
(5D 4 C 01 B 35/12

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 3857358/23-26
- (22) 14.02.85
- (46) 07.07.87. Бюл. № 25
- (72) А.М. Алехин, В.П. Алексеев, И.А. Воробьев, В.П. Гойзман, В.М. Ар-хипова, А.А. Гурский, О.С. Плышев-ский, Е.К. Каверзин и Б.А. Николь-ский
- (53) 661.842.612(088.8)
- (56) Банных З.С., Габова Е.А. Получение гексабората кальция. Сборник трудов УНИХИМ, вып. 13. Свердловск, 1968, с. 85-93.

- (54) СПОСОБ ПОЛУЧЕНИЯ ГЕКСАБОРАТА КАЛЬЦИЯ
- (57) Изобретение относится к неорганической химии, а именно к способу получения гексабората кальция. Гексаборат кальция получают, обрабатывая раствор борной кислоты прокаленным датолитовым сырьем при концентрации борной кислоты 5,6-6,6% и Т:Ж=1:(7-15). Далее продукт отделяют фильтрацией. Данный способ позволяет повысить скорость фильтрации и насыпной вес продукта. 1 табл.

1321678

Изобретение относится к неорганической химии, а именно к способу получения гексабората кальция.

Цель изобретения - повышение скорости фильтрации и насыпного веса продукта.

Пример 1. 1000 г флотационного датолитового концентрата (17,4% В,О,) смешивают с 712 г промывного 10 | раствора (после промывки шлама, содержание В,0,-2,6%) и 740 г серной кислоты $(93,5\% \text{ H}_2\text{SO}_4)$. Смесь выдерживают в фарфоровом стакане при 105-110 С в течение 60 мин, затем к полученному продукту разложения добавляют 15 5411 г маточного раствора после кристаллизации борной кислоты (2,9% В,0,), а также 2632 г пульпы, содержащей 1931 г промывного раствора (2,6% B_2O_3), и 280 г спека датолитовой ру- 20 ды после обработки его раствором борной кислоты.

Выщелоченную при $80-90^{\circ}$ С пульпу отфильтровывают под вакуумом. Получают 6440 г основного раствора борной кислоты (B_2O_3 , 5,6%) и 3413 г влажного шлама (влажность 40%).

4800 г основного раствора смешивают с 320 г (Т:Ж=1:15) прокаленного и размолотого спека датолитовой руды 30 (14,31%, B_2O_3) и перемешивают в течение 30 мин при 75-80°С. Пульпу расфильтровывают, получают 4600 г фильтрата (6,50% B_2O_3 ; 0,55% CaO), из которого в реакторе с мешалкой в присут-35 ствии 90 г затравочных кристаллов гексабората кальция (CaO·3 B_2O_3 5 H_2O) выделяют в осадок продукт. После 60 мин перемешивания осадок отфильтровывают и сушат.

Получают 159,5 г гексабората каньция состава, %: B₂O₃ 58,8; CaO 15,74 (в т.ч. затравка 90 г, вновь осажденный продукт 69,5 г). Насыпной вес полученного продукта 0,56 г/см³.

4410 г фильтрата (B_2O_3 6,0%, 0,22% CaO) после отделения гексабората кальция объединяют с 1640 г основного раствора борной кислоты (5,6% B_2O_3) и направляют на кристаллизацию борной кислоты, после чего получают 280 г H_3BO_3 и 5411 г маточного раствора.

Влажный шлам в количестве 3413 г, полученный после отделения основного раствора, промывают на фильтре 2850 г воды. Получают отход — шлам — 2048 г

сухого осадка $(0,4\% B_2 O_3)$ и промывной раствор 2643 г $(2,6\% B_2 O_3)$.

712 г промывного раствора — ляют на стадию сернокислотного разложения датолитового концентрата, а
1931 г - на приготовление пульпы спека, которое используется для нейтрализации свободной серной кислоты на
стадии выщелачивания.

Пример 2. Верхний предел предлагаемых условий $T: \mathcal{H}=1:7$, B_2O_3 в растворе 6,6%.

1000 г флотационного датолитового концентрата (17,4% B_2O_3) смешивают с 712 г промывного раствора (после промывки шлама содержание B_2O_3 2,6%) и 740 г серной кислоты (93,5% H_2SO_4).

Смесь выдерживают в фарфоровом стакане при 105-110°С в течение 60 мин, затем добавляют 4000 г маточного раствора после кристаллизации борной кислоты (2,9% В₂О₃), а также 2632 г пульпы, содержащей 1931 г промывного раствора (2,6% В₂О₃) и 280 г спека датолитовой руды после его обработки раствором борной кислоты.

Выщелоченную пульпу отфильтровывают и получают 5030 г основного раствора борной кислоты (6,6% B_2O_3) и 3413 г влажного шлама.

2240 г основного раствора смешивания с 320 г (Т:Ж=1:7) прокаленного и размолотого спека датолитовой руды (14,3% B_2O_3) и перемешивают в течение 30 мин при 75-80°С. Пульпу фильтруют. Получают 2080 г фильтрата (7,6% B_2O_3 , 0,55% CaO), из которого в присутствии 50 г затравки кристаллов гексабората кальция выделяют в осадок продукт. После 60 мин перемещивания осадок отфильтровывают и супшат.

Получают 88,8 г гексабората каль-45 ция состава, %: B₂O₃ 59,0; CaO 15,8 (в т.ч. затравка 50 г, вновь осажденный продукт 38,8 г). Насышной вес продукта 0.58 г/см³.

2010 г фильтрата (6,52% B_2O_3 , 0,23% CaO) после отделения гексабората кальция объединяют с 3020 г основного раствора борной кислоты (6,6% B_2O_3), из полученной смеси кристаллизуют 285 г борной кислоты. После отделения борной кислоты получают 4700 г маточного раствора.

Влажный шлам в количестве 3413 г после отделения основного раствора перерабатывают аналогично примеру 1.

П р и м е р 3. Средние значения предлагаемых условий T: X=1:10, B_2O_3 в растворе 6.1%.

1000 г флотационного датолитового концентрата (17,4% B_2O_3) смешивают с 5712 г промывного раствора и 740 г серной кислоты. Смесь выдерживают в фарфоровом стакане при $105-110^{\circ}$ С в течение 60 мин. К полученному раствору добавляют 5000 г маточного раствору добавляют 5000 г маточного раствора после кристаллизации борной кислоты (2,9% B_2O_3), а также 2632 г пульпы, содержащей 1931 г промывного раствора (2,6% B_2O_3) и 280 г спека датолитовой руды после обработки раствором борной кислоты.

Выщелоченную пульпу отфильтровывают и получают 6020 г основного раствора борной кислоты $(6,1\% \ B_2 \ O_3)$ и 3410 г влажного шлама.

3200 г основного раствора смешивают с 320 г (Т:%=1:10) прокаленного и размолотого спека датолитовой руды (14,31% B_2O_3), перемешивают 30 мин при 75-80°C. Пульпу фильтруют. Из фильтрата (7,4% B_2O_3 , 0,56 CaO) в

присутствии 90 г затравки гексабората кальция выделяют в осадок продукт.

После фильтрации и сушки получают 157,8 г гексабората кальция состава, %: $\texttt{B}_2\texttt{O}_3$ 59,0; CaO 15,91 (в т.ч. затравка 90 г, вновь осажденный продукт 67,8 г), насыпной вес продукта 0,60 г/см³.

2547 г фильтрата (5,9% B_2O_3 , 0,22% СаО) после отделения гексабората кальция объединяют с 2820 г основного раствора (6,1% B_2O_3) и направляют на кристаллизацию борной кислоты. Получают 283 г H_3BO_3 и 5000 г маточного раствора, который направляют на выщелачивание в голову процесса.

Влажный шлам в количестве 3410 г после отделения основного раствора перерабатывают аналогично примеру 1.

В таблице приведены данные по насыпному весу гексабората кальция, полученного предлагаемым способом при предлагаемых запредельных значениях концентраций борной кислоты и Т:Ж суспензии.

При∽ мар	Условия выщела- чивания		Нсходные твердые	Состав осажден-		Соотно- жение	Вещественный сос- тав продукта	Насыт-	Предел ус-
	T:X	Количе- ство В ₂ О, в раство- ре, %	фазы	B, O,	CaO	B ₂ O ₃ / CaG		продук-	
ī	1:15	5,6	Спек да- толито- вой руды	58,8	15,9	3,69	CaO · 3B ₂ O ₂ · 5H ₂ O	0,56	Нежний
2	1:7	6,6	To me	58,8	16,0	3,68	CaO · 3B ₂ O ₃ · 5B ₂ O	0,58	Верхний
3	1:10	6,1	_#_	59,0	15,9	3,71	Ca0.3B20, .5H20	ó,60	Среднее значение
4	1:16	5,8	_n_	58,2	17,6	3,30	CaO · 3B _g O _g · 5H _g O +2CaO · 3B _g O _g · 9H _g O	0,47	Выход за пределы
5	1:6	6,6	H_	60,3	15,4	3,91	CaO:3B ₂ O, 5H ₂ O +2CaO:3B ₂ O, +H ₃ BO,	0,45	no T:X
6	1:15	5,5	_H_	58,4	16,9	3,45	CaO • 3B ₂ O ₃ • 5H ₂ O +2CaO • 3B ₂ O ₃ • 9H ₂ O	0,48	Выход за пределы по кон-
7	1:7	6,7	~"-	59,9	15,2	3,94	CaO · 3B _g O _g · 5H _g O +H _g BO _g	0,47	центрации раствора
8	1:8	6,0	Симтети- ческий борат кальция двувод- ньй	53,8	17,9	3,00	CaO-3B ₂ O ₃ -5H ₂ O +2CaO-3B ₂ O ₃ -9H ₂ O	0,38	Выход за пределы по виду кальций- содержаще го соеди-

Реализация предлагаемого способа позволяет получать продукт с насыпным весом 0,56-0,60 г/см³ при производительности фильтрации суспензии 395-420 кг/м². ч.

Формула изобретения

Способ получения гексабората кальция, включающий обработку раствора борной кислоты кальцийсодержащим реагентом с последующим отделением продукта фильтрацией, о т л и ч а ющий с я тем, что, с целью повышения скорости фильтрации и насыпного веса продукта, в качестве кальцийсодержащего реагента используют прокаленное датолитовое сырье, борную кислоту берут концентрацией 5,6-6,6% В 0, и обработку кислоты ведут при Т:Ж=1:7-15.

Составитель В. Гродзовская Техред **А.Кравчук** Корректор А. Обручар

Редактор Н. Гунько

Заказ 2716/15

Тираж 455

Подписное

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-полиграфическое предприятие, г. Ужгород, ул. Проектная, 4