US 20130247061A1

United States

(19)
a2y Patent Application Publication (o) Pub. No.: US 2013/0247061 A1l
Kiehn 43) Pub. Date: Sep. 19, 2013
(54) METHOD AND APPARATUS FOR THE (52) US.CL
SCHEDULING OF COMPUTING TASKS USPC e 718/104
(75) Inventor: Max Kiehn, Aurora (CA) 7) . . ABSTRACT
Described herein are methods and related apparatus for the
) allocation of computing resources to perform computing
(73) Assignee: ATI TECHNOLOGIES ULC, tasks. The methods described herein may be used to allocate
Markham (CA) computing tasks to many different types of computing
resources, such as processor cores, individual computers, and
(21) Appl. No.: 13/424,097 virtual machines. Characteristics of the available computing
ppi. o ? resources, as well as other aspects of the computing environ-
ment, are modeled in a multidimensional coordinate system.
(22) Filed: Mar. 19,2012 Each coordinate point in the coordinate system corresponds
to a unique combination of attributes of the computing
resources/computing environment, and each coordinate point
Publication Classification is associated with a weight that indicates the relative desir-
ability of the coordinate point. To allocate a computing
(51) Int.ClL resource to execute a task, the weights of the coordinate
GOG6F 9/50 (2006.01) points, as well as other related factors, are analyzed.
Operating System
220
Windows
222
254 e
N\ Wegt 1
[1Pv6, Windows, Comp1]
[IPv4, Windows, Comp1] | 4
I |
[|
| —— 256
! Weight; -1 Ve
[IPv6, Linux, Comp1]
252—~__|| Weight: 10
[1Pv4, Linux, Comp1]
T
IPv4 : IPVG\
210 |
~~ |
~_ 1 .
~e -
1P Version 212

238 Hosthname

US 2013/0247061 A1

Sep. 19,2013 Sheet 1 of 10

Patent Application Publication

71T (Aessaoau §i)
yse} Bunndwod Ixau JoJ Y

»

Qg1 UONNIaXo JO JNSal
01 buipJodoe syybiam a3epdn

»

PZI 92Jnosad pojosfes
1@ yse3 bunndwod andexg

»

2T ¥sey Bunnduwoo aynoaxs
03 804nosaJ bujndwiod 109|9S

»

0z1 “isex bunndwoo
buipJebau uonewojul uiRlqO

00T

poliad swiy 395 J0) Uem

»

4

syse} bupndwod
3INDaXa pue $Sa001d

L ___ L

L __

[opow Buinpayds azijeRiu]

»

|
_
|
_
|
|
_
|
_
|
|
_
|
_
|
|
sybiom JuawaIdaQg _
|
_
|
|
_
|
|
|
_
|
_
|
|
|
|

t

08T

Patent Application Publication Sep. 19, 2013 Sheet 2 of 10

US 2013/0247061 A1

122

#

Identify target axis that includes
unique identifiers of computing
resources
152

!

Determine which coordinate points in
coordinate system meet the
requirements of the computing task

154
!

From the coordinate points that meet
the requirements of the computing
task, determine the coordinate point
with the highest weight

156

!

Select the identifier from target axis
that corresponds to the coordinate
point with the highest weight

158

FIG. 1B

US 2013/0247061 A1

Sep. 19,2013 Sheet 3 of 10

Patent Application Publication

aweu)soH 8€e

V¢ Ol

UOISJaA dI
[4y4

14Y4 01e
PAdI

9AdI

Xnun

NNN\/AU

SMOPUIM

ONN\/\<

wsAs bunessdo

US 2013/0247061 A1

Sep. 19,2013 Sheet 4 of 10

Patent Application Publication

sweujsoq 8€¢

dc Old

oz |__L-bem

[1dwo) xnur ‘gad]

Xnur

T~

UOISIaA dI

0T¢

|
[Tdwop “xnun “pAdt]
] _za_es

[7dwo) ‘smopuim ‘pAdI]
G Jybiom

|
[1duwo) ‘smopuim ‘9Adr]
T- ‘Wbiom
. T4

NNN\/AU

omm\./\«

SMOpPUIM

Wia1sAS bunesad

US 2013/0247061 A1

Sep. 19,2013 Sheet 5 of 10

Patent Application Publication

sweulsoH 87

[zdwo) “xnur] ‘oad1]
99—~ 1-:biom

T~a UOISIOA dI

[zdwop ‘xnur ‘pad]
b ubom

9AdI 14 Y4
5
T4
_

[7dwo) ‘sMopuim ‘pAdI]
§ :ubiom 09¢

P9 —

[zdwo) ‘smopuip ‘9AdI]
T- Jybiem

NNN\/AU

O—~vez

Xnur

oc¢ Old

SMOPUIM

ONN\/.\<

wajsAs bunesadp

US 2013/0247061 A1

Sep. 19,2013 Sheet 6 of 10

Patent Application Publication

oweulsoH 8€7

—
~

~

[444

-

_I//
_
_
_
_
_
_
~L

[edwio xnur “pAdI]

[edwo) ‘xnurt ‘9AdT]
L Wbim

b oM #// rie

[gdwo) ‘smopuip ‘ondI]
TT :14Biom

44
1dwoy
_ 0Lz
[dwiop ‘smopuipt ‘bAd]]
b bm

vmwl\mu

NNN|/AU

ONN\/\<

Xnup

SMOpUIM

wajsAs bunesado

ac oli4

UOISIDA dI

US 2013/0247061 A1

sweusoy 8£Z

¢dwo)’

_ ~

l9£Z

[ydwop ‘xnur ‘oad]
S ybiam

¢

98¢

[duio) ‘smopuim ‘IdT]
T- ‘Wbiom

1414 l\l

Sep. 19,2013 Sheet 7 of 10

Patent Application Publication

T

|
|
| 8¢
|

b ubm
[
pET _

NQEAUUU
_

|
[pdwop ‘smopuim ‘padI]
I- "z@_@s

Y

08¢

[ydwoy ‘xmur ‘pAd]] f

NNN\/ﬁu

ONN\./\<

wajsAs bu

Xnup

SMOPUIM

nesado

3¢ 'Ol

UOISJAA dI

US 2013/0247061 A1

Sep. 19,2013 Sheet 8 of 10

Patent Application Publication

08¢ D J8Indwio) 1s9]
—= Jandwo) 159
ozg g-einduoossel
95€ —
abe10s JUBSISIad (424
welbolid
uonndexg 1S9
bat NddD Aowsp
09¢€
zs€ 85€
/1 |esoydiiad 4/1 YHoMIaN
v Jeindwo) 1sa1 _
0S€

-
T0€

SyIomaN

06€

g sndwo) 1891

00€

9T¢ —
obe103s JuasISIdd (44>
welboud
bulinpayas 1saL
1749
413 81¢
4/1 |elayduad 4/ YHOMIBN
Jayndwo) juawabeuep s8]
0TE

€ Ol

US 2013/0247061 A1

Sep. 19,2013 Sheet 9 of 10

Patent Application Publication

v Old

o/t 2 Uy 0L
210D 210D 310D 810
Piv
97 09t ovv
$5920.d §59004d
8SH 95p 424
$S320.d $S3201d 3|npow buinpayas
PSb Sk
SS801d || Ssenoid aoeds [ouLS),
aoeds Jasn oSt
0z Alowsp

2IAQ Bunndwo)

0Tt

US 2013/0247061 A1

Sep. 19,2013 Sheet 10 of 10

Patent Application Publication

G Old

WA WA WA WA
WA WA WA WA
0cS ~ mmc_;um_»_ [enJip ~
|h_ W 00S
7S
JOAIDS
v - 05 -
JOAISS JoAISS
¢is welbouid
buiinpayds qor
WAJSAS
oT< Jandwio) bunndwo)
Buiinpayos qor Pnop

US 2013/0247061 Al

METHOD AND APPARATUS FOR THE
SCHEDULING OF COMPUTING TASKS

FIELD OF INVENTION

[0001] The features described herein relate to the allocation
of computing resources to perform computing tasks.

BACKGROUND

[0002] A common problem that is faced in many different
computing environments is how a limited amount of
resources should be allocated, in order to efficiently and
effectively perform computing tasks. In the cloud computing
environment, as one example, it can be difficult to determine
which virtual machine out of a number of available virtual
machines is best-suited to execute an incoming job. As
another example, in the context of a multi-core processor, it
can be challenging to determine the most effective way to
assign the cores to execute different blocks of instructions.
[0003] Current resource allocation systems possess a num-
ber of limitations. For example, many current systems require
computing resources to be modeled in an inflexible fashion,
so that changes in the way that resources are modeled are
difficult to implement. Additionally, in many systems, the
performance of resources over time is not monitored (or is
monitored in an ineffective way), such that the systems are
unable to react to changing conditions at the different
resources. Thus, the technologies described herein, which
overcome the above-mentioned issues and well as other
related issues, would be advantageous.

SUMMARY OF EMBODIMENTS

[0004] Described herein is a method for allocating comput-
ing tasks for execution by computing resources. The method
includes storing, in a memory device, information that
describes a plurality of computing resources. The information
that describes the computing resources is organized as a mul-
tidimensional coordinate system that includes a plurality of
coordinate points. Each of the coordinate points corresponds
to a computing resource from the plurality of computing
resources, each of the coordinate points corresponds to a
combination of attributes of the computing resource to which
the coordinate point corresponds, and each of the coordinate
points is associated with a weight. The method further
includes receiving, at a processor, information that defines a
computing task. The information that defines the computing
task includes constraint information that defines constraints
on computing resources on which the computing task can be
executed. The method further includes selecting, at the pro-
cessor, a computing resource from the plurality of computing
resources based on the information that describes the plural-
ity of computing resources and the constraint information,
and also includes executing, at the selected computing
resource, the computing task.

[0005] A system for allocating computing tasks for execu-
tion by computing resources includes a plurality of comput-
ing resources, at least one memory device, and at least one
processor. The at least one memory device is configured to
store information that describes the plurality of computing
resources. The information that describes the computing
resources is organized as a multidimensional coordinate sys-
tem that includes a plurality of coordinate points. Each of the
coordinate points corresponds to a computing resource from
the plurality of computing resources, each of the coordinate

Sep. 19,2013

points corresponds to a combination of attributes of the com-
puting resource to which the coordinate point corresponds,
and each of the coordinate points is associated with a weight.
The at least one processor is configured to receive informa-
tion that defines a computing task. The information that
defines the computing task includes constraint information
that defines constraints on computing resources on which the
computing task can be executed, and to select a computing
resource from the plurality of computing resources based on
the information that describes the plurality of computing
resources and the constraint information. The selected com-
puting resource is configured to execute the computing task.
[0006] A non-transitory computer-readable medium has
instructions stored hereon which, when executed by at least
one processor, cause the at least one processor to perform a
method for allocating computing tasks for execution by com-
puting resources. The method includes the at least one pro-
cessor storing, in a memory device, information that
describes a plurality of computing resources. The information
that describes the computing resources is organized as a mul-
tidimensional coordinate system that includes a plurality of
coordinate points. Each of the coordinate points corresponds
to a computing resource from the plurality of computing
resources, each of the coordinate points corresponds to a
combination of attributes of the computing resource to which
the coordinate point corresponds, and each of the coordinate
points is associated with a weight. The method further
includes the at least one processor receiving information that
defines a computing task. The information that defines the
computing task includes constraint information that defines
constraints on computing resources on which the computing
task can be executed. The method further includes the at least
one processor selecting a computing resource from the plu-
rality of computing resources based on the information that
describes the plurality of computing resources and the con-
straint information, and the at least one processor executing
the computing task at the selected computing resource.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] A more detailed understanding may be had from the
following description, given by way of example in conjunc-
tion with the accompanying drawings wherein:

[0008] FIGS. 1A-1B show a method for allocating a com-
puting resource to execute a computing task;

[0009] FIGS. 2A-2E show an example of a multidimen-
sional coordinate system that may be used with the method of
FIGS. 1A-1B;

[0010] FIG.3 shows anexample of a computing system that
may be used for the allocating of computing resource to
execute computing tasks;

[0011] FIG. 4 shows an example of a computing device that
may be used for the allocating of computing resource to
execute computing tasks; and

[0012] FIG. 5 shows an example of a cloud computing
system that may be used for the allocating of computing
resource to execute computing tasks.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

[0013] Described herein are methods and related apparatus
for the allocation of computing resources to perform comput-
ing tasks. The methods described herein, such as the method
shown in FIGS. 1A-1B, may be used to allocate computing

US 2013/0247061 Al

tasks to many different types of computing resources, such as
processors, processor cores, individual computers, and vir-
tual machines. As described in further detail below, attributes
of the available computing resources are modeled in a multi-
dimensional coordinate system. Each coordinate point in the
coordinate system corresponds to a unique combination of
attributes of the computing resources, and each coordinate
point is associated with a weight that indicates the relative
desirability of the coordinate point. The weights are adjusted
whenever a task is completed, to indicate whether the task
was completely successfully, thereby ensuring that better
computing resource (i.e., those where tasks are typically
executed successfully) are associated with higher weights
and that less desirable computing resources are associated
with lower weights. Additionally, weights are periodically
lowered, to ensure that the weights represent recent perfor-
mance, as opposed to past performance. To allocate a com-
puting resource to execute a task, the weights of the coordi-
nate points, as well as other related factors, are analyzed.

[0014] As used herein, the term “computing resource”
includes but is not limited to a resource such as a processor
(such as but not limited to a central processing unit (CPU) or
graphics processing unit (GPU)), a processor core (in a pro-
cessor such as but not limited to a CPU or GPU), a computer,
a virtual machine, or any other computing device or virtual
representation of a computing device. The term “computing
task” as used herein is a task, action, or series of actions that
can be executed by a computing resource. Examples of com-
puting tasks include but are not limited to an executable
program or script, a procedure call or function, a macro, a
thread or process, a job, an application, or a block of proces-
sor-executable instructions. Alternatively or additionally, a
computing task may be a software test application or a test
script, such as a benchmarking application or unit test.

[0015] In the method of FIGS. 1A-1B, a computing
resource is allocated out of a number of available computing
resources, and assigned to perform a computing task. To
perform the method of FIGS. 1A-1B, a data structure (re-
ferred to herein as the “scheduling model”) is used to describe
the available computing resources, as well as other related
aspects of the environment. In the scheduling model, the
available computing resources are modeled in terms of a
multidimensional coordinate system that is made up of two or
more axes or dimensions. Each axis in the coordinate system
relates to some attribute or aspect of the computing resources,
and each point on each axis represents a particular instance of
that attribute or aspect. As one example, the method of FIGS.
1A-1B may be used in the context of a distributed software
testing environment. The testing environment may be com-
posed of a number of different test computers, each of which
has different characteristics, such as the type of CPU in the
computer and the operating system running on the computer.
In this example, the coordinate system in the scheduling
model may include a “type of CPU” axis, and the points on
this axis might be “32-bit” and “64-bit.” As another example,
one of the axes in the scheduling model might be labeled as
“type of operating system,” and the points on this axis might
be “Linux” or “Windows.” Each coordinate point in the mul-
tidimensional coordinate system corresponds to a different
possible combination of attributes, based on the axes and the
points on the axes. The following table (Table 1) shows an
example of how this may be illustrated, using the above
example that includes a “type of CPU” axis and “type of
operating system” axis:

Sep. 19,2013

TABLE 1
32-bit 64-bit
Linux [32-bit, Linux] [64-bit, Linux]
Windows [32-bit, Windows] [64-bit, Windows]
[0016] In Table 1, the X axis corresponds to the “type of

CPU” axis and the Y axis corresponds to the “type of operat-
ing system” axis.

[0017] The scheduling model is defined such that, for at
least one of the axes, each of the points on the axis uniquely
identifies one of the available computing resources. For
example, in an instance where the scheduling modelis used to
model how instructions can be scheduled for execution on a
number of different processor cores in a multi-core processor,
the scheduling model may include a “Core ID” axis, where
each point on the axis is a unique identifier for each of the
available cores (e.g., “Core 1,” “Core 2, “Core 3,” and so on.)
By using this “identification™ axis, each of the coordinate
points in the coordinate system corresponds to one of the
available resources, and it can be determined which resource
the different coordinate points are associated with.

[0018] The scheduling model also includes data that indi-
cates a value (referred to herein as a “weight”) for each
coordinate point in the multidimensional coordinate system.
These weights, as will be described in further detail below, are
used to determine whether a particular computing resource
should be selected for the performance of a computing task.
The weights may be stored in the scheduling module using a
multidimensional array, wherein each element in the multi-
dimensional array corresponds to a combination of coordi-
nates. A weight that is higher indicates that the coordinate
point is more desirable for performing a computing task,
while a lower weight indicates that a coordinate point is less
desirable for performing a computing task. A weight of -1 or
lower indicates that the combination of coordinates at that
coordinate point is invalid, incompatible, or otherwise not
acceptable.

[0019] Referring again to the above example that includes a
“type of CPU” axis and a “type of operating system” axis, the
weights associated with these axes may be represented as
shown in Table 2:

TABLE 2
32-bit 64-bit
Linux Weight: 11 Weight: 4
[32-bit, Linux] [64-bit, Linux]
Windows Weight: 2 Weight: 3
[32-bit, Windows] [64-bit, Windows]
[0020] In Table 2, the X axis corresponds to the “type of

CPU” axis, and the Y axis corresponds to the “type of OS”
axis. As shown in Table 2, the weight for the entry at [32-bit,
Linux] is 11, the weight for the entry at [64-bit, Linux] is 4,
the weight for the entry at [32-bit, Windows] is 2, and the
weight for the entry at [64-bit, Windows] is 3.

[0021] To further elaborate on the above example, FIGS.
2A-2E show another example, wherein three axes/dimen-
sions are used. The example of FIGS. 2A-2E relates to a
testing environment that includes a four test computers (Com-
puter 1, Computer 2, Computer 3, and Computer 4), where
each of the computers has a hostname, an operating system,
and supports one or more of Internet Protocol (IP version 4

US 2013/0247061 Al

(IPv4) and IP version 6 (IPv6). The axes in this example
include a “Hostname” axis (which includes points for
“Compl,” “Comp2,” “Comp3,” and “Comp4,” and which
uniquely identifies the four test computers), an “IP version”
axis (which includes coordinates for “IPv4” and “IPv6”), and
an “Operating System” axis (which includes points for
“Linux” and “Windows”). The four computers in this
example have the following example attributes, which are
shown in Table 3:

TABLE 3
Hostname Operating System IP Version
Computer 1 Compl Linux and Windows IPv4 only
Computer 2 Comp?2 Windows only IPv4 and IPv6
Computer 3 Comp3 Linux and Windows IPv6 and IPv6
Computer 4 Comp4 Linux only IPv4 and IPv6
[0022] FIG.2A showsthe “IP Version” axis 210, the “Oper-

ating System” axis 220, and the “Hostname” axis 230. The
“IP Version” axis includes two coordinates, the “IPv4” coor-
dinate and the “IPv6” coordinate 214. The “Operating Sys-
tem” axis 220 includes the “Windows” coordinate 222 and the
“Linux” coordinate 224. The “Hostname” axis 230 includes
four points: the “Comp1” coordinate 232, the “Comp2” coor-
dinate 234, the “Comp3” coordinate 236, and the “Comp4”
coordinate 238.

[0023] As shown in Table 3, Computer 1 has Linux and
Windows installed, and supports IPv4 but does not support
IPv6. FIG. 2B shows the elements shown in FIG. 2A, and also
shows four coordinate points 250, 252, 254, 256 that corre-
sponds to attributes of Computer 1. The four coordinate
points 250, 252, 254, 256 shown in FIG. 2B include a first
coordinate point 254 at [IPv6, Windows, Compl] that has a
weight of -1, and a second coordinate point 256 at [IPv6,
Linux, Compl] that has a value of —1. These values of -1 for
these coordinate points 254, 256 reflect that Computer 1 does
not support IPv6. FIG. 2B also shows a third coordinate point
250 at [IPv4, Windows, Comp1] and a fourth coordinate point
252 at [IPv6, Linux, Comp1]. These weights for these coor-
dinate points 250, 252 (which are above 0) reflect that Com-
puter 1 supports [Pv4.

[0024] Similar to FIG. 2B, FIGS. 2C-2D show the follow-
ing coordinate points: FIG. 2C shows a first coordinate point
260, second coordinate point 262, third coordinate point 264,
and fourth coordinate point 266 that correspond to the
attributes of Computer 2; FIG. 2D shows the coordinate
points 270, 272, 274, 276 that correspond to the attributes of
Computer 3; and FIG. 2E shows the coordinate points 280,
282,284, 286 that correspond to the attributes of Computer 4.

[0025] Table 4, included below, is alternative view of the
data shown in Table 3 and FIGS. 2A-2E:
TABLE 4
Hostname Operating IP Version
Axis System Axis Axis Weight
Computer 1 Compl Linux IPv4 10
Compl Linux IPv6 -1
Compl Windows IPv4 5
Compl Windows IPv6 -1
Computer 2 Comp2 Linux IPv4 4
Comp?2 Linux IPv6 -1
Comp?2 Windows IPv4 5
Comp?2 Windows IPv6 -1

Sep. 19,2013

TABLE 4-continued

Hostname Operating IP Version
Axis System Axis Axis Weight
Computer 3 Comp3 Linux 1Pv4 4
Comp3 Linux IPv6 7
Comp3 Windows IPv4 4
Comp3 Windows IPv6 11
Computer 4 Comp4 Linux 1Pv4 4
Comp4 Linux IPv6 5
Comp4 Windows IPv4 -1
Comp4 Windows IPv6 -1
[0026] To provide flexibility in how the computing

resources and related features are defined, axes/dimensions
can be added and/or removed from a scheduling model. The
following tables (Table 5 and Table 6) show an example of
how weights may be handled when an axis/dimension is
added to a scheduling model. In this example, Table 5 shows
data in a scheduling model that has two axes/dimensions,
while Table 6 shows data related to the same scheduling
model after a third axis/dimension is added. This example
relates to a testing environment that includes two test com-
puters (Computer 1 and Computer 2). One of the axes relates
to the hostnames of the computers, and the second axis relates
to whether each of the computers supports 32-bit operating
systems and/or 64-bit operating systems.

TABLE 5

Hostname OS Bits

Axis Axis Weight
Computer 1 Compl 32-bit 4
Computer 1 Compl 64-bit 10
Computer 2 Comp?2 32-bit 5
Computer 2 Comp?2 64-bit 5

[0027] Another axis/dimension may be added to the sched-

uling model as shown in Table 5. As an example, a dimension
that relates to supported IP versions of the computers may be
added. This is shown in Table 6, as follows:

TABLE 6

Hostname OS Bits IP Version

Axis Axis Axis Weight
Computer 1 Compl 32-bit IPv4 4

Compl 32-bit IPv6 4

Compl 64-bit IPv4 10

Compl 64-bit IPv6 10
Computer 2 Comp?2 32-bit IPv4 5

Comp?2 32-bit IPv6 5

Comp?2 64-bit IPv4 5

Comp?2 64-bit IPv6 5

[0028] When the IP version dimension is added to the two-

dimensional version of the scheduling model (to effect the
transition shown between Table 5 and Table 6), weight values
from coordinate points in the two-dimensional version of the
scheduling model are replicated to populate the correspond-
ing weights in the three-dimensional version of the schedul-
ing model. For example, as shown in Table 5, the weight at
[Comp1, 32-bit] is 4; therefore, the corresponding weights in
Table 6 at [Compl, 32-bit, [Pv4] and [Comp]1, 32-bit, [Pv6]
are also set to be 4.

US 2013/0247061 Al

[0029] In the scheduling model, weights may be repre-
sented in a number of different ways. As one example, each
weight may be represented as a single numeric value, using an
integer or floating point data type. As another example, a
“complex” (or “aggregate”) weight may used. A complex
weight is a weight parameter where the numeric value of the
weight is based on the values of a number of sub-weights,
which are balanced relative to each other according to their
respective levels of importance. For example, a complex
weight may be made up of a first sub-parameter that relates to
task outcome (pass/fail), a second sub-parameter that relates
to task execution time, a third sub-parameter that relates to
achieved performance score. Equation 1, included below,
shows how the value for this example complex weight may be
represented:

COMP_WEIGHT=(B1xOUTCOME)+(B2xEXEC_

TIME)+(B3xSCORE) [EQUATION 1]

[0030] The variables in Equation 1 have the following
meanings: COMP_WEIGHT is the numeric value for the
complex weight; OUTCOME relates to task outcomes (pass/
fail); EXEC_TIME relates to task execution time; SCORE
relates to achieved performance scores); and B1, B2, and B3
are balancing factors. According to Equation 1, the values for
each of B1, B2, and B3 have decimal values between 0.0 and
1.0, and the sum of the three values is 1.0. The values for B1,
B2, and B3 can each be adjusted, so that the values for
OUTCOME, EXEC_TIME, and SCORE have a greater or
smaller influence over the final value for COMP_WEIGHT.
[0031] Although examples are provided above of schedul-
ing models that include two and three axes, it should be
understood that any number of axes (as well as any number of
individual coordinate points on an axis) may be used. Using a
large number of axes, this scheduling model can be used to
model very complex systems. And, because the scheduling
model can be changed via the addition or subtraction of axes
(and/or individual points on an axis), the scheduling model
affords a great deal of ease and flexibility when changes to a
model are required.

[0032] Referring now to FIGS. 1A-1B, the method 100 of
FIGS. 1A-1B may be performed in a number of different
computing environments. As an example, the method 100 of
FIGS. 1A-1B may be executed by a processor in a computing
device, in combination other components, such as a memory
device, a network interface, a persistent storage device, a
display device and/or user input device, and/or other appro-
priate components. Some examples of the computing devices
in which the method 100 of FIGS. 1A-1B may be imple-
mented are described in detail below with reference to FIGS.
3-5.

[0033] As shown in FIG. 1A, the method 100 of FIGS.
1A-1B begins with initializing a scheduling model (step 102).
This may include actions such as reading in data that makes
up the scheduling model from one or more persistent data
storage devices, receiving data that describes the model via
input from one or more users and/or via a wired or wireless
communication network, and/or storing/loading the repre-
sentation of the scheduling model into a memory device. The
scheduling model includes information regarding available
computing resources, represented in the axes/weight format
described above. In the example of FIGS. 2A-2E, this step
would include loading the information that is shown in FIGS.
2A-2E.

[0034] After the scheduling model is initialized, the steps
120, 122, 124, 126 in the “Process and execute computing

Sep. 19,2013

tasks” area 190 and the steps 110, 112 in the “Periodically
decrement weights” area 180 are performed. These steps 110,
112, 120, 122, 124, 126 are shown in these respective differ-
ent areas 180, 190 to indicate that the steps 110,112,120, 122,
124, 126 in these two different areas 180, 190 may be per-
formed in separate threads of control, independently of each
other.

[0035] At step 120, information is obtained regarding a
computing task to be scheduled. This may include, for
example, receiving one or more messages via a network that
defines the computing task, reading information related to the
task into a memory device, advancing within an ordered data
structure (such as a list or a queue) that includes information
related to a number of tasks to arrive the next computing task
in the data structure, and/or other types of processing. The
information regarding the computing task may include infor-
mation such as: information that describes how the task itself
is performed (e.g., processor-executable instructions that
make up the test); constraints on the type of computing
resource that the computing task requires to be executed on
(e.g., the computing task must be executed on a computer that
supports a particular version of IP and/or a particular operat-
ing system); information that indicates preferences as to the
computing resource that the task will be executed on (e.g., a
computer at one location verses another location would be
preferred); relative weights of preferences; information that
identifies the source of the task (e.g., an IP address or host-
name of'a computer that transmitted a request for execution of
the task); and/or other information. Alternatively, or addition-
ally, in an instance where the scheduling model includes
complex/aggregate weights, the information regarding the
computing task may indicate how different sub-parameters
should be balanced against each other. For example, if an
equation/formula such as Equation 1 (mentioned above) is
used to define weights, the task information may include data
such as values for the balancing factors B1, B2, and B3.
[0036] At step 122, a computing resource is selected from
the scheduling model for execution of the computing task.
FIG. 1B shows further detail regarding how step 122 may be
performed.

[0037] Atstep 152 in FIG. 1B, a target axis that includes a
unique identifier for each of the available computing
resources is identified. In the example of FIGS. 2A-2E, the
“Hostname” axis 230 includes coordinates (the “Compl”
coordinate 232, the “Comp2” coordinate 234) that are unique
to each of the available computing resources, and so on, and
step 152 would include the selection of the “Hostname” axis
230.

[0038] At step 154, the coordinate points in the coordinate
system in the scheduling model that meet the requirements of
the computing task are determined. This may include analyz-
ing the constraints on the type of computing resource that the
computing task requires to be executed, to determine which
coordinate points are associated with a computing resource
that meets the constraints. As an example, a computing task
may be a software unit test that must be executed on a com-
puter on which a Linux-based operating system is installed.
With this example computing task as applied to the example
scheduling model of FIGS. 2A-2E, step 156 would include
analyzing the coordinate points in the model to determine
which are associated with computers on which Linux is
installed. As described above with reference to FIGS. 2A-2E
and Tables Three and Four, Computer 2 does not have Linux
installed; thus, in this example, Computer 2 would not be

US 2013/0247061 Al

further considered as a potential computing resource on
which the unittest can be executed, and coordinate points that
correspond to Computer 2 will not be further considered.
Alternatively or additionally, step 154 may include reconfig-
uring computing resources that do not meet the requirements/
constraints of the computing task, such that the computing
resources (when reconfigured) do meet the requirements/
constraints of the computing task. As an example of this,
instead of not considering Computer 2 because Computer 2
does not have Linux installed (as described in the above
example), a Linux distribution could be installed onto Com-
puter 2. After Linux is installed onto Computer 2, the sched-
uling model (including the coordinate points and weights in
the scheduling model) could then be updated to reflect that
Computer 2 supports Linux, and then the above analysis (for
determining which coordinate points are associated with
computing resources that meet the constraints of the task)
could be performed again with the updated scheduling model.

[0039] Next, at step 156, the weights in the coordinate
points in the scheduling model are analyzed to determine, out
of the coordinate points that are associated with computing
resources that satisfy the constraints of the computing task (as
determined at step 154), which coordinate point has the high-
est weight. Inan instance where there is a tie (i.e., two or more
coordinate points have the same highest weight), then one of
the coordinate points that is involved in the tie would be
selected at random. Referring again to the above example of
the unit test computing task as applied to the scheduling
model of FIGS. 2A-2E, the following table (Table 7, which
includes a subset of the information shown in Table 4) shows
the coordinate points that would be considered:

TABLE 7

Indices of Coordinate Point

IP Version [} Hostname Weight for
Axis Axis Axis Coordinate Point
IPv4 Linux Compl 10

IPv4 Windows Compl 5

IPv6 Linux Compl -1

IPv6 Windows Compl -1

IPv4 Linux Comp3 4

IPv4 Windows Comp3 4

IPv6 Linux Comp3 7

IPv6 Windows Comp3 11

IPv4 Linux Comp4 4

IPv4 Windows Comp4 -1

IPv6 Linux Comp4 5

IPv6 Windows Comp4 -1

[0040] As shown in Table 7, the coordinate point with the

highest weight is at index [IPv6, Windows, Comp3]; this
coordinate point is shown as the third coordinate point 274 in
FIG. 2D. In this example, this coordinate point would be
selected at step 156, as it has the highest weight out of the
coordinate points that are associated with computing
resources that satisfy the constraints of the computing task.

[0041] Then, at step 158, the coordinate from the target axis
that corresponds to the coordinate point with the highest
weight (as selected at step 156) is selected. As mentioned
above, the coordinates on the target axis uniquely identify one
of the available computing resources; thus, the computing
resource on which the computing task will be executed is
identified by the coordinate from the target axis that is
selected at step 158. Referring to the above example of Table

Sep. 19,2013

7 and FIGS. 2A-2E, at step 158, the “Comp3” coordinate 236
from the “Hostname” axis 230 would be selected, as
“Comp3” is the hostname that corresponds to the coordinate
point with the highest weight.

[0042] Referring back to FIG. 1A, after the computing
resource is selected at step 122, the computing task is
executed at the selected computing resource at step 124. In an
instance where the selected computing resource is a processor
core in a multi-core processor and the computing task is a
block of instructions, step 124 would include the selected
processor core executing the block of instructions. In the
example of Table 7 and FIGS. 2A-2E mentioned above, this
step would include the selected computer (Computer 3, which
has the hostname of “Comp3”) executing the unit test.
[0043] Atstep 126, the weights in the scheduling model are
updated to reflect the results of the execution of the comput-
ing task as performed at step 124. If for example, the execu-
tion of the computing task was successful (i.e., it executed
without errors and/or within an acceptable timeframe), then
the weights in the scheduling model that are associated with
the computing resource that executed the computing task are
increased; if the execution of the computing task was unsuc-
cessful, then the weights in the scheduling model that are
associated with the computing resource that executed the task
are decreased.

[0044] The updating of the weights (step 126) may be per-
formed in a number of different ways. In some instances,
successful/failure may be seen as a binary determination (i.e.,
the task either succeeded or failed, and partial successes are
not accounted for), and weights may be incremented/decre-
mented accordingly. As one example of this, success may be
defined as completing a task within a given time; if the task is
completed within the given time, then the weights associated
with the computing resource that executed the task may be
increased by avalue of 10; and if the task takes longer than the
given time to complete, then weights may be decreased by a
value of 10. Alternatively, success/failure can be defined on
an intermediate/incremental scale. As one example of this,
the following methodology may be applied to determine how
to increase/decrease weights: if a task is finished within 2
second, weights are increased by 10 points; if the task is
finished within 2 to 4 seconds, weights are increased by 5
points; if the task is finished within 4 to 6 seconds, weights are
not increased/decreased; if the task is finished within 6 to 8
seconds, weights are decreased by 5 points; and if the task
requires longer than 8 seconds, weights are decreased by 10
points.

[0045] Alternatively or additionally, weights that corre-
spond to different coordinate points associated with the
resource that executed the computing task may be updated
differently, dependent upon whether a coordinate point was
selected at step 156 as being the coordinate point with the
highest weight or not. For example, and referring again to the
above example of Table 7, wherein the coordinate point
[IPv6, Windows, Comp3] was selected, this may be per-
formed as follows: If the computing task is executed success-
fully, then the weight associated with the selected coordinate
point ([IPv6, Windows, Comp3]) may be increased by a first
value (for example, a value of 10); but for the other coordinate
points that are also associated with Computer Three (i.e.,
[IPv6, Linux, Comp3], [IPv4, Windows, Comp3], and [IPv4,
Linux, Comp3]) but that were not selected at step 156, these
coordinate points may be increased by a second value that is
smaller than the first value (for example, a value of 5). As an

US 2013/0247061 Al

alternative to this, all of the coordinate points that are asso-
ciated with the resource that execute the computing task may
be updated (increased/decreased) by the same amount.
[0046] Alternatively or additionally, in an instance where
complex weights are used, updating the weights may include
evaluating one or more equations/formulas that define the
complex weights, and updating the weights accordingly.
[0047] According to some implementations, regardless of
the approach or combination of approaches that are used at
step 126 to update the weights, weights that are at O or above
are not decreased to go below 0, and weights that have a value
of -1 are not increased to go above -1.

[0048] After the weights are updated, at step 128, the
method 100 waits (if necessary) until information regarding
the next computing task to be scheduled has been received. If
information regarding the next computing task to be sched-
uled has already been received, then the method may proceed
back to step 120, to repeat steps 120 through 128 with the next
computing task.

[0049] As mentioned above, the steps 120,122, 124,126 in
the “Process and execute computing tasks” area 190 in FIG.
1A and the steps 110, 112 in the “Periodically decrement
weights” area 180 may be performed in separate threads of
control, independently of each other. As step 110, any of the
weights in the scheduling model that have a value of 1 or
above are decremented (i.e., decreased). The weights are
decremented by a value such as 1, 2, 5, or 10, or any other
appropriate value. The weights are not, however, decre-
mented such that their values go below 0. Depending upon the
implementation, in an instance where the steps 120, 122,124,
126 in the “Process and execute computing tasks” area 190 in
FIG. 1A and the steps 110, 112 in the “Periodically decrement
weights” area 180 are performed in separate threads of con-
trol, the two threads of control may be synchronized such that
step 110 and step 126 are not performed concurrently, so that
weights are not being decremented (in step 110) at the same
time that weights are being updated (in step 126).

[0050] Then, at step 122, the method 100 of FIG. 1 waits for
a predetermined time period. This time period may be, for
example, one minute, one hour, six hours, or any appropriate
time period. Once this time period has expired, the method
100 of FIG. 1 returns to step 110, and steps 110 through 112
are repeated.

[0051] As mentioned above with reference to step 126, the
weights in the scheduling model are updated to reflect the
results of the execution of the computing task as performed at
step 124. This has the effect that the computing resources that
are effective at executing computing tasks will be selected
more often, while the computing resources that are not as
effective (i.e., those resources where tasks are frequently not
successfully completed) will be selected less often. Addition-
ally, by having the steps 110, 112 in the “Periodically decre-
ment weights” area 180 periodically decrement the weights in
the scheduling model, this ensures that the impact of past
successes is lessened over time and that the weights reflect the
more recent performance of the different resources.

[0052] In addition to and/or as alternatives to the features
described above with reference to FIGS. 1A-1B, a number of
variations to the method 100 of FIGS. 1A-1B (and the sched-
uling model described herein) may be used. For example, in
addition to the information about computing tasks described
above, computing tasks may be associated with relative pri-
orities, and scheduled according to their relative priorities.
Further, other factors in addition to those described above

Sep. 19,2013

may be taken into account in selecting a computing resource
for execution of a task, such as information that indicates
whether particular computing resources are currently in
demand and/or available, and information thatis predictive of
whether particular resources may be in demand in the future.
[0053] FIG. 3 shows an example computing system 300
wherein features described herein may be implemented. The
example computing system 300 of FIG. 3 is a distributed
software testing environment, wherein computing tests (such
as performance benchmarks, unit tests, or other kinds oftests)
are allocated for performance across a number of different
test computers that are connected via a network. The comput-
ing system 300 of FIG. 3 includes a test management com-
puter 310 and four test computers (Test Computer A 350, Test
Computer B 370, Test Computer C 380, and Test Computer D
390), which are connected via one or more networks 302. The
one or more networks 302 may include one or more wired
and/or wireless networks, and may be based on technologies
such as Institute of Electrical and Electronics Engineers
(IEEE) 802.3 technology, 802.11 technology, and/or wireless
cellular technologies.

[0054] The Test Management Computer 310 includes a
peripheral interface 312 (for connecting to devices such as a
display device or a user input device such as a mouse or
keyboard), a CPU 314, persistent storage device 316 (which
may be, for example, a hard disk or a solid-state drive (SSD)),
anetwork interface 318 (which may be, for example, a wired
or wireless transceiver), and a memory device 320 (which
may be, for example, a random access memory (RAM)). The
Test Management Computer 310 also includes a test sched-
uling program 322, which is loaded into the memory device
320 and which is executed by the CPU 314.

[0055] TestComputer A 350 includes a peripheral interface
352, a CPU 354, persistent storage device 356, a network
interface 358, and a memory 360. Test Computer A 350 also
includes a test execution program 362, which is loaded into
the memory 340 and is executed by the CPU 334. Although
omitted from FIG. 3 for ease of description, the other test
computers 370, 380, 390 also includes components that are
the same or similar to the components 332, 334, 336,338, 340
shown in Test Management Computer 310, and the other test
computers 370, 380, 390 also execute a Task Execution Pro-
gram that is the same as or similar to the test execution
program 362 shown in Test Computer A 362.

[0056] The test scheduling program 322 is programmed to
implement the method 100 of FIGS. 1A-1B. In this example
implementation, the computing tests executed in the comput-
ing system 300 constitute computing tasks, and the test com-
puters 350, 370, 380, 390 constitute computing resources.
[0057] The test scheduling program 322 provides a user
interface that the user of Test Management Computer 310
may use to initiate the execution of a test on one of the test
computers 360,380, 390. With this user interface, the user can
input information to define the test. This information may
include the code to be executed during the test, as well as
parameters that specify a target resource on which the test
should be executed. For example, the user may input infor-
mation may indicates that the test should be performed on a
computer that has a particular operating system, a particular
type of CPU, a particular type of Graphics Processing Unit
(GPU), on a computer that has a minimum or maximum
amount of memory, or on a computer that has certain software
packages loaded on it. The information may also indicate that
some parameters are preferences, and/or that some are man-

US 2013/0247061 Al

datory. Further, the information may indicate the priority of
different parameters with respect to each other.

[0058] Once the user has defined the test, the test schedul-
ing program 322 determines which of the test computers 350,
370, 380, 390 should perform the test. The test scheduling
program 322 may determine which of the test computers 350,
370,380, 390 should perform the test as described above with
reference to step 122 of FIGS. 1A-1B. Then, the test sched-
uling program 322 sends one or more messages to the task
execution program (such as the test execution program 362
from Test Computer A) on the selected target computer. The
test execution program on the target computer then runs the
test (as described above with reference to step 124 of FIGS.
1A-1B). Upon completion of the test, the test execution pro-
gram that ran the test transmits one or more messages to the
test scheduling program 322 that include test result informa-
tion related to the test run. This test result information may
indicate, for example, whether the test was successful, the
duration of the test, and/or other information. Upon receiving
the test result information, the test scheduling program 322
may update the weights in the scheduling model used by the
test scheduling program 322, as described above with refer-
ence to step 124 of FIGS. 1A-1B. The test scheduling pro-
gram 322 may also periodically decrement the weights, as
described in steps 110 and 112 of FIGS. 1A-1B.

[0059] FIG. 4 shows an example computing device 410
wherein features described herein may be implemented. The
computing device 410 of FIG. 4 may be, for example, a
desktop computer, a laptop computer, a tablet computer, a
netbook, a smartphone, a personal digital assistant (PDA), or
any other appropriate type of computing device or data pro-
cessing device. The computing device 410 includes a memory
device 420 and a CPU 414. The computer device 410 may
also include other components (not depicted in FIG. 4), such
as a peripheral interface, a display device, a network inter-
face, and/or a persistent storage device.

[0060] The CPU 414 in the computing device executes an
operating system for the computing device 410. Information
that is used by the operating system (and applications and
processes that run on top of the operating system) is stored in
the kernel space 440 and the user space 450 in the memory
device 420. The kernel space 440 stores information for use
by the kernel of the operating system, and includes a sched-
uling module 442. The user space 450 includes information
associated with a number of user mode processes 452, 454,
456, 458, 460, 462 that are executed by the operating system.
The CPU 414 includes four cores 470, 472, 474, 476.
[0061] The scheduling module 442 is programmed to
implement the method of FIGS. 1A-1B. In this example
implementation of the method of FIGS. 1A-1B, the four cores
470, 472, 474, 476 constitute computing resources, and
blocks of instructions that are associated with the user mode
processes 452, 454,456, 458, 460, 462 (and which are execut-
ableby the cores 470, 472, 474, 476) constitute the computing
tasks. The blocks of instructions may be intermediate instruc-
tions (which are later translated into native instructions for
execution by a core), and/or may be native/processor-specific
instructions, and/or may include any other appropriate type of
instruction.

[0062] When a block of instructions from one of the pro-
cesses 452, 454, 456, 458, 460, 462 needs to be executed, the
scheduling module 442 determines which of the cores 470,
472, 474, 476 should execute the block of instructions, as
described above with reference to step 122 of FIGS. 1A-1B.

Sep. 19,2013

In some instances, the blocks of instructions may indicate the
use of specific core registers (such as, for example, rax, rbx,
rcX, rdx, and/or other registers, dependent upon the architec-
ture of the CPU 414 and other factors), and the scheduling
module may determine which cores 470, 472, 474, 476
should be used to execute the instructions based on the reg-
isters indicated in the instructions, and/or other factors.
[0063] After the scheduling module 442 determines which
of'the cores 470, 472, 474, 476 should be allocated to execute
the block of instructions, the selected core 470, 472, 474,476
then executes the block of instructions. The test scheduling
program 322 may periodically decrement the weights in the
scheduling model used by the test scheduling program 322, as
described in steps 110 and 112 of FIGS. 1A-1B.

[0064] Although example are provided above wherein the
scheduling module 442 schedules blocks of instructions, it
should be understood that the scheduling module 442 may
alternatively or additionally schedule tasks that are defined
as: a method or function call; a program; a body of'a loops of
instructions (or a kernel); and/or any other type of construct or
organization unit for defining actions that can be performed
by the cores 470, 472, 474, 476.

[0065] Although FIG. 4 shows that the computing device
410 includes a single CPU 414 and that the scheduling mod-
ule 442 is included in kernel space 440, it should be under-
stood that many variations on the features shown in FIG. 4 are
possible. For example, the computing device 410 may include
multiple CPUs (each with multiple cores), and when instruc-
tions from one of the processes 452, 454, 456, 458, 460, 462
need to be executed, the scheduling module 442 may sched-
ule blocks of instructions for execution across cores in the
multiple CPUs. As another example, the computer device 410
many include processors of multiple different types (for
example, one or more CPUs and one or more GPUs), where
each of the processors includes one or more cores, and the
scheduling module 442 may schedule blocks of instructions
for execution across the different processors, on a per-proces-
sor and/or per-core basis. Alternatively or additionally, the
scheduling module 442 may not be implemented as part of the
operating system in the computing device 410 (as is shown in
FIG. 4), but may be implemented in one or more of the
processors in the computing device 410. As one of example of
how this may be implemented, the scheduling module 442
may be implemented in the gate array (and/or in some other
component) of the CPU 414. In yet another alternative, the
scheduling module 442 may be implemented in the user space
450 in the computing device 450.

[0066] In the example of FIG. 4, axes/dimensions and
related coordinate points that may be used include: a core type
dimension (with coordinates such as CPU and GPU); a
dimension that indicates the number of rendering pipelines
per core ina GPU (with coordinates such as 64, 128, and 256);
a dimension that indicates the accessible amount of L1/L.2
cache per core in a CPU (with coordinates such as 256 Mb,
512 Mb, and 1024 Mb); and/or other dimensions and related
coordinate points.

[0067] FIG. 5 shows an example of a cloud computing
system 500 wherein features described herein may be imple-
mented. The cloud computing system 500 includes three
server computers 520, 522, 524 and a job scheduling com-
puter 510, which are connected via a network 502. Although
omitted from FIG. 5 for ease of description, the cloud com-
puting system 500 may also include one or more databases,
networking equipment (such as routers and/or switches),

US 2013/0247061 Al

other servers that implement cloud functionality, and/or other
appropriate components for implementing cloud computing
technology. The server computers 520, 522, 524 execute pro-
grams that produce the virtual machines 530.

[0068] The job scheduling computer 510 includes a job
scheduling program 512, which is stored in a memory device
(not depicted in FIG. 5) in the job scheduling computer 510
and which is executed by a CPU (not depicted in FIG. 5) in the
job scheduling computer 510. The job scheduling program
512 is programmed to implement the method of FIGS.
1A-1B. In this example implementation of the method of
FIGS. 1A-1B, the virtual machines 530 constitute computing
resources, and jobs that are executed by the virtual machines
530 constitute the computing tasks. In the example of FIG. 5,
examples of axes/dimensions that may be used include: a
dimension that indicates virtual machine hostnames; a
dimension that indicates types of operating systems sup-
ported by a virtual machine; a dimension that indicates IP
versions supported by a virtual machine; a dimension that
indicates resources (such as file servers or other resources)
that are available to a virtual machine); a dimension that
indicates that a given application is installed on a virtual
machine; and/or other dimensions. Some examples of job
constraint that may be used in this context include: a required
operating system; a required IP version; the availability of a
required resource (such as a file server or other type of
resource); whether a given application is installed on the
virtual machine; and/or other constraints.

[0069] When a client computing device (also not shown in
FIG. 5) requests that the cloud computing system 500 per-
form some action, the job scheduling program 512 receives
information about the job, and determines which of the virtual
machines 530 should perform the job, as described above
with reference to step 122 of FIGS. 1A-1B. After the job
scheduling program 512 determines which of the virtual
machines 530 should be allocated to executing the job, the
selected virtual machine 530 then executes the job. The job
scheduling program 512 may periodically decrement the
weights in the scheduling model used by the job scheduling
program 512, as described in steps 110 and 112 of FIGS.
1A-1B.

[0070] Although a number of actions are described above
as being performed by software programs or modules (such as
the test scheduling program 322, test execution program 362,
the scheduling module 442, and the job scheduling program
512), this is done for ease of description and it should be
understood that these actions are performed by the processors
(in conjunction with the persistent storage devices, network
interfaces, memory devices, and/or peripheral device inter-
faces) in the computing devices 310, 350, 410, 510 where the
programs 332, 362, 442, 512 are stored, as specified by the
instructions that make up these software programs/modules
322,262,442, 512.

[0071] Similarly, it should be also be understood that, when
it is described herein that a virtual machine executes a job (for
example, as describe above with reference to FIG. 5), that the
processor (in conjunction with the persistent storage devices,
network interfaces, and/or memory devices) in the computing
device on which the virtual machine is running executes the
instructions that define the job.

[0072] Although a number of example are provided above
wherein the method 100 of FIGS. 1A-1B and related features
may be performed, it should be understood that these are only
examples, and that the features described herein may be

Sep. 19,2013

implemented in any appropriate context. As one further
example of how the features described herein may be imple-
mented, a source code compiler program may use the features
described herein to generate processor-executable code,
wherein portions of the code are assigned to particular pro-
cessor cores.
[0073] Although features and elements are described above
in particular combinations, each feature or element can be
used alone without the other features and elements or in
various combinations with or without other features and ele-
ments. The methods or flow charts provided herein may be
implemented in a computer program, software, or firmware
incorporated in a computer-readable storage medium for
execution by a general purpose computer or a processor.
Examples of computer-readable storage mediums include a
read only memory (ROM), a RAM, a register, cache memory,
semiconductor memory devices, magnetic media such as
internal hard disks and removable disks, magneto-optical
media, and optical media such as CD-ROM disks, and digital
versatile disks (DVDs). Suitable processors include, by way
of'example, a general purpose processor, a central processing
unit (CPU), a graphics processing unit (GPU), a special pur-
pose processor, a conventional processor, a digital signal
processor (DSP), a plurality of processors, one or more pro-
cessors in association with a DSP core, a controller, a micro-
controller, Application Specific Integrated Circuits (ASICs),
Field Programmable Gate Arrays (FPGAs) circuits, any other
type of integrated circuit (IC), and/or a state machine. Such
processors may be manufactured by configuring a manufac-
turing process using the results of processed hardware
description language (HDL) instructions and other interme-
diary data including netlists (such instructions capable of
being stored on a computer readable media). The results of
such processing may be maskworks that are then used in a
semiconductor manufacturing process to manufacture a pro-
cessor which implements aspects of the features described
herein.
What is claimed is:
1. A method for selecting a computing resource to execute
a computing task, the method comprising:
accessing information that describes a plurality of comput-
ing resources,
wherein the information that describes the computing
resources is organized as a multidimensional coordi-
nate system that includes a plurality of coordinate
points,
wherein each of the coordinate points corresponds to a
computing resource from the plurality of computing
resources,
wherein each of the coordinate points corresponds to a
combination of attributes of the computing resource
to which the coordinate point corresponds, and
wherein each of the coordinate points is associated with
a weight;
accessing information that defines a computing task,
wherein the information that defines the computing task
includes constraint information that defines constraints
on computing resources on which the computing task
can be executed; and
selecting, at the processor, a computing resource from the
plurality of computing resources based on the informa-
tion that describes the plurality of computing resources
and the constraint information.

US 2013/0247061 Al

2. The method of claim 1, wherein the selecting the com-
puting resource from the plurality of computing resources
includes:

determining, at the processor, which of the coordinate

points from the plurality of coordinate points are con-
straint-compliant coordinate points that meet the con-
straints defined in the constraint information;

selecting, at the processor, a coordinate point from the

constraint-compliant coordinate points that is associated
with the highest weight; and

selecting, at the processor, the computing resource from

the plurality of computing resources that corresponds to
the coordinate point that is associated with the highest
weight.

3. The method of claim 1, further comprising:

upon completion of the computing task, updating the

weights with which the coordinate points are associated
to indicate whether execution of the computing task was
successful or unsuccessful.

4. The method of claim 3, further comprising:

periodically decrementing the weights with which the

coordinate points are associated.
5. The method of claim 1,
wherein the weights with which the coordinate points are
associated are stored in a multidimensional array, and

wherein a value of -1 for a weight indicates that the com-
bination of attributes to which the coordinate point cor-
responds is invalid.

6. The method of claim 1, wherein the computing task is a
software testing application, and wherein the computing
resources from the plurality of computing resources are com-
puters.

7. The method of claim 6, wherein the software testing
application is a benchmarking application or a unit test.

8. The method of claim 1, wherein the computing task is a
cloud computing job, and wherein the computing resources
from the plurality of computing resources are virtual
machines.

9. The method of claim 1, wherein the computing task is a
block of processor-executable instructions, and wherein the
computing resources from the plurality of computing
resources are processor cores.

10. The method of claim 9, wherein the processor cores are
included in one or more central processing units (CPUs) and
in one or more Graphics Processing Units (GPUs).

11. A system for allocating computing tasks for execution
by computing resources, the system comprising:

a plurality of computing resources;

at least one memory device configured to store information

that describes the plurality of computing resources,

wherein the information that describes the computing
resources is organized as a multidimensional coordi-
nate system that includes a plurality of coordinate
points,

wherein each of the coordinate points corresponds to a
computing resource from the plurality of computing
resources,

wherein each of the coordinate points corresponds to a
combination of attributes of the computing resource
to which the coordinate point corresponds, and

wherein each of the coordinate points is associated with
a weight; and

Sep. 19,2013

at least one processor configured to:

receive information that defines a computing task,
wherein the information that defines the computing
task includes constraint information that defines con-
straints on computing resources on which the com-
puting task can be executed; and

select a computing resource from the plurality of com-
puting resources based on the information that
describes the plurality of computing resources and the
constraint information;

wherein the selected computing resource is configured to

execute the computing task.

12. The system of claim 11, wherein the processor is con-
figured to select the computing resource from the plurality of
computing resources by:

determining which of the coordinate points from the plu-

rality of coordinate points are constraint-compliant
coordinate points that meet the constraints defined in the
constraint information;

selecting a coordinate point from the constraint-compliant

coordinate points that is associated with the highest
weight; and

selecting the computing resource from the plurality of

computing resources that corresponds to the coordinate
point that is associated with the highest weight.
13. The system of claim 11, wherein the at least one pro-
cessor is further configured to update the weights with which
the coordinate points are associated upon completion of the
computing task to indicate whether execution of the comput-
ing task was successful or unsuccessful.
14. The system of claim 13, wherein the at least one pro-
cessor is further configured to periodically decrement the
weights with which the coordinate points are associated.
15. The system of claim 11,
wherein the weights with which the coordinate points are
associated are stored in a multidimensional array, and

wherein a value of -1 for a weight indicates that the com-
bination of attributes to which the coordinate point cor-
responds is invalid.

16. The system of claim 11, wherein the computing task is
a software testing application, and wherein the computing
resources from the plurality of computing resources are com-
puters.

17. The method of claim 16, wherein the software testing
application is a benchmarking application or a unit test.

18. The system of claim 11, wherein the computing task is
a cloud computing job, and wherein the computing resources
from the plurality of computing resources are virtual
machines.

19. The system of claim 11, wherein the computing task is
a block of processor-executable instructions, and wherein the
computing resources from the plurality of computing
resources are processor cores.

20. The system of claim 19, wherein the processor cores are
included in one or more central processing units (CPUs) and
in one or more Graphics Processing Units (GPUs).

21. A non-transitory computer-readable storage medium
having stored thereon instructions which, when executed by
at least one processor, cause the at least one processor to
perform a method for allocating computing tasks for execu-
tion by computing resources, the method comprising:

the at least one processor storing, in a memory device,

information that describes a plurality of computing
resources,

US 2013/0247061 Al

wherein the information that describes the computing
resources is organized as a multidimensional coordi-
nate system that includes a plurality of coordinate
points,
wherein each of the coordinate points corresponds to a
computing resource from the plurality of computing
resources,
wherein each of the coordinate points corresponds to a
combination of attributes of the computing resource
to which the coordinate point corresponds, and
wherein each of the coordinate points is associated with
a weight;
the at least one processor receiving information that defines
a computing task, wherein the information that defines
the computing task includes constraint information that
defines constraints on computing resources on which the
computing task can be executed;
the at least one processor selecting a computing resource
from the plurality of computing resources based on the
information that describes the plurality of computing
resources and the constraint information; and
the at least one processor executing the computing task at
the selected computing resource.
22. The non-transitory computer-readable storage medium
of claim 21, wherein the selecting the computing resource
from the plurality of computing resources includes:

Sep. 19,2013

the at least one processor determining which of the coor-
dinate points from the plurality of coordinate points are
constraint-compliant coordinate points that meet the
constraints defined in the constraint information;

the at least one processor selecting a coordinate point from
the constraint-compliant coordinate points that is asso-
ciated with the highest weight; and

the at least one processor selecting the computing resource
from the plurality of computing resources that corre-
sponds to the coordinate point that is associated with the
highest weight.

23. The non-transitory computer-readable storage medium
of claim 21, wherein the method further comprises:

upon completion of execution of the computing task,
updating the weights with which the coordinate points
are associated to indicate whether execution of the com-
puting task was successful or unsuccessful; and

periodically decrementing the weights with which the
coordinate points are associated.

24. The non-transitory computer-readable storage medium
of claim 21, wherein the computing resources from the plu-
rality of computing resources are computers, processor cores,
or virtual machines.

