wo 2014/071439 A1 [N AP0 00 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

(43) International Publication Date WO 2014/071439 A1
15 May 2014 (15.05.2014) WIPOIPCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
HO04N 7/26 (2006.01) HO04N 21/21 (2011.01) kind of national protection available): AE, AG, AL, AM,
HO4N 7/14 (2006.01) HO4N 7/00 (2011.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
HO4N 21/20 (2011.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
21 I 1onal Application Number- DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: PCT/AUR013/001 11 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
CT/AU 7 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
27 September 2013 (27.09.2013) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
.) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
(25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(26) Publication Language: English ZW.
(30) Priority Data: (84) Designated States (uniess otherwise indicated, for every
2012247040 8 November 2012 (08.11.2012) AU kind Of regional pl‘OleCliOl’l available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(71) Applicant (for all designated States except US): CANON UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
KABUSHIKI KAISHA [JP/JP]; 30-2, Shimomaruko 3- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
chome, Ohta-ku, Tokyo, 146 (JP). EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(72) Tnventor; and MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
(71) Applicant (for US only): ROSEWARNE, Christopher gﬁ ﬁﬁpl{/ngﬁEBJ’ng’TgG’Tg)L CM, GA, GN, GQ, GW,
James [AU/AU]; 5/78 Donnison Street, Gosford, NSW > > O ’
2250 (AU). Published:
(74) Agent: SPRUSON & FERGUSON; GPO BOX 3898, — with international search report (Art. 21(3))

Sydney, New South Wales 2001 (AU).

(54) Title: METHOD, APPARATUS AND SYSTEM FOR ENCODING AND DECODING THE TRANSFORM UNITS OF A
CODING UNIT

Case 1:
8x8 TU

Case 2:
Four
4x4 TUs

/‘

1800

1808

(57) Abstract: Disclosed is a method of decoding a luma
transform (954; 9126) and plurality of chroma transforms
(952, 956, 958, 960, 962; 9116-9122) from a video bit-
stream (312). The chroma transforms contain chroma data
for a single colour channel. The method determines (1402) a
value of a luma transform skip flag (964; 9127) for the luma
transform indicating whether data of the luma transform is
encoded in the video bitstream as a spatial domain represent-
ation. A value of a chroma transform skip flag (966; 9148) is
determined (1404) for a first chroma transform of the plural -
ity of chroma transforms indicating whether the data of the
chroma transform is encoded in the video bitstream as a spa-
tial domain representation. The method decodes (1406) the
luma transform according to the determined luma transform
skip flag and the plurality of chroma, transtorms according
to the determined chroma transform skip flag for the first
chroma transform.

WO 2014/071439 PCT/AU2013/001117

.1-

METHOD, APPARATUS AND SYSTEM FOR ENCODING AND DECODING
THE TRANSFORM UNITS OF A CODING UNIT

- Cross-reference to Related Application(s)

- [0001] This application claims the benefit under 35 U.S.C. §119 of the filing date
of Australian Patent Application No. 2012247040, filed November 08, 2012, hereby
incorporated by reference in its entirety as if fully set forth herefn. That application is a
divisional application of Australian Patent Application Nos. 2012232992 , filed September
28,2012, hereb.y incorporated by reference in its entirety as if fully set forth herein.

Technical Field

[0002] The present invention relates generally to digital video signal processing'
and, in particular, to a method, apparatus and system for encoding and decoding residual
¢oefﬁcients of a transform unit (TU), wherein the transform unit (TU) includes one or
more transform units (TUs) and may be configured for rﬁultiple chroma formats, including
a 4:2:2 chroma format, and wherein the residual coefficients of the transform unit (TU)

méy either represent data in a frequency domain or a spatial domain.
Background

[0003] . Many applications for video coding currently exist, including applications
for transmission and storage of video data. Many video coding standards have also been
developed and others are currently in development. Recent deQelbpm’ents in video coding
standardisation have led to the formation of a group called the “Joint Collaborative Team
on Video Coding” (JCT-VC). The Joint Collaborative Team on Video Coding (JCT-VC)
includes members of Study Group 16, Question 6 (SG16/Q6) of the Telécommunication
Standardisation Sector (ITU-T) of the International Telecommunication Union (ITU),
known as the Video Coding Experts Group (VCEG), and members of the International
Organisations for Standardisation / International Electrotechnical Commission Joint
Technical Committee 1 / Subcommittee 29 / Working Group 11 (ISO/IEC
JTC1/SC29/WG11), also knoWn as the Moving Picture Experts Group (MPEG).

WO 2014/071439 PCT/AU2013/001117

.2

[0004] The Joint Collaborative Team on Video Coding (JCT-VC) has the goal of
producing a new video coding standérd to significantly outperform a presently existing
video coding standard, known as "H.264/MPEG-4 AVC”. The H.264/MPEG-4 AVC
standard is itself a large improvement on previous video coding standards, such as MPEG-
4 gnd ITU-T H.263. The new video coding standard under development has been named
“high efficiency vfdeo coding (HEVC)”. The Joint Collaborative Team on Video Coding
JCT-VC is also considering implementation challenges arising from technology proposed
for high efficiency video coding (HEVC) that create difficulties When scaling
implementations of the standard to operate at high resolutions in real-time or high frame
rates. One implementation challenge is the complexity and size of logic used to support
multipie ‘transform’ sizes for transforming video data between the frequency domain and

the spatial domain.
Summary

[0005] It is an object of the present invention to substantially overcome, or at least

ameliorate, one or more disadvantages of existing arrangements.

[0006] According to one aspect of the present disclosure there- is.provided a
method of decoding a luma transform and plurality of chroma transforms from a video
. bitstream, the plurality of chroma transforms containing chroma data for a single colour
~ channel, the method comprising:

determining a value of a luma transform skip flag for the luma transform, the luma
transform skip flag indicating whether data of the luma transform is encoded in the video
bitstream as a spatial domain representation; |

determining a value of a chroma transform ski.p flag for a first chroma transform of
the plurality of chroma transforms, the chroma transform skip flag indicating whether the
daté of the chroma transform is encoded in the video bitstream as a spatial domain
representation; and

decoding the luma transform according to the determined value of the luma
transform skip flag and the plurality of chroma transforms'accordihg to the determined |

value of the chroma transform skip flag for the first chroma transform.

WO 2014/071439 PCT/AU2013/001117

23.

[0007] According to another aspect there is provided a method of decoding a
transform unit having a luma transform and two chroma transforms from a video
bitstream, the two chroma transforms containing chroma data for a single colour channel
according to a 4:2:2 chroma format, the method comprising:

determining a value of a luma transform skip flag for the lumé transform, the luma
transform skip flag indicating whether data of the luma transform is encoded in the video
bitstream as a spatial domain representation;

determining a value of a chroma transform skip flag for a first chroma transform of
the two chroma transforms, the chroma transform skip flag indicating whether the data of

the chroma transforms is encoded in the video bitstream as a spatial domain representation;

\ and

decoding the luma transform according to the determined value of the luma
transform skip flag and decoding the two chroma transforms according to the determined

value of the chroma transform skip flag for the first chroma transform.

[0008] According to yet another aspect there is provided a method-of decodiﬁg a
luma transform and p.lurality of chroma transforms from a videp bitstream, the plhrality of
chroma transforms containing choma data for a single colour chahnel, the method
comprising:

splitting at least one rectangular one of the transforms into a plurality of square
transforms; and |

decoding the équare transforms.

[0009] Desirably the splitting comprises splitting all rectangular transforms into

square transforms such that the decoding only operates upon square transforms.

[0010] - According to another aspect there is provided a method of decoding a
transform unit containing chroma residual coefficients from a video bitstream, the
transform unit containing at least one chroma residual coefficient array associated with é
single chroma channel, the method comprising:
determining a size of the transform unit, the size being related to a hierarchical
level of the transform unit in a corresponding coding unit; _
decoding from the video bitstream the at least one chroma residual coefficient array

_using a predetermined maximum number of transforms for the chroma channel of the

WO 2014/071439 PCT/AU2013/001117

transform unit;
selecting an inverse transform for the decoded chroma residual coefficient arrays,
the inverse transform being selected from a predetermined set of inverse transforms; and
applying the selected inverse transform to each of the chroma residual coefficient

arrays to decode chroma residual samples for the chroma channel of the transform unit.

[0011] In yet another aspect, disclosed is a method for decoding residual data for a
region in a/transform unit (TU) in a colour channel encoded in a video bitstream, the
method comprising: '

first determining from the bitstream that a transform skip flag is enabled,

second determining if the region is a first région in the colour channel and in the
transform unit (TU) having a coded block flag (CBF) value of one, and if so, decoding and
storing a value of the transform skip flag, otherwise retrieving the value of the transform
skip flag; and

decoding the residual data of the region using the value of the transform skip flag.

[0012] Here, preferably the first determining step further comprises determining
that a coding unit transform quantisation bypass flag is not enabled and the transform size
is 4x4. ‘

[0013] | According to another aspect of the present disclosure, there is provided a
method of inverse transforming a plurality of residual coefficient arrays from a video
bitstream configured for a 4:2:2 chroma format7 the method comprising: '
decoding a pluraliiy of luma residual coefficient arrays, wherein each luma residual
coefficient array corresponds to one 4x4 lﬁma block of a plurality of 4x4 luma blocks,
~ each 4x4 luma block being collocated with one 4x4 transform unit of a plurality of 4x4
transform units, a plurality of 4x4 luma blocks collectively occupyiﬁg an 8x8 luma region;
decoding, after the luma residual coefficient arrays are decoded, a plurality of
chroma residual coefficient arrays for a first colour channel, wherein each chroma residual
coefficient array corresponds to a 4x4 chroma block and each 4x4 chroma block for the
first colour channel is collocated with two of the plurality of 4x4 transform units;
decoding, after the chroma residual coefficient arrays for the first colour channel
are decoded, a plurality of chroma bresidual coefficient arrays for a second colour channel,

wherein each chroma residual coefficient array corresponds to a 4x4 chroma block and

WO 2014/071439 PCT/AU2013/001117

5.

each chroma block for the second colour channel is collocated with two of the plurality of
4x4 transform units; and '
| applying an inverse transform to each of the decoded plﬁrality of luma residual
coefficient arrays, the decoded plurality of chroma residual coefﬁcieﬁt arrays for the first
colour channel and the decoded plurality of chroma residual coefficient arrays for the

second colour channel.

| [0014] | Preferably, the number of luma residual coefficient arrays in the plurality of
luma residual coefficient arrays is four. Desirably , wherein the number of chroma
residual coefficient arrays in the plurality of chroma residual coefficient arrays is two.

- Advantageously one residual coéfﬁcien_t afray includes all coefficients necessary for

inverse transforming one 4x4 block.

(0015] According to another aspect, disclosed is a method of forward transfoﬂrming
a plurality of residual coefficient arrays into.a video bitstream configured for a 4:2:2
chroma format, the method comprising: ,
applying a forward'transform to each of a plurality of luma residual coefficient
arrays, a plurality of chroma residual coefﬁcient arrays for a first colour channel and a
plurality of chroma residual coefficient arrays for a second colour channel;
| encoding the plurality of luma residual coefficient arrays, wherein each luma
residual coefficient array corresponds to one 4x4 luma block of a plurality of 4x4 luma
~ blocks, each 4x4 luma block being collocated with-one 4x4 transform unit of a plurality of
4x4 transform units, a plurality of 4x4 luma blocks collectively occupying an 8x8 luma |
region;
encoding, after the luma residual coefficient arrays are encoded, the plurality of
chroma residual coefficient arrays for the first colour channel, wherein each chroma
residual coefficient array corresponds to a 4x4 chroma ‘block.and each 4x4 chroma block
for the first colour channel is collocated with two of the plurality of 4x4 transform unité;
and ‘
enéoding, after the chroma residual coefficient arrays for the first colour channel
are encoded, the plurality of chroma residual coefficient arrays for the second colour
channel, wherein each chrbma fesi/dual coefficient array corresponds to a 4x4 chroma
block and each chroma block for the second éolour channel is collocated with two of the

plurality of 4x4 transform units.

WO 2014/071439 PCT/AU2013/001117

-6-
tOQl6] ~ Other aspects, ipcluding complementary encoders, are also disclosed.
Brief Description of the Drawings

-[0017] At least one embodiment of the present iﬁvention will now be described

with reference to the fdlloWing drawings, in which:

[0018] ~ Fig. 1 is a schematic block diagram showing a video encoding and decoding
system; |
[0019] Figs. 2A and 2B form a schematic block diagram of a general purpose

computer system upon which one or both of the video encoding and decoding system of

Fig. 1 may be practiced,

[0020] Fig. 3 is a schematic block diagram showing functional modules of a video
encoder;
[0021] Fig. 4 is'a schematic block diagram showing functional modules of a video
* decoder;
[0022] - Figs. S5A and 5B schematically illustrate chroma formats for representing
' frame data; '
[0023] Fig. 6A is a schematic representation of an exemplary transform tree of a

coding unit;

[0024] Fig. 6B is a schematic representation of the exemplary transform tree

arranged on a luma sample grid;

[0025] Fig. 6C is a schematic representation of the exemplary transform tree

arranged on a chroma sample grid;

[0026] ~ Fig. 7is a schematic illustration of a data structure representing a luma

channel of the exemplary transform tree;

WO 2014/071439 PCT/AU2013/001117

7

[0027] Fig. 8 illustrates a data structure representing a chroma channel of the

exemplary transform tree;

[0028] Figs. 9A and 9B schematically show a bitstream structure that encodes the

exemplary transform tree;

[0029] . Figs. 9C, 9D and 9E schematically show an alternative bitstream structure

that encodes the exemplary transform tree;

[0030] Fig. 10 fs a schematic flow diagram showing a method for encoding the

exemplary transform tree;

[0031] Fig. 11 is a schematic flow diagram showing a method for decoding the

exemplary transform tree;

[0032] . Figs. 12A to 12C schematically show residual scan patterns of a 4x8

transform unit;

[0033] ~ Fig. 13 is a schematic flow diagram showing a method for encoding the

exemplary transform unit;

[0034] Fig. 14 is a schematic flow diagram showing a method for decoding the

exemplary transform unit;’

| [0035] Fig. 15 schematically shows possible arrangements of 4x4 transforms for

4x4 and 8x8 transform units (TUs);

[0036] Fig. 16 'schematically illustrates exemplary chroma regions for an

implementation;

[0037] - Fig. 17 is a schematic flow diagram showing a method for decbding

residual data of the exemplary transform unit; and

[0038] Fig. 18 schematically illustrates a transform skip operation applied to a 4x8

- chroma region with a 4x8 (non-square) transform.

WO 2014/071439 PCT/AU2013/001117

-8-

Detailed Description including Best Mode

[0039] Where reference is made in any one or more of the accompanying drawings
to steps and/or features, which have the same reference numerals, those steps and/or
features have for the purposes of this description the same function(s) or operation(s),

unless the contrary intention appears.

[0040] Fig. 1 is a schematic block diagram showing function modules of a video
encoding and decoding system 100 that may utilise techniques for coding syntax elements -
representative of inferred subdivision of transform units into multiple transforms for a
chroma channel. The system 100 includes a source device 110 and a destination device
130. A communication channel 120 is used to communicate encoded video information
from the source device 110 to the déstination device 130. In some cases, the source device
110 and destination device 130 may comprise réspective mobile telephone hand-sets, in
which case the communication channel 120 is a wireless channel. In other cases, the
source device 110 and destination device 130 may ’co\mprise video conferencing
equipmént, in which case the communication chanhel 120 is typically a wired channel,
such as an internet connection. Moreover, the source device 110 and the destination
device 130 may comprise any of a wide range of devices, including devices supporting
over the air television broadcasts, cable television applications, internet video applications
and including applications where the encoded video is captured on some storége medium

or a file server.

[0041] - As illustrated, the source device 110 includes a video source 112, a video
encoder 114 and a transmitter 116. The video source 112 typically comprises a source of
captured video frame data, such.as an imaging sensor, a previously captured vvideo
sequence stored on a non-tranéitory recording medium, of a video feed from a remote
imaging sensor. Examples of source devices 110 that may include an imaging sensor as
the video source 112 include smart-phones, video camcorders and network video cameras.
The video encoder 114 converts the captured frame data from the video source 112 "into
encoded video data and will be described further with reference to Fig. 3. The encoded
video data is typically transmitted by the transmitter 116 over the communication channel

1120 as encoded video information. It is also possible for the encoded video data to be

WO 2014/071439 PCT/AU2013/001117

.9,

stored in some storage device, such as a “Flash” m'emory or a hard disk drive, until later

being transmitted over the communication channel 120.

[0042] | The destination device 130 includes a receiver 132, a video decoder 134
~anda disblay device 136. The receiver 132 receives encoded video information from the
communication channel 120 and passes received video data to the video decode_r 134. The
~ video decoder 134 then outputs decoded frame data to the display device 136. Examples
of the display device 136 include a cathode ray tube, a liquid crystal display, such as in
_srriart-phones, tablet éomputers, computer mdnitor_s or in stand-alone television sets. It is
also possible for the functionality of each of the source device 110 and the destination |

device 130 to be embodied in a single device. '

- [0043] Notwithstanding the exemplary devices mentioned above, each of the
source device 110 and destmatlon device 130 may be configured within a general purpose
computing system, typlcally through a combmatlon of hardware and software components
Fig. 2A illustrates such a computer system 200, which includes: a computer module 201;
input de\}ices such as a keyboard 202, a mouse pointer device 203, a scanner 226, a
camera 227, which may be configured as the video source 112, and a microphone 280; and
output devices including a printer 215, a display device 214, which may be configured as
the display device 136, and loudspeakers 217. An external Modulator-Demodulator
(Modem) transceiver device 216 may be used by the computer module 201 for
communicating to and from a communications network 220 via a connection 221. The
communications network 220, which may represent the communication channel 120, may
be a wide-area network (WAN), such as the Internet, a cellular telecommunications
network, or a private WAN. Where the connection 221 is a telephone line, the modem 216
may be a traditional “dial-up” modem. Alternatively, thre the connection 221 is a hith
capacity (e.g., cable) connection, the modem 216 méy be a broadband modem. A wireless
modem may also beyused for wireless connection to the communications network 220.

The transceiver device 216 may provide the functionality of the transmitter 116 and the

receiver 132 and the communication channel 120 may be embodied in the connection 221.

[0044) The computer module 201 typically includes at least one processor
unit 2‘05, and a memory unit 206. For example, the memory unit 206 may have

semiconductor random access memory (RAM) and semiconductor read only memory

WO 2014/071439 PCT/AU2013/001117

-10-

(ROM). The computer module 201 also includes an number of input/output (1/0)
interfaces including: an audio-video interface 207 that couples to the video display 214, .
loudspeakers 217 and microphone 280; an I/O interface 213 that couples to the

keyboard 202, mouse 203, scanner 226, camera 227 and optionally a joysﬁck or other
human interface device (not illustrated); and an interface 208 for the external modem 216
and printer 215. In some implementations, the modem 216 may be incorporated within the
computer module 201, for example within the interface 208. The computer module 201
also has a local network interface 211, which permits coupling of the computer system 200
via a connection 223 to a local-area commuhications network 222, known as a Local Area
Network (LAN). As illustrated in Fig. 2A, the local communications network 222 may
also couple to the wide network 220 via a connection 224, which would typically include a
so-called “firewall” device or device of similar functionality. The local network interface
211 may comprise an Ethernet™ circuit card, a Bluetooth™ wireless arrangement or an
IEEE 802.11 wireless arrangement; ho.wever, numerous other types of interfaces may be
practiced for the interface 211. The local network interface 211 may also provide the
'functionality of the transmitter 116 and the receiver 132 and communication channel 120

may also be embodied in the local communications network 222.

[0045] The I/0 interfaces 20_8\and 213 may afford eithef or both of serial and
parallel conncétivity, the former typically being implemented according to the Universal
Serial Bus (USB) standards and having corresponding USB connectors (not illustrated).
Storage devices 209 are provided and typically include a hard disk drive‘(‘HDD) 210.
Other storage devices such as a ﬂoppy disk drive and a xﬁagnetic tape drive (not
illustraied) may also be used. An optical disk drive 212 is typiéally prfo‘vided toactasa
non-volatile source of data. Portable memory devices, such optical disks (e.g. CD-ROM,
DVD, Blu-ray DiscTM), USB-RAM, portable, external hard drives, and ﬂoppy} disks, for
example, may be used as appropriate sources of data to the computer system 200.
Typically, any of the HDD 210, optical drive 212, networks 220 and 222 may aléo be
configured to operate as the video source. | 12, or as a destination for decoded video data to

be stored for reproduction via the display 214.

[0046] The components 205 to 213 of the computer module 201 typically
communicate via an interconnected bus 204 and in a manner that results in a conventional

mode of operation of the computer system 200 known to those in the relevant art. For

WO 2014/071439 PCT/AU2013/001117

211-

example, the processor 205 is coupled to the system bus 204 using a connection 218.
Likewise, the memory 206 and optical disk drive 212 are céupled to the system bus 204 by
connections 219. Exérﬁples of computers on which the described arrangements can be
practised include IBM-PC’S‘ and compatibles, Sun SPARCstations, Apple Mac™ or alike.

computer systems.

[0047] Where appropriate or desired, the video encoder 114 and the video decoder
134, as well as methods described below, may be implemented usihg the computer system
200 wherein the video encoder 114, the video decoder 134 and the proéesses of Figs. 10 to
13, to be described, may be implemented as one or more software application
programs 233 executable within the computer system 200. In particular, the video encoder
114, the video decoder 134 and the steps' of the described methods are effected by
| instructions 231 (see Fig. 2B) in the software 233 that are carried out within the computer
~ system 200. The software instructions 231 may be formed as one or more code modules,
each for performing one or more particular tasks. The software may also be divided into
two separaté parts, in which a first part and the corresponding code modules performs the
described methods and a second part and the corresponding code modules manage a user

interface between the first part and the user.

[0048] The software may be stored in ‘a computer readable medium, including the
storage devices described below, for example. '.The software is loaded into the computer
system 200 from the computer readable medium, and then executed by the computer
system 200. A computer readable medium having such software or computer program
recorded on the computer readable medium is a computer program product. The use of the
computer program product in the computer system 200 preferably effects an advantageous
apparatus for implementing the video encoder 114, the video decoder 134 and the

described methods.

[0049] The software 233 is typically stored in the HDD 210 or the memory 206.
The software is loaded into the computer system 200 from a computer readable medium,
and executed by the co-mputer systeni 200. \Thus, for exarhple, the software 233 may be
stored on an optically readable disk storage medium (e.g., CD-ROM) 225 that is read by
the optical disk drive 212.

WO 2014/071439 PCT/AU2013/001117

-12.

[0050] In some instances, the application programs 233 may be supplied to the user
encodéd on one or more CD-ROMs 225 and read via the corresponding drive 212, or
alternatively may be read by the user from the netWorks 220 or 222._ Still further, the

~ software can also be loaded into the computer system 200 from other computer readable
media. Computer readable storage media refers to any non-transitory tangible storage
medium that provides recorded instructions and/or data to the computer system 200 for
execution and/or processing. Examples of such storage media include floppy disks,
magnetic tape, CD-ROM, DVD, Blu-ray Disc, a hard disk drive, a ROM or integfated
circuit, USB memory, a fnagneto-optical disk, or a computer readable card such as a

4 PCMCIA card and the like, Whether or nbt such devices are internal or external of the -
compufer module 201. Examples of transitory or non-tangible computer readable
transmission media that .may also participate in the provision of the software, application
programs, instructions and/or video data or encoded video data to the computer

module 401 include radio or infra-red transmission channels as well as a network
connection to another computer or networked device, and the Internet or Intranets

including e-mail transmissions and information recorded on Websites and the like.

[0051]' The second paft of the application programs 233 and the corresponding
code modules mentioned above may be executed to implement one or more graphical user
interfaces (GUIs) to be rendered or otherwise represented upon the display 214. Through
manipulation of typically the keyboard 202 and the mouse 203, a user of the computer
systerh 200 and the application may manipulate-the interface in a functionally adaptable
manner to provide controlling commands and/or input to the applications associated with
the GUI(s). Other forms of functionally adaptable user interfaces may also be |
implemented, such as an audio interface utilizing spe-ech prompts output via the

loudspeakers 217 and user voice commands input via the microphone 280.

i0052] .Fig. 2B is a detailed schematic block diagram of the processor 205 and a
“memory” 234. The memory 234 represents a logical aggregation of all the memory
modules (including the HDD 209 and semiconductor memory 206) that can be accessed by

~

the computer module 201 in Fig. 2A.

[0053] When the computer module 201 is initially powered up, a power-on self-

test (POST) program 250 executes. The POST program 250 is typically stored in a

WO 2014/071439 PCT/AU2013/001117

13-

ROM 249 of the éemiconductor memory 206 of Fig. 2A. A hardware device such as the
ROM 249 storing software is sometimes referred to as firmware. The POST program 250
examines hardware within the computer module 201 to ensure proper functioning and
typically checks the processor 205, the niemory 234» (209, 206)? and a basic input-output
systems software (BIOS) module 251, also typically stored in the ROM 249, for correct
bperation. ~Once the POST program 250 has run Succcssfully, the BIOS 251 activates the
hard disk drive 210 of Fig, 2A. Activation.of the hard disk drive 210 causes a bootstrap
loader prograrh 252 that fs resident on the hard disk drive 2IO to execute via the
proceésor 205. This loads an operating system 253 into the RAM memory 206, upon
which the oper?.ting system 253 commences operation. The operaﬁng system 253 is a_
system level application, executable by the proéessor_ 205, to fulfill various high level
functions, including processbr management, memory managerﬁent, device management;

storage management, software application interface, and generic user interface.

[0054] The operating system 253 manages the memory 234 (209, 206) to ensure
that each process or application running on the computer module 201 has sufficient
memory in which to execute without colliding with fnemory ailocated to another procéss.
Furthermore, the different types.o'f memory available in the computer system 200 of

Fig. 2A must be used properly so that each process can run effectively. Accordin'gly, the
aggregated memory 234 is not intended to illustrate how particular segments of memory
are z;llocated (unless otherwise stated), but rather to provide a general view of the memory

“accessible by the computer system 200 and how such is used.

[0055] As shown in Fig. 2B, the processor 205 includes a number of functional
modaules including a control unit 239, an arithmetic logic unit (ALU) 240, and a]oéal or
internal rﬁemory 248, sometimes called a cache memory. The cache memory 248 typically
includes a number of storage reéisters 244-246 in a register section. One or more internal
busses 241 functionally interconnect these functional modules. The processor 205

- typically also has one or more interfaces 242 fbr communicating with external devices via
the system bus 204, using a connection 218. The memory 234 is coupled to the bus 204

using a connection 219,

[0056] The application program 233 includes a sequence of instructions 231 that

may include conditional branch and loop instructions. The program 233 may also include

WO 2014/071439 PCT/AU2013/001117

-14-

data 232 which is used in execution of the prog.ram‘ 233. The instructions 231 and the

data 232 are stored in memory locations 228, 229, 230 and 235, 236, 237, respectively.
Depending upon the relative size of the instructions 231 and the memory locations 228-
230, a particular instruction may be stored in a single memory location as depicted by the
instruction shown in the memory location 230. Alternately, an instruction may be
segmented into a number of parts each of which is stored in a separate memory location, as

depicted by the instruction segments shown in the memory locations 228 and 229. -

[0057] . In general, the processor 205 is given a set of instructions which are
executed thérein. The processor 205 waits for a subsequent input, to which the

processor 205 reacts to by executing another set of instructionsv. Each input may be
provided frorh one or more of a number of sources, including data generated by one or
more of the input devicés 202, 203, data received from an external source across one of the
networks 220, 202, data retrieved from one of the storage devices 206, 209 or data
retrieved from a storage mediﬁm 225 inserted into the cbrresponding reader 212, all
depicted in Fig. 2A. The execution of a set of the instructions may in some cases result in

output of data. Execution may also involve storing data or variables to the memory 234.

[0058] The video encoder 114, the video decoder 134 and the described methods
may use input variables 254, which-are stored in the memory 234 in corresponding
mémdry locations 255, 256, 257. The video enpoder 114, the video decoder l34ﬁand the
described methods produce output variables 261, which are stored in the memory 234 in
corresponding memory locations 262, 263, 264. Intermediate variables 258 niay be stored
in memory locations 259, 260, 266 and 267.
[0059] ‘ Referring to the processor 205 of Fig. 2B, the registers 244, 245, 246, the
arithmetic logic unit (ALU) 240, and the control unit 239 work together to perform
sequences of micro-operations needed to perform “fetch, decode, and execute” cycles for
every instruction in the instruction set making up the program 233. Each fetch, decode,
-and execute cycle comprises: o |

(a) a fetch operation, which fetches or reads an instruction 231 from a memory
location 228, 229, 230; o

(b) a decode operation in which the control unit 239 determines which instruction |

has been fetched; and

WO 2014/071439 PCT/AU2013/001117

415

(c) an execute operation in which the control unit 239 and/or the ALU 240 execute

the instruction.

[0060] Thereafter, a further fetch, decode, and execute cycle for the next
instruction may be executed. Similarly, a store cycle may be performed by which the '

control unit 239 stores or writes a value to a memory location 232.

[0061] . Each step or sub-process in the processes of Figs. 10 to 13 to be described
is associated with one or more segments of the program 233 and is typically performed by
the registér section 244,245, 247, the ALU 240, and the control unit 239 in the

processor 205 working togethér to perform the fetch, decode, and execute cycles for every

instruction in the instruction set for the noted segments of the program 233.

[0062] Fig. 3 isa schematic bléck diagram showing functional modules of the
~video encoder 114. Fig. 4 is a'schematic block diagram showing functional modules of the
video decoder 134. The video encoder 114 and video decoder 134 may be implemented
using a general-purpose computer system 200, as shown in Figs. 2A and 2B, where the
various functional modules ma}.' be implemented by dedicated hardware within the
computer system 200, by software executable withih the coﬁlputér system 200 such as one
or more softWare code modules of the software application program 233 resident on the
hard disk drive 205 and being controlled in its execution by the processor 205, or
alternatively by a combination of dedicated hardware and software executable within the -
_ computer system 200. The video encoder 1 14, the video decodér 134 and the described
methods may alternatively be implemented in dedicated hardware, such as one or more
integrated circuits performing the functions or sub functions of the described methods.
Such dedicated hardware may include graphic processors, digitél signal processors,
application speciﬁc integrated circuits (ASICs), field programmable gate arrays (FPGAs)
or one or more microprocessors and associated memories. In particular the video encoder
114 comprises modules 320-344 and the video decoder 134 comprises modules 420-434
* which may each be implemented as one or more software code modules of the software

application program 233.

[0063] Although the video encoder 1 14 of Fig. 3 is an example of a high efficiency
video coding (HEVC) video encoding pipeline, processing stages performed by the

WO 2014/071439 PCT/AU2013/001117

-16-

modules 320-344 are common to other video codecs such as VC-1 or H.264/MPEG-4 _
AVC. The video encoder 114 receives captured frame data, such as captured frame data,
as a series of frames, each frame including one or more colour channels. Each frame
comprises one sample grid per colour channel. Colour information is represented using a
“‘colour space’, such as recommendation ITU-R BT.709 (‘*YUV?), although other colour
spaces are also possible. When the YUV colour space is used, the colour channels include
a luma channel (‘Y’).and two chroma channels (‘U’ and V’). Moreover, differing
amounts of information may be included in the sample grid of each colour channel,
depending on the sampling of the image or through application of filtering to resample the
captured frame data. -Several safnpling approaches, known as ‘chroma formats’ exist,

some of which will be described with reference to Figs. 5A and 5B.

[0064] | The video encoder 114 divides each frame of the captured frame data, such
as frame data 310, into regions generally referred to as ‘coding tree blocks’ (CTBs). Each
coding tree block (CTB) includes a hierarchical quad-tree subdivision of a portion of the |
frame into a collection of ‘coding units’ (CUs). The coding tree block (CTB) generally
occupies an area of 64x64 luma samples, although other sizes are possible, such as 16xi6 _
or 32x32. _In some cases even larger sizes, such as 128x128, may be uséd. The coding tree
block (CTB) may be sub-divided via a split into four equal sized regions to create a new
hierarchy level. Splitting may be applied recursively, résulting in a quad-tree hierarchy.
As the coding tree block (CTB) side dimensions are always powers of two)and the quad-
tree splitting always results in a halving of the width and height, the region side
dimensions are also always powers of two. When no further split of a region performed, a
‘coding unit’ (CU) is said to exist within the region. When no split is performed at the top
level of the coding tree block, the region occupying the entire coding treé block contains
one coding unit (CU) that is generally referred to as a ‘largest coding unit’ (LCU). A
minimum size also exists for each coding unit, such aé the area occupied by 8x8 luma
samples, although other minimum sizes are also possible. Coding units of this size are
generally referred to as ‘smallest coding units’ (SCUs). As a result of this quad-tree

. hierarchy, the entirety of the coding tree block (CTB) is occupied by one or moré coding
units (CUs).

[0065] The video encoder 114 produces one or more arrays of sémples, generally

referred to as ‘prediction units’ (PUs) for each coding unit (CU). Various arrangements of

WO 2014/071439 PCT/AU2013/001117

-17 -

prediction units (PUs) in each coding unit (CU) are possible, with a requirement that the
prediction units (PUs) do not overlap and that the entirety of the coding unit (CU) is
occupied by the one or more prediction units (PUs). This scheme ensures that the

prediction units (PUs) cover the entire frame area.

[0066] The video encoder 114 operates by outputting, from a multiplexer module
340, a prediction unit (PU) 382. A difference module 344 outputs the difference between
the prediction unit (PU) 382 and a correspondiﬁg 2D array of data samples, in the spatial
domain, from a coding unit (CU) of the coding tree block (CTB)' of the frame data 310, the
difference being known as a ‘residual sample array’ 360. The residual sample array 360
" may be transformed into the frequencyv domain in a transform module 320, or the residual
sample array 360 may remain in the spatial domain, with a selection between the two
being performed by a multiplexer 321, operating under the control of a transform skip
control module 346 and signalled using a transform skip ﬂag 386. The transform skip
control module 346 detérmines the transform skip flag 386, which indicates whether the
transform module 320 is used to transform the residual sample array 360 into a residual
coefficient array 362, or whether use of the transform module 320 is ékipped. Skipping the
transform module 320 is referred to as a ‘transform skip’. When the transfoi‘m is not
skipped, the residual sample array 360 from the difference module 344 is received by the
transform modqle 3.20, which converts (or ‘encodes’) the residual sample array 360 from a
spatial representation to a frequency domain representation by applying a ‘forward '
transform’. The transform module 320 creates transform coefficients configured as the
residual transform array 362 for each transform in a transform unit (TU) in a hierarchical
sub-division of the coding unit (CU) into one or more transform units (TUs) genefally
referred to as a ‘transform tree’. When a transform skip is performed, the residual sample
~array 360 is represented in the encoded bitstream 312 in the spatial domain and the

| fransform module 320 is bypassed, resulting in the residual sample array 360 being passed
' directly to a scale and quantise module 322 via the multiplexer 321, which operates under
control of the transform skip flag 386. . The transform skip control module 346 may test the
bit-rate required in the encoded bitstream 312 for each value of the transform skip flag 386
.(i.e. transform skipped, or normal transform operation). The transform skip control |
module 346 may selecf'a value for the transform skip flag 386 that results in lower bit-rate
in the encoded bitstream 312, thus achieving higher compression efficiency. Each test

performed by the transform skip control module 346 increases complexity of the video

WO 2014/071439 PCT/AU2013/001117

-18-

‘encoder 114, and thus it is desirable to reduce the number of cases for which the transform
skip moduie 346 performs the test to those where the benefit of selecting a transform skip
outweighs the cost of performing test. For example, this may be achieved by restricting
the transform skip to specific transform sizes and block types, such as only 4x4 transforms
for intra-predicted blocks (as described further below) in the high efficiency video coding
(HEVC) standard under development. The transform skip functionality is especially |
- useful for encoding residual sample arrays 360 that contain much ‘high frequency’
informafion. High frequency information is typically present in frame data 310 containing
many sharp edges, such as where alphanumeric characters are embedded in the frame data
310. Other sdurces of frame data 310, such as computer generated graphics, may also
contain much high frequency information. The DCT-like transform of the transform
module 320 is oi)timised for frame data 310 containing mostly low frequency information,
such as that obtained from an imaging sensor capturing a natural image. The presence of
the transform ékip functionality thus provides considerable coding efficiency gain for
applications, which are relevént for the high efficiency video coding (HEVC) standard
under development. For the Qideo encoder 114, one drawback of supporting the transform
skip functionality is the need to test two possible modes for the transform skip flag 386.
As discussed below, the transform skip functionality is supported for a residual sample
array 360 size of 4x4 samples and when the residual sample array 360 corresponds to an
intra-predicted block, as described with reference to an intra-frame prediction module 336.
However the transform skip flag 386 is desirably separately signalled for each colour
channel and thus a separate test may be performed by the transform skip control module
346 for each colour channel. Separate signalling for each colour channel is advantageous
because the high frequency information may be concentrated in one or both chroma
channels, thus being suited to transform skip, while the luma channel may have minimal
high frequency information and thus benefit from usiﬁg a transform. For example,

coloured text on a coloured background would result in this scenario.

[0067] For the high efficiency video coding (HEVC) standard under development,
the conversion to the frequency domain representation is implemented using a modified -
discrete cosine transform (DCT), in which a tra’dftional DCT is modified to be
implemented using shifts and additions. Various sizes for the residual sample array 360
and the transform coefficients 362 are possible, in accordance with the supported

transform sizes. In the high efﬁciency video coding (HEVC) standard under development,

WO 2014/071439 PCT/AU2013/001117

-19-

transforms are performéd on 2D arrays of samples having specific sfzes, such as 32x32,
16x16, 8x8 and 4x4. A predetermined set of transform sizes available to a video encoder
114 may thus be said td exist. Moreover, as foreshadowed above, the set of transform
sizes may differ between the luma channel and the chroma channels. Two-dimensional
transforms are geherally configured to be ‘separable’, enabling implementation as a first
set of 1D transforms operating on the 2D array of samples in one direction (e.g. on rows),
followed by a second set of 1D transform operating on fhe 2D array of samples output
from the first set of 1D transforms in the other direction (e.g. on columns). Transforms
having the same width and height are génerally referred to as ‘square transforms’.
Additional transforms, having differing widths and heights are also possible and are
generally referred to as ‘non-square transforms’. Optimised implementations of the
transforms may combine the row and column one-dimensional transforms into specific
hardware or software modules, such as a 4x4 transform module 6r an 8x8 transform
module. Transforms having larger dimensions require larger amounts of circuitry to
implement, even though they may be infrequently used. Accordingly, a maximum
transform size of 32x32 exists in the high efficiency video coding (HEVC) standard under
development. The integrated nature of transform implementaﬁon also introduces a
preference to reduce the number of non-square transform sizes supported, as these will
typically require entirely new hardware to be implemented, instead of reusing existing one-

dimensional transform logic present from corresponding square transforms.

[0068] ~ Transforms are applied to both the luma and chroma channels. Differences
between the handling of luma and chroma channels with regard to transform units (TUs)
exist and will be discussed below with reference to Figs. 5A and 5B. Each tfansform tree
occupies one coding unit (CU) and is defined as a quad-tree decomposition of the coding
unit (CU) into a hierarchy containing one transform unit (TU) at each leaf node of the
transform tree (quad-trée) hierarchy, with each transform unit (TU) able to make use of
transforms of the supported transform sizes. Similarly to the coding tree block (CTB), it is
necessary for thé entirety of the codihg unit (CU) to be occupied by one or more transform
units (TUs). At each level of the transform tree quad-tree hierarchy a ‘coded block flag
value’ signals the possible presence of a transform in each colour channel, either in the
present hierarchy level when no further splits are present, or to signal that lower hierarchy
levels may contain at least one transform among the resultihg transform units (TUs).

When the coded block flag value is zero, no transform is performed for the corresponding

WO 2014/071439 PCT/AU2013/001117

- -20-

J

colour channel of any transform units (TU) of the transform tree, either at the present
hierarchical level or at lower hierarchical levels. When the coded block flag value is one,
the region contains a transform which must have at least one non-zero residual coefficient.
In this manner, for each colour channel, zero or more transforms may cover a portion of
the area of the coding unit (CU) varying from none up to the entirety of the coding unit

" (CU). Separate coded block flag values exist for each colour channel. Each coded block
flag value is not required to be encoded, as cases exist where there is only one possible

- coded block flag value.

[0069] The output of the multiplexer 321 is thus one of the residual sample array
360 or the transform coefficient afray 362, and is labelled simply as an array 363 in Fig. 3.
The array 363 is input to the scale and quantise module 322 where the sample values
thereof are scaled and quantised according to a determined quantisation parameter 384 to
prd_duce a residual data array 364. The scale and quantisation process results in a loss of
precision, dependent on the value of the determined quantisation parameter 384. A higher
value of the determined quantisation parameter 384 results in greater information being
lost from the residual data. This increases the compression achieved by‘ the video encoder
114 at the expense of reducing the visual quality of the output from the video decoder 134.
- The determined quantisation parametér 384 may be adapted during encoding of each frame |
of the frame data 310, or it may be fixed for a portion of the frame data 310, such as an

- entire frame. Other adaptations of the determined quantisation parameter 384 are also
possible, such as quémtising different residual coefficients with separate values. The
residual data array 364 and determined quantisation parameter 384 are taken as input to an
inverse scaling module 326 which reverses the scaling performed by the scale and quantise
module 322 to produce rescaled data arrays 366, which are rescaled versions of the |

- residual data array 364. The high efficiency video coding standard (HEVC) standard
uhdef development also supports a ‘lossless’ coding mode. When lossless coding is in use,
the transform module 320 and the scale and quantise module 322 are both bypassed,
resulting in the residual sample array 360 being input directly >’_(o the entropy encoder 324.
In lossless mode, the inverse scaling module 326 and the inverse transform module 328 are
also bypassed. The selection of lossless coding méde (as opposed to the usual ‘lossy’

' mode) is encoded in the encoded bitétream 312 by the entropy encoder 324. Logic to
implement the bypass for lossless mode is not illustrated in Fig. 3. Bypassing the scale

and quantise module 322 results in no quantisation of the residual coefficient array 362 or

WO 2014/071439 PCT/AU2013/001117

-21-

residual Sample array 360,' and an exacf representation of the frame data 310 is encoded in
the encoded bitstream 312 by the entropy encoder 324. The lossless coding mode results
in low cempression efficiency of the video encoder 114 and therefore is generally used
only in applications where lossless coding is highly desirable, such as in medical

applications.

[0070] The residual data array 364, the determined quantisation parameter 384 and
the transform $kip flag 386 are also taken as input to an entropy enceder r'nodule}324
which encodes the values of the residual data array 364 in an encoded bitstreém 312 (or
‘video bitstream’). The residual data array 364 in each transform unit (TU) are encoded in
groups generally known as ‘sub-blocks’. ' Sub-blocks should preferably have the same
dimensions regardless ef the size of the transform, as this permits feuse of logic relating to
sub-block processing. The residual data within one sub-block are generally referred to asa
“data group’ (or a ‘coefficient group’, even when the transform skip is applied and the
‘coefficient group5 includes a spatial domain representation rather than a freqpency |
domain representation) and for each data group, a daté group flag is generally encoded to
indicate if at least one residual data value within the data group is non-zero. In some cases
~ the data group flag may be inferred and thus is not encoded. A flag is encoded for each

| residual data value belonging to a data group having a data group flag value of one to
indicate if the residual data value is non-zero (‘significant’) or zero (‘non-significant’).
Due to the loss of precision resulting from the scale and quantise medule 322, the rescaled
data arrays 366 are not identical to the original values in the array 363. The resealed data
arrays 366 from the inverse scaling module 326 are then output to an inverse transform
module 328. The iﬁve‘rse transform module 328 performs an inverse transform from the
frequency domain to the spatial domain to produce a spatial-domain representation 368 of
the rescaled transform coefficient arrays 366 identical to a spatial domain representation
that is produced at the video decoder 134. A }nultiplexer 369 is conﬁgured to complement
the operation of the multiplexer 321. The multipiexer 369 is configured to receive each of
the rescaled data arrays 366 and the (transformed) spatial-domain representation 368 as
inputs and, under control of the tr‘ansform'skip flag 386, select one of the inputs 366 or 368

as an input to a summation module 342.

. [0071] A motion estimation module 338 produces motion vectors 374 by

comparing the frame data 310 with previous' frame data from one or more sets of frames

WO 2014/071439 PCT/AU2013/001117

-22.

\

stored in a frame buffer module 332, generally configured within the memory 206. The
sets of frames are known as ‘reference picture lists’. The motion vectors 374 are then |
input to a motion compensation module 334 which produces an inter-predicted prediction
-unit (PU) 376 by filtering samples stored in the frame buffer module 332, taking into
account a spatial offset derived from the motion vectors 374. Not illustrated in Fig. 3, the
motion vectors 374 are also passed as syntax elements to the entropy encoder module 324
for encoding in the encoded bitstream 312. The intra-frame prediction module 336
produces an intfa—predicted prediction unit (PU) 378 using samples 370 obtained from the
summation module 342, which sums the prediction unit (PU) 382 from the multiplexer
module 340 and the spatial domain output of the multiplexer 369. The intra-frame
prediction module 336 also produces an intra-prediction mode 380 which is sent to the

entropy encoder 324 for encoding into the encoded bitstream 312.

[0072] | Prediction units (PUs) may be generated usihg either an intra-prediction or
~ an inter-prediction method. Intra-prediction methods make use of samples adjacent to the
prediction unit (PU) that have previously been decoded (typically above and to the left of |
the prédictio_n unit) in order to generate reference samples within the prediction unit (PU).
~ Various directions of intra-prediction are possible, referred to as the ‘intra-prediction
mode’. Inter-prediction methods make use of a motion vector to refer to a block from a
selected reference frame. As the block may have any alignment down to a sub-sample
precisioh, e.g. one eighth of a sample, filtering is necessary to create a block of reference
samples for the prediction unit (PU). The decision on which method to us'é‘i‘s made
according to a rate-distortion trade-off between désired bit-raie of the resulting encoded
bitstream 312 and the ambunt of image quality distortion introduced by either the intra-
prediction or inter-predi;:tion method. - If intra-prediction is used, one intré-prediction
mode is selected from the sét of intré—prediction possible modes, also according to a rate-
distortion trade-off. The multiplexer module 340 selects either the intra-predicted
reference samples 378 from the intra-frame prediction module 336, or the inter-predicted
prediction unit (PU) 376 from the motion compensation block 334, depending on the
decision made by the rate distortion algorithm. The summation module 342 produces a
sum 370 that is input to a deblocking filter module 330. The deblocking filter module 330
- performs filtering along block boundaries, producing deblocked samples 372 that are

written to the frame buffer module 332 configured within the memory 206. The frame

WO 2014/071439 PCT/AU2013/001117

223 .

buffer module 332 is a buffer with sufficient capacity to hold data from one or more past

frames for future reference as part of a reference picture list.

[0073] ‘For the high efficiency Vide‘o'coding (HEVC) standard under development,
the encoded bitstream 312 produced by the entropy encoder 324 is delineated into network
abstraction layer (NAL) units. Generally, each slice of a frame is contained in one NAL
unit. The entropy encoder 324 encodes the residual array 364, the intra-prediction mode
380, the motion vectors and other parameters, collectively referred to as ‘syntax e’lements’,v
| into the encoded bitstream 312 by performing a context adaptive binary arithmetic coding
(CABAC) algorithm. Syntax elements are grouped together into ‘syntax structures’, these
groupings may contain recursion to describe hierarchical structures. In addition to ordinal
values, such as an intra-prediction mode or integer valﬁes, such as a motion vector, syntax
elements also includ¢ flags, such as to indicate a quad-tree split. The motion estimation
module 338 and motion compensation module 334 operate on motion vectors 374, having
a precision of 1/8 of a luma sample, enabling precise modelling of motion between frames

in the frame data 310.

[0074] / Although the video decoder 134 of Fig. 4 is described with reference to a
high efficiency video coding (HEVC) video decoding pipeline, processing stages
performed by the modules 420-434 are common to other video codecs that employ entropy
coding, such as H.264/MPEG-4 AVC, MPEG-2 and VC-1. The enéoded video
information may also be read ffom memory 206, the hard disk drive 210, a CD-ROM, a
Blu_—rayTM disk or other computer readable storage medium. Alternatively the encoded
video information may be received from an external source such as a server connected to

the communications network 220 or a radio-frequency receiver.

| [0075] As seén in Fig. 4, received video déta, such as the encoded bitstream 312, is
input to the video decoder 134. The encoded bitstream 312 may be read from memory
206, the hard disk drive 210, a CD-ROM, a Blu-ray™ disk or other computer readable
storage medium. Alternatively the encoded bitstream 312 may be received from an
external source such as a server connectec.l to the communications network 220 or a radio-
frequency receiver. The encoded bitstream 312 contains encoded syntax elements

representing the captured frame data to be decoded.

WO 2014/071439 PCT/AU2013/001117

.24.

[0076] - The encoded bitstream 312 is input to an entropy decodér module 420
which extracts the syntax elements from the encoded bitstream 312 and passes the values
of the syntax eleménts to other blocks in the video decoder 134. The entropy decoder
module 420 applies the context adaptive binary arithmetic coding (CABAC) algorithm to
decode syntax elements from the encoded bitstream 312. The decoded syntax elements are
used td reconstruct parameters within the video decoder 134. Parameters include zero or
more residual data array 450, motion vectors 452, a prediction mode 454 and a transform
skip flag 468. The residual data array 450 is passed to an inverse scale module 421, the
motion vectors 452 are passed to a motion compensation module 434, and the prediction |
mode 454 is passed to an intra-frame prediction module 426 and to a multiplexer 428. The
inverse scale module 421 performs inverse scaling on the residual data to create
reconstructed data 455. When the transform skip flag 468 is zero, the inverse scale module
421 outputs the reconstructed data 455 to an inverse transform module 422. The inverse
transform module 422 applies an ‘inverse transform’ to convert (or ‘decode’) the
reconstructed data, which in this case are transform coefﬁciehts, from a frequency domain
representation to a spatial domain represehtation, outputting a residual sample array 456
" via a multiplexer module 423. When the value of the transform skip flag 468 is one, the
reconstructed data 455, which in this case is in the spatial domain, are output as the |
residual sample array 456 via the multiplexef.module 423. The inverse transform modﬁle
422 performs the same operation as the inverse transform 328. The inverse transform
module 422 must therefore be configured to provide a predetermined set of trénsform sizes
required to decode an encoded bitstream 312 that is compliant with the high efficiency
video coding (HEVC) standard under development. When signalling in the encoded
| bitstream 312 indicates that the lossless mode was used, the video decoder 134 is
configured to bypass the inverse scale module 421 and the inverse transform module 422
(not illustrated in Fig. 4), resulting in the.residual data array 450 being input directly to a

summation module 424,

[0077]) The motion compensation module 434 uses the motion vectors 452 from the
entropy decoder module 420, combined with reference frame data 460 froin the a frame
buffer block 432, configured within the memory 206; to produce an inter-predicted
prediction unit -(PU) 462 for a prediction unit (PU), being a prediction of output decoded
frame data. Whén the prediction mode 454 indicates that the current prediction unit was)

coded using intra-prediction, the intra-frame prediction module 426 produces an intra-

WO 2014/071439 PCT/AU2013/001117

-25-

predicted prediction unit (PU) 464 for the prediction unit (PU) using samples spatially
neighbouring the prediction unit (PU) and a prediction direction also supplied by the
prediction mode 454. The spatially neighbouring samples are obtained from a sum 458,
output from the summation module 424. The multiplexer module 428 selects the intra-
predicted prediction unit (PU) 464 or the inter-predicted prediction unit (PU) 462 for a
prediction unit (PU) 466, depending on the current prediction mode 454. The prediction

~ unit (PU) 466, which is output from the multiplexer module 428, is added to the residual
sample array 456 from the inverse scale and transform module 422 by the summation

. module 424 to produce the sum 458_which.is then input to each of a deblocking filter
module 430 and the intra-frame prediction module 426. The deblocking filter module 430
performs filtering along data block boundaries, sﬁch as transform unit (TU) boundaries, to
smooth visible artefacts. The output of the deblocking filter module 430 is written to the
frame buffer module 432 configured within the memory 206. The frame buffer module
432 provides sufficient storage to hold one or more decoded frames for future reference.
Decoded frames 412 are also output from the frame buffer module 432 to a display device,

such as the displdy device 136.

[0078) Figs. 5A and 5B each show sample grids of a frame porﬁon 500 and a
frame portion 510 encoded using a 4:2:0 and a 4:2:2 chroma format respéctively. The
chroma format is speciﬁéd as a configuration parameter to the video encoder 114 and the

_video encode‘r 114 encodes a ‘chroma_format_idc’ syntax element into the encoded
bitstream 312 that specifies the chroma format. The video decoder 134 decodes the
‘chroma_format_idc’ syntax element from the encoded bitstream 312 to determine the
chroma format in use. For example, when a 4:2:0 chroma format is in use, the value of
chroma_format_idc is one, when a 4:2:2 chroma format is in use, the value of |
chroma_format_idc is two and when a 4:4:4 chroma format is in use, the value of
chroma_format_idc is three. In Figs. SA and 5B, luma sample locations, such as a luma

_sample location 501, are illustrated using ‘X’ symbolé, and chroma sample locations, such
a_is a chroma sample location 502, are illustrated using ‘O’ symbolé. By sampling the
frame portion 500 at the points indicated, a sample grid is obtained for each colour channel
when a 4:2:0 chroma format is applied. At each luma sample location X, the luma channel
(°Y’) is sampled, and at each chroma sample location O, both the chroma channels (‘U”
and ‘V’) are sampled. As shown in F i‘g. SA, for each chromé sample location, a 2x2

arrangement of luma sample locations exists. By sampling the luma samples at the luma

WO 2014/071439 PCT/AU2013/001117

.26 -

sample locations and chroma samples at the chroma sample locations indicated in the
frame portion 510, a sample bgr_id 1s obtained for each colour channel when a 4:2:2 chroma
format is applied.” The same allocation of samples to colour channels is made for the frame
portion 510 as for the frame portion 500. In contrast to the frame portion 500, twice as
many chroma sample locations exist in frame portion 510. In frame portion 510 the
chroma sample locations are collocated with every second luma sample location.
Accordingly, in Fig. 5B, for each chroma sample location, an arrangement of 2x1 luma

sample locations exists.

[0079] Various allowable dimensions of transform units were described above in
units of luma samples. The region covered by a translforfn applied for the luma channel
will thus have the same dimensions as the transform unit dimensions. As the trahsforrh
units also encode chroma channels, the épplied transform for each chroma channel will
have dimensions adapted according to the particular chroma format in use. For example,
when a 4:2:0 chroma format is in use, a 16x16 transform unit (TU) will use a 16x16
transform for the luma channel, and an 8x8 transform for each chroma channel. One
special case is that when a 4x4 transform is used for the luma channel there is no
corresponding 2x2 transform available (when the 4:2:0 chroma format is applied) or 4x2
transform évail'able (when the 4:2:2 chroma format is applied) that could be used for the
chroma channels. In this special case, a 4x4 transform for each chroma channel may covér

the region occupied by multiple luma transforms.

[0080] Fig. 6A is a schematic representation of an exemplary transform tree of a
coding unit (CU) 602 (depicted with a thick border), within a coding tree block (CTB) 600
of the frame. A single quad-tree subdivision divides the coding tree block (CTB) 600 into
four 32x32 coding units (CUs), such as the coding unit (CU) 602. An exemplary
transform tree exists within the coding unit (CU) 602. The exemplary transform tree
includes several quad-tree subdivisions, resulting in ten transform unité (TUs) numbered as
such in Fig. 6A, for example the transform unit #9 (TU) 604. The transform units #1-#10
cover the entirety of the coding unit (CU) 602. Each quad-tree subdivision divides a
region spatially into four quadrants, resulting in four smaller regions. Each transform unit
(TU) has a transform depth value, corresponding to a hierarchical level of the transform
unit (TU) within the transform tree. The hierarchical level indicates the number of quad-

tree subdivisions performed before the quad-tree subdivision terminated, resulting in an

WO 2014/071439 PCT/AU2013/001117

227 -

instance of a transform unit (TU) that occupies the corresponding region. For example, the
transform unit #9 (TU) 604, occupies one quarter of the area of the coding unit (CU) 602
and therefdre has transform depth of one. Each transform unit (TU) has an associated size
(or ‘transform size’), generally described as the dimensions bf the region containirrg the
transform urlit (TU)on the luma sample grid. The size is dependent on the coding unit
(CU) size and the transform depth. Transform units (TUs) with a transform depth of zero

. have a size equal to the size of the correspondmg coding unit (CU). Each increment of the
transform depth results in a halving of the size of transform units (TUs) present in the
transform tree at the given transform depth. As the frame includes a luma chiannel and .
chroma channels, the coding unit (CU) 602 occupies a region on both the luma sample grid
and the chroma sample grid é_md thus each transforrn unit (TU) includes information)
describing both the luma samples on the luma sample grid and the chroma samples on the
chroma sample grid. The nature of the information for each transform unit (TU) is

" dependent on the processing stage of the video encoder 114 or the video decoder 134. At
the input to the transform module 320 and the output of the inverse scale and transform
module 422, the residual sample array 360 and 456 respectively contain information f,o‘r
eéch transform unit (TU) in the spatial domain. The residual sample array 360 and 456
may be further divided into a ‘chroma residual sample array’ and a ‘luma residual sample
array’, due to differences in processing betweexrthe luma channel and the chroma
channels. At the output from the scale and quantise module 322 and the input of the
inverse scale andv transform module 422, the residual data array 364 and 450 respectively
contain information for each transform unit (TU) in the frequency domain. The residual |
data arrays 364 and 450 may be further divided into a ‘chroma residual data array’ and a
‘luma residual data array’, due to differences in processing between the luma channel and

the chroma channels.

[0081] Fig. 6B illustrates an exemplary transform tree 630, corresponding to the
exemplary transform tree of Fig. 6A, for the luma channel of a 32x32 coding unit (CU),
containing a set of transform units (TUs) and occupying the codmg unit (CU) 602, which
occupies a 32x32 luma sample array on the luma sample grid. Fig. 7 illustrates a data
structure 700 that represents the exemplary transform tree 630. In Fig. 6B, boxes .
numbered 1 to 10 indicate transform units present within region 632 (exemplified by
several transform units (TUs) 640), and each box is contained in a region that is not further
sub-divided (indicated by a box with dashed border).

WO 2014/071439 PCT/AU2013/001117

-28 -

[0082] In Fig. 6B, boxes numbered 1 and 9 contain 16x16 transforms for the luma
. channel, boxes numbered 2, 3 and 8 contain 8x8 transforms for the luma channel and
boxes numbered 4 to 7 contain 4x4 transforms for the luma channel. The corresponding
region (dashed box) for each of these boxes has coded block flag value of one, to indicate

the presence of a transform.

[0083] The presence or absence of a transform for each colour channel is specified
by a separate coded block flag value which is used in each of encoding and decoding of the |
bitstream, but which need not be transmitted in the bitstream, as will be discussed bélow.
‘Consequently, the number of residual coefficient arrays 450 output from the entropy
decoder 420 is dependent on the coded block flag values. When no significant coefficients
are present (i.e. all coefficients are zero) in any colour channel, the number of residual data

(coefficient) arrays 450 output from the entropy decoder 420 is zero.

[0084] ~ InFig. 7, the circles represent split transform flag values with the split
transform flag value being indicated inside the corresponding circle. Ih Fig. 7, the
triangles represent coded block flag values, with the coded block flag value being
indicated inside the corresponding triangle. The squares represent transform units, with

each transform numbered to accord with the transform numbering present in Fig. 6B.

[0085] . The uppermost hierarchical level of the exemplary transform tree 630
contains-a region 632 occupying a 32x32 coding unit (CU). A split transform flag value
702 indicates that the region 632 is sub-divided into four 16x16 regions, such as a region‘ |
634, thus defming.a ‘non-leaf® node of the exemplary transform tree 630. For each 16x16
region, a further split 'transfor‘m‘ﬂag value, such as a split transform flag value 704,
indicates that the respective 16x16 region should be further sub-divided into four 8x8
regions. For example, the regioh 634 is not further sub-divided, as indicated by the split.
transform flag value 704 of zero, thus deﬁning a ‘leaf’ ,nodé of the exemplary transform

~ tree 630. In contrast, a region 638 is further sub-divided into four 4x4 regidns (suchasa
region 636), as indicated by a split transform flag value 712 of one. The recursive split
structure present in the. transform tree 630 is analogous to the quad-tree split bpresent in the
coding tree block (CTB). For the iuma channel, at the ‘leaf® nodes of the quad-tree, the

presence of a transform in the transform unit (TU) is signalled by a coded block flag value,

WO 2014/071439 PCT/AU2013/001117

229

for example a coded block flag value 708 of one indicates the presence of a transform 710

in the region 634.

[0086] As a transform may be used to represent residual data in each region,
regions are not permitted to be smaller than the smallest supported transform size, such as
4x4 luma samples for the luma channel. Additionally, for regions larger than the largest
available transform size, a split transform flag value of one is inferred. For example, for a
transform tree with a top level of a 64x64 coding unit, an automatic sub-division (i.e.: not
signalled in the encoded bitstream 312) into four 32x32 regions occurs when the largest

supported transform size is 32x32 luma samples.

[0087] A lower right 16x16 region 642 contains a transform unit (TU) (numbered
10 (ten) and shaded) with no transform for the luma channel and therefore has a

corresponding coded block flag value 716 of zero.

[0088] Figs. 6C and 8 illustrate the exemplary transform tree 630, corresponding to
the exemplary transform tree of Fig. 6A, for a chroma channel, configured for the 4:2:2 '
chroma format and cohtaining a set of transforms for a chroma channel corresponding to
the transform tree 630 for the luma channel and represented By a data structure 800. As
- the transform tree hierarchy is common by virtue of the structure of Fig. 6A between the
luma channel and the chroma channels, the split transform flag values are shared betweep
the data structures 700 and 800. In contrast io 7the data structure 700, the data structure 800 ’
includes a coded block flag value with each transform split flag value of one (i.e. on non-
leaf nodes of the transform-tree). For example, a co&ed block flag value 802 of one is
associated With the transform split flag 702. If the coded block flag value on a non-leaf
node of the transform tree is zero, coded block flag values on the child nodes are inferred
as zero (and no corresponding coded block flags are encoded in the encoded bitstream
312). Coded block flag values at non-leaf fegions enable terminating the encoding of
coded block flags at lowér levels of the transf_qﬁn tree for each chroma channel if no
significant residual coefficients are present in any of the child regions, even though
significant residual coefficients may be present in the luma channel. This is a common
“situation for typical captured frame data, as the majority of information is present in the

luma channel.

WO 2014/071439 PCT/AU2013/001117

.30-

[0089] When the video encoder 114 and the video decoder 134 are configured for a
4:4;4 chroma format, the chroma regioﬁ of each chroma channel of any given transform
unit (TU) of a size that is not one of the pfedetermined set of transform unit (TU) sizes has
identical dimensions to the luma regions of the given transform unit (TU) (i.e.: when an
inferred split does not take place). When the video encoder 114 and the video decoder 134
are configured for a 4:4:4 chroma format, the chroma region of each chroma channel of
any given transform unit (TU) of a size that is one of the predetermined set of transform
unit (TU) sizes has dimensions smaller than to the luma regions of the given transform unit

(TU) (i.e.: when an inferr_ed split does take place).

[0090] When a 4:2:2 chroma format is in use, this results in the coding unit (CU)
602 including a 16x32 region 662 of Fig. 6C of chroma samples for each chroma channel
and thus occupying a 16x32 region on fhe chroma sample grid. Fig. 6C illustrates the
‘regions on a chroma sample grid, drawn as an array of chroma samples, with each chroma
sample equally spaced horizontally and vertically (in éontrast to Fig. 5B). Due to the use
of the 4:2:2 chroma format, each chroma regions of Fig. 6C appears horizontally
compressed with respect to the corresponding luma region of Fig. 6B. The split transform
flag value 702 of one dividcs the 16x32 region 662, corresponding to the coding unit (CU)
602, into four 8x16 regions, such as an 8x16 region 664. The 8x16 region 664 has a non-
~ square shape and is also larger in size than other non-square regions illustrated in Fig. 6C,
such as a 4x8 region 670. For each 8x16 region, a split transform flag value, such as the -
split transform flag value 704, indicates whether the corresponding 8x16 region should be
further sub-divided into four smalvler 4x8 regions, in an analogous manner to the quad-tree
splittingv presént in the transform tree 630 for the luma sample array. An uppér right 8x16
region 672 is further sub-divided into four 4x8 regions. A coded block flag value 804 of
one indicates that each of the four 4x8 regions could contain significant residual
coefficients. A coded block flag for each 4x8 region is thus required to indicate the
presence of a transform for the corresponding region. Of these four 4x8 regions, a lower
left 4x8 region 674 (shaded) contains a transform unit (TU) but does not contain a
transform and therefore has a coded block flag value 814 of zero. The remaining 4x8
regions, such as the regién 670, each have a transform and therefore have corresponding
coded block flag values of one. The upper left 8x16 region is sub-divided into two equal-
sizes 8x8 regions. In contrast to the quad-tree subdivision, no corresponding split

transform flag is present in the encoded bitstream 312.

WO 2014/071439 PCT/AU2013/001117

.31 -

[0091] Splitting a region of a channel, such as a chroma channel, of a transform .
unit (TU) into multiple regions (each of which may have a transform), without signalling
being ﬁresent in the encoded bitstream 312, is referred to aé an ‘infened split’. The
inferred split climinates the need to introduce hardware supporting a non-square transform
for this case (8x16). Instead, transforms, such as a first 8x8 transform 666, are used. Asit
is possible for each of the regions resulting from the inferred split 'to contain all zero
residual information, it is necessar& to specify the presence of a transform 1n each region
resulting from the inferred split. Accordingly, separate coded block flag values are'
required for each region resulting from an inferred split. In this case, coded block flag
values 806 and 808 correspond to the first 8x8 transform 666 and a second 8x8 transform
668 réspectively. For transform units (TUs) where no inferred split takes place,'a coded
block flag value for each chroma channel specifies the presence or absence of a transform
for the region occupied by the transform unit (TU) for the chroma channel. When an
inferre_d split takes place, a separate coded block flag value (not illustrated in Fig. 8) is -
required for each of the resultin_g regions, however implementations may retain a coded
block flag value attributable to the entire transform unit (TU). The separate coded block
flag value could be inferred as ‘one’ in all cases, or the separate coded block flag value
could be determined by performing a logical ‘OR’ operétion to the coded block flag value
of each region resulting from the split. If the separate coded block flag value is determined
from the coded block flag value of each region resulting from the split, the separate coded
block flag value may.be encoded in fhe encoded bitstream 312 by the entropy encoder 324
and decbded from the encoded bitstream 312 by the entropy decoder 420 as én additional

_coded block flag (not illustrated in Fig. 9). In such a case, when the separate coded block

flag value is zero, the coded block flag value of each region from the split may be inferred
to be zero and when the separate coded block flag value is one, the coded block flags for
each region from the split areéncoded in the encoded bitstream 312 by the e(ntropy :

encoder 324 and decoded from the encoded bitstream 312 by the entropy decoder 420.

[0092] The lower left 8x16 region 680 of the 16x32 region 662 illustrates an
inferred split where an 8x8 transform is present in the upper 8x8 inferred regionv682 but no
8x8 transform is present in the lower 8’x_8 inferred region 684. A lower rigﬁt 8x16 array
676 (shaded) contains a transform unit (TU) but does not contain a transform in either
square 8x8 region resulting from the inferred split and therefore has coded block ﬂag.

valués 810 812 of zero.

WO 2014/071439 PCT/AU2013/001117

-32.

[0093] _ The presence of two chroma channels results in a duplication of the
structure depicted in Fig. 6C, with separate coded block flag values used to specify the
presence of transforms for each chroma channel. In this implementation, a split was
inferred for region sizes for chroma other than the size 4x8, resulting in using a 4x8
rectangular transform, such as a 4x8 transform 816 (contained in region 670), and enabling
. reuse of existing square transforms in other cases (e.g. 8x8, 16x16). Thus, a set of
predetermined region sizes (such as 8x16 and 16x32) may be said to exist, for which a split
into two regions, and hence two transforms (of sizes 8x8 and 16x16), can be used.
Different definitions of the predetermined set of region sizes for which an inferred split
occurs are also possible and will allow a different combination of existing square
transforms and rectangular transforms to be used. It is also possible for certain
1mplementat10ns to always infer a split, in which case no rectangular transform is
introduced for the chroma 4:2:2 colour channels. In such a case, the predetermined set of
region sizes for which an inferred split occurs contains all possible chroma region sizes

| (e.g. 4x8, 8x16 and 16x32 for a 4:2:2 chroma format, or 4x4, 8x8, 16x16 and 32x32 for a
4 4:4 chroma format).

[0094] - Fig. 16 is a schematic representation showing an example of ‘no rectangular
transform’ for an implementation of an ‘always’ inferred split for all pcssible chroma

region sizes (4x8, 8x16, and 16x32) for the 4:2:2 chroma formats. As illustrated in Fig. 16
with labelling of ‘1’ (one) and ‘2’ (two) for each chroma region resulting from the inferred °

split.

[0095] When a 4:2:0 chroma format is in use, an inferred split does not take place
for either chroma region in the transform unit (TU), therefore the maximum number of
 transforms for each chroma channel is always one (the coded block flag value for each

chroma channel controls whether the chroma transform occurs).

[0096] 'Although the video encoder 114 and the video decoder 134 are described |
independently of differences between the luma and chroma channels, the differing sample
grids resulting from the chroma formats necessitates the need for differences in the
modules. Practical implementations may have a separate ‘processing paths’ for the luma
channel and for the chroma channels. Such an implementation may thus decouple

processing of luma samples and chroma samples. As the encoded bitstream 312 is a single

WO 2014/071439 PCT/AU2013/001117

-33.

bitstream for both the luma and chroma channels, th‘e entropy encoder 324 and the entropy
decoder 420 are not decoupled. Addit'i'onall'y, a single frame buffer, such as the frame
buffer 332 432 holds luma and chroma samples aﬁd is thus not decoupléd. However, the

* modules 322-330 and 334-340 and the modules 422-430 and 434 may have luma and

- chroma processing decoupled, enabling imple}mentations to have separate logic for luma

and chroma, thus creating a ‘luma processing path’ and a ‘chroma processing path’.

[0097] Certain implementations may infer a split for the 16x32 region of a chroma
channel of a tfansform unit (TU) into twb 16x16 regions, but not infer a split for the 8x16
and 4x8 cases. Such implementations avoid the need to introduce 32-point transform logic
into the chroma processing path, instead being able to rely on 4, 8 or 16-point transform

logic well-established in the art.

[0098] Figs. 9A and 9B illustrate a syntax structure that can be used to encode or
otherwise represent a hierarchical level of the transform tree. At non-leaf nodes of a
transform tree, a syntax structure 900 is expanded recursively in accordance with data
structures, such as the data structures 700 and 800, to define the syntax elements present in
a portion of the encoded bitstream 312 corresponding to the transform tree. At leaf nodes
of a transform tree (where no further sub-division takes place in the transform tree) a -
syntax structure 930 defines syntax elements present in the portion of the encoded
bitstream 312. Typically, one data structure for luma and two data structures for chroma
are present, although additional data structures are possible, such as for encoding an alpha
| channel or a depth map. Alternatively, fewer datz;. Structures tﬁay be utilised, such as in the .
case whére a single data structure is shared by the chroma channels and coded block flag
“values are able to be shared between the chroma channels. A transform tree non-leaf node
syntax structure 902 déﬁnes thg encoding of one hierarchical level of a transform tree,
such as the transform tree 630. A split transform flag 910 encodes a split transform flag
value of one, such as the split transform flag value 702. This value indicates that the
transform tree non-leaf node syntax structure 902 includes a lower hierarchical level that
contains additional instances of the transform tree non-leaf node syntax‘structure 902 or
transform tree leaf-node syntax structure 932, or ‘child nodes’. A coded block flag 912
encodes the coded block flag value 802 of one for the ‘U’ chroma channel and a coded
block flag 914 encodes a further coded block ﬂég value for the ‘V’ chroma channel. If the

transform tree non-leaf node syntax structure 902 is defining the top level of the transform

WO 2014/071439 PCT/AU2013/001117

-34.

tree hierarchy then the coded block flags 912 914 are présenf. If the transform tree non-

- leaf node syntax structure 902 is not deﬁrﬁng the top level of the transform tree hierarchy
then the coded block flags 912 914 are only present if the corresponding coded block flags
in the parent level of the transform tree hierarchy are present and one-valued. As a lower
hierarchical level exists in the transform tree 630 (relative to the top hierarchical level), a
quad-tree sub-division takes place. This sub-division results in four transform tree syntax
structures 916, 918, 920, 922 (identified by a'variable ‘blkIdx’ (block-index) numbered

from zero to three) being included in the transform tree non-leaf node syntax structure 902.

[0099] The syhtaxstructure 930 defines the encoding of the leaf node of the
transform tree leaf node 932 (i.e. where no further sub-division takes place). A split

transform flag 940 encodes a split transform flag value of zero, such as the split transform
flag value 704.

[0100] A split transform flag is only encoded if the corresponding region is larger
than a minimum size. For example, the region 636 has the smallest allowable size for a
region of 4x4 luma samples (corresponding to the smallest supported luma transform size)
so a transform split flag value 714 is inferred as zero and no split transform flag is encoded

for the corresponding transform tree syntax structure.

[0101] For the region 636, chroma residual samples are transformed using a 4x8 |
chroma transform, hence no inferred transform split is present. | Coded block flags, such as
a coded block flag 942 and a coded block flag 946 may be present to signal the presence of
~ atransform for each of the chroma channels. A coded block ﬂag‘950 signals the presence
of a transform for the luma channel. Residual coefficients for the luma and chroma |
chanﬁels (if present) are present in a transform unit (TU) syntax structure 952. If the value
of the coded block flag 950 is one, a luma transform skip flag 964 and a luma residual data
block 954, encoding either residual coefficients for a luma transform or residual samples

* when the transform is skipped, are present in the encoded bitstream 312. The value of the
luma.t_ra‘nsform skip flag 964 indicates whether the transform module 320 in the video
encoder 114 and the inverse transform module 422 in the video decoder 134 is usedv (in
normal operation) or bypassed (in transform skip operation). If the value of the coded
block flag for each chroma channel is one, corresponding chroma transform skip flags 966

and 968 and chroma residual blocks 956 and 960 are present in the encoded bitstream 312.

WO 2014/071439 PCT/AU2013/001117

-35.
S

The transform skip flag 96-6'signals the transform skip mode for chroma residual block
956, and the transform skip flag 968 signals the transform skip mode for the chroma
residual block 960. When no inferred transform split occurs, a coded block flag 944 and
948 and chroma residual blocks 958 and 962 are absent from thé encoded bitstream 312,
When no inferred transform split occurs, the transform skip flag for each chroma channel
thus signals the tran;form skip mode for the corresponding chroma channel in the entirety

of the region 636.

[0102] For the region 664, chroma residual samples are transformed using two 8x8
chroma transforms, hence an inferred transform split is present. The coded block flags 942
and 946, if present, signal the presence of 8x8 transforms for each chroma channel of the
first 8x8 transform 666. The coded block flag 944 and the coded block flag 948, if
present, signal the presence of 8x8 trans.forms for each chroma channel of the sécond 8x8 v‘
transform 668. If the value of the coded block flag 944 is one, the chroma residual block
958 is present in the encoded bitstream 312, If the value of the coded block flag 948 is
one, the chroma residual block 962 is present in the encoded bitstream 312. The transform
skip flag 966 signals fhe transform skip mode for the chroma residual blocks 956 and 958
and the transform skip flag 968 signals the transform skip mode for the chroma residual
blocks 960 and 962. When an inferred transform split is present, the transform skip flag
for each chroma channel is thus signalling the transform skip mode for the corresponding
chroma channel in the entirety of the region 664, in accordance with the behaviour when

no inferred transform split is present.

[0103] The syntax structure 930 as ilustrated in Fig.'9B, shoWs the firstand
second transform of each chroma channel encoded adjacently for the inferred transform
split. Other arrangements, such as encoding syntax elements for each chroma channel
adjacently, or encoding syntax elements for each chroma channel interspersed with other

- syntax elements, may alternatively be used.

[0104] Figs. 9C, 9D and 9E illustrate an alternative syntax structure 9100 that can
be used to encode or otherwise represent a hierarchical level of the transform tree. At non-
leaf nodes of a transform tree, the alternative syntax structure 9100 is expanded recursively
in accordance with data structures, such as the data structures 700 and 800; to define the

Syntax elements present in a portion of the encoded bitstream 312 corresponding to the

WO 2014/071439 PCT/AU2013/001117

-36-

transform tree. An instance of the alternative syntax structure 9100 exists for each node in
the transform tree, including the leaf nodes, which each contain a transform unit (TU). |
Where an ‘inferred split’ occurs to sub-divide the transform unit (TU) for each chroma
ghannel, a syntax structure 9130 defines syntax elements preseﬁt in the porﬁon of the
encoded bitstream 312 for the first sub-region resulfing from the inferred split (e.g. the top
half of a chroma region when a 4:2:2 chroma format is in use or the top-left quarter of a
chroma region when a 4:4:4 chroma format is in use). Furthermore, a syntax structure
9160 defines syntax elements present‘ in the portion of the encoded bitstream 312 for
subsequent sub-regions resulting from the inferred split (e.g. one more sub-region for the
lower half of a chrorﬁa region when a 4:2:2 chroma format is in use or the remaining three
sub-regions of a chroma 'région when a 4:4:4 chroma format is in use). The notion of a
“first’ sub-region and a ‘subsequent’ sub-region (e.g. a second and possibly a third or
fourth sub-region) is implicit in the scanning order of the sub-regions of a region within a
quad-tree. The scanning order is such that the sub-regions are traversed firstly from left to
" right and secondly from iop to bottom. Typically,‘one data structure for luma and two data
structures for chroma are present, although additional data structures are possible, such as
for encoding an alpha channel or a erth map. Alternétively, fewer data structures méy be
utilised, such as in the case where a single data structure is shared by the chroma channels
and coded block flag values are able to be shared between the chroma channels. A ‘
transform tree syntax structure 9102 defines the encoding of one hierarchical level of a

transform tree, such as the transform tree 630.

[0105] For an instance of the transform tree syntax structure 9102 at a non-leaf
node of a transform tree, such as the transform tree 630, a split transform flag 9110 ‘
encodes a split transform flag value of oné, such as the split transform flag value 702. "This
value indicates that the instance of the transform tree syntax structure 9102 includes a |
lower hierarchical level, containing additional instances of the transform tree syntax
structure 9102 or ‘child nodes’. A coded block flag 9112 encodes a coded block flag value
in accordance with the description of the coded block flag 912. A coded block flag 9114
encodes a coded block flag value in accordance with the description of the coded block
flag 914. As a lower hierarchical level exists in the transform tree 630 (relative to the top
hierarchical level), a quad-tree sub-division takes place. This sub-division results in four
transform tree syntax strucfures 9116,9118, 9120, 9122 (identified by a ‘blkIdx’ variable

numbered from zero to three) being included in the transform tree node syntax structure

WO 2014/071439 PCT/AU2013/001117

-37.-

9102. Each of the transform tree syntéx structures 9116, 9118, 9120, 9122 is another
instance of the transform tree syntax structure 9102. A coded block flag 9124 and a luma
transform unit portion 9126, encoding either residual coefficients for a luma transform or
residual samples when the transform is skipped, will be absent from the transform tree

syntax structure 9102.

[0106] Implementations may also arrange the transform tree syntax structure 9102
'such that the coded block flag 9124 and the luma transform unit-portion 9126 (if present)
are placed earlier in the transform tree syntax structure 9102, suéh as in between the coded
block flag 9114 and the transform tree syntax structure 9116.

{0107] For an instance of the transform tree syntax structure 9102 at a leaf node of
a transform tree, éth as the transform tree 630, a split transform flag 9110 encodes a split

~ transform flag value of zero, such as the split transform flag value 704. The instance of the
transform tree syntax structure 9102 thus corresponds to a transform unit (TU) in the
transform tree 930. The transform unit (TU) has a size determined in accordance wiih the
coding unit (CU) containing the transform unit (TU), such as the coding unit (C'U) 602,
and the transform depth. The coded block flag 9112 encodes a coded block flag value of
one to indicate that any of the chroma regions resulting from the inferred split for the ‘U’
chroma channel may have a coded block flag value of one. If the coded block flag 9112
encodes a value of zero, then the coded block flag value for each chroma region‘resulting
from the inferred split for the- ‘U’ chroma channel have a coded block flag value inferred
as zero. Even when the code block flag 9112 encodes a value of one, implementations
"'may still encode a coded block flag having a value of zero for each chroma region
resulting from the inferred Sp]lt Therefore, 1mplementat10ns may omit the coded block
flag 9112 from the encoded bitstream 312, instead always inferred a coded block flag
value of one for the omitted coded block flag 9112. The coded block flag 9114 encodes a
further coded block flag value for the ‘V’ chroma channel in a similar manner to the coded
block ﬂég 9112. For transform unit (TU) sizes that accord with those for which an
inferred split into four chroma regions occurs (a maximum number of chroma residual
coefficient arrays is four), the four transform tree syntax structures 91.16 91 18 9120 9122
(identified by ‘blkIdx’ zero to three) are included in the transform tree node syntax
structure 9102. For transform unit (TU) sizes that accord with those for which an inferred

split into two chroma regions occurs (a maximum number of chroma residual coefficient

N

WO 2014/071439 PCT/AU2013/001117

.38

arrays is two), two transform tree syntax structures, suéh as transform tree syntax
structures 9116 9118 (identified by ‘blkIdx’ zer_é) and one) are included in the transform
tree node syntax structure 9102, Each of the transform tree syntax structures 9116 9_1‘1 8.
9120 9122 is an instance of a transform tree for chroma syntax structure 9132. The coded
block flag 9124 encodes a coded block flag value, such as the coded block flag value 708,
specifying the ‘presence of absence of a transform for the luma channel of the transform
unit (TU). The luma portion of the transform unit 9126 encodes a luma transform skip flag
as transform skip flag 9127 and a luma residual coefficient array as luma residual syntax

elements 9128.

[0108] The transform tree for chroma syntax structure 9132, only exist_\ing for the
ﬁfst‘chrom_a region (or ‘sub-region’) when an inferred split takes place, includes a reduced
set of the syntax of the transform tree syntax structure 930. IA coded block flag 9142
encodes a coded block flag value for the ‘U’ chroma channel of the chroma region. A
_coded block ﬂag 9144 encodes a coded block flag value for the 'V’ chroma channel of the
chroma region. A chroma portion of the tfansfbrrh unit (TU) 9146, encodes a subset of the
transform unit (TU) syntax structure 952. The chroma portion of the transform unit (TU)
9146 encodes chroma transforms containing chroma data for a single colour channel. The
chroma transforms are encoded in the form of a chroma residual coefficient array as
chroma residual syntax elements 9150 for the ‘U’ chroma channel if the value of the coded
block flag 9142 is one, and a chroma residual coefficient array as chroma residual syntax
elements 9152 for the ‘V’ chroma channel if the value of the coded block flag 9144 is one
(collectively, residual coefficient arrays for the ‘chroma transforms’). A transform skip
| flag 9148 is associated with the chroma residual syntax elements 9150 and encodes a
transform skip flag value for the ‘U’ chroma channel, for each chroma region resulting
from the inferred split. A transform skip flag 9151 is assOéiated with the chroma residual
syntax elements 9152 and‘ encodes a transform skip_ flag value for the ‘V’ chroma channel,
for each chroma region reéulting from the inferred split. This association is by way of the .
. transform skip flag being encoded in a ‘residual coding’ syntax structure that includes the

corresponding residual syntax elements.

[0109] The transform tree for chroma syntax structure 9162, only ex1st1ng for
chroma regions other than the first chroma region (or ‘sub-region’) when an inferred spht

" takes place, includes a reduced set of the syntax of the transform tree syntax structure 930.

WO 2014/071439 PCT/AU2013/001117

.39.

A coded block flag 9172 encodes a coded block flag value for the ‘U’ chroma channel of
the chroma region. A coded block flag 9174 encodes a coded block flag value for the ‘V’
chroma channel of the chroma region. A chroma portion of the transform unit (TU) 9176,
encodes a subset of the transform unit (TU) syntax bstructure 952. The chroma portion of
the transform unit (TU) 9176 encodes a chroma residual coefficient array as chroma
residual syntax elements 9180 for the ‘U’ chroma channel if the value of the coded block
flag 9172 is one. The chroma portion of the transform unit (TU) 9176 encodes a chroma
residual coefficient array as chroma residual syntax elements 9182 for the *V’ chroma
channel if the value of the co‘ded' block flag 9174 is one. The transform skip mode for the
regiofll corresponding to each chroma residual syntax elements‘91 80 is determined from
the transform skip ﬂag 9148. The transform skip mode for fhe region corresponding to the
region corresponding to each chroma residual syntax elements 9182 is determined from
the transform skip flag 9151. Implementations rn’a)" make use of hardware registers, such
as the registers 246, or the memory 206 to store the transform skip flag from the first

chroma region for use in the subsequent sub-region(s).

[0110] The syntax structures 9130 and 9160 as illustrated in Figs. 9D and 9E show
the first and second coded block flag encoded adjacently followed by the first and second

. chroma residual coefficient array of each chroma channel for the inféned transform split.

Other arrangements, such as encbding the coded block flag and the chroma residual

" coefficient array adjacently for each chroma channel may alternatively be used.

[0111] Although the inferred transform split is illustrated with the 8x16 region 664
split into two 8x8 regions, alternative implementations may perform the split for other
regions. For example, éome implementations may infer a split of a 16x32 region into two
16x16 regions. Such' implementations advantageously aVoid the need for a 32-point 1D
transform in the chroma processing path. Since the 32-point 1D transform is not required
for the chroma processing path when the 4:2:0 chrbm_a format is applied, the requirefnent
for the 32-point 1D transform is entirely removed from the chroma processing path.

- Implementations that use separate processing circuitry to decouple the luma and chroma

channels may thus achieve a lower implementation cost in the chroma processing circuitry.

[0112] A 4:4:4 chroma format exists where there is one chroma sample location for

each luma sample location. Accordingly, with this format, transforms for the chroma

WO 2014/071439 PCT/AU2013/001117

-40 -

channel and the luma .channel may have the same sizes. With a largest transform size of
32x32 in the luma processing path, this would require introducing a 32x32 transform into
the chroma processing path for a decoupled implementation. Specific implementations
may infer a split for each chroma channel to split a 32x32 regioﬁ into four 16x16 regions,
enabling reuse of the existing 16x16 transform in the chroma processing path. Since a
32x32 transform would only be used in the chroma processing path for the 4:4:4 chroma
format, inferring a split for each chroma channel to split/a 32x32 region into four 16x16
regiohs would enable the 32x32 transform to be removed from the chroma processing
path, reducing the processing circuitry required. Such implementations would require four
c;oded block flag values for each chroma channel, and thus up to four coded block flags |

coded in the syntax structure 930 for each chroma channel in the encoded bitstream 312.

[0113] Implementations supporting a 4:2:2 chroma format may also infer a split for
each chroma channel to split a 32x16 region into four 8x16 regions. Such implementations
- require four coded block flag values for each ch;oma chénnel, and thus four coded block
flags coded in the syntax structure 930 for each chroma channel in the encodgd bitstream
312, thus a ‘CU3’, ‘CU4’, ‘CV3’ and ‘CV4’ coded block flag (not illustrated in Fig. 9B)
may be introduced in the transform unit (TU) syntax structure 952. Such implementations

* avoid introducing 32-point trans’form logic into the chroma processing path and, where |
8x16 regions are not sub-divided, may reuse 8x16 transfdrm logic reciuired for transform
units (TUs) of size 16x16 (in the luma channel) that require transforming transform of size.

- 8x16 for the chroma channels.

[0114] Fig. 10 is a schematic flow diagram showing a method 1000 for encoding a

" transform unit (TU) by encoding the transform tree non-leaf node syntax structure 902 and
the transform tree leaf node-syntax structure 932. The method 1000 is described with (
reference to a chroma channel of the transform unit (TU) however the method 1000 may
be applied to any chromé channel of the transform unit (TU). ‘As the transform tree non-

~ leaf node syntax structure 902 and the transfom tree leaf node syntax structure 932
describe one node in the transform tree, the method 1000 encodes ohe node of the |
transform tree into the encoded bitstream 312, The method 1000 may be implementéd in
hardware pr. by spftware executable on the processor 205; for example. The method 1000
is initially invoked for the top level of the transform tree and is capable of invoking itself

- (recursively) to encode child nodes of the transform tree. A determine transform unit size

WO 2014/071439 PCT/AU2013/001117

-41-

step 1002 determines the size of a transform unit (TU) in a transform tree according to the
coding unit (CU) size that contains the transform tree and a transfohn depth value of the
-transform unit (TU). -When the method 1000 is invoked at the top level of the transform
tree, the transform depth value is set to zero, otherwise the transform depth value is
provided by the parent instance of the method 1000. A split transform flag value, such as
the split tra_nsform flag value 702 is encoded in the encoded bitstream 312 as split
transform flag 910 if the transform depth value is less than the maximum allowed

transform depth.

[0115] When the split transform ﬂag value is one, chroma coded block flags 912
and 914 are encoded for each chroma channel only if the parent node of the transform tree
hierarchy has a corresponding coded block flag value of ohe. The method 1000 then
invokes a new instanée of the method 1000 for each child node (represented in the portion
of thé encoded bitstream 312 by transform tree syntax structures 916, 918, 920 and 922) of
the transform tree. Each instance of the method 1000, invoked for the child nodes, is =~
provided with a transform depth value equal to the presenf method 1000 instance transform

depth value incremented by one.

[0116] When the split transform flag value is zero, an identify maximum number
of forward transforms step 1004 determines a maximum number () of transforms for each’
chroma channel of the region being encoded. When no inférred split takes place, this

_ nﬁmber n will be one. When a'4:2:2 chroma format is in use and a rectangular region of a
chroma chafmel, such as the 8x16 region 664, is encountered and the region size is one of a
predetermined set of region sizes (such as 16x32 and 8x16), an inferred split takes place
and the maximum number of transforms will be two (otherwise the number of transforms
will be one). Otherwise (the region size is not one of a predetermined set of region sizes) .
the maximum number of transforms will be one. For example, if 4x8 is_ not one of the
pre_d‘etermine'd set of region sizes, then the maximum number of transforms will be one.
When a 4:4:4 chroma format is in use and the encountered region size is one of a
predetermined set of region sizes (such as a 32x32 region), an inferred split takes place and
the maximum number of transforms will be four. Otherwise (the region size is not one of
a predetermined set of region sizes) fhe maximum number will be one. For example, if
8x8 is not one of the predetermined set of region siz\es‘, then the maximum number of

transforms will be one. Althou.gh the predetermined set of region sizes includes 8x16,

WO 2014/071439 PCT/AU2013/001117

4.

~ other predetermined set of region sizes are possible, such as only 16x32 when a 4:2:2

chroma format is in use or 32x32 when a 4:4:4 chroma format is in use.

- [0117] " For each chroma channel, if the parent node had a coded block flag value of
one, then for each of n, a coded block flag is encoded in the encoded bitstream 312, For
example, when the number of transforms is equal to two, coded block flags 942 and 944
indicate the presence of a transform for each of the two regions inferred by the split. A
select forward transform step 1006 selects a forward transform from a predétermined set of
forward transforms, for each of the maximum number of transforms, based on a transform
unit (TU) size, which is in turn dependent on the transform depth, and thus related to a

‘ hierarchical level of the transform unit in the largest coding unit. When the transform
depth is equal to zero, the transform unit (TU) size is equal to the coding unit (CU) size.
For each increment of the transform depth, the transform unit (TU) size is halved. For a
32x32 coding unit (CU) size, a transform depth of zero and using a 4:2:2 chroma format,
‘the transform unit (TU) size will thus be 32x32 and the transform size for chroma will thus
be 16x32f For example, when the maxirhum number of transforms is two and the region

"~ size for chroma is 16x32, then a 16x16 forward transform is selected for each of the 16x16

regions for chroma resulting from the inferred split.

[0118] . Anapply forward transform step 1008 performbs the forward transform for
each of the maximum number of transforms on the corresponding region that has a coded
block flag value of one. The encode chroma residual sample arrays step 1008 is generally |
pérformed by the transform module 320. This results in a conversion of each chroma
residuél sample array (spatial domain representation) into a chroma residual coefficient

array (frequency domain representation).

[0119] | An encode chroma residual coefficient arrays step 1010 encodes the chroma
residual coefficient array for each of the méximum number of transform regions of each |
chroma channel having a coded block flag value of one into the encoded.bitstream 312.
The number of chroma residual coefficient arrays encoded for a given transform unit for a
given chroma channel depends on the coded block flag value of each transform and will
thus vary from zero to (at most) the maximum number of transforms. For example, when
the number of transforms is two and both chroma channels have coded block flag values of

one for each of the count ‘Val.ues, then the chroma residual blocks 956, 958, 960 and 962

WO 2014/071439 PCT/AU2013/001117
-43.
are encoded in the encoded bitstream 312. If the coded block flag value for each transform
for a given chroma channel is zero, then no chroma residual block is encoded in the

encoded bitstream 312 for that chroma channel. ’The encode chroma residual coefficient

arrays step 1010 is generally performed by the entropy encoder 324.

[0120] Fig. 11 is a schematic flow diagram showing a method 1100 for decoding a
transform unit (TU) by decoding the transform tree non-leaf node syntax structure 902 and .
the transform tree leaf node syntax structure 932. The method 1100'is described with
reference to a chroma channel of the transform unit (TU) ﬁowever the method 1100 may
be applied to any chroma channel of the transform unit (TU). \As the fransform tree non-
leaf node syntax structure 902 and the transform tree leaf node syntax structure 932 |
describe one node in the transform tree, the method 1100 decodes one node of the
transform tree from the encoded bitstream 312. The method 1100 may be performed in
appropriate hardware or alternatively in software, for example executable by the processor
205. The method 1100 is initially invoked for the top level of the transform tree and is
capable of invoking itself (recursively) to decode child nodes of the transform tree. A ‘
determine transform unit (TU) size step 1102 determines a trahsform unit (TU) size ina
manner identical to the determine transform unit size step' 1002. The determine transform
unit size step 1102 determines the size of a transform unit (TU) in a transform tree
according to the coding unit (CU) size that contains the transform tree and a transform
depth value of the transform unit (TU). When the method 1100 is invoked at the top level
of the transform tree, the transform depth value is set to zefo, otherwise the transform

. depth value is provided by the parent instance of the method 1100. A split transform flag
value, such as Vthe split transform flag value 702 is decoded from the encoded bitstream
312 as split transform flag 910 if the transform depth value is less than the maximum |

allowed transform depth.

[0121] When the split transform flag value is one, chroma coded block flags 9i2
and 914 are decoded for each chroma channel only if the parent node of the transform tree
hierarchy has a correspondmg coded block flag value of one. The method 1100 then
invokes a new instance of the method 1100 for each child node (represented in the portion
of the encoded bitstream 312 by transform tree syntax structures 916, 918, 920 and 922) of

the transform tree. Each instance of the method 1100, invoked for the child nodes, is

WO 2014/071439 PCT/AU2013/001117

.44 .

provided with a transform depth value equal to the present method 1100 instance transform

depth value incremented by one.

[0122] | When the split transform flag value is zero, an identify maximum number
of inverse transforms step 1 104 determines a (maximum) number (n) of transforms for
each of the at least onev chroma residual coefficient arrays present in each chroma channel
of the region being decoded, in a manner identical to the idenﬁfy maximum number (n) of
forward transforms step 1004. When no inferred split takes place, this number n will be
one. When a 4:2:2 chroma format is in use and a rectangular region of a chroma channel,
such as the 8x16 region 664, is encountered and the region size is one of a predetermined
set of region sizes (such as 16x32 and 8x16), an inferred split takes place and the
maximum number of transforms will be two (otherwise the number of transforms will be:
one). Otherwise (the region size is not one of a predetermined set of region sizes) the
maximum number of transforms will be one. For example, if 4x8 is not one of the
- predetermined set of region sizes, then the maximum number of transforms will be one.
When a 4:4:4 chroma format is in use and the encountered region size is one of a
predeterinined set of region sizes (such as a 32x32 region), an inferred split takes place and
.the maximum number of transforms will be four. Otherwise (the region size is not one of a
predetermined set of region sizes) the maximum number will be one. For example, if 8x8
is not one of the predetermined set of region sizes, then the maximum number of
transforms will be one. Although the predetermined éet of region sizes includes 8x16,
other predetermined set of region sizes are possible, such as only 16x32 when a 4:2:2
chroma format is in use or 32x32 when a 4:4:4 chroma format is in use. For each chroma
- channel, if the parent node had a coded block flag value of one, then for each of the (n)
transforms, a coded block flag is decoded in the encoded bitstream 312. For example,
when the maximum number of transforms is equal to two, coded block flags 942 and 944

indicate the presence of a transform for each of the two regions inferred by the split.

[0123] A decode chroma residual coefficient a"rrays step- 1106 then decodes the
residual coefficient array for each of the maximum number of transforms regions of each
chroma channel from the encoded bitstream 312 having a coded block ﬂég value of one.
The number of résidual coefficient arrays decoded for a given transform unit for a given
chroma channel depends von the coded block flag value of each transform and will thus

vary from zero to (at most) the ‘number (#) of transforms’. For example, when the number

WO 2014/071439 PCT/AU2013/001117

-45.

of transforms is two and both chroma channels have coded block flags of one for each of
the count values, then the chroma residual blocks 956, 958, 960 and 962 are decoded from
the encoded bitstream 312. The decode chroma residual coefficient arrays step 1106 is.
generally performed by the entrop);'decoder 420 for each chroma residual coefficient array

having a coded block flag value of one.

-

[0124] A select inverse transform step 1 108 then selects an inverse transform from _
a predetermined set of inverse transforms, for each of the maximum number of transforms
having a coded block flag value of one for each chroma channel. For example, when the
maximum number of transforms is two and the region size is 16x32 and the coded block
flag value for each of the two transforms is one, then a '16;(16 inverse transform is selected

for each of the 16x16 regions resulting from the inferred split.

[0123] An apply ihverse transform step 1110 then perfdrms tfhe inverse transform |
for each of the maximum number of transforms regions on the corresponding region
having a cocied block flag value of one. This results in a conversion of each chroma
residual coefficient array (frequency domain representation) into a chroma residual sample
array (spatial ciomain representation) representative of the decoded video frame. The
apply inverse transform step 1110 is generally performed by the inverse scale and

transform module 422.

[0126] .Fig. 12A shows a diagonal scan pattern 1201, Fig.v 12B shows a horizontal
scan pattern 1202, and Fig. 12C shows a vertical scan pattern 1203, each for a 4x8
transform unit 1200. Those implementations that scan the 4x8 transform unit 1200 using

~ the illustrated scan patterns have the property that the residual coefficients are grouped in
4x4 blocks, known as ‘sub-blocks’. A “coefficient group’ flag present in the encoded
bitstream 312 may therefore be used to indicate, for each sub-block, the presence of at
least one significant (non-zero) residual coefficient. Applying a 4x4 sub-block size. for the
4x8 transform achieves consistency with the scan pattern presexit in other transform sizes,

where coefficients are always grouped into sub-blocks.

(0127} Particular implementations may apply a coefficient group flag to signal the
presence of at least one non-zero residual coefficient in each sub-block. Advantageously,

these scan patterns permit re-use of control software or digital circuitry that processes.

WO 2014/071439 PCT/AU2013/001117

.46 -

residual coefficients, by reusing the sub-block processing for all transform sizes. The
particular scan pattern used may be selected according to criteria such as the intra-
pt_‘ediction direction of the collocated prediction unit (PU). Where a transform encodes
chroma éamples on a 4:2:2 chroma format sample grid, the relationship between the intra-
prediction direction and the scan pattern is altefed because each chroma sample maps to a
non-square (2x1) array of luma samples, affecting the ‘direction’ or angle of the intra-
prediction mode. Scanning is shown in a ‘backward’ direction inF igs. 12A to 12C, ending
at the DC coefficient, locafed in the top-left corner of the transform unit (TU). Further,
scanning is not required to start at the lower-right corner of the transform unit (TU). Due
to the predominance of nonzero residual coefficients in the upper left region of the

~ transform unit (TU), scanning may begin from a ‘last significant coefficient position’ and

progress in a backward direction until the upper left coefficient is reached.

v

[0128] Other implementatiohs may apply a single scan to a given region to encode
residual coefficients and then apply more than one transform to these residual coefficients.
In this case only one coded block flag is used for the region and therefore fdr all
transforms covered by the scan pattern. The coded block flag is set to one if at least one
significant residual coefficient exists in any of the scans. For example, the 4x8 scan. '
patterns of Figs. 12A - 12C may be applied to encode residual coefficients of two 4x4
transforms. Tﬁe two 4x4 arrays of residual coefficients may be concatenated to form a 4x8
array suitable for the scan'patte‘rn. As a single scan is perforfned over the array, a single
‘last significant coefficient’ position is encoded in the bitstream for the scan pattern and a
single coded block flag value is sufficient for the array. The energy compaction property
of the modified discrete cosine transform (DCT) gives advantage to other schemes, such as
interleaving the coefficients of each square transform along the path of the scan patterh
into the rectangular coefficient array. This gives the advantage the density of residual
coefficient values in each 4x4 residual coefficient array is approximately equalised in t'he
combined 4x8 array, allowing higher compression efficiency to be created by the entropy

encoder 324, for subsequent decoding by the entropy decoder 420.

[0129] Certain implementations encoding chroma colour channels may use a first
transform to encode residual samples at chroma sample locations corresponding to a 4:2:0
chroma sample grid and a second transform to encode residual samples at the additional

chroma sample locations introduced in the 4:2:2 chroma sample grid, relative to the 4:2:0

WO 2014/071439 PCT/AU2013/001117

-47.

chroma sample grid. Such implementations may advantageously use a simplified
transform for the second transform, such as a Hadamard transform with the output of the
second transform being added (or otherwise combmed) to the residual samples for the first
* transform to produce the remdual samples for the second transform. Advantageously a
preprocessing stage 1mplementmg a transform such as a Haar transform may be used to
sample the chroma sample grid for a 4:2:2 chroma format into tﬁe chroma sample grid for
a 4:2:0 chroma format. ‘Such configurations must transmit additional residual coefficients
from the preproccsSing stage as side-information, such a residual applied to each largest
coding unit (LCU) in the case that the preprocessmg transform is applied at the largest
coding unit (LCU) level.

[0130] Implementations having multiple transforms for a given region may use
either a single combined scan oovering the entire region, or a separate scan for each
transform. If the scanning for the multiple transforms is combined into a single scan, then
only one coded block flag is required for each region being scanned. Those
implementations using a single combined scan may achieve higher compression of the
residual coofﬁcients by interleaving the residual coefficients of eaoh transform such as
interleaving on a coefficient-by-coefficient basis, in order to collocate residual coefficients

from each transform havmg similar spectral propertles

[0131] Fig. 13 is a schematic block diagram showing a method 1300 of encoding a
transform unit. The method 1300, performed by the video encoder 114, encodes the luma
channiel and a chroma channel of the transform unit, In a determine luma transform skip
flag value step 1302, the transform skip control module 346 determines the value of a
transform skip flag, such as the transform skip flag 964 or 9127, for the hima channel,
typically by testing the cost of codmg the residual sample array 360 in both the spatial
domain (transform skip is performed) and in the frequency domam (transform Sklp is not
performed). In a determine chroma transform Sklp flag value step 1304, the transform skip
control module 346 determines or otherwise sets the value of a transform skip ﬂag, such as
~ the transform skip flag 966 or 9148, for one of the chroma channels to be applled to all of

~ the sub-regions resulting from an inferred split and belonging to the same chroma channel.
The transform skip control module 346 may aoply similar logic as for the luma channel,
however the bit-rate cost determination must account for each of the chroma residual

sample arrays resultiﬁg from the inferred split when determining the cost of either

WO 2014/071439 PCT/AU2013/001117

48 -

performing the transform skip for all chroma residual sample arrays in the chroma channel
(or ‘colour channel’) or performing the transform skip for none of the chroma residual
sample arrays in the chroma channel. The determine chroma transform skip flag value
step 1304 is repeated for each chroma channel, determining transform skip flag values for
other chroma channels, such as transform skip flags 968 or 9151. The encode luma
transform and chroma transform step 1306 encodes the luma residual sample array in the
encoded bitstream 312 using the entropy encoder 324 and encodes the chroma residual
sample arrays for a chroma channel in the enéoded bitstream 312 using the entropy
encoder 324. The luma residual sample array is determined in accordance with the luma
transform skip flag, either by transforming in the transform module 320 the residual
sample array into a residual coefficient array or byp;lssing the transform mbdule 320 when
a transform skip is performed by the video encoder 114. Subsequently the residual array
363 is passed to the scale and quantise module 322 to create the residual data arrayv 364.
When at least one of the values in the residual data array 364 is non-zero, the values of the
residual data array 364 are encoded into the encoded bitstream 312 by the entropy encoder
324 (in a block of residual data, such as residual data block 954, 956, 958, 960 or 962) and
the correspbnding coded block flag is set tb one. The chroma residual sample arrays are
determined similarly to the luma residuai'sample arrays, except that chroma residual '
sample arrays p'ther than the first share the transform skip flag with the first chroma A
residual sample array. The encoding of chroma re?sidual sample arrays in the step 1/3 06is

repeated for each chroma channel.

| [0132] Fig. 14 is a schematic ﬂow diagram showing a method 1400 for decoding a
transform unit. The method 1400, performed by the video decoder 134, decodes the luma
-channel and a chroma channel of the transform unit. A determine luma transform skip flag

value step 1402 determines the value of a transform skip flag for the luma channel by
decoding a transform skip flag, such as the transform skip flag 964 or 9127, from the
encoded bitstream 312 using the entropy decoder 420. A determine chroma transform skip
flag value step 1404 determines the value of a transform ékip flag for one of the chroma
residual sample arrays withiﬁ a chroma channel to be applied to all chroma residual sample
arrays Witﬁin the chroma channel and in the same transform unit (TU). The step 1404
decodes a transform skip flag, such as the transform skip flag 966 or 9148, from the
encoded bitstream 312 using the entropy decoder 420. Implementations that associate the

transform skip flag with the first chroma residual sample array avoid the need to buffer

WO 2014/071439 PCT/AU2013/001117

_49.

earlier residual sample arrays before determining the transform skip flag from a later
residual coefficient array (which would then be used to continue processing the earlier
residual samplé array, thus introducing additional internal buffering). The step 1404 may |
also determine a transform skip' flag for additional chroma channels, such as by decoding
the transform skip flag 968 or 9151 from the encoded bitstream 312 using the entropy
decoder 420. A decode luma transform and chroma transform step 1406 causes the
entropy decoder 420 to decode a luma residual coefficient array, such as the luma residual
data block 954, when a corresponding coded block flag is one, such as the coded block
ﬂag 950, and the chroma residual coefficient arrays associated with a particular chroma
channel, such as the chroma residual coefficient arrays 956 and 958, when each
corresponding coded block flag, such as the coded block 'ﬂags'v 942 and 944, are one.
When decoding a luma transform, the luma residual coefficient array is only passed
through the inverse transform module 422 if a transform skip is not performed, otherwise
the luma residual coefficient arréy bypasses the inverse transform module 422. Wheﬁ

~ decoding a chroma transform, for each chroma residual sample array in the transform unit,
the transform skip flag presént in the encoded bitstream 312 and associated with the first

chroma residual sample array is applied.

(0133} - The description of the methods 1300 and 1400 refer to a ‘transform unit’
that may contain m'uitiple chroma residual samplé arrays for a given chroma channel,

- when an inferred split takes place. This accords with the syntax structure 930. When the
syniax structures 9100, 9130 and 9160 are in use, each chroma region resulting from an
inferred split is illustrated as a separate transform unit (TU), marked as chroma transform
units (CTUs) in Figs. 9C, 9D and 9E. For the pﬁrposes of the methods 1300 and 1400, the
chroma transform units (CTUs) are merely an artefact of using the transform tree syntax
structure 9100 to split the chroma regions. In Fig. 9C, the spatial region occupied by the
luma transform unit (LTU) 9126 may be considered the ‘transform unit’ as it occupies the
same spatial region as the transform unit 952. The chroma transform units (CTUs) 9116
9118 and 9120-9122 (if present) may be considered as chroma sub-regions resulting from

the inferred split.

[0134] Advantageously, both the methods 1300 and 1400 result in one transform
skip flag being encoded for each colour channel, regardless of the presence or absence of

an inferred split operation (which may be applicable when the 4:2:2 and the 4:4:4 chroma

WO 2014/071439 PCT/AU2013/001117

.50

formats are in use). This characteristic results in consistent behaviour with the 4:2:0
chroma format, where one transform skip flag is present for each residual coefficient array,
and only one residual coefﬁ-cient array is preseht for each colour channel for a given
transform unit. For éxample, an 8x8 transform unit in 4:2:0 would have an 8x8 transform
for luma and a 4x4 chroma transform for each chroma channel. One transform skip flag
V\"’Ollld be present for each chroma channel in this case. In the 4:2:2 case, with an inferred
- split, two 4x4 chroma transforms would be présent in eaéh chroma channel. A tran_s'form
skip flag coded with the first 4x4 chroma transform but applied to both 4x4 chroma
transforms would control the transform skip status for the same spatial region as for the
4:2:0 case. This consistent behaviour results in the transform skip handling for 4:2:2 that
is backward compatible with the 4:2:0 case (i.e. no rearrangement of syntax elements
occurs in 4:2:0 due to supporting transform skip in 4:2:2). Having a common transform
skip for all chroma results in an infeﬁed split that avoids artificially dividing a transform

unit into an upper half and a lower half for the purposes of specifying the transform skip.

[0‘135]- - Fig. 15 is a schematic representation showing possible arrangements of 4x4
transforms in a 4x4 and an 8x8 transform unit, for the video encoder-] 14 and the video
decoder 134. The colour channels, Y, U and V are depicted in Fig. 15 in columns and
three cases are depicted along rows. In all depicted cases the video encoder 114 and the
video decoder 134 are configured to use a 4:2:2 chroma format. Also, in all cases, the
video encoder 114 and the video decoder 134 support an inferred split of the 4x8 chroma
region into two 4x4 chroma regidhs, and thus two 4x4 chroma transforms are depic}ed for
each colour channel. The three cases depiétéd are: |

Case 1: an 8x8 transform unit (TU) (upper row);

- Case 2: four 4x4 transform units (TUs) with a first ordering (order 1) of the

transforms (middle row); and ' ' |

Case 3: four 4x4 transform units (TUs) with a second ordefing (order 2) of the

transforms (lower row).

[0136] ' For each case, the transforms are numbered in the order in which they
appear in the encoded bitstream 312. Case 1 shows a trarisform unit (TU) with an 8x8
luma transform and two 4x4 transforms, for each chroma channel. The luma transform
does not have a transform skip flag as }the luma transform 'i's 8x8. .Cases 2 and 3 further

illustrate the case where the four 4x4 transforms units result in chroma regions for each

WO 2014/071439 PCT/AU2013/001117

51

chroma transform that span multiple transfofm-units (TUs). In Cases 2 and 3, the four
. transform units (TUs) are numbered from zero to three and indexed with a ‘blkldx’
variable, as used in the high efficiency video coding (HEVC) standard under development.
For each transform depicted in Fig. 15, if a transform skip is supported, a box is includéd
in the upper-left corner of the transform. For transforms where the transform skip flag is
 always éxplicitly coded, the box is s‘haded (such as shaded box 1502). An unshaded. box
(such as ﬁnshaded box 1504) illustrates the case where the transform skip flag for the
present transform is derived from an eaflier (such as an above traﬁsform).
Implementations which do not support this derivation will explicitly code a transform skip
flag in the encoded bitstream 312 for transforms with unshaded boxes. In Case 2 and
- Case 3, a transform unit syntax structure, such as the transform unit syntax structure 952,
is ihvoked four times (with the value‘for ‘blkIdx’ incrementing from zero to three), once
for each 4x4 transform unit. Thus four instances of the transform unit syntax structure are
present in the encoded bitstream 312. On each invocation, a luma residual block, such as
the luma residual data block 954, is present in the encoded bitstream 312 ifa
corresponding coded block flag, such as the coded block flag 950, has a value of one. In
Case 2, on the fourth invocation (‘blkldx’ is equal to three), chroma residual blocks for the
chroma channels, such as fhe chroma residual blocks 956, 958, 960, 962, are coded in the
encoded bitstream 312 (if corresponding coded block flags, such as the ’coded block flags
| 942, 944, 946, 948 have a value of one). The ordering of the luma and chroma residual
blocks from Fig. 9B corresponds to the ordering-of transforms presented in Case 2. In
Case 3, the ordering is changed due to the following: Chroma residual blocks for the
upper half (such as the chroma residual blocks 956, 960) are processed on the second
invocation of the transform unit syntax structure (i.e. when ‘blkIdx’ is equal to one) and
chroma residual blocks for the lower half (such as the chroma residual blocks 958, 962)
are processed on the fourth invocation of the transform unit syntax structure (i.e. when

‘blkIdx’ is equal to three).

[0137] Another case, not illustrated in Fig. 15, is that of a 4x4 transform unit when
 the 4:2:0 chroma format is in use, where one 4x4 transform for chroma is applied to the
area on the chroma sample grid that corresponds to the four 4x4 transform units for luma
at the same quad-tree hierarchical level (collectively occupying an 8x8 region on the luma
sample grid). When a 4x8 transform is available in chroma, transform skip for the 4:2:2

case is applied to the 4x8 transform (in addition to the 4x4 transform), as described with

WO 2014/071439 PCT/AU2013/001117

.52.

reference to Fig. 18 below. When a 4x8 transform is not available in chroma and the 4:2:2
chroma format is in use, implementations must use two 4x4 transform for each chroma
channel and may code the transform skip flag for one 4x4 tré.nsform, such as the upper 4x4
transform, but apply the coded transform skip flag for both 4x4 transform for the given

chroma channel.

[0138] Fig. 17 is a schematic flow diagram showing a method 1700 for decoding
residuél data for a transform unit (TU), elaborating upon aspects of the method 1400 of
Fig. 14. The method 1700 determines a transform skip flag for a given region and decodes
the residual data for the region. When the method 1700 is invoked for the luma channel of
a transform unit (TU), only one region exists. For a single chroma channel of a transform
unit (TU) and when an inferred split occurs, two regions are present and the method 1700
is invoked for each region having a coded block flag value of one. The method 1700
begins with a transform skip supported test'step 1702. The step 1702 tests a transform skip
enabled flag and a coding unit transform quantisation bypass flag and the transform size
for the present region. The transform skip enabled flag, encoded in the encoded bitstream
312, indicates if the transform skip function is available in the encoded bitstream 312. The
coding unit transform quantisation bypass flag, encoded in the encoded bitstream 312,
indicates if a ‘lossless’ coding mode was selected by the video encoder 1 14, whereby both
the transform 320 and the quantisation modules 322 are bypassed, and thus the video
encoder 114 operates in a lossless fnode, allowing the video decoder 134 to exactly
reproduce captured frame data from the video source 112. The transform size for the
present region, indicated by a ‘log2TrafoSize’ variable in the high efficiency video coding
(HEVC) standard under development, which is defined as the log2 of the side dimension
of a square transform. When transform skip flag is true (i.e. enabled) and coding unit
transform quantisation bypass flag is false (i.e. not enabled) and the transform size is 4x4
(i.e. log2TrafoSize‘ is equal to 2), control passes to a first true coded block flag (CBF)
region in a colour channel test step 1704, otherwise control passes to a decode residual
data step 1712. The test step 1704 determines if the present region is the first region in the
colour channel (and in the transform unit (TU) to have a coded block flag (CBF) value of
one). As the method 1700 is only invoked if the value of the coded block flag for the
present region is one, two cases are possible. If the method 1700 is invoked for the first
chroma region (the upper region when a 4:2:2 chrdma format is in use, e.g. the region 682

or 666 in Fig. 6C) of an inferred split, then the test step 1704 evaluates as true and control

WO 2014/071439 PCT/AU2013/001117
-53.

passes to a decode transform skip flag step 1706.' If the method 1700 is invoked for the
subsequent chroma region(s) of an inferred split (the lower region when a 4:2:2 chroma
format is in use, e.g. the region 684 or 668 in Fig. 6C), the test step 1704 evaluates as false.
when the method 1700 was previously invoked for the first chroma region (for the present
| transform unit) and true when the method 1700 was not previously invoked for the first
chroma region (for the present transform unit). When the test step 1704 evaluates as true,
control passes to a decode transform skip flag step 1706. In the step 1706, the entropy
‘decoder 420 decodes a transform skip flag from the encoded bitstream 312 to determine a
transform skip flag value. A store transform skip flag value step 1708 stores the transform
 skip flag value in meinory, such as hardware registers or registers 246, for later use on
subsequent iﬁvocations of ‘the method 1700. If the test step 1704 evaluates és false, control
passes to a retrieve traqsform skip flag value step 1710, where the transform skip flag
value, determined and stored on a previous invocation of the method 1700, is retrieve from
memory, such as hardware registers or registers 246. Ata decode residual data step 1712,
a block of residual data, such as residual data block 954,956, 958, 960 or 962 is decoded
from the encoded bitstream 31 2 by the entropy decoder 420. The determined transform
| skip flag value is passed as the transform skip flag value 468 to control the transform skip
operation, as described above with reference to the multiplexer 423. The steps 1702-1710
correspond to the step 1402 of Fig. 14 when the method 1700 is invoked for the luma
channel, and the steps 1702-1710 correspond to the step 1404 of Fig. 14 when the method
1700 is invoked for a chroma channel. The djecode residual data step 1712 corresponds to
the luma residual decoding of the step 1406 of Fig. 14 and the chroma residﬁal decoding of
the step 1406 of Fig. 14. The method 1700 also corresponds to a "residual'coding’ syntax
“structure, as defined in the high efficiency video coding (HEVC) standard under

development.

[0139] Fig. 18 is a schematic representation 1800 showing a transform skip
operation applied to a 4x8 chroma region (with a 4x8 non-square transform) for each
colour channel. The luma channel (‘°Y”) and each chroma channel (‘U’ and ‘V’) are

" depicted in Fig. 18. Two cases are depictéd in Fig. 18:

[0140] Case 1: ‘8x8 TU’ (the upper row of Fig. 18) depicts an 8x8 transform unit
(TU), with an 8x8 transform 1802 for the luma channel and a 4x8 (non-square or

rectangular) transform 1804 for each chroma channel. A transform skip flag is depicted

WO 2014/071439 PCT/AU2013/001117

.54 .

with a shaded box in the upper right corner of a transform for which the transform skip'
operation is supported. In this case, the transform skip operation is also supported in the
4x8 transform case (in addition to the 4x4 transform case) and thus the 4x8 transforms

each include a transform skip flag 1806, as illustrated in Fig. 18.

[0141] Case 2: ‘Four 4x4 TUs’ (the lower row of Fig. 18) depicts four 4x4
transform units (TUs), with four’ 4x4 transforms 1808 for the luma channel and a 4x8 (non-
square or rectangular) fransform 1810 for each chroma channel. The 4x8 transform for
each chrOm_a channel is collopated (on the chroma sample grid) with the luma transform
(on the luma samp'lle grid) and shared among the four 4x4 transform units (TUs). In this
implementation, the transform skip operation is also supported in the 4x.8 transform case
(in addition to the 4x4 transform case) and thus the 4x8 transforms include a transform

skip flag 1812, as illustrated in Fig. 18.

- [0142] For an implementation supporting Casés 1 and 2 of Fig. 18, a modified test
step 1702 and steps 1706 and 1712 of the method 1700 are performed by the video
decoder 134. The miodified test step 1702 operates as the test step 1702 of Fig. 17, except
that a transform size of 4x8 is included (in addition to a transform size 4x4) as a possible
transform size for which a transform skip operation is supported, thus allowing the

modified test step 1702 to evaluate as true in both the 4x4 and 4x8 transform cases. -

[0143] Appendix A illustrates possible ‘text’ for the high efficiency video coding

- (HEVC) standard under development that is relevant to the syntax structure 900 and the
syntax structure 930. Each instance of a transform_tree() function in appendix A is
depicted as a portion of the syntax structure labelled “TT’ in Figs. 9A and 9C and each
instance of a transform_unit() function in Appendix A is depicted as a portion of the
syntax structure labelled ‘TU’ in Figs. 9A and 9B. The text provided in Appendix A is one
example of text that accords with the syntax structuresl 900 and 930 and other examples are
possible. Text that accords with the syntax structures 900 and 930 implies that the video
encoder 114 performs the method 1000 to encode a bitstream and the ‘videovdecode{ 134

performs the method 1100 to decode the bitstream.

[0144] Appendix B illustrates possib.le text for the high efficiency video coding
(HEVC) standard under development that is relevant to the syntax structure 9100 and the

WO 2014/071439 PCT/AU2013/001117

-55.-

'syntax structure 9130. Each instance ofa transform_treé() function in appendix B is
- depicted as a portion of the syntax structure labelled ‘TT’ in Figs. 9C, 9D and 9E and each
mstance of a transform _unit() function in appendix A is depicted as a portion of the syntax
structure labelled ‘TU’ in Figs. 9C, 9D and 9E. The text provided in Appendlx Bisone
example of text that accords with the syntax structures 9100 and 9130 and other examples
are possible. Text that accords with the syntax structures 9100 and 9130 also implies that |
the video encoder 114 performs the method 1000 to encode a bitstream and the video

decoder 134 performs the method 1100 to decode the bitstream.

[0145] The text in Appendix A and Apperidix B result in an implementatioh
whereby the 32x32 chroma region encountered in a transform unit (TU) of size 32x32
configured for the 4:4:4 chroma format results in (a maximum number of) four 16x16
chroma transforms being applied, and the 16x32 chroma region encountered in a transform
- unit (TU) of size 32x32 configured for the 4:2:2 chroma formét results in (a maximum
number of) two 16x16 chroma transforms bemg applied. The 1mplementat10n resulting
' from the text in Appendix A and Appendix B, when applied to transform units (TUs) of
smaller size and configured for the 4.2;2 chroma format, (a maximum of) one chroma

 transforms is épplied. For example, an 8x16 transform is appl-ied to an 8x16 chroma

region and a 4x8 transform is applied to a 4x8 chroma region.
Industrial Applicability

[0146] The arrangements described are applicable to the computer and data
processing industries and particularly for the digital signal processing for the encoding a

decoding of signals such as video signals.

[0147] The foregoing describes only some embodiments of the present invention,
and modifications and/or changes can be made thereto without departing from the scope

and spirit of the invention, the embodiments being illustrative and not restrictive.

bkl

[0148] (Australia only) In the context of this specification, the word “comprising
means “including principally but not necessarily solely” or “having” or “including”, and
not “consisting only of”. Variations of the word "comprising", such as “comprise” and

“comprises” have correspondingly varied meanings.

WO 2014/071439 PCT/AU2013/001117
.56 -

APPENDIX A

TRANSFORM_TREE() AND TRANSFORM_UNIT() IMPLEMENT THE
INFERRED CHROMA SPLIT USING A LOOP CONSTRUCT

7.3.11 Transform tree syntax

transform_tree(x0, y0, xBase, yBase, log2TrafoSize, trafoDepth, blkldx) { _ | Descriptor

if(log2TrafoSize <= Log2MaxTrafoSize &&
log2TrafoSize > Log2MinTrafoSize &&
trafoDepth < MaxTrafoDepth && !(IntraSplitFlag && trafoDepth = 0))

split_transform flag[x0]['y0][trafoDepth] ae(v)

if(trafoDepth = || log2TrafoSize > 2) {

if(trafoDepth = 0 || cbf_cb[xBase][yBase][trafoDepth — 1]) {

for(tldx = 0; tldx < TrafoCrCbCnt; tldx++) {

cbf_cb[x0 + ((1 <<log2CrCbTrafoHorSize) * (tldx mod ae(v)
TrafoCrCbHorCnt)][y0 + (1 <<log2CrCbTrafoVertSize) * (tldx div .

TrafoCrCbVertCnt))][trafoDepth + (TrafoCrCbCnt > 1)]
y - .

cbf_cb[x0 J{ y0][trafoDepth] |= (TrafoCrCbCnt > 1)

}

if(trafoDepth == 0 || cbf_cr] xBase][yBase][trafoDepth — 1) {

for(tldx = 0; tidx < TrafoCrCbCat; tldx++) {

cbf_cr[x0 + ((1 << log2CrCbTrafoHorSize) * (tldx mod ae(v)
TrafoCrCbHorCnt)][y0 + (1 <<log2CrCbTrafoVertSize) * (tIdx div

TrafoCrCbVertCnt))][trafoDepth + (TrafoCrCbCnt > 1)]
} .

- cbf_cr[x0][y0][trafoDepth] |= (TrafoCrCbCnt > 1)
yo '

}

if(split_transform_flag[x0][y0][trafoDepth]) {

x1 =x0+ ((1 <<log2TrafoSize) >> 1)

y1 =y0 +((1 <<log2TrafoSize)>> 1)

transform_tree(x0, y0, x0, y0, log2TrafoSize — 1, trafoDepth + 1, 0)

transform_tree(x1, y0, x0, y0, log2TrafoSize — 1 trafoDepth + 1, 1)

transform_tree(x0, y1, x0, y0, log2TrafoSize — 1, trafoDepth + 1, 2)

transform_tree(x1, y1, x0, y0, log2TrafoSize — 1, trafoDepth + 1, 3)

} else {

if(PredMode[x0][y0] == MODE_INTRA || trafoDepth != 0 ||
cbf cb[x0][yO [trafoDepth] || cbf cr] x0][y0][trafoDepth])

cbf_lumal[x0][yO0][trafoDepth] ae(v)

WO 2014/071439 PCT/AU2013/001117

.57.

transform_unit (x0, y0, xBase, yBase, log2TrafoSize, trafoDepth, blkldx) -

}

}

7.3.12 Transform unit syntax

transform_unit(x0, y0, xBase, yBase, log2TrafoSize, trafoDepth, blkIdx) {

Descriptor

~if(cbf_luma[x0][y0][trafoDepth] | | cbf _cb[x0][y0][trafoDepth] | |
cbf crf x0][y0][trafoDepth 1) {

if(cu_qp_delta_enabled_flag && ‘IsCquDeltaCoded) {

cu_qp_delta_abs

ae(v)

if(cu_qp_delta_abs)

- cu_qp_delta_sign

ae(v)

-

if(cbf _luma[x0][y0][trafoDepth])

residual_coding(x0, y0, log2TrafoSize, 0)

if(log2TrafoSize > 2) {

if(cbf _cb[x0]['y0][trafoDepth])

for (tldx = 0; tIdx < TrafoCrCbCnt; tldx++) {

residual_coding(x0 + ((1 << log2CrCbTrafoHorSize) * (tIdx mod
TrafoCrCbHorCnt), y0 + (1 << log2CrCbTrafoVertSize) * (tldx div
TrafoCrCbVertCnt)), log2TrafoSize, 1)

}

if(cbf_cr[x0][y0 1[trafoDepth])

for (tldx = 0; tldx < TrafoCrCbCnt; tldx++) {

residual_coding(x0 + ((| << log2CrCbTrafoHorSize) * (tldx mod
TrafoCrCbHorCnt), y0 + (1 << log2CrCbTrafoVertSize) * (tldx div
TrafoCrCbVertCnt)), log2TrafoSize, 2)

}

} else if(blkldx == 3} {

if(cbf_cb[xBase][yBase][trafoDepth])

residual_coding(xBase, yBase, log2TrafoSize, 1)

if(cbf_cr[xBase][yBase][trafoDepth])

residual_coding(xBase, yBase, log2TrafoSize, 2)

WO 2014/071439 PCT/AU2013/001117

.58

7.4.8.1 General coding unit semantics

J

The variables TrafoCrCbHorCnt and TrafoCrCbVertCnt are deriv.ed as follows:
— Iflog2TrafoSize is equal to 5 and split_transform_flag is equal to 0, TransformldxMax
is derived as follows:

- If chroma_'forrnat_idé is equal to 1, TrafoCrCbHorCnt and TrafoCrCbVertCnt are
equal to 1.

- If chroma_format_idc is equa] to 2, TrafoCrCbHorCnt is equal to 1 and
- TrafoCrCbVertCnt is equal to 2.

— Otherwise, if chroma format_idc is equal to 3, TrafoCrCbHorCnt and
TrafoCrCbVertCnt are equal to 2.

— Otherwise, TrafoCrCbHorCnt and TrafoCrCbVertCnt are equal to 1.

The Variable TrafoCrCbCnt is derived as TrafoCrCbHorCnt * TrafoCrCbVertCnt.

The variables log2CrCbTrafoHorSize and log2CrCbTrafoVertSize are derived as follows:

— If chroma_format idc is equal to 1, log2CrCbTrafoHorSize and
log2CrCbTrafoVertSize are equal to log2TrafoSize — 1.

— Otherwise, if chroma_format_idc is equal to 2, log2CrCbTrafoHorSize is equal to
log2TrafoSize and log2CrCbTrafoVertSize is equal to min(log2TrafoSize — 1, 4).

— Otherwise, if chroma_format_idc is equal to 3, log2CrCbTrafoHorSize. and/
log2CrCbTrafoVertSize are equal to min(log2TrafoSize, 4). -

End Appendix A

WO 2014/071439

-59.

- APPENDIX B

PCT/AU2013/001117

INVOKE _TRANSFORM_TREE() ONCE PER PAIR OF CHROMA CHANNELS
FOR EACH CHROMA TRANSFORM RESULTING FROM THE INFERRED

SPLIT.

7.3.11 Transform tree syntax

transform_tree(x0, y0, xBase, yBase log2TrafoSize, trafoDepth, blkIdx,
chromaOnly) {

Descriptor

if(log2TrafoSize <= Log2MaxTrafoSize &&
log2TrafoSize > Log2MinTrafoSize &&
trafoDepth < MaxTrafoDepth && !(IntraSplitFlag && trafoDepth
&& !chromaOnly)

= 0)

spht_transform___ﬂag[x0][yO][trafoDepth]

ae(v)

if(trafoDepth == 0 || log2TrafoSize > 2) { .

if(trafoDepth == 0 || cbf cb[xBase][yBase][trafoDepth -1])

if(TrafoCrCbCnt > 1) {

cbf_cb[x0 J{ yO][trafoDepth] = 1

} else {

cbf_cb[x0][yO0][trafoDepth]

ae(v)

}

if(trafoDepth == 0 || cbf_crf xBase Il yBase][trafoDepth~11])

if(TrafoCrCbCnt > 1) {

cbf_cr[x0][yO][trafoDepth] =

} else {

cbf_cr[x0]['y0][trafoDepth]

ae(v)

}

}

if(split_transform_flag[x0][yO0][trafoDepth] || TrafoCrCbCnt > 1) {

X1 =x0+((1<< Iog2TrafoSize)>>1)

yl =y0 + ((1 <<log2TrafoSize) >> 1)

transform_tree(x0, y0, X0, y0, log2TrafoSize — 1, trafoDepth + 1, 0,
TrafoCrCbCnt > 1)

if(chroma_format_idc =2 {

transform_tree(x1, y0, x0, y0, log2TrafoSize — 1 trafoDepth + 1, 1, .

| TrafoCrCbCnt> 1)
} .

transform_tree(x0, y1, x0, yO log2TrafoSize — 1, trafoDepth+1 2,
TrafoCrCbCnt > 1)

if(chroma_format_idc !1=2) {

transform_tree(x1, y1, x0, y0, log2Traf081ze—1 trafoDepth + 1, 3,
TrafoCrCbCnt > 1)

WO 2014/071439 PCT/AU2013/001117

-60.

}

3

else-if(!split_transform_flag[x0][y0][trafoDepth } && TrafoCrCbCnt > 1) {

if((PredMode[x0][y0] == MODE_INTRA || trafoDepth != 0 ||
» cbf_cb[x0][y0][trafoDepth] || cbf_cr[x0][y0][trafoDepth]) &&
IchromaOnly)

cbf_luma(x0][y0][trafoDepth]

ae(v)

transform_unit (x0, y0, xBase, yBase, lngTrafoSize, trafoDepth, blkIdx,
chromaOnly)

}

}

7.3.12 Transform unit syntax

transform_unit(x0, y0, xBase, yBase, log2TrafoSize, trafoDepth, blkldx,
chromaOnly) {)

Descriptor

if(cbf_luma[x0][y0].[trafoDepth] | | cbf_cb[x0 j[y0][trafoDepth]| |
cbf _cr[x0][y0][trafoDepth 1) {

if(cu_qp_delta_enabled_flag && !IsCuQpDeltaCoded && !chromaOnly) {

cu_qp_delta_abs

aeg(v)

if(cu_qp_delta_abs)

cu_qp_delta_sign

ae(v)

}

if(cbf luma(x0][y0][trafoDepth])

residual - coding(x0, y0, log2TrafoSize, 0)

if(log2TrafoSize > 2) {

if(cbf_cbf x0][y0][trafoDepth])

residual_coding(x0, y0, log2TrafoSize, 1)

if(cbf_cr[x0][yO][trafoDepth])

residual_coding(x0, y0, log2TrafoSize, 2)

} else if(blkldx == 3) {

if(cbf_cb[xBase][yBase][trafoDepth])

residual_coding(xBase, yBase, log2TrafoSize, 1)

if(cbf_cr[xBase][yBase][trafoDepth])

. residual_coding(xBase, yBase, log2TrafoSize, 2)

}

WO 2014/071439 PCT/AU2013/001117

-61-

7.4.8.1 General coding unit semantics

The variables TrafoCrCbHorCnt and TrafoCrCbVertCnt are derived as follows:

~ If log2TrafoSize is equal to 5 and split transform _flag is equal to 0, TransformIdxMax
is derived as follows:

— If chroma_format_idc is equal to 1, TrafoCerHorCnt and TrafoCerVertCnt are
equal to 1.

— If chroma_format_idc is equal to 2, TrafoCrCbHorCnt is equal to 1 and
TrafoCrCbVertCnt is equal to 2.

— Otherwise, if chroma_format_ndc is equal to 3, TrafoCrCbHorCnt and
TrafoCrCbVertCnt are equal to 2. ‘ :

<

— Otherwise, TrafoCrCbHorCnt and TrafoCrCbVertCnt are equal tol.
The variable TrafoCerCnt is derived as TrafoCrCbHorCnt * TrafoCrCbVertCht.

End of Appendix B

WO 2014/071439 PCT/AU2013/001117

62-

CLAIMS:

1. A method of inverse transforming a plurality of residual éoefﬁcient arrays from a
video bitstream coﬁﬁgured for a 4:2:2 chroma format, the method comprising:

decoding a plurality of luma-res'idual coefficient arrays, wherein each luma residual
coefficient array correspondS to one 4x4 luma block of a plurality of 4x4 luma blocks, |
each 4x4 luma block being collocated with one 4x4 transform unit of a plurality of .4x4
transform units, a plurali'ty of 4x4 luﬁla b_lbcks collectively occupying an 8x8 luma region;

decoding, after the luma re‘sidﬁal coefficient arrays are decoded, a plurality of
chroma residual coefficient artayé for a first colour channel, wherein eéch chroma residual
 coefficient array corresponds to a 4x4 chroma block and each 4x4 chroma block for the
 first colour channel is collocated with two of the plurality of 4x4 transform units;

decoding, after the chroma residual coefficient arrays for the first colour channel
are decoded, a plurality of chroma residual coefficient arrays for a second colour channel,
wherein each chroma residual coefﬁcient'arfay corresponds to a 4x4 chroma block and
each chroma block for the second colour channel is collocated with two of the plurality of
4x4 transform units; and

applying an inverse transform to each of the decoded plurality of luma residual
coefﬁciént arrays, the decoded plurality of chroma rg:sidual coefficient arrays for the first
colour chénnel and the decoded plurality of chroma residual chfﬁcient arrays for the

second colour channel.

2. A method according to claim 1, wherein the number of luma residual coefficient

arrays in the plurality of luma residual coefficient arrays is four.

3. A method according to claim 1 or 2, wherein the number of chroma residual

coefficient arrays in the plurality of chroma residual coefficient arrays is two.

4. A method according to claim 1, 2 or 3, wherein one residual coefficient array

includes all coefficients necessary for inverse transforming one 4x4 block.

5. A method of forward transforming a plurality of residual coefficient arrays into a -

video bitstream configured for a 4:2:2 chroma format, the method comprising: -

WO 2014/071439 PCT/AU2013/001117

-63-

applying a forward transform to each of a ﬁlmality of luma residual coefficient
arrays, a plurality of chroma residual coefficient arrays for a first colour channel and a
plurality of chroma residual coefficient arrays for a second colour channel;

encoding the plurality of luma residual coefficient arrays, wherein each luma
residual coefficient array corresponds to one 4x4 luma block of a plurality of 4x4 luma
blocks, each 4x4 luma block being collocated with one 4x4 transform unit of a plurality of
4x4 transform units, a plurality of 4x4 luma blocks collectively occupying an 8x8 luma
region; = |

encoding, after. the luma residua.l‘ coefficient arrays are encoded, the plurality of
chroma residual coefficient arrays for the first colour channel, wherein each chroma
residual coefficient array corresponds to a 4x4 chroma block and each 4x4 chroma block
for the first colour channel is collocated with two of the plurality of 4x4 transform units;
and

encoding, after the chroma residual coefficient arrays for the first colour channel

- are-encoded, the plurality of chroma residual coefficient arrays for the second colour

channel, wherein each chroma residual coefficient array corresponds to a 4x4 chroma
block and each chroma block for the second colour channel is collocated with two of the

plurality of 4x4 transform units:

6. A method of decoding a luma transform and plurality of chroma transforms _ffom a
video bitstream, the plurality of chroma transforms containing chroma data for a single
colour channel, the method comprising: |

determining a value of a luma transform skip flag for the luma transform, the luma
transform skip flag indicating whether data of the luma transform is encoded in the video
bitstream as a spatial domain representation; |

determining a value of a chroma transform skip flag for a first chroma transform of
the plurality of chroma transforms, the chroma transform skip flag indicating whether the
data of the chroma transform is encoded in the video bitstream as a spatial domain
representation; and |

decoding the Juma transform according to the determined value of the luma
transform skip flag and the plurality of chroma transforms according to the determined

value of the chroma transform skip flag for the first chroma transform.

WO 2014/071439 PCT/AU2013/001117

-64 -

7. A method of decoding a transform unit havmg a luma transform and two chroma
transforms from a video bitstream, the two chroma transforms contammg chroma data for
a single colour channel according to a 4:2:2 chroma format, the method comprising:

' determining a value of a luma transform skip flag for thr: luma transform, the luma .
transform skip flag indicating whether data of the luma transform is encoded in the video
bitstream as a spatial domain representation; |

determining a value of a chroma transform skip flag for a first chroma transform of
the two chroma transforms, the chroma transform skip flag indicating whether the data of
the chroma transforms is encoded in the video bitstream as a spatial domain representation;,
a_nri' . :

decoding the luma transform according to the determined value of the luma
transform skip flag and decoding the two chroma transforms according to the determinod

value of the chroma transform skip flag for the first chroma transform.

8. A method of decoding a luma transform and plurality of chroma transforms froma
video bitstream, the plurality of chroma transforms containing chroma data for a single
colour channel, the method comprising: |

splitting at least one rectangular one of the transforms into a plurality of square
: _transforms; and | |

decoding the square transforms.

9. A method according to claim 8, wherein the splitting comprises splitting all
rectangular transforms into square transforms such that the decoding only operates upon

square transforms.

10. A method of decoding a transform unit containing chroma residual coefficients
from a video bitstream, the transform unit corrtaining at least one chroma residual
coefficient array associated with a single chroma channel, the method compr_ising:
determining a size of the transform unit, the size being related to a hierarchical
level of the transform unit in a corresponding coding unit; |
decoding from the video bitstream the at least one chroma residual coefficient array
using a predetermined maximum number of transforms for the chroma channel of the

transform unit;

WO 2014/071439 PCT/AU2013/001117

-65-

selecting an inverse transform for the decoded chroma residual coefficient arrays,
the inverse transform being selected from a predetermined set of inverse transforms; and -
applying the selected inverse transform to each of the chroma residual coefficient

arrays to decode chroma residual samples for the chroma channel of the transform unit.

11. A method for decoding residual data for a region in a transform unlt (TU)ina ‘
colour channel encoded in a video bitsfream, the method comprising:

first determining from the bitstream that a transform skip flag is enabled';

second determining if the region is a first region in the colour channel and in the
“ transform unit (TU) having a coded block flag (CBF) value of one, and if so, decoding and
storing a value of the transform skip flag, otherwise retrieving the value of the transform
skip _ﬂag; and

decoding the residual data of the region using the value of the transform skip flag.

12. A method acéording to claim 11, wherein the first determining step further
comprises determmmg that a coding unit transform quantisation bypass ﬂag is not enabled

and the transform size is 4x4.

13. A method of encoding a luma transform and plurality of chroma transforms into a
video bitstream, the plurality of chroma transforms containing chroma data for a single
colour channel, the method comprising:

determining a value of a luma transform skip flag for the luma transform, the luma
transform skip flag indicating whether data of the luma transform is to be encoded in the
video bitstream as a épatial domain representation; ' ’

determining a value of a chroma transform skip flag for a first chroma transform of
the plurality of chroma transforms, the chroma transform skip flag indicating whether the
data of the chroma transform is to be encoded in the video bitstream as a spatlal domain
representation; and -~

encoding the luma transform according to the determined value of the luma

transform skip flag and the plurality of chroma transforms according to the determined

value of the chroma transform skip flag for the first chroma transform.

WO 2014/071439 PCT/AU2013/001117

-66-

14. A method of encoding a transform unif having a luma transform and two chroma
transforms into a video bitstream, the two chroma transfdrms containing chroma data for a
single colour channel according to a 4:2:2 chroma format, the method comprising: |

determining a value of a luma transform skip flag for the luma transform, the luma
transform skip flag indicating whether data of the luma transform is to be encoded into the
video bitstream as a spatial doniain reﬁresentation;

determining a value of a chroma transform skip flag for a first chroma transform of
the two chroma transforms, the chroma transform skip flag indicating whether the data of
the chroma transforms is to be encoded into the video bitstream as a spatial domain
representation; and o

encoding the luma transform according to thé determined value of the luma -
transform skip flag and encoding the two chroma transfgrms according to the determined

* value of the chroma transform skip flag for the first chroma transform.

15. A video decoder configured to perfoi‘m the method of any one of claims 1 to 4
and 6 to 12. '

16. A video encoder configured to perform the method of any one of claims 5, 13
or 14.

'17. - A computer readable storage medium having a program recorded thereon, the
program beinvg executable by computerised video apparatus to decode a video bitstream,
the program being executable by the apparatus to perform the method of any one of

claims l1to4and 61to 12.

WO 2014/071439

Source device
110

Video source
112

|

Video encoder
| 114

l _

Trahsmitter
116

1721

PCT/AU2013/001117

Destination device
130

Display dévice
136 -

T

Video decoder
134

!

Receiver

132

WO 2014/071439 PCT/AU2013/001117

2/21

7 N"T N

7 -~
' (Wide-Area) !
) Communications .
" Network 220 L__
Printer 215 |a—— -
Microphone ,{ - 224 \\
280 ’ L
. | / 221 TN

217

N
bis
iy

(Local-Area)
é Communications

Network 222 /

—

Y

Ext.

Modem 22 } - —
216 ,

/, /u

/ 201
A 4 3
Audio-Video ||I/O Interfaces|| Local Net. Appzl.:”l;rog gtorgge
Interface 207 208 || lface 211 £9 || Devices
‘ HDD 210 | 409

o i i I
B T P

Processor I/0 Interface Memory Optical Disk
206 213 - 206 Drive 212

L 3
Keyboard_Z_OQJ . 7 L ‘\\

Scanner 226 Disk Storage
(203 Medium 225
Camera 227 '

Fig. 2A

WO 2014/071439 PCT/AU2013/001117

3/21
234 233
. e R
Instruction (Part 1) 228 —_— Data 235
Instruction (Part 2) 22 Data 236
231 L= ; 122 |Z§- - 232
Instruction 230 | Data 237
. o
'ROM 249
posT| | BiOS Bootstrap Operating
- 250 251 Loader 252 System 253
Input Variables 254 O‘utput‘VariabIes 261
229 262
256 263
257 264
Intermediate Variables 258
| 259 | | 266 |
I 280 I[267 |

219 »\4 204
t/218

Y

20

20 Interface 242

241 248
, Reg. 244 (Instruction)
Control Unit 239 '
Reg. 245
ALU 240 Reg. 246 (Data)

Fig. 2B

PCT/AU2013/001117

WO 2014/071439

4/21

_ € m_.|._ —» uojewnsy |e
VLT TN UOIJON
_ Emé |
A R soyng owely » uonjesuadwo) Z28¢
uno0|9aQ UonoW — | N
oLe~] o ose | xn [~
| > oce o
A4 - uoloipasd -
08¢ awe.lj-elu|) |
. /BYE xXn\ w.nm
wmmd (A%} ppe
8ct 9 |e T .
wioysuesy [T Bujeos ssnuend 0cE
SSIaAY| | ®@sieAu| pue s|eog [*7] T2E wiojsuel]
99¢ ‘ XNy
<
o 45> v oge che 09€
| R 74 —
wealsiq AW . AN oy¢
papooug _Manoww”__wm_, ’ 14512 [os3u09 diys
| I Lpge ese wuojsues |

~—

ejeq
) swei

PCT/AU2013/001117

WO 2014/071439

5/21

bel
—

801

: 4%
sawe.
papooaq
— v ‘Bi.-
T w 7% ~ v Pl
! _ uonesuadwo) :
Buiyoojqeq 194ng swield m “uonop q.v
1 09t | oY | gzp
_ N XN\ |
acv W H
» uonoipsud dlv ZSy
8SY | swel-enu| ‘
1 ooy — o
: %
B LA4
— — % | ZLE
444 %42 vSY Nf4%
e osienu] esJanu| { Adonuz Pepodug
I , 0S¥
A’
it | 141914

WO 2014/071439

501 X

502 —~_0O

6/21

O
X X
X X
9]

X X
X X
©
X X
Fig. 5A
® X
® - X
& X
® X
® X
® X

PCT/AU2013/001117

500

510

m

SONWN
%///ﬂ//%“%,‘

Fig. 6A

WO 2014/071439

PCT/AU2013/001117

8/21

Bin
B |
w -L

(]

1
7.

llllllllllll

F——— = — ——— -

WO 2014/071439 PCT/AU2013/001117

. 9121

704

708 ° . ‘ °
,710 . ' ' A
,. 2 1 ' N\ 9

712

1 1 1\ 1
v v v v
4 5 6 7

e

> 12>

WO 2014/071439 PCT/AU2013/001117

1021

0 : 800
Vi O'ciliad

T\ /1 10'0 0

h 2 | 6 |- 8810 2812

WO 2014/071439 PCT/AU2013/001117

11/21

T | —
- ~
- TN
- ~N
'S [cu|cv| TTM TT2 TT3 TT4
910 8 914 916 = 918 920 922
912 | ‘_ -
Fig. 9A
932 | 4
2 o | 930
TT 'f/
/ | RN
/ 948 . N
/ 2 946 - N o
C ~

S |CU1|CU2|CV1|CV2|CY TU

2 8 - N _
o2 -7 , A

940 -~ | 952 ~
- : N
TS| Y [Ts| U1 U2 |Ts| V1 V2
< < < < <
- 954 . 956 958 960 962

964 - 966 - 968

Fig. 9B

WO 2014/071439 PCT/AU2013/001117

12121

9102 9100
T —
- ~ - 0126
_ - | ~<
-— 7 o \\

CU[CV| (O)TT1 | (O)TT2 | (©)TT3 | (C)TT4 |CY| LTU

R 4 Lo

|

9110 { 9114 9116 9118 9120 9122 /.
o112 /
TS| Y
Fig. 9C 9127 9128
9132 9162 |
1 CTT1 9130 \—CTT[Z;.4] 9160
/ \ / \
/ \ / \
/ 9144 v / 9174 \
I 2 A \
culev| ctu | cujcv| cTU
SN R
9142 // 9146 \\ 9172 | 9176 |
/ | I \
TS| u |Ts| v | u v
9148 9150 9151 9152 9180 9182

Fig.9D ° Fig. 9E

WO 2014/071439 PCT/AU2013/001117

13/21

1000

1002
.

Determine transform

unit size
” t'fyl . 1004
entify maximum
number of forward |
. transforms
- l | 1006
Select forward —~—/
transform
! 1008
Apply forward [~/
transform o
£ d.l " 1010
- Encode chroma
residual coefficient 1ot
arrays ‘
End

‘Fig. 10

WO 2014/071439 PCT/AU2013/001117

14/21

1100

o
1102
‘ i

R Yy
Determine transform
unit size

l - 1104

Identify maximum
number of inverse
transforms

_ Y — 1106
Decode chroma

residual coefficient
' arrays

L 1108

Select inverse —~/
transform
l : 1110
Apply inverse ~/
transform
End

Fig. 11

PCT/AU2013/001117

WO 2014/071439

15/21

1200

1200

1200

P P _'/
b B Y B
Poae . el
ey . ot
.....
uuuuuu kY Stea.
~ . .
a L Y - 4~
< kK <«
.. %
Vv, . See.
Ten. o ..
.....
. m e
« Yy ™ & =
4. K B 1S
.. "\ ..
Yoy N S
£y O
..... Y Sreenl
e, . -
< .o L9} .o
< <
b -
3 h \ h, \
% . [\ “
1] 'y Y v Y
% .) 2
S) . . .\ " 5
. 1Y) ' Y .
. . . . * . .
Y () Y Y . “
Y 5 \ p .. :
" o .
R v
. h 3 * 3 "
. " ‘ S . _)
:) “ Y . K Y
.
. kY Y
. . Y . . [} .
. . . . * . .
v- [y Y . -r . .
. . . [y . T
'y . Y
A 4 Y Y Y Y Y Y \ 4

X O
o oo \ e . o
3 . 5 o .~
.. S . . .~
< ~s .
., L . b .
.~ . . . -
< S .
. Y .
- N
Qs . e, .
QY . NS -
- -, o,
s w~d = =
pl - h N
. D \ .. -
. . .
.
Qe e . S
4o . \ .~
. . .
Y . b oS
\ S D . s .
- R . ~. D
- N - A
ceoctad crecdesd

1203

Fig. 12C

1202

Fig. 12B

1201

Fig. 12A

WO 2014/071439 PCT/AU2013/001117

16/21
- 1300
—
| 1302
Determine luma [~ ,
transform skip flag '
value
Deterrm l - 1304
etermine chroma
transform skip flag ~
~ value
= dl I 1306
ncode luma
transform and chroma —~
.transform
End

Fig. 13

WO 2014/071439

17/21

1400

’,_/

1402

- Determine luma
transform skip flag
 value

)

l

1404

Determine chroma
transform skip flag
- value

l

Decode luma
transform and chroma

transform

1406

,

Fig. 14

PCT/AU2013/001117

WO 2014/071439 PCT/AU2013/001117

18/21

Case ‘1 :
- 8x8 TU

..

Four (blkldx=1) (blkldx=3) (blkldx=3)|
4x4 TUs g - He [Tg

(order 1) |bkioe2)|okidx=3)| | fokdx=3)| | (blkidx=3)

Case 2:

..

Case 3:. . 1 2 G 3 4
Four | - |(blkldx=0){(blkldx=1) (blkidx=1) (bikldx=1)|

4x4 TUs 5 g T~ (Tg

(order 2)) e I e I (e

~

1500

Fig. 15

s

- >\ -

-

m/

Fig. 16

WO 2014/071439 PCT/AU2013/001117

20/21

1700
o —
<:E§§E:> 1702

Transform skip FALSE
supported test step

l TRUE 1704

" First true CBF
region in colour
\ channel test step

FALSE.

TRUE
1710 : 1706
Retrieve transform |~ | Decode transform |~/
~ skip flag value . skip flag
l 1708
Store transform skip |—/
flag value '

ff | C1712

Decode residual data

Fig. 17

WO 2014/071439

..

C‘ase 2.
- Four
- 4x4 TUs

1800

21/21

PCT/AU2013/001117

INTERNATIONAL SEARCH REPORT International application No.
PCT/AU2013/001117

A. CLASSIFICATION OF SUBJECT MATTER
HO4N 7/26 (2006.01) HO4N 7/14(2006.01) HO4N 21/20 (2011.01) HO4N 21/21(2011.01) HO4N 7/00(2011.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI, EPODOC:/CC/IC HO04, /CC/IC GO3B, /CC/IC GO6T, /CC/IC HOIL, keywords (video coding, HEVC, H.265, chroma
residual, 4x4, 2x2, square transform unit, splitting rectangular transform units, transform unit size) and the like terms.
Google Patents, Google Scholar, Patent Lens: Keywords same as above.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to
claim No.

Documents are listed in the continuation of Box C

Further documents are listed in the continuation of Box C See patent family annex
* Special categories of cited documents:
"A" document defining the general state of the art which is not ~ "T" later document published after the international filing date or priority date and not in
considered to be of particular relevance conflict with the application but cited to understand the principle or theory
undetlying the invention
"E" earlier application or patent but published on or after the "X" document of particular relevance; the claimed invention cannot be considered novel
international filing date or cannot be considered to involve an inventive step when the document is taken
alone
"L document which may throw doubts on priority claim(s) or "y" document of particular relevance; the claimed invention cannot be considered to
which is cited to establish the publication date of another involve an inventive step when the document is combined with one or more other
citation or other special reason (as specified) such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition . .
or other means & document member of the same patent family

"p" document published prior to the international filing date
but later than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
17 December 2013 17 December 2013

Name and mailing address of the ISA/AU Authorised officer

AUSTRALIAN PATENT OFFICE Marthinus Van Der Westhuizen

PO BOX 200, WODEN ACT 2606, AUSTRALIA AUSTRALIAN PATENT OFFICE

Email address: pct@ipaustralia.gov.au (ISO 9001 Quality Certified Service)

Facsimile No.: +61 2 6283 7999 Telephone No. 0262832283

Form PCT/ISA/210 (fifth sheet) (July 2009)

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU2013/001117

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

BROSS, B., et al., "High Efficiency Video Coding (HEVC) text specification draft 9",
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11 11th Meeting: Shanghai, China, 10-19 October 2012,
Document JCTVC-K1003_v13. [Retrieved on the 29th October 2013]. Retrieved from
the Internet:

N I I R R R R O R e e I R e e e e i L R G Y e e D

Title, Table 6-1, Sections 0, 6-8, pages 2, 11, 18, 51-52, 93, 147-148 1-7, 11-17

A Whole of document 8-10
US US2012/0177116 A1 (PANUSOPONE et al.) 12 July 2012

X Abstract, Fig. 3C, paragraphs [0050-0054] 8-9
US 2012/0183080 A1 (ZHOU) 19 July 2012

X Abstract, Fig. 4,6, paragraphs [0006][0025-0026][0029] 10

Form PCT/ISA/210 (fifth sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.
PCT/AU2013/001117

Box No.II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following
reasons:

1. |:| Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

the subject matter listed in Rule 39 on which, under Article 17(2)(a)(i), an international search is not required to be
carried out, including

2. I:' Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. |:| Claims Nos:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See Supplemental Box for Details

As all required additional search fees were timely paid by the applicant, this international search report covers all
searchable claims.

As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite
payment of additional fees.

As only some of the required additional search fees were timely paid by the applicant, this international search report
covers only those claims for which fees were paid, specifically claims Nos.:

1 [[

4. |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable,

the payment of a protest fee.

protest fee was not paid within the time limit specified in the invitation.

I:l The additional search fees were accompanied by the applicant's protest but the applicable
|:| No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (third sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.
PCT/AU2013/001117

Supplemental Box

Continuation of: Box III

This International Application does not comply with the requirements of unity of invention because it does not relate to one
invention or to a group of inventions so linked as to form a single general inventive concept.

This Authority has found that there are different inventions based on the following features that separate the claims into distinct
groups:

o (laims 1-5, 15-17 are directed to the transforming of residual coefficient arrays from a video bitstream configured for a 4:2:2
chroma format wherein the luma and chroma blocks are collocated with their respective transform units. The feature of the
means of transforming the residual coefficient arrays for a 4:2:2 format wherein the luma and chroma blocks are collocated
with their respective transform units is specific to this group of claims.

o (laims 6-7, 11-14 are directed to coding luma and chroma transforms from a video bitstream using a transform skip flag. The
feature of the use of the transform skip flag is specific to this group of claims.

e (laims 8-9 are directed to decoding luma and chroma transforms from a video bitstream by splitting at least one of the
rectangular transforms into a plurality of square transforms and decoding the square transforms. The feature of the means to
decode the luma and chroma transforms by splitting at least one of the rectangular transforms into a plurality of square
transforms is specific to this group of claims.

¢ (laim 10 is directed to decoding a transform unit from a video bitstream by determining a size of the transform unit where the
size is related to a hierarchical level of the transform unit in a corresponding coding unit. The feature of the means to determine
the size of the transform unit by consideration of the hierarchical level of the corresponding coding unit is specific to this group
of claims.

PCT Rule 13.2, first sentence, states that unity of invention is only fulfilled when there is a technical relationship among the
claimed inventions involving one or more of the same or corresponding special technical features. PCT Rule 13.2, second sentence,
defines a special technical feature as a feature which makes a contribution over the prior art.

When there is no special technical feature common to all the claimed inventions there is no unity of invention.

In the above groups of claims, the identified features may have the potential to make a contribution over the prior art but are not
common to all the claimed inventions and therefore cannot provide the required technical relationship. The only feature common to
all of the claimed inventions and which provides a technical relationship among them is a method of decoding luma and chroma
transforms from a video bitstream.

However this feature does not make a contribution over the prior art because it is disclosed in:

D2: BROSS, B, et al., "High Efficiency Video Coding (HEVC) text specification draft 9", Joint Collaborative Team on Video
Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 11th Meeting: Shanghai, China, 10-19 October 2012,
Document, JCTVC-K1003 v13. [Retrieved on the 29th October 2013]. Retrieved from the Internet:

htip/ehends i-sudpans.onfict/dos end user/docoments/ 1 Shanchai/wel VICTVO-KIB0O3I-vis zip

Therefore in the light of this document this common feature cannot be a special technical feature. Therefore there is no special
technical feature common to all the claimed inventions and the requirements for unity of invention are consequently not satisfied a

posteriori.

Form PCT/ISA/210 (Supplemental Box) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members PCT/AU2013/001117

This Annex lists known patent family members relating to the patent documents cited in the above-mentioned international search
report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document/s Cited in Search Report Patent Family Member/s
Publication Number Publication Date Publication Number Publication Date
US US2012/0177116 Al 12 Jul 2012 None
US 2012/0183080 Al 19 Jul 2012 None
End of Annex

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.

Form PCT/ISA/210 (Family Annex)(July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - claims
	Page 67 - claims
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - wo-search-report
	Page 90 - wo-search-report
	Page 91 - wo-search-report
	Page 92 - wo-search-report
	Page 93 - wo-search-report

