(12) 公開特許公報(A)

(19) 日本国特許庁(JP)

(11)特許出願公開番号 特開2007-324583 (P2007-324583A)

(43) 公開日 平成19年12月13日 (2007. 12. 13)

(51) Int.Cl.			FI	テーマコード(参考)	
H O 1L	33/00	(2006.01)	HO1L 33/00	С	5 F O 4 1

審査請求 未請求 請求項の数 43 OL (全 43 頁)

 (21) 出願番号 (22) 出願日 (31) 優先権主張番号 (32) 優先日 (33) 優先権主張国 	特願2007-120970 (P2007-120970) 平成19年5月1日 (2007.5.1) 特願2006-128019 (P2006-128019) 平成18年5月1日 (2006.5.1) 日本国 (JP)	(71) 出周 (74) 代理 (74) 代理 (72) 発明	頭人工工具	000005968 三菱化学株式会社 東京都港区芝4丁目14番1号 100106297 弁理士 伊藤 克博 100129610 弁理士 小野 暁子					
		Г <i>э</i>	ム (参考	滅県牛 茨城県牛 会社三菱 登) 5F041	之市東 化学科 AA14 CA74	3 端穴町 学技術 AA31 CB25	100 研究セ CA13 DA04	O番地 ンター CA40 DA09	株式 内 CA65 FF11

(54) 【発明の名称】 集積型半導体発光装置およびその製造方法

(57)【要約】

【課題】本発明は、大面積の面光源的発光に適した集積 型化合物半導体発光装置の構造、およびその製造方法を 提供することを目的とする。

【解決手段】複数の発光ユニットを有する集積型化合物 半導体発光装置であって、発光ユニットが、第一導電型 半導体層24、活性層構造25および第二導電型半導体 層26を有する薄膜結晶層を少なくとも有し、主たる光 取り出し方向が第一導電型半導体層24側方向であり、 第一および第二導電型側電極27、28がその反対側に 形成されて、発光ユニット11同士が、薄膜結晶層の表 面から前記バッファ層22の一部までを除去して形成さ れた発光ユニット間分離溝12により電気的に分離され ている。

【選択図】図1

【特許請求の範囲】

【請求項1】

複数の発光ユニットを有する集積型化合物半導体発光装置であって、

前記発光ユニットは、第一導電型クラッド層を含む第一導電型半導体層、活性層構造、および第二導電型クラッド層を含む第二導電型半導体層を有する化合物半導体薄膜結晶層と、第二導電型側電極と、並びに第一導電型側電極とを少なくとも有し、

主たる光取り出し方向が前記活性層構造から見て前記第一導電型半導体層側方向であり、前記第一導電型側電極および前記第二導電型側電極が、前記主たる光取り出し方向とは、反対側に形成されており、

前記第一導電型半導体層より前記主たる光取り出し方向側に、前記複数の発光ユニット 10 間に共通して設けられたバッファ層を有し、

前記発光ユニット同士は、隣接する発光ユニットの間に設けられ、前記薄膜結晶層の表面から前記バッファ層の界面まで、または前記バッファ層の一部までを除去して形成された発光ユニット間分離溝により電気的に分離されていることを特徴とする集積型化合物半導体発光装置。

【請求項2】

前記バッファ層が、薄膜結晶成長により形成された層であることを特徴とする請求項1 記載の発光装置。

【請求項3】

前記バッファ層の少なくとも前記第一導電型半導体層に直接接する部分の比抵抗が、 0 20 .5 (・cm)以上であることを特徴とする請求項 1 または 2 記載の発光装置。

【請求項4】

前記バッファ層全体の比抵抗が、0.5 (・cm)以上であることを特徴とする請求 項1~3のいずれかに記載の発光装置。

【請求項5】

前 記 バッファ 層 が 複 数 の 層 の 積 層 構 造 で あ る こ と を 特 徴 と す る 請 求 項 1 ~ 4 の い ず れ か に 記 載 の 発 光 装 置 。

【請求項6】

前 記 発 光 ユ ニ ッ ト 間 分 離 溝 の 幅 が 、 2 ~ 3 0 0 µ m の 範 囲 で あ る 請 求 項 1 ~ 5 の い ず れ か に 記 載 の 発 光 装 置 。

【請求項7】

前記発光装置は、複数の発光装置の間に設けられた装置間分離溝から分割されたもので あって、この装置間分離溝が、前記バッファ層の途中まで形成されたことを特徴とする請 求項1~6のいずれかに記載の発光装置。

【請求項8】

前記発光装置は、複数の発光装置の間に設けられた装置間分離溝から分割されたもので あって、この装置間分離溝が、前記バッファ層を除去して形成されたことを特徴とする請 求項1~6のいずれかに記載の発光装置。

【請求項9】

前記発光ユニット間分離溝内の底面および側面の全面を被覆し、この発光装置の側面に 40 露出した層のうち、少なくとも前記第一導電型半導体層、活性層構造および第二導電型半 導体層の側面を被覆し、前記第一導電型側電極の主たる光取り出し方向側の一部に接し、 前記第二導電型側電極の主たる光取り出し方向と反対側の一部を覆っている絶縁層を有す ることを特徴とする請求項1~8のいずれかに記載の発光装置。

【請求項10】

この発光装置の側面に、前記主たる光取り出し方向から、前記絶縁層が形成されていな い絶縁層非形成領域が存在し、かつ、前記絶縁層が少なくとも前記第一導電型半導体層、 前記活性層構造、および前記第二導電型半導体層の側壁を覆っていることを特徴とする請 求項9記載の発光装置。

【請求項11】

前記薄膜結晶層が、V族として窒素原子を含むIII-V族化合物半導体からなること

前記活性層構造が、量子井戸層とバリア層からなり、バリア層の数をB、量子井戸層の

を特徴とする請求項1~10のいずれかに記載の発光装置。

【請求項12】

数をWで表したとき、BとWが、 B = W + 1を満たすことを特徴とする請求項1~11のいずれかに記載の発光装置。 【請求項13】 前 記 絶 縁 層 が 、 複 数 の 層 か ら な る 誘 電 体 多 層 膜 で あ る こ と を 特 徴 と す る 請 求 項 9 ま た は 10記載の発光装置。 【請求項14】 前 記 第 一 導 電 型 半 導 体 層 側 か ら 前 記 バ ッ フ ァ 層 へ 垂 直 入 射 す る 当 該 発 光 装 置 の 発 光 波 長 の 光 が 前 記 バ ッ フ ァ 層 で 反 射 さ れ る 反 射 率 を R 2 で 表 し 、 前 記 絶 縁 層 に 前 記 第 二 導 電 型 半 導体 層側から 垂直入射する当該発光装置の発光波長の光が前記絶縁層で反射される反射率 を R 1 2、前記絶縁層に第一導電型半導体層側から垂直入射する当該発光装置の発光波長 の光が前記絶縁層で反射される反射率をR11、前記絶縁層に前記活性層構造側から垂直 入射する当該発光装置の発光波長の光が前記絶縁層で反射される反射率をR1aでそれぞ れ表したとき、 (式1) R2<R12 (式2) R2<R11 (式3) R2<R1q のすべての条件を満たすように、前記絶縁層が構成されていることを特徴とする請求項9 、10および13のいずれかに記載の発光装置。 【請求項15】 前 記 バ ッ フ ァ 層 の 主 た る 光 取 り 出 し 方 向 の 表 面 が 平 坦 で な い こ と を 特 徴 と す る 請 求 項 1 ~14のいずれかに記載の発光装置。 【請求項16】 前 記 第 一 導 電 型 半 導 体 層 か ら バ ッ フ ァ 層 側 に 垂 直 入 射 す る 当 該 発 光 装 置 の 発 光 波 長 の 光 がバッファ層で反射される反射率をR3、前記バッファ層から光取り出し側の空間に垂直 入射する当該発光装置の発光波長の光が空間との界面で反射される反射率をR4で表した とき R 4 < R 3を満たすようにバッファ層の光取り出し側に低反射光学膜を有することを特徴とする請求 項1~15のいずれかに記載の発光装置。 【請求項17】 第 一 導 電 型 が n 型 で あ り 、 第 二 導 電 型 が p 型 で あ る こ と を 特 徴 と す る 請 求 項 1 ~ 1 6 の いずれかに記載の発光装置。 【請求項18】 前記第一導電型側電極および前記第二導電型側電極が、金属ハンダによって金属面を有 する支持体に接合されていることを特徴とする請求項1~17のいずれかに記載の発光装 置。 【請求項19】 前記第一導電型側電極および前記第二導電型側電極と、前記支持体の金属面との接合が 、金属ハンダのみ、または金属ハンダと金属バンプによってなされていることを特徴とす る請求項18記載の発光装置。 【請求項20】 前 記 支 持 体 の 母 材 が 、 金 属 、 A l N 、 A l ₂ O ₃ 、 S i 、 ガ ラ ス 、 S i C 、 ダ イ ヤ モ ン ド、BNおよびCuWからなる群より選ばれることを特徴とする請求項18または19記 載の発光装置。 【請求項21】

10

20

30

40

前記支持体の発光装置間の分離部分に、金属層が形成されていないことを特徴とする請求項18~20のいずれかに記載の発光装置。

【請求項22】

複数の発光ユニットを支持体上に有する集積型化合物半導体発光装置の製造方法であっ て、

基板上に、バッファ層を形成する工程と、

少なくとも、第一導電型クラッド層を含む第一導電型半導体層、活性層構造、および第 二導電型クラッド層を含む第二導電型半導体層を有する薄膜結晶層を成膜する工程と、

前記第二導電型半導体層の表面に第二導電型側電極を形成する工程と、

前記第一導電型半導体層の一部を表面に露出させる第一エッチング工程と、 10 前記第一エッチング工程により、露出した第一導電型半導体層の面に第一導電型側電極 を形成する工程と、

前記発光ユニットを互いに電気的に分離するための発光ユニット間分離溝を形成するために、前記薄膜結晶層表面から前記バッファ層の界面まで、または前記薄膜結晶層表面から前記バッファ層の一部までを除去する第二エッチング工程と、

複数の発光装置に分離するための装置間分離溝を形成するために、少なくとも前記第一 導電型半導体層、活性層構造および第二導電型半導体層を除去する第三エッチング工程と

前記基板を除去する工程と

を有することを特徴とする集積型化合物半導体発光装置の製造方法。

【請求項23】

前記の基板を除去する工程の前に、前記第一導電型側電極および第二導電型側電極を、 支持体上の金属面に接合して前記支持体に搭載する工程を有することを特徴とする請求項 22記載の方法。

【請求項24】

前記の基板を除去する工程の後、複数の発光装置に分離する工程を有することを特徴と する請求項23記載の方法。

【請求項25】

前記バッファ層の成膜工程を、前記薄膜結晶層の成膜工程の一部として、かつ前記第一 導電型半導体層の形成に先立って行うことを特徴とする請求項22~24のいずれかに記 30 載の方法。

【請求項26】

前記バッファ層の少なくとも前記第一導電型半導体層に直接接する部分の比抵抗が、 0 .5 (・cm)以上であることを特徴とする請求項 2 2 ~ 2 5 のいずれかに記載の方法

【請求項27】

前記バッファ層全体の比抵抗が、0.5 (・cm)以上であることを特徴とする請求 項22~26のいずれかに記載の方法。

【請求項28】

前記バッファ層を、複数の層の積層構造として成膜することを特徴とする請求項22~ 40 27のいずれかに記載の方法。

【請求項29】

前記第三エッチング工程を、前記第二エッチング工程と同時にまたは別に行い、前記薄 膜結晶層表面から前記バッファ層の界面まで、または前記薄膜結晶層表面から前記バッフ ァ層の一部を除去するまでエッチングを行うことを特徴とする請求項22~28のいずれ かに記載の方法。

【請求項30】

前記第三エッチング工程において、少なくとも前記基板表面に達するまでエッチングを 行うことを特徴とする請求項22~28のいずれかに記載の方法。 【請求項31】

前記 第 二 お よ び 第 三 エ ッ チ ン グ 工 程 が 、 C l ₂ 、 B C l ₃ 、 S i C l ₄ 、 C C l ₄ およ びそれらの2種以上の組み合わせからなる群より選ばれるガス種を用いたドライエッチン グで行われることを特徴とする請求項22~30のいずれかに記載の方法。 【請求項32】 エッチングマスクとして、パターニングされた金属フッ化物層を用いることを特徴とす る請求項31記載の方法。 【請求項33】 前記金属フッ化物層が、SrF,、A1Fュ、MgF,、BaF,、CaF,およびそ れらの組み合わせからなる群より選ばれることを特徴とする請求項32記載の方法。 【請求項34】 10 前記第二導電型側電極を形成する工程、前記第一エッチング工程および前記第一導電型 側電極を形成する工程をこの順番に行い、前記第一導電型側電極を形成する工程の前に、 さらに絶縁層を形成する工程を有することを特徴とする請求項22~33のいずれかに記 載の方法。 【請求項35】 前 記 絶 縁 層 を 形 成 す る 工 程 が 、 第 一 ~ 第 三 エ ッ チ ン グ 工 程 の 後 に 行 わ れ る こ と を 特 徴 と する請求項34記載の方法。 【請求項36】 前 記 第 二 導 電 型 側 電 極 を 形 成 す る 工 程 、 前 記 第 一 エ ッ チ ン グ 工 程 お よ び 前 記 第 一 導 電 型 側電極を形成する工程をこの順番に行い、 20 前記第三エッチング工程では、表面から、前記バッファ層の少なくとも一部を除去する までの深さでエッチングを行って前記装置間分離溝を形成し、 さらに、第一~第三エッチング工程の後であって、前記第一導電型側電極を形成する工 程の前に、さらに絶縁層を形成する工程と、 前 記 装 置 間 分 離 溝 内 で 、 溝 底 面 に 堆 積 し た 絶 縁 層 の 一 部 を 除 去 し 、 ス ク ラ イ ブ 領 域 を 形 成する工程と を有することを特徴とする請求項22~28のいずれかに記載の方法。 【請求項37】 前記第二導電型側電極を形成する工程、前記第一エッチング工程および前記第一導電型 側電極を形成する工程をこの順番に行い、 30 前記第三エッチング工程では、表面から、前記バッファ層の少なくとも一部を除去する まで、または少なくとも前記基板に達するまでの深さでエッチングを行って前記装置間分 離溝を形成し、 さらに、第一~第三エッチング工程の後であって、前記第一導電型側電極を形成する工 程の前に、さらに絶縁層を形成する工程と、 前記装置間分離溝内で、溝底面に堆積した絶縁層のすべてと、前記装置間分離溝の側壁 に形成された絶縁層のうち、前記溝底面側の一部を除去する工程と を有することを特徴とする請求項22~28のいずれかに記載の方法。 【請求項38】 前記第二、第三エッチング工程を同時に実施し、前記バッファ層の界面まで、または、 40 バッファ層の一部を除去するまでエッチングを行って前記装置間分離溝を形成することを 特徴とする請求項36記載の方法。 【請求項39】 前記第二、第三エッチング工程を同時に実施し、前記バッファ層の界面まで、または、 バッファ層の一部を除去するまでエッチングを行って前記装置間分離溝を形成することを 特徴とする請求項37記載の方法。 【請求項40】 前記の基板を除去する工程を、前記基板に対しては透明であって、前記バッファ層に対

しては吸収される波長の光を前記基板側から照射して、前記バッファ層の一部を分解して 、前記基板と前記バッファ層の界面での剥離を生じさせることで行うことを特徴とする請

(5)

(6)

求項22~39のいずれかに記載の方法。

【請求項41】

前記第一導電型側電極および第二導電型側電極と前記支持体上の金属面との接合を、金属ハンダで行うことを特徴とする請求項23記載の方法。

【請求項42】

前記支持体の母材が、金属、AlN、Al₂O₃、Si、ガラス、SiC、ダイヤモンド、BNおよびCuWからなる群より選ばれることを特徴とする請求項23または41記載の方法。

【請求項43】

前記基板が、サファイア、SiC、GaN、LiGaO₂、ZnO、ScAlMgO₄ 10 、NdGaO₃およびMgOからなる群より選ばれることを特徴とする請求項22~42 のいずれかに記載の方法。

【発明の詳細な説明】

【技術分野】

【 0 0 0 1 】

本発明は集積型の化合物半導体発光装置に関するものであり、特に、 G a N 系材料を用 いた発光ダイオード(L E D)に関するものである。なお、本明細書中において、発光ダ イオードまたは L E D との表現は、レーザダイオード、スーパールミネッセントダイオー ド等を含んだ発光素子一般を含む言葉として使用する。

【背景技術】

[0002]

従来よりIII - V族化合物半導体を用いた電子デバイスおよび発光デバイスが知られている。特に発光デバイスとしては、GaAs基板上に形成されたAlGaAs系材料やAlGaInP系材料による赤色発光、GaP基板上に形成されたGaAsP系材料による る橙色または黄色発光等が実現されてきている。また、InP基板上ではInGaAsP 系材料を用いた赤外発光デバイスも知られている。

[0003]

これらデバイスの形態としては、自然放出光を利用する発光ダイオード(1ight emitting diode: LED)、さらに誘導放出光を取り出すための光学的 帰還機能を内在させたレーザダイオード(1aser diode: LD)、および半 導体レーザが知られており、これらは表示デバイス、通信用デバイス、高密度光記録用光 源デバイス、高精度光加工用デバイス、さらには医療用デバイスなどとして用いられてき ている。

[0004]

1990年代以降において、V族元素として窒素を含有するIn × Al y Ga_{(1 × x} _ y) N系III - V族化合物半導体(0 × 1、0 y 1、0 × + y 1)の研 究開発が進み、これを用いたデバイスの発光効率が飛躍的に改善され、高効率な青色LE D、緑色LEDが実現されている。その後の研究開発によって、紫外領域においても高効 率なLEDが実現され、現在では、青色LDも市販されるに至っている。

【0005】

紫外または青色LEDを励起光源として蛍光体と一体化すると白色LEDが実現できる。 白色LEDは、次世代の照明デバイスとしての利用可能性があるために、励起光源とな る紫外または青色LEDの高出力化、高効率化の産業的な意義は極めて大きい。現在、照 明用途を念頭にした、青色または紫外LEDの高効率化、高出力化の検討が精力的になさ れている。

[0006]

素子の高出力化、すなわち、全放射束を向上させるためには、素子の大型化と大きな投入電力に対する耐性の確保は必須である。また、通常のLEDが点光源であるのに対して 十分な大型化がなされた素子は、面光源としての発光特性を示す様になり、特に照明用途 には好適となる。

[0007]

しかし、通常の小型LEDの面積を単に相似形的に大きくしただけの素子では、一般に 素子全体の発光強度の均一性が得られないという問題がある。そこで、基板上に複数の素 子を並べることが考えうる。例えば、同一基板上に複数のLEDを形成する技術が、特開 平11‐150303号公報(特許文献1)、特開2001‐156331号公報(特許 文献2)、特開2002‐26384号公報(特許文献3)および特開2003‐115 611号公報(特許文献4)に記載されている。

(7)

【0008】

特開平11-150303号公報(特許文献1)には、基板上で複数のLEDが直列接 続された集積型の発光部品が開示されている。この文献では、単一の発光ユニットである 1対のpn接合を有する部分を電気的に完全に分離するために、Niマスクを使用して、 絶縁性基板が露出するまでGaN層をエッチングしている(段落0027参照)。しかし 、Ni等の金属マスクを使用してGaN系材料をドライエッチングする方法は、金属マス クの耐性が必ずしも高くないため、GaN系材料をエッチングする際に、選択比がとれず に、エッチングの形状制御に問題があり、結果として発光ユニット間は、大きく離れざる を得ないため、各発光ユニットは単に同一基板上に離間して形成された個別のLEDとな っているだけであった。また、金属マスクの耐性が低いことから、良好な結晶性の発光素 子を作製するために必要な、十分に厚いバッファ層を用いることができない。すなわち、 金属マスクではGaN系材料を十分な深さだけエッチングすることはできないため、特許 文献1の構造を金属マスクで作製するためには、バッファ層は薄膜となってしまう。当該 明細書の実施例では19段落記載のとおり、基板上にn-GaN層3.0um(nGaN バッファ層)と発光層0.1µm、p-GaN層0.5µmの計3.6µmをエッチング するだけである。その上に形成される素子構造部分の結晶性を犠牲にしなければならない 問題があった。

【 0 0 0 9 】

即ち、特許文献1記載の発光装置は、基板上に単一の発光ユニットを有する発光素子を、 複数個離間して並べたものと本質的に差異がなく、発光強度の均一性の高い面光源では ない。この特許文献1の図6に示されているように、各発光ユニットを分離している分離 溝部分では発光がないことが示されている。また、このような形態では、集積化した素子 の中の発光ユニットの1つが劣化した際には、その箇所のみが極端に発光強度が落ちてし まう問題がある。さらに、その製造法上の制約から発光層部分も良質な結晶性に出来なか った。

[0010]

特開2001-156331号公報(特許文献2)にも同一基板上に複数の発光ユニットを形成した集積型装置が記載されている。しかしこの文献でも、その図2に示されているように、1対のpn接合部分を含む発光ユニットは、互いに分離溝で完全に分離されており、同一基板上で個別のLEDとなっているだけである。従来の製造方法で形成したものは、発光ユニットを分離している分離溝部分(作製方法は開示されていない)の幅を大きく取らざるを得ないため、発光しない部分の距離が大きく、面光源全体での発光強度の均一性は確保できない。従って、集積化した素子中の1つの発光ユニットが劣化した場合にも、その箇所のみが極端に発光強度が落ちてしまう。

[0011]

また、従来の製造方法のマスクでは、選択比が十分でないため、GaN系材料を十分な 深さだけエッチングすることはできないため、良好な結晶性の発光素子を作製するために 必要な、十分に厚いバッファ層を用いることができない。当該明細書には層構成のすべて は開示されていないが、12段落記載のとおり、バッファ層はその低温部分が約20nm であることのみ開示されている。

【0012】

特開2002-26384号公報(特許文献3)には、大面積で発光効率の良い集積型 窒化物半導体発光素子を提供する目的で、LEDの集積方法が開示されている。しかし、 10

30

その図2、図3および段落0038段落に記載されている通り、発光ユニットと他の発光 ユニット部分の間の分離溝は、SiOっをマスクとしてサファイア基板に到達するまでR IE法によって半導体層をエッチングすることで形成されている。この分離溝形成プロセ スでは、 S i O 。をエッチングマスクとして使用しているため(酸化物マスク、窒化物マ スクの耐性は必ずしも高くない)、GaN系材料をエッチングする際に、選択比がとれず に、エッチングの形状制御に問題があり、分離溝部分の幅が大きくならざるを得ない。そ の た め 、 発 光 し な い 部 分 の 距 離 が 大 き く 、 特 許 文 献 1 、 2 と 同 様 に 、 面 光 源 全 体 で の 発 光 強度の均一性は確保できない。従って、集積化した素子中の発光ユニットの1つが劣化し た際には、その箇所のみが極端に発光強度が落ちてしまう。また、SiO。マスクの耐性 が低いことから、良好な結晶性の発光素子を作製するために必要な、十分に厚いバッファ 層を用いることができない。すなわち、SiO。マスクではGaN系材料を十分な深さだ けエッチングすることはできないため、特許文献3の構造をSiOっマスクで作製するた めには、バッファ層は薄膜となってしまう。当該明細書の実施例では19段落記載のとお り、基板上にn-GaN層1.5µm(アンドープGaN層)をバッファ層として形成し ているだけであって、その上に形成される素子構造部分の結晶性を犠牲にしなければなら かい問題があった。

【0013】

また、 特開 2 0 0 3 - 1 1 5 6 1 1 号公報 (特許文献 4) には、 面発光光源またはディ スプレイとして利用する目的で、LEDを集積化した発光装置が開示されている。この文 献には、2つのタイプの装置が記載されており、そのうちの1つタイプは、1対のpn接 合部分を含む発光ユニットが、互いに電気的に分離されている装置である(請求項4、図 10(b)等)。そして、この分離はダイシングによって形成されている(図10)。こ のタイプでは、前記の3つの文献と同様に、発光ユニット間の分離溝部分で発光強度が大 きく低下するために、面光源全体での均一性が確保できない。また、発光ユニットの1つ が劣化した場合に、その近傍のみが極端に発光強度が落ちてしまうという問題も同様にあ る。この文献に記載されている装置の2つ目のタイプは、1対のpn接合部分を含む発光 ユニットが、互いに電気的に結合されている装置である(請求項5、図10(a)等)。 このタイプでは、 n 型半導体層が発光装置全体で共通となっている(図10(a))。こ のような場合には、 n 側電極から最も近接する p 側電極に電流が流れ込むだけでなく、 1 つのn側電極からあらゆるp側電極に電流が流れ込むことになり、発光装置全体としてみ たときの電流注入効率は高くない。また、すべてのp側電極とすべてのn側電極が電気的 に結合しているため、1箇所の劣化が、装置全体の劣化となってしまう。よって、このタ イプの装置は、面光源を目指した大面積化には、本質的に不向きである。 【特許文献1】特開平11-150303号公報 【特許文献 2 】特開 2 0 0 1 - 1 5 6 3 3 1 号公報

【特許文献3】特開2002-26384号公報

【特許文献 4 】特開 2 0 0 3 - 1 1 5 6 1 1 号公報

【発明の開示】

【発明が解決しようとする課題】

[0014]

40

10

20

30

以上のように、従来から同一基板上に複数の発光ユニットを形成する提案はあったが、 面光源を目的とした集積化のために適した構造ではなかった。

【0015】

即ち、本発明は、大面積の面光源的発光に適した集積型化合物半導体発光装置の構造、 およびその製造方法を提供することを目的とする。

【課題を解決するための手段】

[0016**]**

本発明は、以下の事項に関する。

[0017**]**

1 . 複数の発光ユニットを有する集積型化合物半導体発光装置であって、

(8)

(9)

前記発光ユニットは、第一導電型クラッド層を含む第一導電型半導体層、活性層構造、および第二導電型クラッド層を含む第二導電型半導体層を有する化合物半導体薄膜結晶層

主たる光取り出し方向が前記活性層構造から見て前記第一導電型半導体層側方向であり 、前記第一導電型側電極および前記第二導電型側電極が、前記主たる光取り出し方向とは

と、第二導電型側電極と、並びに第一導電型側電極とを少なくとも有し、

、反対側に形成されており、

前記第一導電型半導体層より前記主たる光取り出し方向側に、前記複数の発光ユニット 間に共通して設けられたバッファ層を有し、 前記発光ユニット同士は、隣接する発光ユニットの間に設けられ、前記薄膜結晶層の表 面から前記バッファ層の界面まで、または前記バッファ層の一部までを除去して形成され た発光ユニット間分離溝により電気的に分離されていることを特徴とする集積型化合物半 導体発光装置。 [0018]前記バッファ層が、薄膜結晶成長により形成された層であることを特徴とする上 2. 記1記載の発光装置。 [0019]3 . 前記バッファ層の少なくとも前記第一導電型半導体層に直接接する部分の比抵抗 が、0.5(・cm)以上であることを特徴とする上記1または2記載の発光装置。 [0020]4 . 前記バッファ層全体の比抵抗が、 0 . 5 (・ c m) 以上であることを特徴とす る上記1~3のいずれかに記載の発光装置。 $\begin{bmatrix} 0 & 0 & 2 & 1 \end{bmatrix}$ 5. 前記バッファ層が複数の層の積層構造であることを特徴とする上記1~4のいず れかに記載の発光装置。 [0022]前 記 発 光 ユ ニ ッ ト 間 分 離 溝 の 幅 が 、 2 ~ 3 0 0 μ m の 範 囲 で あ る 上 記 1 ~ 5 の い ずれかに記載の発光装置。 [0023]7. 前記発光装置は、複数の発光装置の間に設けられた装置間分離溝から分割された ものであって、この装置間分離溝が、前記バッファ層の途中まで形成されたことを特徴と する上記1~6のいずれかに記載の発光装置。 $\begin{bmatrix} 0 & 0 & 2 & 4 \end{bmatrix}$ 前記発光装置は、複数の発光装置の間に設けられた装置間分離溝から分割された 8 ものであって、この装置間分離溝が、前記バッファ層を除去して形成されたことを特徴と する上記1~6のいずれかに記載の発光装置。

[0025]

9. 前記発光ユニット間分離溝内の底面および側面の全面を被覆し、この発光装置の 側面に露出した層のうち、少なくとも前記第一導電型半導体層、活性層構造および第二導 電型半導体層の側面を被覆し、前記第一導電型側電極の主たる光取り出し方向側の一部に 接し、前記第二導電型側電極の主たる光取り出し方向と反対側の一部を覆っている絶縁層 を有することを特徴とする上記1~8のいずれかに記載の発光装置。

【 0 0 2 6 】

10. この発光装置の側面に、前記主たる光取り出し方向から、前記絶縁層が形成されていない絶縁層非形成領域が存在し、かつ、前記絶縁層が少なくとも前記第一導電型半導体層、前記活性層構造、および前記第二導電型半導体層の側壁を覆っていることを特徴とする上記9記載の発光装置。

【0027】

11.前記薄膜結晶層が、V族として窒素原子を含むIII-V族化合物半導体から なることを特徴とする上記1~10のいずれかに記載の発光装置。 【0028】 10

20

30

前記活性層構造が、量子井戸層とバリア層からなり、バリア層の数をB、量子 1 2 井戸層の数をWで表したとき、BとWが、 B = W + 1を満たすことを特徴とする上記1~11のいずれかに記載の発光装置。 [0029]13. 前記絶縁層が、複数の層からなる誘電体多層膜であることを特徴とする上記9 または10記載の発光装置。 $\begin{bmatrix} 0 & 0 & 3 & 0 \end{bmatrix}$ 1 4 . 前記第一導電型半導体層側から前記バッファ層へ垂直入射する当該発光装置の 発 光 波 長 の 光 が 前 記 バ ッ フ ァ 層 で 反 射 さ れ る 反 射 率 を R 2 で 表 し 、 前 記 絶 縁 層 に 前 記 第 二 10 導 電 型 半 導 体 層 側 か ら 垂 直 入 射 す る 当 該 発 光 装 置 の 発 光 波 長 の 光 が 前 記 絶 縁 層 で 反 射 さ れ る反射率をR12、前記絶縁層に第一導電型半導体層側から垂直入射する当該発光装置の 発 光 波 長 の 光 が 前 記 絶 縁 層 で 反 射 さ れ る 反 射 率 を R 1 1 、 前 記 絶 縁 層 に 前 記 活 性 層 構 造 側 から垂直入射する当該発光装置の発光波長の光が前記絶縁層で反射される反射率をR1 q でそれぞれ表したとき、 (式1) R2<R12 (式2) R2<R11 (式3) R2<R1q のすべての条件を満たすように、前記絶縁層が構成されていることを特徴とする上記9、 10および13のいずれかに記載の発光装置。 20 $\begin{bmatrix} 0 & 0 & 3 & 1 \end{bmatrix}$ 15. 前記バッファ層の主たる光取り出し方向の表面が平坦でないことを特徴とする 上記1~14のいずれかに記載の発光装置。 [0032]16. 前 記 第 一 導 電 型 半 導 体 層 か ら バ ッ フ ァ 層 側 に 垂 直 入 射 す る 当 該 発 光 装 置 の 発 光 波長の光がバッファ層で反射される反射率をR3、前記バッファ層から光取り出し側の空 間に垂直入射する当該発光装置の発光波長の光が空間との界面で反射される反射率をR4 で表したとき R 4 < R 3を満たすようにバッファ層の光取り出し側に低反射光学膜を有することを特徴とする上記 30 1~15のいずれかに記載の発光装置。 [0033]17. 第一導電型がn型であり、第二導電型がp型であることを特徴とする上記1~ 16のいずれかに記載の発光装置。 [0034]18.前記第一導電型側電極および前記第二導電型側電極が、金属ハンダによって金 属面を有する支持体に接合されていることを特徴とする上記1~17のいずれかに記載の 発光装置。 [0035]19. 前記第一導電型側電極および前記第二導電型側電極と、前記支持体の金属面と 40 の接合が、金属ハンダのみ、または金属ハンダと金属バンプによってなされていることを 特徴とする上記18記載の発光装置。 [0036] 20. 前記支持体の母材が、金属、AlN、Al2O3、Si、ガラス、SiC、ダ イヤモンド、BNおよびCuWからなる群より選ばれることを特徴とする上記18または 19記載の発光装置。 前記支持体の発光装置間の分離部分に、金属層が形成されていないことを特徴 2 1

【0038】

とする上記18~20のいずれかに記載の発光装置。

22. 複数の発光ユニットを支持体上に有する集積型化合物半導体発光装置の製造方 法であって、 基板上に、バッファ層を形成する工程と、 少なくとも、第一導電型クラッド層を含む第一導電型半導体層、活性層構造、および第 二導電型クラッド層を含む第二導電型半導体層を有する薄膜結晶層を成膜する工程と、 前記第二導電型半導体層の表面に第二導電型側電極を形成する工程と、 前記第一導電型半導体層の一部を表面に露出させる第一エッチング工程と、 前 記 第 一 エ ッ チ ン グ 工 程 に よ り 、 露 出 し た 第 一 導 電 型 半 導 体 層 の 面 に 第 一 導 電 型 側 電 極 を形成する工程と、 前記発光ユニットを互いに電気的に分離するための発光ユニット間分離溝を形成するた めに、前記薄膜結晶層表面から前記バッファ層の界面まで、または前記薄膜結晶層表面か ら前記バッファ層の一部までを除去する第二エッチング工程と、 複数の発光装置に分離するための装置間分離溝を形成するために、少なくとも前記第一 導電型半導体層、活性層構造および第二導電型半導体層を除去する第三エッチング工程と

前記基板を除去する工程と

を有することを特徴とする集積型化合物半導体発光装置の製造方法。

[0039]

23. 前記の基板を除去する工程の前に、前記第一導電型側電極および第二導電型側 電極を、支持体上の金属面に接合して前記支持体に搭載する工程を有することを特徴とす 20 る上記22記載の方法。

50

10

[0040]

24. 前記の基板を除去する工程の後、複数の発光装置に分離する工程を有すること を特徴とする上記23記載の方法。

 $\begin{bmatrix} 0 & 0 & 4 & 1 \end{bmatrix}$

前 記 バ ッ フ ァ 層 の 成 膜 工 程 を 、 前 記 薄 膜 結 晶 層 の 成 膜 工 程 の 一 部 と し て 、 か つ 前記第一導電型半導体層の形成に先立って行うことを特徴とする上記22~24のいずれ かに記載の方法。

[0042]

2.6.. 前記バッファ層の少なくとも前記第一導電型半導体層に直接接する部分の比抵 30 抗が、0.5(・cm)以上であることを特徴とする上記22~25のいずれかに記載 の方法。

[0043]

27. 前記バッファ層全体の比抵抗が、0.5 (・cm)以上であることを特徴と する上記22~26のいずれかに記載の方法。

[0044]

28. 前記バッファ層を、複数の層の積層構造として成膜することを特徴とする上記 22~27のいずれかに記載の方法。

[0045]

29. 前記第三エッチング工程を、前記第二エッチング工程と同時にまたは別に行い 40 、 前 記 薄 膜 結 晶 層 表 面 か ら 前 記 バ ッ フ ァ 層 の 界 面 ま で 、 ま た は 前 記 薄 膜 結 晶 層 表 面 か ら 前 記バッファ層の一部を除去するまでエッチングを行うことを特徴とする上記22~28の いずれかに記載の方法。

[0046]

30. 前記第三エッチング工程において、少なくとも前記基板表面に達するまでエッ チングを行うことを特徴とする上記22~28のいずれかに記載の方法。

前記第二および第三エッチング工程が、Cl2、BCl3、SiCl4、CC 3 1 1 』 およびそれらの 2 種以上の組み合わせからなる群より選ばれるガス種を用いたドライ エッチングで行われることを特徴とする上記22~30のいずれかに記載の方法。

[0048]

32. エッチングマスクとして、パターニングされた金属フッ化物層を用いることを 特徴とする上記31記載の方法。

【 0 0 4 9 】

33. 前記金属フッ化物層が、SrF₂、AlF₃、MgF₂、BaF₂、CaF₂ およびそれらの組み合わせからなる群より選ばれることを特徴とする上記32記載の方法

【0050】

34.前記第二導電型側電極を形成する工程、前記第一エッチング工程および前記第 一導電型側電極を形成する工程をこの順番に行い、前記第一導電型側電極を形成する工程 10 の前に、さらに絶縁層を形成する工程を有することを特徴とする上記22~33のいずれ かに記載の方法。

【 0 0 5 1 】

35. 前記絶縁層を形成する工程が、第一~第三エッチング工程の後に行われること を特徴とする上記34記載の方法。

【0052】

36. 前記第二導電型側電極を形成する工程、前記第一エッチング工程および前記第 一導電型側電極を形成する工程をこの順番に行い、

前記第三エッチング工程では、表面から、前記バッファ層の少なくとも一部を除去する までの深さでエッチングを行って前記装置間分離溝を形成し、

さらに、第一~第三エッチング工程の後であって、前記第一導電型側電極を形成する工 程の前に、さらに絶縁層を形成する工程と、

前記装置間分離溝内で、溝底面に堆積した絶縁層の一部を除去し、スクライブ領域を形成する工程と

を有することを特徴とする上記22~28のいずれかに記載の方法。

【0053】

37.前記第二導電型側電極を形成する工程、前記第一エッチング工程および前記第 一導電型側電極を形成する工程をこの順番に行い、

前記第三エッチング工程では、表面から、前記バッファ層の少なくとも一部を除去する まで、または少なくとも前記基板に達するまでの深さでエッチングを行って前記装置間分 離溝を形成し、

さらに、第一~第三エッチング工程の後であって、前記第一導電型側電極を形成する工 程の前に、さらに絶縁層を形成する工程と、

前記装置間分離溝内で、溝底面に堆積した絶縁層のすべてと、前記装置間分離溝の側壁に形成された絶縁層のうち、前記溝底面側の一部を除去する工程と

を有することを特徴とする上記22~28のいずれかに記載の方法。

【0054】

38.前記第二、第三エッチング工程を同時に実施し、前記バッファ層の界面まで、 または、バッファ層の一部を除去するまでエッチングを行って前記装置間分離溝を形成す ることを特徴とする上記36記載の方法。

【0055】

39.前記第二、第三エッチング工程を同時に実施し、前記バッファ層の界面まで、 または、バッファ層の一部を除去するまでエッチングを行って前記装置間分離溝を形成す ることを特徴とする上記37記載の方法。

[0056]

40.前記の基板を除去する工程を、前記基板に対しては透明であって、前記バッファ層に対しては吸収される波長の光を前記基板側から照射して、前記バッファ層の一部を 分解して、前記基板と前記バッファ層の界面での剥離を生じさせることで行うことを特徴 とする上記22~39のいずれかに記載の方法。 【0057】 30

40

4 1 . 前記第一導電型側電極および第二導電型側電極と前記支持体上の金属面との接 合を、金属ハンダで行うことを特徴とする上記 2 3 記載の方法。 【 0 0 5 8 】

42. 前記支持体の母材が、金属、AIN、AI₂Ο₃、Si、ガラス、SiC、ダイヤモンド、BNおよびCuWからなる群より選ばれることを特徴とする上記23または 41記載の方法。

【 0 0 5 9 】

43. 前記基板が、サファイア、SiC、GaN、LiGaO₂、ZnO、ScAl MgO₄、NdGaO₃およびMgOからなる群より選ばれることを特徴とする上記22 ~ 42のいずれかに記載の方法。

10

【発明の効果】 【0060】

本 発 明 に よ れ ば 、 大 面 積 の 面 光 源 的 発 光 に 適 し た 構 造 を 有 す る 集 積 型 化 合 物 半 導 体 発 光 装 置 お よ び そ の 製 造 方 法 を 提 供 す る こ と が で き る 。

[0061]

特に本発明によれば、発光装置の面積が数cm²を越える場合であっても、発光強度の 均一性の高い面的な青色または紫外発光が可能である。また、本発明は、フリップチップ 型であって、サブマウントに搭載できるために、十分な放熱性と高い光取出し効率を確保 することができる。

[0062]

本発明では、発光ユニット間分離溝が、バッファ層を含めた全ての層が除去されて形成 されているのではないので、隣接発光ユニット同士を、電気的には分離しながら近接させ ることができる。そのため、集積密度の向上および面光源的発光に非常に有利である。ま た、1箇所の劣化が、装置全体に影響を及ぶことがないので信頼性の観点でも優れる。さ らに、発光ユニット間に共通する、電気的に十分高抵抗なバッファ層の一部まで発光ユニ ット間分離溝を形成するだけでよいため、エッチング深さの制約を考慮することなしに、 十分に厚いバッファ層を用いることも可能であって、このために発光素子部分の結晶性を より良好にすることも可能であって、発光装置の高出力化の観点で望ましい。また、エッ チング時間も短時間ですむなどの観点でも望ましい。

【0063】

また、本発明では主たる光取り出し方向に基板が存在しないため、以下のような利点を 併せ持つことが出来る。たとえばC+サファイア基板上に一般的なMOCVD法で形成さ れた、GaN系材料、InGaN系材料、AlGaN系材料、InAlGaN系材料、I nAlGaBN形材料などの材料いずれかの材料で構成された半導体発光素子であれば、 これら材料のサファイア基板面側は窒素面となり、これら材料の成長方向はGa面となる のが普通である。ここで、一般的にGa面はケミカルエッチング等のしにくい面であって 、光取り出し効率を向上させるための粗面化などは実施しにくいが、窒素面は比較的容易 にケミカルエッチングが可能であって、これによって粗面化などが可能である。これに対 して、基板が存在する場合、代表的なサファイア等の基板ではケミカルエッチングがほと んど不可能である。従って、本発明では、サファイア基板等を剥離し、その後に露出した 窒素面をケミカルエッチングすることで、容易に粗面化が可能になり、その結果、発光装 置の発光効率等を容易に向上することができる。

[0064]

本明細書において、「積層」または「重なる」の表現は、もの同士が直接接触している 状態に加え、本発明の趣旨を逸脱しない限りにおいて、互いに接触していなくても、一方 を他方に投影した際に空間的に重なる状態をも指す場合がある。また、「~の上(~の下)」の表現も、もの同士が直接接触して一方が他方の上(下)に配置されている状態に加 え、本発明の趣旨を逸脱しない限りにおいて、互いに接触していなくても、一方が他方の 上(下)に配置されている状態にも使用する場合がある。さらに、「~の後(前、先)」

30

20

との表現は、ある事象が別の事象の直後(前)に発生する場合にも、ある事象が別の事象 との間に第三の事象を挟んだ後(前)発生する場合にも、どちらにも使用する。また、「 接する」の表現は、「物と物が直接的に接触している場合」に加えて、本発明の趣旨に適 合する限りにおいて、「物と物が直接的には接触していなくても、第三の部材を介して間 接的に接している場合」、「物と物が直接的に接触している部分と、第三の部材を介して 間接的に接している部分が混在している場合」などを指す場合もある。

(14)

【 0 0 6 5 】

さらに、本発明において、「薄膜結晶成長」とは、いわゆる、MOCVD(Metal Orga nic Chemical Vapor Deposition)、MBE(Molecular Beam Epitaxy)、プラズマアシ ストMBE、PLD(Pulsed

Laser Deposition), $P \in D$ (Pulsed Electron Deposition), $V P \in (Vapor Phase Epitax y)$, $L P \in (Liquid$

Phase Epitaxy)法等の結晶成長装置内における薄膜層、アモルファス層、微結晶、多結晶、単結晶、あるいはそれらの積層構造の形成に加えて、その後の薄膜層の熱処理、プラズマ処理等によるキャリアの活性化処理等も含めて薄膜結晶成長と記載する。 【0066】

図1に、本発明の集積型化合物半導体発光装置(以下、単に発光装置という)の1例を 示す。また、図1の発光装置の構造を詳細に説明するために、作製途中の形状を示す図2 も参照しながら説明する。ここでは、図1、図2に示すように、3つの発光ユニット11 によって1つの発光装置10を構成する例を示しているが、集積の個数は特に限定はなく 、提供される一つの基板内で適宜個数を設定可能である。例えば2個でもよく、また、5 00個を越える個数を集積してもかまわない。ここで、好ましくは25~200個であり 、また2次元的に配列されていることも好ましい。

【 0 0 6 7 】

本発明において、1つの発光ユニットは、図に示すように、少なくとも、第一導電型ク ラッド層24を含む第一導電型半導体層、第二導電型クラッド層26を含む第二導電型半 導体層、および前記第一および第二導電型半導体層の間に挟まれた活性層構造25を有す る化合物半導体薄膜結晶層、第二導電型側電極27、並びに第一導電型側電極28を有す る。図のように発光ユニット間分離溝12は、集積型化合物半導体発光装置10内の発光 ユニット11を区画しているが、バッファ層22は、発光ユニット間に共通して設けられ ている。

[0068]

この例では、第二導電型クラッド層26の表面の一部に、第二導電型側電極27が配置 され、第二導電型クラッド層26と第二導電型側電極27の接触している部分が第二電流 注入領域35となっている。また、第二導電型クラッド層、活性層構造の一部、第一導電 型クラッド層の一部が除去された構成となっており、除去した箇所に露出する第一導電型 クラッド層24に接して、第一導電型側電極28が配置されることで、第二導電型側電極 27と第一導電型側電極28が、基板に対して同じ側に配置されるように構成されている

[0069]

本発明では、発光ユニット11は、互いに発光ユニット間分離溝12により電気的には 分離されている。即ち、発光ユニット間分離溝12は、薄膜結晶層中の導電性の高い層を 分断しており、少なくともバッファ層22まで、好ましくは図1に示すようにバッファ層 の途中まで除去されているために、発光ユニット間で実質的な電気的結合はない。 そして、詳細は後述するが、バッファ層のうちで少なくとも第一導電型半導体層(図では 第一導電型クラッド層24)に直接接触している部分は実質的に絶縁性である。尚、本発 明において、1つの発光ユニット内の発光ポイント(独立した発光部)は1つである。 【0070】

また、本発明では、発光ユニット間分離溝の幅が、好ましくは2~300µm、さらに 好ましくは5~50µm、最も好ましくは8~15µmである。本発明では、特に後述す

10

30

40

50

る製造方法とあいまって、発光ユニット間分離溝の幅を短くすることが可能であり、面光 源に適した集積化が可能になる。

【0071】

図2には、中央の発光装置10に隣接する別の発光装置も一部図示されている。製造過程ではこのように、同一基板21上に、それぞれの発光装置10が、装置間分離溝13によって分離されて形成される。図1に示す完成した発光装置は、図2の中の1つの発光装置10を、支持体40上の金属面41に、金属ハンダ42を介して第二導電型側電極27 および第一導電型側電極28をそれぞれ接続した構造に相当する。製造方法の1例は、後述する。

【0072】

装置間分離溝13は、図2の例では、基板に達するまで薄膜結晶層を除去して形成され ており、好ましい形態の1つである。一方、装置間分離溝が、バッファ層の途中まで形成 されている形態も好ましい。これらの場合のいずれも、バッファ層よりも活性層構造側に ある導電性の高い層の側壁に絶縁層を容易に形成できる。

【0073】

本発明の発光装置では、絶縁層30は、薄膜結晶層22~26の表面、側壁等を含んだ 露出部分の大部分を覆っているが、図1の発光装置の側壁部分、即ち発光装置が分離され ていない図2の状態における装置間分離溝13中の絶縁層形状は、いくつかの形態が可能 である。いずれの形態においても、絶縁層は基板に接触せず、発光装置を分離する前に、 発光装置を区画する装置間分離溝13中に、絶縁層が存在しない部分が存在することが好 ましい。そして、絶縁膜が存在しない部分から、発光装置間が分離されることが好ましい 。その結果、本発明の発光装置の好ましい形状では、側壁を覆う絶縁層は、バッファ層の 光取り出し面側界面まで達していない。絶縁層の好ましい形態の具体例を次に示す。 【0074】

本発明の1形態においては、図2に示すように、絶縁層30が装置間分離溝13の溝内 の表面の全てを覆うのではなく、絶縁層30が基板面(即ち、溝底面)と基板に近接する 溝側壁部分で形成されていない絶縁層非形成部分15が存在する。この構造では、基板2 1に付着している絶縁層30がないので、基板21を例えば剥離により除去するときに、 絶縁層の剥がれ等が生じる可能性がないので最も好ましい。得られる発光装置では、図1 のB部分に示すように、絶縁層30が基板面まで達していない絶縁層非形成部分15が存 在する。この形状ができている装置では、絶縁層の剥がれがないことが保証される結果、 仮にハンダの回り込みがあっても、発光装置の機能が損なわれることがなく信頼性の高い 装置となる。

【 0 0 7 5 】

この図 1 では、バッファ層 2 2 の壁面の一部までが露出しているが、露出している部分は、ドーピングされていないアンドープ層であることが好ましい。露出しているのが絶縁性の高い材料であれば、信頼性の高い装置となる。

【0076】

また、装置間分離溝が、バッファ層の途中まで形成されている場合には、次のような形 状の発光装置が得られる。例えば図13および図14に示すように、発光装置端までバッ ファ層22が存在し、バッファ層には、装置間分離溝の底面に基づく段差が存在しており 、バッファ層の側壁は、絶縁層で覆われていない部分(装置端部分)と、発光装置端から 内側に入った側壁部分(装置間分離溝の側壁)とを有する。絶縁層30は、図13の例で は、図13中にC部分で示すように、バッファ層22の端から離れた溝底面の位置から、 分離溝底面部分と、分離溝の側壁部分とを被覆している。この形態は、図2において、装 置間分離溝をバッファ層22の途中で止め、バッファ層の溝底面に堆積した絶縁層の一部 を除去してスクライブ領域を形成し、スクライブ領域から装置を分離した形状に対応する 。また、図14の例は、図1および図2において、装置間分離溝をバッファ層22の途中 で止めた形態に対応し、図14のD部分に示すように、発光装置端から内側に入った側壁 部分(装置間分離溝の側壁)のうち、主たる光取り出し方向側に絶縁層で覆われていない

10

20

30

50

部分が存在する。

[0077]

また、装置間分離溝の深さは、バッファ層の途中の任意の位置に設定することが可能で ある。図13および図14において、装置間分離溝の深さを変更した例を、それぞれ図1 5 および図16 に示す。図15 中の E 部分、図16 中の F 部分の形状は、それぞれ図13 のC部分、図14のD部分と同じである。

[0078]

これらの例のように、装置間分離溝が、バッファ層の途中まで形成されている場合にも 、 側 壁 を 覆 う 絶 縁 層 が 、 発 光 装 置 の 端 ま で 達 し て い な い 形 状 が で き て い る 装 置 は 、 絶 縁 層 の剥がれがないことが保証され、また露出している層を絶縁性の高い材料で構成すること により、図1の形態の発光装置と同じく信頼性の高い装置となる。 [0079]

さらに、本発明の発光装置では、絶縁層30が図1のように、第一導電型側電極28の 主たる光取り出し方向側の一部に接していること、即ち、第一導電型側電極28と第一導 電 型 半 導 体 層 (図 で は 第 一 導 電 型 ク ラ ッ ド 層 2 4) と の コ ン タ ク ト 部 分 の 周 囲 に 絶 縁 層 が 介 在 し て い る 部 分 が あ る こ と 、 お よ び 第 二 導 電 型 側 電 極 2 7 の 主 た る 光 取 り 出 し 方 向 と 反 対 側 の 一 部 を 覆 っ て い る こ と 、 即 ち 、 第 二 導 電 型 側 電 極 2 7 と 第 二 導 電 型 半 導 体 層 (図 で は第二導電型クラッド層26)の間には絶縁層が存在せずに第二導電型側電極27の周囲 に 被 覆 し て い る 部 分 が あ る こ と が 好 ま し い 。 こ の 形 態 は 、 第 二 導 電 型 側 電 極 2 7 が 形 成 さ れ た 後 に 絶 縁 層 3 0 が 形 成 さ れ 、 絶 縁 層 3 0 が 形 成 さ れ た 後 に 第 一 導 電 型 側 電 極 2 8 が 形 成されたことを意味する。このような順序による製造方法は、後述するが、第二導電型ク ラッド 層 2 6 等の 第 二 導 電 型 半 導 体 層 に ダ メー ジ が 少 な く 、 ま た 第 一 導 電 型 側 電 極 の ダ メ ージが少ないために、高効率の発光装置が得られる。即ち、このような構造を有する発光 装置は、高効率を示すことを意味する。

 $\begin{bmatrix} 0 & 0 & 8 & 0 \end{bmatrix}$

さらに、第二導電型側電極27の大きさは、第二電流注入領域35と同じであるが、第 二導電型側電極の露出面37(第二導電型側電極露出部分)は、第二電流注入領域35の 大きさよりも小さいことが好ましい。さらに、第一導電型クラッド層24の表面を覆う絶 縁層30の一部に、第一導電型側電極28が第一導電型クラッド層24と接触するための 開口が設けられ、それが、第一電流注入領域36となる。第一導電型側電極28の面積を 、第一電流注入領域よりも大きくすることが好ましい。

30

10

20

[0081]

また、第二導電型側電極と第一導電型側電極は、空間的に重なりを有さないことも望ま しい。

[0082]

以下に、装置を構成する各部材と構造についてさらに詳細に説明する。

[0083]

< 基 板 >

本発明では、基板はその上に半導体層を成長させることが可能なものが選ばれ、また最 終的に除去できるものが用いられる。基板は、透明である必要はないが、製造工程で、基 40 板を後述するレーザディボンディングにより剥離するときには、その特定の波長のレーザ 光を透過することが好ましい。また、電気的には絶縁性基板である事が好ましい。これは 、製造工程で、同様にレーザディボンディング法によって基板を剥離する際に、導電性基 板ではその自由電子による吸収等によって、このような基板剥離方法を採用しにくくなる からである。具体的な材料としては、例えばInA1GaN系発光材料またはInA1B GaN系材料をその上に薄膜結晶成長させるためは、サファイア、SiC、GaN、Li G a O 2 、 Z n O 、 S c A l M g O 4 、 N d G a O 3 、 および M g O から選ばれることが 望ましく、特にサファイア、GaN、ZnO基板が好ましい。特にGaN基板を用いる際 には、そのSiのドーピング濃度はアンドープ基板を用いる場合には、3x10[〜] ′ cm ^{- 3}のSi濃度以下が望ましく、さらに望ましくは1×10¹⁷ cm⁻³以下であること 50

(16)

が、電気抵抗の観点と結晶性の観点からが望ましい。一方、基板を除去する際にケミカル エッチングを前提とする際には、塩酸等で容易に除去可能な ZnOが望ましい。 【0084】

(17)

本発明で使用される基板は、いわゆる面指数によって完全に確定されるジャスト基板だけではなく、薄膜結晶成長の際の結晶性を制御する観点から、いわゆるオフ基板(missoriententedsubstrate)であることもできる。オフ基板は、ステップフローモードでの良好な結晶成長を促進する効果を有するため、素子のモフォロジ改善にも効果があり、基板として広く使用される。たとえば、サファイアのc+面基板をInAlGaN系材料の結晶成長用基板として使用する際には、m+方向に0.2度程度傾いた面を使用することが好ましい。オフ基板としては、0.1~0.2度程度の微傾斜を持つものが広く一般的に用いられるが、サファイア上に形成されたInAlGaN系材料においては、活性層構造内の発光ポイントである量子井戸層にかかる圧電効果による電界を打ち消すために、比較的大きなオフ角度をつけることも可能である。

基板は、MOCVDやMBE等の結晶成長技術を利用して集積型化合物半導体発光装置 を製造するために、あらかじめ化学エッチングや熱処理等を施しておいてもよい。また、 後述するバッファ層との関係で、意図的に凹凸をつけた基板にしておき、これによって、 薄膜結晶層と基板との界面で発生する貫通転移を発光素子あるいは、後述する発光ユニッ トの活性層近傍に導入しないようにすることも可能である。

[0086]

基板の厚みとしては、本発明の1形態においては、装置作成初期においては、通常250~700µm程度のものであり、半導体発光装置の結晶成長、素子作製プロセスにおける機械的強度が確保されるようにしておくのが普通である。基板を用いて必要な半導体層を成長した後に、基板は、例えば研磨、エッチング、またはレーザディボンディング等により除去される。

【0087】

< バッファ層 >

バッファ層22は、基板上に薄膜結晶成長する上で、転移の抑制、基板結晶の不完全性の緩和、基板結晶と所望の薄膜結晶成長層との各種の相互不整合の軽減など、主に薄膜結晶成長のための目的のために形成される。さらに、発光ユニット間分離溝をバッファ層の途中までで止められる程度の厚さと、発光ユニット間の電気的分離ができる程度の絶縁性が必要である。

[0088]

バッファ層は、薄膜結晶成長で成膜され、本発明で望ましい形態であるInA1GaN 系材料、InA1BGaN系材料、InGaN系材料、A1GaN系材料、GaN系材料 などを基板上に異種基板上に薄膜結晶成長する際には、必ずしも基板との格子定数のマッ チングが確保されないので、バッファ層は特に重要である。たとえば、薄膜結晶成長層を 有機金属気相成長法(MOVPE法)で成長する際には、600 近傍の低温成長A1N 層をバッファ層に用いたり、あるいは500 近傍で形成した低温成長GaN層を用いた りすることも出来る。また、800 から1000 程度の高温で成長したA1N、Ga N、A1GaN、InA1GaN、InA1BGaNなども使用可能である。これらの層 は一般に薄く5~40nm程度である。 【0089】

バッファ層22は必ずしも単一の層である必要はなく、低温で成長したGaNバッファ 層の上に、結晶性をより改善するために、ドーピングを施さない1000 程度の温度で 成長したGaN層を数μm程度有するようにしてもかまわない。実際には、このような厚 膜バッファ層を有することが普通であって、その厚みは0.5~7μm程度である。本発 明においては、バッファ層は、化合物半導体発光装置内の発光ユニット間に共通して存在 することから、ドーピングされた層を有さないことが望ましい。しかし、バッファ層内に 結晶性等の観点でドーピングされた層を有するようにする際には、ドーピング層を成長し 10

20

30

(18)

た後に、さらにアンドープ層を形成し、発光ユニット間の電気的絶縁が完全に確保できる ようにすることが必須である。また、バッファ層内にドーピング層とアンドープ層を積層 して形成することも可能である。

【 0 0 9 0 】

特に好ましい形態では、基板に接して350~650 未満程度の低温で薄膜結晶成 長させた低温バッファ層と、650~1050 程度の高温で薄膜結晶成長させた高温 バッファ層の2層構造のものである。

【0091】

さらに、バッファ層の全厚は、好ましくは4~20µm、さらに好ましくは4.5~1 0µm、最も好ましくは5~8µmであって、厚膜バッファ層は、その上に形成される発 10 光ユニットの主要層となる薄膜結晶層の品質が向上するために好ましい。 【0092】

また、バッファ層の形成に関しては、いわゆるマイクロチャネルエピタキシーの一種で ある横方向成長技術(ELO)も使用可能であり、これによってサファイア等の基板とI nA1GaN系材料の間で発生する貫通転移の密度を大幅に低減することも可能である。 さらに基板の表面に凹凸の加工を施したような加工基板を使用する際にも、横方向成長を させる際に転位の一部を消滅させることが可能であって、このような基板とバッファ層の 組み合わせを本発明に適応する事は好ましい。さらに、この際には基板上に形成された凹 凸によって光取り出し効率が向上する効果もあって、好ましい。

【0093】

本発明においては、バッファ層は、各発光ユニットに共通して存在するため、各発光ユ ニット間の電気的絶縁を阻害しないように材料選択をすることが必須である。もし、例え ば発光装置内のすべての発光ユニットが電気的に結合しているとすると、発光ユニット(一対のpn接合)の1つが劣化した際に、その影響は劣化した発光ユニットの光度低下に とどまらずに、集積型化合物半導体発光装置内全体の電流注入経路の変化として現れる。 そのため、1発光ユニットの劣化が発光装置の特性変動として大きく現れてしまう。本発 明においては、バッファ層は、各発光ユニット間の電気的絶縁を確保できるように材料選 択をすることが極めて好ましい。電気的に絶縁されていることで、駆動中にある発光ユニ ットが劣化したとしても、その劣化は、発光ユニット1つの問題で済む。 【0094】

ここで、バッファ層は、1つの発光ユニットにおける劣化等の変化が他のユニットに影響を及ぼさない程度に実質的に絶縁性を有していればよく、例えば層全体の比抵抗。。 (・cm)が0.5(・cm)以上であることが好ましい。さらに好ましくは、1. 0(・cm)以上であり、さらに好ましくは1.5(・cm)以上、最も好ましくは 5(・cm)以上である。比抵抗が高いためには、バッファ層はアンドープであること が望ましいが、バッファ層が複数の層からなる場合などにおいては、一部ドーピングされ ている層があっても、これがアンドープ層の間にあり、発光ユニット間が電気的に結合し ていないのであれば問題はない。この場合、第一導電型半導体層(例えば第一導電型クラ ッド層)に隣接する層が上記の比抵抗を有していればよい。

【0095】

さらに、バッファ層は、基板を製造工程中に除去するので、本発明の1形態においては その表面が主たる光取り出し面になる。後述するように基板の剥離の1つ方法として、基 板に対して透明で、バッファ層に対して吸収のある光を用いて、バッファ層の一部を光学 的に分解して、基板を剥離する方法が挙げられる。そのような方法を採用する場合には、 その方法に適合した材料が選択される。たとえば、基板がサファイアで、バッファ層がG aNである場合には、248nmの発振波長を有するエキシマレーザを薄膜結晶成長がさ れていない基板側から光を照射し、バッファ層のGaNを金属Gaと窒素に分解して、そ の結果、基板を剥離するレーザディボンディングを実施することも可能である。

本発明では、主たる光取り出し方向に基板が存在しないので、バッファ層の主たる光取り出し方向の面に、いわゆる低反射コーティング層あるいは低反射光学膜が形成されるこ

20

30

とが望ましい。バッファ層 - 空気界面での屈折率差による反射を抑制し、高出力化、素子の高効率化を図ることができる。ここで、後述する第一導電型半導体層からバッファ層側に垂直入射する当該発光装置の発光波長の光がバッファ層で反射される反射率をR3、前記バッファ層から光取り出し側の空間に垂直入射する当該発光装置の発光波長の光が空間との界面で反射される反射率をR4で表したとき、

R4 < R3

を満たすようにバッファ層の光取り出し側に低反射光学膜を有する事は望ましい。たとえ ばバッファ層がGaNである場合には、低反射コーティング膜としてAl₂O₃等を用い ることが望ましい。これは素子の発光波長におけるバッファ層の屈折率 n_{bf}に対して、 低反射コーティング膜の屈折率が、 n_{bf}に近いことが望ましいので、GaNの屈折率 の平方根に対して、Al₂O₃の屈折率が近いからである。

【0096】

本発明においては、バッファ層の主たる光取り出し方向の面が、平坦でない面あるいは 粗面であることも好ましい。これにより量子井戸層内で発光した光を高効率で取り出すこ とが可能になり、素子の高出力化、高効率化の観点で望ましい。ここで、素子の発光波長 を (nm)とすると、バッファ層の粗面の程度は、平均粗さRa(nm)が

/5 (nm) < Ra (nm) < 10 x (nm)

を満たすことが望ましく、

/2 (nm) < Ra (nm) < 2 × (nm)

を満たすことがより望ましい。

[0097]

また、バッファ層は装置間分離溝の露出部分になってもよい。露出する部分は、特にア ンドープ部分であることが好ましく、装置組み立て時のハンダ等による絶縁不良を抑制す ることができる。

[0098]

< 第 一 導 電 型 半 導 体 層 お よ び 第 一 導 電 型 ク ラ ッ ド 層 >

本発明の代表的形態では、図1に示すようにバッファ層22に接して、発光ユニット間で分断された第一導電型クラッド層24が存在する。第一導電型クラッド層24は、後述する活性層構造25に対して、後述する第二導電型クラッド層26と共に機能して、キャリアを効率よく注入し、かつ、活性層構造からのオーバーフローも抑制し、量子井戸層における発光を高効率で実現するための機能を有している。また、あわせて活性層構造近傍への光の閉じ込めにも寄与し、量子井戸層における発光を高効率で実現するための機能を有している。第一導電型半導体層は、上記のクラッド機能を有する層に加えて、コンタクト層のように装置の機能向上のため、または製造上の理由により、第一導電型にドープされた層を含むものである。広義には、第一導電型半導体層の全体を第一導電型クラッド層と考えてもよく、その場合にはコンタクト層等は、第一導電型クラッド層の一部と見ることもできる。

[0099]

一般的に第一導電型クラッド層は、後述する活性層構造の平均屈折率より小さな屈折率
 を有する材料で、かつ、後述する活性層構造の平均的なバンドギャップよりも大きな材料
 40
 で構成されることが好ましい。さらに、第一導電型クラッド層は、活性層構造内の特にバリア層との関係において、いわゆるタイプI型のバンドラインナップとなる材料で構成されるのが一般的である。このような指針の元で、第一導電型クラッド層材料としては、所望の発光波長を実現するために準備される基板、バッファ層、活性層構造等に鑑みて、適宜選択することができる。

[0100]

例えば、基板としてC+面サファイアを使用し、バッファ層として低温成長したGaN と、高温成長したアンドープGaNの積層構造を使用する場合には、第一導電型クラッド 層としてGaN系材料、AlGaN系材料、AlGaInN系材料、InAlBGaN系 材料、もしくはその多層構造を用いることができる。

10

20

30

[0101]

第一導電型クラッド層のキャリア濃度としては、下限としては1×10¹⁷ cm⁻³以上が好ましく、5×10¹⁷ cm⁻³以上がより好ましく、1×10¹⁸ cm⁻³以上が最も好ましい。上限としては5×10¹⁹ cm⁻³以下が好ましく、1×10¹⁹ cm⁻³以下がより好ましく、7×10¹⁸ cm⁻³以下が最も好ましい。また、ここでは、第 一導電型がn型の場合、ドーパントとしては、Siが最も望ましい。

(20)

【0102】

第一導電型クラッド層の構造は、図1の一例では単一の層からなる第一導電型クラッド 層を示すが、第一導電型クラッド層は、2層以上の層からなるものであってもよい。この 場合には、たとえばGaN系材料とA1GaN系材料、InA1GaN系材料、InA1 BGaN系材料を使用することも可能である。また第一導電型クラッド層の全体を異種材 料の積層構造として超格子構造とすることもできる。さらに、第一導電型クラッド層内に おいて、前述のキャリア濃度を変化させることも可能である。 【0103】

第 - 導電型クラッド層の第 - 導電型側電極と接触している部分においては、そのキャリ ア濃度を意図的に高くして、当該電極との接触抵抗を低減することも可能である。 【 0 1 0 4 】

第一導電型クラッド層の一部はエッチングされており、かつ、第一導電型クラッド層の 露出した側壁、エッチングされた部分などは、後述する第一導電型側電極との接触を実現 する第一電流注入領域を除いて、すべて絶縁層で覆われている構造が望ましい。 【0105】

第一導電型クラッド層に加えて、第一導電型半導体層として、必要によりさらに異なる 層が存在してもよい。例えば、電極との接続部にキャリアの注入を容易にするためのコン タクト層が含まれていてもよい。また、各層を、組成または形成条件等の異なる複数の層 に分けて構成してもよい。

[0106]

< 活性層構造 >

第一導電型クラッド層24の上には、活性層構造25が形成されている。活性層構造と は、前述の第一導電型クラッド層と、後述する第二導電型クラッド層から注入される、電 子と正孔(あるいは正孔と電子)が再結合して発光する層である量子井戸層を含み、かつ 、量子井戸層に隣接して配置される、あるいは、量子井戸層とクラッド層間に配置される バリア層をも含む構造を指す。ここで、本発明のひとつの目的である高出力化、高効率化 を実現するためには、活性層構造中の量子井戸層の層数をW、バリア層の層数をBとする と、B=W+1を満たすことが望ましい。すなわち、クラッド層と活性層構造の全体の層 の関係は、「第一導電型クラッド層、活性層構造、第二導電型クラッド層」と形成され、 活性層構造は、「バリア層、量子井戸層、バリア層」、あるいは、「バリア層、量子井戸 層、バリア層、量子井戸層、バリア層」のように形成されることが、高出力化のために望 ましい。図3に、5層の量子井戸層と、6層のバリア層が積層された構造を模式的に示す

【0107】

ここで、量子井戸層においては量子サイズ効果を発現させて、発光効率を高めるために 、その層厚はド・ブロイ波長と同程度にうすい層である。このため、高出力化を実現する ためには、単層の量子井戸層のみではなく、複数の量子井戸層を設けてこれを分離して活 性層構造とすることが望ましい。この際に各量子井戸層間の結合を制御しつつ分離する層 がバリア層である。また、バリア層は、クラッド層と量子井戸層の分離のためにも存在す ることが望ましい。たとえば、クラッド層がA1GaNからなり、量子井戸層がInGa Nからなる場合には、この間にGaNからなるバリア層が存在する形態が望ましい。これ は結晶成長の最適温度が異なる場合の変更も容易にできるので、薄膜結晶成長の観点から も望ましい。また、クラッド層が、最もバンドギャップの広いInA1GaNからなり、 量子井戸層が最もバンドギャップの狭いInA1GaNからなる場合は、バリア層にその 10

30

20

中間のバンドギャップを有するInAIGaNを用いることも可能である。さらに、一般 にクラッド層と量子井戸層との間のバンドギャップの差は、バリア層と量子井戸層の間の バンドギャップの差よりも大きく、量子井戸層へのキャリアの注入効率を考えても、量子 井戸層はクラッド層に直接隣接しないことが望ましい。

(21)

[0108]

量子井戸層は意図的なドーピングは実施しないほうが望ましい。一方、バリア層には、 ドーピングを施して、系全体の抵抗を下げるなどのことを実施するのが望ましい。特に、 バリア層にはn型のドーパント、特にSiをドーピングするのが望ましい。これは、 p型 のドーパントであるMgはデバイス内では拡散しやすく、高出力動作時においては、 Mg の拡散を抑制することが重要となる。このために、Siは有効であって、バリア層にはS iがドーピングされていることが望ましい。但し量子井戸層とバリア層との界面において は、ド・ピングを実施しないほうが望ましい。

【0109】

1つの素子の活性層構造側壁は、図1に示される通り、絶縁層30で覆われていることがのぞましい。このようにすると、本発明で作製された素子をフリップボンドする際には、活性層構造の側壁におけるハンダ等による短絡が発生しない利点がある。

[0110]

本発明においては、各発光ユニット内の量子井戸層から発せされる光は、ほぼ同じ発光 スペクトルを有することが望ましい。これは、化合物半導体発光装置として、面光源的で 、かつ、均一な発光を実現するためである。

[0111]

< 第二導電型半導体層および第二導電型クラッド層 >

第二導電型クラッド層26は、前述の活性層構造25に対して、前述の第一導電型クラッド層24と共に、キャリアを効率よく注入し、かつ、活性層構造からのオーバーフロー も抑制し、量子井戸層における発光を高効率で実現するための機能を有している。また、 あわせて活性層構造近傍への光の閉じ込めにも寄与し、量子井戸層における発光を高効率 で実現するための機能を有している。第二導電型半導体層は、上記のクラッド機能を有す る層に加えて、コンタクト層のように装置の機能向上のため、または製造上の理由により 、第二導電型にドープされた層を含むものである。広義には、第二導電型半導体層の全体 を第二導電型クラッド層と考えてもよく、その場合にはコンタクト層等は、第二導電型ク ラッド層の一部と見ることもできる。

[0112]

ー般的に第二導電型クラッド層は、前述の活性層構造の平均屈折率より小さな屈折率を 有する材料で、かつ、前述の活性層構造の平均的なバンドギャップよりも大きな材料で構 成される。さらに、第二導電型クラッド層は、活性層構造内の特にバリア層との関係にお いて、いわゆるタイプI型のバンドラインナップとなる材料で構成されるのが一般的であ る。このような指針の元で、第二導電型クラッド層材料としては、所望の発光波長を実現 するために準備される基板、バッファ層、活性層構造等に鑑みて、適宜選択することがで きる。例えば、基板としてC+面サファイアを使用し、バッファ層としてGaNを使用す る場合には、第二導電型クラッド層としてGaN系材料、AlGaN系材料、AlGaI nN系材料、AlGaBINN系材料等を用いることができる。また、上記材料の積層構 造であってもかまわない。また、第一導電型クラッド層と第二導電型クラッド層は同じ材 料で構成することも可能である。

[0 1 1 3 **]**

第二導電型クラッド層のキャリア濃度としては、下限としては1×10¹⁷ cm⁻³以上が好ましく、4×10¹⁷ cm⁻³以上がより好ましく、5×10¹⁷ cm⁻³以上が さらに好ましく7×10¹⁷ cm⁻³以上が最も好ましい。上限としては7×10¹⁸ cm⁻³以下が好ましく、3×10¹⁸ cm⁻³以下が最も好ましい。また、ここでは、第二導電型がp型の場合ドーパントとしては、 Mgが最も望ましい。 10

20

[0114]

第二導電型クラッド層の構造は、図1の一例では単一の層で形成された例を示している が、第二導電型クラッド層は、2層以上の層からなるものであってもよい。この場合には 、たとえばGaN系材料とAlGaN系材料を使用することも可能である。また第二導電 型クラッド層の全体を異種材料の積層構造からなる超格子構造とすることもできる。さら に、第二導電型クラッド層内において、前述のキャリア濃度を変化させることも可能であ る。

(22)

【0115】

ー般に、GaN系材料においては n 型ドーパントがSiであって、かつ、 p 型ドーパントがMgである場合には、 p 型GaN、 p 型A1GaN、 p 型A1InGaNの結晶性は、 n 型GaN、 n 型A1GaN、 n 型A1InGaNにはそれぞれ及ばない。このため、素子作製においては、結晶性の劣る p 型クラッド層を活性層構造の結晶成長後に実施することが望ましく、この観点で、第一導電型が n 型で、第二導電型が p 型である場合が望ましい。

[0116]

また、結晶性の劣る p 型クラッド層(これは、望ましい形態をとった場合の第二導電型 クラッド層に相当する)の厚みは、ある程度薄いほうが望ましい。これは、フリップチッ プボンディングを実施する本発明においては、基板側が主たる光の取り出し方向となるた め、後述する第二導電型側電極側からの光の取り出しを考慮する必要がなく、大面積の厚 膜電極を形成することが可能である。このため、フェイスアップマウントを実施する際の ように、第二導電型クラッド層における横方向への電流拡散を期待する必要がなく、第二 導電型クラッド層は、ある程度薄くすることが素子構造からも有利である。但し、極端に 薄い場合には、キャリアの注入効率が低下してしまうため、最適値が存在する。第二導電 型クラッド層の厚みは、適宜選択可能であるが、0.05 μ m から0.3 μ m が望ましく 、0.1 μ m から0.2 μ m が最も望ましい。

[0117]

第二導電型クラッド層の第二導電型側電極と接触している部分においては、そのキャリ ア濃度を意図的に高くして、当該電極との接触抵抗を低減することも可能である。 【0118】

第二導電型クラッド層の露出した側壁は、後述する第二導電型側電極との接触を実現し 30 た第二電流注入領域を除いて、すべて絶縁層で覆われている構造であることが望ましい。 【0119】

さらに、第二導電型クラッド層に加えて、第二導電型半導体層として、必要によりさら に異なる層が存在してもよい。例えば、電極の接する部分にキャリアの注入を容易にする ためのコンタクト層が含まれていてもよい。また、各層を、組成または形成条件等の異な る複数の層に分けて構成してもよい。

【0120】

尚、本発明の要旨に反しない限り、薄膜結晶層として、必要により上述のカテゴリに入らない層を形成してもよい。

[0 1 2 1 **]**

< 第 二 導 電 型 側 電 極 >

第二導電型側電極は、第二導電型の窒化物化合物半導体と良好なオーム性接触を実現し、かつ、フリップチップマウントをした際には、良好な発光波長帯域における反射ミラーとなり、また、フリップチップマウントした際に、ハンダ材などによる支持体などとの良好な接着を実現するものである。本目的のためには、適宜材料選択が可能であり、第二導電型側電極は単一の層であっても、複数の層からなる場合でもかまわない。一般には、電極に要請される複数の目的を達するために、複数の層構成をとるのが普通である。 【0122】

また、第二導電型がp型で第二導電型クラッド層の第二導電型側電極側がGaNである 場合には、第二導電型側電極の構成元素として、Ni、Pt、Pd、Mo、Auのいずれ 50

10

かを含むことが望ましい。特に、第二導電型側電極のp側クラッド層側の第一層目はNi であることが望ましく、第二導電型側電極のp側クラッド層側と反対側の表面はAuであ ることが望ましい。これは、Niの仕事関数の絶対値が大きく、p型材料にとって都合が よく、また、Auは、後述するプロセスダメージに対する耐性、マウントの都合などを考 えると最表面の材料として好ましい。

(23)

【0123】

第二導電型側電極は、第二導電型のキャリアを注入可能であれば、薄膜結晶層のどの層 と接してもよく、例えば第二導電型側コンタクト層が設けられるときは、それに接するよ うに形成される。

< 第一導電型側電極>

第一導電型側電極は第一導電型の窒化物化合物半導体と良好なオーム性接触を実現し、 かつ、フリップチップマウントをした際には、良好な発光波長帯域における反射ミラーと なり、また、フリップチップマウントした際に、ハンダ材等による支持体などとの良好な 接着を実現するものであって、本目的のためには、適宜材料選択が可能である。第一導電 型側電極は単一の層であっても、複数の層からなる場合でもかまわない。一般には、電極 に要請される複数の目的を達するために、複数の層構成をとるのが普通である。

【0125】

第一導電型がn型であるとすると、n側電極は、Ti、Al、Moのいずれかから選択 される材料、もしくはすべてを構成元素として含むことが望ましい。これは、これらの金 属の仕事関数の絶対値が小さいためである。また、n側電極の主たる光取り出し方向とあ い対する向きには、Alが露出するのが普通である。

[0126]

本発明においては、第一導電型側電極は第一電流注入領域の大きさよりも大きな面積に 形成され、かつ、第一導電型側電極と第二導電型側電極は、空間的に重なりを有さないこ とが望ましい。これは、発光装置をハンダなどでフリップチップマウントした際に、支持 体などとの十分な密着性を確保するに十分な面積を確保しつつ、第二導電型側電極と第一 導電型側電極との間のハンダ材等による意図しない短絡を防止するのに十分な間隔を確保 するために重要である。

【0127】

ここで、第一導電型側電極が絶縁層に接している部分の幅の中で、最も狭い部分の幅は 15µm以上であることが望ましい。これはフォトリソグラフィー工程とリフトオフ法に よって形成することが好ましい第一導電型側電極の形成プロセスにおけるマージンが必要 であるからである。

[0128]

第一導電型側電極は、第一導電型のキャリアを注入可能であれば、薄膜結晶層のどの層 と接してもよく、例えば第一導電型側コンタクト層が設けられるときは、それに接するよ うに形成される。

[0 1 2 9 **]**

< 絶縁層 >

絶縁層30は、フリップチップマウントを実施した際に、マウント用のハンダ、導電性ペースト材等が「第二導電型側電極と第一導電型側電極の間」、「活性層構造などの薄膜結晶層の側壁」、「異なる発光ユニット間のあらゆる場所」に回りこんで、意図しない短絡が発生しないようにするためのものである。絶縁層は、電気的に絶縁が確保できる材料であれば、材料は適宜選択することができる。例えば、単層の酸化物、窒化物、フッ化物等が好ましく、具体的には、SiO_x、AlO_x、TiO_x、TaO_x、HfO_x、Zr O_x、SiN_x、AlN_x、AlF_x、BaF_x、CaF_x、SrF_x、MgF_x等から 選ばれることが好ましい。これらは、長期に渡って安定に絶縁性を確保できる。 【0130】

一方、絶縁層30を絶縁物の多層膜とすることも可能である。これは、誘電体多層膜と 50

10

20

なるので、絶縁層内の誘電体の屈折率を適宜調整することによって、発光装置内で発生した光に対して光学的に比較的高い反射率を有するいわゆる高反射コーティングの機能もあわせて発現させることが可能である。たとえば、素子の発光波長の中心値が であった場合には、SiO_xとTiO_xをそれぞれ光学厚みで /4n(ここでnは波長 におけるそれぞれの材料の屈折率)に積層することなどで高い反射特性を実現することが可能である。このようにすると、素子をフリップチップボンドした際には、主たる取り出し方向側への光の取り出し効率を上げることが可能となり素子の高出力化、高効率化の観点とハンダ材等による意図しない短絡等を防止することが両立できることとなり非常に望ましい。

具体的には、第一導電型クラッド層を含む第一導電型半導体層側からバッファ層へ垂直 10 入射する当該発光装置の発光波長の光がバッファ層で反射される反射率をR2で表し、絶 縁層に第二導電型クラッド層を含む第二導電型半導体層側から垂直入射する当該発光装置 の発光波長の光が、絶縁層で反射される反射率をR12、絶縁層に第一導電型クラッド層 を含む第一導電型半導体層側から垂直入射する当該発光装置の発光波長の光が、絶縁層で 反射される反射率をR11、絶縁層に量子井戸層を含む活性層構造側から垂直入射する当 該発光装置の発光波長の光が、絶縁層で反射される反射率をR1qでそれぞれ表したとき

(式1) R2 < R12
 (式2) R2 < R11
 (式3) R2 < R1q
 の少なくとも1つの条件、特に式1~3のすべての条件を満たすように、絶縁層が構成されることが好ましい。

【0132】

これらは、誘電体多層膜で形成された絶縁層が光学的な反射ミラーとして効率よく機能 するために望ましい範囲である。また、その材料の安定性、屈折率の範囲から考えて、誘 電体膜中に、フッ化物が含まれることは望ましく、かつ、具体的にはA1F_×、BaF_× 、CaF_×、SrF_×、MgF_×のいずれかが含まれることが望ましい。

【 0 1 3 3 】

< 支持体 >

支持体40は、基板剥離の際の薄膜結晶層の支持体としての役割を果たせることが必須 30 であるが、さらに、本支持体は、素子完成後の電流導入と放熱の機能をあわせ持つことも 非常に望ましい。この観点で、支持体の母材は、金属、A1N、SiC、ダイヤモンド、 BNおよびCuWからなる群より選ばれることがことが望ましい。これら材料は、放熱性 に優れ、高出力の発光素子に不可避である発熱の問題を効率よく抑制できる点で好ましい 。 ま た 、 後 述 す る 基 板 除 去 時 に レ ー ザ 照 射 に よ っ て 薄 膜 結 晶 層 の 一 部 を 金 属 G a と 窒 素 に 分解した際には、金属Gaを除去する際にウェットエッチングを実施する事が望ましいが 、この際も、支持体はエッチングされない材質であることが望ましい。さらに、基板その ものをウェットエッチングすることも可能であって、この際にも支持体はエッチングされ ない材質であることが望ましい。尚、支持体の母材を金属から選択する際には、その周り 40 を耐エッチング性のある誘電体等で覆う事が望ましい。金属の母材としては、発光素子の 発 光 波 長 に お け る 反 射 率 の 高 い 材 料 が 望 ま し く 、 A l 、 A g 等 が 望 ま し い 。 ま た 、 誘 電 体 等で覆う最には、各種CVD法で形成したSiNx、SiO₂等が望ましい。 **[**0134**]**

支持体は、さらに素子完成後の電流導入と放熱の機能をあわせ持つとの観点では、母材の上に、電流導入用の電極配線を有することが望ましく、また、この電極配線上で装置を搭載する部分には、適宜発光装置と支持体の接合用の接着層を有することが望ましい。ここで、接着層は、Agを含んだペースト、金属バンプ等を使用することも可能ではあるが、金属ハンダで構成されていることが、放熱性の観点で非常に望ましい。金属ハンダはAgを含んだペースト材、金属バンプなどと比較して圧倒的に放熱性に優れたフリップチッ

プマウントが実現可能である。ここで、金属ハンダとしては、In、InAg、InSn 、SnAg、PbSn、AuSn、AuGeおよびAuSi等を挙げることができる。特 に、AuSn、AuSi、AuGe等の高融点ハンダがより望ましい。これは、発光素子 を超高出力動作させるために大電流を注入すると、素子近傍の温度が200 程度に上昇 するためであって、ハンダ材の融点として駆動時の素子温度よりも高い融点を有する金属 ハンダがより好ましい。また、場合によっては、フリップチップマウント時の素子の段差 を打ち消すために、バンプを用い、さらに、金属ハンダ材でその周りを埋めながら接合す る事も望ましい。

(25)

[0135]

また、本発明の集積型化合物半導体発光装置は、支持体上の金属配線を自在に変化させ 10 ることで、1つの発光装置内の各発光ユニットを並列接続にも、直列接続にも、またはこ れらを混在させることも可能である。

[0136]

〔製造方法〕

次に、本発明の集積型化合物半導体発光装置の製造方法について説明する。

[0137]

本発明の製造方法の1例では、図4に示すように、まず基板21を用意し、その表面に バッファ層22、第一導電型クラッド層24、活性層構造25および第二導電型クラッド 層26を薄膜結晶成長により順次成膜する。これらの薄膜結晶層の形成には、MOCVD 法が望ましく用いられる。しかし、MBE法、PLD法なども全部の薄膜結晶層、あるい は一部の薄膜結晶層を形成するために用いることが可能である。これらの層構成は、素子 の目的等に合わせて適宜変更が可能である。また、薄膜結晶層の形成後には、各種の処理 を実施してもかまわない。なお、本明細書では、薄膜結晶層の成長後の熱処理等も含めて 、「薄膜結晶成長」と記載している。

【0138】

薄膜結晶層成長の後、本発明において図1、図2に示された形状を実現するためには、 図4に示すように、第二導電型側電極27を形成することが好ましい。即ち、予定されて いる第二電流注入領域35に対する第二導電型側電極27の形成が、絶縁層30の形成よ りも、また、第一電流注入領域36の形成よりも、さらには、第一導電型側電極28の形 成よりも、早く実施されることが望ましい。これは、望ましい形態として第二導電型がp 型である場合において、表面に露出しているp型クラッド層の表面に対して各種プロセス を経た後にp側電極を形成すると、GaN系材料では比較的活性化率の劣るp-GaNク ラッド層中の正孔濃度をプロセスダメージによって低下させてしまうからである。たとえ ばp-CVDによる絶縁層の形成工程を第二導電型側電極の形成より前に実施すれば、そ の表面にプラズマダメージが残存してしまう。このため、本発明では薄膜結晶成長の後に は第二導電型側電極の形成が他のプロセス工程(たとえば後述する第一エッチング工程、 第二エッチング工程、第三エッチング工程、あるいは絶縁層形成工程、第二導電型側電極 露出部分形成工程、第一電流注入領域形成工程や第一導電型側電極形成工程など)よりも 先に実施されることが望ましい。

[0139]

また、本発明においては、第二導電型がp型である場合には、前述のとおり、第二導電 型側電極の表面がAuである場合が代表的な例として想定されるが、露出面がAuなどの 比較的安定な金属である場合には、その後のプロセスを経ても、プロセスダメージを受け る可能性が低い。この観点からも本発明では薄膜結晶成長の後には第二導電型側電極の形 成が他のプロセス工程よりも先に実施されることが望ましい。

[0 1 4 0 **]**

なお、本発明では、第二導電型側電極が形成される層が、第二導電型コンタクト層であ る場合にも同様に、第二導電型半導体層に対してのプロセスダメージを低減することがで きる。

【0141】

40

20

10

20

30

第二導電型側電極27の形成には、スパッタ、真空蒸着等種々の成膜技術を適応可能であり、所望の形状とするためには、フォトリソグラフィー技術を用いたリフトオフ法や、 メタルマスク等を用いた場所選択的な蒸着等を適宜使用可能である。 【0142】

第二導電型側電極27を形成した後、図5に示すように、第一導電型クラッド層24の 一部を露出させる。この工程は、第二導電型クラッド層26、活性層構造25、さらには 第一導電型クラッド層24の一部をエッチングにより除去することが好ましい(第一エッ チング工程)。第一エッチング工程においては、後述する第一導電型側電極が第一導電型 のキャリアを注入する半導体層を露出することが目的であるので、薄膜結晶層に他の層、 たとえば、クラッド層が2層からなる場合や、あるいはコンタクト層がある場合には、そ の層を含んでエッチングしてもかまわない。

【0143】

第一エッチング工程では、エッチング精度があまり要求されないので、SiN_×のよう な窒化物やSiO_×等の酸化物をエッチングマスクとしてCl₂等を用いたプラズマエッ チング法による公知のドライエッチングを使用することができる。しかし、後述する第二 エッチング工程、第三エッチング工程で詳細に説明するような金属フッ化物マスクを用い たドライエッチングを実施することも望ましい。特に、SrF₂、A1F₃、MgF₂、 BaF₂、CaF₂およびそれらの組み合わせからなる群より選ばれる金属フッ化物層を 含むエッチングマスクを用いて、Cl₂、SiCl₄、BCl₃、SiCl₄等のガスを 用いたプラズマ励起ドライエッチングによりエッチングを行うことが好ましい。さらに、 ドライエッチングの方法としては、高密度プラズマを生成可能なICP型のドライエッチ ングが最適である。

【0144】

ここで第二導電型側電極27はプラズマCVD等によって形成されるSiN_×マスクの 形成履歴、あるいは第一エッチング工程後に実施される該SiN_×マスク除去工程を履歴 するが、Auなどの安定な金属が表面に形成されている場合には、第二導電型側電極が受 けるプロセスダメージは少なくなる。

【0145】

次に図6に示すように、発光ユニット間分離溝12を、第二エッチング工程により形成 する。第二エッチング工程は、第一エッチング工程と比較して、さらに深くGaN系材料 をエッチングすることが必要となる。一般に、第一エッチング工程によってエッチングさ れる層の総和は、0.5µm程度が普通であるが、第二エッチング工程においては、第一 導電型クラッド層24のすべてと、バッファ層22の一部までをエッチングすることが必 要なことから、1µm以上となることが多く、例えば1~5µmの範囲、または3µ以上 の範囲、例えば3~7µmの範囲となることがある。場合によっては、3~10µmの範 囲、さらには10µmを越えることもある。しかし、基板に達するまでエッチングする場 合に比べ、エッチング深さを短くできる利点がある。そのため、発光ユニット間分離溝1 2の幅を、前述のように短い幅にすることができる。

【0146】

ー般に、金属マスク、SiN_×等の窒化物マスク、SiO_×等の酸化物マスク等は、С 40 1₂系プラズマに対するエッチング耐性を示すGaN系材料に対する選択比は5程度であ って、膜厚の厚いGaN系材料をエッチングする必要のある第二エッチング工程を実施す るには、比較的厚めのSiN×膜が必要となってしまう。たとえば第二ドライエッチング 工程で4µmのGaN系材料をエッチングする最には、0.8µmを越えるSiN_×マス クが必要となってしまう。しかし、この程度の厚みのSiN_×マスクになると、ドライエ ッチング実施中にSiN_×マスクもエッチングされてしまい、その縦方向の厚みのみでは なく水平方向の形状も変ってしまい、所望のGaN系材料部分のみを選択的にエッチング することができなくなってしまう。

(0 1 4 7 **)**

そこで、第二エッチング工程において発光ユニット間分離溝を形成する際には、金属フ 50

(27)

ッ化物層を含むマスクを用いたドライエッチングが好ましい。金属フッ化物層を構成する 材料は、ドライエッチング耐性とウェットエッチング性のバランスを考慮すると、MgF 2、CaF2、SrF2、BaF2、AlF3が好ましく、この中でもSrF2が最も好 ましい。

【0148】

金属フッ化物膜は、第一、第二、第三エッチング工程で行うドライエッチングに対して は十分な耐性があり、一方でパターニングのためのエッチング(好ましくはウェットエッ チング)に対しては、容易にエッチング可能でかつパターニング形状、特に側壁部分の直 線性の良いものが求められる。金属フッ化物層の成膜温度を150 以上にすることで、 下地との密着性に優れ、緻密な膜が形成され、同時にエッチングによってパターニングし た後に、マスク側壁の直線性にも優れている。成膜温度は、好ましくは250 以上、さ らに好ましくは300 以上、最も好ましくは350 以上である。特に350 以上で 成膜された金属フッ化物層は、あらゆる下地との密着性に優れ、かつ、緻密な膜となり、 高いドライエッチング耐性を示しつつ、パターニング形状についても、側壁部分の直線性 に非常に優れ、開口部の幅の制御性も確保されるようになり、エッチングマスクとして最 も好ましい。

【0149】

このように、下地との密着性に優れ、かつ、緻密な膜となり、高いドライエッチング耐性を示しつつ、パターニング形状についても、側壁部分の直線性と開口部の幅の制御性に非常に優れたエッチングマスクとするためには、高温で成膜することが好ましいが、一方、成膜温度が高すぎると、金属フッ化物をパターニングする際に好ましく実施される塩酸等に対するウェットエッチングに対する耐性が必要以上になり、その除去が容易でなくなる。特に、後述するようにSrF₂等のマスクは半導体層のドライエッチング時に塩素等のプラズマにさらされると、その後に実施するマスク層の除去時のエッチングレートが、塩素等のプラズマにさらされる前に比較して低下する傾向を有している。このため、金属フッ化物の過剰な高温での成膜はそのパターニングと最終除去の観点から好ましくない。

まず半導体層のドライエッチング時のプラズマにさらされる前の金属フッ化物にあって は、低温成膜した層ほど塩酸等のエッチャントに対するエッチングレートが大きくエッチ ングが速く進行し、成膜温度を高くするほどエッチングレートが低下し、エッチングの進 行が遅くなる。成膜温度が300 以上になると、成膜温度が250 程度の膜よりエッ チングレートの低下が目立ってくるが、350 から450 程度では、非常に都合の良 いエッチング速度の範囲にある。しかし、成膜温度が480 を超えるとエッチング速度 の絶対値が必要以上に小さくなり、当該金属フッ化物のパターニングに過剰な時間を費や すこととなり、また、レジストマスク層等が剥離しない条件でのパターニングが困難にな る事もある。さらに、半導体層のドライエッチング時のプラズマにさらされた後の金属フ ッ化物にあっては、除去時の塩酸等に対するウエットエッチングレートは低下する性質が あり、過剰な高温成長は金属フッ化物の除去を困難にしてしまう。

 $\begin{bmatrix} 0 & 1 & 5 & 1 \end{bmatrix}$

このような観点から、金属フッ化物層の成膜温度は、好ましくは480 以下であり、 40 さらに好ましくは470 以下、特に好ましくは460 以下である。 【0152】

このようなことに配慮してパターニングされたマスク(金属フッ化物層が表面層になる ようにSiN_×,SiO₂などと積層されていてよい)を用いて、ドライエッチングを行 う。ドライエッチングのガス種としては、Cl₂、BCl₃、SiCl₄、CCl₄およ びこれらの組み合わせから選ばれるものが望ましい。ドライエッチングの際に、SrF₂ マスクのGaN系材料に対する選択比は100を越えるため、厚膜GaN系材料のエッチ ングが容易に、かつ、高精度に行うことができる。さらに、ドライエッチングの方法とし ては、高密度プラズマを生成可能なICP型のドライエッチングが最適である。 【0153】 10

20

エッチング後に、不要となった金属フッ化物層のマスクを、塩酸等のエッチャントで除去する際に、金属フッ化物マスクの下に酸に弱い材料が存在する場合、例えば電極材料が酸に弱い場合には、金属フッ化物層が表面層になるようにしてSiN_×、SiO₂などとの積層マスクとしてもよい。この場合、SiN_×、SiO₂等は、金属フッ化物マスク層の下部の全体に存在していてもよいし、または例えば図17に示すように、SiN_×、SiO₂等マスク51は、金属フッ化物マスク層52の下部の全体に存在していなくても、少なくとも酸に弱い材料上に形成されていればよい。

【0154】

このような第二エッチング工程により、図6に示すように、発光ユニット間分離溝が形 成される。

【0155】

次に、図7に示すように、装置間分離溝13を、第三エッチング工程により形成する。 第三エッチング工程では、エッチングすべきGaN系材料の厚みは、バッファ層をすべて エッチングすることが必要なことから、第二エッチング工程と比較しても、極めて深く、 5~10µmとなることがあり、また10µmを超えることもある。そのため、第二エッ チング工程で説明したと同様に、金属フッ化物層を含むマスクを用いたドライエッチング が好ましい。その好ましい条件等(積層マスク等も含む)は、第二エッチング工程につい て説明したとおりである。

【0156】

装置間分離溝は、少なくとも第一導電型クラッド層を分断して形成されていることが必 20 要である。本発明の好ましい形態の1つでは、図7に示すように、装置間分離溝13が基 板21に到達するように形成される。この場合には、装置の分離が容易である。また、基 板の一部までをエッチングして装置間分離溝を形成してもよい。

【 0 1 5 7 】

一方、装置間分離溝が、基板に達していない形態も好ましい形態である。例えば、装置 間分離溝が、バッファ層の途中まで形成されていれば、第一導電型クラッド層の側壁に絶 縁層を形成することができて、ハンダ等の回りこみに対して絶縁性を保つことができる(発光装置完成後の形態は、図13~図16を参照。)。この場合、絶縁層で被覆されずに 側壁から露出する層は、高い絶縁性を有することが好ましい。装置間分離溝を、バッファ 層の途中まで形成する形態では、第二エッチング工程と第三エッチング工程を同時実施す ることも可能になるので、工程を簡略化できる利点がある。 【0158】

なお、第一エッチング工程、第二エッチング工程および第三エッチング工程は、いずれ の工程を先に実施しても、後に実施してもかまわない。また、プロセスを簡略にするため 、第一エッチング工程を先に実施し、その際のエッチングマスクを除去しないで、第二エ ッチングおよび / または第三エッチング工程を実施することも好ましい。図17に示すよ うに、まずSiN_×、SiO₂等の酸に強い材料(好ましくはSiN_×)により第一エッ チングマスク51を形成し、第一導電型クラッド層24が現れるようにエッチングし、マ スク51を除去しないで、金属フッ化物層による第二および / または第三エッチングマス ク52を形成する。そして、第二および / または第三エッチング工程を実施した後、マス ク52を酸により除去し、その後、マスク51を適宜除去することが好ましい。第一エッ チングマスク51は、第二エッチング工程と第三エッチング工程が別々に実施される場合 にも、両方のエッチングが終了するまで存在させることもできる。 【0159】

形成される装置分離溝間の最も狭い部分の幅を2 L_{W S P T 1} とすると、L_{W S P T 1} はブレーキングによって素子分離を行う際には、2 0 μ m 以上、例えば3 0 μ m 以上であ ることが望ましい。また、ダイシング等によって実施する際には、L_{W S P T 1} は3 0 0 μ m 以上であることが望ましい。また、大きすぎても無駄であるので、L_{W S P T 1} は通 常は2 0 0 0 μ m 以下である。これは、素子作製プロセスのマージンと、さらには、スク ライブ領域の確保のために必要であるからである。 10

【0160】

第三エッチング工程の後には、図8に示すように、絶縁層30を形成する。絶縁層は、 電気的に絶縁が確保できる材料であれば、適宜選択することができ、詳細は前述のとおり である。成膜方法は、プラズマCVD法等の公知の方法を用いればよい。 【0161】

(29)

次に、図9に示すように、絶縁層30の所定部分を除去し、第二導電型側電極27上で 絶縁層が除去された第二導電型側電極露出部分37、第一導電型クラッド層上で絶縁層が 除去された第一電流注入領域36、装置間分離溝13内で基板面と側壁から絶縁層が除去 された絶縁層非形成部分15を形成する。第二導電型側電極27上の絶縁層30の除去は 、第二導電型側電極の周辺部分が絶縁層によって覆われているように実施することが望ま しい。すなわち第二導電型側電極露出部分の表面積は第二電流注入領域の面積よりも小さ いことが望ましい。ここで、素子作製プロセス、特にフォトリソグラフィー工程のマージ ン、あるいは、ハンダ材による意図しない短絡等の発生を防止するためには、第二導電型 側電極の周辺から絶縁層で覆われている幅の中で、最も狭い部分の幅をL_{2W}とすると、 L_{2W}は15µm以上である。絶縁層によって第二導電型側電極の面積の多くが覆われる ことによって、特に、金属ハンダ材によるたとえば第一導電型側電極等の他の部分との意 図しない短絡を低減することができる。また、L_{2W}は、通常2000µm以下であり、 好ましくは750µm以下である。

【0162】

絶縁層の除去は、選択された材質によってドライエッチング、ウェットエッチング等の エッチング手法が選択可能である。たとえば、絶縁層がSiN_×単層である場合には、S F。等のガスを用いたドライエッチングも、あるいはフッ酸系のエッチャントを用いたウ ェットエッチングも可能である。また、絶縁層がSiO_×とTiO_×からなる誘電体多層 膜である場合には、Arイオンミリングによって所望の部分の多層膜を除去することも可 能である。

【0163】

また、第二導電型側電極露出部分37、第一電流注入領域36、および絶縁層非形成部 分15の形成は、別々に行ってもよいが、通常は同時にエッチングで形成する。 【0164】

絶 縁 層 非 形 成 部 分 1 5 を 設 け る 際 の 溝 側 壁 の 絶 縁 層 の 一 部 の 同 時 除 去 は 、 た と え ば 、 以 下の様なプロセスで形成が可能である。装置間分離溝13の面積とほぼ同等か少し小さめ の開口を有するレジストマスクをフォトリソグラフィーによって形成し、次に、絶縁層を エッチング可能なエッチャントを用いてウェットエッチングを実施すると、装置間分離溝 内の基板面上の絶縁層の除去が進む。その後、さらに長時間エッチングを継続するとサイ ドエッチングが起こり、溝側壁の基板側を覆っていた絶縁層がウエットエッチャントで除 | 去 さ れ 、 図 9 に 示 し た よ う に 装 置 間 分 離 溝 の 基 板 側 に 絶 縁 層 が 存 在 し な い 形 状 が 得 ら れ る 。このように絶縁層を除去する場合においては、絶縁層が存在しない薄膜結晶層の側壁は 、アンドープ層の側壁であることが望ましい。これは、フリップチップマウントを実施す る 際 に 、 万 が 一 、 支 持 体 と の 接 合 用 ハ ン ダ 等 が 側 壁 に 付 着 し て も 、 意 図 し な い 電 気 的 短 絡 が発生しないためである。このような絶縁層の除去形状は、特に発光装置の製造工程中に 、 基 板 を 除 去 す る 際 に は 、 こ れ に 付 随 し て 絶 縁 層 の 剥 離 な ど 意 図 し な い 不 具 合 が 発 生 し な いため、望ましい形状である。尚、装置間分離溝が、バッファ層の途中まで形成される場 合にも、発光装置端から内側に入った側壁部分(装置間分離溝の側壁)のうち、主たる光 取 り 出 し 方 向 側 に 絶 縁 層 で 覆 わ れ て い な い 部 分 が 存 在 す る 形 態 (例 え ば 図 1 4 、 図 1 6 の 構造を作製する場合)では、上記のプロセスで絶縁膜を堆積するときに、基板面でなく溝 底面に堆積される点が異なるが、同一のプロセスを採用することができる。また、絶縁層 が、分離溝底面の一部と分離溝の側壁部分とを被覆する形態(例えば図13、図15の構 造を作製する場合)には、上記のプロセスで、予定した形状に適したフォトリソグラフィ によって、適切なエッチングマスク形状を準備し、かつ、サイドエッチングを行わずに、

10

20

30

溝 底 面 に 堆 積 し た 絶 縁 層 の 一 部 を 除 去 し て ス ク ラ イ ブ 領 域 を 形 成 す れ ば よ い 。 【 0 1 6 5 】

次に、図10に示すように、第一導電型側電極28を形成する。電極材料としては、すでに説明したとおり、第一導電型がn型であるとすると、Ti、A1およびMoのいずれかから選択される材料、またはすべてを構成元素として含むことが望ましい。また、n側電極の主たる光取り出し方向とあい対する向きには、A1が露出するのが普通である。 【0166】

(30)

電極材料の成膜には、スパッタ、真空蒸着等種々の成膜技術を適応可能であり、電極形 状とするためには、フォトリソグラフィー技術を用いたリフトオフ法や、メタルマスク等 を用いた場所選択的な蒸着等を適宜使用可能である。ここで、形成プロセスにおけるマー ジンをある程度見込むために、第一導電型側電極が絶縁層に接している部分の幅の中で、 最も狭い部分の幅をL_{1 w}とすると、L_{1 w}は7µm以上が好ましく、特に9µm以上が 好ましい。また、L_{1 w}は、通常500µm以下であり、好ましくは100µm以下であ る。通常、5µm以上があれば、フォトリソグラフィー工程とリフトオフ法によるプロセ スマージンは確保できる。

[0167]

第一導電型側電極は、この例では、第一導電型クラッド層にその一部が接して形成され るが、第一導電型側コンタクト層が形成されるときはそれに接するように形成することが できる。

[0168]

本発明の製造方法では、第一導電型側電極が、積層構造形成の最終段階にて製造される ことにより、プロセスダメージ低減の観点でも有利である。第一導電型がn型である場合 には、n側電極は、好ましい形態では、A1がその電極材の表面に形成される。この場合 に、n側電極が第二導電型側電極のように絶縁層の形成よりも前になされると、n側電極 表面、すなわちA1金属は、絶縁層のエッチングプロセスを履歴することになる。絶縁層 のエッチングには、前述のとおりフッ酸系のエッチャントを用いたウェットエッチング等 が簡便であるが、A1はフッ酸を含めた各種エッチャントに対する耐性が低く、このよう なプロセスを実効的に実施すると電極そのものにダメージが入ってしまう。また、ドライ エッチングを実施してもA1は比較的反応性が高く酸化を含めたダメージが導入される可 能性がある。従って、本発明においては、第一導電型側電極の形成が絶縁層の形成後かつ 絶縁層の予定されている不要部分の除去後に行われることは、電極に対するダメージの低 減に効果がある。

【0169】

このようにして、図10(図2)の構造が形成された後には、基板除去するための前準 備をする。通常、図10に示された構造を、ウエハー全体として、あるいはその一部を、 先ず、支持体40に接合する。これは、薄膜結晶層全体としても高々15µm程度の厚み であるので、基板を剥離してしまうと、機械的強度が不十分になりそれだけで自立してそ の後のプロセスを受けることが困難になるからである。支持体の材料等については前述の とおりであり、支持体上の金属面41(電極配線等)に例えば金属ハンダ42で接続して 搭載する。

【 0 1 7 0 】

このとき、本発明の発光装置では、第二導電型側電極27と第一導電型側電極28は、 お互いが空間的に重ならない配置となっており、かつ、第一導電型側電極が第一電流注入 領域よりも大きく、十分な面積も有しているため、意図しない短絡の防止と高い放熱性の 確保が両立しており望ましい。また、他の薄膜結晶層の側壁もバッファ層の一部、特にア ンドープ部分を除いて絶縁層で保護されるため、ハンダの染み出し等があっても薄膜結晶 層内、たとえば活性層構造側壁における短絡等も発生することがない。 【0171】

次に、支持体に素子を接合した後に、基板を剥離する。基板の剥離には、研磨、エッチ ング、レーザディボンディング等のあらゆる方法を用いる事が可能である。サファイア基

10

20

40

板を研磨する場合には、ダイヤモンド等の研磨材を使用して基板を除去することが可能で ある。また、ドライエッチングによって基板を除去することも可能である。さらには、た とえばサファイアが基板でInAIGaN系材料によって薄膜結晶成長部分が形成されて いる場合には、サファイア基板側から、サファイア基板は透過し、たとえばバッファ層に 使用されるGaNには吸収される248nmの発振波長を有するエキシマレーザを用いて 、バッファ層の一部のGaNを金属Gaと窒素に分解し、基板を剥離するレーザディボン ディングを実施する事も可能である。

(31)

【0172】

また Z n O および S c A l M g O 4 等を基板として使用する場合には、 H C l 等のエッ チャントを用いて基板をウェットエッチングで除去することも可能である。 【 0 1 7 3 】

ここで、本発明の好ましい形態では、基板上には絶縁層が接している部分がないため、 基板剥離を実施した際に副次的に絶縁層の剥離等が発生することがない。 【 0 1 7 4 】

その後、装置間分離溝が存在する箇所に対応する分離領域において、支持体と共に発光 装置を分離して単体の発光装置を得る。ここで、支持体の分離領域には、金属配線が存在 しないことが望ましい。ここに金属配線が存在すると装置間の分離が実施しにくいからで ある。本発明の集積型化合物半導体発光装置は、支持体上の金属配線を自在に変化させる ことで、1つの発光装置内の各発光ユニットを並列接続にも、直列接続にも、これらを混 合した配線にする事も可能である。

【0175】

支持体の分離領域部分の切断には、母材によって、ダイシング、スクライビングとブレ ーキングなど適宜プロセスを選択可能である。また、装置間分離溝が、バッファ層の途中 まで形成されている場合(例えば、発光ユニット間分離溝と同等の深さで、バッファ層の 途中まで溝が形成されている場合)には、装置間分離溝を使用して、ダイヤモンドスクラ イブによる傷いれ、レーザスクライブによるバッファ層の一部のアブレーション等を実施 する事で、薄膜結晶成長層部分における発光装置間の分離は容易に実現可能である。その 後、支持体はダイシングによって、各発光装置に分離することが可能である。場合によっ ては、発光装置間の分離は、薄膜結晶成長層と支持体をダイシングによって同時に分離す ることも可能である。

【0176】

このようにして、図1に示された発光装置が完成する。

本発明の製造方法では、面光源的発光に有利な構造を効果的に製造できることに加えて、説明のとおり薄膜結晶層の形成、第二導電型側電極の形成、エッチング工程(第一エッチング工程、第二エッチング工程)、絶縁層の形成、絶縁層の除去(第二導電型側電極露出部分および第一電流注入領域の形成や装置間分離溝近傍の絶縁層の除去)、第一導電型側電極の形成は、この順に実施されることが望ましく、この工程順により、第二導電型側電極直下の薄膜結晶層のダメージがなく、また第一導電型側電極にもダメージのない発光装置を得ることができる。そして、装置形状はプロセスフローを反映したものとなっている。即ち、発光装置は、第二導電型側電極、絶縁層、第一導電型側電極がこの順番に積層された構造を内在している。つまり、第二導電型側電極は、第二導電型クラッド層(またはその他の第一導電型薄膜結晶層)の間には、電極周囲部分に絶縁層が介在している部分が存在している。

【実施例】

【0178】

以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更す

20

10

40

ることができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈され るべきものではない。また、以下の実施例において参照している図面は、構造を把握しや すくするために敢えて寸法を変えている部分があるが、実際の寸法は以下の文中に記載さ れるとおりである。

【0179】

(実施例1)

図15に示した半導体発光装置を以下の手順で作製した。関連する工程図として、図4 ~10を参照する。

[0 1 8 0 **]**

厚みが430µmのc+面サファイア基板21を用意し、この上に、まずMOCVD法 10 を用いて、第1のバッファ層22aとして厚み10nmの低温成長したアンドープのGa N層を形成し、この後に第2のバッファ層22bとして厚み4µmのアンドープGaN層 を1040 で形成した。

【0181】

さらに、第一導電型(n型)第二クラッド層24bとしてSiドープ(Si濃度1×1 0¹⁸ cm³)のGaN層を2μm厚に形成し、第一導電型(n型)コンタクト層24 cとしてSiドープ(Si濃度3×10¹⁸ cm³)のGaN層を0.5μm厚に形成 し、さらに第一導電型(n型)第一クラッド層24aとしてSiドープ(Si濃度1.5 ×10¹⁸ cm³)のA10.15Ga0.85N層を0.1μmの厚さで形成した。 さらに活性層構造25として、バリア層として850で13nmの厚さに成膜したアンドープIn 0.1Ga0.9N層とを、量子井戸層が全部で5層で両側がバリア層となるように交互に成膜した。さらに成長温度を1025 にして、第二導電型(p型)第一クラッド層2 6 aとしてMgドープ(Mg濃度5×10¹⁹ cm³)A10.15Ga0.85N層 を0.1μmの厚さに形成した。さらに連続して、第二導電型(p型)第二クラッド層2 6 bとしてMgドープ(Mg濃度5×10¹⁹ cm³)GaN層を0.07μmの厚さ に形成した。最後に第二導電型(p型)コンタクト層26cとしてMgドープ(Mg濃度 1×10²⁰ cm³)GaN層を0.03μmの厚さに形成した。

【0182】

この後にMOCVD成長炉の中で徐々に温度を下げて、ウエハーを取り出し、薄膜結晶 30 成長を終了した。

【0183】

薄膜結晶成長が終了したウエハーに対してp側電極を形成するために、フォトリソグラフィー法を用いてp側電極27をリフトオフ法でパターニングする準備をしてレジストパターンを形成した。ここでp側電極としてNi(20nm厚)/Au(500nm厚)を真空蒸着法によって形成し、アセトン中で不要部分をリフトオフ法によって除去した。次いで、その後熱処理を実施してp側電極を完成させた。ここまでの工程で完成した構造は、概ね図4に対応する。尚、ここまでの工程では、p側電極直下のp側電流注入領域には、プラズマプロセス等のダメージが入るような工程はなかった。

[0184]

次いで、第一エッチング工程を実施するために、エッチング用マスクの形成を実施した。ここでは、p-CVD法を用いて0.4µm厚みのSiN_×を基板温度400 で、ウエハー全面に成膜した。ここでp側電極表面にはAuが露出していたため、p-CVDによるSiN_×成膜プロセスによってもまったく変質しなかった。次に再度フォトリソグフィー工程を実施してSiN×マスクをパターニングし、SiN×エッチングマスクを作製した。この際には、SiN×膜の不要部分のエッチングはRIE法を用いてSF₆プラズマを用いて実施し、後述する第一エッチング工程において薄膜結晶層のエッチングを行わない部分はマスクを残し、かつ予定されている薄膜結晶層のエッチング部分に相当する部分のSiN_×膜を除去した。

【0185】

40

次いで第一エッチング工程として、 p - G a N コンタクト層 2 6 c、 p - G a N 第二ク ラッド層 2 6 b、 p - A 1 G a N 第一クラッド層 2 6 a、 I n G a N 量子井戸層とG a N バリア層からなる活性層構造 2 5、 n - A 1 G a N 第一クラッド層 2 4 a を経て n - G a N コンタクト層 2 4 c の途中まで、 C 1 2 ガスを用いた I C P プラズマエッチングを実施 し、 n 型キャリアの注入部分となる n 型コンタクト層 2 4 c を露出させた。 【 0 1 8 6】

(33)

I C P プラズマエッチング終了後は、 S i N _× マスクをバッファフッ酸を用いてすべて 除去した。ここにおいても p 側 電極表面には A u が露出していたため、 p - C V D による S i N _× 成 膜プロセスによっても、 p 側 電極はまったく変質しなかった。ここまでの工程 で完成した構造は、概ね図 5 に対応する。

【0187】

次いで、各発光装置内にある発光ユニット間分離溝12を形成する第二エッチング工程 を実施するために、真空蒸着法を用いて、SrF2マスクをウエハー全面に形成した。次 いで、発光ユニット間分離溝を形成する領域のSrF2膜を除去し、薄膜結晶層の発光ユ ニット間分離溝形成用マスク、すなわち、第二エッチング工程用SrF2マスクを形成し た。

[0 1 8 8 **]**

次いで、第二エッチング工程として、発光ユニット間分離溝に相当する部分の、 p - G a N コンタクト層 2 6 c、 p - G a N 第二クラッド層 2 6 b、 p - A 1 G a N 第一クラッ ド層 2 6 a、 I n G a N 量子井戸層とG a N バリア層からなる活性層構造 2 5、 n - A 1 G a N 第一クラッド層 2 4 a、 n - G a N コンタクト層 2 4 c、 n - G a N 第二クラッド 層 2 4 b、アンドープG a N バッファ層 2 2 の一部までの薄膜結晶層を、 C 1 2 ガスを用 いた I C P エッチングした。この第二エッチング工程中には、 S r F 2 マスクはほとんど エッチングされなかった。発光ユニット間分離溝 1 2 の幅は、マスクの幅どおり、 1 0 μ m で形成できた。

【0189】

第二エッチング工程によって発光ユニット間分離溝12を形成後は、不要となったSr F2 マスクを除去した。ここにおいてもp側電極表面にはAuが露出していたため、まっ たく変質しなかった。ここまでの工程で完成した構造は、概ね図6に対応する。 【0190】

次いで、各々の化合物半導体発光装置間の装置間分離溝13を形成する第三エッチング 工程を実施するために、真空蒸着法を用いて、SrF₂マスクをウエハー全面に形成した 。次いで、装置間分離溝を形成する領域部分のSrF₂膜を除去し、薄膜結晶層の装置間 分離溝形成用マスク、すなわち、第三エッチング工程用SrF₂マスクを形成した。 【0191】

次いで、第三エッチング工程として、装置間分離溝に相当する部分の、p-GaNコン タクト層26c、p-GaN第二クラッド層26b、p-AlGaN第一クラッド層26 a、InGaN量子井戸層とGaNバリア層からなる活性層構造25、n-AlGaN第 ークラッド層24a、n-GaNコンタクト層24c、n-GaN第二クラッド層24b 、アンドープGaNバッファ層22(22a、22b)と薄膜結晶層のすべてを、Cl₂ ガスを用いたICPエッチングした。当該第三エッチング工程中には、SrF₂マスクは ほとんどエッチングされなかった。この工程により、幅50μmの装置間分離溝を形成し た。

【0192】

第三エッチング工程によって装置間分離溝13を形成後は、不要となったSrF₂マス クを除去した。ここにおいてもp側電極27表面にはAuが露出していたため、まったく 変質しなかった。ここまでの工程で完成した構造は、概ね図7に対応する。 【0193】

次いで、ウエハー全面に p - C V D 法によって S i O _x と S i N _x をこの順に形成し、 誘電体多層膜とした。この際には、 S i N _x と S i O _x はそれぞれ素子の発光波長に対し 50

10

20

て光学波長として1/4となるような厚みで1層ずつ形成し、発光波長に対して比較的高い反射率を有するようにした。ここまでの工程で完成した構造は、概ね図8に対応する。 【0194】

(34)

次いで、Ni-Auからなる p側電極27上への p側電極露出部分の形成、n側コンタクト層24 c 上へのn側電流注入領域(36)の形成、装置間分離溝内のアンドープバッファ層の側壁の一部に残存する絶縁層の除去を、同時に実施するために、フォトリソグラフィー技術を用いてレジストマスクを形成した。次いでフッ酸系のエッチャントでレジストマスクを形成しなかった誘電体多層膜(絶縁層)を除去した。さらに、フッ酸によるサイドエッチングの効果によって、アンドープバッファ層の側壁の一部の誘電体多層膜(絶縁層)も除去した。ここでは、p側電極27の周辺はSiO_xとSiN_xからなる絶縁層に150μm覆われているようにした。

【0195】

この後に、不要となったレジストマスクは、アセトンで除去し、かつ、RIE法による酸素プラズマでアッシングし除去した。この際にも、p側電極表面にはAuが露出していたため、p-CVDによるSiN_×成膜プロセスによってもまったく変質しなかった。ここまでの工程で完成した構造は、概ね図9に対応する。

【0196】

次いで、n側電極28を形成するために、フォトリソグラフィー法を用いてn側電極を リフトオフ法でパターニングする準備をしてレジストパターンを形成した。ここでn側電 極としてTi20nm/Al300nmを真空蒸着法でウエハー全面に形成し、アセトン 中で不要部分をリフトオフ法によって除去した。次いで、その後熱処理を実施してn側電 極を完成させた。n側電極は、その面積がn側電流注入領域よりも大きくなるように、絶 縁層にその周辺が30µmほど接するようにし、かつ、p側電極27との重なりを有さな いように形成し、金属ハンダによるフリップチップボンディングが容易で、かつ放熱性等 にも配慮した。尚、別の製作例では、10µmほど接するようにして作製し、この実施例 と同等の性能の発光素子が得られた。Al電極は、プラズマプロセス等により変質しやす く、かつ、フッ酸等によってもエッチングされるが、素子作製プロセスの最後にn側電極 の形成を行ったことから、まったくダメージを受けなかった。ここまでの工程で完成した 構造は、概ね図10に対応する。

【0197】

次いで、基板剥離を実施する前準備として、支持体40として、表面にNi/Pt/A uの積層構造の金属配線(金属層41)が形成されたSi基板を用意した。この支持体に 、発光装置が作りこまれたウエハー(基板21上の薄膜結晶成長層、電極、絶縁層等)全 体を、AuSnハンダを用いて接合した。接合時には、支持体40と発光装置が形成され たウエハーを300 に加熱ししてp側電極とn側電極が、それぞれ設計された支持体上 の金属配線にAuSnハンダで融着されるようにした。この際に、素子の意図しない短絡 等は発生しなかった。

[0198]

次に、基板剥離を実施するために、エキシマレーザ(248nm)を、薄膜結晶成長を 実施していない基板21面から照射し、基板を剥離した(レーザディボンディング)。こ の後に、GaNバッファ層の一部が窒素と金属Gaに分解されることで発生したGa金属 をウェットエッチングによって除去した。

【0199】

次いで、支持体40に金属ハンダ42で融着されている極薄膜の発光素子のバッファ層 側に、アルミナからなる低反射光学膜45をスパッタ法によって形成した。この際には、 アルミナは素子の発光波長に対して低反射コーティングとなるように、光学膜厚として発 光波長の1/4を成膜した。

【 0 2 0 0 】

最後に、1つ1つの発光装置を分割するために、ダイシングソーを用いて、支持体内の 素子分離領域部分をカットした。ここで、支持体内素子分離領域には、金属配線等が存在

10

30

20

しなかったことから意図しない配線の剥離等は発生しなかった。このようにして、図11 に示す集積型の化合物半導体発光素子を完成させた。

(実施例2)

実施例1において、バッファ層22を成膜した後の薄膜結晶層の成膜を次のように行っ た以外は実施例1を繰り返した。即ち、実施例1で、第2のバッファ層22bとして厚み 4 μ m の アンドープ G a N を 1 0 4 0 で 形成 し た 後 、 さら に 、 第 一 導 電 型 (n 型) 第 二 クラッド層 2 4 b として S i ドープ(S i 濃度 5 × 1 0 ^{1 8} c m⁻³)のG a N 層を 4 μ m 厚 に 形 成 し 、 第 一 導 電 型 (n 型) コン タ ク ト 層 2 4 c と し て S i ド ー プ (S i 濃 度 8 × 10¹⁸ cm⁻³)のGaN層を0.5µm厚に形成し、さらに第一導電型(n型)第一 クラッド層 2.4 a として S i ドープ(S i 濃度 5 . 0 × 1 0¹⁸ c m⁻³)の A l ₀ 。 G a 。 。。 Ν 層 を 0 . 1 μ m の 厚 さ で 形 成 し た 。 さ ら に 活 性 層 構 造 2.5 と し て 、 バ リ ア層として850 で13nmの厚さに成膜したアンドープGaN層と、量子井戸層とし て720 で2nmの厚さに成膜したアンドープIn_{0 1}Ga_{0 .} , N層とを、量子井 戸層が全部で8層で両側がバリア層となるように交互に成膜した。さらに成長温度を10 2.5 にして、第二導電型(p型)第一クラッド層2.6 aとしてMgドープ(Mg濃度5 ×10^{1 9} cm^{- 3})Al_{0 . 1 0} Ga_{0 . 90} Nを0.1µmの厚さに形成した。さら に連続して、第二導電型(p型)第二クラッド層26bとしてMgドープ(Mg濃度5x 10¹⁹ cm⁻³) GaNを0.07µmの厚さに形成した。最後に第二導電型(p型) コンタクト層 2.6 c として M g ドープ (M g 濃度 1 × 1 0 ^{2 0} c m ^{- 3}) G a N を 0 . 0 3µmの厚さに形成した。その後は、実施例1と同様にして、図11に示す発光装置を完 成させた。この際には、素子の意図しない短絡等は発生しなかった。

【0202】

尚、実施例1、2のプロセスでは、第一エッチング工程後にSiN_×マスクを除去したが、SiN_×マスクを除去せずに、第二エッチング工程後に除去してもよいし、さらには 第三エッチング工程後に除去することも好ましい。

【0203】

さらに、第三エッチング工程でのエッチングを、バッファ層の途中で止めることで、図 14、図16に示す発光装置を製作することができる(但し、絶縁膜は多層誘電体膜)。 また、その際に、予定した形状に適したフォトリソグラフィによって、適切なエッチング マスク形状を準備し、かつ、サイドエッチングを行わなければ、図13、図15に示す発 光装置が得られる。

【0204】

(実施例3)

図12に示す半導体発光装置を以下の手順で作製した。

【0205】

厚みが430µmのc+面サファイア基板21を用意し、この上に、まずMOCVD法を用いて、第1のバッファ層22aとして厚み10nmの低温成長したアンドープのGa N層を形成し、この後に第2のバッファ層22bとして厚み3.5µmのアンドープGa N層を1040 で形成した。

[0206]

次いで、第一導電型(n型)第二クラッド層24bとしてSiドープ(Si濃度1×1 0¹⁸ cm⁻³)のGaN層を2µm厚に形成し、第一導電型(n型)コンタクト層24 cとしてSiドープ(Si濃度2×10¹⁸ cm⁻³)のGaN層を0.5µm厚に形成 し、さらに第一導電型(n型)第一クラッド層24aとしてSiドープ(Si濃度1.5 ×10¹⁸ cm⁻³)のA1_{0.15} Ga_{0.85} N層を0.1µmの厚さで形成した。 【0207】

さらに活性層構造25として、バリア層として850 で13nmに成膜したアンドー プGaN層と、量子井戸層として715 で2nmに成膜したアンドープIn₀₁₃G a₀₈₇N層を、量子井戸層が全部で3層で両側がバリア層となるように交互に成膜し 10

30

た。

[0208]

さらに成長温度を1025 にして、第二導電型(p型)第一クラッド層26aとして Mgドープ(Mg濃度5×10¹⁹ cm³)A1₀₁₅Ga₀₈₅N層を0.1μ mの厚さに形成した。さらに連続して、第二導電型(p型)第二クラッド層26bとして Mgドープ(Mg濃度5×10¹⁹ cm³)GaN層を0.05μmの厚さに形成した 。最後に第二導電型(p型)コンタクト層26cとしてMgドープ(Mg濃度1×10² ocm³)GaN層を0.02μmの厚さに形成した。

(36)

[0209]

この後にMOCVD成長炉の中で徐々に温度を下げて、ウエハーを取り出し、薄膜結晶 10 成長を終了した。

【0210】

薄膜結晶成長が終了したウエハーに対してp側電極27を形成するために、フォトリソ グラフィー法を用いてp側電極をリフトオフ法でパターニングする準備をしてレジストパ ターンを形成した。ここでp側電極としてPd(20nm厚)/Au(1000nm厚) を真空蒸着法によって形成し、アセトン中で不要部分をリフトオフ法によって除去した。 次いで、その後熱処理を実施してp側電極27を完成させた。尚、ここまでの工程では、 p側電極直下のp側電流注入領域には、プラズマプロセス等のダメージが入るような工程 はなかった。

 $\begin{bmatrix} 0 & 2 & 1 & 1 \end{bmatrix}$

次いで、発光ユニット間分離溝を形成する第二エッチング工程と、装置間分離溝を形成 する第三エッチング工程を同時に実施するために、真空蒸着法を用いて、SrF₂マスク をウエハー全面に形成した。次いで、発光ユニット間分離溝の形成領域と装置間分離溝の 形成領域にあるSrF₂ 膜を除去し、薄膜結晶層の分離エッチングマスク、すなわち、第 ニエッチング工程と第三エッチング工程を同時に実施するためのエッチングマスクを形成 した。

 $\begin{bmatrix} 0 & 2 & 1 & 2 \end{bmatrix}$

次いで、同時に実施する第二、第三エッチング工程として、発光ユニット間分離溝と装置間分離溝に相当する部分の、p - G a N コンタクト層 2 6 c、p - G a N 第二クラッド層 2 6 b、p - A 1 G a N 第一クラッド層 2 6 a、InG a N量子井戸層とG a N バリア 層からなる活性層構造 2 5、n - A 1 G a N第一クラッド層 2 4 a、n - G a N コンタク ト層 2 4 c、n - G a N第二クラッド層 2 4 b、アンドープG a N バッファ層 2 2 の一部 までの薄膜結晶層を、C 1 2 ガスを用いた I C P エッチングした。第二・第三同時エッチ ング工程中には、S r F 2 マスクはほとんどエッチングされなかった。また、発光ユニッ ト間分離溝 1 2 は、マスクの幅のとおり6 μ m で形成できた。

【0213】

第二・第三エッチング工程を同時に実施し、発光ユニット間分離溝と装置間分離溝を形成後は、不要となったSrF2マスクを除去した。ここにおいてもp側電極表面にはAuが露出していたためまったく変質しなかった。

【0214】

次に、第一導電型側電極を形成する前準備として第一導電型コンタクト層を露出させる 第一エッチング工程を実施するために、エッチング用マスクの形成を実施した。ここでは 、真空蒸着法を用いてSrF₂をウエハー全面に製膜した。次に再度フォトリソグフィー 工程を実施してSrF₂マスクをパターニングし、第一エッチング用のマスクを作製した

【0215】

次いで第一エッチング工程として、 p - G a N コンタクト層 2 6 c 、 p - G a N 第二ク ラッド層 2 6 b 、 p - A 1 G a N 第一クラッド層 2 6 a 、 I n G a N 量子井戸層とG a N バリア層からなる活性層構造 2 5 、 n - A 1 G a N 第一クラッド層 2 4 a を経て n - G a N コンタクト層 2 4 c の途中まで、 C 1 2 ガスを用いた I C P プラズマエッチングを実施 20

し、n型キャリアの注入部分となるn型コンタクト層を露出させた。

【0216】

ICPプラズマエッチング終了後は、SrF2マスクをすべて除去した。ここにおいて もp側電極表面にはAuが露出していたため、これらのプロセスによってもまったく変質 しなかった。

[0217]

次いで、ウエハー全面にp - C V D 法によって絶縁層30としてS i N × を125 n m 厚だけウエハー全面に形成した。次いで、P d - A u からなる p 側 電極27の上に p 側電 極露出部分を形成し、n 側コンタクト層上にはn 側電流注入領域を形成し、さらに、装置 間分離溝に存在する絶縁層の一部の除去を、同時に実施するために、フォトリソグラフィ ー技術を用いてレジストマスクを形成し、次いでSF。ガスのR I E プラズマを用いてレ ジストマスクを形成しなかった部分、すなわち、p 側電極露出部分の形成と、n 側コンタ クト層24 c 上のn 側電流注入領域の形成と、さらに、装置間分離溝に存在する絶縁層の 一部の除去を実施した。ここでは、p 側電極の周辺はS i N × 絶縁層に覆われているよう にした。また、n 側電流注入領域を除いて薄膜結晶層の側壁なども絶縁層に覆われているよう にした。また、の見電流注入領域を除いて薄膜結晶層の側壁なども絶縁層に覆われている ようにした。また、のえば実施例1、2で説明したように、予定した形状に適したフォト リソグラフィによって、適切なエッチングマスク形状を準備し、かつ、絶縁層のサイドエ ッチングを進めることで図14の形状(図12は、この形状を示した。)の形成も、ある いは、予定した形状に適したフォトリソグラフィによって、適切なエッチングマスク形状 を準備し、かつ、絶縁層のサイドエッチングを進めないことで図13の形状も可能である

[0218**]**

この後に、不要となったレジストマスクは、アセトンで除去し、かつ、 R I E 法による 酸素プラズマでアッシングし除去した。この際にも、 p 側電極表面には A u が露出してい たため、 p まったく変質しなかった。

【0219】

次いで、n側電極28を形成するために、フォトリソグラフィー法を用いてn側電極を リフトオフ法でパターニングする準備をしてレジストパターンを形成した。ここでn側電 極としてTi(20nm厚)/Al(1500nm厚)を真空蒸着法でウエハー全面に形 成し、アセトン中で不要部分をリフトオフ法によって除去した。次いで、その後熱処理を 実施してn側電極を完成させた。n側電極は、その面積がn側電流注入領域よりも大きく 、かつ、p側電極との重なりを有さないように形成し、金属ハンダによるフリップチップ ボンディングが容易で、かつ放熱性等にも配慮した。Al電極は、プラズマプロセス等に より変質しやすく、かつ、フッ酸等によってもエッチングされるが、素子作製プロセスの 最後にn側電極の形成を行ったことから、まったくダメージを受けなかった。 【0220】

次いで、基板剥離を実施する前準備として、支持体40として、表面にTi/Pt/A uの積層構造の金属配線(金属層41)が形成されたAlN基板を用意した。この支持体 に、発光装置が作りこまれたウエハー(基板21上の薄膜結晶成長層、電極、絶縁層等) 全体を、AuSnハンダを用いて接合した。接合時には、支持体40と発光装置が形成さ れたウエハーを300 に加熱ししてp側電極とn側電極が、それぞれ設計された支持体 上の金属配線にAuSnハンダで融着されるようにした。この際に、この際には、素子の 意図しない短絡等は発生しなかった。

【0221】

次に、基板剥離を実施するために、エキシマレーザ(248nm)を、薄膜結晶成長を 実施していない基板21面から照射し、基板を剥離した(レーザディボンディング)。こ の後に、GaNバッファ層の一部が窒素と金属Gaに分解されることで発生したGa金属 をウェットエッチングによって除去した。

 $\begin{bmatrix} 0 & 2 & 2 & 2 \end{bmatrix}$

最後に、1つ1つの発光装置を分割するために、ダイシングソーを用いて、支持体内の 50

10

30

40

素子分離領域部分を、装置間分離溝底部のバッファ層と共にカットした。ここで、支持体 内素子分離領域には、金属配線等が存在しなかったことから意図しない配線の剥離等は発 生しなかった。このようにして、図11に示す集積型の化合物半導体発光素子を完成させ た。 【図面の簡単な説明】 [0223]【図1】本発明の発光装置の1例を示す図である。 【図2】本発明の発光装置の1例の完成前の構造を示す図である。 【図3】活性層構造を模式的に示す図である。 【図4】本発明の製造方法の1実施形態を説明する工程断面図である。 10 【図5】本発明の製造方法の1実施形態を説明する工程断面図である。 【図6】本発明の製造方法の1実施形態を説明する工程断面図である。 【図7】本発明の製造方法の1実施形態を説明する工程断面図である。 【図8】本発明の製造方法の1実施形態を説明する工程断面図である。 【図9】本発明の製造方法の1実施形態を説明する工程断面図である。 【図10】本発明の製造方法の1実施形態を説明する工程断面図である。 【図11】実施例1で製造した発光装置を示す図である。 【図12】実施例2で製造した発光装置を示す図である。 【図13】本発明の発光装置の1例を示す図である。 【図14】本発明の発光装置の1例を示す図である。 20 【図15】本発明の発光装置の1例を示す図である。 【図16】本発明の発光装置の1例を示す図である。 【図17】本発明の製造方法の1実施形態を説明する工程断面図である。 【符号の説明】 [0224] 1 0 発光装置 発光ユニット 1 1 1 2 発光ユニット間分離溝 13 装置間分離溝 15 絶縁層非形成部分 30 2 1 基板 22 バッファ層 22a 第1のバッファ層 22b 第2のバッファ層 2 4 第一導電型クラッド層 24a 第 一 導 電 型 第 一 ク ラ ッ ド 層 24b 第一導電型第二クラッド層 第 - 導 電 型 (n 型) コンタクト 層 24 c 25 活性層構造 第二導電型クラッド層 40 26 26a 第 二 導 電 型 第 一 ク ラ ッ ド 層 26b 第二導電型第二クラッド層 26 c 第二導電型(p型)コンタクト層 27 第二導電型側電極 28 第一導電型側電極 30 絶縁層 35 第二電流注入領域 3 6 第一電流注入領域 37 第二導電型側電極露出部分

40 支持体

4 1 金属面

- 4 2 金属ハンダ
- 4 5 低反射光学膜
- 5 1 第一エッチングマスク (S i N _x 等)
- 52 第二および / または第三エッチングマスク(金属フッ化物マスク)

【図2】

【図5】

【図6】

【図8】

【図9】

【図11】

【図13】

【図14】

【図17】

