present disclosure, there is a
non-transitory computer-readable medium storing computer instructions for
generating a compressed neural network weight tensor, that when executed by one or
more processors, cause the one or more processors to perform the steps of: receiving
a weight tensor from a neural network to be compressed; reordering the weight tensor
of the neural network to be compressed to have an inner two-dimensional (2D) shape
of a 2D sparse bitmap; generating a layered structure comprising one or more layers
to represent the reordered weight tensor; dividing the reordered weight tensor into one
or more group of coefficients (GOCs); selecting an encoding mode to generate a
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quantized reordered weight tensor using one of a codebook or direct quantization by
computing an encoding rate distortion measurement; generating a column swapped
quantized reordered weight tensor by swapping columns of the quantized reordered
weight tensor according to a plurality of column swapping indexes of the 2D sparse
bitmap; encoding at least one of the column swapped quantized reordered weight
tensor, the 2D sparse bitmap according to the layered structure, the codebook
including a plurality of centroids, or the plurality of column swapping indexes to form a
representation of the compressed neural network; and transmitting the compressed

representation of the neural network to a target system.

[0018] This Summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the claimed
subject matter, nor is it intended to be used as an aid in determining the scope of the
claimed subject matter. The claimed subject matter is not limited to implementations
that solve any or all disadvantages noted in the Background.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] Aspects of the present disclosure are illustrated by way of example and
are not limited by the accompanying figures for which like references indicate

elements.

[0020] FIG. 1 illustrates an example system in which a deep neural network

(DNN) training system can operate.

[0021] FIG. 2 illustrates an example system for implementing a training engine
to train a DNN.

[0022] FIG. 3 illustrates an example convolutional operation in accordance

with conventional techniques.

[0023] FIG. 4 illustrates another example convolutional operation in

accordance with conventional techniques.

[0024] FIG. 5 illustrates an example memory hierarchy when performing a

GEBP operation or GEPP operation.
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[0025] FIGS. 6A — 6D illustrate examples of different sparse structures in
CNNs.
[0026] FIGS. 7A and 7B respectively illustrate GEPP/GEBP and a

GEPM/GEBP sparse bitmap layouts of a kernel tensor.

[0027] FIG. 7C illustrates a sparse bitmap layout of an input feature map.
[0028] FIGS. 8A — 8C illustrate examples of a layered sparse bitmap.

[0029] FIG. 9 illustrates an example neural network training apparatus.
[0030] FIG. 10 illustrates an example of a neural network inference apparatus.
[0031] FIG. 11 illustrates an example apparatus for decoding a compressed

input feature map.

[0032] FIG.12 illustrates an embodiment of a router in accordance with

embodiments of the disclosure.

[0033] FIG. 13 illustrates a computing system upon embodiments of the

disclosure may be implemented.

DETAILED DESCRIPTION

[0034] The present disclosure will now be described with reference to the
figures.
[0035] The technology relates to generation of a compressed neural network

(NN), and in particular, to a compressed NN weight tensor with increased inference

speed and lower power consumption.

[0036] A weight tensor is received from a neural network to be compressed,
where a weight tensor refers to, for example, a four-dimensional (4D) data container
and each element in the data container is a floating number. The weight tensor is
reordered to be compressed and to have an inner two-dimensional (2D) shape and a
2D sparse bitmap. A layered structure is generated that represents the reordered
weight tensor, and the reordered weight tensor is divided into a group of coefficients
(GOCs). An encoding mode is selected to generate a quantized reordered weight
tensor using one of a codebook or direct quantization, and a column swapped



WO 2020/014590 PCT/US2019/041566

quantized reordered weigh tensor is generated by swapping columns of the quantized
reordered weight tensor. A compressed neural network is formed by encoding the
data and the compressed representation of the neural network is transmitted to a
target system for decompression and use.

[0037] It is understood that the present embodiments of the disclosure may
be implemented in many different forms and that claim scope should not be construed
as being limited to the embodiments set forth herein. Rather, these embodiments are
provided so that this disclosure will be thorough and complete and will fully convey the
inventive embodiment concepts to those skilled in the art. Indeed, the disclosure is
intended to cover alternatives, modifications and equivalents of these embodiments,
which are included within the scope and spirit of the disclosure as defined by the
appended claims. Furthermore, in the following detailed description of the present
embodiments of the disclosure, numerous specific details are set forth in order to
provide a thorough understanding. However, it will be clear to those of ordinary skill
in the art that the present embodiments of the disclosure may be practiced without
such specific details.

[0038] Artificial neural networks have become an important tool for extraction
of descriptors from multimedia content, classification, encoding of multimedia content
and other applications. An example is provided by the video descriptors defined in
ISO/IEC 15938-15. The efficient transmission and deployment of neural networks for
multimedia applications require methods to compress these large data structures. This
new part 17 of ISO/IEC 15938 defines tools for compression of neural networks for
multimedia applications and representing the resulting bit-streams for efficient
transport.

[0039] According to “Use cases and requirements for compressed
representation of neural networks,” ISO/IEC JTC1/SC29/WG11/N17924, October
2018, artificial neural networks have been adopted for a broad range of tasks in
multimedia analysis and processing, media coding, data analytics and many other
fields. While the underlying technology has been known for decades, the recent
success is based on two main factors: (1) the ability to process much larger and
complex neural networks (e.g., deep neural networks (DNNs)) than in the past, and
(2) the availability and capacity of large-scale training data sets. These two aspects
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not only make trained networks powerful, but also mean that they contain a large
number of parameters (weights), resulting in quite large sizes of the trained neural
networks (e.g., several hundred MBs).

[0040] The neural networks used in an application can be improved
incrementally (e.g., training on more data, including feedback from validation of
results), so that updates of already deployed networks may be necessary. In addition,
the neural networks for many applications (e.g., classification) start from neural
network that has been pre-trained on a general dataset, and then adapted and
retrained for the specific problem. Thus, different applications may use neural
networks that share large parts among them.

[0041] In conventional application of neural network compression, it has been
shown that significant compression is feasible, with no or only small impact on the
performance of the neural network in a particular use case. As the description of the
network topology is rather small compared to the parameters/weights, compression
technology will in particular address compression of weights, e.g., by reducing their

number, quantizing them, representing them more compactly etc.

[0042] Any use case, in which a trained neural network (and its updates)
needs to be deployed to a number of devices, which potentially run on different
platforms or in applications of different manufacturers, could benefit from a
compressed representation of neural networks. Compression will enable an
application to have smaller representations of neural networks sent across network
connections, and potentially also neural networks having a smaller memory footprint
during inference. While exchange formats for neural networks exist (e.g., ONNX,
NNEF), they do not yet address compression and incremental updates. What is
currently missing is a representation of the compressed parameters/weights of a
trained network, complementing the description of the network structure/architecture

in existing (exchange) formats for neural networks.

[0043] Some of the use cases or applications for compressed neural
networks, as defined ISO/IEC JTC1/SC29/WG11/N17924, include but are not limited
to, a camera application with object recognition, a translation application, large-scale
public surveillance, visual pattern recognition (VPR), NN representation for devices

with limited memory and bandwidth, efficient re-use of neural networks among
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different media applications, electronic health record and genomic data, dynamic
adaptive media streaming, audio classification / acoustic scene classification, audio
classification / sound event detection, personalized machine reading comprehension
(MRC) application, a machine translation application, distributed training and
evaluation of neural networks for media content analysis, compact descriptors for
video analysis (CDVA), image/video compression, distribution of neural networks for
content processing, etc.

[0044] FIG. 1 illustrates an example system in which a deep neural network
(DNN) training system can operate. The system 100 includes one or more computing
devices 102(1) — 102(N), including servers 104(1) — 014(N), that may communicate
with one another via one or more networks 106. Networks 106 may be wired or
wireless and include public networks or private networks including, but not limited to
local area networks (LAN), wide area networks (WANs), satellite networks, cable
networks, WiMaX networks, and communication networks, such as LTE and 5G
networks. Networks 106 may also include any number of different devices that
facilitate network communications, such as switches, routers, gateways, access

points, firewalls, base stations, repeaters, backbone devices, etc.

[0045] Computing device(s) 102(1) — 102(N) may include, but are not limited
to, any number of various devices, such as client or server based devices, desktop
computers, mobile devices, special purposes devices, wearable devices, laptops,
tablets, cell phones, automotive devices, servers, telecommunication devices,
network enabled televisions, games consoles or devices, cameras, set top boxes,
personal data assistants (PDAs) or any other computing device configured to use a
DNN training or operation as described herein. In one embodiment, computing
devices 104(1) — 104(N) may include one or more processor(s) 110 connected to one
or more computer readable media 112. The processor(s) may operate to execute
computer readable and executable instructions stored on the computer readable
media 112, which may be for example, an operating system (O/S) 112A, a DNN
training engine 112B, and DNN operation engine 112C, and other programs or

applications executable by processor(s) 110.

[0046] Processor(s) 110 may include, but is not limited to, one or more single-
core processors, multi-core processors, central processing units (CPUs), graphics
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processing units (GPUs), general purpose graphics processing units (GPGPUSs) or
hardware logic components, such as accelerators and field-programmable gate arrays
(FPGAs), application-specific integrated circuits (ASICs), system-on-a-chip (SoCs),
complex programmable logic devices (CPLDs) and digital signal processors (DSPs).

[0047] Computer readable media 112 (or memory) may include computer
storage media and/or communication media, which may comprise tangible storage
units such as volatile memory, non-volatile memory or other persistent or auxiliary
computer storage media, removable and non-removable computer storage media
implemented in any method or technology for storage of information such as computer
readable instructions, data structures or other data. Computer readable media 112
may include tangible or physical forms of media found in device or hardware
components, including but not limited to, random access memory (RAM), static RAM,
dynamic RAM, read only memory (ROM), erasable programmable ROM (EPROM),
electrically erasable programmable ROM (EEPROM), flash memory, optical storage,
magnetic storage, storage arrays, network storage, storage area networks or any other
medium that may be used to store and maintain information for access by a computing
device, such as computer devices 102(1) — 102(N) and 104(1) — 104(N). In some
embodiments, computer readable media 112 can store instructions executable by the
processor(s) 110, which processor(s) 110 may be included in one or more of the
computer devices 102(1) — 102(N) and 104(1) — 104(N). In still other embodiments,
the computer readable media 112 may store an operating system which includes
components to enable or direct the computing devices 102(1) — 102(N) and 104(1) —
104(N) to receive data via various input (e.g., memory devices, user controls, network
interfaces, etc.) and process the data using processor(s) 110 to generate output (e.g.,
and image for display, data for storing in memory, etc.) and which may enable a user

to interact with various units of the training engine 112B.

[0048] In the disclosed embodiment, the computer-readable media 112
includes O/S 112A, a DNN training engine 112B and a DNN operation engine 112C.
The O/S 112A may include software that allows applications to execute on the
computing devices 102(1) — 102(N) and 104(1) — 104(N) and manages hardware
resources, including input devices (e.g., keyboard and mouse), output devices (e.g.,
displays and printers), network devices (e.g., routers, network connections, etc.) and
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storage device (e.g., internal and external drives). Additionally, the O/S 112A may
provide services to facilitate the efficient execution and management of, and memory

allocations for, additionally installed software applications.

[0049] DNN training engine 112B may be implemented by the computing
devices 102(1) — 102(N) and 104(1) — 104(N) to train a neural network model, such as
DNN 113B. In one embodiment, the DNN training engine 112B includes an algorithm
or software 120 (executable by the processor(s)) to train one or more DNNs 113B.
Training a DNN 113B may be performed by multiple nodes (e.g., computing devices)
in parallel to reduce training time. Accordingly, the DNN training engine 112B (and/or
O/S 112A and DNN operation engine 112C) may execute on one or more of the
computing devices 102(1) — 102(N) and 104(1) — 104(N). The DNN training engine
112B will be described in more detail below with reference to FIG. 2. Once a DNN
has been trained, operation of the trained DNN may then be implemented by a data

analysis engine, such as DNN operation engine 112C, described below.

[0050] Computing device 102(1) — 102(N) and 104(1) — 104(N) can also
include one or more communications interfaces 114 to enable wired or wireless
communications between the computing device 102(1) — 102(N) and 104(1) — 104(N)
involved in DNN training. Communications interface(s) 114 may include one or more
transceiver devices, for example, network interface controllers (NICs) such as
Ethernet NICs, to send and receive communications over a network, such as network
101. In one embodiment, the processor(s) 110 may exchange data through the
communications interface 114. For example, the communications interface 114 may
be a Peripheral Component Interconnect express (PCle) transceiver. Other examples
include the communications interface 114 being a transceiver for cellular, Wi-Fi, Ultra-
wideband (UWB), BLUETOOTH or satellite transmissions. The communications
interface 122 can include a wired I/O interface, such as an Ethernet interface, a serial
interface, a Universal Serial Bus (USB) interface, an INFINIBAND interface other wired

interfaces.

[0051] FIG. 2 illustrates an example system for implementing a training engine
to train a DNN. The system 200 uses an algorithm, such as algorithm 204, to train
one or more DNNs, and implements a data analysis engine, such as DNN operation
engine 112C in which to operate the trained DNN 206. The training engine 112B and
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DNN operation engine 112C may be implemented using one or more computing
devices, such as computing device 104(N). In one embodiment, the DNN training
engine 112B and DNN operation engine may be implemented by the same computing
device. In another embodiment, the DNN training engine 112B and DNN operation
engine may be implemented by different computing devices. The computing device
104(N), as noted above, may include one or more processor(s) 110, which may
exchange data through a bus or a network (not shown) as well as execute instructions
of the DNN training engine 112B and the training data 203.

[0052] DNN training can be performed by multiple nodes (e.g. computing
devices) in a parallel manner to reduce the time required for training. In one
embodiment, the DNN training engine 112B uses an algorithm 204 to train the DNN
202 to perform data analysis. In the example as illustrated, the DNN 202 is a multi-
layer perceptron (MLP) or artificial neural network (ANN). Accordingly, the DNN 202
may include an input layer 202(N) and an output layer 202(1), and one or more hidden
layers (layers in between the input and output layers). The training data 203 may be
used by the algorithm 204 to train the DNN 202. In one embodiment, the training data
203 may include a collection of audio data that includes speech samples. For example,
the audio data may include speech samples collected from speakers in North America
or other languages, such as Chinese, Japanese or French. Still other kinds of training
data may be collected for different applications such as handwriting recognition or

image classification.

[0053] In one embodiment, computations performed by the algorithm 204 may
be parallelized across processor(s) 110 and across different computing devices
104(N). For example, during back-propagation, a computation on input data 208
performed by a first processor 110 may produce a first computation result. The first
computation result may be pipelined to a second processor 110 for further computation
to generate a second computation result. Concurrent with the generation of the
second computation result, the first processor 110 may be processing additional input
data 208 to generate a third computation result. Similarly, concurrent with the
generation of the second computation result, the first processor 110 may be
transferring at least part of the first computation result to another processor 110. Such
concurrent computations by the processors 110 may result in a pipelining of
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computations that train the DNN 204. Accordingly, computation time may be reduced
due to the resulting parallelism of computation.

[0054] By using the algorithm 204 together with the training data 203, the DNN
training engine 12B may produce trained DNN 206 from the DNN 202. DNN operation
engine 112C may then use the trained DNN 206 to produce output data 210 from the
input data 208. For example, the DNN operation engine 112C may perform pattern
recognition and data analysis, such as speech recognition, speech synthesis,
regression analysis or other data fitting, image classification, or face recognition (e.g.,
face recognition for determining driver distraction or images of a face in photos). In
one specific example, a speech-to-text engine uses the trained DNN in the form of
trained context-dependent DNN- Hidden Markov Models (HMMs). The speech-to-text
engine may use the trained context-dependent DNN-HMMs to produce output data in
the form of output text from input data in the form of input speech. In various
embodiments, the operation engine 112C may receive input data from a microphone
and audio processing components (e.g., a smartphone) or from a media file or stream,
for example, for audio-indexing of the spoken content in the media file/stream. The
DNN operation engine 112C may also be a text-to-speech engine that uses the trained
context-dependent DNNs to synthesize output speech (output data) based on input
text (input data), or a handwriting-recognition engine. Similarly, the DNN operation
engine 112C may receive image data from a camera or image processing components
or a media file or stream. The input data may use a trained DNN 206 to recognize the

output images (output data) 210 based on input images (input data) 208.

[0055] In one further embodiment, the computing device 104(N) may include
a data store (not shown) that has data storage, such as a database or data warehouse.
In one embodiment, data store includes a relational database with one or more tables,
arrays, indices, stored procedures and the like which enable data access including
one or more of hypertext markup language (HTML) tables, resource description
framework (RDF) tables, web ontology language (OWL) tables, extensible markup
language (XML) tables, etc. Data stored in data store may include, but is not limited
to, data for the operations of processes, applications, components or modules stored
in computer-readable media 112 or executed by processor(s) 110. In one
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embodiment, the data store stores training data 203, a DNN 202 or other mathematical
model, a trained DNN 206 or any combination thereof.

[0056] Additional DNNs and convolutional neural networks (CNNs) are
described below with reference to the various figures.

[0057] FIG. 3 illustrates an example convolutional operation in accordance
with conventional techniques. Deep CNNs have been successful at reducing storage
and computational costs of large neural networks. As the number of layers and nodes
in these networks increases, and devices (e.g., mobile devices) implementing these
networks increasing have limited memory and computational resources, there exists
a need to continually reduce storage and computational costs. Many conventional
techniques exist to implement a convolutional operation—Caffe uses direct
convolution using im2col (a method of rearranging image blocks into columns), Caffe2
uses Fast Fourier Transform (FFT) based convolution, and Tensorflow uses Winograd
based convolution. In the examples that follow, and for purposes of discussion, if an
input feature map is DERCHW and a convolution filter is FERKCRS, the output feature
map is represented by OeRKPQ where P = f (H, R, u, pad_h) and Q = f (W, S, v,
pad_w). That is, the height and width of the output feature map depend on the height
and width of the input feature map and filter, as well as the choice of padding and
striding. The variables are defined in Table I.

C Number of input feature maps

H Height of input image

w Width of input image

K Number of output feature
maps

R Height of filter kernel

S Width of filter kernel

u Vertical stride

v Horizontal stride
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pad_h Height of zero-padding

pad_w Width of zero-padding

Table |

[0058] In the example embodiment, a direct convolution using im2col is
illustrated. Filter (F) 302 is reshaped to a two-dimensional (2D) matrix F[K, CxRxS]
304, and the input feature map (D) 306 is reshaped to 2D matrix D[CxRxS, HxW] 308
after applying im2col([R, S]) to each pixel in the input feature map. The resulting output

feature map 310 is O=F-D ("’ indicates matrix multiplication).

[0059] FIG. 4 illustrates another example convolutional operation in
accordance with conventional techniques. The convolutional operation illustrated is a
direct convolution using im2col, axis reorder. Filter (F) 402 may also be reshaped and
reordered to form a [1, RxS] matrix 404, where each element of the matrix Fn is a [K,
C] sub-matrix. The input feature map (D) 406 can be reshaped and reordered to form
a [RxS, 1] matrix 408, where each element of the matrix Dn is a [C, HXW] sub-matrix.

The output feature map 410 may then be generated as O= Y rxsFn-Dn.

[0060] An advantage to FFT based convolution is that it provides a great
speed-up for large kernels by transforming the input feature and kernel in a Fourier
domain and multiplies them together to generate transformed output feature. A
reverse transfer is then performed to generate the output feature in a pixel domain.
However, as most CNNs adopt deep layers with a small kernel (such as 3x3),
Winograd based convolution outperforms FFT based convolution under these

circumstances.

[0061] Applying the Winograd method, the output feature matrix is calculated

using formula (‘©’ indicates element-wise matrix multiplication):
o=a”[ (b-f-b7)O(c”-d-c)]-a

[0062] For the output feature matrix o[2, 2] and kernel 3, 3] configuration, the
input feature matrix dis a 4x4 matrix. Therefore, matrices a, b and c are:

1 0 0 1 0 -1 0
aT=[1 1 1 0] b |12 172172 Jqo 110
01 -1 -1l 1/2 -1/2 172’ 0 -1 1 0

o o0 1 01 0 -1
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[0063] A vec operator is then defined to create a column vector from matrix A
by stacking the column vectors of A = [a1 a2... an] below one another. For matrix
multiplication of Y=M-X-N, a Kronecker product may be applied so that Yvec =
(NT®M)- Xvec (Where ‘®’ indicates the Kronecker product of two matrixes). Given that
the number of input feature maps is C, one output feature is calculated by summing
all of the convolution result between the input features and its responding kernels. The

Winograd formula can be implemented according to the following procedure:

1. Fw_vec = reshaping along outer axis of (B-Fvec) to form a [N] elements

vector, each vector element Fw_vec[n] is a [K, C] matrix.

2. Dw_vec = reshaping along outer axis of (C-Dvec) to form a [N] elements

vector, each vector element Dw_vec[n] is a [C, number_input_tile] matrix.

3. Ow_vec = Fw vec O Dw_vec (O indicates element-wise multiplication of
vector Fw vec and Dw vec, While matrix multiplication is performed for
each element pair since they are 2D matrixes, Ow_vec is a [N] elements

vector, each vector element Ow_vec[n] is a [K, number_input_tile] matrix.
4. Ovec = A'Ow_vec.

5. Generate final output feature map O by reshaping Ovec to its proper

output layout.

[0064] The Winograd configuration of the output feature matrix o[2, 2] and
kernel A3, 3] is used in a Tensorflow convolution layer implementation. The definition
and dimension of each tensor in the Tensorflow implementation are listed in Table |
below. Under this configuration, the dimension of Fw_vec is [16, [K, C]], the dimension
of Dw vec is [16, [C, number_input_tile]], and the dimension of Ow vec is [16, [K,

number_input_tile]].

B= b&ob filter transform matrix [16, 9]

C=c’®c” |input data transform | [16, 16]

matrix
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A= a’&a’ | output transform matrix | [4, 16]
Fvec vectorized filter tile [9, [K, C]]
Fw_vec Fvec in Winograd domain | [16, [K, C]]
Dvec vectorized input tile [16, [C, number_input_tile]]
Dw_vec Dvec in Winograd domain | [16, [C, number_input_tile]]
Ow_vec Ovec in Winograd domain | [16, [K, number_input_tile]]
Ovec vectorized output tile [4, [K, number_input_tile]]
O reshaped output tile [2, 2, K, number_input_tile]
Table Il
[0065] For the Winograd configuration of output feature matrix o2, 2] and

kernel f3, 3], matrices A, B and C are:

11 1 0 11 1 0 1 1 1 0 0 0 0 O
All01 -1 -1 01 -1-10 1 -1 -1 0 0 0 0
o0 0 0 11 1 0 -1 -1 -1 0 -1 -1 -1 0
o0 0 0 01 -1 -1 0 -1 1 1 0 -1 1 1

10 0 0 0 0 0 0 0 -

1/2 1/2 1/2 0 0 0 0 0 0

1/2 -1/2 1/2 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1/2 0 0 1/2 0 0 1/2 0 0

1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4

1/4 —-1/4 1/4 1/4 -1/4 1/4 1/4 -1/4 1/4

| 0 0 12 0 o 1/2 0 0 1/2

1/2 0 0 -1/2 0 0 1/2 0 0

1/4 1/4 1/4 —-1/4 —-1/4 —-1/4 1/4 1/4 1/4
1/4 —-1/4 1/4 —-1/4 1/4 -1/4 1/4 -1/4 1/4
o 0 1/2 0 0 -1/2 0 0 1/2

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1/2 1/2 1/2
0 0 0 0 0 0 1/2 -1/2 1/2
0 0 0 0 0 0 0 0 1|
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1 0 -1 0 0O O 0 0 -1 0 1 0 0 0 0 O
o 1. 1.0 0 0 O O O -1 -1 0 0 0 0 O
0o -1.1. 0 0 0 O O O 1 -1 0 O O 0 O
o 1. 0 -1 0 0 0O O O -1 0 1 0 0 0 O
o o 0o 0 1 0 -1 0 1 O -1 0 O O 0 O
o o 0o 0o o0 1 1 O O 1 1 0 O 0 0 O
o 0o 0 0 0O -1 1 0O O -1 1 0 0 0 0 O
cl0o o0 o o 1 o0 -1 0 1 0 -1 0 0 0 0
o 0o 0 0 -1 0 1 O 1 0 -1 0 O 0 0 O
o 0o 0 0 0 -1 -1 0 O 1 1 0 0 0 0 O
o o 0o 0o O 1 -1 0 O -1 1 0 0 0 0 O
o 0o 0 0 0 -1 0 1 O 1 0 -1 0 0 0 O
o 0o 0 0 1 0 -1 0 O O O O -1 0 1 O
o 0o 0 0 o0 1 1 O O O 0O O 0 -1 —-10
L0 o o0 o0 0 -1 1 0 0 O O O 0 1 -10
o o o 0 o0 1 O -1 0 O O O O -1 0 1
[0066] As appreciated from the description above, corresponding to FIGS. 3

and 4, the direct convolution method using im2col is a matrix multiplication of 2D matrix
[K, C] and [C, HXW], and the Winograd based convolution method is similarly a matrix
multiplication of 2D matrix [K, C] and [C, number_input_tile]. Accordingly, it follows that
high efficiency matrix multiplication General Block Panel Multiplication (GEBP) is a

primary feature of convolution implementation.

[0067] FIG. 5 illustrates an example memory hierarchy when performing a
GEBP operation (or General Panel Panel Multiplication (GEPP) operation). Taking an
example, and for purposes of discussion, where C+=A-B, and A, B and C are [(m x k),
(k x n)], and [m x n] respectively, A, B and C are split into sub-blocks such that the
multiplication operation can take full advantage of underlying hardware memory,
cache, register and arithmetic logic unit (ALU) resources. The sub-blocks A, B and C
are illustrated from left to right in the diagram. As shown, A[m, p] is partitioned to
column panels Amain[m, Kc]; Amain[m, kc] is partitioned to row panels ALz[mc, Kkc;
ALz[mc, kc] is partitioned to row panels Aiamr, kc]; Ax[mr, kc] is partitioned to
columns panel Areg[mr, 1]; B[p, n] is partitioned to column panels Bmain[p, NC]; Bmain[p,
nc] is partitioned to row panels Bis[ke, nc]; Biglke, nc] is partitioned to column panels
BLi[ke, nr]; Bri[ke, nr] is partitioned to row panels Breg[1, nr]; Inner kernel brings the
next Arelmc, kc] to L2 cache, Bislke, nc] to L3 cache, and Bui[kc, nr] from L3 to L1
cache. It also brings the next Areg[mr, 1] and Breg[1, nr] to the register array; Inner

kernel calculates Creg[mr, nr] = Areg[mr, 1] - Breg[1, nr] in the register domain; and the
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inner kernel calculation is repeated, followed by repeating Inner kernel brings next
ALz[mc, kc] to L2 cache, Brs[ke, nc] to L3 cache, and Bri[ke, nr] from L3 to L1 cache.
Areg[mr, 1] and Breg[1, nr] are then brought to the register array, until all blocks of matrix
multiplication are completed.

[0068] Although not illustrated, a conventional memory hierarchy when
performing General Panel Matrix Multiplication (GEPM) / General Block Panel
Multiplication (GEBP) operation is similar to the GEBP/GEPP operation. Using this
technique, A[m, p] is partitioned to row panels Amain[mc, p]; Amain[mc, p] is partitioned
to column panels Aiz[mc, kc]; Ae[me, kc] is partitioned to row panels Aiamr, kcj;
ALa[mr, kc] is partitioned to columns panel Areg[mr, 1]; B[p, n] is partitioned to column
panels Bmain[p, Nc]; Bmain[p, Nc] is partitioned to row panels Bis[ke, nc]; Bis[ke, nc] is
partitioned to column panels Bri[kc, nr]; Bri[ke, nr] is partitioned to row panels Breg[1,
nr]; Inner kernel brings next Aizlme, kc] to L2 cache, Biske, nc] to L3 cache, and
Bri[ke, nr] from L3 to L1 cache. Areg[mr, 1] and Breg[1, nr] are then brought to the
register array; Inner kernel calculates Creg[mr, nr] = Areg[mr, 1] - Breg[1, nr] in the register
domain; followed by repeating the Inner kernel brings next ALe[mc, kc] to L2 cache,
Bus[ke, nc] to L3 cache, and Bii[kc, nr] from L3 to L1 cache, until all blocks of matrix

multiplication are completed.

[0069] Based on the above description, matrix A is more efficient if stored in
a column-major order, or ALafmr, kc] is transposed to become a column-major order,

so that inner kernel can access ALzr in a continuous manner.

[0070] FIGS. 6A — 6D illustrate examples of different sparse structures in
CNNs. There are several methods to reduce the storage of large neural networks
having a larger amount of layers and nodes (e.g., computing devices). Such methods
include, but are not limited to, weight pruning so that a dense tensor can be
represented by sparse tensor, low-rank factorization so that a large tensor can be
represented by two small tensors, designing special structural convolution filters with
fewer weight parameters, and training a small neural network from a large neural

network.

[0071] Both weight pruning and low-rank factorization methods are able to
take a pre-trained model and perform a pruning or factorization process. The

parameters used in pruning or factorization can also be quantized to binary, ternary,
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4-bit, 8-bit, or X-bit value, or k-means scalar quantization can be applied to the
parameter values. For example, Tensorflow Lite utilizes an 8-bit quantization method
that takes a maximum and a minimum value from one layer and quantizes the

parameter using the quantization step (max-min)/256.

[0072] As illustrated, weight pruning structures may include fine-grained
sparsity (FIG. 6A), vector-level sparsity (FIG. 6B), kernel-level sparsity (FIG. 6C) and
filter-level sparsity (FIG. 6D). While, the fine-grained sparsity method offers a good
compression ratio, it does not increase inference speed due to the irregularity of the
fine-grained sparse. Similarly, the low-rank factorization method offers a good
compression ratio. However, it does not increase the inference speed due to the
dense property of the restored tensor. Since this method does not have prior
knowledge of the parameter values of the restored tensor before they are generated,
multiple multiplications are required, wasting processing time and power consumption.
Other methods, such as vector-level sparse method (which explores the sparse
structure within individual kernels by setting row/column of parameters to zero) and
the kernel-level and filter-level (which set the parameters in one kernel or one filter to
zero) bring slower performance speeds since most state-of-the-art CNNs adopt deep
layers with a small kernel (e.g., 3x3).

[0073] The disclosure that follows presents various embodiments to increase
neural network storage size, increase inference speed and address power
consumption issues. Such embodiments may be implemented, for example, in the
systems illustrated in FIGS. 1 and 2, as well as being deployed in desktop CPUs,
embedded CPUs and ASIC platforms (for example, without GPU). The embodiments
discussed below are well suited to work with existing methods, such as the direct
convolution method, Winograd based convolution method and low-rank factorization
method (discussed above).

[0074] For the direct convolution method, the convolution filter is reshaped
from FERKCRS to FERRSCK where each element of the [R, S] kernel tensor Frs & RCK
(column-major order or transpose of the Ihs matrix of GEBP operation) is a 2D matrix
[C, K]. The input feature map (output feature map from previous layer, after a rectified
linear unit (relu) operation (an activation function operation), max pooling operation

and im2col process) is reshaped to DERRSCHW where each element of the [R, S] input
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feature map tensor Drs€RCHW (rhs matrix of GEBP operation) is also a 2D matrix [C,
HxW].

[0075] For the Winograd based convolution method, each element of the [16]
kernel tensor FrseRCK is a 2D matrix [C, K]. It is appreciated that the solution also
works with other shapes of the F. The input feature map (output feature map from
previous layer, after relu operation, max pooling operation and Winograd
transformation) is reshaped to DER'6CHW where each element of the [16] input feature
map tensor Drs€R®™W is a 2D matrix [C, HXW]. Similarly, the solution works with other

shapes of D as well.

[0076] As an initial step, a neural network or deep neural network (DNN}) is
trained. The training process includes defining a sparse bitmap, such as a 2D [C, K]
sparse bitmap, to represent a sparse structure that matches an underlying GEBP lhs
matrix blocking structure (described below) for each element of the kernel tensor Frs.
In one embodiment, the DNN may be newly trained or may comprise a pre-trained
DNN. A sparse operation may be performed to Frs during the training (or retraining)
process. When performing the sparse operation, the weight parameter may be
arbitrarily changed and/or the DNN cost function may be changed such that the weight
matrix has more Z[1, mr] rows, more Z[kc, mr] blocks, more Z[kc, mc] blocks, more
Z[ke, K] blocks, or more Z [C, K] blocks, where “Z” indicates that all parameters in this
block are zero. Optionally, a column swap operation can then be performed if the
sparse operation generates more Z[1, mr] rows, more Z[kc, mr] blocks, more Z[kc, mc]
blocks, more Z[kc, K] blocks, or more Z [C, K] blocks (the operation will result in a
corresponding row swap in final GEBP output). In one embodiment, if the sparse filter
tensor is represented by a direct sparse compression, the k-means method is used to
group non-zero parameters to k-means indices. Otherwise, if the sparse filter tensor
is represented by a low-rank factorization, the k-means method is used to group
parameters in low-rank matrixes to k-means indices. Additionally, the input feature
map may be a sparse tensor during the training process. For example, each element
of the sparse input feature tensor Drs, a 2D [C, HxW] sparse bitmap may be defined
to represent a sparse structure that matches with underlying the GEBP rhs matrix

blocking structure, described below.
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[0077] After training the DNN, the sparse filter tensor is compressed. If the
sparse filter tensor is represented by direct or Winograd sparse compression, then
lossless compress the reordered column index (optional), lossless compress the
layered sparse bitmap and k-means indices of non-zero parameters, and compress
the k-means/escape values progressively. If the sparse filter tensor is represented by
low-rank factorization, then lossless compress the reordered column index (optional),
lossless compress the layered sparse bitmap and k-means indices of parameters in
the low-rank matrixes, and compress the k-means/escape values progressively.

[0078] Once the filter tensor is compressed, the sparse output feature map
(which will be the input feature map for the next layer) is compressed. For a direct
convolution method, the sparse output feature map is quantized and compressed
(after a relu operation, a max pooling operation and an im2col process). For a
Winograd based convolution method, the sparse output feature map is quantized and
compressed (after a relu operation, a max pooling operation and a Winograd
transformation). Then, lossless compress reordered column index (optional), lossless
compress layered sparse bitmap and k-means indices of non-zero parameters, and
the compress k-means/escape values.

[0079] Following compression, an inference process is performed. For a
direct convolution method, a customized layer is created such that the compressed
sparse output feature map (input feature map for next layer) and its layered sparse
bitmap is generated after the relu layer, the max pooling layer (if implemented), and
the im2col operation. The layered sparse bitmaps from both filter tensor and input
feature map are used as additional inputs to GEBP such that it skips the operation for
Z[1, mr], Z[ke, mr], Z[kc, mc], Z[ke, K], Z[C, K] block in the |hs matrix, or Z[1, nr], Z[Kkc,
nr], Z[kc, nc], Z[C, nc], Z[C, HxW] block in the rhs matrix. For a Winograd based
convolution method, a customized layer is created such that the compressed sparse
output feature map (input feature map for next layer) and its layered sparse bitmap is
generated after the relu layer, max pooling layer (if implemented), and the Winograd
transformation. The layered sparse bitmaps from both filter tensor and input feature
map are then used as additional inputs to GEBP so that it skips the operation for Z[1,
mr], Z[ke, mr], Z[ke, mc], Z[ke, K], Z[C, K] block in the Ihs matrix, or Z[1, nr], Z[kc, nr],
Z[ke, nc], Z|C, nc], Z[C, HxW] block in the rhs matrix.
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[0080] Sparse Bitmap Layout of Kernel Sensor
[0081] FIGS. 7A and 7B respectively illustrate GEPP/GEBP and a

GEPM/GEBP sparse bitmap layouts of a kernel tensor. For the direct convolution
method, the convolution filter is reshaped from FERKCRS to FERRSCK where each
element of the [R, S] kernel tensor Frs € R (column-major order or transpose of the
Ilhs matrix of GEBP operation) is a 2D matrix [C, K]. For the Winograd convolution
method of the output feature matrix o[2, 2] and kernel A3, 3], each element of the [16]
kernel tensor FrRs€RCK is a 2D matrix [C, K]. It is appreciated that other Winograd
configurations may also be applied. For each Frs, a 2D [C, K] sparse bitmap is defined
to represent a sparse structure that matches with the underlying GEBP lhs matrix

blocking structure.

[0082] In particular, FIG. 7A illustrates a GEPP/GEBP sparse bitmap layout of
Frs, and FIG. 7B illustrates a GEPM/GEBP sparse bitmap layout of Frs. For purposes
of discussion, the scan orders inside the [kc, mc] blocks are identical, and the scan
orders of [kc, mc] blocks are different. For the GEPP/GEBP layout (FIG. 7A), the
sparse bitmap layout of Frs is divided to ceil(C, kc) (where ‘ceil’ is a celing operation
that converts a floating number to the smallest integer that is bigger than the floating
number) row panels, where each of the row panel Fkc has a dimension of [kc, K]
(except for the last one, if C is not dividable by kc). This row panel is further divided to
ceil(K, mc) column panels, where each of the column panels Fmc has a dimension of
[ke, mc] (except for the last one, if K is not dividable by mc). This column panel is
further divided to ceil(mc, mr) column panels, where each of the column panels Fmr
has a dimension of [kc, mr] (except for the last one, if mc is not dividable by mr). This
column panel is further divided to a kc row, where each of the rows Rmr has dimension
of [1, mr].

[0083] For the GEPM/GEBP layout (FIG. 7B), the sparse bitmap layout of Frs
is divided to ceil(C, mc) column panels, where each of the column panels Fmc has a
dimension of [C, mc] (except for the last one, if C is not dividable by mc). This column
panel is further divided to ceil(C, kc) row panels, where each of the row panels Fikc has
a dimension of [kc, mc] (except for the last one, if C is not dividable by kc). This row
panel is further divided to ceil(mc, mr) column panels, where each of the column
panels Fmr has a dimension of [kc, mr] (except for the last one, if mc is not dividable
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by mr). This column panel is further divided to kc row, where each of this row Rmr has

dimension of [1, mr].

[0084] Parameters C, K for the 2D matrix are treated as syntax elements, and
may be stored in syntax table (not shown). In one embodiment, parameters kc, mc
and mr are treated as syntax elements, and may also be stored in the syntax table. In
another embodiment, parameters kc, mc and mr are pre-defined, and it is not
necessary to store them in the syntax table. In another embodiment, some parameters
of kc, mc and mr are treated as syntax elements and stored in the syntax table, while

other parameters are pre-defined and not stored in the syntax table.

[0085] For a matrix multiplication, it is well know that if two rows are swapped
in the |hs matrix, the result is a corresponding row swap in the final multiplication
output. This row swap (column swap in transposed lhs) operation is adopted to
produce more ZRmr (“Z” indicates that all parameters in this block are zero). Fox
example, if one Rmris [0, 0, 0, x] and another Rmr is [x, 0, X, 0], the fourth columns of
these two Rmr can be swapped so that the first Rmr becomes a ZRmr. In one
embodiment, if column swapping is not enabled, the above division is done on Frs
without column swapping and the parameters in Rmr are stored in continuous memory.
In another embodiment, if column swapping is enabled and columns are physically
swapped, the above division is done on a physically swapped Frs, and the parameters
in Rmr are stored in continuous memory. In still another embodiment, if column
swapping is enabled and columns are not physically swapped (they are swapped only
by their indices pointer), the above division is done on an index-swapped Frs, and
whether the parameters in Rmr are stored in continuous memory depends on the

existence of a column swapping operation.
[0086] Sparse Bitmap Layout of Input Feature Map

[0087] FIG. 7C illustrates a sparse bitmap layout of an input feature map. In
particular, the sparse bitmap layout is for Drs (rhs matrix in GEBP operation). Applying
the direct convolution method, the input feature map (output feature map from previous
layer, after the relu operation, the max pooling operation and the im2col process) is
reshaped to DERRSCHW 'such that each element of the [R, S] input feature map tensor
DrseRCHW (rhs matrix of GEBP operation) is a 2D matrix [C, HXW]. When applying

the Winograd configuration of the output feature matrix o[2, 2] and kernel 3, 3]
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method, the input feature map (output feature map from previous layer, after the relu
operation, the max pooling operation and the Winograd transformation) is reshaped to
DeR'6CHW such that each element of the [16] input feature map tensor DrseRCHW is a
2D matrix [C, HxW]. It is appreciated that other Winograd configurations may also be
applied. Foreach Drs, a 2D [C, HXW] sparse bitmap is defined to represent the sparse
structure that matches with the underlying GEBP rhs matrix blocking structure.

[0088] In one embodiment, Drs is divided to ceil(HxW, nc) column panels,
where each of the column panels Dnc has a dimension of [C, nc] (except for the last
one, if HXW is not dividable by nc). The column panel is further divided to ceil(C, kc)
row panels, such that each of the row panels Dk has a dimension of [kc, nc] (except
for the last one, if C is not dividable by kc). This row panel is further divided to ceil(nc,
nr) column panels, where each of the column panels Dnr has a dimension of [ke, nr]
(except for the last one, if nc is not dividable by nr). This column panel is further divided
to kc rows, where each of the rows DRnr has dimension of [1, nr].

[0089] In one embodiment, the parameters, kc, nc, nr, are treated as syntax
elements (and may be stored in the syntax table). In another embodiment, the
parameters, kc, nc, nr, are pre-defined such that they are not stored in syntax table.
For a matrix multiplication, it is well known that if two columns are swapped in the rhs
matrix, the result is a corresponding column swap in the final multiplication output.
This column swap (row swap in transposed rhs) operation is adopted to produce more
ZDRnr (“2” indicates that all parameters in this block are zero). For example, if one
DRnris [0, 0, 0, x] and another DRnr is [x, 0, x, 0], the fourth columns of the two DRnr
can be swapped so that the first DRnr becomes a ZDRnr. In one embodiment, if column
swapping is not enabled, the above division is done on Drs without column swapping,
and the parameters in DRnr are stored in continuous memory. In another embodiment,
if column swapping is enabled, and columns are physically swapped, the above
division is performed on physically swapped Drs, and the parameters in DRnr are
stored in continuous memory. In still another embodiment, if column swapping is
enabled, and columns are not physically swapped (they are swapped only by their
indices pointer), the above division is performed on index-swapped Drs, and whether
the parameters in DRnr are stored in the continuous memory depends on the existence

of column swapping operation.



WO 2020/014590 PCT/US2019/041566

26
[0090] Sparse Network Training and Retraining
[0091] As discussed briefly above, a DNN can be newly trained or retrained

from a pre-trained filter tensor. To generate a sparse network, a sparse operation is
performed during the training/retraining process. For an existing sparse operation,
each weight parameter is compared with a threshold. The parameter is set to zero if
its absolute value is smaller than the threshold, and the parameter is set to its original
value if its absolute value is not smaller than the threshold. A mask matrix (in which
each element of this mask indicates if the corresponding parameter is zero) is
generated so that the gradient update of a given weight parameter is stopped if the
corresponding mask bit is zero. In this sparse operation method, the weight parameter
stays zero once its absolute value is smaller than the threshold, regardless of the result
of any future gradient update.

[0092] In one embodiment, a modified sparse operation is adopted in which a
parameter is treated as zero when the absolute values of the parameters in row Rmr
are smaller than the threshold, such that the mask bits of the parameters in row Rmr
are treated as zeroes so that the gradient updates are stopped for the parameters in
row Rmr. For example, given Rmr [1, 2, 3, 4] and threshold value 5, R is treated as
[0, O, 0, 0] and mask bits are set to [0, 0, 0, 0]. If the threshold value is 3, Rmr keeps
its original value and mask bits are setto [1, 1, 1, 1].

[0093] As noted above, columns can be swapped in order to produce more
ZRnmr. If @ parameter, whose absolute value is not smaller than the threshold, is
swapped into a ZRmr row, this row becomes a normal Rmr row, Rmr resumes its original
value and the mask bits of this Rmr row are set to indicate that the Rmr will participate
in a future gradient update. If the parameter, whose absolute value is smaller than the
threshold, is swapped into an Rmr row, this row becomes a ZRmr row, Rmr is treated as
zero, and the mask bits of this ZRmr row are set to zeroes to indicate that this ZRmr will
not participate in future gradient updates.

[0094] In another embodiment, a parameter is treated as zero when the
absolute values of the parameters in row Rmr are smaller than the threshold, and the
mask bits of the parameters in row Rmr are treated as zeroes. For example, given Rmr
[1, 2, 3, 4] and a threshold value 5, Rnr is treated as [0, 0, 0, 0] and mask bits are set
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to [0, 0, 0, 0]. If the threshold value is 3, Rmr keeps its original value and mask bits are
setto[1,1,1,1].

[0095] Similar to the above embodiment, columns may be swapped in order
to produce more ZRmr. If a parameter, whose absolute value is not smaller than the
threshold, is swapped into a ZRmr row, the row becomes a normal Rmr row, Rmr
resumes its original value and the mask bits of this Rmr row are set to ones. If the
parameter, whose absolute value is smaller than the threshold, is swapped into an Rmr
row, the row becomes a ZRmr row, Rmr is treated as zero, and the mask bits of this

ZRmr row are set to zeroes.

[0096] In one embodiment, the non-zero parameters are represented by its
original values. In another embodiment, a k-means method is applied to Frs or
Winograd Frs filter tensor to group non-zero parameters to k-means indices. In
another embodiment, a k-means method is applied to Frs or Winograd Frs filter tensor
to group some non-zero parameters to k-means indices, and keep the original value
for the other non-zero parameters. In still another embodiment, low-rank factorization
can be used to represent the modified Frs or modified Winograd Frs filter tensor. In
one embodiment, the parameters of two low-rank matrixes are represented by its
original values. In another embodiment, a k-means method is applied to two low-rank
matrixes to group the parameters to k-means indices. In another embodiment, a k-
means method is applied to two low-rank matrixes to group some non-zero parameters

to k-means indices, and keep the original value for other non-zero parameters.

[0097] Accordingly, the sparse operation includes the steps of setting a mask
matrix to all ones, evaluating RDSPO based compression, calculating if the absolute
value of elements is smaller than the threshold, performing column swap to generate
more ZRmr based on RDSPO result, setting parameter values in ZRmr to zero, setting
parameter values in Rmr to the values defined by underlying embodiments, setting
parameter values in two low-rank matrixes to the values defined by underlying
embodiments if low-rank factorization is used, updating mask bits based on underlying
embodiments, performing a DNN training operation and repeating the steps (except

step 1) until training has completed.

[0098] In one embodiment, the original value of output feature map (input
feature map for next layer) is used during network retraining. In another embodiment,
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the sparse, quantized and compressed value of output feature map (input feature map

for next layer) is used during network retraining.
[0099] Sparse Filter Tensor Compression

[00100] A rate-distortion-speed-power-optimization RDSPO (cost function) is
defined in order to improve compression quality, inference speed and power
consumption. The optimization that leads to the smallest RDSPO is treated as the
optimized RDSPO, where RDSPO is defined by the following equation:

RDSPO=D +AR +uS+nP ... (1).

[00101] The rate is the compressed bit count of the kernel tensor, including an
array of swapped column indices (if column swapping is enabled), a layered sparse
bitmap, a non-zero parameters of Frs or Winograd Frs represented by their original
values or k-means values (if low-rank factorization is not used), and parameters
represented by their original values or k-means values (if low-rank factorization is

used).

[00102] Distortion may be measured using various techniques. In one
embodiment, distortion is measured by the difference between network accuracy
performance when utilizing the original weight value and network performance when
utilizing the reconstructed weight value. In another embodiment, distortion is
measured by the difference between the output feature map in the target layer when
utilizing the value of original weight and the value of original input feature map and the
output feature map in the same layer when utilizing the value of reconstructed weight
and the value of original input feature map. In still another embodiment, distortion is
measured by the difference between the output feature map in the target layer when
utilizing the value of the original weight and the value of the original input feature map
and the output feature map in the same layer when utilizing the value of the
reconstructed weight and the value of the reconstructed input feature map. In yet one
other embodiment, distortion is measured by the difference between the original
parameter value and the reconstructed parameter value. In any one of the
embodiments, L1 (lease absolute deviation) and/or L2 (least squares) normalization
can be applied to evaluate the distortion.
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[00103] In one embodiment, when inference speed and power consumption are
not an issue, the rate-distortion (RD) or rate-distortion-optimization (RDO) equal to D
+ AR may be utilized. Otherwise, an S factor is defined to indicate the inference speed,
and a P factor is defined to indicate the power consumption. When using the S and
P tactors, both inference speed and power consumption are related to the number of
MAC operations and the number of memory accesses in the GEBP process. However,
to simplify the calculation, and in one example embodiment, inference speed S is
represented by the number of MAC operations in the GEBP process, and power
consumption P is represented by the number of memory accesses in the GEBP
process. Here, S is defined as the number of NZRmr rows, a negative of the number
of ZRmr rows, or any other definition that represents the number of MAC operations.
P is defined as the number of memory accesses. Using this information, a memory
model is built to calculate the power consumption using the number and pattern of
memory access for each memory type (DRAM, SRAM, etc...).

[00104] In one embodiment, based on the property of the matrix multiplication,
the MAC operation can be skipped if either ZRmr is found in the lhs matrix or ZDRnr is
found in the rhs matrix. Thus, if the layered sparse bitmap of the input feature map is
also utilized in the process, it can be combined with the layered sparse bitmap of the

filter tensor to calculate the S and P factors.

[00105] In order to obtain an optimal RDSPO, increase inference speed and
decrease power consumption, an array of swapped column indices and layered sparse
bitmap are encoded together with two low-rank matrixes. In this regard, they are used
to direct the low-rank factorization method to generate only non-zero coefficients of
the sparse matrix, and direct underlying GEBP to skip operating on all-zero blocks in
the Ihs matrix of GEBP operation.

[00106] Array of Swapped Column Indices

[00107] In one embodiment, a column_swap_enable flag is defined to indicate
whether column swapping is enabled. Since the column swapping operation changes
the compression rate and inference speed (not distortion), in addition to the column
swapping operation during network training, the column indices can be further
swapped after the training is completed so that the best rate-speed-power-optimization
(RSPO =R + uS + nP) is achieved. The swapped column indices may be stored, for
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example, in a column_swap_array[N], where N=K (the number of output features). In
one embodiment, a value jin entry / of the column_swap_array indicates that column
i is swapped to column j. The column swapping operation can also be constrained
(N<K) so that the swapping operation can only be performed within every N column.

[00108] To indicate if the column has been swapped, a column_swap_bit_array
can be defined, according the equation (2) below. The column swap bit array can also
be coded using deferent methods, as illustrated below.

column_swap_bit_array[i] = (i # column_swap_array[i]) (2).

[00109] In one embodiment, swapping operations are chained together, if entry
in of column_swap_array is nth column in the swap chain (whose entry value is jn),
where 0 = n < N, swap chain rule ensures that the last entry value in the swap chain
equals the first entry index in the swap chain (jn7 = ig). Furthermore,
column_swap_array can be reordered so that the elements in each swap chain are

grouped together, as illustrated in Tables Il and IV below.

Original index 0(1|2|3(4|5|6|7 |8 |9 [10|11(1213 |14 |15
Original value 8|13|4|1|2|7|6|11|8 |9 |40|5 |14|43| 12|45
Bit_array oy1(7|7(17(17|0(7 |0 |0 |0 (1T |1 |0 |1 |0

Entry index, entry value, and bit_array of column_swap_array

Table llI

Inferred index 0|1(3(2|4|5|7 |11|6|8]|9|10|12|14 |13 |15

Reordered value 8|13|4(4|2|7|11|5 |6|8|9|10| 14|42 | 13|15

Reordered oy1|1|17|7,1(1 |1 (0|0|0|0 |1 |1 |0 |0

bit_array

Inferred entry index, entry value, and bit_array for reordered column_swap_array
Table IV
[00110] In the tables above, the following operations may be performed:

1) swap_run: a run of 1s in column_swap_bit_array;
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2) non_swap_run: a run of 0s in column_swap_bit_array;

3) g: entry values in column_swap_bit_array, whose corresponding

column_swap_bit_array[] are 1s;

4) gi: entry values in column_swap_bit_array, whose corresponding

column_swap_bit_array[] are Os;

5) swap_value can be encoded after all column_swap_bit_array is
encoded, it can also be encoded immediately after swap_run is encoded.
Coding of non_swap_value is skipped as they can be inferred.

[00111] According to Table lll, encoding of column_swap_array is performed
on the original column_swap_array without reordering. If the last run (a single element
run) is “1,” the run (a single element of non_swap_run) and its non_swap_value are
skipped as they can be inferred. In one embodiment, the column_swap_bit_array is
encoded by a Context-based Adaptive Binary Arithmetic Coding (CABAC) engine one
bit at a time. In another embodiment, the column_swap_bit_array is encoded by a
modified run-length coding. In the embodiment, column_swap_bit_array[0] is encoded
first (the rest of run_values are skipped as they can be inferred), followed by the

sequence of runs (swap_run-1 and non_swap_run-1).

[00112] According to Table IV, encoding of the column_swap_array is
performed on a reordered column_swap_array, where a swap_run indicates the total
number of swapped columns in one swap chain (multiple swap_runs for multiple back-
to-back swap chains). If the column_swap_bit_array is encoded one bit at a time, a
zero is inserted after the swap_run of each swap chain. If the last run (a single element
run) is “1,” the run (always a single element of non_swap_run) and its non_swap_value
are skipped as they can be inferred. Multiple column_swap_bit_array element
skipping techniques and column_swap_array element skipping techniques may be
used. For example, for a column_swap_bit_array element skipping technique, coding
of bits immediately after a non_swap_run is skipped since it can be inferred
(swap_run). If the last run (a single element run) is “1,” the run is skipped since it can
be inferred (a single element of non_swap_run). For a column_swap_array element

skipping technique, coding of the non_swap_value is skipped since it can be inferred,
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and coding of the last swap_value in a swap chain is skipped since it is equal to the
first inferred entry index in the swap chain.

[00113] In one embodiment, the column_swap_bit_array is encoded by the
CABAC engine one bit at a time. A zero is inserted after a swap_run of each swap
chain. The above-mentioned element skipping techniques are used in the coding of
the reordered column_swap_bit_array and column_swap_array. In another
embodiment, the column_swap_bit_array is encoded by run-length coding. The run-
length coding encodes all pairs of [bits (0 or 1), runs (non_swap_run-1 or swap_run -
1)]. Additionally, the above-mentioned element skipping techniques are used in the
coding of a reordered column_swap_bit_array and column_swap_array. In one
embodiment, a different encoding method can be used to encode a
column_swap_array without encoding the column_swap_bit_array. For example, for
each swap chain, the swap_run of the swap chain can be encoded, followed by the
first inferred index, and the sequence of swap_values in the swap chain (coding of last
swap_value in a swap chain can be skipped). In another embodiment, for each swap
chain, the first inferred index is encoded, followed by the sequence of swap_values in
the swap chain.

[00114] Layered Sparse Bitmap

[00115] FIGS. 8A — 8C illustrate examples of a layered sparse bitmap. For
each Frs, a 2D [C, K] sparse bitmap is defined to represent a sparse structure that
matches with the underlying GEPP/GEBP or GEPM/GEBP lhs matrix blocking
structure, discussed above. The GEPP/GEBP or GEPM/GEBP lhs matrix
configuration variables kc, mc, mr (or rhs matrix configuration variables kc, nc, nr) are
typically determined by the size of an on-chip single/multiple cache and register file of
the underlying device (such as a desktop CPU or embedded CPU), or by the size of
the on-chip memory for devices without cache and register file (such as FPGA). They
can also be set arbitrarily (such as kc=4, mc=4, nc=4, etc...).

[00116] In one embodiment, the Ihs matrix configuration variables kc, mc, mr
are treated as syntax elements and stored, for example, in a syntax table. In another
embodiment, the Ihs matrix configuration variables kc, mc, mr are pre-defined so that
they are not stored in the syntax table. In still another embodiment, some of the lhs

matrix configuration variables kc, mc, mr are treated as syntax elements and stored in



WO 2020/014590 PCT/US2019/041566

33

the syntax table, while others are pre-defined so that they are not stored in syntax
table.

[00117] In one embodiment, the rhs matrix configuration variables kc, nc, nr are
treated as syntax elements and stored in syntax table. In another embodiment, rhs
matrix configuration variables kc, nc, nr are pre-defined so that they are not stored in
syntax table. In another embodiment, some rhs matrix configuration variables ke, nc,
nr are treated as syntax elements and stored in syntax table, others are pre-defined
so that they are not stored in syntax table.

[00118] In one other embodiment, the sparse bitmap is directly encoded using
a single layer representation. In this case, the scan order can be row-wise raster
order, column-wise raster order, zigzag order, an order that follows GEPP/GEBP or
GEPM/GEBP matrix blocking structure, or any other known order. If the last run (a
single element run) is “1,” the run is skipped since it can be inferred (run equals to 1,
run_value equals to 1 - previous run_value). In one embodiment, the sparse bitmap
is encoded by a CABAC engine one bit at a time. In another embodiment, the sparse
bitmap is encoded by a modified run-length coding. The sparse bitmap[0] is encoded
first (the rest of run_values are skipped as they can be inferred), followed by the

sequence of runs (run-1).

[00119] With reference to FIG. 8A, the sparse bitmap has a layered structure
that matches with the underlying GEPP/GEBP Ihs matrix blocking structure, described
above. In particular, the layered sparse bitmap layout uses mr, kc and mc
configuration. Layer 5 is the root, and it represents ceil(C, kc) row panel Bk, each
node in layer 4 represents ceil(K, mc) column panel Bme, each node in layer 3
represents ceil(mc, mr) column panel Bmr, each node in layer 2 represents a kc row
Rmr, each node in layer 1 represents mr column sparse bitmap elements, and layer 0

is the original sparse bitmap.

[00120] Turning to FIG. 8B, the sparse bitmap has a layered structure that
matches with underlying GEPM/GEBP |hs matrix blocking structure, as described
above. In particular, the layered sparse bitmap layout also uses mr, kc and mc
configuration. In this case, layer 5 is the root, and it represents ceil(K, mc) column
panel Bmc, each node in layer 4 represents ceil(C, kc) row panel Bk, each node in
layer 3 represents ceil(mc, mr) column panel Bmr, each node in layer 2 represents kc
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row Rmr, each node in layer 1 represents mr column sparse bitmap elements, and layer

0 is the original sparse bitmap.

[00121] In FIG. 8C, the sparse bitmap has a layered structure that is a quad-
tree block structure. In this embodiment, layer O is the original sparse bitmap, each
node in layer 1 represents mr column sparse bitmap elements, each node in layer 2
represents kc row Rmr, €ach node in the following layer represents a 2x2 elements in

previous layer.

[00122] In still other embodiments, the sparse bitmap may have other arbitrarily
defined layered structures to efficiently represent the original sparse bitmap. These
layers are encoded using a depth-wise binary tree scan order, starting from the root
node. For each node, a node value zero indicates that the value of its child nodes are
all zeroes so that encoding of the child nodes is skipped. A node value equal to one
indicates that the value of at least one of the child node is one so that its child nodes
are encoded one by one. If all child nodes (except for the last child node) have a value
of zero, encoding of the last child node is skipped as it can be inferred (as one).

[00123] In one embodiment, the layered structure is encoded by a CABAC
engine one bit at a time. If a last run (a single element run) is “1,” the run is skipped
as it can be inferred (run equals to 1, run_value equals to 1 - previous run_value). In
another embodiment, the layered structure is encoded by a modified run-length
coding. The first run_value is encoded first (the rest of run_values are skipped as they
can be inferred), followed by the sequence of runs (run-1). If last run (a single element
run) is “1,” the run is skipped as it can be inferred (run equals to 1, run_value equals
to 1 - previous run_value). Due to the use of the depth-wise binary tree scan order, if
the run of 1s is more than 1, the child nodes are sequentially coded immediately after
the run of 1s. In another embodiment, the layered structure is encoded by a run-
length coding. Run-length coding encodes all pairs of [0, runs (run-1)] or [1, 1]. Arun
of 1 is always set to 1 to accommodate the depth-wise binary tree scan order. In
another embodiment, different scan orders and encoding methods as well-known can

be used to encode the layered structure.

[00124] Coefficients Quantization and k-means Clustering
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[00125]

represented by low-rank factorization and to non-zero coefficients in a sparse neural

Quantization can be applied to coefficients in a DNN, neural network

network. These coefficients can be divided into smaller groups (e.g., GOC) with an
arbitrarily defined size, grouped by the above sparse bitmap blocking structure, or
quantized without any grouping. In one embodiment, coefficients can be quantized
using a method similar to the quantization method adopted by Tensorflow Lite.
Tensorflow Lite utilizes an 8 bit quantization method that takes a maximum (max) and
a minimum (min) value from one layer and quantizes the parameter using a
quantization step (max-min)/256. In one other embodiment, coefficients can be
quantized using a method similar to the quantization method adopted by any video

compression standard.

[00126]
below.

For example, a quantization method in the HEVC standard is illustrated
In the HEVC standard, QP is defined as a quantization step, TransCoeff is a
19 bit signed DCT output, ClipTransCoeffLevel is a 16 bit signed value (after
quantization and clip), where {clipMinimum, clipMaximum} = {-(1<<15), (1<<15) — 1},
{qp_per, gp_rem} = {QP/6, QP%6}, quantScales[] = {26214, 23302, 20560, 18396,
16384, 14564}, and snf scale = quantScales[qp_rem] .

Block Size | iQBits iAdd

4x4 19 + gp_per | (Intra ? 171 : 85) << (10 + qp_per)
8x8 18 + gp_per | (Intra ? 171 : 85) << (9 + qp_per)
16x16 17 + gp_per | (Intra ? 171 : 85) << (8 + qp_per)
32x32 16 + gp_per | (Intra ? 171 : 85) << (7 + qp_per)

¢ TransCoeffLevel = sign(TransCoeff) * ((abs(TransCoeff) * scale + iAdd) >>
iQBits)
¢ ClipTransCoeffLevel = Clip3(clipMinimum, clipMaximum, TransCoeffLevel)

[00127]
encoded using a progressive coding method.

In one embodiment, the original coefficients (without quantization) are
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[00128] In another embodiment, the quantized coefficients are encoded using
a progressive coding method.
[00129] In still another embodiment, the k-means method is applied to the

original coefficients so that all of original coefficients are mapped to K k-means
centroids. K k-means centroids are encoded using a progressive coding method, while
the original coefficients represented by k-means indices are encoded losslessly.

[00130] In yet another embodiment, the k-means method is applied to the
quantized coefficients so that all of the quantized coefficients are mapped to K k-
means centroids. K k-means centroids are encoded using progressive coding method,
while the quantized coefficients represented by k-means indices are encoded

losslessly.

[00131] In one other embodiment, the k-means method is applied to the
coefficients prior to quantization, so that all of coefficients are mapped to K k-means
centroids. The K k-means centroids are quantized and encoded using a progressive
coding method, while the coefficients represented by k-means indices are encoded

losslessly.

[00132] In another embodiment, the k-means method is applied to the
quantized coefficients but not all of quantized coefficients are mapped to K k-means
centroids. The index K is assigned to the escaped coefficients. K k-means centroids
(and the escaped coefficients) are encoded using a progressive coding method, while
the quantized coefficients represented by k-means indices (including index K who

indicates escaped coefficients) are encoded losslessly.

[00133] In one further embodiment, the k-means method is applied to the
coefficients prior to quantization, but not all of coefficients are mapped to K k-means
centroids. The index K is assigned to the escaped coefficients. K k-means centroids
(and the escaped coefficients) are quantized and encoded using a progressive coding
method, while the coefficients represented by k-means indices (including index K who
indicates escaped coefficients) are encoded losslessly.

[00134] K-means Centroids (Palette) Sharing

[00135] The K-means method may be applied to a GOC so that some or all of
quantized coefficients are mapped to K k-means centroids (Palette). It is well-
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established that some or all of the palette entries may be duplicative among multiple
GOCs in one or more convolution layers. In this case, the palette entries are shared
among multiple GOCs.

[00136] In one embodiment, the palette predictor concept from the HEVC SCC
standard is applied. A palette predictor with a predefined size (P) is used to store the
k-means centroids generated from previous GOC. In one embodiment, the defined or
predefined size is a maximum allowable size. After performing the k-means method
to the current GOC, the newly generated centroid is compared with the previously
generated centroids in a palette predictor. The newly generated centroid can be
replaced by previously generated centroids in the palette predictor if a better RD is
obtained by using such centroids in palette predictor. Here, RD is defined as RD =D
+ AR, where R=bits of encoding centroids + bits of encoding coefficients represented
by k-means indices, and D=distortion between original coefficients and reconstructed
coefficients.

[00137] After the newly generated centroids are processed, they are either
represented by its original value, or represented by an index to the palette predictor.
The number and index location of the inferred centroids is encoded first, followed by

the number of the signaled centroids, and then the signaled centroids.

[00138] The palette predictor is updated by removing the duplicative entries
first, followed by inserting the new centroids to the beginning of the palette predictor.
The palette predictor keeps the P centroids at the beginning of the list if the total
number of centroids (or “special value”) is more than predefined size P. In one
embodiment, the palette predictor is initialized once and never reset. In another
embodiment, the palette predictor is reset at the beginning of each Frs. In still another
embodiment, the palette predictor is reset at the beginning of the filter tensor F of a
given convolution layer. In yet another embodiment, the palette predictor is reset at
the beginning of filter tensor F of all convolution layers.

[00139] Progressive Coding

[00140] The bit-plan based progressive coding method in the JPEG2000
standard ensures the best RD performance when an additional layer is received at the
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decoder (decompression) side. However, this method encodes coefficients one bit at
a time, which results in a slow decoding speed. Nevertheless, a simplified layer based
progressive coding may be adopted to solve the speed issue. The bit-plan and layer
concept are borrowed from JPEG2000 standard, however, after the layer-RDO
calculation is completed and the number of bit-plans (NBP) that need to be included
in a given layer is decided, the chunk (NBP bits) from the coefficient is encoded as
one integer instead of NBP individual bits. In one embodiment, the layer-RDO is
performed on coefficients in each GOC. In another embodiment, the layer-RDO is
performed on coefficients in each Frs. In still another embodiment, the layer-RDO is
performed on coefficients in filter tensor F of a given convolution layer. In yet another
embodiment, the layer-RDO is performed on coefficients in filter tensor F of all
convolution layers. In one further embodiment, the layer-RDO is performed on
coefficients in filter tensor F of all convolution layers and all fully connected layers.

[00141] When the GOC is defined by the above-noted sparse bitmap blocking
structure, each GOC in the first layer is coded immediately after the coding of a
corresponding sparse bitmap block so that the GEBP operation is not paused. The
GOC in other layers are then placed after the GOC in the first layer is encoded. Since
coefficients in all convolution layers and fully connected layers are used in order for
the neural network to function, the decoder receives at least the first layer of
coefficients of all convolution layers and fully connected layers.

[00142] Sparse Feature Map Compression

[00143] For the direct convolution method, the output feature map (input
feature map for next layer) is generated after a relu layer, a max pooling layer (if
implemented), and an im2col operation. For the Winograd based convolution method,
the output feature map (input feature map for next layer) is generated after a relu layer,
a max pooling layer (if implemented), and a Winograd transformation.

[00144] Thus, according the above embodiments, one or more of the following
methods may be used in a sparse filter tensor compression to compress the sparse
output feature map: RDSPO, an array of swapped column indices, a layered sparse
bitmap, coefficients quantization and k-means clustering (clustering algorithmy), and K-
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means centroids (Palette) sharing. Based on the property of matrix multiplication, the
MAC operation can be skipped if either ZRmr is found in the Ihs matrix or the ZDRnr is
found in the rhs matrix. Layered sparse bitmap of the input feature map can be
combined with the layered sparse bitmap of the filter tensor to calculate S and P

factors.
[00145] Layered Sparse Bitmap Guided GEBP Operation
[00146] In one embodiment, the above described layered sparse bitmaps from

the filter tensor is used as additional input to the GEBP so that it skips the multiplication
operation for ZRmr, ZFmr, ZFmc, ZFkc and ZFrs, where “Z” indicates that all parameters
in the block are zero. In another embodiment, the above described layered sparse
bitmaps from both the filter tensor and the input feature map are used as additional
inputs to GEBP so that it skips multiplication operation for ZRmr, ZFmr, ZFmc, ZF ke, ZFRs,
and ZDRnr, ZDnr, ZDke, ZDne and ZDrs, where “Z” indicates that all parameters in the

block are zero.
[00147] Model Layer Modification for Inference

[00148] For the direct convolution method, a customized layer is created using
a compressed sparse input feature map and its layered sparse bitmap as input. The
convolution operation is calculated along with a relu operation, max pooling operation
(if implemented), and an im2col operation and generates uncompressed output. The
final compressed sparse output feature map and its layered sparse bitmap are
generated after the sparse, quantization, and compression process. Forthe Winograd
based convolution method, a customized layer is created using the compressed
sparse input feature map and its layered sparse bitmap as input. The convolution
operation is calculated along with a relu operation, max pooling operation (if
implemented), a Winograd transformation and an uncompressed output is generated.
The final compressed sparse output feature map and its layered sparse bitmap are
generated after the sparse, quantization, and compression process.

[00149] The GEPP and GEPM operation utilize GEBP as an underlying
multiplication engine. In one embodiment, the GEPM operation is selected for cache
or bandwidth constraint device. GEPM outputs matrix slice by slice so that the
following relu operation, max pooling operation (if implemented), im2col or Winograd
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transformation can be calculated in a pipelined fashion. The uncompressed output can
be generated slice by slice so that the some or all compression steps can be performed
without waiting for the completion of uncompressed output.

[00150] FIG. 9 illustrates an example neural network training apparatus. The
neural network training apparatus may be used to implement the training or retraining
process described above. As illustrated, an input feature map (x) is processed by a
number of neural layers 904, 906 and 908 to generate an inference result (y). The
inference result is compared with a ground truth (g), based on which a loss (L(y,g)) is
computed. The loss L is used to update the weights of each neural layer 904, 906, 908
through back propagated (BP). It is appreciated that any number of neural layers may
be employed, and that it is not limited to the illustrated three neural layers.

[00151] FIG. 10 illustrates a detailed embodiment of the neural network training
apparatus of FIG. 9. In the disclosed embodiment, the training apparatus is an iterative
process. When the input feature map (x) is processed by the neural layer 904, 906
and 908 to generate the inference result (y) during each iteration, the weights of the
neural layers 904, 906 and 908 are temporarily fixed. For purposes of discussion, if
Wit denotes the weights of the it neural layer at the t iteration, Wit is obtained from
Wit1 through the following processing steps, where steps 1004 — 1012 are the
encoding steps and steps 1022 — 1014 are the decoding steps:

1. At step 1004, weight Wit1 is updated into Wit(0) by BP optimization, such as
the Stochastic Gradient Descent (SGD) method, based on the computed loss
L{y;,gi}) by comparing a batch of inference results (y1,...,yn) and the
corresponding ground-truth results (g1,...,gn), where each inference result y;,
j=1,...,n is obtained by processing the corresponding input feature maps x;,
j=1,...,n using the number of neural layer units.

2. Process Wit(0) using Sparse and Quantization at step 1006 to generate
quantized weight coefficients Wii(q). The Sparse and Quantization first
“sparsifies” the weight coefficients by performing weight pruning, as described
in the “Sparse Bitmap Layout of Input Feature Map” section above, to reduce
the number of non-zero weight coefficients. The sparsified weight coefficients
are then quantized by performing weight quantization as described in the
“Coefficients Quantization and K-means Clustering” section.
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3. Based on the quantized weight coefficients Wit(q), a codebook Cit is generated
at the Codebook and Index Map step 1008, which is used to convert Wit(q) into
an index map Mit. Mit and further reduces the number of bits needed to
represent each weight coefficient. The process is described in both the
“Coefficients Quantization and K-means Clustering” section and the “K-means
Centroids (Palette) Sharing” section. In one embodiment, and depending on
the adaptive CU partition and RD calculation, an empty codebook may be
generated for some given CU, and in such a case, the index map Mitis simply
the original Wit(q).

4. At step 1010, the index map Miy is further processed by a Column Swap (and
optional Row Swap) to generate a column reordered and optimal row reordered
index map Mit(re). Mit(re) has a better weight distribution for later compression
than Mit in general. The column (and optimal row) swap process is described
above.

5. The data needed for computing decoded weight coefficients Wiz for neural
network inference in the it layer at the t iteration, including the reordered index
map Mi,t (re) and the parameters and hyper-parameters in steps 1004 — 1012,
are grouped together at step 1012 into a syntax element set Sit, which is further
processed by a Syntax Element Encoding at step 1022 to generate an encoded
syntax element set Sii(en). In one embodiment, a lossless syntax element
encoding method such as Huffman coding is used.

6. The encoded syntax element set Sit(en) is processed by the Syntax Element
Decoding step 1020 to compute a decoded syntax element set Sit(de). In a
preferred embodiment, Sii(de)=Sit, with lossless syntax element encoding-
decoding method.

7. Using the corresponding information in Sit, i.e., the column swap (and optimal
row swap) information, and the decoded reordered index map Mit(re), a
reconstructed index map Mit can be computed in the Column Reorder (and
Optional Row Reorder) step 1018. Similarly, Mii=Mit with lossless syntax
element encoding-decoding.

8. Using the decoded codebook in the decoded syntax element set Sit(de) and
the reconstructed index map My, the Quantized Coefficient Reconstruction
step 1016 reconstructs the quantized weight coefficients Wit (q).
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9. The reconstructed quantized weight coefficients Wi+'(q) are further processed
by the Dequantization step 1014 to obtain dequantized weight coefficients Wi

[00152] Once the dequantized weight coefficients Wit are generated for the ith
neural network layer at the t™ iteration, the Matrix Multiplication step 1024 will compute
an output feature map Oit based on Wit, and an input feature map lit. lii=0i-1 if i>1.
Otherwise, lit is the input feature map x for the 1%t layer. Similarly, Oit=li.1t if the it
layer is not the last layer, and Oit=y: otherwise. The loss at the it iteration can then be
computed based on yt and ground truth g for x, and the above process iterates into

the next iteration t+1.

[00153] FIG. 11 illustrates an example embodiment of a neural network
inference apparatus. Similar to FIG. 9, the input feature map x is processed by a
number of neural layers to generate the inference result y. More specifically, the
inference apparatus first decodes the weight coefficients of the neural layers (904, 906
and 908 of FIG. 9) and then computes the output inference result through a feed

forward computation.

[00154] For purposes of discussion, Wi denotes the weights of the it" neural
layer, Si(en) denotes the encoded syntax element set of the i" layer, and Mi(re)
denotes the reordered index map of the it" layer, the following steps 1104 — 1112 are
performed:

1. The encoded syntax element set Si(en) is processed by the Syntax Element
Decoding step 1104 to compute a decoded syntax element set Si(de).

2. Using the corresponding information in the syntax element set S, i.e., the
column swap (and optimal row swap) information and the decoded reordered
index map Mi(re), a reconstructed index map M/’ can be computed in the
Column Reorder and Optional Row Reorder step 1106.

3. Using the decoded codebook in the decoded syntax element set Si(de) and the
reconstructed index map My, the Quantized Coefficient Reconstruction step
1108 reconstructs the quantized weight coefficients Wi'(q).

4. The reconstructed quantized weight coefficients Wi'(q) are further processed by
the Dequantization step 1110 to obtain dequantized weight coefficients Wi.
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[00155] Once the dequantized weight coefficients Wi are generated for the it"
neural network 904, 906 and 908 at the t!" iteration, the Matrix Multiplication step 1112
computes an output feature map Oi based on Wi and an input feature map Ii. i=0i.1 if
i>1. The input feature map (x) is li for the 1t layer. Similarly, Oi=li.1 if the it" layer is

not the last layer, and Oi=y otherwise.

[00156] FIG.12 illustrates an embodiment of a router in accordance with
embodiments of the disclosure. The node (e.g., a server ) 1200 may be, for example,
any of the computing devices 102(1) — 102(N) or 104(1) — (104(N) in the system of
FIG. 1 or any other node as described above. The node 1200 may comprise a plurality
of input/output ports 1210/1230 and/or receivers (Rx) 1212 and transmitters (Tx) 1232
for receiving and transmitting data from other nodes, a processor 1220, including a
neural network training or Inference Unit 1222 to process data and determine the
inference result. The neural network training or inference unit or processor may be
configured to implement either training or inference schemes described herein, such
as encoding and decoding weight and/or input feature map using sparse, column swap
and/or palette sharing concept described above. The neural network training or

inference unit or processor may be implemented using hardware, software, or both.

[00157] Although illustrated as a single processor, the processor 1220 is not so
limited and may comprise multiple processors. The processor 1220 may be
implemented as one or more central processing unit (CPU) chips, cores (e.g., a multi-
core processor), field-programmable gate arrays (FPGAs), application specific
integrated circuits (ASICs), and/or digital signal processors (DSPs), and/or may be
part of one or more ASICs. The processor 1220 may be configured to implement any
of the schemes described herein using any one or combination of steps described in
the embodiments. Moreover, the processor 1220 may be implemented using

hardware, software, or both.

[00158] FIG. 13 illustrates a computing system upon embodiments of the
disclosure may be implemented. The schemes described above may be implemented
on any general-purpose network component, such as a computer or network
component with sufficient processing power, memory resources, and network
throughput capability to handle the necessary workload placed upon it. Computing
system 1300 may be programmed (e.g., via computer program code or instructions)
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to provide improve compression, inference speed and lower power consumption as
described herein and includes a communication mechanism such as a bus 1310 for
passing information between other internal and external components of the computer
system 1300. In one embodiment, the computer system 1300 is system 100 of FIG.
1. Computer system 1300, or a portion thereof, constitutes a means for performing
one or more steps for implementing one or more embodiments of the methods
disclosed herein, such as the weight and/or input feature map encoding and decoding
methods. A bus 1310 includes one or more parallel conductors of information so that
information is transferred quickly among devices coupled to the bus 1310. One or
more processors 1302 for processing information are coupled with the bus 1310.

[00159] One or more processors 1302 performs a set of operations on information
(or data) as specified by computer program code related to the execution by the neural
network training or inference unit and/or processor to implement the training or
inference methods described above. The computer program code is a set of
instructions or statements providing instructions for the operation of the processor
and/or the computer system to perform specified functions. The code, for example,
may be written in a computer programming language that is compiled into a native
instruction set of the processor. The code may also be written directly using the native
instruction set (e.g., machine language). The set of operations include bringing
information in from the bus 1310 and placing information on the bus 1310. Each
operation of the set of operations that can be performed by the processor is
represented to the processor by information called instructions, such as an operation
code of one or more digits. A sequence of operations to be executed by the processor
1302, such as a sequence of operation codes, constitute processor instructions, also

called computer system instructions or, simply, computer instructions.

[00160] Computer system 1300 also includes a memory 1304 coupled to bus
1310. The memory 804, such as a random access memory (RAM) or any other
dynamic storage device, stores information including processor instructions for
compression, inference speed and lower power consumption as described herein.
Dynamic memory allows information stored therein to be changed by the computer
system 1300. RAM allows a unit of information stored at a location called a memory
address to be stored and retrieved independently of information at neighboring
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addresses. The memory 1304 is also used by the processor 1302 to store temporary
values during execution of processor instructions. The computer system 1300 also
includes a read only memory (ROM) 1306 or any other static storage device coupled
to the bus 1310 for storing static information. Also coupled to bus 1310 is a non-
volatile (persistent) storage device 1308, such as a magnetic disk, optical disk or flash

card, for storing information, including instructions.

[00161] In one embodiment, information, including instructions for providing
compression, inference speed and lower power consumption as described herein, is
provided to the bus 1310 for use by the processor from an external input device 1312,
such as a keyboard operated by a human user, a microphone, an Infrared (IR) remote
control, a joystick, a game pad, a stylus pen, a touch screen, head mounted display or
a sensor. A sensor detects conditions in its vicinity and transforms those detections
into physical expression compatible with the measurable phenomenon used to
represent information in computer system 1300. Other external devices coupled to
bus 1310, used primarily for interacting with humans, include a display device 1314
for presenting text or images, and a pointing device 1316, such as a mouse, a
trackball, cursor direction keys, or a motion sensor, for controlling a position of a small
cursor image presented on the display 1314 and issuing commands associated with
graphical elements presented on the display 1314, and one or more camera sensors
1384 for capturing, recording and causing to store one or more still and/or moving

images (e.g., videos, movies, etc.) which also may comprise audio recordings.

[00162] In the illustrated embodiment, special purpose hardware, such as an
application specific integrated circuit (ASIC) 1320, is coupled to bus 1310. The special
purpose hardware is configured to perform operations not performed by processor
1302 quickly enough for special purposes.

[00163] Computer system 1300 also includes a communications interface 1370
coupled to bus 1310. Communication interface 1370 provides a one-way or two-way
communication coupling to a variety of external devices that operate with their own
processors. In general the coupling is with a network link 1378 that is connected to a
local network 880 to which a variety of external devices, such as a server or database,
may be connected. Alternatively, link 1378 may connect directly to an Internet service
provider (ISP) 1384 or to network 1390, such as the Internet. The network link 1378
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may be wired or wireless. For example, communication interface 1370 may be a
parallel port or a serial port or a universal serial bus (USB) port on a personal
computer. In some embodiments, communications interface 1370 is an integrated
services digital network (ISDN) card or a digital subscriber line (DSL) card or a
telephone modem that provides an information communication connection to a
corresponding type of telephone line. In some embodiments, a communication
interface 1370 is a cable modem that converts signals on bus 1310 into signals for a
communication connection over a coaxial cable or into optical signals for a
communication connection over a fiber optic cable. As another example,
communications interface 1370 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN, such as Ethernet. Wireless links
may also be implemented. For wireless links, the communications interface 1370
sends and/or receives electrical, acoustic or electromagnetic signals, including
infrared and optical signals, which carry information streams, such as digital data. For
example, in wireless handheld devices, such as mobile telephones like cell phones,
the communications interface 1370 includes a radio band electromagnetic transmitter
and receiver called a radio transceiver. In certain embodiments, the communications
interface 870 enables connection to a communication network for providing

compression, inference speed and lower power consumption as described herein.

[00164] Network link 1378 typically provides information using transmission media
through one or more networks to other devices that use or process the information.
For example, network link 1378 may provide a connection through local network 1380
to a host computer 1382 or to equipment 1384 operated by an ISP. ISP equipment
1384 in turn provide data communication services through the public, world-wide
packet-switching communication network of networks now commonly referred to as
the Internet 1390.

[00165] A computer called a server host 1382 connected to the Internet hosts a
process that provides a service in response to information received over the Internet.
For example, server host 1382 hosts a process that provides information representing
video data for presentation at display 1314. It is contemplated that the components of
system 1300 can be deployed in various configurations within other computer
systems, e.g., host 1382 and server 1382.
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[00166] At least some embodiments of the disclosure are related to the use of
computer system 1300 for implementing some or all of the techniques described
herein. According to one embodiment of the disclosure, those techniques are
performed by computer system 1300 in response to processor 1302 executing one or
more sequences of one or more processor instructions contained in memory 1304.
Such instructions, also called computer instructions, software and program code, may
be read into memory 1304 from another computer-readable medium such as storage
device 1308 or network link 1378. Execution of the sequences of instructions
contained in memory 1304 causes processor 1302 to perform one or more of the
method steps described herein, such as neural network training or inference and
implementation of the training or inference methods described above.

[00167] In one or more other embodiments, there is a computer implemented
method of decoding a compressed neural network weight tensor, the method
comprising: receiving an encoded quantized weight tensor, an encoded 2D sparse
bitmap, an encoded plurality of column swapping indexes; decoding the encoded
quantized weight tensor; decoding the encoded 2D sparse bitmap; decoding the
column swapping indexes; optionally, receiving an encoded codebook of a plurality of
centroids, and decoding the encoded codebook if an encoded codebook is received;
generating a column swapped quantized weight tensor by swapping columns of the
decoded quantized weight tensor according to the decoded column swapping indexes;
generating a dequantized column swapped weight tensor by dequantizing the column
swapped quantized weight tensor, by using the decoded codebook if the encoded
codebook is received, or by using direct dequantization otherwise; and reordering the
dequantized weight tensor according to the decoded 2D sparse bitmap.

[00168] In another embodiment there is a computer implemented method of
accelerating matrix multiplication using a layered sparse bitmap, the method
comprising: receiving at least one neural network tensor and a matching layered
sparse bitmap; using the layered sparse bitmap as additional input to GEBP library;
and skipping the multiplication operation of a block of the coefficients of the neural
network tensor if the content of the layered sparse bitmap indicates that all coefficients
in the block are zero.
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[00169] Optionally, in any one of the above embodiments, the block of coefficients
of the neural network tensor further comprises a group of coefficients in the current

layer as well as the corresponding child coefficients in child layers in a tree structure.

[00170] It is understood that the present subject matter may be embodied in many
different forms and should not be construed as being limited to the embodiments set
forth herein. Rather, these embodiments are provided so that this subject matter will
be thorough and complete and will fully convey the disclosure to those skilled in the
art. Indeed, the subject matter is intended to cover alternatives, modifications and
equivalents of these embodiments, which are included within the scope and spirit of
the subject matter as defined by the appended claims. Furthermore, in the following
detailed description of the present subject matter, numerous specific details are set
forth in order to provide a thorough understanding of the present subject matter.
However, it will be clear to those of ordinary skill in the art that the present subject

matter may be practiced without such specific details.

[00171] Aspects of the present disclosure are described herein with reference to
flowchart illustrations and/or block diagrams of methods, apparatuses (systems) and
computer program products according to embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations and/or block diagrams, and
combinations of blocks in the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These computer program instructions
may be provided to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of the computer or other
programmable instruction execution apparatus, create a mechanism for implementing

the functions/acts specified in the flowchart and/or block diagram block or blocks.

[00172] The computer-readable non-transitory media includes all types of
computer readable media, including magnetic storage media, optical storage media,
and solid state storage media and specifically excludes signals. It should be
understood that the software can be installed in and sold with the device. Alternatively
the software can be obtained and loaded into the device, including obtaining the
software via a disc medium or from any manner of network or distribution system,

including, for example, from a server owned by the software creator or from a server
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not owned but used by the software creator. The software can be stored on a server
for distribution over the Internet, for example.

[00173] Computer-readable storage media (medium) exclude (excludes)
propagated signals per se, can be accessed by a computer and/or processor(s), and
include volatile and non-volatile internal and/or external media that is removable
and/or non-removable. For the computer, the various types of storage media
accommodate the storage of data in any suitable digital format. It should be
appreciated by those skilled in the art that other types of computer readable medium
can be employed such as zip drives, solid state drives, magnetic tape, flash memory
cards, flash drives, cartridges, and the like, for storing computer executable
instructions for performing the novel methods (acts) of the disclosed architecture.

[00174] The terminology used herein is for the purpose of describing particular
aspects only and is not intended to be limiting of the disclosure. As used herein, the
singular forms "a", "an" and "the" are intended to include the plural forms as well,
unless the context clearly indicates otherwise. It will be further understood that the
terms "comprises" and/or "comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of one or more other

features, integers, steps, operations, elements, components, and/or groups thereof.

[00175] The description of the present disclosure has been presented for purposes
of illustration and description, but is not intended to be exhaustive or limited to the
disclosure in the form disclosed. Many modifications and variations will be apparent
to those of ordinary skill in the art without departing from the scope and spirit of the
disclosure. The aspects of the disclosure herein were chosen and described in order
to best explain the principles of the disclosure and the practical application, and to
enable others of ordinary skill in the art to understand the disclosure with various
modifications as are suited to the particular use contemplated.

[00176] For purposes of this document, each process associated with the
disclosed technology may be performed continuously and by one or more computing
devices. Each step in a process may be performed by the same or different computing
devices as those used in other steps, and each step need not necessarily be

performed by a single computing device.
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[00177] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject
matter defined in the appended claims is not necessarily limited to the specific features
or acts described above. Rather, the specific features and acts described above are

disclosed as example forms of implementing the claims.
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CLAIMS
What is claimed is:
1. A computer-implemented method of generating a compressed neural

network weight tensor, comprising:

receiving a weight tensor from a neural network to be compressed;

reordering the weight tensor of the neural network to be compressed to have
an inner two-dimensional (2D) shape of a 2D sparse bitmap;

generating a layered structure comprising one or more layers to represent the
reordered weight tensor;

dividing the reordered weight tensor into one or more group of coefficients
(GOCs);

selecting an encoding mode to generate a quantized reordered weight tensor
using one of a codebook or direct quantization by computing an encoding rate
distortion measurement;

generating a column swapped quantized reordered weight tensor by swapping
columns of the quantized reordered weight tensor according to a plurality of column
swapping indexes of the 2D sparse bitmap;

encoding at least one of the column swapped quantized reordered weight
tensor, the 2D sparse bitmap according to the layered structure, the codebook
including a plurality of centroids, or the plurality of column swapping indexes to form a
compressed representation of the neural network; and

transmitting the compressed representation of the neural network to a target
system.

2. The computer-implemented method of claim 1, further comprising:

generating the codebook of the plurality of centroids in response to the
encoding mode selected to generate a quantized reordered weight tensor; and

generating the quantized reordered weight tensor using the codebook of the
plurality of centroids to represent the GOC by mapping the weight coefficients in the
GOC to a corresponding one of the plurality of centroids.
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3. The computer-implemented method of any one of claims 2, further
comprising generating the quantized reordered weight tensor using direct

quantization.

4. The computer-implemented method of any one of claims 1-3, wherein
2D sparse bitmap is determined by matching an underlying matrix multiplication
General Block Panel Multiplication (GEBP) left-hand-side (lhs) matrix blocking

structure.

5. The computer-implemented method of claim 4, wherein the layered
structure matches one of the underlying GEBP lhs matrix blocking structure, a quad-
tree block structure, or is defined to efficiently represent the 2D sparse bitmap.

6. The computer-implemented method of any one of claims 1-5, wherein
the encoding of the 2D sparse bitmap comprises:

a depth-wise binary tree scanning order when there are more than one layer in
the layered structure, and

one of a row-wise raster order, a column-wise raster order, a zigzag order, an
order that follows the General Panel Panel Multiplication (GEPP)/ General Block Panel
Multiplication (GEBP) or a General Panel Matrix Multiplication (GEPM)/GEBP matrix

blocking structure when there is one layer in the layered structure.

7. The computer-implemented method of any one of claims 1-6, wherein

the GOC is an arbitrarily predefined size or matches the sparse bitmap blocking
structure when the reordered weight tensor is divided into multiple GOCs; and

the GOC is the size of the reordered weight tensor when there is a single GOC

for the reordered weight tensor.

8. The computer-implemented method of any one of claims 2-7, wherein

the codebook of the plurality of centroids is determined by a clustering algorithm.
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9. The computer-implemented method of any one of claims 2, wherein the
mapping of the weight coefficients in the GOC further comprises:

assigning each weight coefficient to a corresponding one of the plurality of
centroids based on a distance between the each weight coefficient and the
corresponding centroid; or

determining whether the weight coefficient is an escape coefficient, and

assigning each of the weight coefficients to a corresponding one of the plurality
of centroids based on a distance between the weight coefficient and the corresponding
one of the plurality of centroids when the weight coefficient is not an escape coefficient,
and assigning the weight coefficient a special value when the weight coefficient is an
escape coefficient.

10.  The computer-implemented method of any one of claims 1-9, wherein
the special value is the number of centroids in the codebook.

11.  The computer-implemented method of any one of claims 1-10, wherein
the generation of the codebook, further comprising:

defining a maximum allowable size for a palette predictor having a plurality of
centroids;

initializing the codebook of the plurality of centroids using the weight coefficients
from one of the one or more GOCs;

comparing the codebook of the plurality of centroids with the palette predictor;

replacing the plurality of centroids in the codebook with the plurality of centroids
in the palette predictor based on a rate distortion selection; and

iteratively updating the palette predictor with the plurality of centroids in the
codebook after encoding each of the one or more GOCs.

12.  The computer-implemented method of any one of claims 1-11, wherein
the encoding rate distortion measurement is set to optimize compression quality,

inference speed and power consumption.
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13. A non-transitory computer-readable medium storing computer
instructions for generating a compressed neural network weight tensor, that when
executed by one or more processors, cause the one or more processors to perform
the steps of:

receiving a weight tensor from a neural network to be compressed;

reordering the weight tensor of the neural network to be compressed to have
an inner two-dimensional (2D) shape of a 2D sparse bitmap;

generating a layered structure comprising one or more layers to represent the
reordered weight tensor;

dividing the reordered weight tensor into one or more group of coefficients
(GOCs);

selecting an encoding mode to generate a quantized reordered weight tensor
using one of a codebook or direct quantization by computing an encoding rate
distortion measurement;

generating a column swapped quantized reordered weight tensor by swapping
columns of the quantized reordered weight tensor according to a plurality of column
swapping indexes of the 2D sparse bitmap;

encoding at least one of the column swapped quantized reordered weight
tensor, the 2D sparse bitmap according to the layered structure, the codebook
including a plurality of centroids, or the plurality of column swapping indexes to form a
compressed representation of the neural network; and

transmitting the compressed representation of the neural network to a target

system.

14.  The non-transitory computer-readable medium of claim 13, further
comprising:

generating the codebook of the plurality of centroids in response to the
encoding mode selected to generate a quantized reordered weight tensor; and

generating the quantized reordered weight tensor using the codebook of the
plurality of centroids to represent the GOC by mapping the weight coefficients in the

GOC to a corresponding one of the plurality of centroids.
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15.  The non-transitory computer-readable medium any one of claims 13-14,
further comprising generating the quantized reordered weight tensor using direct

quantization.

16.  The non-transitory computer-readable medium of any one of claims 13-
15, wherein 2D sparse bitmap is determined by matching an underlying matrix
multiplication General Block Panel Multiplication (GEBP) left-hand-side (lhs) matrix
blocking structure.

17.  The non-transitory computer-readable medium of claim 16, wherein the
layered structure matches one of the underlying GEBP |hs matrix blocking structure,
a quad-tree block structure, or is defined to efficiently represent the 2D sparse bitmap.

18.  The non-transitory computer-readable medium of any one of claims 13-
17, wherein the encoding of the 2D sparse bitmap comprises:

a depth-wise binary tree scanning order when there are more than one layer in
the layered structure, and

one of a row-wise raster order, a column-wise raster order, a zigzag order, an
order that follows the General Panel Panel Multiplication (GEPP)/ General Block Panel
Multiplication (GEBP) or a General Panel Matrix Multiplication (GEPM)/GEBP matrix
blocking structure when there is one layer in the layered structure.

19.  The non-transitory computer-readable medium of any one of claims 13-
8, wherein

the GOC is an arbitrarily predefined size or matches the sparse bitmap blocking
structure when the reordered weight tensor is divided into multiple GOCs; and

the GOC is the size of the reordered weight tensor when there is a single GOC
for the reordered weight tensor.

20.  The non-transitory computer-readable medium of claim 14, wherein the
codebook of the plurality of centroids is determined by a clustering algorithm.
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21.  The non-transitory computer-readable medium of claim 14, wherein the
mapping of the weight coefficients in the GOC further comprises:

assigning each weight coefficient to a corresponding one of the plurality of
centroids based on a distance between the each weight coefficient and the
corresponding centroid; or

determining whether the weight coefficient is an escape coefficient, and

assigning each of the weight coefficients to a corresponding one of the plurality
of centroids based on a distance between the weight coefficient and the corresponding
one of the plurality of centroids when the weight coefficient is not an escape coefficient,
and assigning the weight coefficient a special value when the weight coefficient is an
escape coefficient.

22.  The non-transitory computer-readable medium of any one of claims 13-

21, wherein the special value is the number of centroids in the codebook.

23.  The non-transitory computer-readable medium of any one of claims 13-
22, wherein the generation of the codebook, further comprising:

defining a maximum allowable size for a palette predictor having a plurality of
centroids;

initializing the codebook of the plurality of centroids using the weight coefficients
from one of the one or more GOCs;

comparing the codebook of the plurality of centroids with the palette predictor;

replacing the plurality of centroids in the codebook with the plurality of centroids
in the palette predictor based on a rate distortion selection; and

iteratively updating the palette predictor with the plurality of centroids in the

codebook after encoding each of the one or more GOCs.

24.  The non-transitory computer-readable medium of any one of claims 13-
23, wherein the encoding rate distortion measurement is set to optimize compression

quality, inference speed and power consumption.
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