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MODEL INTERPRETATION

BACKGROUND OF THE INVENTION

[0001] Machine learning is a field of computer science that gives computers the ability to
learn without being explicitly programmed. A machine learning model can be trained to implement
a complex function that makes one or more predictions based on a set of inputs. The set of inputs
is comprised of a plurality of entries. Each entry is associated with one or more features having
corresponding feature values. Once trained, the machine learning model acts like a black box: it
receives a set of inputs, the set of inputs are applied to the complex function, and one or more

predictions are outputted.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] Various embodiments of the invention are disclosed in the following detailed

description and the accompanying drawings.

[0003] Figure 1 is a block diagram illustrating an embodiment of a system for machine

learning model interpretation.
[0004] Figure 2A is an example of a diagram illustrating an embodiment of input data.

[0005] Figure 2B is an example of a diagram illustrating an embodiment of input data that
is ranked based on the prediction label.

[0006] Figure 3 is a diagram illustrating an embodiment of an output of a linear surrogate
model.
[0007] Figure 4A is a flow chart illustrating an embodiment of a process for providing a

linear surrogate model.

[0008] Figure 4B is a flow chart illustrating an embodiment of a process for providing a
prediction.

[0009] Figure 5 is a diagram illustrating an embodiment of a non-linear surrogate model.
[0010] Figure 6 is a flow chart illustrating an embodiment of a process for providing a non-

linear surrogate model.
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[0011] Figure 7 is a diagram illustrating an embodiment of a non-linear surrogate model.

[0012] Figure 8 is a flow chart illustrating an embodiment of a process for providing a

surrogate non-linear model.
[0013] Figure 9 is a diagram illustrating an embodiment of a non-linear surrogate model.

[0014] Figure 10 is a flow chart illustrating an embodiment of a process for providing a

non-linear model.
[0015] Figure 11 is a diagram illustrating an embodiment of a dashboard.

[0016] Figure 12 is a flow chart illustrating an embodiment of a process for debugging

machine learning models.
DETAILED DESCRIPTION

[0017] The invention can be implemented in numerous ways, including as a process; an
apparatus; a system; a composition of matter; a computer program product embodied on a computer
readable storage medium; and/or a processor, such as a processor configured to execute instructions
stored on and/or provided by a memory coupled to the processor. In this specification, these
implementations, or any other form that the invention may take, may be referred to as techniques.
In general, the order of the steps of disclosed processes may be altered within the scope of the
invention. Unless stated otherwise, a component such as a processor or a memory described as
being configured to perform a task may be implemented as a general component that is temporarily
configured to perform the task at a given time or a specific component that is manufactured to
perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits,

and/or processing cores configured to process data, such as computer program instructions.

[0018] A detailed description of one or more embodiments of the invention is provided
below along with accompanying figures that illustrate the principles of the invention. The
invention is described in connection with such embodiments, but the invention is not limited to any
embodiment. The scope of the invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and equivalents. Numerous specific details are
set forth in the following description in order to provide a thorough understanding of the invention.
These details are provided for the purpose of example and the invention may be practiced

according to the claims without some or all of these specific details. For the purpose of clarity,
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technical material that is known in the technical fields related to the invention has not been

described in detail so that the invention is not unnecessarily obscured.

[0019] A machine learning model interpretation technique is disclosed. A machine learning
model is configured to provide one or more predictions based on a set of inputs, however, it is
unclear how the machine learning model arrived at its decision. Oftentimes the machine learning
model is proprietary software of a company and users must receive a license to use the software.

As a result, users are forced to purchase a license from the company.

[0020] The machine learning model may be limited in the type of information that is
outputted to users. The machine learning model may output a prediction, but may not provide one
or more reasons why the machine learning model made the prediction. For example, the machine
learning model may not output an identification of one or more input features that influenced the

prediction of the machine learning model.

[0021] A machine learning model may be approximated a linear surrogate models and/or
one or more non-linear surrogate models. A surrogate model is a data mining and engineering
technique in which a generally simpler model is used to explain another usually more complex
model or phenomenon. A surrogate model may reduce the number of computations and the time
needed by a computer to output a prediction. The reduction in computations and time frees up
computer resources, which allows the computer to perform other tasks and/or make other
predictions. A linear surrogate model may be a K-LIME surrogate model. A non-linear surrogate
model may be a decision tree surrogate model, a feature importance surrogate model, and/or a
partial dependence surrogate model. A surrogate model may not only provide a prediction that is
similar to the prediction made by the machine learning model, but also provide one or more reasons

that describe why the surrogate model made its decision.

[0022] Due to the complexity of the machine learning model, no one model by itself can be
trusted to accurately approximate the machine learning model. However, the combination of the
linear surrogate model and the one or more non-linear surrogate models may provide confidence in
the approximations. In some instances, the output of a linear surrogate model may closely match
the output of the machine learning model, but the output of the linear surrogate model may be in
conflict with the output of at least one of the non-linear surrogate models. In other instances, the
output of a linear surrogate model may be in conflict with the output of the machine learning
model, but the output of the one or more non-linear surrogate models closely matches the output of

the machine learing model. In other instances, neither the output of the linear surrogate model nor
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the output of the one or more non-linear surrogate models closely match the output of the machine
learning model. In these instances, neither the linear surrogate model nor the one or more non-
linear surrogate models can be used to explain the machine learning model. As a result, either the
linear surrogate model or at least one of the one or more non-linear surrogate models, or even the

machine learning model itself may need to be modified.

[0023] However, in the instance where the output of a linear surrogate model closely
matches the output of the machine learning model and the output of a non-linear surrogate models
closely matches the output of the machine learning model, the combination of the linear surrogate
model and the one or more non-linear surrogate models may be trusted to accurately explain the

machine learning model of interest.

[0024] This is an improvement to the field of machine learning because a machine learning
model that implements a complex function to make one or more predictions based on a set of inputs
may be accurately approximated using a combination of a linear surrogate model and the one or
more non-linear surrogate models. The combination of a linear surrogate model and the one or
more non-linear surrogate models may reduce the number of computations and time needed by a
computer to make a prediction when compared to the number of computations and time needed by
a computer implementing the machine learning model to make the prediction. The combination of
a linear surrogate model and the one or more non-linear surrogate models provide transparency into
the machine learing model. The linear surrogate model and the one or more non-liner surrogate

models allow the underlying machine learning model itself to be debugged.

[0025] Figure 1 is a block diagram illustrating an embodiment of a system for machine
learning model interpretation. In the example shown, system 100 includes a complex model server

102, a network 105, a surrogate model server 112, and a client device 122.

[0026] Complex model server 102 includes a machine learning model 104, training data
106, model prediction data 107, and actual outcome data 108. The machine learning model 104,
training data 106, model prediction data 107, and actual outcome data 108 may be stored in
memory and/or storage (not shown) of complex model server 102. Complex model server 102 may
include one or more processors, one or more memories (e.g., random access memory), and one or

more storage devices (e.g., read only memory).

[0027] Machine learning model 104 is configured to implement one or more machine

learning algorithms (e.g., decision trees, naive Bayes classification, least squares regression,
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logistic regression, support vector machines, neural networks, deep learning, etc.). Machine
learning model 104 may be trained using training data, such as training data 116. Once trained,
machine learning model 104 is configured to output a prediction label, such as model prediction
data 107, based on an input entry that is comprised of one or more features and corresponding

feature values.

[0028] Training Data 106 is comprised of a plurality of entries. Each entry is associated

with one or more features having a corresponding feature value.

[0029] Model Prediction data 107 is comprised of predictions made by machine learing
model 104. Model prediction data 107 may include a probability of a particular outcome that the
machine learning model has predicted. Model prediction data 107 may include a prediction label

(e.g., predicted value) for a particular prediction.

[0030] Actual Outcome data 108 is comprised of real world outcome data. For example,
machine learning model 104 may be trained to predict the probability of a particular outcome given
input data that is comprised of a plurality of entries. Actual outcome data 108 includes the real

world outcome for an entry associated with a plurality of features and corresponding feature values.

[0031] Network 105 may be a local area network, a wide area network, a wired network, a

wireless network, the Internet, an intranet, or any other appropriate communication network.

[0032] Surrogate model server 112 includes a linear surrogate model 114, one or more
surrogate non-linear models 115, training data 116, model prediction data 117, and actual outcome
data 118. The linear surrogate model 114, one or more surrogate non-linear models 115, training
data 116, model prediction data 117, and actual outcome data 118 may be stored in memory and/or

storage (not shown) of complex model server 112.

[0033] Surrogate model server 112 is configured to implement one or more surrogate
models. A surrogate model is a data mining and engineering technique in which a generally
simpler model is used to explain another usually more complex model or phenomenon. Surrogate
model 112 may receive, from complex model server 102 via network 105, training data 106, model
prediction data 107, and actual outcome data 108 and store as training data 116, model prediction
data 117, and actual outcome data 118, respectively. Using training data 116, model prediction
data 117, and actual outcome data 118, surrogate model server 122 may train one or more surrogate
models to make one or more predictions. The one or more surrogate models are surrogates of

machine learning model 104. Given a leared function g (e.g., machine learning model 104) and a
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set of predictions (e.g., model predictions 107), g(X) = ¥, a surrogate model h may be trained,

PN Asurrogate

such that X,¥ ——— h, such that h(X) ~ g(X). The surrogate model /# may be a linear model or

a non-linear model.
Linear Model

[0034] Linear surrogate model 114 may be a K-LIME surrogate model. With X-LIME,
local generalized linear model (GLM) surrogates are used to explain the predictions of complex
response functions, and local regions are defined by X clusters or user-defined segments instead of

simulated, perturbed observation samples.

[0035] For each cluster, a local GLM hg;y ;. is trained. The input data may be classified
into a plurality of clusters using a clustering technique, such as k-means clustering. X may be
chosen such that predictions from all the local GLM models would maximize R?. This may be

summarized mathematically as follows:

Xk, 9(X1)) 2% harme, Ve € {0,.... K — 1}
argmax RA(Y, hama(X)),Vk € {0,..., K -1}
K

[0036] K-LIME may also train one global surrogate GLM hg;,p4; on the entire input
training dataset, such as training data 106 and global model predictions g(X), such as model
prediction data 107. In some embodiments, in the event a given k-th cluster has less than a
threshold number of members (e.g., 20), then hgyopq; is used as a linear surrogate instead of Agpa k-
In some embodiments, intercepts, coefficients, R? values, accuracy, and predictions from all the
surrogate K-LIME models (including the global surrogate) may be used to debug and increase

transparency in g.

[0037] One or more reason codes and corresponding values may be generated from K-
LIME. A reason code corresponds to an input feature. The reason code value may provide a
feature’s approximate local, linear contribution to g (x(?). Reason codes are powerful tools for
accountability and fairness because they provide an explanation for each g(x(l)), enabling a user to
understand the approximate magnitude and direction of an input feature’s local contribution for
g(x(l)). In K-LIME, reason code values may be calculated by determining each coefficient-feature

product. Reason codes may also be written into automatically generated reason codes.

[0038] For hgpp  and observation x9:
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P
9 & hama(x) = 81 + 3 Aal)

p=1

[0039] By disaggregating the K-LIME predictions into individual coefficient-feature
products, ﬁl[,k]xg), the local, linear contribution of the feature can be determined. This coefficient-

feature product is referred to as a reason code value and is used to create reason codes for each

g(x(l))_

[0040] K-LIME provides several scales of interpretability: (1) coefficients of the global
GLM surrogate provide information about global, average trends, (2) coefficients of in-segment
GLM surrogates display average trends in local regions, and (3) when evaluated for specific in-
segment observations, K-LIME provides reason codes on a per-observation basis. K-LIME may
increase transparency by revealing input features and their linear trends. K-LIME may enhance
accountability by creating explanations for each observation in a data set. X-LIME may bolster
trust and fairness when the important features and their linear trends around specific records

conform to domain knowledge and reasonable expectations.
Non-Linear Models

[0041] The one or more surrogate non-linear models 115 may include a feature importance

model, decision tree model, a partial dependence plot, and/or any other non-linear models.

[0042] A feature importance model measures the effect that a feature of the set of inputs has
on the predictions of the model. A feature may have a global feature importance and a local feature
importance. Global feature importance measures the overall impact of an input feature on the
model predictions while taking nonlinearity and interactions into considerations. Global feature
importance values give an indication of the magnitude of a feature’s contribution to model
predictions for all observations. Local feature importance describes how the combination of the
learned model rules or parameters and an individual observation’s attributes affect a model’s

prediction for that observation while taking nonlinearity and interactions into effect.

[0043] The feature importance model may include a random forest surrogate model hgp
consisting of B decision trees Ny, p. The random forest surrogate model is a global

interpretability measure. For example, hp, may be expressed as:
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B
hRF(x(i)) = %Z h'tme,b (x(i);eb) )
b=1

where @y, is the set of splitting rules for each tree h;ppe p. At each split in each tree hypee p, the
improvement in the split-criterion is the importance measure attributed to the splitting feature. The
importance feature is accumulated over all trees separately for each feature. The aggregated feature
importance values may be scaled between 0 and 1, such that the most important feature has an

importance value of 1.

[0044] The feature importance model may include leave-one-covariate-out (LOCO).
LOCO feature importance is a local interpretability measure. LOCO provides a mechanism for
calculating importance values for any model g on a per-observation basis x® by subtracting the
model’s prediction for an observation of data, g(x?), from the model’s prediction for that
observation of data without an input feature X; of interest, g(x((i)j)) — g(xD). LOCO is a model-
agnostic idea, and g(x((i)j)) may be calculated in various ways. In some embodiments, g(x((i)j)is

calculated using a model-specific technique in which the contribution X; to g (xD) is approximated

by using the random forest surrogate model hzr. The prediction contribution of any rule Hr[b] €0,
containing X; for tree Aypee p is subtracted from the original prediction hyyee (x ®;0 b(— j)). For

the random forest:
. . 1 E .
9(x(2;) = hre(x(2;) = 5 D humep (Xm; 95,(_,-)) )
b=1

where @, (_;y is the set of splitting rules for each tree k.. j, With the contributions of all rules
involving X; removed. In some embodiments, the LOCO feature importance values are scaled

between 0 and 1 such that the most important feature for an observation of data, x(i), has an

importance value of 1 for direct versus local comparison to random forest feature importance.

[0045] Random forest feature importance increases transparency by reporting and ranking
influential input features. LOCO feature importance enhances accountability by creating
explanations for each model prediction. Both global and local feature importance enhance trust and

fairness when reported values conform to domain knowledge and reasonable expectations.

[0046] A decision tree model h;.., may be generated to approximate the learned function g
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(e.g., machine learning model 104). h,.., 1s used to increase the transparency of g by displaying
an approximate flow chart of the decision making process of g. Ay, also shows the likely
important features and the most important interactions of g. h;,.. may be used for visualizing,
validating, debugging g by comparing the displayed decision-process, important features, and

important interactions to known standards, domain knowledge, and reasonable expectations.

[0047] A partial dependence plot may show how machine-learmed response functions
change based on the values of an input feature of interest, while taking nonlinearity into

consideration and averaging out the effects of all other input features.

[0048] For a P-dimensional feature space, consider a single feature X; € P and its
complement set X(_j) (i.e., X; U X(_j) = P). The one-dimensional partial dependence of a function

g on X; is the marginal expectation:

PD(X;,9) =Ex,_,, [9(X;, X(_5)]

Recall that the marginal expectation over X(_y sums over the values of X._j;. The one-

dimensional partial dependence may be expressed as:

PD(X;,9) =Ex _, [y(vaX(—ﬁ)]

1 & "
= ﬁz;g(xj,x(’lj))

The partial dependence of a given feature X; is the average of the response function g, setting the
given feature X; = x; and using all other existing feature vectors of the complement set x((i)j) as
they exist in the dataset. A partial dependence plot shows the partial dependence as a function of

specific values of the feature subset X;. Partial dependence plots enable increased transparency in

g and enable the ability to validate and debug g by comparing a feature’s average predictions

across its domain to known standards and reasonable expectations.

[0049] In some embodiments, the partial dependence plot includes an individual conditional
expectation (ICE) plot. ICE is a disaggregated partial dependence of the N responses

g(X {7 x((i)j)), i € {1, ..., N} (for a single feature X;), instead of averaging the response across all

observations of the training set. An ICE plot for a single observation x® is created by plotting
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g(X]- = xj,qx((i)j)) versus X; = x;,(q € {1, 2,...}) while fixing x((i_)j). The ICE plot may allow a

prediction for an individual observation of data g(x(i)) to determine whether the individual
observation of data is outside one standard deviation from the average model behavior represented
by partial dependence. The ICE plot may also allow a prediction for an individual observation of
data g(x(i)) to determine whether the treatment of a specific observation is valid in comparison to

average model behavior, known standards, domain knowledge, and/or reasonable expectations.

[0050] Training data 116 includes data that is used to train linear surrogate model 114
and/or one or more non-linear surrogate models 115. Training data 116 may include at least a
portion of training data 106. Training Data 116 is comprised of a plurality of entries. Each entry is

associated with one or more features having a corresponding value and associated actual outcomes.

[0051] Model Prediction data 117 is comprised of predictions made by machine learming
model 104, predictions made by linear surrogate model 114, and predictions made by one or more
non-linear surrogate models 115. Model prediction data 117 may include a prediction label (e.g.,
probability of a particular outcome, predicted value, prediction value + offset value, etc.) that
machine learning model 104 has predicted, a prediction label that linear surrogate model 114 has

predicted, and a predication label that one or more non-linear surrogate models 115 has predicted.

[0052] Actual Outcome data 118 is comprised of real world outcome data. For example,
machine learning model 104, linear surrogate model 114, and one or more non-linear surrrogate
models 115 may be trained to predict the probability of a particular outcome given a set of inputs.
Actual outcome data 118 includes the real world outcome given the set of inputs (e.g., did the

particular outcome occur or not occur).

[0053] Client device 122 may be a computer, a laptop, a mobile device, a tablet, etc. Client
device 122 includes an application 124 associated with surrogate model server 112. Application
124 1s configured to display via graphical user interface 126, one or more graphs depicting the

linear surrogate model 114 and at least one of the one or more non-linear surrogate models 115.

[0054] In some embodiments, graphical user interface 126 is configured to receive a
selection of a point (e.g., observation) shown in the linear surrogate model. In response to the
selection, application 124 is configured to dynamically update the one or more non-linear surrogate
models associated with the linear surrogate model and dynamically update a display of the one or
more non-linear surrogate models. Application 124 is also configured to provide an indication of

the received selection to surrogate model server 112. In response to the indication, a linear

10



WO 2019/204072 PCT/US2019/026331

surrogate model may be configured to provide one or more reason codes and corresponding reason
code values to application 124. In response to the indication, a non-linear surrogate model may be
configured to provide one or more important features for the selected point. In response to the
indication, a non-linear surrogate model may be configured to highlight a decision tree path

associated with the selected point.

[0055] Figure 2A is an example of a diagram illustrating an embodiment of input data.
Input data is comprised of training data, validation data, model prediction data, and actual outcome
data. In the example shown, input data 200 may be implemented by a system, such as complex

model server 102 or surrogate model server 112.

[0056] In the example shown, input data 200 includes entries A1, Aa...An. Each entry is
comprised of one or more features having a corresponding feature value. For example, entry A1 is
comprised of features F1, F2...Fa that have corresponding feature values of X1, Y1...Z1. Entry Az is
comprised of features F1, F2...Fa that have corresponding feature values of Xz, Yz2...Z2. Entry Anis
comprised of features F1, F2...Fa that have corresponding feature values of Xa, Yn... Zn. In some
embodiments, a feature value may correspond to the actual value of a feature (e.g., temperature =
98°). In other embodiments, a feature value may correspond to one of the ranges of values (e.g., a
value of “2” indicates a temperature range of 20-40). In other embodiments, a feature value may

correspond to one of the possible non-numerical values (e.g, “0” = male, “1” = female). In other

embodiments, a feature value may be a string.

[0057] A model, such as machine learning model 104, linear surrogate model 114, or
surrogate non-linear model(s) 115 may perform a prediction based on an entry, the features and
corresponding feature values associated with the entry. For example, a model may output a
prediction label P for A: based on the features F1, Fz...Fa and their corresponding feature values
X1, Y1...Z1. A model may output a prediction of P1, P2...Pn for each of the entries A1, Az...An,
respectively. The prediction label may be a probability of a particular outcome, a predicted value, a

predicted value plus an offset range, a predicted value plus a confidence level, etc.

[0058] Input data 200 may include actual outcome data, e.g., whether or not a particular
outcome occurred, the actual value for an output variable, etc. A value of 1 may indicate that the
particular outcome occurred. A value of 0 may indicate that the particular outcome did not occur.
In other embodiments, a value of 1 indicates that the particular output did not occur and a value of

0 indicates that the particular outcome did occur.

11
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[0059] In some embodiments, a model, such as machine learning model 104, linear
surrogate model 114, or surrogate non-linear model(s) 115 may predict that a particular outcome is
to occur (e.g., greater than or equal to a prediction threshold) and the particular outcome actually
occurred (e.g., a value of 1). In some embodiments, a model, such as machine learning model 104,
linear surrogate model 114, or surrogate non-linear model(s) 115 may predict that a particular
outcome is to occur (e.g., greater than or equal to a prediction threshold) and the particular outcome
did not actually occurred (e.g., a value of 0). In some embodiments, a model, such as machine
learning model 104, linear surrogate model 114, or surrogate non-linear model(s) 115 may predict
that a particular outcome is not to occur (e.g., less than a prediction threshold) and the particular
outcome actually occurred (e.g., a value of 1). In some embodiments, a model, such as machine
learning model 104, linear surrogate model 114, or surrogate non-linear model(s) 115 may predict
that a particular outcome is not to occur (e.g., less than a prediction threshold) and the particular

outcome did not actually occur (e.g., a value of 0).

[0060] Figure 2B is an example of a diagram illustrating an embodiment of input data that
is ranked based on the prediction label. In the example shown, sorted training data 250 may be

implemented by a system, such as complex model server 102 or surrogate model server 112.

[0061] In the example shown, input data 250 includes entries A1, Az...A2. The entries for
input data 250 are the same entries for input data 200, but ranked based on the prediction label.
The prediction label may be a probability of a particular outcome. In some embodiments, the
entries are ranked from a lowest prediction label to the highest prediction label. In some

embodiments, the entries are ranked from a highest prediction label to the lowest prediction label.

[0062] Figure 3 is a diagram illustrating an embodiment of an output of a linear surrogate
model. Linear model graph 300 may be implemented by a system, such as surrogate model server
112. Linear model graph 300 may represent the output of a linear model, such as linear surrogate
model 114. Linear surrogate model 114 is a surrogate model of a more complex function, such as

machine learning model 104.

[0063] Linear model graph 300 plots the prediction label associated with entries versus
ranked predictions. The y-axis of linear model graph 300 indicates a score made by a model, such
as machine learning model 104 or linear surrogate model 114. The x-axis of linear model graph
300 indicates a prediction ranking associated with a set of inputs. The set of entries are ranked
based on the prediction label and plotted sequentially. For example, Figure 2B depicts a set of

entries that are ranked based on the corresponding prediction label. The entries included in input
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data 250 would plotted in the following order: A1, Aze...and As.

[0064] Linear model graph 300 includes a line 301 that represents the prediction labels
associated with a set of inputs that are determined by a machine learning model, such as machine
learning model 104. For example, line 301 may be a plot of predictions P1, P2o...P2 of input data
250. The prediction values associated with line 301 may be determined by a machine learning
algorithm (e.g., decision trees, naive Bayes classification, least squares regression, logistic

regression, support vector machines, neural networks, deep learning, etc.).

[0065] Linear model graph 300 includes a series of observations, for example, white dots
302, 305, that represent the prediction labels associated with a set of entries that are determined by
a linear model, such as linear surrogate model 114. In some embodiments, an observation is
associated with a global surrogate model. The observation may represent a prediction label of a
global surrogate model for a particular entry. In other embodiments, an observation is associated

with a local linear model.

[0066] The prediction label associated with each observation may be determined by a K-
LIME model. Linear surrogate model 114 may be comprised of a plurality of local linear models.
The set of entries may be classified into one or more clusters using one or more techniques (e.g., k-
means clustering). Each cluster represents a subset of the entries that are similar to each other. An
entry may be associated with a cluster based on a distance between the entry and a cluster centroid.
In the event the entry is less than or equal to a threshold distance away from a cluster centroid, an
entry is associated with the cluster. In the event the entry is greater than a threshold distance away
from a cluster centroid, an entry is associated with a different cluster. A local linear model may be
generated for each cluster. The cluster local linear model may be trained using entries that are
associated with a particular cluster. For example, for a set of entries that 1s classified into 11
clusters, each of the 11 clusters may have a corresponding local linear model. Each local linear
model is configured to make a prediction for the subset of entries that are included in a cluster. A
local linear model is configured to make a prediction based on the one or more features and
corresponding feature values of an entry. For example, suppose white dot 302 is part of a first
cluster and white dot 305 is part of a second cluster. A first local linear model may be configured
to generate a prediction for white dot 302 based on the one or more features and corresponding
feature values of white dot 302 and a second local linear model may be configured to generate a
prediction for white dot 305 based on the one or more features and corresponding feature values of

white dot 305.
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[0067] In some embodiments, an entry is added to a cluster (e.g., production data) by
determining a cluster centroid that is closest to the entry. The entry and cluster centroids have a
particular location in feature space. For example, an entry is comprised of a plurality of features
and corresponding feature values. The entry location in feature space may be represented as a
vector, e.g., {X1, Y1...Z1}. The closest cluster may be determined by computing a distance
between the entry in the feature space and the cluster centroid in the feature space. The closest
cluster corresponds to a local linear model that has one or more associated model parameters. After
the closest centroid cluster is determined, a prediction label for the input may be determined by
inputting the feature values associated with the feature to a local linear model that corresponds to

the closest centroid cluster.

[0068] Linear model graph 300 includes a set of actual outcome data, for example, black
dots 303, 304. Black dots 303 indicate that the particular outcome actually occurred for entries
having a set of features and corresponding feature values. Black dots 304 indicate that the
particular outcome did not occur for entries having a set of features and corresponding feature

values.

[0069] In some embodiments, the machine learning model prediction correlates with the
actual outcome data. For example, a point 308 on line 301 indicates a particular outcome is likely
to happen (prediction label = 0.75) and black dot 307 indicates that the particular outcome actually

occurred.

[0070] In some embodiments, the machine learning model prediction does not correlate
with the actual outcome data. For example, a point 309 on line 301 indicates that a particular
outcome is unlikely to happen (prediction label = 0.2) and black dot 306 indicates that the

particular outcome actually occurred.

[0071] Each of the observation points, i.e., the white dots, has a corresponding black dot.
For example, white dot 302 has a corresponding black dot 306. In some embodiments, a global
surrogate model correlates with the actual outcome data. In some embodiments, a global surrogate
model does not correlate with the actual outcome data. In some embodiments, a local linear model
prediction correlates with the actual outcome data. In some embodiments, a local linear model

prediction does not correlate with the actual outcome data.

[0072] Each of the observation points may be selected. In response to being selected, one

or more reason codes and corresponding reason code values may be displayed. A reason code
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corresponds to a feature. A reason code value corresponds to the amount that the feature
contributed to the local model’s prediction label (e.g., weight) for that observation point (input
point). A linear surrogate model may determine the reason codes and corresponding reason code
values for a particular observation point. The sum of the reason code values may be equal to the
prediction label. Instead of displaying all the reason codes and corresponding reason code values
for a particular observation point, in some embodiments, the top reason codes (e.g., top 5 reason
codes) are be displayed, i.e., the most influential features. For example, white dot 302 has a
prediction label of approximately 0.3. The top reason codes “F1,” “F18,” “F3,” “F50,” “F34,” and
corresponding reason code values may be displayed. In other embodiments, selecting an
observation point may cause all the reason codes and corresponding reason code values for the

selected observation point to be displayed.

[0073] Figure 4A is a flow chart illustrating an embodiment of a process for providing a
linear surrogate model. In the example shown, process 400 may be implemented by a system, such

as surrogate model server 112.

[0074] At 402, data associated with a machine learning model is received. The data may
include training data that was used to train the machine learning model. The data may include
prediction data of the machine learning model associated with an entry of the training data. The
data may include actual outcome data associated an entry with one or more features having a

corresponding feature value, i.e., whether or not the particular outcome actually occurred.

[0075] At 404, the data associated with a machine learning model is classified into a
plurality of clusters. The data may be classified into the plurality of clusters using one or more
techniques (e.g., k-means clustering). Each cluster represents a subset of the entries that are similar
to each other. A cluster is comprised of a plurality of entries. Each entry is comprised of one or
more features having a corresponding feature value. Each entry has a corresponding location, e.g.,
(F1, F2...Fn) in a feature space. In some embodiments, a cluster is determined based on one or
more entries that are within a threshold distance from a point (e.g., cluster centroid) in the feature

space.

[0076] At 406, a model is created. In some embodiments, a global surrogate model is
created based on the input data. In other embodiments, a separate linear model is created for each
cluster. Each linear model is configured to output a prediction label. For example, a linear model
may determine a prediction Pi that indicates a probability of whether a particular outcome will

oceur given an entry A that is comprised of features F1, Fa... Fn having corresponding feature
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values of X1, Y1...Z1.

[0077] At 408, the entries are ranked based on a model prediction. In some embodiments,
the entries are ranked based on a prediction made by a machine learning model, such as machine
learning model 104. In other embodiments, the entries are ranked based on the prediction made by
a linear surrogate model, such as linear surrogate model 114. In some embodiments, the entries are
ranked from a lowest prediction label to the highest prediction label. In some embodiments, the
entries are ranked from a highest prediction label to the lowest prediction label.

[0078] At 410, a linear model graph, such as linear model graph 300, is provided. In some
embodiments, the linear model graph is provided from a surrogate model server to a client device
via a network. The client device may display the linear model graph via an application running on

the client device.

[0079] At 412, a selection of an observation point included in the linear model graph is
received. For example, a client device may receive via a GUI, a selection for a dot, such as white

dot 302. One or more non-linear model graphs may be updated based on the selected point.

[0080] At 414, one or more reason codes are provided. The one or more reason codes
include a set of features that predominately caused the entry to have the corresponding prediction
label. For example, a series of reason codes may be provided to indicate why white dot 302 has a
prediction label of 0.3. Each reason code has a corresponding reason code value that indicates a
contribution to the prediction label. The cumulative contributions of the reason codes is equal to

the prediction label.

[0081] Figure 4B is a flow chart illustrating an embodiment of a process for providing a

prediction. Process 450 may be implemented by a system, such as surrogate model server 112.

[0082] At 452, production data is received. Production data is comprised of one or more
entries. Each entry is associated with one or more features having corresponding feature values.

The one or more entries of the production data do not include a corresponding prediction label.

[0083] At 454, a closest cluster is determined for each entry of the production data. An
entry of the production data is comprised of a plurality of feature values. The feature values
correspond to a location in feature space. A cluster centroid of a cluster has a corresponding
location in the feature space. A closest centroid is determined for each entry of the production data.

The closest centroid may be determined by computing a distance between the location of an entry
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in feature space and a location of a cluster centroid in the feature space.

[0084] At 456, a linear surrogate model for each entry of the production data is determined.

Each cluster has a corresponding linear surrogate model.

[0085] At 458, the one or more entries of production data are applied to a corresponding
linear surrogate model. For example, a first entry of the production data may be applied to a first
linear surrogate model that corresponds to a first cluster and a second entry of the production data

may be applied to a second linear surrogate model that corresponds to a second cluster.

[0086] At 460, a prediction label and one or more reason codes are outputted. Each linear
surrogate model outputs a corresponding prediction label. The prediction label may be a
probability of a particular outcome, a predicted value, a prediction value + offset value, etc. The

reason codes provide an explanation as to why the prediction label has a certain output.

[0087] Figure 5 is a diagram illustrating an embodiment of a non-linear surrogate model.
Non-linear model graph 500 may be implemented by a system, such as surrogate model server 112.
Non-linear model graph 500 may represent the output of a non-linear surrogate model, such as one
of the non-linear surrogate models 115. A non-linear surrogate model 115 is a surrogate model of a

more complex function, such as machine learning model 104.

[0088] Non-linear model graph 500 illustrates the feature importance of one or more
features. Feature importance measures the effect that a feature has on the predictions of a model.
Non-linear model graph 500 includes a global feature importance and a local feature importance for
a particular feature. In some embodiments, the features are sorted in descending order from the

globally most important feature to the globally least important feature.

[0089] The global feature importance measures the overall impact of the feature on the
model predictions while taking nonlinearity and interactions into consideration. A global feature
importance value provides an indication of the magnitude of a feature’s contribution to model
predictions for all observations. For example, the global importance value may indicate the
importance of a feature for a global surrogate model, i.e., the importance of the feature for all
entries. In some embodiments, the global feature importance value is equal to the number of times
in a decision tree ensemble (e.g., global decision tree surrogate model) that a feature was selected
to split a decision tree of the decision tree ensemble. In some embodiments, the global feature
importance value is scaled to a number between 0 and 1, such that the most important feature has

an importance value of 1. In some embodiments, the global feature importance value is weighted
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based on a location of a feature in a decision tree. For example, a feature that is selected at the top
of a decision tree for a split has a weight that is higher than another feature that is selected at the
bottom of a decision tree for a split. In some embodiments, the weight is a value between 0 and 1.
A weight of approximately 1 indicates that the feature was selected at or near the top of a decision
tree. A weight of approximately O indicates that the feature was not selected for a branch of the
decision tree or was selected at or near the bottom of a decision tree. In some embodiments, the

weight is a value greater than 1.

[0090] Local feature importance describes how the combination of the learned model rules
or parameters and an individual observation’s attributes affect a model’s prediction for that
observation while taking nonlinearity and interactions into effect. For example, the local feature
importance may indicate the importance of a feature associated with an entry (e.g., observation
point) for a global surrogate model, i.e., the importance of the feature for this particular entry. The
local feature importance value may be determined by computing a LOCO value for a feature. An
entry is comprised of a plurality of features. A first prediction is computed using the plurality of
features and a second prediction is computed using the plurality of features less one of the plurality
of features. The second prediction is subtracted from the first prediction to determine the
importance of the feature. The LOCO value is computed for each feature of the plurality of

features.

[0091] As seen in Figure 5, features “F1,” “F18,” “F3,” “F50,” “F34,” and “F8” are
depicted as the most important features for a prediction. In some embodiments, the most important
features are the most important features for a global surrogate model. In other embodiments, the
most important features are the most important features for a selected observation point. The
global importance values and local importance values are shown for each feature. For example, the
global importance values of 502a, 504a, 506a, 508a, 510a, and 512a are shown for features “F1,”
“F18,” “F3,” “F50,” “F34,” and “F8,” respectively. The local importance values of 502b, 504b,
506b, 508b, 510b, and 512b are shown for features “F1,” “F18,” “F3,” “F50,” “F34,” and “F8,”

respectively.

[0092] In some embodiments, the global importance value for a feature correlates with the
local importance value for the feature. For example, the global importance value for a feature
correlates with the local importance value for the feature in the event the difference between the
two values is less than or equal to a threshold value. The global importance value for a feature does
not correlate with the local importance value for the feature in the event the difference between the

two values is greater than a threshold value. In the event the global importance value for a feature
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and the local importance value for the feature do not correlate, the entry with which the prediction
is associated may be flagged. In some embodiments, the feature importance model is investigated
to determine why the model outputted such values. In the event a threshold number of entries are
flagged, the non-linear model may be determined to be inaccurate and adjusted. For example, the
global importance value 504a for feature “F18” does not correlate with the local importance value
504b. This indicates that the non-linear model associated with non-linear model graph 500 may
need to be adjusted or the feature importance model should be investigated. In some embodiments,
the listed features may indicate that a single feature dominates the prediction label associated with a
prediction (e.g., the feature importance value is greater than a dominance score). For example,
feature F1 may have an associated importance value of 0.98 (out of 1.00). This may indicate a data
leak associated with the predication and indicate that the model may need to be adjusted or the
feature importance model should be investigated. In response to such an indication, the model may

be adjusted or investigated.

[0093] Figure 6 is a flow chart illustrating an embodiment of a process for providing a non-
linear surrogate model. In the example shown, process 600 may be implemented by a system, such

as surrogate model server 112.

[0094] At 602, a global importance value of a feature is determined. The global feature
importance value may be equal to the number of times in a decision tree ensemble that the feature
was selected to split a decision tree of the decision tree ensemble. In some embodiments, the
global feature importance value is scaled to a number between 0 and 1, such that the most
important feature has an importance value of 1. In some embodiments, the global feature
importance value is weighted based on a location of a feature in a decision tree. For example, a
feature that is selected at the top of a decision tree for a split has a weight that is higher than

another feature that is selected at the bottom of a decision tree for a split.

[0095] At 604, a local importance value of a feature is determined. The local feature
importance value may be determined by computing a LOCO value for a feature. An entry is
comprised of a plurality of features. A first prediction is computed using the plurality of features
and a second prediction is computed using the plurality of features less one of the plurality of
features. The second prediction is subtracted from the first prediction to determine the importance

of the feature.

[0096] At 606, the one or more most important features are ranked. In some embodiments,

the one or more important features are ranked based on the global importance values. In other

19



WO 2019/204072 PCT/US2019/026331

embodiments, the one or more important features are ranked based on the local importance values.
The top number (e.g., top 5) of features or top percentage (top 10%) of features may be determined

to be the one or more most important features.

[0097] At 608, a visualization of a comparison between the determined global importance
value and the determined local importance for a plurality of features is provided. In some

embodiments, the comparison is provided for the one or more most important features.

[0098] Figure 7 is a diagram illustrating an embodiment of a non-linear surrogate model.
Non-linear model graph 700 may be implemented by a system, such as surrogate model server 112.
Non-linear model graph 700 may represent the output of a non-linear surrogate model, such as one
of the non-linear surrogate models 115. A non-linear surrogate model 115 is a surrogate model of a

more complex function, such as machine learning model 104.

[0099] Non-linear model graph 700 illustrates a decision tree surrogate model. A complex
decision tree ensemble model may be comprised of hundreds of trees with varying degrees of
complexity (e.g., 1000s of levels). The decision tree surrogate model is an approximation of the
complex decision ensemble tree model (e.g., global decision tree surrogate model) and is comprised

of a shallow decision tree, e.g., three levels.

[00100] Non-linear model graph 700 may indicate the most common decision path of a
decision tree surrogate model. A thickness of the most common decision path may have a greater
thickness than other decision paths. For example, the path between “F17, “F18,” and “F2” is
thicker than other decision paths. This indicates that the path between “F17, “F18,” and “F2” is the
most common decision path for non-linear model graph 700. Non-linear model graph 700 may
indicate the least common decision path of a decision tree surrogate model. A thinness of the least
common decision path may have a thinner thickness than other decision paths. For example, the
patch between “F18” and “F50” is thinner than other decision paths. This indicates that the path
between “F18” and “F50” is the least common decision path for non-linear model graph 700. A
width of a path of the decision tree surrogate model may indicate a frequency of which the path is

used by the decision tree surrogate model.

[00101] Non-linear model graph 700 may include a prediction label associated with different
paths associated with the decision tree surrogate model. For example, a prediction label of “0.136”

is outputted for entries with features F1, F18, and F2.

[00102] In some embodiments, when an observation (e.g., white dot in Figure 3) is selected
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on a linear model graph, such as linear model graph 300, non-linear model graph 700 may be

updated to show the path of the observation through the decision tree surrogate model.

[00103] Figure 8 is a flow chart illustrating an embodiment of a process for providing a
surrogate non-linear model. In the example shown, process 800 may be implemented by a system,

such as surrogate model server 112.

[00104] At 802, a decision tree surrogate model is generated. A complex decision tree
model may be comprised of hundreds of trees with varying degrees of complexity (e.g., 1000s of
levels). The decision tree surrogate model is an approximation of the complex decision tree model

and 1s comprised of a shallow decision tree, e.g., three levels.

[00105] At 804, an indication of a selection of an observation point in a linear surrogate
model graph is received. The linear surrogate model graph may plot the prediction labels of a linear
surrogate model and a machine learning model with respect to ranked predictions. An observation

point is one of the predictions made by a linear surrogate model.

[00106] At 806, the decision tree surrogate model is updated based on the selected
observation point. The decision tree surrogate model may be updated to show the path of the

selected observation point through the decision tree surrogate model.

[00107] Figure 9 is a diagram illustrating an embodiment of a non-linear surrogate model.
Non-linear model graph 900 may be implemented by a system, such as surrogate model server 112.
Non-linear model graph 900 may represent the output of a non-linear surrogate model, such as one
of the non-linear surrogate models 115. A non-linear surrogate model 115 is a surrogate model of a

more complex function, such as machine learning model 104.

[00108] Non-linear model graph 900 illustrates a partial dependence plot. A partial
dependence plot determines the partial dependence of the prediction on a feature. A partial
dependence plot is configured to modify a feature value associated with a feature to be the same
value for all entries and to determine the prediction label given the modified feature value. In some
embodiments, an average prediction label is determined for different feature values. For example,
non-linear graph 900 illustrates white dots that may have a value ranging from “-2” to “8.” The
white dots depict the average prediction label for the inputs having the feature value. For example,
white dot 904 indicates that the average prediction label, for all inputs having a feature value of “2”

for a particular feature, is “0.6.”
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[00109] Non-linear model graph 900 illustrates a range of prediction labels (e.g., one
standard deviation) for all entries having the same feature value. For example, range 902 indicates
that a model will usually output a prediction label between 0.1 and 0.4 when the feature value for a

particular feature is “1.”

[00110] Non-linear model graph 900 illustrates a prediction label for an entry when a feature
value is set to a particular value. For example, black dot 904 indicates that the prediction label is

0.2 when the feature value is set to “1” for the particular feature and particular entry.

[00111] Figure 10 is a flow chart illustrating an embodiment of a process for providing a
non-linear model. In the example shown, process 1000 may be implemented by a system, such as

surrogate model server 122.

[00112] At 1002, an indication to modify a feature value associated with a feature to be a
particular value for all entries is received. At 1004, the feature is modified to be the particular
value for all entries. An entry is comprised of one or more features having a corresponding feature
value. The entry input data may indicate that the feature value for a particular feature varies for all
entries. The input data may be modified such that the feature value for a particular feature is the

same for all entries.

[00113] At 1004, the average prediction label for entries having the same feature value is
determined. The prediction label for all entries having the particular feature with the same feature
value is computed and averaged. At 1006, the range of prediction labels (e.g., one standard

deviation) for entries having the feature value is determined.

[00114] At 1008, the prediction label for a single entry having the particular feature value is
determined. The single entry may correspond to a selected observation point in a linear surrogate
model graph.

[00115] In some embodiments, steps 1002-1008 is repeated for all possible values for a

particular feature. For example, the feature depicted in Figure 9 has possible feature values of “-2”
to “8.” Steps 1002-1008 may be repeated for when the feature value is “-2,” “-1,”... “8.”

[00116] Figure 11 is a chart illustrating an embodiment of a dashboard. In the example
shown, dashboard 1100 may be implemented by a system, such as surrogate model server 122.
Dashboard 1100 may be provided to a client system, such as client 122. Dashboard 1100 may

include a linear model graph and one or more non-linear model graphs, or graphs based on the
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original machine learning model.

[00117] In the example shown, dashboard 1100 includes a K-LIME linear model graph, a
feature importance graph, a surrogate model decision tree, and a partial dependence graph. In some
embodiments, a user selection of an observation, such as white dot 1102, is received. In response
to the selection, the feature importance graph, the surrogate model decision tree, and the partial

dependence graph may be updated.

[00118] For example, the feature importance graph may be updated to depict the most
important features. The most important features may be the most important features associated
with a global surrogate model. The most important features may be the most important features
associated with the selected observation point. The surrogate model decision tree may be updated
to reflect a path in the surrogate decision tree that the observation took to arrive at the prediction
label. The partial dependence graph may be updated to depict how the prediction label for the
observation point changes when the feature value of a particular feature is modified to be a

particular value.

[00119] Figure 12 is a flow chart illustrating an embodiment of a process for debugging
machine learning models. In the example shown, process 1200 may be implemented by a system,

such as surrogate model server 122.

[00120] At 1202, a linear model graph is provided. The linear model graph may depict the

predictions of a linear surrogate model.

[00121] At 1204, a selection of a point included in the linear surrogate model is received.
The linear surrogate model graph may plot the prediction labels of a linear surrogate model and a
machine learning model with respect to ranked predictions. An observation point is one of the

predictions made by a linear surrogate model.

[00122] At 1206, one or more non-linear surrogate models are updated based on the selected
point. For example, the feature importance graph may be updated to depict the most important
features. The surrogate model decision tree may be updated to reflect a path in the surrogate
decision tree that the observation took to arrive at the prediction label. The partial dependence
graph may be updated to depict how the prediction label for the observation point changes when the

feature value of a particular feature is modified to be a particular value.

[00123] At 1208, it is determined whether an output of the linear surrogate model correlates
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with an output of the non-linear surrogate model. For example, an output of the linear surrogate
model may indicate that feature “F1” is one of the top features that influenced the prediction label
of the linear surrogate model while the output of a non-linear surrogate model indicates that feature

“F1” is not one of the top features that influenced the prediction of the non-linear surrogate model.

[00124] In response to determining that the linear model agrees with the linear model,
process 1200 proceeds to 1210. In response to determining that the linear model does not agree

with the linear model, process 1200 proceeds to 1212.

[00125] At 1210, the linear surrogate model and/or at least one of the non-linear surrogate
models are determined to be accurate. The models are determined to be accurate because the
explanations are deemed to be accurate. For example, determined feature importance, decision tree
surrogate model outputs, and/or a partial dependence plot remaining stable over time or when
training data is intentionally perturbed may be matched with human domain expertise to debug the
models. In the event the explanations match with human domain expertise, then more confidence
may be attached to the models. These techniques may be used for visualizing, validating, and
debugging the machine learning model by comparing the displayed decision-process, important
features, and important interactions to known standards, domain knowledge, and reasonable

expectations.

[00126] At 1212, the linear and/or nonlinear model(s) are retrained. In some embodiments,
the linear and/or non-linear surrogate models are retrained in the event a threshold number of
entries are flagged. An entry may be flagged in the event a prediction label associated with a linear
surrogate model does not correlate with a prediction label associated with a non-linear surrogate

model.

[00127] Although the foregoing embodiments have been described in some detail for
purposes of clarity of understanding, the invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The disclosed embodiments are illustrative

and not restrictive.
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CLAIMS

1. A method, comprising:

classifying input data associated with a machine learning model into a plurality of clusters;

generating a plurality of linear surrogate models, wherein one of the plurality of linear
surrogate models corresponds to one of the plurality of clusters, wherein a linear surrogate model is
configured to output a corresponding prediction based on input data associated with a
corresponding cluster; and

outputting the prediction data associated with the machine learning model and prediction

data associated with the plurality of linear surrogate models.

2. The method of claim 1, further comprising receiving the input data associated with the

machine learning model.

3. The method of claim 1, wherein the input data associated with the machine learning model
comprises one or more entries, wherein the one or more entries are sorted into training data and
validation data, wherein each entry of the one or more entries is associated with one or more
features having corresponding feature values, a corresponding prediction label, and a corresponding

actual outcome.

4. The method of claim 1, wherein the input data associated with the machine learning model

is classified into the plurality of clusters using a k-means clustering technique.

5. The method of claim 1, further comprising ranking the prediction data associated with the

plurality of linear surrogate models.

6. The method of claim 5, wherein outputting the prediction data associated with the machine
learning model and prediction data associated with the plurality of linear surrogate models includes
plotting the ranked prediction data associated with the plurality of linear surrogate models with

respect to a corresponding prediction label.

7. The method of claim 1, further comprising receiving a selection of a data point of the

prediction data associated with the plurality of linear surrogate models.

8. The method of claim 7, in response to receiving the selection of the data point of the
prediction data associated with the plurality of linear surrogate models, providing one or more

reason codes associated with a prediction value associated with the data point.

9. The method of claim 8, wherein the one or more reason codes associated with the prediction

value associated with the data point indicate a top threshold number of reasons the corresponding
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linear surrogate model made a prediction associated with the selected data point.

10.  The method of claim 8, wherein the one or more reason codes have a corresponding

contribution value.

11. The method of claim 10, wherein a sum of contribution values associated with the one or

more reason codes is equal to a prediction value associated with the data point.

12.  The method of claim 8, wherein the one or more reason codes correspond to one or more

features associated with the input data.

13.  The method of claim 1, further comprising generating a global surrogate model of the
machine learning model based at least in part on the input data associated with the machine

learning model.

14.  The method of claim 1, further comprising:
receiving production data, wherein the production data comprises at least one entry;
determining a cluster of the plurality of clusters for the at least one entry based at least in
part on a centroid associated with the cluster;
determine a linear surrogate model corresponding to the determined cluster; and
output, using the determined linear surrogate model, prediction data associated with the at

least one entry.

15.  The method of claim 1, wherein the input data associated with the machine learning model
comprises one or more entries, the method further comprising sorting the one or more entries of the
input data into one or more groups, wherein a group corresponds to one of the plurality of clusters,
wherein an entry is associated with a group based at least in part on a distance between feature

values associated with the entry and a cluster centroid associated with the group.

16.  The method of claim 15, wherein a linear surrogate model of the plurality of linear
surrogate models is trained using one or more entries associated with one of the one or more
groups.

17.  The method of claim 1, wherein the plurality of linear surrogate models are trained to

predict an actual value associated with the machine learning model.

18. A system, comprising:
a processor configured to:
classify input data associated with a machine learning model into a plurality of
clusters;

generate a plurality of linear surrogate models, wherein one of the plurality of linear
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surrogate models corresponds to one of the plurality of clusters, wherein a linear surrogate
model is configured to output a corresponding prediction based on input data associated
with a corresponding cluster; and

output the prediction data associated with the machine learning model and
prediction data associated with the plurality of linear surrogate models; and
a memory coupled to the processor and configured to provide the processor with

instructions.

19.  The system of claim 18, wherein the processor is further configured to receive the input data

associated with the machine learning model.

20. A computer program product, the computer program product being embodied in a non-
transitory computer readable storage medium and comprising computer instructions for:

classifying input data associated with a machine learning model into a plurality of clusters;

generating a plurality of linear surrogate models, wherein one of the plurality of linear
surrogate models corresponds to one of the plurality of clusters, wherein a linear surrogate model is
configured to output a corresponding prediction based on input data associated with a
corresponding cluster; and

outputting the prediction data associated with the machine learning model and prediction

data associated with the plurality of linear surrogate models.

21. A method, comprising:

receiving an indication of a selection of an entry associated with a machine learning model;
and

dynamically updating one or more interpretation views associated with one or more

machine learning models based on the selected entry.

22.  The method of claim 21, wherein the one or more machine learning models include one or

more non-linear models.

23.  The method of claim 22, wherein one of the one or more non-linear surrogate models

includes a feature importance model.

24.  The method of claim 23, wherein the feature importance model is configured to output one
or more features, wherein the one or more features have a corresponding global feature importance

value and a corresponding local feature importance value.

25.  The method of claim 24, wherein the corresponding global feature importance value

associated with a feature is based at least in part on a number of times the feature is used in a
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random forest model.

26.  The method of claim 25, wherein the corresponding global feature importance value
associated with the feature is based at least in part on a level of the random forest model that the

feature was used to split the random forest model.

27.  The method of claim 24, wherein the corresponding local feature importance value is

computed using a leave-one-covariate out mechanism.

28.  The method of claim 24, further comprising:

comparing the corresponding global feature importance value associated with a feature with
the corresponding local feature importance value associated with the feature; and

determining whether a difference between the corresponding global feature importance
value associated with the feature and the corresponding local feature importance value is greater

than or equal a threshold value.

29.  The method of claim 28, in response to determining that the difference between the
corresponding global feature importance value associated with the feature and the corresponding
local feature importance value is greater than or equal to a threshold value, investigating the feature

importance model.

30.  The method of claim 28, in response to determining that the difference between the
corresponding global feature importance value associated with the feature and the corresponding
local feature importance value is less than a threshold value, forgoing an investigation of the feature

importance model.

31.  The method of claim 22, wherein one of the one or more non-linear surrogate models

includes a decision tree surrogate model.

32.  The method of claim 31, wherein a plurality of branches associated with the decision tree
surrogate model are based on input data associated with the machine learning model, wherein the
input data associated with the machine learning model includes a plurality of entries, wherein each

entry has a one or more features and one or more corresponding feature values.

33.  The method of claim 31, wherein dynamically updating the one or more interpretation
views associated with the one or more machine learning models includes highlighting a path of the

decision tree surrogate model, wherein the highlighted path is specific to the selected entry.

34.  The method of claim 31, wherein a width of a path of the decision tree surrogate model

indicates a frequency of which the path is used by the decision tree surrogate model.
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35.  The method of claim 32, wherein one of the one or more non-linear surrogate models

includes a partial dependence plot.

36.  The method of claim 35, wherein the partial dependence plot indicates a dependence of a
prediction label of the partial dependence plot on a feature having a particular value.

37.  The method of claim 35, wherein the partial dependence plot indicates an average
prediction label based on all entries associated with the partial dependence plot having a

corresponding feature with a same particular value.

38.  The method of claim 31, wherein the one or more interpretation views associated with one
or more machine learning models includes a view associated with a feature importance surrogate
model, a view associated with a decision tree surrogate model, and a view associated with a partial

dependence plot.

39. A system, comprising:
a processor configured to:
receive an indication of a selection of an entry associated with a machine learning
model; and
dynamically update one or more interpretation views associated with one or more
machine learning models based on the selected entry; and
a memory coupled to the processor and configured to provide the processor with

instructions.

40. A computer program product, the computer program product being embodied in a non-
transitory computer readable storage medium and comprising computer instructions for:

receiving an indication of a selection of an entry associated with a machine learning model;
and

dynamically updating one or more interpretation views associated with one or more

machine learning models based on the selected entry..
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