wo 2013/019575 A2 |11 0F V000000 O O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau '}/

7 February 2013 (07.02.2013) WIPO I PCT

\

(10) International Publication Number

WO 2013/019575 A2

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
(73)

74

31

International Patent Classification:
GO6F 9/45 (2006.01)

International Application Number:
PCT/US2012/048440

International Filing Date:
27 July 2012 (27.07.2012)

Filing Language: English
Publication Language: English
Priority Data: Co)
13/196,300 2 August 2011 (02.08.2011) US

Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

Inventors; and
Inventors/Applicants (for US only): AUERBACH,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Joshua, S. [US/US]; 19 Skyline Drive, Hawthorne, New Declarations under Rule 4.17:

York 10532 (US). BACON, David, F. [US/US]; 19 Sky-
line Drive, Hawthorne, New York 10532 (US). CHENG,
Perry, S. [US/US]; 16 Churchill Avenue, Cambridge,
Massachusetts 02140 (US). RODRIC, Rabbah [LB/US];, —
19 Skyline Drive, Hawthorne, New York 10532 (US).

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Agents: GROLZ, Edward, W. et al; Scully, Scott, Published:

Murphy & Presser, 400 Garden City Plaza, Suite 300, __
Garden City, New York 11530 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: TECHNIQUE FOR COMPILING AND RUNNING HIGH-LEVEL PROGRAMS ON HETEROGENEOUS COM-
PUTERS

FIG.T 0 0 12 02
/ / 4 /
(o} Q QOO QL O Q2 9
; N] ER]
I I

7 c 0 ¥
€2y o ; G K - S e 2

OUFILER COFLER —c/ilJ COUPLERf—0* R (OVPLER

18- gl 1 i
1% / N / N S

T G - i
R e CL! ARTFACT]/QL] wiper b1

I e I }

v ¥ v
E= | EEe | [oa |

-1
RUNTIME |: 1%

o /7 GPU FPGH

- GTHER
L / 5

12 128 130 COMPUTER

132 134

104

(57) Abstract: A technique for compiling and running high-level program on heterogeneous computers may include partitioning a
program code into two or more logical units, and compiling each of the logical units into one or more executable entities. At least
some of the logical units are compiled into two or more executable entities, the two or more executable entities being different com -
pilations of the same logical unit. The two or more executable entities are compatible to run on respective two or more platforms that
have different architecture.

WO 2013/019575 PCT/US2012/048440

TECHNIQUE FOR COMPILING AND RUNNING HIGH-LEVEL PROGRAMS ON
HETEROGENEOUS COMPUTERS

FIELD

[0001] The present application relates generally to computers and applications, and more

particularly to technique for compiling and running programs on heterogeneous computers or

processors.
BACKGROUND

[0002] The mixture of computational elements that make up a computer is increasingly
becoming heterogeneous. Already computers today couple a conventional processor (e.g.,
central processing unit (CPU)) with a graphics processor (GPU), and there is increasing interest
in using the GPU for more than graphics processing because of its exceptional computational
abilities at particular problems. In this way, a computer with a CPU and a GPU is heterogeneous
because it offers a specialized computational element (the GPU) for computational tasks that suit
its architecture, and a truly general purpose computational element (the CPU) for all other tasks
(e.g., including if needed the computational tasks that are well suited for the GPU). The GPU is
an example of a hardware accelerator. In addition to GPUs, other forms of hardware accelerators
are gaining wider consideration, and there are already examples of accelerators in the form of
field programmable gate arrays (FPGAs) and fixed-function accelerators for cryptography, XML

parsing, regular expression matching, physics engines, and so on.

[0003] Programming technologies exist’ for CPUs, GPUs, FPGAs, and various accelerators in
isolation. For example, programming languages for a GPU include OpenMP, CUDA, and
OpenCL, all of which can be viewed as extensions of the C programming language. A GPU-
specific compiler inputs a program written in one of these languages, and preprocesses the
program to separate the GPU-specific code (hereinafter referred to as device code) from the
remaining program code (hereinafter referred to as the host code). The device code is typically
recognized by the presence of explicit device-specific language extensions, or compiler

directives (e.g., pragma), or syntax (e.g., kernel launch with <<<...>>> in CUDA). The device

1

WO 2013/019575 PCT/US2012/048440

code is further translated and compiled into device-specific machine code (hereinafter referred to
as an artifact). The host code is modified as part of the compilation process to invoke the device
artifact when the program executes. The device artifact may either be embedded into the host

machine code, or it may exist in a repository and identified via a unique identificr that is part of

the invocation process.

[0004] Programming languages and solutions for heterogeneous computers that include a FPGA
are comparable to GPU programming solutions although FPGAs do not enjoy the benefits of a
widely accepted C dialect yet. There are several extensions to the C language offered by the
various FPGA-technology vendors, all of whom generally compile code written in their C dialect
in a manner very similar to that followed by the compilers for GPUs: the compiler partitions the
program into device (FPGA) code and host code, each is separately compiled, the host code is

modified to invoke the device artifact.

[0005] Regardless of the heterogeneous mix of processing elements in a computer, the
programming process to date is generally similar and shares the following characteristics. First,
the disparate languages or dialects in which different architectures must be programmed make it
hard for a single programmer or programming team to work equally well on all aspects of a
project. Second, relatively little attention has been paid to co-execution, the problem of
orchestrating a program execution using multiple distinct computational elements that work
seamlessly together. This requires partitioning a program into tasks that can map to the
computational elements, mapping or scheduling the tasks onto the computational elements, and
handling the communication between computational elements which in itself requires serializing
data and preparing it for transmission, routing data between processors, and receiving and
deserializing data. Given the complexities associated with orchestrating the execution of a
program on a heterogeneous computer, a very early static decision must be made on what will
execute where, a decision that is hard and costly to revisit as a project evolves. This is
exacerbated by the fact that some of the accelerators, for example, FPGAs, are difficult to

program well and place a heavy engineering burden on programmers.

WO 2013/019575 PCT/US2012/048440

BRIEF SUMMARY

[0006] A method for executing one or more applications, in one aspect, may include partitioning,
automatically by a program compiler, a program code into two or more logical units; and
compiling each of the logical units into one or more executable entities, at least some of the
logical units compiled into two or more executable entities, said two or more executable entities

being different machine-specific compilations of the same logical unit.

[0007] In another aspect, a method of executing one or more applications, may include
determining which one or more platforms are available for program execution; at each
designated point of the program code, determining a logical unit for execution and selecting one
or more executable entities that are associated with the determined logical unit and that are
compatible with said one or more platforms determined to be available; and distributing said

selected one or more executable entities to said respective one or more platforms determined to

be available.

[0008] A system for executing one or more applications, in one aspect, may include a compiler
module operable to partition a program code into two or more logical units, and compile each of
the logical units into one or more executable entities. At least some of the logical units may be
compiled into two or more executable entities. Said two or more executable entities may be
different machine-specific compilations of the same logical unit. A runtime module may be
operable to determine which one or more platforms are available for program execution. At each
designated point of the program code, the runtime module may be further operable to determine
a logical unit for execution. The runtime module may be further operable to select one or more
executable entities that are associated with the determined logical unit and that are compatible

with said one or more platforms determined to be available.

[0009] A circuit embedding instructions to be performed on a machine, the instructions

including the methods described herein may be also provided.

WO 2013/019575 PCT/US2012/048440

[0010] Further features as well as the structure and operation of various embodiments are
described in detail below with reference to the accompanying drawings. In the drawings, like

reference numbers indicate identical or functionally similar elements.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0011] Fig. 1 is a diagram illustrating the compiler and runtime methodology of the present

disclosure in one embodiment.

[0012] Fig. 2 is a flow diagram illustrating a compiler method in one embodiment of the present

disclosure.

[0013] Fig. 3 is a flow diagram illustrating a runtime method in one embodiment of the present

disclosure,

[0014] Fig. 4 is an example architectural overview of the compilation and runtime architecture of

the present disclosure in one embodiment.

[0015] Fig. 5 shows example systems on which the compiler framework and/or runtime system

can operate, in one embodiment of the present disclosure.
DETAILED DESCRIPTION

[0016] The present disclosure describes processes for compiling an application to execute on
different processors, for instance, on a heterogeneous computer having two or more processors
with different execution architecture, also referred to as a hybrid computer. A runtime process
may be also provided that selects, distributes and executes the compiled components on the
appropriate processors. A methodology of the present disclosure in one aspect may enable
compiling a single-source-language for co-execution on a heterogeneous computer, and uses
compilation and/or runtime techniques that address the early-partitioning and co-execution issues

that arise in existing solutions. For instance, a host compiler may operate on the entire program

4

WO 2013/019575 PCT/US2012/048440

— which may be written in a single source language - and generate machine-specific code for
running the program on a general purpose CPU. In addition, any number of device-specific
compilers may be allowed to also operate on the entire program, and each such compiler may
elect to perform device-specific code generation independent of the choices made by the other
device compilers. In this way, the methodology of the present disclosure may overcome the
problem of preprocessing and partitioning a program once (into host and device codes) because it
permits different compilers to compile and produce functionally equivalent machine-specific
implementations of the same source code. At least one of the compilers (usually the host
compiler) is guaranteed to generate code for all parts of a program. One or more compilers may
generate code for subsets of the input program. For instance, since device compilers are
generally more restrictive than host compilers, the device compilers might generate executables
(also referred to as executable entities or artifacts) for subsets of the input program. Thus, in one
embodiment of the present disclosure, multiple compilers can generate executable entities
(artifacts) for an input program, and any given compiler can generate multiple executable entities

(artifacts) for the same program, for example, corresponding to different partitions or subsets of

the program.

[0017] In another aspect, the present disclosure also describes a technique for correlating the
same program parts compiled with different compilers using a unique identifier construction that
ensures that the same parts of a program, compiled with different compilers, always generate the
same identifier. For example, in one embodiment of a methodology of the present disclosure,
each artifact is labeled using its corresponding identifier, and placed in an artifact store organized
according to the desired set of devices in the computer. The artifact store may be a repository of
all artifacts produced by the various compilers. In one embodiment, an artifact is retrieved from
the store using a pair of keys: one key identifies the desired device and another key identifies the
unique artifact. For example, the first key identifies the desired device, and the second key is the
unique artifact identifier. The order of the keys is not of importance. If the artifact exists, it is

retrieved; otherwise an indication of failure is returned.

[0018] In one embodiment of the present disclosure, the artifact store is used by a runtime layer,

described later in this disclosure, to dynamically partition a program. As a program executes,

5

WO 2013/019575 PCT/US2012/048440

and at predefined events in the execution (usually dictated by the semantics of the program
source language but not necessarily), the runtime may inspect the artifact store to discover the set
of artifacts that implement an upcoming part of the program execution. The runtime may
employ heuristics to select a new artifact to execute in licu of the default artifact. Thus rather
than execute the default host code, the runtime can dynamically load an alternate device artifact
to run instead. In this way, the runtime permits many different program partitions when

executing a program on a heterogeneous computer.

[0019] Fig. 1 illustrates a compiler and runtime methodology of the present disclosure in one
embodiment with an example software / hardware configuration. A compilation technique of the
present disclosure in one embodiment compiles a single-source-language 102, for instance, for
co-execution, on a heterogeneous computer 104. An example hybrid computer 104 shown
includes a number of different types of processors, a CPU 126, a GPU 128, a FPGA 130, an
XML 132 and another application specific integrated circuit (ASIC) 134. A host compiler 106
may generate an executable code or entity 116 that is compatible to run on a CPU 104. In
addition, a GPU compiler 108 may operate on the same source code 102 and generate an
executable entity or code 118 compatible to run on the GPU 128; a FPGA compiler 110 may
operate on the same source code 102 and generate an executable entity or code 120 compatible to
run on the FPGA 130; an XML compiler 112 may operate on the same source code 102 and
generate an executable entity or code 122 compatible to run on the XML processor 132; another
compiler 114 may operate on the same source code 102 and generate an executable entity or

code 124 compatible to run on another special processor or application specific integrated circuit
(ASIC).

[0020] At least one of the compilers (usually the host compiler, e.g., 106) is guaranteed to
generate code for all parts of a program 102. One or more compilers may generate code for
subsets of the input program 102. Thus, in one embodiment of the present disclosure, multiple
compilers 106, 108, 110, 112, 114 can generate executable entities (artifacts) 116, 118, 120, 122,
124 for an input program 102, and any given compiler can generate multiple executable entities
(artifacts) for the same program, for example, corresponding to different partitions or subsets of

the program. The generated executable entities 116, 118, 120, 122, 124 may be stored in an

6

WO 2013/019575 PCT/US2012/048440

artifact store 136, for example as a database or in another format, in memory and/or a persistent
or permanent storage device. During runtime (e.g., when the program is being run or executed
on the computer 104), a runtime environment 138 determines the types of processors 126, 128,
130, 132, 134 that are available on the computer 104 for running a program and selects and
executes one or more executable entities from the artifact store 136, based on the availability of
the processors on the computer 104. Thus, depending on the computer’s processor

configuration, different executable entities may be selected, and distributed and run on the

appropriate processors.

[0021] Fig. 2 is a flow diagram illustrating a compiler method in one embodiment of the present
disclosure. At 202, a compiler partitions a program code into two or more logical units.

At 204, the compiler compiles each of the logical units into one or more executable entities. At
least some of the logical units may be compiled into two or more executable entities, which are
different machine-specific compilations of the same logical unit. At 206, the executable entities
may be assigned corresponding identifiers. One or more executable entities corresponding to
each logical unit is assigned a unique identifier. Thus, two or more executable entities that
correspond to the same logical unit are assigned the same identifier. In one embodiment, each
executable entity may be identified with a tuple, e.g., a unique identifier that corresponds to a
logical unit, and an identifier that identifies a specific processor (or device) on which the
executable entity can be executed. In that way, two or more executable entities corresponding to
the same logical unit that share the unique identifier can be distinguished from one another by
the device identifier. At 208, the executable entities may be stored with the corresponding

identifiers, for example, in persistent storage.

[0022] Fig. 3 is a flow diagram illustrating a runtime method in one embodiment of the present
disclosure. At 302, a determination is made as to which one or more platforms are available for
program execution on a computer. At 306, at each designated point of the program code, a
logical unit is determined for execution. One or more executable entities are selected which are
associated with the determined logical unit and which are compatible with said one or more
platforms determined to be available. At 308, selected one or more executable entities may be

distributed to the respective one or more platforms determined to be available.

7

WO 2013/019575 PCT/US2012/048440

[0023] In the present disclosure in one embodiment, a comprehensive compiler infrastructure
and runtime system may be provided that together enable the use of a single language for
programming computing systems with heterogeneous accelerators or the like, and the co-
execution of the resultant programs on such architectures. In one aspect, a design feature of the
present disclosure may make it possible to have the same semantics when executing on any
processor, whether sequential or thread-parallel (like a multicore CPU), vector-parallel (like a
GPU), or bit-parallel (like an FPGA).

[0024] In one embodiment, a compiler of the present disclosure may first translate the program
into an intermediate representation that describes the computation as independent but
interconnected computational nodes or logical units. For instance, referring back to Fig. 1, a
source program 102 may be partitioned into those computational nodes (e.g., 140), also referred

to as logical units as shown at 102.

[0025] The compiler of the present disclosure may then give a series of quasi-independent
backend compilers a chance to compile one or more groups of computational nodes for different
target architectures. Most backend compilers are under no obligation to compile everything.
However, in one embodiment, one backend is always dedicated to compiling the entire program

and guaranteeing that every node has at least one implementation.

[0026] The result of a compilation with a methodology of the present disclosure in one
embodiment is a collection of artifacts for different architectures, each labeled with the particular
computational node that it implements. The runtime then has available to it a large number of

functionally equivalent configurations depending on which nodes are activated.

[0027] In one embodiment of the present disclosure, a dynamic partitioning of a program is
performed for co-execution, for instance, using heuristics. The compiler of the present
disclosure may solve the problem of a premature static partitioning of an application with
dynamic partitioning of the program across available processing elements, e.g., targeting

multicore CPUs, GPUs, and FPGAs. The advantage of doing the partitioning at runtime is that it

8

WO 2013/019575 PCT/US2012/048440

need not be permanent, and it may adapt to changes in the program workloads, program phase

changes, availability of resources, and other fine-grained dynamic features.

[0028] The compilation framework and runtime disclosed in the present application may provide

the following features, but not limited to only those.

[0029] One source-multiple architectures: the same set of logical units can be compiled
separately into executable artifacts using architecture-specific compilers thus allowing for the
possibility of writing code, for example, in a Java™-like language and realizing native

executables for accelerators or like processors.

[0030] Automatic compilation to special-purpose processors such as GPU, FPGA and others: for
instance, the compilation framework of the present disclosure in one embodiment may be

capable of generating Java™ bytecode, OpenCL code for execution on GPUs, and Verilog code

for execution on FPGAs.

[0031] Managed runtime for stream-computing: the compilation framework of the present
disclosure in one embodiment may provide a language runtime implemented entirely in one
language, for example, Java™ or the like, and may be capable of being hosted by a virtual
machine, for example, any Java™ virtual machine (VM); it may schedule the execution of the
logical units using native concurrency mechanisms to exploit parallelism when it exists in the
program. Logical units in this disclosure are also referred to as tasks. A task graph in the
present disclosure refers to a network of connected tasks, for instance, by their inputs and
outputs. For example, task 1 may be connected to task 2 as a result of task 1°s output being used
by task 2’s input.4. Flexible configuration for co-execution: the compilation framework of the
present disclosure in one embodiment may orchestrate the co-execution of logical units between
different processors, for example, Java™ VM, GPU and FPGA, and/or others, when such
artifacts exist, including the management of communication as well as serialization and de-

serialization of data for artifacts.

WO 2013/019575 PCT/US2012/048440

[0032] Fig. 4 is an example architectural overview of the compilation and runtime architecture of
the present disclosure in one embodiment. The architecture may be organized into a frontend
(FE) compiler 402 and a set of architecture-specific backend (BE) compilers 404 for special
processors such as GPUs and FPGAs. The framework (e.g., a user interface module of the
framework) accepts a set of source files 408 and produces artifacts 410 for execution. An artifact
is an executable entity that may correspond to either the entire program (e.g., as is the case with
the bytecode generation) or its subsets (e.g., as is the case with the OpenCL/GPU and
Verilog/FPGA backends). An artifact is packaged in such a way that it can be replaced at

runtime with another artifact that is its semantic equivalent.

[0033] The architecture shown in Fig. 4 illustrates a Java™ bytecode compiler as a general
purpose compiler for general purpose CPUs, and OpenCL and Verilog as backend compliers for
GPUs and FPGAs respectively. Those components are shown only as examples. It should be
noted that the methodologies and the framework of the present disclosure is not limited to only
that configuration shown in Fig. 4. Rather, the opérations and workings described in the present
disclosure may apply to other general purpose and special purpose processors and compilers. In
addition, as an example, a Java™-like programming language and its syntax and commands are
described below as a language used in programming a single-source program that can be
compiled with the compiler framework of the present disclosure. However, the methodologies
of the present disclosure need not be limited to a program programmed using only that language

or any one single language.

[0034] Referring to Fig. 4, an example single-source language 408 may expose logical units in
the form of task-graphs 412. A task applies a function repeatedly as long as data items are
presented as input to the task. Task-graphs result from connecting tasks together so that the

output of one becomes the input to another.

[0035] An implementation of the frontend compiler 402 may include a Bytecode compiler. For
instance, the frontend compiler 402 may include a Java™-compatible language and may be built
via an incremental modification to the existing robust Java™ compiler that is built into Eclipse

(ECJ). The Eclipse compiler (and transitively the FE 402) may perform shallow optimizations.

10

WO 2013/019575 PCT/US2012/048440

Internally, the Eclipse compiler may use the abstract syntax tree (AST) as the program
representation throughout. The FE 402 may implement the language features via AST-to-AST

rewriting and reuse the existing Eclipse bytecode generation phase.

[0036] In one embodiment, a component in the FE 402 may be applied to the AST to just before
bytecode generation to convert the AST into an intermediate representation suitable for the
backends 404. The component may perform an interpretive execution of portions of the program
408 that build task graphs, with the goal of statically discovering the structure of many task
graphs 412 that the program will create at runtime (including their topology and the code of each
node after inlining, constant propagation, and other optimizations). Interpretive execution may

not discover all possible task graphs that the program might build.

[0037] The various backends 404 may be individually allowed to compile the tasks that make up
these graphs. Each backend may have an excluder component that examines each task to decide
whether its methods can be compiled; a task containing methods with language constructs that
are not suitable for the backend is excluded from further compilation by that backend and no
artifact is produced for it. Otherwise, the backend produces an artifact 410 for each task that it
compiles. A backend may produce artifacts for what were, in the original program, individual
tasks. Alternatively, a backend may produce artifacts 410 for aggregations of contiguous tasks,
for example, an entire pipeline (i.e., sequence of connected tasks) or at least the largest

subsection of a pipeline possible given that some tasks may be rejected by the excluder.

[0038] In one embodiment of the present disclosure, the frontend and backend compilers 402,
404 cooperate to produce a manifest describing each generated artifact and labeling it with a
unique task identifier. The set of manifests and artifacts 410 are used by the runtime 414 in
determining which task implementations are semantically equivalent to each other. The same
task identifiers are incorporated into the final phase of bytecode compilation so that the task
construction and graph construction expressions in the program can pass along these identifiers
to the runtime 414 when the program is executed. An individual task may have more than one

task 1dentifier since it may be part of larger aggregate tasks produced by one or more backends

11

WO 2013/019575 PCT/US2012/048440

404. However, the task identifiers are generated in such a way that the tasks (whether simple or

aggregate) with the same task identifier are functionally equivalent.

[0039] An example of a special processor that could make up a hybrid computer is a GPU 418,
In this example, the backend for GPUs may produce OpenCL code that is automatically
compiled to native object code using platform specific OpenCL runtime compilers. The
generation of OpenCL code confers the added benefit of running the code 408 natively on a
variety of platforms that provide OpenCL implementations. As an example, the framework of the
present disclosure in one embodiment may treat OpenCL as a portable “assembly” language for

uniprocessors, GPUs and multicore processors.

[0040] The OpenCL backend 422 may generate artifacts 410 for either individual tasks or
connected task graphs. It may compile each task to an OpenCL kernel, perform scheduling of
tasks as well as manage inter-task data transfer. The communication between the different
kernels may be optimized so that data remain resident in the GPU device memory between
subsequent runs of connected tasks. This may avoid needless data-transfers between the host

CPU and the GPU, thus maximizing performance.

[0041] Parallelism may exist explicitly in the task graph (e.g., via an explicit command in a
program) or indirectly expressed by the programmer in a more imperative style (e.g., as a
collective operation such as map or apply). When a piece of parallel code is extracted, it may be
turned internally by a backend compiler 404, e.g., OpenCL backend 422, into a loop that maps
directly to the index space associated with the OpenCL parallel execution model. The generated
OpenCL code can adapt to any input size and any number of threads executing on the device.
This contrasts with hand-written code that often assumes a fixed number of threads or a fixed

input size. Thus, the generated code is more generic and flexible than the hand-written one.

[0042] For getting good performance on the GPU 418, the compiler framework of the present
disclosure may carefully map data to different memories. Generally, four types of memories are
available in the OpenCL programming model: global, constant, local and private memory. These

are ordered from the slowest and largest (global memory) to the fastest and smallest (private

12

WO 2013/019575 PCT/US2012/048440

memory) and reside on the GPU device board. The global memory can be accessed for
read/write by all the threads running on the device. This is comparable to the main memory
(RAM) of the CPU. The constant memory can be viewed as a small read-only global memory
that is being used mainly to store program constants. The local memory is a read/write memory
shared among all the threads running on the same compute unit (similar to a shared level2 cache
in a multicore processor). Finally, the private memory is dedicated to each thread and cannot be
used to exchange data between threads. The backend 404 (e.g., 422) may automatically optimize
the placement of the data in the different memories and perform adequate program
transformations to ensure best performance. For instance, loop tiling may be applied to parallel
loops and the local memory may be used as a scratchpad memory to minimize the traffic to the
global memory. Another optimization may include detecting redundant loads from the global
memory and eliminating them by storing the value in the fast private memory. Other

optimizations may be performed for a GPU 418.

[0043] Another example of a process that could make up a hybrid computer is a FPGA 420. In
this example, the FPGA backend 424 may operate on task graphs and can generate Verilog code
for pipelines and other explicitly specified program commands for parallelism. Briefly, Verilog
is a hardware description language. The backend compiler 404 of the present disclosure in one
embodiment having the FPGA 424 may support tasks that operate on primitive data types, and
excludes task with unbounded array allocations, although bounded array allocations are allowed.
In one aspect, the code generation strategy is a dual approach, coarse-grained pipeline
parallelism as expressed in the task graph, and fine-grained instruction level parallelism available
in the task method. The backend compiler 424 performs static work estimation using a model to
determine bottleneck tasks, and then attempts to aggressively partition its worker method into
very fine-grained blocks; as fined grained as a single operation. The backend for FPGA 424 may
include optimizations. The backend 424 may use a library of pre-generated hardware blocks,
including communication firmware to transport data between the CPU 416 and the FPGA 420.
The backend 424 may automatically perform logic synthesis of the generated Verilog to a
produce a bitfile (which is used to configure the FPGA before running the program). This step

does not require any user intervention and may use vendor-specific EDA (electronic design

13

WO 2013/019575 PCT/US2012/048440

automation) tools. As an example, PCle-based Xilinx FPGAs may be supported. Other FPGAs
may be also supported.

[0044] A runtime component in the present disclosure enables execution of compiled codes
(executable entities or artifacts) on appropriate hardware or processors. As an example, a
runtime module 414 may be implemented in Java™ and may be capable of being hosted by any
JVM. In one embodiment of the present disclosure, a runtime module 414 may include one or
more virtual machines or the like for executing one or more executable entities. It may construct
task graphs at run time, elect which implementations of a task to use from among the available
artifacts 410, perform task scheduling, and if needed or desired, orchestrate marshaling and
communication with native artifacts. In one embodiment of the present disclosure, the runtime
module 414 may include phases of execution for performing those tasks, e.g., reifying task

graphs, scheduling and running a task graph, task substitutions, and native connections and

marshalling.

[0045] In one embodiment of the implementation of the runtime module 414, the runtime 414
may contain a class for every distinct kind of task that can arise, for example, in a programming
language used to program a single source program 408. When a bytecode compiler produces the
code for a task, it generates an object allocation for one of these runtime classes directly, or
generates a class that subclasses the appropriate runtime class, adding tailored behavior, and then

generates an object allocation for the generated class.

[0046] A connect operation which joins the output of one task to the input of another generates a
method call on runtime-provided methods that cause the connection to be formed. The result of
this reification strategy is that, when the program executes, the task creation and connection
operators of the language are reflected in an actual graph of runtime objects. The generated
bytecode that instantiates a task also provides the runtime with the unique identifiers that were

generated by the backend compilers 404 to advertise the set of available task artifacts.

[0047] In one embodiment, scheduling and running an executable entity may occur as follows.

A “start” method, when called on any task graph, activates the scheduling portion of the runtime.

14

WO 2013/019575 PCT/US2012/048440

The reified graph is explored to find the tasks that make up the graph, and to compute the rates of
cach task. “Rate” refers to the number of outputs produced for each input. Tasks made from
user-methods have a rate of 1:1, while builtin tasks can have other rates which may be statically

known (though not necessarily 1:1), or it may be dynamically varying.

[0048] Once the rates of all the tasks are known, the graph is divided by the scheduler into
synchronous regions such that either (1) all tasks in a synchronous region have statically known
rates or (2) the synchronous region has a single task with dynamically varying rate. For each
synchronous region of the first kind, a static schedule is calculated which will cause each task to
be executed the right number of times to keep the rates of the tasks in balance. The connections
between tasks in a synchronous region, therefore, need not have elastic buffers; however, those

that connect synchronous regions have such buffers to accommodate the varying rates.

[0049] Assuming that the tasks in the graph only have bytecode artifacts, the runtime creates a
thread for each synchronous region. These threads will block on the incoming connections of the
region until enough data is available for a single iteration of the region's schedule, producing
data on its outgoing connections. The creation and starting of these threads completes the

runtime's implementation of the start() operation.

[0050] In one embodiment, task substitution (i.e., dynamic program partitioning between
processors in the computer) may be performed as follows. If tasks in the graph have non-
bytecode artifacts, the runtime learns of this while examining the reified task graph since the
unique identifiers of tasks that are stored there can be looked up efficiently in the artifact store
(see e.g., Fig. 1, 136) populated by the backends 404. For each task or contiguous sequence of
tasks that has an alternative implementation (e.g., more than one executable entity available), the
runtime may be in a position to realize a substitution. In one embodiment, a runtime algorithm
may use one or more rules for performing a substitution automatically. For instance, a rule may
specify to prefer a larger substitution (subsuming a larger number of contiguous tasks) to a
smaller one. Another rule may specify to favor GPU and FPGA artifacts to bytecodes. The
choices may be manually directed as well. A more sophisticated algorithm that accounts for

communication costs, performs dynamic migration, or runtime adaptation or others may be

15

WO 2013/019575 PCT/US2012/048440

considered. Realizing the actual substitution involves the native connection and marshaling
described below. Substitution may precede the creation and starting of threads as described

above, but otherwise does not generally affect the rest of the runtime.

[0051] In one embodiment, native connections and marshaling may be performed as follows.
Characteristic of all non-bytecode artifacts may be that there is some unique kind of connection
between the domain of the JVM and the hardware domain of the backend. For example, GPU
coexecution alongside the JVM requires first loading the native binary (a one-time occurrence),
currently in the form of dynamically-linked library, and performing Java™ Native Interface
(JNI) calls to transfer data from the JVM to the GPU. Similarly, in the case of the FPGA, the
device itself is programmed using a bitfile, and also loading a library to handle the native
communication with the FPGA device driver. In all cases, some serialization and de-
serialization of data may occur. Technically, JNI supports passing Java™ data structures by
reference, with callbacks to access individual fields and dependent objects. In practice,
serialization of data may be utilized to avoid large numbers of NI crossings. Briefly, INI allows

Java™ running in a JVM to call and be called by native programs specific to a hardware or

operating system.

[0052] In order to mitigate the latency of most native connections, some buffering on the
connection may be created and used. Thus, the presence of a native task in the midst of tasks
running Java™ bytecodes may break the synchronous region, placing the native task in a native
region that is similarly separated in terms of thread scheduling. Whereas synchronous regions in
the JVM may be separated by simple data queues, the queuing between native regions may be

buried at least in part in native code and the details may vary according to the type of backend.

[0053] As an example, a single language supported by the compiler framework and runtime
system of the present disclosure may be a Java™-like language. Such language may be designed
to have the requisite semantics to allow concise programming of and efficient compilation to
highly diverse architectures. The language may offer a task-based dataflow programming model
that allows for program partitioning at task-granularity. A task can be strongly isolated such that

it probably cannot access mutable global program state, and no external references to the task

16

WO 2013/019575 PCT/US2012/048440

exist so that its state cannot be mutated except from within the task, if at all. Task-graphs result
from connecting tasks together so that the output of one becomes the input to another. Only
value types may be permitted to flow between tasks along their connections. Value types
represent immutable objects and thus task-isolation cannot be violated. The language may
guarantee isolation and immutability to make it ideal to perform dynamic program partitioning
and mapping of task-graphs to heterogeneous architectures for co-execution. Such programming
language in one embodiment may augment Java™ with a number of features designed to expose
parallelism. An example single programming language that includes features that could be used
to program various different types of processors can be found in Joshua Auerbach and David F.
Bacon and Perry Cheng and Rodric Rabbah, Lime: a Java-compatible and synthesizable
language for heterogeneous architectures in OOPSLA, 2010; and also in Joshua Auerbach and
David F. Bacon and Perry Cheng and Rodric Rabbah, LIME: The Liquid Metal Programming
Language — Language Reference Manual, Technical report, RC25004, IBM Research, 2010. See
http : // domino . research . ibm . com / library / cyberdig . nsf. More details of Streamlt can be
found in Thies, William. Language and compiler support for stream programs. PhD thesis,
Massachusetts Institute of Technology, 2009; and in Thies, William and Karczmarek, Michal
and Amarasinghe, Saman P. Streamlt: A Language for Streaming Applications. CC, 2002.

[0054] It should be noted that the compiler and runtime methodologies and framework of the
present disclosure are not limited to using a particular language. Rather, the above-description of

the language is provided as an example only.

[0055] Fig. 5 shows example systems on which the compiler framework and/or runtime system
can operate, in one embodiment of the present disclosure. Such system may include one or more
processors 502, memory 504, and may have connections to network, storage and other devices.
A compiler framework and runtime system 506 of the present disclosure may reside in computer
memory 504 and executed by the processor(s) 502. For instance, the compiler framework and
runtime system 506 may be loaded from a persistent storage device, and/or loaded from a
network. A program may be compiled by the compiler of the present disclosure as described
above. The resulting executable entities may be stored and/or executed by the runtime system

506 of the present disclosure as described above. It is noted that a program need not be compiled

17

WO 2013/019575 PCT/US2012/048440

and executed on the same machine. That is, for example, a program may be compiled using the
compiler framework of the present disclosure on one machine, and the stored executable entities
ported to another machine for execution on that machine by the runtime system of the present
disclosure. As an example, Fig. 5 shows machine A and machine B, which may have different
processor configurations. A program may be compiled in machine B, using machine B’s
processor 510 and memory 508, then run on machine A, and vice versa. The configurations of

the computers in Fig. 5 are shown as examples only; the methodologies of the present disclosure

may apply to any other configurations.

[0056] In this disclosure, a compiler infrastructure and runtime system that together enable the
use of a single language for programming computing systems with heterogeneous accelerators
(e.g., with a mixture of conventional CPU cores, GPUs, and FPGAs), and the co-execution of the
resultant programs on such architectures was described above. By way of an example, a Java™-
compatible language was described, with the framework that leverages an existing Java™
compiler and exposes several applicable compilation techniques, which include, but not limited
to, (1) interpretive execution of dynamic graph construction expressions to statically discover the
structure and code of the resulting graph and (2) a multi-versioning strategy that redundantly
compiles for multiple backends, excluding code that cannot readily be compiled for a given one.

The runtime module is enabled to select a partitioning optimized for the computational elements.

[0057] While programming technologies exist for CPUs, GPUs, FPGAs, and various
accelerators in isolation, they are disparate languages or dialects in which different architectures
need to be programmed. On the other hand, the methodologies of the present disclosure in one
embodiment allow for a single program for programming different processors. In addition, the
methodologies of the present disclosure allow for co-execution, including orchestrating a
program into distinct computational elements that execute on different architectures and work
seamlessly together. Furthermore, the methodologies of the present disclosure allow for

dynamic and automatic decisions to be made in determining on what will execute where.

[0058] In one embodiment, the methodologies and/or one or more components of the present

disclosure may be implemented and executed on field-programmable gate array (FPGA),

18

WO 2013/019575 PCT/US2012/048440

graphical processing unit (GPU), or other special purpose processor or circuit, or a central
processing unit (CPU), or any combinations thereof. Language such as hardware description
language (HDL) may be used to program such hardware or integrated circuit. In one
embodiment of the present disclosure, for example, the main logic of the program may run on an

FPGA, while subsidiary logic of the program run on a CPU.

[0059] As will be appreciated by one skilled in the art, aspects of the present invention may be
embodied as a system, method or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro-code, etc.) or an embodiment

combining software and hardware aspects that may all generally be referred to herein as a

2 LC

“circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the
form of a computer program product embodied in one or more computer readable medium(s)

having computer readable program code embodied thereon.

[0060] Any combination of one or more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may be, for example, but not limited to,
an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus,
or device, or any suitable combination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium would include the following: an
electrical connection having one or more wires, a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or store a program for use by or in

connection with an instruction execution system, apparatus, or device.

[0061] A computer readable signal medium may include a propagated data signal with computer

readable program code embodied therein, for example, in baseband or as part of a carrier wave.

19

WO 2013/019575 PCT/US2012/048440

Such a propagated signal may take any of a variety of forms, including, but not limited to,
electro-magnetic, optical, or any suitable combination thereof. A computer readable signal
medium may be any computer readable medium that is not a computer readable storage medium
and that can communicate, propagate, or transport a program for use by or in connection with an

instruction execution system, apparatus, or device.

[0062] Program code embodied on a computer readable medium may be transmitted using any
appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc.,

or any suitable combination of the foregoing.

[0063] Computer program code for carrying out operations for aspects of the present invention
may be written in any combination of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk, C++ or the like and conventional
procedural programming languages, such as the "C" programming language or similar
programming languages, a scripting language such as Perl, VBS or similar languages, and/or
functional languages such as Lisp and ML and logic-oriented languages such as Prolog. The
program code may execute entirely on the user's computer, partly on the user's computer, as a
stand-alone software package, partly on the user's computer and partly on a remote computer or
entirely on the remote computer or server. In the latter scenario, the remote computer may be
connected to the user's computer through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may be made to an external computer

(for example, through the Internet using an Internet Service Provider).

[0064] Aspects of the present invention are described with reference to flowchart illustrations
and/or block diagrams of methods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by computer program instructions.
These computer program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to

produce a machine, such that the instructions, which execute via the processor of the computer or

20

WO 2013/019575 PCT/US2012/048440

other programmable data processing apparatus, create means for implementing the functions/acts

specified in the flowchart and/or block diagram block or blocks.

[0065] These computer program instructions may also be stored in a computer readable medium
that can direct a computer, other programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions stored in the computer readable
medium produce an article of manufacture including instructions which implement the

function/act specified in the flowchart and/or block diagram block or blocks.

[0066] The computer program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable apparatus or other devices to produce a
computer implemented process such that the instructions which execute on the computer or other
programmable apparatus provide processes for implementing the functions/acts specified in the

flowchart and/or block diagram block or blocks.

[0067] The flowchart and block diagrams in the figures illustrate the architecture, functionality,
and operation of possible implementations of systems, methods and computer program products
according to various embodiments of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, segment, or portion of code, which
comprises one or more executable instructions for implementing the specified logical function(s).
It should also be noted that, in some alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality involved. It will also be noted that each
block of the block diagrams and/or flowchart illustration, and combinations of blocks in the
block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-
based systems that perform the specified functions or acts, or combinations of special purpose

hardware and computer instructions.

21

WO 2013/019575 PCT/US2012/048440

[0068] The systems and methodologies of the present disclosure may be carried out or executed
in a computer system that includes a processing unit, which houses one or more processors
and/or cores, memory and other systems components (not shown expressly in the drawing) that
implement a computer processing system, or computer that may execute a computer program
product. The computer program product may comprise media, for example a hard disk, a
compact storage medium such as a compact disc, or other storage devices, which may be read by
the processing unit by any techniques known or will be known to the skilled artisan for providing

the computer program product to the processing system for execution.

[0069] The computer program product may comprise all the respective features enabling the
implementation of the methodology described herein, and which - when loaded in a computer
system - is able to carry out the methods. Computer program, software program, program, or
software, in the present context means any expression, in any language, code or notation, of a set
of instructions intended to cause a system having an information processing capability to
perform a particular function either directly or after either or both of the following: (a)

conversion to another language, code or notation; and/or (b) reproduction in a different material

form.

[0070] The computer processing system that carries out the system and method of the present
disclosure may also include a display device such as a monitor or display screen for presenting
output displays and providing a display through which the user may input data and interact with
the processing system, for instance, in cooperation with input devices such as the keyboard and
mouse device or pointing device. The computer processing system may be also connected or
coupled to one or more peripheral devices such as the printer, scanner, speaker, and any other
devices, directly or via remote connections. The computer processing system may be connected
or coupled to one or more other processing systems such as a server, other remote computer
processing system, network storage devices, via any one or more of a local Ethernet, WAN
connection, Internet, etc. or via any other networking methodologies that connect different
computing systems and allow them to communicate with one another. The various

functionalities and modules of the systems and methods of the present disclosure may be

22

WO 2013/019575 PCT/US2012/048440

implemented or carried out distributedly on different processing systems or on any single

platform, for instance, accessing data stored locally or distributedly on the network.

[0071] The terminology used herein is for the purpose of describing particular embodiments only
and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an"
and "the" are intended to include the plural forms as well, unless the context clearly indicates
otherwise. It will be further understood that the terms "comprises" and/or "comprising," when
used in this specification, specify the presence of stated features, integers, steps, operations,
elements, and/or components, but do not preclude the presence or addition of one or more other

features, integers, steps, operations, elements, components, and/or groups thereof.

[0072] The corresponding structures, materials, acts, and equivalents of all means or step plus
function elements, if any, in the claims below are intended to include any structure, material, or
act for performing the function in combination with other claimed elements as specifically
claimed. The description of the present invention has been presented for purposes of illustration
and description, but is not intended to be exhaustive or limited to the invention in the form
disclosed. Many modifications and variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the invention. The embodiment was chosen
and described in order to best explain the principles of the invention and the practical
application, and to enable others of ordinary skill in the art to understand the invention for

various embodiments with various modifications as are suited to the particular use contemplated.

[0073] Various aspects of the present disclosure may be embodied as a program, software, or
computer instructions embodied in a computer or machine usable or readable medium, which
causes the computer or machine to perform the steps of the method when executed on the
computer, processor, and/or machine. A program storage device readable by a machine, tangibly
embodying a program of instructions executable by the machine to perform various

functionalities and methods described in the present disclosure is also provided.

[0074] The system and method of the present disclosure may be implemented and run on a

general-purpose computer or special-purpose computer system. The computer system may be

23

WO 2013/019575 PCT/US2012/048440

any type of known or will be known systems and may typically include a processor, memory
device, a storage device, input/output devices, internal buses, and/or a communications interface

for communicating with other computer systems in conjunction with communication hardware

and software, etc.

[0075] The terms “computer system” and “computer network”™ as may be used in the present
application may include a variety of combinations of fixed and/or portable computer hardware,
software, peripherals, and storage devices. The computer system may include a plurality of
individual components that are networked or otherwise linked to perform collaboratively, or may
include one or more stand-alone components. The hardware and software components of the
computer system of the present application may include and may be included within fixed and
portable devices such as desktop, laptop, and/or server. A module may be a component of a
device, software, program, or system that implements some “functionality”, which can be

embodied as software, hardware, firmware, electronic circuitry, or etc.

[0076] The embodiments described above are illustrative examples and it should not be
construed that the present invention is limited to these particular embodiments. Thus, various
changes and modifications may be effected by one skilled in the art without departing from the

spirit or scope of the invention as defined in the appended claims.

24

WO 2013/019575 PCT/US2012/048440

We claim:

1. A method for executing one or more applications, comprising:

partitioning, automatically by a program compiler, a program code into two or more
logical units; and

compiling each of the logical units into one or more executable entities, at least some of
the logical units compiled into two or more executable entities, said two or more executable

entities being different machine-specific compilations of the same logical unit.

2. The method of claim 1, further including:

assigning same identifier to all executable entities compiled from the same logical unit.

3. The method of claim 1, wherein the one or more executable entities are stored with at
least two keys, one key identifying a logical unit from which said one or more executables are

compiled, and another key identifying a platform with which said one or more executable entities

are compatible.

4. The method of claim 1, further including:

determining which one or more platforms are available for program execution; and

at each designated point of the program code, determining a logical unit for execution
and selecting one or more executable entities that are associated with the determined logical unit

and that are compatible with said one or more platforms determined to be available.

5. The method of claim 4, distributing said selected one or more executable entities to

said respective one or more platforms determined to be available.

6. The method of claim 1, wherein the partitioning is done at a data flow boundary in the

program code.

7. The method of claim 1, wherein an executable entity is generated for all parts of the

program for at least one specific machine.

25

WO 2013/019575 PCT/US2012/048440

8. The method of claim 1, wherein the different machine-specific compilations include
compilations executable on two or more combinations of general purpose computing platform, a

specialized computing platform, or a reconfigurable computing platform.

9. A method of executing one or more applications, comprising:

determining which one or more platforms are available for program execution;

at each designated point of the program code, determining a logical unit for execution
and selecting one or more executable entities that are associated with the determined logical unit
and that are compatible with said one or more platforms determined to be available; and

distributing said selected one or more executable entities to said respective one or more

platforms determined to be available.

10. The method of claim 9, wherein said one or more executable entities include at least
two keys, one key identifying the logical unit from which said one or more executables are

compiled, and another key identifying a platform with which said one or more executable entities

are compatible.

11. The method of claim 9, wherein the logical entities are compiled for two or more
combinations of general purpose computing platform, a specialized computing platform, or a

reconfigurable computing platform.

12. A circuit having machine instructions to perform a method of executing one or more
applications, the method comprising:

partitioning a program code into two or more logical units; and

compiling each of the logical units into one or more executable entities, at least some of
the logical units compiled into two or more executable entities, said two or more executable

entities being different machine-specific compilations of the same logical unit.

26

WO 2013/019575 PCT/US2012/048440

13. The circuit of claim 12, wherein the logical units are compiled for two or more

combinations of general purpose computing platform, a specialized computing platform, or a

reconfigurable computing platform.

14. The circuit of claim 13, wherein a main program of the logical units is executed on a

field programmable gate array and a subsidiary program of the logical units is executed on a

central processing unit.

15. The circuit of claim 12, wherein the method further includes:

assigning same identifier to all executable entities compiled from the same logical unit.

16. The circuit of claim 12, wherein the one or more executable entities are stored with
at least two keys, one key identifying a logical unit from which said one or more executables are

compiled, and another key identifying a platform with which said one or more executable entities

are compatible.

17. The circuit of claim 12, wherein the method further includes:

determining which one or more platforms are available for program execution; and

at each designated point of the program code, determining a logical unit for execution
and selecting one or more executable entities that are associated with the determined logical unit

and that are compatible with said one or more platforms determined to be available.

18. The circuit of claim 17, wherein the method further includes distributing said

selected one or more executable entities to said respective one or more platforms determined to

be available.

19. A system for executing one or more applications, comprising:

a compiler module operable to partition a program code into two or more logical units,
and compile each of the logical units into one or more executable entities, at least some of the
logical units compiled into two or more executable entities, said two or more executable entities

being different machine-specific compilations of the same logical unit; and

27

WO 2013/019575 PCT/US2012/048440

a runtime module operable to determine which one or more platforms are available for
program execution, and at each designated point of the program code, operable to determine a
logical unit for execution and select one or more executable entities that are associated with the

determined logical unit and that are compatible with said one or more platforms determined to be

available.

20. The system of claim 19, wherein the compiler module is further operable to assign

same identifier to all executable entities compiled from the same logical unit.

21. The system of claim 19, wherein the one or more executable entities are stored with
at least two keys, one key identifying a logical unit from which said one or more executables are

compiled, and another key identifying a platform with which said one or more executable entities

are compatible.

22. The system of claim 19, wherein the runtime module is further operable to distribute

said selected one or more executable entities to said respective one or more platforms determined

to be available.

23. The system of claim 19, wherein the logical units are compiled as executables on two

or more combinations of general purpose computing platform, a specialized computing platform,

or a reconfigurable computing platform.

24. The system of claim 19, wherein an executable entity is generated for all parts of the

program for at least one specific machine.

28

| 9Ol

PCT/US2012/048440

WO 2013/019575

10
P~ 28~ dallndhoy g % 9
5y / / / / / / / /
g A/ w0 wd L/ \ﬁ\ ndd
D 3100343 110933 310933
Y)]
14018
a1 Lo | A Loy | ez S ?:\ LY _ o LHIY | vy
AN AN AN
%)
w0
~ PR PN Pl 501 Pl
o o _o—3TdN0D O——T1dN0?) 4300
mu\ dF11dN0D Am\ 43 1dINCd 0\ Y94 ﬂ\w N9 N9 | HOLYHISTHOHO
3 5 3 o
XN RN N RN HIE
O O 0 O O ©» 0O O o ©

0

m/m

mmMV

WO 2013/019575 PCT/US2012/048440

2/5

PARTITION APROGRAM CODE INTO TWO OR MORE LOGICALUNITS |~ 202

COMPILE EACH OF THE LOGICAL UNITS INTO ONE OR MORE EXECUTABLE
ENTITIES, AT LEAST SOME OF THE LOGICAL UNITS COMPILED INTO TWO
OR MORE EXECUTABLE ENTITIES, WHICH ARE DIFFERENT MACHINE-
SPECIFIC COMPILATIONS OF THE SAME LOGICAL UNIT

204

ASSIGN IDENTIFIERS TO THE EXECUTABLE ENTITIES - ASSIGNING THE 206
SAME IDENTIFIER TO TWO OR MORE EXECUTABLE ENTITIES THAT -
CORRESPOND TO THE SAME LOGICAL UNIT

STORE THE EXECUTABLE ENTITIES AND ASSIGNED IDENTIFIERS 208

FIG. 2

WO 2013/019575 PCT/US2012/048440

3/5

DETERMINE WHICH ONE OR MORE PLATFORMS ARE AVAILABLE FOR 30
PROGRAM EXECUTION -

AT EACH DESIGNATED POINT OF THE PROGRAM CODE, DETERMINE A
LOGICAL UNIT FOR EXECUTION AND SELECT ONE OR MORE EXECUTABLE P
ENTITIES THAT ARE ASSOCIATED WITH THE DETERMINED LOGICAL UNIT
AND THAT ARE COMPATIBLE WITH SAID ONE OR MORE PLATFORMS
DETERMINED TO BE AVAILABLE

DISTRIBUTE SAID SELECTED ONE OR MORE EXECUTABLE ENTITIES TO 206
SAID RESPECTIVE ONE OR MORE PLATFORMS DETERMINED TOBE
AVAILABLE

FIG. 3

PCT/US2012/048440

WO 2013/019575

475

007~ Pl Ay
N e r
TYYMAEYH ¥9d4 Nd9 0
rﬂ/ \x\ - A
NN ININNY m
i - . J_
Vo
3007 e N 30093148
SN LEIED, < 0y YAvl
T AN
YN A
N\Q@
NIYHOTOOL || 226" 00TIH3A TON3dO ~~zp
\\\va ANV - ONZLNOY
107 ~. I
\\\\x 1008 UINIal M,///
+[T]ssnten =4 OB
YL [T ‘yabusT sentesst mmE 1] 10
ISV “ IS 10'= 000 quT
VL] [ISHL] N { J)
MSYL| [MSYL IISYLE XS] 100e uIngar [sentes [[]]3uTyaomop uT 013838 OTTaNd
STl ‘[1]sentes =+ ooe {
3000 VD] [T ‘yabust'senteast {(=T 1] 107 looe UMz | |
EENE HSHL ') = 00® qUI t[T]senTeA =4 OB
b [T fylbusr senteAyT 4 =T JuT] 10§
7 [senrea [[]]3ut]tonop Jut 03838 OTTqNd 10'= 000 T W

/\

[sanrea [[]]3ur]yzomop ut 19838 oTTqnd

~80F

WO 2013/019575

5/5

PCT/US2012/048440

502~
PROCESSORS/CORES —— NETWORK
CPU| | GPU| |FGPA| |oTHER
DEVICES
s BUS
504~ ___.,.,
MEMORY
 STORAGE
COMPILER -
FRAMEWORKAND
RUNTIME
OTHER
MACHINE A
VEMORY MACHINE B
PROCESSORS/CORES
01— COMPILER 908
cPU| |FePA| |OTHER FRAMEWORK AND
RUNTIME

FIG. 5

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings

