woO 20227260696 A1 | 000 K00 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual Propert J
(o wer Orgmiation 2 0 O 0 0 0O O 0 T

International Bureau % (10) International Publication Number

WO 2022/260696 Al

(43) International Publication Date
15 December 2022 (15.12.2022) WIRPOIPCT

(51) International Patent Classification: (72) Inventor: GRIGORE, Mircea, 90 Park Drive, 20th Floor,
GO6F 9/455 (2006.01) GOG6F 8/34 (2018.01) New York, NY 10016 (US).
GOGF 9/448 (2018.01) G060 10/10 (2012.01) (74) Agent: LEONARD, Michael, Aristo et al.; LeonardPatel
(21) International Application Number: PC, 218 North Lee Street, Suite 300, Alexandria, VA 22314
PCT/US2021/057166 (Us).
(22) International Filing Date: (81) Designated States (unless otherwise indicated, for every
29 October 2021 (29.10.2021) kind of national protection available). AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
(26) Publication Language: English Dz, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP, KR, KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD,

(25) Filing Language: English

(30) Priority Data:

17/340,603 07 June 2021 (07.06.2021) US ME. MG. MK. MN. MW, MX. MY. MZ. NA. NG, NL NO.
17/341,550 08 June 2021 (08.06.2021) US NZ. OM. PA. PE, PG, PH. PL. PT, QA. RO, RS. RU, RW.
(71) Applicant: UiPAth, In¢, [US/US]; 90 Park Avenue, 20th SA, SC, SD, SE, SG, 8K, SL, ST, SV, SY, TH, TJ, TM, TN,
Floor, New York, NY 10016 (US). TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(54) Title: WEB-BASED ROBOTIC PROCESS AUTOMATION DESIGNER SYSTEMS AND AUTOMATIONS FOR VIRTUAL
MACHINES, SESSIONS, AND CONTAINERS

" FIG. 8

(57) Abstract: Web-based robotic process automation (RPA) designer systems that allow RPA developers to design and implement web
serverless automations, user interface (UI) automations, and other automations are disclosed. Such web-based RPA designer systems
may allow a developer to sign in through the cloud and obtain a list of template projects, developer-designed projects, services, activities,
etc. Thus, RPA development may be centralized and cloud-based, reducing the local processing and memory requirements on a user' s
computing system and centralizing RPA designer functionality, enabling better compliance. Automations generated by the web-based
RPA designer systems may be deployed and executed in virtual machines (VMs), containers, or operating system sessions.

[Continued on next page]

WO 2022/260696 A1 | {1110 0000000 000

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2022/260696 PCT/US2021/057166

TITLE
WEB-BASED ROBOTIC PROCESS AUTOMATION DESIGNER SYSTEMS AND

AUTOMATIONS FOR VIRTUAL MACHINES, SESSIONS, AND CONTAINERS

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Patent Application No.
17/341,550 filed June 8, 2021, which is a continuation of, and claims the benefit of, U.S.
Patent Application No. 17/340,603 filed June 7, 2021. The subject matter of these

earlier filed applications is hereby incorporated by reference in its entirety.

FIELD

[0002] The present invention generally relates to robotic process automation (RPA),
and more specifically, to web-based RPA designer systems that allow RPA developers
to design and implement web serverless automations, user interface (UI) automations,

and other automations.

BACKGROUND

[0003] Policies of many organizations do not allow installing of additional software
or upgrading of existing software by employees directly on their own computing
systems. Such policies may be in place to attempt to ensure compliance with laws or
agreements in the U.S. and other countries, such as the E.U. General Data Protection
Regulation (GDPR), the U.S. Health Insurance Portability and Accountability Act

(HIPAA), third party terms of service, etc. Current RPA development software exists

WO 2022/260696 PCT/US2021/057166

as a desktop tool residing locally on a user’s computing system, which may require new
versions or capabilities for the software to be tested by IT and reviewed by compliance
officers before the new version or enhancement can be rolled out to users. Also, many
new capabilities and services are cloud-based. Accordingly, an improved and/or

alternative approach to RPA may be beneficial.

SUMMARY

[0004] Certain embodiments of the present invention may provide solutions to the
problems and needs in the art that have not yet been fully identified, appreciated, or
solved by current RPA technologies. For example, some embodiments of the present
invention pertain to web-based RPA designer systems that allow RPA developers to
design and implement web serverless automations, user interface (UI) automations, and
other automations.

[0005] In an embodiment, a system includes a developer computing system
including a web browser and a development server providing a web-based RPA designer
application. The web browser is configured to access and display a web interface of the
web-based RPA designer application. The web interface is configured to create RPA
projects, configure RPA workflows, and submit the RPA workflow configurations to
the web-based RPA designer application. The web-based RPA designer application is
configured to provide the web interface to the web browser, generate an automation
based on a submitted RPA workflow configuration from the web browser, execute the
generated automation via an RPA robot and validate the generated automation, and

provide results of the execution by the RPA robot and the validation of the generated

WO 2022/260696 PCT/US2021/057166

automation to the web browser. The generated automation is configured to be executed
by an RPA robot remotely in an operating system session, a VM, or a container.
[0006] In another embodiment, a non-transitory computer-readable medium stores a
computer program for a web-based RPA designer application. The computer program
is configured to cause at least one processor to provide a web interface to a web browser
of a computing system. The web interface is configured to provide functionality to
create RPA projects, configure RPA workflows, and submit the RPA workflow
configurations to the web-based RPA designer application. The computer program is
also configured to cause the at least one processor to generate an automation based on
a submitted RPA workflow configuration from the web browser, execute the generated
automation via an RPA robot, and validate the generated automation. The computer
program is further configured to cause the at least one processor to provide results of
the execution of the RPA robot and the validation of the generated automation to the
web browser. The generated automation is configured to be executed by a production
RPA robot at runtime remotely in an operating system session, a VM, or a container.
[0007] In yet another embodiment, a computer-implemented method for web-based
RPA includes generating an automation based on a submitted RPA workflow
configuration from a web browser, by a cloud-based computing system, executing the
generated automation via an RPA robot, and validating the generated automation, by
the cloud-based computing system. The computer-implemented method also includes
providing results of the execution of the RPA robot and the validation of the generated

automation to the web browser, by the cloud-based computing system. The generated

WO 2022/260696 PCT/US2021/057166

automation is configured to be executed by a production RPA robot at runtime remotely
in an operating system session, a VM, or a container.

[0008] In another embodiment, a cloud-based system includes memory storing
computer program instructions and at least one processor configured to execute the
computer program instructions. The computer program instructions are configured to
cause the at least one processor to run a plurality of RPA robots as runtime services.
The plurality of RPA robots are located in an operating system session, a VM, or a
container of the cloud-based system. The computer program instructions are also
configured to cause the at least one processor to execute automations, by the plurality
of RPA robots. The plurality of automations are accessible by the plurality of RPA
robots and located in the operating system session, the VM, or the container of the
cloud-based production server or located remotely to the cloud-based system.

[0009] In yet another embodiment, a non-transitory computer-readable medium
stores a computer program. The computer program is configured to cause at least one
processor to run an RPA robot as a runtime service. The RPA robot is located in an
operating system session, a VM, or a container. The computer program is also
configured to cause the at least one processor to execute an automation, via the RPA
robot. The automation is configured to cause the RPA robot to send one or more
commands to a web extension of a web browser of a client computing system. The web
extension is configured to interact with the web browser of the client computing system,
obtain information from one or more webpages in one or more tabs of the web browser

of the client computing system, or both. The web extension is also configured to provide

WO 2022/260696 PCT/US2021/057166

confirmation that the requested interaction occurred, provide the obtained information,
or both, to the RPA robot.

[0010] In still another embodiment, a computer-implemented method includes
running an RPA robot as a runtime service, by a cloud-based computing system. The
RPA robot is located in an operating system session, a VM, or a container of the
computing system. The computer-implemented method also includes executing an
automation, by the RPA robot. The automation is configured to cause the RPA robot to
send one or more requests to a local RPA extension process of a client computing system.
The local RPA extension process is configured to interact with one or more applications
and/or processes of the client computing system, obtain information from the one or
more applications and/or processes running on the client computing system, or both.
The local RPA extension process is also configured to provide confirmation that the
requested interaction occurred, provide the obtained information, or both, to the RPA
robot.

[0011] In another embodiment, a system includes a developer computing system
including a web browser and a development server providing a web-based RPA designer
application. The web-based RPA designer application is configured to cause the web
browser to download code for the web-based RPA designer application and display a
web interface for the web-based RPA designer application in the web browser. The web
interface is configured to provide functionality to create RPA projects and configure
RPA workflows. The web-based RPA designer application is also configured to cause
the web browser to generate an automation for a configured RPA workflow in the web

browser and execute and validate the generated automation in the web browser.

WO 2022/260696 PCT/US2021/057166

[0012] In yet another embodiment, a non-transitory computer-readable medium
stores a computer program. The computer program is configured to cause at least one
processor to download code for a web-based RPA designer application to a web browser
and display a web interface for the web-based RPA designer application in the web
browser. The web interface is configured to provide functionality to create RPA
projects and configure RPA workflows. The computer program is also configured to
cause the at least one processor to generate an automation for a configured RPA
workflow in the web browser and execute and validate the generated automation in the
web browser.

[0013] In still another embodiment, a computer-implemented method includes
downloading code for a web-based RPA designer application to a web browser, by a
computing system. The computer-implemented method also includes displaying a web
interface for the web-based RPA designer application in the web browser, by the
computing system. The web interface is configured to provide functionality to create
RPA projects and configure RPA workflows. The computer-implemented method
further includes generating an automation for a configured RPA workflow in the web
browser, by the computing system, and executing and validating the generated
automation in the web browser, by the computing system. Code for executing and
validating the generated automation is included in the downloaded code.

[0014] In another embodiment, a cloud-based system includes memory storing
computer program instructions and at least one processor configured to execute the
computer program instructions. The computer program instructions are configured to

cause the at least one processor to run an automation in a first web browser at runtime.

WO 2022/260696 PCT/US2021/057166

The first web browser is located in an operating system session, a VM, or a container of
the cloud-based system.

[001S] In yet another embodiment, a non-transitory computer-readable medium
stores a computer program. The computer program is configured to cause at least one
processor to run an automation in a first web browser at runtime. The first web browser
is located in an operating system session, a VM, or a container of the cloud-based system.
The automation is configured to cause the RPA robot to send one or more commands to
a web extension of a second web browser of a client computing system. The web
extension is configured to interact with the second web browser of the client computing
system, obtain information from one or more webpages in one or more tabs of the
second web browser of the client computing system, or both. The web extension is also
configured to provide confirmation that the requested interaction occurred, provide the
obtained information, or both, to the first web browser.

[0016] In still another embodiment, a computer-implemented method includes
running an automation in a web browser at runtime, by a computing system. The web
browser is located in an operating system session, a VM, or a container of the cloud-
based system. The automation is configured to cause the web browser to send one or
more requests to a local RPA extension process of a client computing system. The local
RPA extension process is configured to interact with one or more applications and/or
processes of the client computing system, obtain information from the one or more
applications and/or processes running on the client computing system, or both. The

local RPA extension process is also configured to provide confirmation that the

WO 2022/260696 PCT/US2021/057166

requested interaction occurred, provide the obtained information, or both, to the web

browser.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] In order that the advantages of certain embodiments of the invention will be
readily understood, a more particular description of the invention briefly described
above will be rendered by reference to specific embodiments that are illustrated in the
appended drawings. While it should be understood that these drawings depict only
typical embodiments of the invention and are not therefore to be considered to be
limiting of its scope, the invention will be described and explained with additional
specificity and detail through the use of the accompanying drawings, in which:

[0018] FIG. 1 is an architectural diagram illustrating a web-based RPA designer
system, according to an embodiment of the present invention.

[0019] FIG. 2 is an architectural diagram illustrating a computing system configured
to implement part or all of a web-based RPA designer system, according to an
embodiment of the present invention.

[0020] FIG. 3A is architectural diagram illustrating a web-based RPA system,
according to an embodiment of the present invention.

[0021] FIG. 3B illustrates automations and RPA robots running in a container, a VM,
or an operating system session, according to an embodiment of the present invention.
[0022] FIG. 4A illustrates a home page view of a web-based RPA development

application webpage, according to an embodiment of the present invention.

WO 2022/260696 PCT/US2021/057166

[0023] FIG. 4B illustrates the home page view of the web-based RPA development
application webpage with a new automation window displayed, according to an
embodiment of the present invention.

[0024] FIG. 4C illustrates a canvas view of the web-based RPA development
application webpage, according to an embodiment of the present invention.

[0025] FIG. 4D illustrates the canvas view of the web-based RPA development
application webpage with an activity categories and quick actions window, according
to an embodiment of the present invention.

[0026] FIG. 4E illustrates the canvas view of the web-based RPA development
application webpage with an Excel® activities window, according to an embodiment of
the present invention.

[0027] FIG. 4F illustrates the canvas view of the web-based RPA development
application webpage with an unconfigured use Excel® file activity, according to an
embodiment of the present invention.

[0028] FIG. 4G illustrates the canvas view of the web-based RPA development
application webpage after the use Excel® file activity has been configured, according to
an embodiment of the present invention.

[0029] FIG. 5 is a flowchart illustrating a process for performing web-based RPA
development at design time, according to an embodiment of the present invention.
[0030] FIG. 6 is a flowchart illustrating a process for executing an automation at
runtime that interacts with a web extension, according to an embodiment of the present

invention.

WO 2022/260696 PCT/US2021/057166

[0031] FIG. 7 is a flowchart illustrating a process for executing an automation at
runtime that runs in a VM or a container, according to an embodiment of the present
invention.

[0032] FIG. 8 is architectural diagram illustrating a web-based RPA system
configured to interact with local applications, according to an embodiment of the present
invention.

[0033] FIG. 9 is a flowchart illustrating a process for executing an automation at
runtime that interacts with a local RPA extension process running on a different
computing system than an RPA robot, according to an embodiment of the present
invention.

[0034] FIG. 10 is a flowchart illustrating a process for performing web-based RPA
development at design time via a web browser without an RPA robot, according to an
embodiment of the present invention.

[0035] FIG. 11 is a flowchart illustrating a process for executing an automation at
runtime in a web browser of a container, VM, or operating system session, according to
an embodiment of the present invention.

[0036] Unless otherwise indicated, similar reference characters denote corresponding

features consistently throughout the attached drawings.

DETAILED DESCRIPTION OF THE EMBODIMENTS

[0037] Some embodiments pertain to web-based RPA designer systems that allow
RPA developers to design and implement web serverless automations, Ul automations,
and other automations. In some embodiments, the web-based RPA designer system, the

10

WO 2022/260696 PCT/US2021/057166

automations generated by the system, or both, are provided in a cloud-based
environment, for example. Such embodiments may not require desktop installation, and
may allow a user to sign in through the cloud and obtain a list of template projects,
developer-designed projects, services, activities, etc. Thus, RPA development may be
centralized and cloud-based in some embodiments, reducing the local processing and
memory requirements on a user’s computing system and centralizing RPA designer
functionality, enabling better compliance. Such embodiments may also enable the RPA
service provider to maintain and upgrade the RPA designer system on their end,
reducing maintenance issues and costs associated with upgrades and adding new
functionality by customers. This may also enable faster and more regular updates,
rollout of new features, bug fixes, etc.

[0038] In some embodiments, an RPA developer may access the cloud-based RPA
designer system via a web browser. He or she may initially be greeted with a home
page (see FIG. 7A, for example), from which projects can be created and information
regarding what the user wants to build can be provided. A “canvas” webpage may then
appear (see FIG. 7C, for example), on which the user can build the desired RPA
automation. For instance, in some embodiments, the user can configure RPA activities
in an RPA workflow and control how the automation will run (e.g., manually, based on
a trigger, scheduled, etc.). After the RPA workflow is designed as intended, the user
can publish the RPA workflow in some embodiments, and the automation can be
deployed as desired.

[0039] In some embodiments, the web-based RPA designer system provides users

with the ability to design, edit, and test server-side workflows, serverless workflows,

11

WO 2022/260696 PCT/US2021/057166

long-running workflows (e.g., workflows that may wait for certain processes to
complete or for certain input before resuming operation), orchestration processes,
headless workflows, background processes, non-UI automation workflows, workflows
that commonly do not require user interaction, etc. Serverless workflows created in a
web-based RPA designer system, for example, may be saved to the cloud and users can
manually run and debug server-side workflows via a web browser. The packages may
be published to a cloud (e.g., a server-side) orchestrator and assistant. Projects may be
compiled when published as packages.

[0040] The triggers in some embodiments are application programming interface
(AP]) triggers. API triggers are program-to-program calls that may come from an
application or operating system (OS) and may result from various user or software
events, such as a user interacting with a user interface (e.g., clicking a button) or entering
certain information, a notification that an email has been received, a graphical element
appearing on a screen, a key being pressed, a file changing, an element attribute
changing, an OS-level event, etc. Triggers may be implemented as classes with events
being instances of the classes, and events can be detected via event listeners.

[0041] The web-based RPA designer system of some embodiments can develop UI
automations that are configured to respond to at least two types of API triggers, such as
push triggers and pull triggers. Pull triggers may run repeatedly (e.g., every time the
OS cycles through processes that are looking for information, every second, every
minute, every ten minutes, etc.) and check whether a change pertinent to that trigger has
occurred, such as a flag indicating that a new email has been received, checking a value

of a text field to see whether the text changed, etc. Push triggers are application-

12

WO 2022/260696 PCT/US2021/057166

generated events (e.g., web hooks) that cause a listener to react when they are fired.
This could also occur responsive to a new email being received, due to a request from a
server, due to a user clicking a button, etc.

[0042] Thereis also a distinction between web triggers and “desktop” (local) triggers.
Desktop triggers tend to be based on what is occurring on a user’s computing system.
Web triggers, on the other hand, occur on a web server and can be global. Multiple
clients (e.g., two, ten, all, etc.) may receive the web trigger.

[0043] However, in some embodiments, Ul automations may be built from a web
interface on top of applications that exist on the web. For instance, if there is a tab on a
webpage for Workday®, an RPA developer may use the cloud-based RPA designer
system of some embodiments to interact with this page and create an automation on top
of it. This automation may run server-side (e.g., in the cloud) and be executed in a
virtual machine (VM), as is discussed in more detail later herein. Multiple VMs may
run on a single server, and each VM typically has its own operating system and
applications.

[0044] In some embodiments, for UI automations, a taxonomy of Ul elements may
be provided that allows a user to interact with buttons, text fields, etc. The taxonomy
may be hierarchical and specify a relationship between the Ul elements, such as which
elements are located in which page and/or part of a page. For example, a user may
select an OK button from the taxonomy and cause the automation to click that button.
[0045] In some embodiments, web-based Ul automations are assisted by web
browser extensions (e.g., a Google Chrome® extension, a plugin for another web

browser, or any other suitable mechanism for extending the functionality of the web

13

WO 2022/260696 PCT/US2021/057166

browser) that can be installed and communicate with tabs in the web browser to obtain
information and implement UI automations locally. For instance, such extensions may
be able to click on the browser, get text from browser elements, etc. and provide this
information to an RPA robot. In some embodiments, the web browser and RPA
designer application may both be located on the RPA developer’s computing system.
However, in certain embodiments, the web-based RPA designer application is located
remotely and the RPA developer interacts with the web-based RPA designer application
via the web browser. This may enable the web-based RPA designer application to be
maintained and upgraded by the company that created the RPA designer application and
automatically keep the application up-to-date.

[0046] At runtime, the extension may be located on the user’s computing system and
the automation code may be located remotely (e.g., on a server, in a cloud-based
environment, etc.). An operating system session may exist on the user’s local
computing system where a web application is open and running. The UI automation,
via the web extension, instructs the web application to perform the desired action. Per
the above, in some embodiments, automations may run in a VM on a server and may
not need to interact with a web browser extension on a user computing system to
implement its functionality.

[0047] In some embodiments, a “headless browser” may be used, where an
interactive session on Windows® or some other operating system is not required. Such
a headless browser could run on any OS in some embodiments, such as in a Linux®
container. Containers contain applications such that they are isolated from the host

system on which they run. An automation together with the libraries and other

14

WO 2022/260696 PCT/US2021/057166

dependencies it uses, could be packaged into the container. The automation may be
designed with a web-based RPA designer system, but could then be called from an API
and the call could be translated to a serverless session. As such, headless browser
automations do not require an open web browser, an interactive session, and a
Windows®™ VM, for example.

[0048] Insome embodiments, a serverless session may be in a container, a VM, or a
Windows® session, for example. As many serverless sessions may be run as the
computing system can handle with its hardware resources. These serverless workflows
may appear as running processes in the operating system, for example.

[0049] In order to design a Ul automation for a headless browser, a design
experience similar to a desktop RPA designer application may be provided, where user
interactions with the web browser can be recorded and/or indicate on screen
functionality, capture element functionality, etc. may be provided. The recorder may
be located one level above the current browser tab that the user is interacting with. This
could be implemented via a Chrome® extension or some other browser extension that
gives access to the browser itself. The extension may interact with open tabs to design
the UI automation (e.g., clicking elements, creating tables, etc.) for a loaded page at
design time. Once published or otherwise made available for runtime use, the headless
browser UI automation can be scheduled to be executed in a Linux® container, for
example, rather than in a VM session. While this is called a “UI automation” here given
how it is designed, no Ul is actually displayed to a user when the headless browser Ul

automation runs.

15

WO 2022/260696 PCT/US2021/057166

[0050] The web-based RPA designer system of some embodiments allows users to
build UI automations and other automations. As used herein, “automations” are the
code that implements the RPA workflow logic, such as those developed by the web-
based RPA designer system of some embodiments. The environment in which the
automation runs may depend on what the automation does. If the automation is an
attended automation that is intended to be visible performing Ul interactions and/or asks
a user for input, a VM with Windows® installed may be used so the UI automation can
run successfully. However, if the UI automation does not need to be visible or ask for
user input, such as headless browser automation, such an automation may be run in a

Linux®

container, for example. A web extension may be used for a web-based
application where information is needed from an end user’s computing system and the
Ul automation is headless. Otherwise, if desired, this functionality may be implemented
by spinning up a VM.

[0051] VMs or Linux® containers are used in some embodiments when the RPA
developer would like to create a Ul automation or another automation and run it directly
without installing and running the automation locally on the user’s computing system.
The actions that would otherwise occur on the user’s computing system instead happen
in the VM or container. In order to manage such VMs or containers, automatically or
manually provisioned pools may be used. Automatically provisioned pools may be
elastic and the number of VMs or containers in the pool may be increased or decreased

depending on demand. Manually provisioned pools, on the other hand, may include the

number of VMs or containers specified by a human (e.g., an administrator).

16

WO 2022/260696 PCT/US2021/057166

[0052] “Serverless” (unattended) automations do not need a typical server to run and
may be run in a Linux® container, for example. Serverless automations developed using
the web-based RPA designer system of some embodiments may be scheduled to run at
certain times or otherwise run without user interactions. For instance, when a certain
email is received, a message may be sent via Slack® When a job fails on a conductor
application, the job may be rerun, or if the job fails with a particular error, an email may
be sent to an administrator instead of rerunning the job. Any suitable automations may
be developed and implemented without deviating from the scope of the invention. Ul
automations may also be run at certain times or in response to user requests or actions.

[0053] Insome embodiments, a dedicated set of UI activities is provided to automate
web functionality. For instance, activities that recognize and interact with web
components may be tailored to more accurately detect shapes and layouts that tend to
be present in web applications, potentially taking into account visual differences
between browsers.

[0054] In some embodiments, integration may be provided between the web-based
RPA designer application and a desktop-based RPA designer application. For instance,
project data for a given Ul automation may be saved in a common format that both
designer application versions can read, such as XAML. This may enable an RPA
developer to work on a UI automation offline on his or her laptop while traveling, upload
the project to the cloud when Internet access is available, and then continue working on
the UI automation using a web browser. Data may also be synced between the web
version and the desktop version of the designer application in some embodiments. Also,

use of a web-based designer application may reduce the local memory footprint and

17

WO 2022/260696 PCT/US2021/057166

processing requirements for each user, as well as facilitate design collaboration between
multiple web users.

[0055] In some embodiments, the automation is designed and packaged to be
executed by RPA robots executing in a VM, container, or operating system session
without modifying the automation package for a specific platform. In other words, the
same package can be runin a VMware® VM, a Linux® container, or a Windows® session,
for example, without modifying the package. RPA robots may be designed for a specific
target platform and deployed thereon, but a common format may be used for running
automations. For instance, the workflow may be described in XAML or some other
format that the RPA robots on each platform may be designed to read and execute in
compiled machine code (e.g., digital link libraries (DLLs)). This may provide code
obfuscation and security, as well as potentially make the automation run faster.
However, in certain embodiments, the automation may be a script in XAML, XML,
plain text, or some other suitable format.

[0056] FIG. 1 is an architectural diagram illustrating a web-based RPA designer
system 100, according to an embodiment of the present invention. RPA system 100
includes a web browser 110 (e.g., running on an RPA developer’s computing system)
that allows a developer to design and implement RPA workflows via a cloud-based web
application 120. Web browser 110, via web application 120, may provide a solution for
application integration, as well as automating third-party applications, administrative
Information Technology (IT) tasks, and business IT processes. Web browser 110 and
web application 120 may facilitate development of an automation project, which

includes a graphical representation of a process. Simply put, web browser 110 and web

18

WO 2022/260696 PCT/US2021/057166

application 120 facilitate the development of RPA workflows and the deployment of
automations that can be implemented by RPA robots running as services.

[0057] The automation project enables automation of rule-based processes by giving
the RPA developer control of the execution order and the relationship between a custom

29

set of steps developed in a workflow, defined herein as “activities.” One commercial
example of an embodiment of web application 120 is UiPath Studio Web™. Each
activity may include an action, such as clicking a button, reading a file, writing to a log
panel, etc. In some embodiments, workflows may be nested or embedded.

[0058] Some types of workflows may include, but are not limited to, sequences,
flowcharts, Finite State Machines (FSMs), and/or global exception handlers. Sequences
may be particularly suitable for linear processes, enabling flow from one activity to
another without cluttering a workflow. Flowcharts may be particularly suitable to more
complex business logic, enabling integration of decisions and connection of activities
in a more diverse manner through multiple branching logic operators. FSMs may be
particularly suitable for large workflows. FSMs may use a finite number of states in
their execution, which are triggered by a condition (i.e., transition) or an activity. Global
exception handlers may be particularly suitable for determining workflow behavior
when encountering an execution error and for debugging processes.

[0059] Once a workflow is developed in web browser 110, execution of the
automation may be tested using web application 120. However, in some embodiments,
web browser 110 includes the automation generating and testing functionality of web
application 120. After an automation is functioning properly and ready for deployment

on a production server 140, the automation is deployed to a container, a VM, or a server

19

WO 2022/260696 PCT/US2021/057166

operating system session of production server 140 in the form of machine-readable code
or a script. In some embodiments, robots 130 are orchestrated by conductor 150. RPA
robots 130 may then execute the deployed automations as desired. Types of robots 130
that may be managed include, but are not limited to, attended robots 132, unattended
robots 134, development robots (similar to unattended robots 134, but used for
development and testing purposes), and nonproduction robots (similar to attended
robots 132, but used for development and testing purposes). Attended robots 132 are
triggered by user events and operate alongside a human on the same computing system.
For instance, attended robots 132 may perform UI automation, provide fillable forms,
etc. Attended robots 132 may help the human user accomplish various tasks, and may
be triggered by user events. In certain embodiments, attended robots 132 can only be
started from a robot tray or from a command prompt. Attended robots 132 should run
under human supervision in some embodiments.

[0060] Unattended robots 134 may run unattended in virtual environments,
containers, or operating system sessions, and can automate many processes. Unattended
robots 134 may be responsible for remote execution, monitoring, scheduling, and
providing support for work queues, for instance. Debugging for all robot types may be
run in web browser 110 and web application 120 in some embodiments. Both attended
and unattended robots may automate various systems and applications including, but
not limited to, mainframes, web applications, VMs, containers, enterprise applications
(e.g., those produced by SAP®, SalesForce®, Oracle®, etc.), and computing system
applications (e.g., desktop and laptop applications, mobile device applications, wearable

computer applications, etc.).

20

WO 2022/260696 PCT/US2021/057166

[0061] Robots 130 are execution agents that run workflows built in web browser

110 via web application 120. One commercial example of some embodiments of robot(s)
130 is UiPath Robots™. In some embodiments, robots 130 install the Microsoft

Windows® Service Control Manager (SCM)-managed service by default. As a result,

such robots 130 can open interactive Windows® sessions under the local system account,
and have the rights of a Windows® service.

[0062] In some embodiments, robots 130 can be installed in a user mode. For such

robots 130, this means they have the same rights as the user under which a given robot

130 has been installed. This feature may also be available for High Density (HD) robots,

which ensure full utilization of each machine at its maximum potential. In some

embodiments, any type of robot 130 may be configured in an HD environment.

[0063] Executors may run given jobs under a Windows® session (i.e., they may

execute workflows. Executors may be aware of per-monitor dots per inch (DPI) settings.
Agents may be Windows® Presentation Foundation (WPF) applications that display the

available jobs in the system tray window. Agents may be a client of the service. Agents

may request to start or stop jobs and change settings. The command line is a client of
the service. The command line is a console application that can request to start jobs and

waits for their output.

[0064] Having components of robots 130 split as explained above helps developers,

support users, and computing systems more easily run, identify, and track what each

component is executing. Special behaviors may be configured per component this way,

such as setting up different firewall rules for the executor and the service. The executor

may always be aware of DPI settings per monitor in some embodiments. As a result,

21

WO 2022/260696 PCT/US2021/057166

workflows may be executed at any DPI, regardless of the configuration of the computing
system on which they were created. Projects from web browser 110 and web application
120 may also be independent of browser zoom level in some embodiments. For
applications that are DPI-unaware or intentionally marked as unaware, DPI may be
disabled in some embodiments.

[0065] In some embodiments, conductor 150 may have various capabilities
including, but not limited to, provisioning, deployment, configuration, queueing,
monitoring, logging, and/or providing interconnectivity. In certain embodiments,
conductor 150 may be deployed remotely to production server 140. Provisioning may
include creating and maintenance of connections between robots 130 and conductor 150
(e.g., via a conductor web application). Deployment may include assuring the correct
delivery of package versions to assigned robots 130 for execution. Configuration may
include maintenance and delivery of robot environments and process configurations.
Queueing may include providing management of queues and queue items. Monitoring
may include keeping track of robot identification data and maintaining user permissions.
Logging may include storing and indexing logs to a database (e.g., an SQL database)
and/or another storage mechanism (e.g., ElasticSearch®, which provides the ability to
store and quickly query large datasets). Conductor 150 may provide interconnectivity
by acting as the centralized point of communication for third-party solutions and/or
applications. Conductor 150 may manage the infrastructure, which includes deployed
robots and computing systems on which the deployed robots operate.

[0066] FIG. 2 is an architectural diagram illustrating a computing system 200

configured to implement part or all of a web-based RPA designer system, according to

22

WO 2022/260696 PCT/US2021/057166

an embodiment of the present invention. In some embodiments, computing system 200
may be one or more of the computing systems depicted and/or described herein.
Computing system 200 includes a bus 205 or other communication mechanism for
communicating information, and processor(s) 210 coupled to bus 205 for processing
information. Processor(s) 210 may be any type of general or specific purpose processor,
including a Central Processing Unit (CPU), an Application Specific Integrated Circuit
(ASIC), a Field Programmable Gate Array (FPGA), a Graphics Processing Unit (GPU),
multiple instances thereof, and/or any combination thereof. Processor(s) 210 may also
have multiple processing cores, and at least some of the cores may be configured to
perform specific functions. Multi-parallel processing may be used in some
embodiments. In certain embodiments, at least one of processor(s) 210 may be a
neuromorphic circuit that includes processing elements that mimic biological neurons.
In some embodiments, neuromorphic circuits may not require the typical components
of a Von Neumann computing architecture.

[0067] Computing system 200 further includes a memory 215 for storing
information and instructions to be executed by processor(s) 210. Memory 215 can be
comprised of any combination of Random Access Memory (RAM), Read Only Memory
(ROM), flash memory, cache, static storage such as a magnetic or optical disk, or any
other types of non-transitory computer-readable media or combinations thereof. Non-
transitory computer-readable media may be any available media that can be accessed
by processor(s) 210 and may include volatile media, non-volatile media, or both. The

media may also be removable, non-removable, or both.

23

WO 2022/260696 PCT/US2021/057166

[0068] Additionally, computing system 200 includes a communication device 220,
such as a transceiver, to provide access to a communications network via a wireless
and/or wired connection. In some embodiments, communication device 220 may be
configured to use Frequency Division Multiple Access (FDMA), Single Carrier FDMA
(SC-FDMA), Time Division Multiple Access (TDMA), Code Division Multiple Access
(CDMA), Orthogonal Frequency Division Multiplexing (OFDM), Orthogonal
Frequency Division Multiple Access (OFDMA), Global System for Mobile (GSM)
communications, General Packet Radio Service (GPRS), Universal Mobile
Telecommunications System (UMTS), ¢cdma2000, Wideband CDMA (W-CDMA),
High-Speed Downlink Packet Access (HSDPA), High-Speed Uplink Packet Access
(HSUPA), High-Speed Packet Access (HSPA), Long Term Evolution (LTE), LTE
Advanced (LTE-A), 802.11x, Wi-Fi, Zigbee, Ultra-WideBand (UWB), 802.16x, 802.15,
Home Node-B (HnB), Bluetooth, Radio Frequency Identification (RFID), Infrared Data
Association (IrDA), Near-Field Communications (NFC), fifth generation (5G), New
Radio (NR), any combination thereof, and/or any other currently existing or future-
implemented communications standard and/or protocol without deviating from the
scope of the invention. In some embodiments, communication device 220 may include
one or more antennas that are singular, arrayed, phased, switched, beamforming,
beamsteering, a combination thereof, and or any other antenna configuration without
deviating from the scope of the invention.

[0069] Processor(s) 210 are further coupled via bus 205 to a display 225, such as a
plasma display, a Liquid Crystal Display (LCD), a Light Emitting Diode (LED) display,

a Field Emission Display (FED), an Organic Light Emitting Diode (OLED) display, a

24

WO 2022/260696 PCT/US2021/057166

flexible OLED display, a flexible substrate display, a projection display, a 4K display,
a high definition display, a Retina® display, an In-Plane Switching (IPS) display, or any
other suitable display for displaying information to a user. Display 225 may be
configured as a touch (haptic) display, a three-dimensional (3D) touch display, a multi-
input touch display, a multi-touch display, etc. using resistive, capacitive, surface-
acoustic wave (SAW) capacitive, infrared, optical imaging, dispersive signal
technology, acoustic pulse recognition, frustrated total internal reflection, etc. Any
suitable display device and haptic I/O may be used without deviating from the scope of
the invention.

[0070] A keyboard 230 and a cursor control device 235, such as a computer mouse,
a touchpad, etc., are further coupled to bus 205 to enable a user to interface with
computing system 200. However, in certain embodiments, a physical keyboard and
mouse may not be present, and the user may interact with the device solely through
display 225 and/or a touchpad (not shown). Any type and combination of input devices
may be used as a matter of design choice. In certain embodiments, no physical input
device and/or display is present. For instance, the user may interact with computing
system 200 remotely via another computing system in communication therewith, or
computing system 200 may operate autonomously.

[0071] Memory 215 stores software modules that provide functionality when
executed by processor(s) 210. The modules include an operating system 240 for
computing system 200. The modules further include a web-based RPA module 245 that

is configured to perform all or part of the processes described herein or derivatives

25

WO 2022/260696 PCT/US2021/057166

thereof. Computing system 200 may include one or more additional functional modules
250 that include additional functionality.

[0072] One skilled in the art will appreciate that a “system” could be embodied as a
server, an embedded computing system, a personal computer, a console, a personal
digital assistant (PDA), a cell phone, a tablet computing device, a quantum computing
system, or any other suitable computing device, or combination of devices without
deviating from the scope of the invention. Presenting the above-described functions as
being performed by a “system” is not intended to limit the scope of the present invention
in any way, but is intended to provide one example of the many embodiments of the
present invention. Indeed, methods, systems, and apparatuses disclosed herein may be
implemented in localized and distributed forms consistent with computing technology,
including cloud computing systems. The computing system could be part of or
otherwise accessible by a local area network (LAN), a mobile communications network,
a satellite communications network, the Internet, a public or private cloud, a hybrid
cloud, a server farm, any combination thereof, etc. Any localized or distributed
architecture may be used without deviating from the scope of the invention.

[0073] It should be noted that some of the system features described in this
specification have been presented as modules, in order to more particularly emphasize
their implementation independence. For example, a module may be implemented as a
hardware circuit comprising custom very large scale integration (VLSI) circuits or gate
arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete

components. A module may also be implemented in programmable hardware devices

26

WO 2022/260696 PCT/US2021/057166

such as field programmable gate arrays, programmable array logic, programmable logic
devices, graphics processing units, or the like.

[0074] A module may also be at least partially implemented in software for
execution by various types of processors. An identified unit of executable code may,
for instance, include one or more physical or logical blocks of computer instructions
that may, for instance, be organized as an object, procedure, or function. Nevertheless,
the executables of an identified module need not be physically located together, but may
include disparate instructions stored in different locations that, when joined logically
together, comprise the module and achieve the stated purpose for the module. Further,
modules may be stored on a computer-readable medium, which may be, for instance, a
hard disk drive, flash device, RAM, tape, and/or any other such non-transitory
computer-readable medium used to store data without deviating from the scope of the
invention.

[007S] Indeed, a module of executable code could be a single instruction, or many
instructions, and may even be distributed over several different code segments, among
different programs, and across several memory devices. Similarly, operational data may
be identified and illustrated herein within modules, and may be embodied in any suitable
form and organized within any suitable type of data structure. The operational data may
be collected as a single data set, or may be distributed over different locations including
over different storage devices, and may exist, at least partially, merely as electronic
signals on a system or network.

[0076] FIG. 3A is architectural diagram illustrating a web-based RPA system 300,

according to an embodiment of the present invention. System 300 includes user

27

WO 2022/260696 PCT/US2021/057166

computing systems, such as desktop computer 302, tablet 304, and smart phone 306.
However, any desired computing system may be used without deviating from the scope
of invention including, but not limited to, smart watches, laptop computers, Internet-of-
Things (IoT) devices, vehicle computing systems, etc.

[0077] Each computing system 302, 304, 306 has a web browser 310 installed
thereon. Web browser 310 may include an extension that carries out the local part of a
Ul automation, such as performing mouse clicks, entering text into text fields, providing
screenshots, providing information appearing in text fields or other components of the
web page, etc. Such an extension may be useful for attended automations, for example.
In certain embodiments, computing systems 302, 304, 306 may run RPA robots that
have been developed using a web-based RPA designer system that retrieves elements
for PowerPoint®, Outlook®, etc. from a UI object repository. See, for example, U.S.
Patent Application No. 16/922,289. Elements for the target application (e.g., items
within an object repository, such as applications, screens, and Ul elements, where
applications group screens and screens group Ul elements) may be added to the
workflow (e.g., by dragging-and-dropping elements into activities). Web browser 310
may be any desired type of web browser without deviating from the scope of the
invention.

[0078] A Ul object repository may include UI object libraries of UI objects that may
be grouped by applications, application versions, application screens, collections of UI
elements, a combination thereof, etc. The Ul object repository of UI object libraries in
some embodiments may facilitate the managing, reusing, and increasing the reliability

of UI descriptors in a project. To make UI objects reusable, they may be extracted into

28

WO 2022/260696 PCT/US2021/057166

UI object libraries that can be referenced by RPA processes. When selectors or other
UI descriptors are modified due to a new version of an application, for example, the
library may be recreated (or republished) to include the modified UI descriptors. RPA
processes using the UI object library may then call the modified UI descriptor versions.
[0079] UI descriptors from a Ul object library may be added directly to an RPA
workflow activity, saving developer time that may otherwise be required to create a
custom selector for the activity. The object browser may provide a database storing
created selectors in object libraries to enable the reusability of UI descriptors. An object
library is defined herein as a collection of Ul descriptors corresponding to one or more
screens from a certain version of an application. A UI descriptor is a set of instructions
for finding a UI element.

[0080] Web browser 310 runs web applications and provides information pertaining
to these web applications via a network 320 (e.g., a local area network (LAN), a mobile
communications network, a satellite communications network, the Internet, any
combination thereof, etc.) to a server 330 in a cloud environment. Server 330 runs a
hosting environment 332 (e.g., a container, a VM, or an operating system session)
including automations 334 and RPA robots 336 that interact with web browsers 310 via
the extensions and/or implement their own process(es) separate from web browsers 310.
See FIG. 6B. For instance, automations 334 and RPA robots 336 may run within a VM
or a container and may be headless in some embodiments. Server 330 may store data
for automations 334 (e.g., different versions of automations 334, an object repository,
etc.) in a database 340 in some embodiments and load them or otherwise make them

available for execution by RPA robots 336.

29

WO 2022/260696 PCT/US2021/057166

[0081] RPA robots 336 differ from automations 334 in that RPA robots 336 are
machine-side services that are installed and run on a given computing system, such as
server 330. RPA robots 336 may wait from requests from a conductor application (e.g.,
UiPath Orchestrator™), an RPA designer application, etc. and then run the requested
automation after receipt of the request. A respective RPA robot 336 receives the
definition of an automation 334 in the form of machine-readable code or a script and
runs it. Automations 334, on the other hand, are the embodiments of workflows in the
form of a package, for example. Packages are used and run by RPA robots 336 in some
embodiments.

[0082] Automations 334 may be designed by an RPA developer using a web-based
RPA designer application 352 running on computing system 350. However, in some
embodiments, the web-based RPA designer application is remote to computing system
350 and accessed via a web browser. The RPA developer can create or select projects,
create or modify RPA workflows, add/modify/remove RPA workflow activities, etc. In
some embodiments, web-based RPA designer application 352 allows the RPA
developer to select elements from a Ul object repository and use these elements in
activities of the RPA workflows via respective Ul descriptors. The RPA developer may
also cause automations 334 to be generated on server 330, perform testing, and deploy
automations 334 once ready to be used by end users, used as part of a pool by server
330, deployed in containers, VMs, or operating system sessions 332, etc. In some
embodiments, automations are generated locally in the web browser of computing

system 350 and tested and validated there rather than being run remotely.

30

WO 2022/260696 PCT/US2021/057166

[0083] FIG. 4A is a screenshot illustrating a home page view of a web-based RPA
development application webpage 400, according to an embodiment of the present
invention. Various sample projects may be displayed to the user if these have been
created. The RPA developer can create a new automation by clicking new automation
button 410. In some embodiments, other options may be presented, such as a set of
project types that may include, but are not limited to, process, library project, test
automation project, trigger-based process, etc. The user may also reopen, edit, and re-
publish projects that have already been created.

[0084] When the RPA developer clicks new automation button 410, a new
automation window 420 appears. See FIG. 4B. The user can enter a name and
description for the automation and create a new project by clicking a create button.
However, any other desired information may be provided without deviating from the
scope of the invention, such as the developer(s), the target company, etc.

[0085] After the RPA developer creates a new automation project, a canvas 430
appears where the automation can be designed. See FIG. 4C. A starting option
designation 432 allows a user to indicate how the automation will start. Here, the
automation is configured to start manually. However, the user may change the start
condition to another option, such as based on a trigger (e.g., a user clicking a button on
a webpage, a certain webpage being opened, a web form being submitted, etc.), based
on a desired start time, based on a desired periodic run time (e.g., the first of each month
at midnight), etc. Activities can be added by the user by clicking empty activity 434.
[0086] When the user clicks empty activity 434, an activity categories and quick

actions window 440 appears. See FIG. 4D. The user can search for or choose from the

31

WO 2022/260696 PCT/US2021/057166

listed categories. For instance, if the user clicks Excel®, an Excel® activities window
450 appears with options for Excel® activities. See FIG. 4E.

[0087] If the user chooses to use an Excel® file, a use Excel® file activity 460 is
created that can be configured once the user provides connection information after
clicking Connect Now button 461. For certain applications, permissions need to be
granted to the web-based RPA designer application, a robot tray process (e.g., UiPath
Assistant™), or other services to access applications and other processes. Credentials
may be saved and reused for future automations. When the RPA robot executes an
automation, the RPA robot may look at the connections that the automation needs and
under which credentials the automation will run. The RPA robot may be configured to
access these credentials without changing the underlying workflow logic, and may ask
a user to enter credentials if they cannot be found or do not work properly. Files may
be hosted in the cloud, stored in in a remote database, etc. The end of the activity is
designated by an end of use Excel® file indicator 462. See FIG. 4F.

[0088] Other activities, conditional logic, etc. can be added and configured within
use Excel® file activity 460 by clicking empty activity 464. This may bring up the same
or a similar window to window 440 of FIG. 4D. An option 436 to run a test automation
and an option 438 to share the UI automation project also appear. This may allow the
user to validate workflows as they are created, as well as share their work with others.
[0089] When the user configures an activity, various options appear. For instance,
if the user clicks Connect Now button 461 and provides login information to access a
remote file and/or application, options appear on the right side in an options pane 470.

See FIG. 4G. In this case, the user selects the Excel® file “Apollo components list. xIsx”

32

WO 2022/260696 PCT/US2021/057166

from file selection menu 471. The file name appears in file name listing 472. The user
can test the configuration of the activity using test activity menu 473, as well as
configure general options 474 and basic options 475, which are groupings of properties
specific to a given activity. More specific options can also be configured. For instance,
the user can choose iterate over each checkbox 476, which allows the user to select the
element in the spreadsheet that the activity will iterate over. Here, the user has selected
“Row” with option 477 and “Sheet 1” of the spreadsheet with option 478.

[0090] In some embodiments, users may or may not be allowed to publish or run
automations with analysis errors, depending on governance rules. Validation errors are
prerequisites to running and publishing automations in some embodiments, and may be
permitted for all users. However, static code analysis errors may not be permitted, and
may be identified as such.

[0091] To test automations that have been developed with a web-based RPA
designer, such as that shown in FIGS. 4A-G, execution may happen server-side (e.g., in
the cloud) as opposed to on the developer’s computing system. No further configuration
may be needed by the RPA developer other than to design the automation and execute
it. Execution may happen on a remote VM, which may or may not be configured by the
RPA developer in a conductor application, such as UiPath Orchestrator®, for example.
The RPA developer may be notified of a successful execution or provided with
execution errors and/or violations of governance rules via the web browser portion of
the web-based RPA designer. In certain embodiments, RPA workflows may be
reviewed by individuals with the appropriate permissions before the automation is

approved and published for production use (i.e., runtime use).

33

WO 2022/260696 PCT/US2021/057166

[0092] It should be noted that FIGS. 4A-G are provided by way of example only,
and that various other activities and conditions may be configured without deviating
from the scope of the invention. For instance, the RPA developer may choose to
perform different actions on the Excel® file if different conditions exist (for instance,
sending an email regarding a deadline for a component has passed if it has passed versus
sending an email with a new finalized component and writing to a cell that updates a
status in Excel® if the component is not past due, sending emails and/or messages in
other non-email applications, etc. Automations may be designed using the web-based
RPA designer of some embodiments that can interact with a webpage, obtain
information from the webpage, and perform desired RPA robot actions on the server
side that may include interaction with the users webpage, interacting with other RPA
robots on the server side or locally on user computing systems, retrieving information
from a database, or any other RPA process without deviating from the scope of the
invention. Per the above, in certain embodiments, the automation may be performed
partially or entirely on the server-side via a VM or a container.

[0093] FIG. 5 is a flowchart 500 illustrating a process for performing web-based
RPA development at design time, according to an embodiment of the present invention.
The process begins with accessing and displaying a web interface of a web-based
designer application on a web browser at 510. The web interface allows a user to create
RPA projects, configure RPA workflows, and submit RPA workflow configurations to
a server-side web-based RPA designer application to generate, execute, and validate
automations remotely. An RPA workflow is designed and configured by the web-based

designer application via the web interface at 520.

34

WO 2022/260696 PCT/US2021/057166

[0094] After the user is satisfied with the RPA workflow, or when the user otherwise
wants to perform testing and validation, the user, via the web interface, causes the
server-side web-based RPA designer application to generate an automation
implementing the workflow at 530. The server-side web-based RPA designer
application then executes the automation via an RPA robot and validates the automation
at 540. If the validation fails at 550, the user may continue designing and configuring
the RPA workflow at 520. If the validation succeeds, the RPA workflow/project may
be published for production (runtime) use at 560. For instance, this may involve
generating the automation code and running the automation code via an RPA robot in a
VM, a container, or an operating system session. In some embodiments, the process
may then proceed to the steps of FIG. 6, 7, or 9.

[0095] FIG. 6 is a flowchart illustrating a process 600 for executing an automation
at runtime that interacts with a web extension, according to an embodiment of the
present invention. The process begins with executing a server-side automation at 610
via an RPA robot. The server-side automation may be scheduled, caused to execute
manually, executed based on a trigger, etc. The trigger may be an application event, a
user interaction with a webpage occurring, a certain time elapsing, etc. The RPA robot
then sends one or more commands to a web extension of a web browser (e.g., on a client-
side computing system, in a VM, in a container, etc.) at 620 to interact with the web
browser, obtain information from one or more webpages in one or more tabs of the web
browser, or both. The web extension then interacts with the web browser, obtains the
information from one or more webpages in one or more tabs of the web browser, or

both, as requested by the RPA robot at 630. In some embodiments, the web extension

35

WO 2022/260696 PCT/US2021/057166

provides native functionality that can be executed headlessly when the automation runs
in a container, for example, and as a result of being defined with this extension. Such
functionality could be implemented in some embodiments for desktop/laptop computers,
thin clients, thick clients, etc. Information may be obtained from the local computing
system and/or browser interactions may be performed locally.

[0096] The web extension then provides confirmation that the requested interaction
occurred, provides the requested information, or provides an error message if there was
a problem at 640, which the RPA robot receives. In some embodiments, this may be
the task that the automation was designed to achieve. However, if the automation was
designed to perform some additional processing or other actions based on information
from the web extension, such as performing a database lookup, sending an email,
writing to and saving a file, requesting additional actions and/or information from the
web extension, etc., the RPA robot may perform these actions at 650. The process may
also return to step 620 for one or more other commands.

[0097] FIG. 7 is a flowchart illustrating a process 700 for executing an automation
at runtime that runs in a VM or a container, according to an embodiment of the present
invention. The process begins with creating a pool of VMs and/or containers
implementing respective automations at 710. The pool may be elastically provisioned
or manually provisioned, for example. A server-side automation is then executed in a
VM, a container, or an operating system session at 720 by an RPA robot. The server-
side automation may be scheduled, caused to execute manually, executed based on a
trigger, etc. The RPA robot then performs the actions designed in the automation

workflow at 730.

36

WO 2022/260696 PCT/US2021/057166

[0098] In some embodiments, a web-based designer system may be used to design
automations that interact with local instances of applications running on a computing
system via a local RPA extension process. The local RPA extension process may
receive communications from RPA robots running remotely in a container, VM, or
operating system session, interact with local applications, and send information back to
the requesting RPA robots. FIG. 8 is architectural diagram illustrating a web-based
RPA system 800 configured to interact with local applications, according to an
embodiment of the present invention. Similar to system 300 of FIGS. 3A and 3B,
system 800 includes a desktop computer 802, a tablet 804, a smart phone 806, a network
820, a server 830, a hosting environment 832, a database 840, a developer computing
system 850, and a web-based RPA designer application 852. Also similar to system
300, hosting environment 832 includes automations 834 and RPA robots 836.

[0099] However, in system 800, desktop computer 802, tablet 804, and smart phone
806 run a local RPA extension process 810 that extends the functionality of RPA robots
836 to interact with applications running on desktop computer 802, tablet 804, and smart
phone 806. Local RPA extension process 810 may receive a request from an RPA robot
836 executing an automation 834 via network 820. For instance, local RPA extension
process 810 may be listening on a port for communications. Any suitable
communication protocol (e.g., Transmission Control Protocol (TCP) / Internet Protocol
(IP), File Transfer Protocol (FTP), etc.) may be used without deviating from the scope
of the invention.

[0100] Local RPA extension process 810 may parse the request from RPA robot 836

and perform an associated action and/or retrieve requested information. For instance,

37

WO 2022/260696 PCT/US2021/057166

the request from RPA robot 836 may ask local RPA extension process 810 to use an
API for Outlook® to search a user’s email for the term “invoice”, retrieve matching
results, and send the results back to RPA robot 836. RPA robot 836 can then use this
information to continue carrying out the logic of automation 834.

[0101] In some embodiments, local RPA extension process 810 may communicate
with other processes running on the respective computing system using Inter-Process
Communication (IPC) protocols. IPC protocols are mechanisms by which processes
running in an operating system can communicate with other processes also running on
that operating system, potentially in different sessions. These protocols may facilitation
communication via network 820, pipes, Component Object Model (COM), Remote
Procedure Calls (RPC), sockets, etc. IPC protocols may be used to send information,
requests, commands, and the like between running processes.

[0102] FIG. 9 is a flowchart illustrating a process 900 for executing an automation
at runtime that interacts with a local RPA extension process running on a different
computing system than an RPA robot, according to an embodiment of the present
invention. The process begins with executing a server-side automation via an RPA
robot at 910. The server-side automation may be scheduled, caused to execute manually,
executed based on a trigger, etc. The trigger may be an application event, a user
interaction with a webpage occurring, a certain time elapsing, etc. The RPA robot then
sends one or more requests to a local RPA extension process running on a remote
computing system (e.g., on a client-side computing system, in a remote VM, in a remote
container, etc.) at 920 to interact with one or more applications and/or processes (e.g.,

operating system processes, processes associated with applications, etc.) running locally

38

WO 2022/260696 PCT/US2021/057166

to the local RPA extension process. The local RPA extension process then controls one
or more applications (e.g., via APIs) and/or processes to perform the desired operations
in the application(s), obtains information from the application(s) and/or other processes
on the computing system, or both, at 930. The local RPA extension application then
provides confirmation that the requested interaction(s) with the application(s) occurred,
provides the requested information, or both, at 940. In some embodiments, an error
message may be provided if there was a problem, which the RPA robot receives.
[0103] Insome embodiments, this may be the task that the automation was designed
to achieve. However, if the automation was designed to perform some additional
processing or other actions based on information from the web extension, such as
performing a database lookup, sending an email, writing to and saving a file, requesting
additional actions and/or information from the web extension, etc., the RPA robot may
perform these actions at 950. The process may also return to step 920 for one or more
other requests.

[0104] FIG. 10 is a flowchart illustrating a process 1000 for performing web-based
RPA development at design time via a web browser without an RPA robot (i.e,
robotless), according to an embodiment of the present invention. “Robotless,” as used
herein, means that RPA robot-like functionality is included in the web browser, but an
RPA robot is not run as a separate service. As such, there is no need to install local
client-side binaries on a computing system on which the web browser is run, and only
a web browser is needed in some embodiments. Robot-like binaries may be included
within the tab and served from the web server on load. HTML, JavaScript™, etc. may

also be loaded at that time.

39

WO 2022/260696 PCT/US2021/057166

[010S] The process begins with downloading code for a web-based RPA designer
application to a web browser at 1010. The code allows users to both create and execute
automations. This code may include executable binaries, such as DLLs, that are loaded
in a tab for the web browser. This is atypical since other formats, such as JavaScript™,
are typically loaded. However, it should be noted that any suitable code that includes
the automation execution functionality, such as JavaScript™, Servlets™, etc., may be
used without deviating from the scope of the invention. A web interface for the web-
based RPA designer application is displayed in the web browser at 1020. The web
interface is configured to provide functionality to create RPA projects and configure
RPA workflows, as well as to generate and execute automations therefrom. An RPA
workflow is designed and configured by the web-based designer application via the web
interface at 1030.

[0106] After the user is satisfied with the RPA workflow, or when the user otherwise
wants to perform testing and validation, the web browser generates an automation for a
configured RPA workflow at 1040. This automation may run as a browser worker
process instead of the regular browser process. The web browser then executes and
validates the generated automation at 1050. If the validation fails at 1060 (e.g., there
are errors or governance rules are violated), the user may continue designing and
configuring the RPA workflow at 1030. If the validation succeeds, the RPA
workflow/project may be published for production (runtime) use at 1070. For instance,
this may involve generating the automation code for a web browser and running the
automation code the web browser in a VM, a container, or an operating system session.

In some embodiments, the process may then proceed to the steps of FIG. 11.

40

WO 2022/260696 PCT/US2021/057166

[0107] The mechanism for executing and debugging the automation is loaded in the
web browser itself in this embodiment. This does not require a remote VM, container,
or operating system session, for example. In other words, when the user runs the
automation, the code is not transferred to be executed in a remote container, a remote
VM, or a remote operating system session. Instead, the automation design time and
runtime functionality is in the web browser, potentially in the same tab in some
embodiments. The functionality for executing the automation can be loaded in the web
browser when the web page for the web-based RPA designer application is loaded. This
does not require a web browser extension in some embodiments. Thus, the tab itself
essentially becomes both the design time RPA designer and the runtime RPA robot, and
users can create, execute, and debug automations. In some embodiments, automations
can also be designed that run in a web browser of a production server rather than being
executed by production RPA robots.

[0108] FIG. 11 is a flowchart illustrating a process 1100 for executing an automation
at runtime in a web browser of a container, VM, or operating system session, according
to an embodiment of the present invention. The process begins with executing a server-
side automation at 1110 via a web browser running in a container, a VM, or an operating
session of the server. This form of automation alone is novel. However, in some
embodiments, the automation sends commands to a web extension or a local RPA
extension process running on a remote computing system at 1120, similar to processes
600 and 800 of FIGS. 6 and 8, respectively. The web extension or local RPA extension
process then performs the requested action and/or obtains requested information at 1130

and provides confirmation and/or information to the web browser in the container, VM,

41

WO 2022/260696 PCT/US2021/057166

or operating session of the server at 1140. The web browser may then perform
additional actions associated with the automation at 1150.

[0109] The process steps performed in FIGS. 5-7 and 9-11 may be performed by a
computer program, encoding instructions for the processor(s) to perform at least part of
the process(es) described in FIGS. 5-7 and 9-11, in accordance with embodiments of
the present invention. The computer program may be embodied on a non-transitory
computer-readable medium. The computer-readable medium may be, but is not limited
to, a hard disk drive, a flash device, RAM, a tape, and/or any other such medium or
combination of media used to store data. The computer program may include encoded
instructions for controlling processor(s) of a computing system (e.g., processor(s) 210
of computing system 200 of FIG. 2) to implement all or part of the process steps
described in FIGS. 5-7 and 9-11, which may also be stored on the computer-readable
medium.

[0110] The computer program can be implemented in hardware, software, or a
hybrid implementation. The computer program can be composed of modules that are
in operative communication with one another, and which are designed to pass
information or instructions to display. The computer program can be configured to
operate on a general purpose computer, an ASIC, or any other suitable device.

[0111] It will be readily understood that the components of various embodiments of
the present invention, as generally described and illustrated in the figures herein, may
be arranged and designed in a wide variety of different configurations. Thus, the

detailed description of the embodiments of the present invention, as represented in the

42

WO 2022/260696 PCT/US2021/057166

attached figures, is not intended to limit the scope of the invention as claimed, but is
merely representative of selected embodiments of the invention.

[0112] The features, structures, or characteristics of the invention described
throughout this specification may be combined in any suitable manner in one or more
embodiments. For example, reference throughout this specification to “certain

2

embodiments,” “some embodiments,” or similar language means that a particular
feature, structure, or characteristic described in connection with the embodiment is
included in at least one embodiment of the present invention. Thus, appearances of the
phrases “in certain embodiments,” “in some embodiment,” “in other embodiments,” or
similar language throughout this specification do not necessarily all refer to the same
group of embodiments and the described features, structures, or characteristics may be
combined in any suitable manner in one or more embodiments.

[0113] It should be noted that reference throughout this specification to features,
advantages, or similar language does not imply that all of the features and advantages
that may be realized with the present invention should be or are in any single
embodiment of the invention. Rather, language referring to the features and advantages
is understood to mean that a specific feature, advantage, or characteristic described in
connection with an embodiment is included in at least one embodiment of the present
invention. Thus, discussion of the features and advantages, and similar language,
throughout this specification may, but do not necessarily, refer to the same embodiment.
[0114] Furthermore, the described features, advantages, and characteristics of the

invention may be combined in any suitable manner in one or more embodiments. One

skilled in the relevant art will recognize that the invention can be practiced without one

43

WO 2022/260696 PCT/US2021/057166

or more of the specific features or advantages of a particular embodiment. In other
instances, additional features and advantages may be recognized in certain embodiments
that may not be present in all embodiments of the invention.

[0115] One having ordinary skill in the art will readily understand that the invention
as discussed above may be practiced with steps in a different order, and/or with
hardware elements in configurations which are different than those which are disclosed.
Therefore, although the invention has been described based upon these preferred
embodiments, it would be apparent to those of skill in the art that certain modifications,
variations, and alternative constructions would be apparent, while remaining within the
spirit and scope of the invention. In order to determine the metes and bounds of the

invention, therefore, reference should be made to the appended claims.

44

WO 2022/260696 PCT/US2021/057166

CLAIMS

1. A cloud-based system, comprising:
memory storing computer program instructions; and
at least one processor configured to execute the computer program
instructions, wherein the computer program instructions are configured to cause the at
least one processor to:
run an automation in a first web browser at runtime, the first web
browser located in an operating system session, a virtual machine (VM), or a

container of the cloud-based system.

2. The cloud-based system of claim 1, wherein the automation is a

serverless automation.

3. The cloud-based system of claim 1, wherein the automation is

executed as part of a tab of the first web browser.

4. The system of claim 1, wherein the automation is executed without an

RPA robot.

45

WO 2022/260696 PCT/US2021/057166

5. The cloud-based system of claim 1, wherein
the automation is configured to cause the first web browser to send one or
more commands to a web extension of a second web browser of a client computing
system, and
the web extension is configured to:
interact with the second web browser of the client computing system,
obtain information from one or more webpages in one or more tabs of the second web
browser of the client computing system, or both, and
provide confirmation that the requested interaction occurred, provide

the obtained information, or both, to the first web browser.

6. The cloud-based system of claim 5, wherein the web extension is
configured to provide native functionality that is executed headlessly when the

automation runs via the first web browser in the container of the cloud-based system.

7. The cloud-based system of claim 5, wherein the first web browser is
configured to execute a process associated with the automation using the confirmation

of the interaction with the web browser, the obtained information, or both.

8. The cloud-based system of claim 1, wherein
the automation is configured to cause the first web browser to send one or
more requests to a local RPA extension process of a client computing system, and

the local RPA extension process is configured to:

46

WO 2022/260696 PCT/US2021/057166

interact with one or more applications and/or processes of the client
computing system, obtain information from the one or more applications and/or
processes running on the client computing system, or both, and

provide confirmation that the requested interaction occurred, provide

the obtained information, or both, to the first web browser.

9. The cloud-based system of claim 8, wherein the first web browser is
configured to execute a process associated with the automation using the confirmation

that the requested interaction occurred, the obtained information, or both.

10. The cloud-based system of claim 1, wherein the computer program
instructions are further configured to cause the at least one processor to:

detect a trigger event, condition, or command for executing the automation;

send one or more commands, by the first web browser, to a web extension of a
second web browser to interact with the second web browser, obtain information from
one or more webpages in one or more tabs of the second web browser, or both;

receive results of the interaction with the second web browser, the obtained
information, or both, from the web extension, by the first web browser; and

execute a process associated with the automation, by the first web browser,
using the received results of the interaction with the second web browser, the obtained

information, or both.

47

WO 2022/260696 PCT/US2021/057166

11. The cloud-based system of claim 1, wherein computer program
instructions are further configured to cause the at least one processor to:

detect a trigger event, condition, or command for executing the automation;

send, by the first web browser, one or more requests to a local RPA extension
process of a client computing system to interact with one or more applications and/or
processes of the client computing system, obtain information from the one or more
applications and/or processes running on the client computing system, or both;

receive confirmation that the requested interaction occurred, receive the
obtained information, or both, by the first web browser; and

execute a process associated with the automation, by the first web browser,
using the received confirmation that the requested interaction occurred, the obtained

information, or both.

12. A non-transitory computer-readable medium storing a computer
program, the computer program configured to cause at least one processor to:

run an automation in a first web browser at runtime, the first web browser
located in an operating system session, a virtual machine (VM), or a container of the
cloud-based system, wherein

the automation is configured to cause the RPA robot to send one or more
commands to a web extension of a second web browser of a client computing system,
and

the web extension is configured to:

48

WO 2022/260696 PCT/US2021/057166

interact with the second web browser of the client computing system,
obtain information from one or more webpages in one or more tabs of the second web
browser of the client computing system, or both, and

provide confirmation that the requested interaction occurred, provide

the obtained information, or both, to the first web browser.

13. The non-transitory computer-readable medium of claim 12, wherein

the automation is a serverless automation.

14. The non-transitory computer-readable medium of claim 12, wherein

the automation is executed as part of a tab of the first web browser.

15. The non-transitory computer-readable medium of claim 12, wherein

the automation is executed without an RPA robot.

16. The non-transitory computer-readable medium of claim 12, wherein
the web extension is configured to provide native functionality that is executed
headlessly when the automation runs via the first web browser in the container of the

cloud-based system.

17. The non-transitory computer-readable medium of claim 12, wherein

the first web browser is configured to execute a process associated with the

49

WO 2022/260696 PCT/US2021/057166

automation using the confirmation of the interaction with the web browser, the

obtained information, or both.

18. The non-transitory computer-readable medium of claim 12, wherein
the computer program is further configured to cause the at least one processor to:

detect a trigger event, condition, or command for executing the automation;
and

run the automation in the first web browser responsive to the detected trigger

event, condition, or command.

19. A computer-implemented method, comprising:
running an automation in a web browser at runtime, by a computing system,
the web browser located in an operating system session, a virtual machine (VM), or a
container of the cloud-based system, wherein
the automation is configured to cause the web browser to send one or more
requests to a local RPA extension process of a client computing system, and
the local RPA extension process is configured to:
interact with one or more applications and/or processes of the client
computing system, obtain information from the one or more applications and/or
processes running on the client computing system, or both, and
provide confirmation that the requested interaction occurred, provide

the obtained information, or both, to the web browser.

50

WO 2022/260696 PCT/US2021/057166

20. The computer-implemented method of claim 19, wherein the web
browser is configured to execute a process associated with the automation using the

confirmation that the requested interaction occurred, the obtained information, or

both.

21. The computer-implemented method of claim 19, wherein the

automation is a serverless automation.

22. The computer-implemented method of claim 19, wherein the

automation is executed as part of a tab of the web browser.

23. The computer-implemented method of claim 19, wherein the

automation is executed without an RPA robot.

24. The computer-implemented method of claim 19, further comprising:

detecting a trigger event, condition, or command for executing the automation,
by the computing system; and

running the automation in the web browser responsive to the detected trigger

event, condition, or command, by the computing system.

51

WO 2022/260696 PCT/US2021/057166
1/18

100 FIG- 1

o0 oo anan MO @ON0 GOO0 A0G% KON Qa0 a0

UNATTENDED
ROBOT

e

134

oy

! AUTOMATE
!

{ </container>

130

§ </web>
i <NM>

{ </Windows
Robot(s) 1 session>
!

[PP ansn wamss wesms

Browser V_/eb_
Application

132

e

MMMMMMMMMM ATTENDED
" § ROBOT

WO 2022/260696

200

N

Display
225

Keyboard
230

Cursor
Control

Device
235

PCT/US2021/057166
2/18
FIG. 2
Communication Processor(s)
B B Device
290 210
ol Bus
205
245
240 "X i 250
; i
/ \ /
{ Web-Based RPA .
PP Operating Module Othel\;I F(;Jnlctlonal
System odules

Memory 215

WO 2022/260696 PCT/US2021/057166
3/18

FIG. 3A

WO 2022/260696 PCT/US2021/057166

7 WO

e
334

334

334 g P -

WO 2022/260696

400

5/18

FIG. 4A

PCT/US2021/057166

UiPath Studio Web

o
H

= 8 {studio—web.uipath.com

sy

graer.

SUCCRERERY
N

< 8§
e

‘#ath Studio { Home My Projects

% o

Connections

Settings

Help

Welcome to Studio Web

Get creative with powerful Studio Templates

Actions Learn more
. 410
Apps My Projects \
Processes @ New automation

Sample Project 1

@ Sample Project 2

@ Sample Project 3

WO 2022/260696 PCT/US2021/057166
6/18

400 FIG- 4B
\

N\ UiPath Studio Web

S er O {studio—web.uipath.com ?}

]

N ¥
R 3 ¥ Y H
X N Fidath St
LlisFann uailo

‘Home My Projects Connections Settings Help

2 420
Home Welcome to Studio Web),ffﬁ

8 Get crei New automation
Studio

& Give your automation a name and a description. You can change

b these later if you change your mind.
Actions Learn n y gey

e Name *

S

Apps My Projec

WY
W
T

Processes

R Sam
Create Cancel

@ Sample Project 3

WO 2022/260696
7/18

400 FIG- 4C
\

PCT/US2021/057166

UiPath Studio Web

S er O {studio—web.uipath.com

n Studio §l\/|y Automation Soved st now

432
Start the automation Manually EN M
(Actions to be executed }
psteesesrvsvestensenyetetavbivesvat ettt st enyenytn M 434

aa

430

WO 2022/260696

400

8/18

PCT/US2021/057166

FIG. 4D

UiPath Studio Web

Y]

)

rrrrrin
¥ %

Activity Categories

Outlook

PDF

Slack

Excel

Office 365

See all categories

Quick Actions

e,

440

WO 2022/260696
9/18

400 FIG- 4E
\

PCT/US2021/057166

UiPath Studio Web

o {erndioanehinath.com

{4, Excel

oy

< 3 activities found

Excel activities
A group of Excel-related activities to help you build your automation

Excel: Save Excel file as PDF
Save an Excel file as a PDF

Excel: Use Excel file
Open or create an Excel file to Use in'your automation

/

450

WO 2022/260696
10/18

FIG. 4F
\

PCT/US2021/057166

UiPath Studio Web

o
H

= 8 {studio—web.uipath.com

1Path Studio { My Automation Seves jst sy

Start the automation Manually N
] 461
(Actions to be executed } fyx'
E 460
=
Use Excel file wl
L e aeaeetsear e 464
. © i
%End of lUse Excel flle aaaaaaaaaaaaaaaaaaaaaaaaaaaa ;
;/ N
/ 438
462 I» Test Automation
438

=8 Share

WO 2022/260696

400

11/18

PCT/US2021/057166

FIG. 4G

UiPath Studio Web

S er O {studio—web.uipath.com

't Studio { My Automation Sava just s

472

Start the automation Manually N

460

E

\(Actions to be executed } 474
E

“,

€]

Apollo components list

g

% Test Activity « ¥~

Use Excel file Apollo components list &

:

b £
ks >
S e rreaeeaeraerairairaireiraeraeneeseaeaes o
s o 3
: & :
o T
: :

* 03 >
B L L R T s s R B P s I TR B S S P R SR R R -
v -
:

:

:

;

aaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

462 I» Test Automation

=5 Share

" General e
Basic “ S
Select file * o~ 475

Apollo components list.xIsx
~

| Iterate over each: N
RN 471

476
Row ~ {in §Sheet1l ~
477 478

470

WO 2022/260696

500

12/18

FIG.

fv“‘

§

{\\ START

¥

5

Access and Display Web
Interface of Web-Based
Designer Application

510

¥

Design and Configure RPA

Z

Workflow

- 520

Generate Automation

530

| e

\:d

Execute Automation via
RPA Robot and Validate

540

Validation

NO Successful?

Ygs /

3

Publish RPA Workflow for
Production

PCT/US2021/057166

WO 2022/260696

600

13/18

FIG. 6

(ii START \}

oy

w

PCT/US2021/057166

Execute Server-Side
Automation via RPA Robot

610

!

Send Command(s) to Web
Extension

620

k4

Perform Action and/or
Obtain Information

630

ki

Provide Confirmation and/
or Information to RPA
Robot

640

WO 2022/260696 PCT/US2021/057166
14/18

700 FIG- 7
\

(ii START \}

oy

&

Create Pool of VMs and/or - 710

Containers Implementing
Automation(s)

!

Execute Server-Side 120
w3 Automationin VMor =
Container via RPA Robot

730
e
e o o o Perform Action(s) l

T T T g,

ki

END ::)

WO 2022/260696 PCT/US2021/057166
15/18

FIG. 8

WO 2022/260696

900

16/18

FIG. S

(ii START \}

oy

w

PCT/US2021/057166

Execute Server-Side
Automation via RPA Robot

— 910

!

Send Request(s) to Local
RPA Extension Process

. 920

k4

Control Application and/or
Obtain Information

930

ki

Provide Confirmation and/
or Information to RPA
Robot

940

WO 2022/260696

17/18

1000

START

v

Download Web-Based
Designer Application Code
to Web Browser

Display Web Interface

ki

Design and Configure RPA
Workflow

¥

Generate Automation in
Web Browser

A

Execute and Validate
Automation by Web
Browser

Validation
Successful?

NO

FIG. 10

1010

1020

1030

1040
'u‘,g.t-“‘

PCT/US2021/057166

Publish RPA Workflow for
Production

WO 2022/260696 PCT/US2021/057166
18/18

FIG. 11

(ii START \}

oy

w

Execute Server-Side 1110
Automation via Web -
Browser

P ——
; Send Command(s) to Web e 1120

- — - 34 Extension or Local RPA ;f"w
! Extension Process i

!

i

!

§ ,

!

f ! Perform Action and/or | .= 1130
§ E Obtain Information S

g frw wnnn mnnn na coams amap aaa axan ixaar wams mass wd

| }

§ mmmmmmmmmm

! ;gProvide Confirmation and/s 1140
f i or Information to Web

§ ! Browser i

§ fooe son ox cam s casey cax oo cas s s ol

g l

| S S ——_— ;

§ . 1150

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2021/057166

A. CLASSIFICATION OF SUBJECT MATTER
GOG6F 9/455(2006.01)i; GOGF 9/448(2018.01)i; GO6F 8/34(2018.01)i; G06Q 10/10(2012.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GOG6F 9/455(2006.01); GO6F 3/0482(2013.01); GO6F 3/0489(2013.01); GO6F 9/50(2006.01); HO4L 29/08(2006.01);
HO04L 9/32(2006.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS(KIPO internal) & Keywords: cloud, automation, web browser, operating system, virtual machine (VM), container,
serverless, tab, RPA (robotic process automation) robot, web extension, interact, confirmation, tab, application, headless, trigger

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

WILLIAM SCOTT et al., ‘freedom. js: an Architecture for Serverless Web Applications’, In: UW
Technical Report, 03 May 2013

X [retrieved on 2022.02.08]. Retrieved from<https://norfolk.cs.washington.edu/htbin-post/ 1-7,10-11
unrestricted/tr/list.cgi?sortby=date>.
pages 1, 5-9, 13

Y 8-9,12-24

KAREN OSMUNDSEN et al., ‘Organizing Robotic Process Automation: Balancing Loose and Tight
Coupling’, ISBN: 978-0-9981331-2-6, In: Proceedings of the 52nd Hawaii International Conference on
System Sciences, 2019

Y abstract; and section 2 8-9,12-24

US 2021-0089358 Al (UNIVERSITY OF WASHINGTON) 25 March 2021 (2021-03-25)
A paragraphs [0005]-[0008]; and claims 1-4 1-24

US 2017-0177171 A1 (MICROSOFT TECHNOLOGY LICENSING, LLC) 22 June 2017 (2017-06-22)
A paragraphs [0002]-[0003], [0015]; and claims 1-4 1-24

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents: “T” later document published after the international filing date or priority

«A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand the
to be of particular relevance principle or theory underlying the invention

“D” document cited by the applicant in the international application “X” document of particular relevance; the claimed invention cannot be

“g» earlier application or patent but published on or after the international considered novel or cannot be considered to involve an inventive step
filing date when the document is taken alone

“L” document which may throw doubts on priority claim(s) or which is “Y> document of particular relevance; the claimed invention cannot be
cited to establish the publication date of another citation or other considered to involve an inventive step when the document is
special reason (as specified) combined with one or more other such documents, such combination

“0” document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art
means “&” document member of the same patent family

«p>» document published prior to the international filing date but later than
the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
24 February 2022 25 February 2022
Name and mailing address of the [SA/KR Authorized officer
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon YANG, JEONG ROK
35208, Republic of Korea
Facsimile No. +82-42-481-8578 Telephone No. +82-42-481-5709

Form PCT/ISA/210 (second sheet) (July 2019)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US2021/057166
C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
US 10958732 B1 (MICHAEL JEFFREY PROCOPIO) 23 March 2021 (2021-03-23)
A claims 1-16 1-24

Form PCT/ISA/210 (second sheet) (July 2019)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2021/057166

Patent document

Publication date

Patent family member(s)

Publication date

cited in search report (day/month/year) (day/month/year)

uUs 2021-0089358 Al 25 March 2021 None

us 2017-0177171 Al 22 June 2017 CN 108369600 A 03 August 2018
EP 3391250 A2 24 QOctober 2018
uUs 10845950 B2 24 November 2020
WO 2017-105975 A2 22 June 2017
WO 2017-105975 A3 10 August 2017

uUs 10958732 BI1 23 March 2021 None

Form PCT/ISA/210 (patent family annex) (July 2019)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - wo-search-report
	Page 73 - wo-search-report
	Page 74 - wo-search-report

