

US 20080222753A1

(19) United States(12) Patent Application Publication

(10) Pub. No.: US 2008/0222753 A1 (43) Pub. Date: Sep. 11, 2008

Gupta et al.

(54) MANIPULATION OF AMMONIUM TRANSPORTERS (AMTS) TO IMPROVE NITROGEN USE EFFICIENCY IN HIGHER PLANTS

 (75) Inventors: Rajeev Gupta, Johnston, IA (US); Juan Liu, Johnston, IA (US); Kanwarpal S. Dhugga, Johnston, IA (US); Carl R. Simmons, Des Moines, IA (US)

> Correspondence Address: PIONEER HI-BRED INTERNATIONAL, INC. 7250 N.W. 62ND AVENUE, P.O. BOX 552 JOHNSTON, IA 50131-0552 (US)

- (73) Assignee: **PIONEER HI-BRED** INTERNATIONAL, INC., Johnston, IA (US)
- (21) Appl. No.: 12/045,098

(22) Filed: Mar. 10, 2008

Related U.S. Application Data

(60) Provisional application No. 60/893,901, filed on Mar. 9, 2007.

Publication Classification

(51)	Int. Cl.	
	C12N 15/82	(2006.01)
	C12N 15/29	(2006.01)
	C12N 5/10	(2006.01)
	A01H 5/00	(2006.01)

(57) ABSTRACT

The present invention provides polynucleotides and related polypeptides of the protein AMT. The invention provides genomic sequence for the AMT gene. AMT is responsible for controlling nitrogen utilization efficiency in plants.

Mesocoty I/Coleopt Leaf Stalk M	Stalk		Apical I Meristem	Immatur Ovary/R1 e Ear Kernel E	Ovary/R1- Kemel	Embryo Endosper	Endosper m	Pericarp	Silk	Tassel Spikelet	Polten
	0	<u>36/2</u> 14.6	0	0.9	0	0	0	0	33	40.5	0
	0	17.6 0.8	0	0	0	0	0	0	0	0.2	0
	0	0.7 0	0	0	0	0	0	0	0	0	0
	0	0.4 2.4	0	0	0	0	0	3.7	0	0	0
	0 1	11.2 15.7	0	0.8	0	0	0	0	8	42.5	0

•

Patent Application Publication

		707 TCT
AtAMT1.2	(121)	GTCGACAACACGTATCTCCTCTTCTCCGCCTACCTTGTCTTTGCCATGCA
AtAMTI	(121)	ATAGACAACACTTACCTTCTCTCTCCGCCTACCTTGTCTTCTATGCA
AtAMT1.3	(133)	ATAGACAACACCTACCTCCTCTTCTCTGCCTACCTTGTCTTCGCCATGCA
AtAMT3 (At3g24290)	(133)	ATAGACAACACGTACCTCCTCTTCTCTGCCTATCTTGTCTTTGCGATGCA
AtAMT4 (At4g28700)	(148)	ATCGACAACACTTACCTTCTCTTCTCCTGCTTACCTCGTTTTTCGCGATGCA
Consensus	(151)	ATAGACAACAC TACCTCCTCTTCTCTGCCTACCTTGTCTTCGC ATGCA
		201 250
AtAMT1.2	(201)	<u>GCTCGGTTTCGCTATGCTTTGTGCTGGATCAGTCCGAGCCAAGAACACACTA</u>
AtAMTI	(111)	GCTTGGCTTCGCTATGCTCTGTGCCGGGTTCCGTGAGGCCCAAGAATACTA
AtAMT1.3	(183)	GCTCGGCTTCGCTATGCTTGTGGCTGCTTGTTAGAGCCAAGAATACGA
AtAMT3 (At3g24290)	(183)	GCTCGGCTTCGCTATGCTTGTGCTGGCTCGCTTAGAGCTAAGAACACGA
AtAMT4 (At4g28700)	(198)	GCTCGGTTTCGCCATGCTCTGTGCCGGATCCGTACGTGCAAAAACACGA
Consensus	(201)	GCTCGGCTTCGCTATGCTTTGTGCTGG TCCGT AGAGCCAAGAACACGA
		251 300
AtAMT1.2	(251)	TGAACATCATGCTTACCAATGTCCTTGATGCTGCCGCTGGAGCCATCTCT
AtAMT1	(221)	TGAACATCATGCTTACCAACGTCCTTGACGCTGCAGCCGGTGGTCTCTTC
AtAMT1.3	(233)	TGAACATCATGCTTACCAATGTCCTTGACGCTGCAGCGGGGGGCTCTTC
AtAMT3 (At3g24290)	(233)	TGAACATCATGCTCACTAATGTCCTTGATGCTGCAGCCGGAGGACTCTTC
AtAMT4 (At4g28700)	(248)	TGAACATTATGCTCACGAACGTCATCGACGCTGCAGGCCGGAGGTCTCTTC
Consensus	(251)	TGAACATCATGCTTACCAATGTCCTTGACGCTGCAGGCCGGAGG CTCTTC
		301 350
AtAMT1.2	(301)	TACTACCTCTTCGGATTCGCATTCGCCTTTGGTACACCTTCCAACGGATT
AtAMT1	(271)	TATTATCTGTTTGGCTACGCCTTTGCCTTTGGATCTCCGTCCAATGGTTT
AtAMT1.3	(283)	TACTATCTCTTTGGTTACGCCTTTGCCCTTTGGAGGATCCTCCGAAGGGTT
AtAMT3 (At3g24290)	(283)	TACTACCTCTTTGGTTATGCATTTGCCTTTGGTGAATCCTCCGATGGATT
AtAMT4 (At4g28700)	(298)	TATTATCTCTTCGGTTTCGCTTTTGGATCTCCTTCTAATGGATT
Consensus	(301)	TACTATCTCTTTGGTTACGC TTTGCCTTTGGA CACC TCCAATGGATT
മ		
AtAMT2		
	++000	acttaataastastastastastatastatttaatattaasaanna sootastattttaatattttaata

actigging a targa cagging tigt tig can contrain the second section of the second secon

Figure 4

∢

151

200

S
P
n
iî T

ZmAMT 07 orf ZmAMT 02 orf ZmAMT 02 orf Consensus , ZmAMT 07 orf ZmAMT 07 orf ZmAMT 02 orf ZmAMT 02 orf ZmAMT 02 orf Consensus ZmAMT 02 orf ZmAMT 06 orf ZmAMT 02	(49) (46) (46) (61) (65) (111) (111) (111) (111) (1149) (1249) (1	GASTGGCTGAACAAGGGGGAACAACGGGTGGGGGGGGGGG
ZmAMT_07_orf ZmAMT_02_orf ZmAMT_06_orf Consensus ZmAMT_07_orf ZmAMT_02_orf ZmAMT_06_orf Consensus	(339) (346) (361) (361) (365) (381) (381) (396) (411) (415)	3068CC

 (243) GCTCTTACTACTACTGGCCTTCGGCCTTCGGCACGCCCCCCA (243) GCTCTTCTACTACTATTCGGCTTGGGCTTCGGCTTCGGCTGCGGCACCCGTTCG (243) GCTCTTCTACTACTTTTCGGCTTCGGCTTCGGCTTCGGCACCCGTCGG (293) ACGCTTCATCGCCAACAACAACAACAACAACTCTTCGGGCAACAACCCTGGCCCAAGAACC (293) ACGGCTTCATCGGCAAGCAACCAATTCTTCGGGCTCAAGGGCCTGCCCAAGAACC (293) ACGGCTTCATCGGGCAAGCAATTCTTCGGGCCTCAAGGGCCTGCCCAAGAACC (293) ACGGCTTCATCGGGCAAGCAATTCTTCGGGCCTCAAGGGCCTGCCCAAGAACC (293) ACGGCTTCATCGGGCAAGCAATTCTTCGGGCCTCAAGGGCCTGCCCAAGAACC (293) ACGGCTTCATCGGGCAAGCAATTCTTCGGGCTTCATCGGGCAAGAACC (293) ACGGCTTCATCGGGCAAGCAATTCTTCGGG CTCAAGGGCCTGCCCCAAGAACC (293) ACGGCTTCATCGGGCAAGCAATTCTTCGGG CTCAAGGGCCTGCCCCAAGAACC 	TICAACTACGACTTCTTCCTAACCAGTG6565CCTTCG6CCATC65 TTC6ACTACGACTTCTTCCTATACCAGTG656CCTTCG6CCATC65 TTC5ACTACGACTTCTTCCT TACCAGTG656CCTTCG5CCATC65 TTC5ACTC3CG7CCATC5CTATC6576565 565CATCACGTC5656577C5AC565654656565 565CATCACGTC 565CTCATC657654656765 565CATCACG7C 565CTCATC657657657755 567ATC7ACTC56567776577657765775557756576565 TCATCTACTC5657776577657767755555756565 TCATCTACTC56577765776577577555555555 TCATCTACTC5657776577555555555555555555555555555	
ZmAWT_01_orf ZmAWT_05_orf Consensus ZmAWT_01_orf ZmAMT_01_orf Consensus	ZmAMT_01_orf ZmAMT_05_orf Consensus ZmAMT_01_orf ZmAMT_05_orf Consensus ZmAMT_01_orf ZmAMT_01_orf ZmAMT_01_orf ZmAMT_02_orf ZmAMT_02_orf	

MANIPULATION OF AMMONIUM TRANSPORTERS (AMTS) TO IMPROVE NITROGEN USE EFFICIENCY IN HIGHER PLANTS

CROSS REFERENCE

[0001] This utility application claims the benefit U.S. Provisional Application No. 60/893,901, filed Mar. 9, 2007, which is incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The invention relates generally to the field of molecular biology.

BACKGROUND OF THE INVENTION

[0003] Nitrogen (N) is the most abundant inorganic nutrient taken up from the soil by plants for growth and development. Maize roots absorb most of the N from the soil in the form of nitrate, the majority of which is transported to the leaf for reduction and assimilation. Nitrate is reduced to nitrite by nitrate reductase (NR) in the cytosol and then nitrite is transported into chloroplast where it is reduced by nitrite reductase (NiR) to ammonium. Ammonium is assimilated into glutamine by the glutamine synthase-glutamate synthase system (Crawford and Glass, (1998) Trends in Plant Science 3:389-395.). Also, it has long been known that significant amounts of N are lost from the plant aerial parts by volatilization (Glyan'ko, et al., (1980) "Effect of autumn frost and forms of nitrogen on translocation of nitrogen compounds to spring wheat grain", Agrokhimiya 8:19-26; Hooker, et al., (1980) "Gaseous N losses from winter wheat", Agronomy Journal 72(5):789-792; Silva, et al., (1981) "Nitrogen volatilization from rice leaves. II. Effects of source of applied nitrogen in nutrient culture solution", Crop Science 21(6): 913-916; Stutte, et al., (1981) "Nitrogen volatilization from rice leaves. I. Effects of genotype and air temperature", Crop Science 21(4):596-600; Foster, et al., (1986) "Glutamine synthetase activity and foliar nitrogen volatilization in response to temperature and inhibitor chemicals" Annals of Botany 57(3):305-307; Parton, et al., (1988) "Ammonia volatilization from spring wheat plants" Agronomy Journal 80(3):419-425; Kamiji, et al., (1989) "Measurement of ammonium nitrogen volatilization rates from rice leaves during the ripening period." Japanese Journal of Crop Science 58(1):140-142; Morgan, et al., (1989) "Characteristics of ammonia volatilization from spring wheat", Crop Science 29(3):726-731; O'Deen, (1989) "Wheat volatilized ammonia and resulting nitrogen isotopic fractionation." Agronomy Journal 81(6): 980-985; Guindo, et al., (1994) "Nitrogen loss from rice plants during grain fill and oven drying", Arkansas Farm Research 43(1):12-13; Heckathorn, et al., (1995) "Ammonia volatilization during drought in perennial C4 grasses of tallgrass prairie." Oecologia 101(3):361-365; Cabezas, et al., (1997). "NH3-N volatilization in a maize crop: I Effect of irrigation and partial substitution of urea by ammonium sulphate", Revista Brasileira de Ciencia do Solo 21(3):481-487). Experimental evidence supports the loss of N through ammonium and not through N oxides (Hooker, et al., 1980). Treatment with chemicals that inhibit glutamine or glutamate synthase activities led to increased loss of ammonium through volatilization (Foster, et al., 1986). Loss of N is not only limited to C-3 species as C-4 plants have also been reported to lose N through volatilization (Heckathorn, et al., 1995).

[0004] Manipulation of AMTs can be utilized to improve NUE by causing increased dry matter, thereby contributing to an increase in plant yield. Two of the ways to improved dry matter accumulation are: 1) reduce N loss through volatilization and 2) reduce N content of the plant so that more dry matter can be accumulated in the form of low-energy constituents, e.g., starch or cellulose.

[0005] For ammonium to be lost from the leaf, it must first pass through a facilitated channel since it is highly hydrophilic. Ammonium transporters (AMTs) were originally discovered as ammonium transporters but some recent studies have shown that at least in some cases AMTs can act as gas channels (Soupene, et al., (2002) Proc Natl Acad Sci USA 99:3926-3931; Kustu and Inwood, (2006) Transfus Clin Biol 13:103-110). An amtB knock-out mutant of Salmonella grows better on poor N source, apparently because it can sequester more N by keeping it from leaking back out (Soupene, et al., 2002). This application details an invention which is used to manipulate AMTs in higher plants to improve NUE. The inventors identified chloroplast-specific and/or leaf-preferred AMT(s) and knocked them out/down to minimize the loss of ammonium, which resulting in better N assimilation/NUE. In addition, work was not limited only to the chloroplast-localized AMTs but will also down-regulation of the AMTs that are localized to other organelles/membranes.

SUMMARY OF THE INVENTION

[0006] The present invention provides polynucleotides, related polypeptides and all conservatively modified variants of the present AMT sequences. The invention provides sequences for the AMT genes. Six *Arabidopsis*, 7 maize, 17 rice, and 11 soybean AMT genes were identified. Table 1 lists these genes and their seq id numbers.

TABLE 1

SEQUENCE ID NUMBER	IDENTITY
SEQ ID NOS: 1	AtAMT 1 polynucleotide
SEQ ID NOS: 2	AtAMT 1 polypeptide
SEQ ID NO: 3	AtAMT 1;2 polynucleotide
SEQ ID NO: 4	AtAMT 1;2 polypeptide
SEQ ID NO: 5	AtAMT 1;3 polynucleotide
SEQ ID NO: 6	AtAMT 1;3 polypeptide
SEQ ID NO: 7	AtAMT 2 polynucleotide
SEQ ID NO: 8	AtAMT 2 polypeptide
SEQ ID NO: 9	AtAMT 3 polynucleotide
SEQ ID NO: 10	AtAMT 3 polypeptide
SEQ ID NO: 11	AtAMT 4 polynucleotide
SEQ ID NO: 12	AtAMT 4 polypeptide
SEQ ID NO: 13	ZmAMT 1 polynucleotide
SEQ ID NO: 14	ZmAMT 1 polypeptide
SEQ ID NO: 15	ZmAMT 2 polynucleotide
SEQ ID NO: 16	ZmAMT 2 polypeptide
SEQ ID NO: 17	ZmAMT 3 polynucleotide
SEQ ID NO: 18	ZmAMT 3 polypeptide
SEQ ID NO: 19	ZmAMT 4 polynucleotide
SEQ ID NO: 20	ZmAMT 4 polypeptide
SEQ ID NO: 21	ZmAMT 5 polynucleotide
SEQ ID NO: 22	ZmAMT 5 polypeptide
SEQ ID NO: 23	ZmAMT 6 polynucleotide
SEQ ID NO: 24	ZmAMT 6 polypeptide
SEQ ID NO: 25	ZmAMT 7 polynucleotide
SEQ ID NO: 26	ZmAMT 7 polypeptide
SEQ ID NO: 27	OsAMT 1 polynucleotide

TABLE 1-continued

SEQUENCE ID NUMBER	IDENTITY
SEQ ID NO: 28	OsAMT 1 polypeptide
SEQ ID NO: 29	OsAMT 2 polynucleotide
SEQ ID NO: 30	OsAMT 2 polypeptide
SEQ ID NO: 31	OsAMT 3 polynucleotide
SEQ ID NO: 32	OsAMT 3 polypeptide
SEQ ID NO: 33	OsAMT 4 polynucleotide
SEQ ID NO: 34	OsAMT 4 polypeptide
SEQ ID NO: 35	OsAMT 5 polynucleotide
SEQ ID NO: 36	OsAMT 5 polypeptide
SEQ ID NO: 37	OsAMT 6 polynucleotide
SEQ ID NO: 38	OsAMT 6 polypeptide
SEQ ID NO: 39	OsAMT 7 polynucleotide
SEQ ID NO: 40	OsAMT 7 polypeptide
SEQ ID NO: 41	OsAMT 8 polynucleotide
SEQ ID NO: 42	OsAMT 8 polypeptide
SEQ ID NO: 43	OsAMT 9 polynucleotide
SEQ ID NO: 44	OsAMT 9 polypeptide
SEQ ID NO: 45	OsAMT 10 polynucleotide
SEQ ID NO: 46	OsAMT 10 polypeptide
SEQ ID NO: 47	OsAMT 11 polynucleotide
SEQ ID NO: 48	OsAMT 11 polypeptide
SEQ ID NO: 49	OsAMT 12 polynucleotide
SEQ ID NO: 50	OsAMT 12 polypeptide
SEQ ID NO: 51	OsAMT 13 polynucleotide
SEQ ID NO: 52	OsAMT 13 polypeptide
SEQ ID NO: 53	OsAMT 14 polynucleotide
SEQ ID NO: 54	OsAMT 14 polypeptide
SEQ ID NO: 55	OsAMT 15 polynucleotide
SEQ ID NO: 56	OsAMT 15 polypeptide
SEQ ID NO: 57	OsAMT 16 polynucleotide
SEQ ID NO: 58	OsAMT 16 polypeptide
SEQ ID NO: 59	OsAMT 17 polynucleotide
SEQ ID NO: 60	OsAMT 17 polynucleotide
SEQ ID NO: 61	GmAMT 1 polynucleotide
SEQ ID NO: 62	GmAMT 1 polypeptide
SEQ ID NO: 63	GmAMT 2 polynucleotide
SEQ ID NO: 64	GmAMT 2 polypeptide
SEQ ID NO: 65	GmAMT 3 polynucleotide
SEQ ID NO: 66	GmAMT 3 polypeptide
SEQ ID NO: 67	GmAMT 4 polynucleotide
SEQ ID NO: 68	GmAMT 4 polypeptide
SEQ ID NO: 69	GmAMT 5 polynucleotide
SEQ ID NO: 70	GmAMT 5 polypeptide
SEQ ID NO: 71	GmAMT 6 polynucleotide
SEQ ID NO: 72	GmAMT 6 polypeptide
SEQ ID NO: 73	GmAMT 7 polynucleotide
SEQ ID NO: 74	GmAMT 7 polypeptide
SEQ ID NO: 75	GmAMT 8 polynucleotide
SEQ ID NO: 76	GmAMT 8 polypeptide
SEQ ID NO: 77	GmAMT 9 polynucleotide
SEQ ID NO: 78	GmAMT 9 polypeptide
SEQ ID NO: 79	GmAMT 10 polynucleotide
SEQ ID NO: 80	GmAMT 10 polypeptide
SEQ ID NO: 81	GmAMT 11 polynucleotide
SEQ ID NO: 82	GmAMT 11 polypeptide
\$	

[0007] Therefore, in one aspect, the present invention relates to an isolated nucleic acid comprising an isolated polynucleotide sequence encoding an AMT protein. One embodiment of the invention is an isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequence comprising SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79 or 81; (b) the nucleotide sequence encoding an amino acid sequence comprising SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80 or 82; and (c) the nucleotide sequence comprising at least 70% sequence identity to SEQ ID NO: 1, 3, 5,

7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79 or 81, wherein said polynucleotide encodes a polypeptide having AMT transporter activity.

[0008] Compositions of the invention include an isolated polypeptide comprising an amino acid sequence selected from the group consisting of: (a) the amino acid sequence comprising SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80 or 82; and (b) the amino acid sequence comprising at least 70% sequence identity to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80 or 82, wherein said polypeptide has AMT transporter activity.

[0009] In another aspect, the present invention relates to a recombinant expression cassette comprising a nucleic acid as described. Additionally, the present invention relates to a vector containing the recombinant expression cassette. Further, the vector containing the recombinant expression cassette can facilitate the transcription and translation of the nucleic acid in a host cell. The present invention also relates to the host cells able to express the polynucleotide of the present invention. A number of host cells could be used, such as but not limited to, microbial, mammalian, plant, or insect.

[0010] In yet another embodiment, the present invention is directed to a transgenic plant or plant cells, containing the nucleic acids of the present invention. Preferred plants containing the polynucleotides of the present invention include but are not limited to maize, soybean, sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley, tomato, switchgrass, myscanthus, triticale and millet. In another embodiment, the transgenic plant is a maize plant or plant cells. Another embodiment is the transgenic seeds from the transgenic plant. Another embodiment of the invention includes plants comprising an amt polypeptide of the invention operably linked to a promoter that drives expression in the plant. The plants of the invention can have altered AMT as compared to a control plant. In some plants, the AMT is altered in a vegetative tissue, a reproductive tissue, or a vegetative tissue and a reproductive tissue. Plants of the invention can have at least one of the following phenotypes including but not limited to: increased leaf size, increased ear size, increased seed size, increased endosperm size, alterations in the relative size of embryos and endosperms leading to changes in the relative levels of protein, oil, and/or starch in the seeds, absence of tassels, absence of functional pollen bearing tassels, or increased plant size.

[0011] Another embodiment of the invention would be plants that have been genetically modified at a genomic locus, wherein the genomic locus encodes an amt polypeptide of the invention.

[0012] Methods for increasing the activity of an amt polypeptide in a plant are provided. The method can comprise introducing into the plant an amt polynucleotide of the invention. Providing the polypeptide can decrease the number of cells in plant tissue, modulating the tissue growth and size.

[0013] Methods for reducing or eliminating the level of an amt polypeptide in the plant are provided. The level or activity of the polypeptide could also be reduced or eliminated in specific tissues, causing increased AMT in said tissues. Reducing the level and/or activity of the AMT polypeptide increases the number of cells produced in the associated tissue.

[0014] Compositions further include plants and seed having a DNA construct comprising a nucleotide sequence of interest operably linked to a promoter of the current invention. In specific embodiments, the DNA construct is stably integrated into the genome of the plant. The method comprises introducing into a plant a nucleotide sequence of interest operably linked to a promoter of the invention.

BRIEF DESCRIPTION OF THE FIGURES

[0015] FIG. 1: Phylogentic tree of AMTs from *Arabidopsis*, rice, soybean and maize

[0016] Phylogenetic analyses of all the AMTs from *Arabidopsis*, rice, maize and soybean are shown in FIG. **1**. The length of the line at the base of the figure represents an equivalent of 10 amino acid differences and could be used to approximate the amino acid differences between different ammonium transporter proteins from the individual branch lengths.

[0017] FIG. 2: Expression analysis of ZM-AMTs

[0018] In order to identify leaf specific/preferred/expressed AMT(s) in maize, Lynx MPSS expression analyses in ~300 libraries reveal that ZmAMT1 (SEQ ID NO: 14), 2, 7 are expressed both in roots and leaves whereas ZmAMT4 (SEQ ID NO: 20) is a root preferred AMT. ZmAMT6 (SEQ ID NO: 24) expresses at very low level in comparison to other Zm-AMTs. In case of ZmAMT5 there was no specific Lynx tag available.

[0019] FIG. 3: Characterization of atamt1;2 T-DNA knockout mutant

[0020] In cTP prediction analyses, AtAMT1;2 (SEQ ID NO: 4) posses a putative cTP. For functional analyses of AtAMT1;2 (SEQ ID NO: 4) and to determine it's role in N-assimilation, analyses identified a T-DNA mutant line (SM_3.15680) from the Arabidopsis T-DNA mutant data base. In this mutant line T-DNA was inserted in c-terminal of AtAMT1;2 (SEQ ID NO: 4) gene (FIG. 4A). Genomic PCRs using AtAMT1;2 (SEQ ID NO: 4) gene and T-DNA specific primers show that T-DNA is indeed inserted in the AtAMT1:2 (SEQ ID NO: 4) (FIG. 4B). AtAMT1;2 (SEQ ID NO: 4) gene specific primers flanking the T-DNA insert couldn't amplify any DNA region in mutant plants where as an expected PCR product was detected in wild type plant (FIG. 4B, upper panel). Similarly, genomic PCR with AtAMT1;2 (SEQ ID NO: 4) specific forward primer and T-DNA specific reverse primers amplify an expected product in mutant lines and nothing in wild type plants as expected (FIG. 4B, lower panel). Saturated RT-PCRs (35 cycles) analyses couldn't detect a full length atamt1;2 mRNA in mutant (FIG. 4C, upper panel) suggesting that AtAMT1;2 (SEQ ID NO: 4) is completely knocked out in this T-DNA mutant. Actin control RT-PCR worked fine in both mutant and wild type plants (FIG. 4C, lower panel).

[0021] FIG. 4: Knock-out of multiple AMTs in *Arabidopsis* by single RNAi vector

[0022] Six AMT genes are present in *Arabidopsis* genome. Hence, it is very likely that due to functional redundancy one might need to manipulate the expression of multiple AMTs simultaneously. Analyses of the DNA sequence of all these AMTs was performed which identified the high homology regions among them. There is a stretch of ~200 bp among AtAMT1;2 (SEQ ID NO: 4), AtAMT1 (SEQ ID NO: 2), AMT1;3 (SEQ ID NO: 6), At3g24290 (SEQ ID NO: 10) and At4g28700 (SEQ ID NO: 12) where as AMT2 (SEQ ID NO: 8) stood independent. Amplification of these regions was accomplished (bold and underlined in FIG. 4) by PCR from AtAMT1;2 (SEQ ID NO: 4) and AtAMT2 (SEQ ID NO: 8) and a multi-way ligation was performed to make an inverted repeat using ADH-intron as a spacer. The RNAi cassette of these hybrid inverted repeats is driven by constitutive or root specific or leaf specific promoter.

[0023] FIG. **5**: Knock-out/down of multiple AMTs in Maize by single RNAi vector

[0024] Detailed analyses of all 7 maize AMTs were performed to identify the DNA regions showing high homology among different ZmAMTs. This analysis reveals that ZmAMT1 (SEQ ID NO: 14) and ZmAMT5 (SEQ ID NO: 22), ZmAMT3 (SEQ ID NO: 18) and ZmAMT4 (SEQ ID NO: 20) and ZmAMT2 (SEQ ID NO: 16), ZmAMT6 (SEQ ID NO: 24) and ZmAMT7 (SEQ ID NO: 26) form three separate groups and there is a very high homology in stretches of DNA sequences with in each group. Three DNA fragments (bold and underlined in FIG. 5) from ZmAMT 1, 4 and 7 (SEQ ID NOS: 14, 20 and 26) representing each of the different groups were amplified by PCR. Multi-way ligations were performed to make inverted repeats with hybrid of these 3 fragments and ADH intron as a spacer to facilitate the formation of stem-loop structure. This RNAi cassette of 'ZmAMT1 (SEQ ID NO: 14):ZmAMT4 (SEQ ID NO: 20): ZmAMT7 (SEQ ID NO: 26)' inverted repeats was driven by a constitutive (Zm-UBI promoter) or leaf-specific promoter. MOPAT driven by Zm-UBI promoter was used as herbicide resistance marker for selected. In addition to that RFP driven by a pericarp specific promoter LTP2 was also used to sort out the transgenic seeds (red) from there segregating non-transgenic seeds.

DETAILED DESCRIPTION OF THE INVENTION

[0025] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Unless mentioned otherwise, the techniques employed or contemplated herein are standard methodologies well known to one of ordinary skill in the art. The materials, methods and examples are illustrative only and not limiting. The following is presented by way of illustration and is not intended to limit the scope of the invention.

[0026] The present inventions now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.

[0027] Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

[0028] The practice of the present invention will employ, unless otherwise indicated, conventional techniques of

botany, microbiology, tissue culture, molecular biology, chemistry, biochemistry and recombinant DNA technology, which are within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Langenheim and Thimann, BOTANY: PLANT BIOLOGY AND ITS RELA-TION TO HUMAN AFFAIRS, John Wiley (1982); CELL CULTURE AND SOMATIC CELL GENETICS OF PLANTS, vol. 1, Vasil, ed. (1984); Stanier, et al., THE MICROBIAL WORLD, 5th ed., Prentice-Hall (1986); Dhringra and Sinclair, BASIC PLANT PATHOLOGY METH-ODS, CRC Press (1985); Maniatis, et al., MOLECULAR CLONING: A LABORATORY MANUAL (1982); DNA CLONING, vols. I and II, Glover, ed. (1985); OLIGO-NUCLEOTIDE SYNTHESIS, Gait, ed. (1984); NUCLEIC ACID HYBRIDIZATION, Hames and Higgins, eds. (1984); and the series METHODS IN ENZYMOLOGY, Colowick and Kaplan, eds, Academic Press, Inc., San Diego, Calif.

[0029] Units, prefixes, and symbols may be denoted in their SI accepted form. Unless otherwise indicated, nucleic acids are written left to right in 5' to 3' orientation; amino acid sequences are written left to right in amino to carboxy orientation, respectively. Numeric ranges are inclusive of the numbers defining the range. Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes. The terms defined below are more fully defined by reference to the specification as a whole.

[0030] In describing the present invention, the following terms will be employed, and are intended to be defined as indicated below.

[0031] By "microbe" is meant any microorganism (including both eukaryotic and prokaryotic microorganisms), such as fungi, yeast, bacteria, actinomycetes, algae and protozoa, as well as other unicellular structures.

[0032] By "amplified" is meant the construction of multiple copies of a nucleic acid sequence or multiple copies complementary to the nucleic acid sequence using at least one of the nucleic acid sequences as a template. Amplification systems include the polymerase chain reaction (PCR) system, ligase chain reaction (LCR) system, nucleic acid sequence based amplification (NASBA, Cangene, Mississauga, Ontario), Q-Beta Replicase systems, transcription-based amplification system (TAS), and strand displacement amplification (SDA). See, e.g., DIAGNOSTIC MOLECULAR MICROBIOL-OGY: PRINCIPLES AND APPLICATIONS, Persing, et al., eds., American Society for Microbiology, Washington, D.C. (1993). The product of amplification is termed an amplicon. [0033] The term "conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refer to those nucleic acids that encode identical or conservatively modified variants of the amino acid sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations" and represent one species of conservatively modified variation. Every nucleic acid sequence herein that encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of ordinary skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine; one exception is *Micrococcus rubens*, for which GTG is the methionine codon (Ishizuka, et al., (1993) *J. Gen. Microbiol.* 139:425-32) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid, which encodes a polypeptide of the present invention, is implicit in each described polypeptide sequence and incorporated herein by reference.

[0034] As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" when the alteration results in the substitution of an amino acid with a chemically similar amino acid. Thus, any number of amino acid residues selected from the group of integers consisting of from 1 to 15 can be so altered. Thus, for example, 1, 2, 3, 4, 5, 7 or 10 alterations can be made. Conservatively modified variants typically provide similar biological activity as the unmodified polypeptide sequence from which they are derived. For example, substrate specificity, enzyme activity, or ligand/receptor binding is generally at least 30%, 40%, 50%, 60%, 70%, 80% or 90%, preferably 60-90% of the native protein for it's native substrate. Conservative substitution tables providing functionally similar amino acids are well known in the art.

[0035] The following six groups each contain amino acids that are conservative substitutions for one another:

[0036] 1) Alanine (A), Serine (S), Threonine (T);

[0037] 2) Aspartic acid (D), Glutamic acid (E);

[0038] 3) Asparagine (N), Glutamine (Q);

[0039] 4) Arginine (R), Lysine (K);

[0040] 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and

[0041] 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).

See also, Creighton, PROTEINS, W.H. Freeman and Co. (1984).

[0042] As used herein, "consisting essentially of" means the inclusion of additional sequences to an object polynucleotide where the additional sequences do not selectively hybridize, under stringent hybridization conditions, to the same cDNA as the polynucleotide and where the hybridization conditions include a wash step in $0.1\times$ SSC and 0.1% sodium dodecyl sulfate at 65° C.

[0043] By "encoding" or "encoded," with respect to a specified nucleic acid, is meant comprising the information for translation into the specified protein. A nucleic acid encoding a protein may comprise non-translated sequences (e.g., introns) within translated regions of the nucleic acid, or may lack such intervening non-translated sequences (e.g., as in cDNA). The information by which a protein is encoded is specified by the use of codons. Typically, the amino acid sequence is encoded by the nucleic acid using the "universal" genetic code. However, variants of the universal code, such as is present in some plant, animal, and fungal mitochondria, the bacterium *Mycoplasma capricolum* (Yamao, et al., (1985) *Proc. Natl. Acad. Sci. USA* 82:2306-9), or the ciliate Macronucleus, may be used when the nucleic acid is expressed using these organisms.

[0044] When the nucleic acid is prepared or altered synthetically, advantage can be taken of known codon prefer-

ences of the intended host where the nucleic acid is to be expressed. For example, although nucleic acid sequences of the present invention may be expressed in both monocotyledonous and dicotyledonous plant species, sequences can be modified to account for the specific codon preferences and GC content preferences of monocotyledonous plants or dicotyledonous plants as these preferences have been shown to differ (Murray, et al., (1989) *Nucleic Acids Res.* 17:477-98 and herein incorporated by reference). Thus, the maize preferred codon for a particular amino acid might be derived from known gene sequences from maize. Maize codon usage for 28 genes from maize plants is listed in Table 4 of Murray, et al., supra.

[0045] As used herein, "heterologous" in reference to a nucleic acid is a nucleic acid that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention. For example, a promoter operably linked to a heterologous structural gene is from a species different from that from which the structural gene was derived or, if from the same species, one or both are substantially modified from their original form. A heterologous protein may originate from a foreign species or, if from the same species, is substantially modified from its original form by deliberate human intervention.

[0046] By "host cell" is meant a cell, which comprises a heterologous nucleic acid sequence of the invention, which contains a vector and supports the replication and/or expression of the expression vector. Host cells may be prokaryotic cells such as *E. coli*, or eukaryotic cells such as yeast, insect, plant, amphibian, or mammalian cells. Preferably, host cells are monocotyledonous or dicotyledonous plant cells, including but not limited to maize, sorghum, sunflower, soybean, wheat, alfalfa, rice, cotton, canola, barley, millet, switchgrass, myscanthus, triticale, and tomato. A particularly preferred monocotyledonous host cell is a maize host cell.

[0047] The term "hybridization complex" includes reference to a duplex nucleic acid structure formed by two singlestranded nucleic acid sequences selectively hybridized with each other.

[0048] The term "introduced" in the context of inserting a nucleic acid into a cell, means "transfection" or "transformation" or "transduction" and includes reference to the incorporation of a nucleic acid into a eukaryotic or prokaryotic cell where the nucleic acid may be incorporated into the genome of the cell (e.g., chromosome, plasmid, plastid or mitochondrial DNA), converted into an autonomous replicon, or transiently expressed (e.g., transfected mRNA).

[0049] The terms "isolated" refers to material, such as a nucleic acid or a protein, which is substantially or essentially free from components which normally accompany or interact with it as found in its naturally occurring environment. The isolated material optionally comprises material not found with the material in its natural environment. Nucleic acids, which are "isolated", as defined herein, are also referred to as "heterologous" nucleic acids. Unless otherwise stated, the term "AMT nucleic acid" means a nucleic acid comprising a polynucleotide ("AMT polynucleotide") encoding a full length or partial length AMT polypeptide.

[0050] As used herein, "nucleic acid" includes reference to a deoxyribonucleotide or ribonucleotide polymer in either single- or double-stranded form, and unless otherwise limited, encompasses known analogues having the essential nature of natural nucleotides in that they hybridize to singlestranded nucleic acids in a manner similar to naturally occurring nucleotides (e.g., peptide nucleic acids).

[0051] By "nucleic acid library" is meant a collection of isolated DNA or RNA molecules, which comprise and substantially represent the entire transcribed fraction of a genome of a specified organism. Construction of exemplary nucleic acid libraries, such as genomic and cDNA libraries, is taught in standard molecular biology references such as Berger and Kimmel, GUIDE TO MOLECULAR CLONING TECHNIQUES, from the series METHODS IN ENZYMOL-OGY, vol. 152, Academic Press, Inc., San Diego, Calif. (1987); Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2^{nd} ed., vols. 1-3 (1989); and CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Ausubel, et al., eds, Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc. (1994 Supplement).

[0052] As used herein "operably linked" includes reference to a functional linkage between a first sequence, such as a promoter, and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA corresponding to the second sequence. Generally, operably linked means that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in the same reading frame.

[0053] As used herein, the term "plant" includes reference to whole plants, plant organs (e.g., leaves, stems, roots, etc.), seeds and plant cells and progeny of same. Plant cell, as used herein includes, without limitation, seeds, suspension cultures, embryos, meristematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen, and microspores. The class of plants, which can be used in the methods of the invention, is generally as broad as the class of higher plants amenable to transformation techniques, including both monocotyledonous and dicotyledonous plants including species from the genera: Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersicon, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Ciahorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesis, Pelargonium, Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Pisum, Phaseolus, Lolium, Oryza, Avena, Hordeum, Secale, Allium, and Triticum. A particularly preferred plant is Zea mavs.

[0054] As used herein, "yield" may include reference to bushels per acre of a grain crop at harvest, as adjusted for grain moisture (15% typically for maize, for example). Grain moisture is measured in the grain at harvest. The adjusted test weight of grain is determined to be the weight in pounds per bushel, adjusted for grain moisture level at harvest.

[0055] As used herein, "polynucleotide" includes reference to a deoxyribopolynucleotide, ribopolynucleotide, or analogs thereof that have the essential nature of a natural ribonucleotide in that they hybridize, under stringent hybridization conditions, to substantially the same nucleotide sequence as naturally occurring nucleotides and/or allow translation into the same amino acid(s) as the naturally occurring nucleotide (s). A polynucleotide can be full-length or a subsequence of a native or heterologous structural or regulatory gene. Unless otherwise indicated, the term includes reference to the specified sequence as well as the complementary sequence thereof. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotides" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples, are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art. The term polynucleotide as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including inter alia, simple and complex cells.

[0056] The terms "polypeptide," "peptide," and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers.

[0057] As used herein "promoter" includes reference to a region of DNA upstream from the start of transcription and involved in recognition and binding of RNA polymerase and other proteins to initiate transcription. A "plant promoter" is a promoter capable of initiating transcription in plant cells. Exemplary plant promoters include, but are not limited to, those that are obtained from plants, plant viruses, and bacteria which comprise genes expressed in plant cells such Agrobacterium or Rhizobium. Examples are promoters that preferentially initiate transcription in certain tissues, such as leaves, roots, seeds, fibres, xylem vessels, tracheids, or sclerenchyma. Such promoters are referred to as "tissue preferred." A "cell type" specific promoter primarily drives expression in certain cell types in one or more organs, for example, vascular cells in roots or leaves. An "inducible" or "regulatable" promoter is a promoter, which is under environmental control. Examples of environmental conditions that may effect transcription by inducible promoters include anaerobic conditions or the presence of light. Another type of promoter is a developmentally regulated promoter, for example, a promoter that drives expression during pollen development. Tissue preferred, cell type specific, developmentally regulated, and inducible promoters constitute the class of "non-constitutive" promoters. A "constitutive" promoter is a promoter, which is active under most environmental conditions.

[0058] The term "AMT polypeptide" refers to one or more amino acid sequences. The term is also inclusive of fragments, variants, homologs, alleles or precursors (e.g., preproproteins or proproteins) thereof. A "AMT protein" comprises an amt polypeptide. Unless otherwise stated, the term "AMT nucleic acid" means a nucleic acid comprising a polynucleotide ("AMT polynucleotide") encoding an amt polypeptide. [0059] As used herein "recombinant" includes reference to a cell or vector, that has been modified by the introduction of a heterologous nucleic acid or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found in identical form within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all as a result of deliberate human intervention; or may have reduced or eliminated expression of a native gene. The term "recombinant" as used herein does not encompass the alteration of the cell or vector by naturally occurring events (e.g., spontaneous mutation, natural transformation/transduction/transposition) such as those occurring without deliberate human intervention.

[0060] As used herein, a "recombinant expression cassette" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements, which permit transcription of a particular nucleic acid in a target cell. The recombinant expression cassette can be incorporated into a plasmid, chromosome, mitochondrial DNA, plastid DNA, virus, or nucleic acid fragment. Typically, the recombinant expression cassette portion of an expression vector includes, among other sequences, a nucleic acid to be transcribed, and a promoter.

[0061] The term "residue" or "amino acid residue" or "amino acid" are used interchangeably herein to refer to an amino acid that is incorporated into a protein, polypeptide, or peptide (collectively "protein"). The amino acid may be a naturally occurring amino acid and, unless otherwise limited, may encompass known analogs of natural amino acids that can function in a similar manner as naturally occurring amino acids.

[0062] The term "selectively hybridizes" includes reference to hybridization, under stringent hybridization conditions, of a nucleic acid sequence to a specified nucleic acid target sequence to a detectably greater degree (e.g., at least 2-fold over background) than its hybridization to non-target nucleic acid sequences and to the substantial exclusion of non-target nucleic acids. Selectively hybridizing sequences typically have about at least 40% sequence identity, preferably 60-90% sequence identity, and most preferably 100% sequence identity (i.e., complementary) with each other.

[0063] The terms "stringent conditions" or "stringent hybridization conditions" include reference to conditions under which a probe will hybridize to its target sequence, to a detectably greater degree than other sequences (e.g., at least 2-fold over background). Stringent conditions are sequencedependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences can be identified which can be up to 100% complementary to the probe (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Optimally, the probe is approximately 500 nucleotides in length, but can vary greatly in length from less than 500 nucleotides to equal to the entire length of the target sequence. [0064] Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes (e.g., 10 to 50 nucleotides) and at least about 60° C. for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide or Denhardt's. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulphate) at 37° C., and a wash in 1× to 2×SSC (20×SSC=3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55° C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1 M NaCl, 1% SDS at 37° C., and a wash in 0.5× to 1×SSC at 55 to 60° C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37° C., and a wash in 0.1×SSC at 60 to 65° C. Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the T_m can be approximated from the equation of Meinkoth and Wahl, (1984) Anal. Biochem., 138:267-84: T_m=81.5° C.+16.6 (log M)+0.41 (% GC)-0.61 (% form)-500/L; where M is the molarity of monovalent cations, % GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. The T_m is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. T_m is reduced by about 1° C. for each 1% of mismatching; thus, T_m, hybridization and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with $\geq 90\%$ identity are sought, the T_m can be decreased 10° C. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (T_m) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/ or wash at 1, 2, 3 or 4° C. lower than the thermal melting point (T_m) ; moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9 or 10° C. lower than the thermal melting point (T_m) ; low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15 or 20° C. lower than the thermal melting point (T_m) . Using the equation, hybridization and wash compositions, and desired T_m, those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a T_m of less than 45° C. (aqueous solution) or 32° C. (formamide solution) it is preferred to increase the SSC concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found in Tijssen, LABO-RATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY-HYBRIDIZATION WITH NUCLEIC ACID PROBES, part 1, chapter 2, "Overview of principles of hybridization and the strategy of nucleic acid probe assays," Elsevier, N.Y. (1993); and CURRENT PRO-TOCOLS IN MOLECULAR BIOLOGY, chapter 2, Ausubel, et al., eds, Greene Publishing and Wiley-Interscience, New York (1995). Unless otherwise stated, in the present application high stringency is defined as hybridization in 4×SSC, 5×Denhardt's (5 g Ficoll, 5 g polyvinylpyrrolidone, 5 g bovine serum albumin in 500 ml of water), 0.1 mg/ml boiled salmon sperm DNA, and 25 mM Na phosphate at 65° C., and a wash in 0.1×SSC, 0.1% SDS at 65° C.

[0065] As used herein, "transgenic plant" includes reference to a plant, which comprises within its genome a heterologous polynucleotide. Generally, the heterologous polynucleotide is stably integrated within the genome such that the polynucleotide is passed on to successive generations. The heterologous polynucleotide may be integrated into the genome alone or as part of a recombinant expression cassette. "Transgenic" is used herein to include any cell, cell line, callus, tissue, plant part or plant, the genotype of which has been altered by the presence of heterologous nucleic acid including those transgenics initially so altered as well as those created by sexual crosses or asexual propagation from the initial transgenic. The term "transgenic" as used herein does not encompass the alteration of the genome (chromosomal or extra-chromosomal) by conventional plant breeding methods or by naturally occurring events such as random cross-fertilization, non-recombinant viral infection, non-recombinant bacterial transformation, non-recombinant transposition, or spontaneous mutation.

[0066] As used herein, "vector" includes reference to a nucleic acid used in transfection of a host cell and into which can be inserted a polynucleotide. Vectors are often replicons. Expression vectors permit transcription of a nucleic acid inserted therein.

[0067] The following terms are used to describe the sequence relationships between two or more nucleic acids or polynucleotides or polypeptides: (a) "reference sequence," (b) "comparison window," (c) "sequence identity," (d) "percentage of sequence identity," and (e) "substantial identity." [0068] As used herein, "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence.

[0069] As used herein, "comparison window" means includes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence may be compared to a reference sequence and wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100 or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.

[0070] Methods of alignment of nucleotide and amino acid sequences for comparison are well known in the art. The local homology algorithm (BESTFIT) of Smith and Waterman, (1981) Adv. Appl. Math 2:482, may conduct optimal alignment of sequences for comparison; by the homology alignment algorithm (GAP) of Needleman and Wunsch, (1970) J. Mol. Biol. 48:443-53; by the search for similarity method (Tfasta and Fasta) of Pearson and Lipman, (1988) Proc. Natl. Acad. Sci. USA 85:2444; by computerized implementations of these algorithms, including, but not limited to: CLUSTAL in the PC/Gene program by Intelligenetics, Mountain View, Calif., GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Version 8 (available from Genetics Computer Group (GCG® programs (Accelrys, Inc., San Diego, Calif.).). The CLUSTAL program is well described by Higgins and Sharp, (1988) Gene 73:237-44; Higgins and Sharp, (1989) CABIOS 5:151-3; Corpet, et al., (1988) Nucleic Acids Res. 16:10881-90; Huang, et al., (1992) Computer Applications in the Biosciences 8:155-65, and Pearson, et al., (1994) Meth. Mol. Biol. 24:307-31. The preferred program to use for optimal global alignment of multiple sequences is PileUp (Feng and Doolittle, (1987) J. Mol. *Evol.*, 25:351-60 which is similar to the method described by Higgins and Sharp, (1989) CABIOS 5:151-53 and hereby incorporated by reference). The BLAST family of programs which can be used for database similarity searches includes: BLASTN for nucleotide query sequences against nucleotide database sequences; BLASTX for nucleotide query sequences against protein database sequences; BLASTP for protein query sequences against protein database sequences; TBLASTN for protein query sequences against nucleotide

database sequences; and TBLASTX for nucleotide query sequences against nucleotide database sequences. See, CUR-RENT PROTOCOLS IN MOLECULAR BIOLOGY, Chapter 19, Ausubel, et al., eds., Greene Publishing and Wiley-Interscience, New York (1995).

[0071] GAP uses the algorithm of Needleman and Wunsch, supra, to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. GAP considers all possible alignments and gap positions and creates the alignment with the largest number of matched bases and the fewest gaps. It allows for the provision of a gap creation penalty and a gap extension penalty in units of matched bases. GAP must make a profit of gap creation penalty number of matches for each gap it inserts. If a gap extension penalty greater than zero is chosen, GAP must, in addition, make a profit for each gap inserted of the length of the gap times the gap extension penalty. Default gap creation penalty values and gap extension penalty values in Version 10 of the Wisconsin Genetics Software Package are 8 and 2, respectively. The gap creation and gap extension penalties can be expressed as an integer selected from the group of integers consisting of from 0 to 100. Thus, for example, the gap creation and gap extension penalties can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50 or greater.

[0072] GAP presents one member of the family of best alignments. There may be many members of this family, but no other member has a better quality. GAP displays four figures of merit for alignments: Quality, Ratio, Identity, and Similarity. The Quality is the metric maximized in order to align the sequences. Ratio is the quality divided by the number of bases in the shorter segment. Percent Identity is the percent of the symbols that actually match. Percent Similarity is the percent of the symbols that are similar. Symbols that are across from gaps are ignored. A similarity is scored when the scoring matrix value for a pair of symbols is greater than or equal to 0.50, the similarity threshold. The scoring matrix used in Version 10 of the Wisconsin Genetics Software Package is BLOSUM62 (see, Henikoff and Henikoff, (1989) *Proc. Natl. Acad. Sci. USA* 89:10915).

[0073] Unless otherwise stated, sequence identity/similarity values provided herein refer to the value obtained using the BLAST 2.0 suite of programs using default parameters (Altschul, et al., (1997) *Nucleic Acids Res.* 25:3389-402).

[0074] As those of ordinary skill in the art will understand, BLAST searches assume that proteins can be modeled as random sequences. However, many real proteins comprise regions of nonrandom sequences, which may be homopolymeric tracts, short-period repeats, or regions enriched in one or more amino acids. Such low-complexity regions may be aligned between unrelated proteins even though other regions of the protein are entirely dissimilar. A number of low-complexity filter programs can be employed to reduce such lowcomplexity alignments. For example, the SEG (Wooten and Federhen, (1993) Comput. Chem. 17:149-63) and XNU (Claverie and States, (1993) Comput. Chem. 17:191-201) lowcomplexity filters can be employed alone or in combination. [0075] As used herein, "sequence identity" or "identity" in the context of two nucleic acid or polypeptide sequences includes reference to the residues in the two sequences, which are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences, which differ by such conservative substitutions, are said to have "sequence similarity" or "similarity." Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., according to the algorithm of Meyers and Miller, (1988) Computer Applic. Biol. Sci. 4:11-17, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif., USA).

[0076] As used herein, "percentage of sequence identity" means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.

[0077] The term "substantial identity" of polynucleotide sequences means that a polynucleotide comprises a sequence that has between 50-100% sequence identity, preferably at least 50% sequence identity, preferably at least 60% sequence identity, preferably at least 70%, more preferably at least 80%, more preferably at least 90%, and most preferably at least 95%, compared to a reference sequence using one of the alignment programs described using standard parameters. One of skill will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like. Substantial identity of amino acid sequences for these purposes normally means sequence identity of between 55-100%, preferably at least 55%, preferably at least 60%, more preferably at least 70%, 80%, 90%, and most preferably at least 95%.

[0078] Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other under stringent conditions. The degeneracy of the genetic code allows for many amino acids substitutions that lead to variety in the nucleotide sequence that code for the same amino acid, hence it is possible that the DNA sequence could code for the same polypeptide but not hybridize to each other under stringent conditions. This may occur, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. One indication that two nucleic acid sequences are substantially identical is that

the polypeptide, which the first nucleic acid encodes, is immunologically cross reactive with the polypeptide encoded by the second nucleic acid.

[0079] The terms "substantial identity" in the context of a peptide indicates that a peptide comprises a sequence with between 55-100% sequence identity to a reference sequence preferably at least 55% sequence identity, preferably 60% preferably 70%, more preferably 80%, most preferably at least 90% or 95% sequence identity to the reference sequence over a specified comparison window. Preferably, optimal alignment is conducted using the homology alignment algorithm of Needleman and Wunsch, supra. An indication that two peptide sequences are substantially identical is that one peptide is immunologically reactive with antibodies raised against the second peptide. Thus, a peptide is substantially identical to a second peptide, for example, where the two peptides differ only by a conservative substitution. In addition, a peptide can be substantially identical to a second peptide when they differ by a non-conservative change if the epitope that the antibody recognizes is substantially identical. Peptides, which are "substantially similar" share sequences as, noted above except that residue positions, which are not identical, may differ by conservative amino acid changes.

[0080] The invention discloses AMT polynucleotides and polypeptides. The novel nucleotides and proteins of the invention have an expression pattern which indicates that they regulate ammonium transport and thus play an important role in plant development. The polynucleotides are expressed in various plant tissues. The polynucleotides and polypeptides thus provide an opportunity to manipulate plant development to alter seed and vegetative tissue development, timing or composition. This may be used to create a plant with altered N composition in source and sink.

Nucleic Acids

[0081] The present invention provides, inter alia, isolated nucleic acids of RNA, DNA, and analogs and/or chimeras thereof, comprising an amt polynucleotide.

[0082] The present invention also includes polynucleotides optimized for expression in different organisms. For example, for expression of the polynucleotide in a maize plant, the sequence can be altered to account for specific codon preferences and to alter GC content as according to Murray, et al., supra. Maize codon usage for 28 genes from maize plants is listed in Table 4 of Murray et al., supra.

[0083] The AMT nucleic acids of the present invention comprise isolated AMT polynucleotides which are inclusive of:

- **[0084]** (a) a polynucleotide encoding an AMT polypeptide and conservatively modified and polymorphic variants thereof;
- **[0085]** (b) a polynucleotide having at least 70% sequence identity with polynucleotides of (a) or (b);
- **[0086]** (c) complementary sequences of polynucleotides of (a) or (b).

Construction of Nucleic Acids

[0087] The isolated nucleic acids of the present invention can be made using (a) standard recombinant methods, (b) synthetic techniques, or combinations thereof. In some embodiments, the polynucleotides of the present invention will be cloned, amplified, or otherwise constructed from a fungus or bacteria. [0088] The nucleic acids may conveniently comprise sequences in addition to a polynucleotide of the present invention. For example, a multi-cloning site comprising one or more endonuclease restriction sites may be inserted into the nucleic acid to aid in isolation of the polynucleotide. Also, translatable sequences may be inserted to aid in the isolation of the translated polynucleotide of the present invention. For example, a hexa-histidine marker sequence provides a convenient means to purify the proteins of the present invention. The nucleic acid of the present invention-excluding the polynucleotide sequence-is optionally a vector, adapter, or linker for cloning and/or expression of a polynucleotide of the present invention. Additional sequences may be added to such cloning and/or expression sequences to optimize their function in cloning and/or expression, to aid in isolation of the polynucleotide, or to improve the introduction of the polynucleotide into a cell. Typically, the length of a nucleic acid of the present invention less the length of its polynucleotide of the present invention is less than 20 kilobase pairs, often less than 15 kb, and frequently less than 10 kb. Use of cloning vectors, expression vectors, adapters, and linkers is well known in the art. Exemplary nucleic acids include such vectors as: M13, lambda ZAP Express, lambda ZAP II, lambda gt10, lambda gt11, pBK-CMV, pBK-RSV, pBluescript II, lambda DASH II, lambda EMBL 3, lambda EMBL 4, pWE15, SuperCos 1, SurfZap, Uni-ZAP, pBC, pBS+/-, pSG5, pBK, pCR-Script, pET, pSPUTK, p3'SS, pGEM, pSK+/-, pGEX, pSPORTI and II, pOPRSVI CAT, pOPI3 CAT, pXT1, pSG5, pPbac, pMbac, pMC1neo, pOG44, $pOG45, \ pFRT\beta GAL, \ pNEO\beta GAL, \ pRS403, \ pRS404,$ pRS405, pRS406, pRS413, pRS414, pRS415, pRS416, lambda MOSSlox, and lambda MOSElox. Optional vectors for the present invention, include but are not limited to, lambda ZAP II, and pGEX. For a description of various nucleic acids see, e.g., Stratagene Cloning Systems, Catalogs 1995, 1996, 1997 (La Jolla, Calif.); and, Amersham Life Sciences, Inc, Catalog '97 (Arlington Heights, Ill.).

Synthetic Methods for Constructing Nucleic Acids

[0089] The isolated nucleic acids of the present invention can also be prepared by direct chemical synthesis by methods such as the phosphotriester method of Narang, et al., (1979) Meth. Enzymol. 68:90-9; the phosphodiester method of Brown, et al., (1979) Meth. Enzymol. 68:109-51; the diethylphosphoramidite method of Beaucage, et al., (1981) Tetra. Letts. 22(20):1859-62; the solid phase phosphoramidite triester method described by Beaucage, et al., supra, e.g., using an automated synthesizer, e.g., as described in Needham-VanDevanter, et al., (1984) Nucleic Acids Res. 12:6159-68; and, the solid support method of U.S. Pat. No. 4,458,066. Chemical synthesis generally produces a single stranded oligonucleotide. This may be converted into double stranded DNA by hybridization with a complementary sequence or by polymerization with a DNA polymerase using the single strand as a template. One of skill will recognize that while chemical synthesis of DNA is limited to sequences of about 100 bases, longer sequences may be obtained by the ligation of shorter sequences.

UTRs and Codon Preference

[0090] In general, translational efficiency has been found to be regulated by specific sequence elements in the 5' non-coding or untranslated region (5' UTR) of the RNA. Positive

sequence motifs include translational initiation consensus sequences (Kozak, (1987) *Nucleic Acids Res.* 15:8125) and the 5<G> 7 methyl GpppG RNA cap structure (Drummond, et al., (1985) *Nucleic Acids Res.* 13:7375). Negative elements include stable intramolecular 5' UTR stem-loop structures (Muesing, et al., (1987) *Cell* 48:691) and AUG sequences or short open reading frames preceded by an appropriate AUG in the 5' UTR (Kozak, supra, Rao, et al., (1988) *Mol. and Cell. Biol.* 8:284). Accordingly, the present invention provides 5' and/or 3' UTR regions for modulation of translation of heterologous coding sequences.

[0091] Further, the polypeptide-encoding segments of the polynucleotides of the present invention can be modified to alter codon usage. Altered codon usage can be employed to alter translational efficiency and/or to optimize the coding sequence for expression in a desired host or to optimize the codon usage in a heterologous sequence for expression in maize. Codon usage in the coding regions of the polynucleotides of the present invention can be analyzed statistically using commercially available software packages such as "Codon Preference" available from the University of Wisconsin Genetics Computer Group. See, Devereaux, et al., (1984) Nucleic Acids Res. 12:387-395; or MacVector 4.1 (Eastman Kodak Co., New Haven, Conn.). Thus, the present invention provides a codon usage frequency characteristic of the coding region of at least one of the polynucleotides of the present invention. The number of polynucleotides (3 nucleotides per amino acid) that can be used to determine a codon usage frequency can be any integer from 3 to the number of polynucleotides of the present invention as provided herein. Optionally, the polynucleotides will be full-length sequences. An exemplary number of sequences for statistical analysis can be at least 1, 5, 10, 20, 50 or 100.

Sequence Shuffling

[0092] The present invention provides methods for sequence shuffling using polynucleotides of the present invention, and compositions resulting therefrom. Sequence shuffling is described in PCT publication No. 96/19256. See also, Zhang, et al., (1997) Proc. Natl. Acad. Sci. USA 94:4504-9; and Zhao, et al., (1998) Nature Biotech 16:258-61. Generally, sequence shuffling provides a means for generating libraries of polynucleotides having a desired characteristic, which can be selected or screened for. Libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides, which comprise sequence regions, which have substantial sequence identity and can be homologously recombined in vitro or in vivo. The population of sequence-recombined polynucleotides comprises a subpopulation of polynucleotides which possess desired or advantageous characteristics and which can be selected by a suitable selection or screening method. The characteristics can be any property or attribute capable of being selected for or detected in a screening system, and may include properties of: an encoded protein, a transcriptional element, a sequence controlling transcription, RNA processing, RNA stability, chromatin conformation, translation, or other expression property of a gene or transgene, a replicative element, a protein-binding element, or the like, such as any feature which confers a selectable or detectable property. In some embodiments, the selected characteristic will be an altered Km and/or Kcat over the wild-type protein as provided herein. In other embodiments, a protein or polynucleotide generated from sequence shuffling will have a ligand binding affinity greater than the non-shuffled wild-type polynucleotide. In yet other embodiments, a protein or polynucleotide generated from sequence shuffling will have an altered pH optimum as compared to the non-shuffled wild-type polynucleotide. The increase in such properties can be at least 110%, 120%, 130%, 140% or greater than 150% of the wildtype value.

Recombinant Expression Cassettes

[0093] The present invention further provides recombinant expression cassettes comprising a nucleic acid of the present invention. A nucleic acid sequence coding for the desired polynucleotide of the present invention, for example a cDNA or a genomic sequence encoding a polypeptide long enough to code for an active protein of the present invention, can be used to construct a recombinant expression cassette which can be introduced into the desired host cell. A recombinant expression cassette will typically comprise a polynucleotide of the present invention operably linked to transcriptional initiation regulatory sequences which will direct the transcription of the polynucleotide in the intended host cell, such as tissues of a transformed plant.

[0094] For example, plant expression vectors may include (1) a cloned plant gene under the transcriptional control of 5' and 3' regulatory sequences and (2) a dominant selectable marker. Such plant expression vectors may also contain, if desired, a promoter regulatory region (e.g., one conferring inducible or constitutive, environmentally- or developmentally-regulated, or cell- or tissue-specific/selective expression), a transcription initiation start site, a ribosome binding site, an RNA processing signal, a transcription termination site, and/or a polyadenylation signal.

[0095] A plant promoter fragment can be employed which will direct expression of a polynucleotide of the present invention in all tissues of a regenerated plant. Such promoters are referred to herein as "constitutive" promoters and are active under most environmental conditions and states of development or cell differentiation. Examples of constitutive promoters include the 1'- or 2'-promoter derived from T-DNA of Agrobacterium tumefaciens, the Smas promoter, the cinnamyl alcohol dehydrogenase promoter (U.S. Pat. No. 5,683, 439), the Nos promoter, the rubisco promoter, the GRP1-8 promoter, the 35S promoter from cauliflower mosaic virus (CaMV), as described in Odell, et al., (1985) Nature 313:810-2; rice actin (McElroy, et al., (1990) Plant Cell 163-171); ubiquitin (Christensen, et al., (1992) Plant Mol. Biol. 12:619-632 and Christensen, et al., (1992) Plant Mol. Biol. 18:675-89); PEMU (Last, et al., (1991) Theor. Appl. Genet. 81:581-8); MAS (Velten, et al., (1984) EMBO J. 3:2723-30); and maize H3 histone (Lepetit, et al., (1992) Mol. Gen. Genet. 231:276-85; and Atanassvoa, et al., (1992) Plant Journal 2(3):291-300); ALS promoter, as described in PCT Application Number WO 96/30530; and other transcription initiation regions from various plant genes known to those of skill. For the present invention ubiquitin is the preferred promoter for expression in monocot plants.

[0096] Alternatively, the plant promoter can direct expression of a polynucleotide of the present invention in a specific tissue or may be otherwise under more precise environmental or developmental control. Such promoters are referred to here as "inducible" promoters. Environmental conditions that may effect transcription by inducible promoters include pathogen attack, anaerobic conditions, or the presence of light. Examples of inducible promoters are the Adh1 promoter,

which is inducible by hypoxia or cold stress, the Hsp70 promoter, which is inducible by heat stress, and the PPDK promoter, which is inducible by light.

[0097] Examples of promoters under developmental control include promoters that initiate transcription only, or preferentially, in certain tissues, such as leaves, roots, fruit, seeds, or flowers. The operation of a promoter may also vary depending on its location in the genome. Thus, an inducible promoter may become fully or partially constitutive in certain locations.

[0098] If polypeptide expression is desired, it is generally desirable to include a polyadenylation region at the 3'-end of a polynucleotide coding region. The polyadenylation region can be derived from a variety of plant genes, or from T-DNA. The 3' end sequence to be added can be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or less preferably from any other eukaryotic gene. Examples of such regulatory elements include, but are not limited to, 3' termination and/or polyadenylation regions such as those of the Agrobacterium tumefaciens nopaline synthase (nos) gene (Bevan, et al., (1983) Nucleic Acids Res. 12:369-85); the potato proteinase inhibitor II (PINII) gene (Keil, et al., (1986) Nucleic Acids Res. 14:5641-50; and An, et al., (1989) Plant Cell 1:115-22); and the CaMV 19S gene (Mogen, et al., (1990) Plant Cell 2:1261-72).

[0099] An intron sequence can be added to the 5' untranslated region or the coding sequence of the partial coding sequence to increase the amount of the mature message that accumulates in the cytosol. Inclusion of a spliceable intron in the transcription unit in both plant and animal expression constructs has been shown to increase gene expression at both the mRNA and protein levels up to 1000-fold (Buchman and Berg, (1988) *Mol. Cell Biol.* 8:4395-4405; Callis, et al., (1987) *Genes Dev.* 1:1183-200). Such intron enhancement of gene expression is typically greatest when placed near the 5' end of the transcription unit. Use of maize introns Adh1-S intron 1, 2, and 6, the Bronze-1 intron are known in the art. See generally, THE MAIZE HANDBOOK, Chapter 116, Freeling and Walbot, eds., Springer, N.Y. (1994).

[0100] Plant signal sequences, including, but not limited to, signal-peptide encoding DNA/RNA sequences which target proteins to the extracellular matrix of the plant cell (Dratewka-Kos, et al., (1989) J. Biol. Chem. 264:4896-900), such as the Nicotiana plumbaginifolia extension gene (De-Loose, et al., (1991) Gene 99:95-100); signal peptides which target proteins to the vacuole, such as the sweet potato sporamin gene (Matsuka, et al., (1991) Proc. Natl. Acad. Sci. USA 88:834) and the barley lectin gene (Wilkins, et al., (1990) Plant Cell, 2:301-13); signal peptides which cause proteins to be secreted, such as that of PRIb (Lind, et al., (1992) Plant Mol. Biol. 18:47-53) or the barley alpha amylase (BAA) (Rahmatullah, et al., (1989) Plant Mol. Biol. 12:119, and hereby incorporated by reference), or signal peptides which target proteins to the plastids such as that of rapeseed enoyl-Acp reductase (Verwaert, et al., (1994) Plant Mol. Biol. 26:189-202) are useful in the invention. The barley alpha amylase signal sequence fused to the AMT polynucleotide is the preferred construct for expression in maize for the present invention.

[0101] The vector comprising the sequences from a polynucleotide of the present invention will typically comprise a marker gene, which confers a selectable phenotype on plant cells. Usually, the selectable marker gene will encode antibiotic resistance, with suitable genes including genes coding for resistance to the antibiotic spectinomycin (e.g., the aada gene), the streptomycin phosphotransferase (SPT) gene coding for streptomycin resistance, the neomycin phosphotransferase (NPTII) gene encoding kanamycin or geneticin resistance, the hygromycin phosphotransferase (HPT) gene coding for hygromycin resistance, genes coding for resistance to herbicides which act to inhibit the action of acetolactate synthase (ALS), in particular the sulfonylurea-type herbicides (e.g., the acetolactate synthase (ALS) gene containing mutations leading to such resistance in particular the S4 and/or Hra mutations), genes coding for resistance to herbicides which act to inhibit action of glutamine synthase, such as phosphinothricin or basta (e.g., the bar gene), or other such genes known in the art. The bar gene encodes resistance to the herbicide basta, and the ALS gene encodes resistance to the herbicide chlorsulfuron.

[0102] Typical vectors useful for expression of genes in higher plants are well known in the art and include vectors derived from the tumor-inducing (Ti) plasmid of *Agrobacte-rium tumefaciens* described by Rogers, et al., (1987) *Meth. Enzymol.* 153:253-77. These vectors are plant integrating vectors in that on transformation, the vectors integrate a portion of vector DNA into the genome of the host plant. Exemplary *A. tumefaciens* vectors useful herein are plasmids pKYLX6 and pKYLX7 of Schardl, et al., (1987) *Gene* 61:1-11, and Berger, et al., (1989) *Proc. Natl. Acad. Sci. USA*, 86:8402-6. Another useful vector herein is plasmid pBI101.2 that is available from CLONTECH Laboratories, Inc. (Palo Alto, Calif.).

Expression of Proteins in Host Cells

[0103] Using the nucleic acids of the present invention, one may express a protein of the present invention in a recombinantly engineered cell such as bacteria, yeast, insect, mammalian, or preferably plant cells. The cells produce the protein in a non-natural condition (e.g., in quantity, composition, location, and/or time), because they have been genetically altered through human intervention to do so.

[0104] It is expected that those of skill in the art are knowledgeable in the numerous expression systems available for expression of a nucleic acid encoding a protein of the present invention. No attempt to describe in detail the various methods known for the expression of proteins in prokaryotes or eukaryotes will be made.

[0105] In brief summary, the expression of isolated nucleic acids encoding a protein of the present invention will typically be achieved by operably linking, for example, the DNA or cDNA to a promoter (which is either constitutive or inducible), followed by incorporation into an expression vector. The vectors can be suitable for replication and integration in either prokaryotes or eukaryotes. Typical expression vectors contain transcription and translation terminators, initiation sequences, and promoters useful for regulation of the expression of the DNA encoding a protein of the present invention. To obtain high level expression of a cloned gene, it is desirable to construct expression vectors which contain, at the minimum, a strong promoter, such as ubiquitin, to direct transcription, a ribosome binding site for translational initiation, and a transcription/translation terminator. Constitutive promoters are classified as providing for a range of constitutive expression. Thus, some are weak constitutive promoters, and others are strong constitutive promoters. Generally, by "weak promoter" is intended a promoter that drives expression of a coding sequence at a low level. By "low level" is intended at levels of about 1/10,000 transcripts to about 1/100,000 transcripts. Conversely, a "strong promoter" drives expression of a coding sequence at a "high level," or about 1/10 transcripts to about 1/100 transcripts to about 1/1,000 transcripts.

[0106] One of skill would recognize that modifications could be made to a protein of the present invention without diminishing its biological activity. Some modifications may be made to facilitate the cloning, expression, or incorporation of the targeting molecule into a fusion protein. Such modifications are well known to those of skill in the art and include, for example, a methionine added at the amino terminus to provide an initiation site, or additional amino acids (e.g., poly His) placed on either terminus to create conveniently located restriction sites or termination codons or purification sequences.

Expression in Prokaryotes

[0107] Prokaryotic cells may be used as hosts for expression. Prokaryotes most frequently are represented by various strains of E. coli; however, other microbial strains may also be used. Commonly used prokaryotic control sequences which are defined herein to include promoters for transcription initiation, optionally with an operator, along with ribosome binding site sequences, include such commonly used promoters as the beta lactamase (penicillinase) and lactose (lac) promoter systems (Chang, et al., (1977) Nature 198:1056), the tryptophan (trp) promoter system (Goeddel, et al., (1980) Nucleic Acids Res. 8:4057) and the lambda derived P L promoter and N-gene ribosome binding site (Shimatake, et al., (1981) Nature 292:128). The inclusion of selection markers in DNA vectors transfected in E. coli is also useful. Examples of such markers include genes specifying resistance to ampicillin, tetracycline, or chloramphenicol.

[0108] The vector is selected to allow introduction of the gene of interest into the appropriate host cell. Bacterial vectors are typically of plasmid or phage origin. Appropriate bacterial cells are infected with phage vector particles or transfected with naked phage vector DNA. If a plasmid vector is used, the bacterial cells are transfected with the plasmid vector DNA. Expression systems for expressing a protein of the present invention are available using *Bacillus* sp. and *Salmonella* (Palva, et al., (1983) *Gene* 22:229-35; Mosbach, et al., (1983) *Nature* 302:543-5). The pGEX-4T-1 plasmid vector for the present invention.

Expression in Eukaryotes

[0109] A variety of eukaryotic expression systems such as yeast, insect cell lines, plant and mammalian cells, are known to those of skill in the art. As explained briefly below, the present invention can be expressed in these eukaryotic systems. In some embodiments, transformed/transfected plant cells, as discussed infra, are employed as expression systems for production of the proteins of the instant invention.

[0110] Synthesis of heterologous proteins in yeast is well known. Sherman, et al., METHODS INYEAST GENETICS, Cold Spring Harbor Laboratory (1982) is a well recognized work describing the various methods available to produce the protein in yeast. Two widely utilized yeasts for production of eukaryotic proteins are *Saccharomyces cerevisiae* and *Pichia pastoris*. Vectors, strains, and protocols for expression in

Saccharomyces and *Pichia* are known in the art and available from commercial suppliers (e.g., Invitrogen). Suitable vectors usually have expression control sequences, such as promoters, including 3-phosphoglycerate kinase or alcohol oxidase, and an origin of replication, termination sequences and the like as desired.

[0111] A protein of the present invention, once expressed, can be isolated from yeast by lysing the cells and applying standard protein isolation techniques to the lysates or the pellets. The monitoring of the purification process can be accomplished by using Western blot techniques or radioimmunoassay of other standard immunoassay techniques.

[0112] The sequences encoding proteins of the present invention can also be ligated to various expression vectors for use in transfecting cell cultures of, for instance, mammalian, insect, or plant origin. Mammalian cell systems often will be in the form of monolayers of cells although mammalian cell suspensions may also be used. A number of suitable host cell lines capable of expressing intact proteins have been developed in the art, and include the HEK293, BHK21, and CHO cell lines. Expression vectors for these cells can include expression control sequences, such as an origin of replication, a promoter (e.g., the CMV promoter, a HSV tk promoter or pgk (phosphoglycerate kinase) promoter), an enhancer (Queen, et al., (1986) Immunol. Rev. 89:49), and necessary processing information sites, such as ribosome binding sites, RNA splice sites, polyadenylation sites (e.g., an SV40 large T Ag poly A addition site), and transcriptional terminator sequences. Other animal cells useful for production of proteins of the present invention are available, for instance, from the American Type Culture Collection Catalogue of Cell Lines and Hybridomas (7th ed., 1992).

[0113] Appropriate vectors for expressing proteins of the present invention in insect cells are usually derived from the SF9 baculovirus. Suitable insect cell lines include mosquito larvae, silkworm, armyworm, moth, and *Drosophila* cell lines such as a Schneider cell line (see, e.g., Schneider, (1987) *J. Embryol. Exp. Morphol.* 27:353-65).

[0114] As with yeast, when higher animal or plant host cells are employed, polyadenylation or transcription terminator sequences are typically incorporated into the vector. An example of a terminator sequence is the polyadenylation sequence from the bovine growth hormone gene. Sequences for accurate splicing of the transcript may also be included. An example of a splicing sequence is the VP1 intron from SV40 (Sprague, et al., (1983) *J. Virol.* 45:773-81). Additionally, gene sequences to control replication in the host cell may be incorporated into the vector such as those found in bovine papilloma virus type-vectors (Saveria-Campo, "Bovine Papilloma Virus DNA a Eukaryotic Cloning Vector," in DNA CLONING: A PRACTICAL APPROACH, vol. II, Glover, ed., IRL Press, Arlington, Va., pp. 213-38 (1985)).

[0115] In addition, the gene for AMT placed in the appropriate plant expression vector can be used to transform plant cells. The polypeptide can then be isolated from plant callus or the transformed cells can be used to regenerate transgenic plants. Such transgenic plants can be harvested, and the appropriate tissues (seed or leaves, for example) can be subjected to large scale protein extraction and purification techniques.

Plant Transformation Methods

[0116] Numerous methods for introducing foreign genes into plants are known and can be used to insert an amt poly-

nucleotide into a plant host, including biological and physical plant transformation protocols. See, e.g., Miki, et al., "Procedure for Introducing Foreign DNA into Plants," in METH-ODS IN PLANT MOLECULAR BIOLOGY AND BIO-TECHNOLOGY, Glick and Thompson, eds., CRC Press, Inc., Boca Raton, pp. 67-88 (1993). The methods chosen vary with the host plant, and include chemical transfection methods such as calcium phosphate, microorganism-mediated gene transfer such as *Agrobacterium* (Horsch, et al., (1985) *Science* 227:1229-31), electroporation, micro-injection, and biolistic bombardment.

[0117] Expression cassettes and vectors and in vitro culture methods for plant cell or tissue transformation and regeneration of plants are known and available. See, e.g., Gruber, et al., "Vectors for Plant Transformation," in METHODS IN PLANT MOLECULAR BIOLOGY AND BIOTECHNOL-OGY, supra, pp. 89-119.

[0118] The isolated polynucleotides or polypeptides may be introduced into the plant by one or more techniques typically used for direct delivery into cells. Such protocols may vary depending on the type of organism, cell, plant or plant cell, i.e. monocot or dicot, targeted for gene modification. Suitable methods of transforming plant cells include microinjection (Crossway, et al., (1986) Biotechniques 4:320-334; and U.S. Pat. No. 6,300,543), electroporation (Riggs, et al., (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606, direct gene transfer (Paszkowski, et al., (1984) EMBO J. 3:2717-2722), and ballistic particle acceleration (see, for example, Sanford, et al., U.S. Pat. No. 4,945,050; WO 91/10725; and McCabe, et al., (1988) Biotechnology 6:923-926). Also see, Tomes, et al., Direct DNA Transfer into Intact Plant Cells Via Microprojectile Bombardment. pp. 197-213 in Plant Cell, Tissue and Organ Culture, Fundamental Methods. eds. O. L. Gamborg & G. C. Phillips. Springer-Verlag Berlin Heidelberg N.Y., 1995; U.S. Pat. No. 5,736,369 (meristem); Weissinger, et al., (1988) Ann. Rev. Genet. 22:421-477; Sanford, et al., (1987) Particulate Science and Technology 5:27-37 (onion); Christou, et al., (1988) Plant Physiol. 87:671-674 (soybean); Datta, et al., (1990) Biotechnology 8:736-740 (rice); Klein, et al., (1988) Proc. Natl. Acad. Sci. USA 85:4305-4309 (maize); Klein, et al., (1988) Biotechnology 6:559-563 (maize); WO 91/10725 (maize); Klein, et al., (1988) Plant Physiol. 91:440-444 (maize); Fromm, et al., (1990) Biotechnology 8:833-839; and Gordon-Kamm, et al., (1990) Plant Cell 2:603-618 (maize); Hooydaas-Van Slogteren and Hooykaas (1984) Nature (London) 311:763-764; Bytebier, et al., (1987) Proc. Natl. Acad. Sci. USA 84:5345-5349 (Liliaceae); De Wet, et al., (1985) In The Experimental Manipulation of Ovule Tissues, ed. G. P. Chapman, et al., pp. 197-209 Longman, N.Y. (pollen); Kaeppler, et al., (1990) Plant Cell Reports 9:415-418; and Kaeppler, et al., (1992) Theor. Appl. Genet. 84:560-566 (whiskermediated transformation); U.S. Pat. No. 5,693,512 (sonication); D'Halluin, et al., (1992) Plant Cell 4:1495-1505 (electroporation); Li, et al., (1993) Plant Cell Reports 12:250-255; and Christou and Ford (1995) Annals of Botany 75:407-413 (rice); Osjoda, et al., (1996) Nature Biotech. 14:745-750; Agrobacterium mediated maize transformation (U.S. Pat. No. 5,981,840); silicon carbide whisker methods (Frame, et al., (1994) Plant J. 6:941-948); laser methods (Guo, et al., (1995) Physiologia Plantarum 93:19-24); sonication methods (Bao, et al., (1997) Ultrasound in Medicine & Biology 23:953-959; Finer and Finer (2000) Lett Appl Microbiol. 30:406-10; Amoah, et al., (2001) J Exp Bot 52:1135-42); polyethylene glycol methods (Krens, et al., (1982) Nature 296:72-77); protoplasts of monocot and dicot cells can be transformed using electroporation (Fromm, et al., (1985) *Proc. Natl. Acad. Sci. USA* 82:5824-5828) and microinjection (Crossway, et al., (1986) *Mol. Gen. Genet.* 202:179-185); all of which are herein incorporated by reference.

Agrobacterium-Mediated Transformation

[0119] The most widely utilized method for introducing an expression vector into plants is based on the natural transformation system of *Agrobacterium*. *A. tumefaciens* and *A. rhizogenes* are plant pathogenic soil bacteria, which genetically transform plant cells. The Ti and Ri plasmids of *A. tumefaciens* and *A. rhizogenes*, respectively, carry genes responsible for genetic transformation of plants. See, e.g., Kado, (1991) *Crit. Rev. Plant Sci.* 10:1. Descriptions of the *Agrobacterium* vector systems and methods for *Agrobacterium*-mediated gene transfer are provided in Gruber, et al., supra; Miki, et al., supra; and Moloney, et al., (1989) *Plant Cell Reports* 8:238.

[0120] Similarly, the gene can be inserted into the T-DNA region of a Ti or Ri plasmid derived from A. tumefaciens or A. rhizogenes, respectively. Thus, expression cassettes can be constructed as above, using these plasmids. Many control sequences are known which when coupled to a heterologous coding sequence and transformed into a host organism show fidelity in gene expression with respect to tissue/organ specificity of the original coding sequence. See, e.g., Benfey and Chua, (1989) Science 244:174-81. Particularly suitable control sequences for use in these plasmids are promoters for constitutive leaf-specific expression of the gene in the various target plants. Other useful control sequences include a promoter and terminator from the nopaline synthase gene (NOS). The NOS promoter and terminator are present in the plasmid pARC2, available from the American Type Culture Collection and designated ATCC 67238. If such a system is used, the virulence (vir) gene from either the Ti or Ri plasmid must also be present, either along with the T-DNA portion, or via a binary system where the vir gene is present on a separate vector. Such systems, vectors for use therein, and methods of transforming plant cells are described in U.S. Pat. No. 4,658, 082; US Patent Application Number 913,914, filed Oct. 1, 1986, as referenced in U.S. Pat. No. 5,262,306, issued Nov. 16, 1993; and Simpson, et al., (1986) Plant Mol. Biol. 6:403-15 (also referenced in the '306 patent); all incorporated by reference in their entirety.

[0121] Once constructed, these plasmids can be placed into A. rhizogenes or A. tumefaciens and these vectors used to transform cells of plant species, which are ordinarily susceptible to Fusarium or Alternaria infection. Several other transgenic plants are also contemplated by the present invention including but not limited to soybean, corn, sorghum, alfalfa, rice, clover, cabbage, banana, coffee, celery, tobacco, cowpea, cotton, melon, switchgrass, myscanthus, triticale and pepper. The selection of either A. tumefaciens or A. rhizogenes will depend on the plant being transformed thereby. In general A. tumefaciens is the preferred organism for transformation. Most dicotyledonous plants, some gymnosperms, and a few monocotyledonous plants (e.g., certain members of the *Liliales* and *Arales*) are susceptible to infection with A. tumefaciens. A. rhizogenes also has a wide host range, embracing most dicots and some gymnosperms, which includes members of the Leguminosae, Compositae, and Chenopodiaceae. Monocot plants can now be transformed with some success. EP Patent Application Number 604 662

A1 discloses a method for transforming monocots using *Agrobacterium*. EP Application Number 672 752 A1 discloses a method for transforming monocots with *Agrobacterium* using the scutellum of immature embryos. Ishida, et al., discuss a method for transforming maize by exposing immature embryos to *A. tumefaciens* (*Nature Biotechnology* 14:745-50 (1996)).

[0122] Once transformed, these cells can be used to regenerate transgenic plants. For example, whole plants can be infected with these vectors by wounding the plant and then introducing the vector into the wound site. Any part of the plant can be wounded, including leaves, stems and roots. Alternatively, plant tissue, in the form of an explant, such as cotyledonary tissue or leaf disks, can be inoculated with these vectors, and cultured under conditions, which promote plant regeneration. Roots or shoots transformed by inoculation of plant tissue with A. rhizogenes or A. tumefaciens, containing the gene coding for the fumonisin degradation enzyme, can be used as a source of plant tissue to regenerate fumonisinresistant transgenic plants, either via somatic embryogenesis or organogenesis. Examples of such methods for regenerating plant tissue are disclosed in Shahin, (1985) Theor. Appl. Genet. 69:235-40; U.S. Pat. No. 4,658,082; Simpson, et al., supra; and US Patent Application Numbers 913,913 and 913, 914, both filed Oct. 1, 1986, as referenced in U.S. Pat. No. 5,262,306, issued Nov. 16, 1993, the entire disclosures therein incorporated herein by reference.

Direct Gene Transfer

[0123] Despite the fact that the host range for *Agrobacte-rium*-mediated transformation is broad, some major cereal crop species and gymnosperms have generally been recalcitrant to this mode of gene transfer, even though some success has recently been achieved in rice (Hiei, et al., (1994) *The Plant Journal* 6:271-82). Several methods of plant transformation, collectively referred to as direct gene transfer, have been developed as an alternative to *Agrobacterium*-mediated transformation.

[0124] A generally applicable method of plant transformation is microprojectile-mediated transformation, where DNA is carried on the surface of microprojectiles measuring about 1 to 4 µm. The expression vector is introduced into plant tissues with a biolistic device that accelerates the microprojectiles to speeds of 300 to 600 m/s which is sufficient to penetrate the plant cell walls and membranes (Sanford, et al., (1987) *Part. Sci. Technol.* 5:27; Sanford, (1988) *Trends Biotech* 6:299; Sanford, (1990) *Physiol. Plant* 79:206; and Klein, et al., (1992) *Biotechnology* 10:268).

[0125] Another method for physical delivery of DNA to plants is sonication of target cells as described in Zang, et al., (1991) *BioTechnology* 9:996. Alternatively, liposome or spheroplast fusions have been used to introduce expression vectors into plants. See, e.g., Deshayes, et al., (1985) *EMBO J.* 4:2731; and Christou, et al., (1987) *Proc. Natl. Acad. Sci. USA* 84:3962. Direct uptake of DNA into protoplasts using CaCl, precipitation, polyvinyl alcohol, or poly-L-ornithine has also been reported. See, e.g., Hain, et al., (1985) *Mol. Gen. Genet.* 199:161; and Draper, et al., (1982) *Plant Cell Physiol.* 23:451.

[0126] Electroporation of protoplasts and whole cells and tissues has also been described. See, e.g., Donn, et al., (1990) in *Abstracts of the VIIth Int'l. Congress on Plant Cell and*

Tissue Culture IAPTC, A2-38, p. 53; D'Halluin, et al., (1992) *Plant Cell* 4:1495-505; and Spencer, et al., (1994) *Plant Mol. Biol.* 24:51-61.

Increasing the Activity and/or Level of an amt Polypeptide [0127] Methods are provided to increase the activity and/or level of the AMT polypeptide of the invention. An increase in the level and/or activity of the AMT polypeptide of the invention can be achieved by providing to the plant an amt polypeptide. The AMT polypeptide can be provided by introducing the amino acid sequence encoding the AMT polypeptide into the plant, introducing into the plant a nucleotide sequence encoding an amt polypeptide or alternatively by modifying a genomic locus encoding the AMT polypeptide of the invention.

[0128] As discussed elsewhere herein, many methods are known the art for providing a polypeptide to a plant including, but not limited to, direct introduction of the polypeptide into the plant, introducing into the plant (transiently or stably) a polynucleotide construct encoding a polypeptide having AMT transporter activity. It is also recognized that the methods of the invention may employ a polynucleotide that is not capable of directing, in the transformed plant, the expression of a protein or an RNA. Thus, the level and/or activity of an amt polypeptide may be increased by altering the gene encoding the AMT polypeptide or its promoter. See, e.g., Kmiec, U.S. Pat. No. 5,565,350; Zarling, et al., PCT/US93/03868. Therefore mutagenized plants that carry mutations in AMT genes, where the mutations increase expression of the AMT gene or increase the AMT transporter activity of the encoded AMT polypeptide are provided.

Reducing the Activity and/or Level of an amt Polypeptide [0129] Methods are provided to reduce or eliminate the activity of an amt polypeptide of the invention by transforming a plant cell with an expression cassette that expresses a polynucleotide that inhibits the expression of the AMT polypeptide. The polynucleotide may inhibit the expression of the AMT polypeptide directly, by preventing transcription or translation of the AMT messenger RNA, or indirectly, by encoding a polypeptide that inhibits the transcription or translation of an amt gene encoding an amt polypeptide. Methods for inhibiting or eliminating the expression of a gene in a plant are well known in the art, and any such method may be used in the present invention to inhibit the expression of an amt polypeptide.

[0130] In accordance with the present invention, the expression of an amt polypeptide is inhibited if the protein level of the AMT polypeptide is less than 70% of the protein level of the same AMT polypeptide in a plant that has not been genetically modified or mutagenized to inhibit the expression of that AMT polypeptide. In particular embodiments of the invention, the protein level of the AMT polypeptide in a modified plant according to the invention is less than 60%, less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5% or less than 2% of the protein level of the same AMT polypeptide in a plant that is not a mutant or that has not been genetically modified to inhibit the expression of that AMT polypeptide. The expression level of the AMT polypeptide may be measured directly, for example, by assaying for the level of AMT polypeptide expressed in the plant cell or plant, or indirectly, for example, by measuring the AMT transporter activity of the AMT polypeptide in the plant cell or plant, or by measuring the AMT in the plant. Methods for performing such assays are described elsewhere herein.

[0131] In other embodiments of the invention, the activity of the AMT polypeptides is reduced or eliminated by transforming a plant cell with an expression cassette comprising a polynucleotide encoding a polypeptide that inhibits the activity of an amt polypeptide. The AMT transporter activity of an amt polypeptide is inhibited according to the present invention if the AMT transporter activity of the AMT polypeptide is less than 70% of the AMT transporter activity of the same AMT polypeptide in a plant that has not been modified to inhibit the AMT transporter activity of that AMT polypeptide. In particular embodiments of the invention, the AMT transporter activity of the AMT polypeptide in a modified plant according to the invention is less than 60%, less than 50%, less than 40%, less than 30%, less than 20%, less than 10% or less than 5% of the AMT transporter activity of the same AMT polypeptide in a plant that that has not been modified to inhibit the expression of that AMT polypeptide. The AMT transporter activity of an amt polypeptide is "eliminated" according to the invention when it is not detectable by the assay methods described elsewhere herein. Methods of determining the AMT transporter activity of an amt polypeptide are described elsewhere herein.

[0132] In other embodiments, the activity of an amt polypeptide may be reduced or eliminated by disrupting the gene encoding the AMT polypeptide. The invention encompasses mutagenized plants that carry mutations in AMT genes, where the mutations reduce expression of the AMT gene or inhibit the AMT transporter activity of the encoded AMT polypeptide.

[0133] Thus, many methods may be used to reduce or eliminate the activity of an amt polypeptide. In addition, more than one method may be used to reduce the activity of a single AMT polypeptide. Non-limiting examples of methods of reducing or eliminating the expression of AMT polypeptides are given below.

[0134] 1. Polynucleotide-Based Methods:

[0135] In some embodiments of the present invention, a plant is transformed with an expression cassette that is capable of expressing a polynucleotide that inhibits the expression of an amt polypeptide of the invention. The term "expression" as used herein refers to the biosynthesis of a gene product, including the transcription and/or translation of said gene product. For example, for the purposes of the present invention, an expression cassette capable of expressing a polynucleotide that inhibits the expression of at least one AMT polypeptide is an expression cassette capable of producing an RNA molecule that inhibits the transcription and/or translation of at least one AMT polypeptide of the invention. The "expression" or "production" of a protein or polypeptide from a DNA molecule refers to the transcription and translation of the coding sequence to produce the protein or polypeptide, while the "expression" or "production" of a protein or polypeptide from an RNA molecule refers to the translation of the RNA coding sequence to produce the protein or polypeptide.

[0136] Examples of polynucleotides that inhibit the expression of an amt polypeptide are given below.

[0137] i. Sense Suppression/Cosuppression

[0138] In some embodiments of the invention, inhibition of the expression of an amt polypeptide may be obtained by sense suppression or cosuppression. For cosuppression, an expression cassette is designed to express an RNA molecule corresponding to all or part of a messenger RNA encoding an amt polypeptide in the "sense" orientation. Over expression of the RNA molecule can result in reduced expression of the native gene. Accordingly, multiple plant lines transformed with the cosuppression expression cassette are screened to identify those that show the greatest inhibition of AMT polypeptide expression.

[0139] The polynucleotide used for cosuppression may correspond to all or part of the sequence encoding the AMT polypeptide, all or part of the 5' and/or 3' untranslated region of an amt polypeptide transcript, or all or part of both the coding sequence and the untranslated regions of a transcript encoding an amt polypeptide. In some embodiments where the polynucleotide comprises all or part of the coding region for the AMT polypeptide, the expression cassette is designed to eliminate the start codon of the polynucleotide so that no protein product will be translated.

[0140] Cosuppression may be used to inhibit the expression of plant genes to produce plants having undetectable protein levels for the proteins encoded by these genes. See, for example, Broin, et al., (2002) Plant Cell 14:1417-1432. Cosuppression may also be used to inhibit the expression of multiple proteins in the same plant. See, for example, U.S. Pat. No. 5,942,657. Methods for using cosuppression to inhibit the expression of endogenous genes in plants are described in Flavell, et al., (1994) Proc. Natl. Acad. Sci. USA 91:3490-3496; Jorgensen, et al., (1996) Plant Mol. Biol. 31:957-973; Johansen and Carrington (2001) Plant Physiol. 126:930-938; Broin, et al., (2002) Plant Cell 14:1417-1432; Stoutjesdijk, et al., (2002) Plant Physiol. 129:1723-1731; Yu, et al., (2003) Phytochemistry 63:753-763; and U.S. Pat. Nos. 5,034,323, 5,283,184, and 5,942,657; each of which is herein incorporated by reference. The efficiency of cosuppression may be increased by including a poly-dT region in the expression cassette at a position 3' to the sense sequence and 5' of the polyadenylation signal. See, US Patent Application Publication Number 20020048814, herein incorporated by reference. Typically, such a nucleotide sequence has substantial sequence identity to the sequence of the transcript of the endogenous gene, optimally greater than about 65% sequence identity, more optimally greater than about 85% sequence identity, most optimally greater than about 95% sequence identity. See, U.S. Pat. Nos. 5,283,184 and 5,034, 323; herein incorporated by reference.

[0141] ii. Antisense Suppression

[0142] In some embodiments of the invention, inhibition of the expression of the AMT polypeptide may be obtained by antisense suppression. For antisense suppression, the expression cassette is designed to express an RNA molecule complementary to all or part of a messenger RNA encoding the AMT polypeptide. Over expression of the antisense RNA molecule can result in reduced expression of the native gene. Accordingly, multiple plant lines transformed with the antisense suppression expression cassette are screened to identify those that show the greatest inhibition of AMT polypeptide expression.

[0143] The polynucleotide for use in antisense suppression may correspond to all or part of the complement of the sequence encoding the AMT polypeptide, all or part of the complement of the 5' and/or 3' untranslated region of the AMT transcript, or all or part of the complement of both the coding sequence and the untranslated regions of a transcript encoding the AMT polypeptide. In addition, the antisense polynucleotide may be fully complementary (i.e., 100% identical to the complement of the target sequence) or partially complementary (i.e., less than 100% identical to the complement of the target sequence) to the target sequence. Antisense suppression may be used to inhibit the expression of multiple proteins in the same plant. See, for example, U.S. Pat. No. 5,942,657. Furthermore, portions of the antisense nucleotides may be used to disrupt the expression of the target gene. Generally, sequences of at least 50 nucleotides, 100 nucleotides, 200 nucleotides, 300, 400, 450, 500, 550 or greater may be used. Methods for using antisense suppression to inhibit the expression of endogenous genes in plants are described, for example, in Liu, et al., (2002) Plant Physiol. 129:1732-1743 and U.S. Pat. Nos. 5,759,829 and 5,942,657, each of which is herein incorporated by reference. Efficiency of antisense suppression may be increased by including a poly-dT region in the expression cassette at a position 3' to the antisense sequence and 5' of the polyadenylation signal. See, US Patent Application Publication Number 20020048814, herein incorporated by reference.

[0144] iii. Double-Stranded RNA Interference

[0145] In some embodiments of the invention, inhibition of the expression of an amt polypeptide may be obtained by double-stranded RNA (dsRNA) interference. For dsRNA interference, a sense RNA molecule like that described above for cosuppression and an antisense RNA molecule that is fully or partially complementary to the sense RNA molecule are expressed in the same cell, resulting in inhibition of the expression of the corresponding endogenous messenger RNA.

[0146] Expression of the sense and antisense molecules can be accomplished by designing the expression cassette to comprise both a sense sequence and an antisense sequence. Alternatively, separate expression cassettes may be used for the sense and antisense sequences. Multiple plant lines transformed with the dsRNA interference expression cassette or expression cassettes are then screened to identify plant lines that show the greatest inhibition of AMT polypeptide expression. Methods for using dsRNA interference to inhibit the expression of endogenous plant genes are described in Waterhouse, et al., (1998) Proc. Natl. Acad. Sci. USA 95:13959-13964, Liu, et al., (2002) Plant Physiol. 129:1732-1743, and WO 99/49029, WO 99/53050, WO 99/61631, and WO 00/49035; each of which is herein incorporated by reference. [0147] iv. Hairpin RNA Interference and Intron-Containing Hairpin RNA Interference

[0148] In some embodiments of the invention, inhibition of the expression of an amt polypeptide may be obtained by hairpin RNA (hpRNA) interference or intron-containing hairpin RNA (ihpRNA) interference. These methods are highly efficient at inhibiting the expression of endogenous genes. See, Waterhouse and Helliwell (2003) *Nat. Rev. Genet.* 4:29-38 and the references cited therein.

[0149] For hpRNA interference, the expression cassette is designed to express an RNA molecule that hybridizes with itself to form a hairpin structure that comprises a single-stranded loop region and a base-paired stem. The base-paired stem region comprises a sense sequence corresponding to all or part of the endogenous messenger RNA encoding the gene whose expression is to be inhibited, and an antisense sequence that is fully or partially complementary to the sense sequence. Alternatively, the base-paired stem region may correspond to a portion of a promoter sequence controlling expression of the gene to be inhibited. Thus, the base-paired stem region of the molecule generally determines the specificity of the RNA interference. hpRNA molecules are highly efficient at inhibiting the expression of endogenous genes,

and the RNA interference they induce is inherited by subsequent generations of plants. See, for example, Chuang and Meyerowitz (2000) Proc. Natl. Acad. Sci. USA 97:4985-4990; Stoutjesdijk, et al., (2002) Plant Physiol. 129:1723-1731; and Waterhouse and Helliwell (2003) Nat. Rev. Genet. 4:29-38. Methods for using hpRNA interference to inhibit or silence the expression of genes are described, for example, in Chuang and Meyerowitz (2000) Proc. Natl. Acad. Sci. USA 97:4985-4990; Stoutjesdijk, et al., (2002) Plant Physiol. 129: 1723-1731; Waterhouse and Helliwell (2003) Nat. Rev. Genet. 4:29-38; Pandolfini, et al., BMC Biotechnology 3:7, and US Patent Application Publication Number 20030175965; each of which is herein incorporated by reference. A transient assay for the efficiency of hpRNA constructs to silence gene expression in vivo has been described by Panstruga, et al., (2003) Mol. Biol. Rep. 30:135-140, herein incorporated by reference.

[0150] For ihpRNA, the interfering molecules have the same general structure as for hpRNA, but the RNA molecule additionally comprises an intron that is capable of being spliced in the cell in which the ihpRNA is expressed. The use of an intron minimizes the size of the loop in the hairpin RNA molecule following splicing, and this increases the efficiency of interference. See, for example, Smith, et al., (2000) Nature 407:319-320. In fact, Smith, et al., show 100% suppression of endogenous gene expression using ihpRNA-mediated interference. Methods for using ihpRNA interference to inhibit the expression of endogenous plant genes are described, for example, in Smith, et al., (2000) Nature 407:319-320; Wesley, et al., (2001) Plant J. 27:581-590; Wang and Waterhouse (2001) Curr. Opin. Plant Biol. 5:146-150; Waterhouse and Helliwell (2003) Nat. Rev. Genet. 4:29-38; Helliwell and Waterhouse (2003) Methods 30:289-295, and US Patent Application Publication Number 20030180945, each of which is herein incorporated by reference.

[0151] The expression cassette for hpRNA interference may also be designed such that the sense sequence and the antisense sequence do not correspond to an endogenous RNA. In this embodiment, the sense and antisense sequence flank a loop sequence that comprises a nucleotide sequence corresponding to all or part of the endogenous messenger RNA of the target gene. Thus, it is the loop region that determines the specificity of the RNA interference. See, for example, WO 02/00904, Mette, et al., (2000) *EMBO J.* 19:5194-5201; Matzke, et al., (2001) *Curr. Opin. Genet. Devel.* 11:221-227; Scheid, et al., (2002) *Proc. Natl. Acad. Sci.*, USA 99:13659-13662; Aufsaftz, et al., (2002) *Proc. Nat'l. Acad. Sci.* 99(4):16499-16506; Sijen, et al., *Curr. Biol.* (2001) 11:436-440), herein incorporated by reference.

[0152] v. Amplicon-Mediated Interference

[0153] Amplicon expression cassettes comprise a plant virus-derived sequence that contains all or part of the target gene but generally not all of the genes of the native virus. The viral sequences present in the transcription product of the expression cassette allow the transcription product to direct its own replication. The transcripts produced by the amplicon may be either sense or antisense relative to the target sequence (i.e., the messenger RNA for the AMT polypeptide). Methods of using amplicons to inhibit the expression of endogenous plant genes are described, for example, in Angell and Baulcombe (1997) *EMBO J.* 16:3675-3684, Angell and Baulcombe (1999) *Plant J.* 20:357-362, and U.S. Pat. No. 6,646, 805, each of which is herein incorporated by reference.

[0154] vi. Ribozymes

[0155] In some embodiments, the polynucleotide expressed by the expression cassette of the invention is catalytic RNA or has ribozyme activity specific for the messenger RNA of the AMT polypeptide. Thus, the polynucleotide causes the degradation of the endogenous messenger RNA, resulting in reduced expression of the AMT polypeptide. This method is described, for example, in U.S. Pat. No. 4,987,071, herein incorporated by reference.

[0156] vii. Small Interfering RNA or Micro RNA

[0157] In some embodiments of the invention, inhibition of the expression of an amt polypeptide may be obtained by RNA interference by expression of a gene encoding a micro RNA (miRNA). miRNAs are regulatory agents consisting of about 22 ribonucleotides. miRNA are highly efficient at inhibiting the expression of endogenous genes. See, for example, Javier, et al., (2003) *Nature* 425:257-263, herein incorporated by reference.

[0158] For miRNA interference, the expression cassette is designed to express an RNA molecule that is modeled on an endogenous miRNA gene. The miRNA gene encodes an RNA that forms a hairpin structure containing a 22-nucleotide sequence that is complementary to another endogenous gene (target sequence). For suppression of AMT expression, the 22-nucleotide sequence is selected from an amt transcript sequence and contains 22 nucleotides of said AMT sequence in sense orientation and 21 nucleotides of a corresponding antisense sequence that is complementary to the sense sequence. miRNA molecules are highly efficient at inhibiting the expression of endogenous genes, and the RNA interference they induce is inherited by subsequent generations of plants.

[0159] 2. Polypeptide-Based Inhibition of Gene Expression

[0160] In one embodiment, the polynucleotide encodes a zinc finger protein that binds to a gene encoding an amt polypeptide, resulting in reduced expression of the gene. In particular embodiments, the zinc finger protein binds to a regulatory region of an amt gene. In other embodiments, the zinc finger protein binds to a messenger RNA encoding an amt polypeptide and prevents its translation. Methods of selecting sites for targeting by zinc finger proteins have been described, for example, in U.S. Pat. No. 6,453,242, and methods for using zinc finger proteins to inhibit the expression of genes in plants are described, for example, in US Patent Application Publication Number 20030037355; each of which is herein incorporated by reference.

[0161] 3. Polypeptide-Based Inhibition of Protein Activity **[0162]** In some embodiments of the invention, the polynucleotide encodes an antibody that binds to at least one AMT polypeptide, and reduces the AMT transporter activity of the AMT polypeptide. In another embodiment, the binding of the antibody results in increased turnover of the antibody-AMT complex by cellular quality control mechanisms. The expression of antibodies in plant cells and the inhibition of molecular pathways by expression and binding of antibodies to proteins in plant cells are well known in the art. See, for example, Conrad and Sonnewald (2003) *Nature Biotech.* 21:35-36, incorporated herein by reference.

[0163] 4. Gene Disruption

[0164] In some embodiments of the present invention, the activity of an amt polypeptide is reduced or eliminated by disrupting the gene encoding the AMT polypeptide. The gene encoding the AMT polypeptide may be disrupted by any

method known in the art. For example, in one embodiment, the gene is disrupted by transposon tagging. In another embodiment, the gene is disrupted by mutagenizing plants using random or targeted mutagenesis, and selecting for plants that have reduced AMT transporter activity.

[0165] i. Transposon Tagging

[0166] In one embodiment of the invention, transposon tagging is used to reduce or eliminate the AMT activity of one or more AMT polypeptide. Transposon tagging comprises inserting a transposon within an endogenous AMT gene to reduce or eliminate expression of the AMT polypeptide. "AMT gene" is intended to mean the gene that encodes an amt polypeptide according to the invention.

[0167] In this embodiment, the expression of one or more AMT polypeptide is reduced or eliminated by inserting a transposon within a regulatory region or coding region of the gene encoding the AMT polypeptide. A transposon that is within an exon, intron, 5' or 3' untranslated sequence, a promoter, or any other regulatory sequence of an amt gene may be used to reduce or eliminate the expression and/or activity of the encoded AMT polypeptide.

[0168] Methods for the transposon tagging of specific genes in plants are well known in the art. See, for example, Maes, et al., (1999) *Trends Plant Sci.* 4:90-96; Dharmapuri and Sonti (1999) *FEMS Microbiol. Lett.* 179:53-59; Meissner, et al., (2000) *Plant J.* 22:265-274; Phogat, et al., (2000) *J. Biosci.* 25:57-63; Walbot (2000) *Curr. Opin. Plant Biol.* 2:103-107; Gai, et al., (2000) *Nucleic Acids Res.* 28:94-96; Fitzmaurice, et al., (1999) *Genetics* 153:1919-1928). In addition, the TUSC process for selecting Mu insertions in selected genes has been described in Bensen, et al., (1995) *Plant Cell* 7:75-84; Mena, et al., (1996) *Science* 274:1537-1540; and U.S. Pat. No. 5,962,764; each of which is herein incorporated by reference.

[0169] ii. Mutant Plants with Reduced Activity

[0170] Additional methods for decreasing or eliminating the expression of endogenous genes in plants are also known in the art and can be similarly applied to the instant invention. These methods include other forms of mutagenesis, such as ethyl methanesulfonate-induced mutagenesis, deletion mutagenesis, and fast neutron deletion mutagenesis used in a reverse genetics sense (with PCR) to identify plant lines in which the endogenous gene has been deleted. For examples of these methods see, Ohshima, et al., (1998) Virology 243: 472-481; Okubara, et al., (1994) Genetics 137:867-874; and Quesada, et al., (2000) Genetics 154:421-436; each of which is herein incorporated by reference. In addition, a fast and automatable method for screening for chemically induced mutations, TILLING (Targeting Induced Local Lesions In Genomes), using denaturing HPLC or selective endonuclease digestion of selected PCR products is also applicable to the instant invention. See, McCallum, et al., (2000) Nat. Biotechnol. 18:455-457, herein incorporated by reference.

[0171] Mutations that impact gene expression or that interfere with the function (AMT transporter activity) of the encoded protein are well known in the art. Insertional mutations in gene exons usually result in null-mutants. Mutations in conserved residues are particularly effective in inhibiting the AMT transporter activity of the encoded protein. Conserved residues of plant AMT polypeptides suitable for mutagenesis with the goal to eliminate AMT transporter activity have been described. Such mutants can be isolated according to well-known procedures, and mutations in different AMT loci can be stacked by genetic crossing. See, for example, Gruis, et al., (2002) *Plant Cell* 14:2863-2882.

[0172] In another embodiment of this invention, dominant mutants can be used to trigger RNA silencing due to gene inversion and recombination of a duplicated gene locus. See, for example, Kusaba, et al., (2003) Plant Cell 15:1455-1467. [0173] The invention encompasses additional methods for reducing or eliminating the activity of one or more AMT polypeptide. Examples of other methods for altering or mutating a genomic nucleotide sequence in a plant are known in the art and include, but are not limited to, the use of RNA:DNA vectors, RNA:DNA mutational vectors, RNA: DNA repair vectors, mixed-duplex oligonucleotides, selfcomplementary RNA:DNA oligonucleotides, and recombinogenic oligonucleobases. Such vectors and methods of use are known in the art. See, for example, U.S. Pat. Nos. 5,565, 350; 5,731,181; 5,756,325; 5,760,012; 5,795,972; and 5,871, 984; each of which are herein incorporated by reference. See also, WO 98/49350, WO 99/07865, WO 99/25821, and Beetham, et al., (1999) Proc. Natl. Acad. Sci. USA 96:8774-8778; each of which is herein incorporated by reference.

[0174] iii. Modulating AMT Transporter Activity

[0175] In specific methods, the level and/or activity of an amt regulator in a plant is decreased by increasing the level or activity of the AMT polypeptide in the plant. Methods for increasing the level and/or activity of AMT polypeptides in a plant are discussed elsewhere herein. Briefly, such methods comprise providing an amt polypeptide of the invention to a plant and thereby increasing the level and/or activity of the AMT polypeptide. In other embodiments, an amt nucleotide sequence encoding an amt polypeptide can be provided by introducing into the plant a polynucleotide comprising an amt nucleotide sequence of the invention, expressing the AMT sequence, increasing the activity of the AMT polypeptide, and thereby decreasing the ammonium uptake or transport in the plant or plant part. In other embodiments, the AMT nucleotide construct introduced into the plant is stably incorporated into the genome of the plant.

[0176] As discussed above, one of skill will recognize the appropriate promoter to use to modulate the level/activity of an amt transporter in the plant. Exemplary promoters for this embodiment have been disclosed elsewhere herein.

[0177] Accordingly, the present invention further provides plants having a modified number of cells when compared to the number of cells of a control plant tissue. In one embodiment, the plant of the invention has an increased level/activity of the AMT polypeptide of the invention and thus has an increased Ammonium transport in the plant tissue. In other embodiments, the plant of the invention has a reduced or eliminated level of the AMT polypeptide of the invention and thus has an increased NUE in the plant tissue. In other embodiments, such plants have stably incorporated into their genome a nucleic acid molecule comprising an amt nucleotide sequence of the invention operably linked to a promoter that drives expression in the plant cell.

[0178] iv. Modulating Root Development

[0179] Methods for modulating root development in a plant are provided. By "modulating root development" is intended any alteration in the development of the plant root when compared to a control plant. Such alterations in root development include, but are not limited to, alterations in the growth rate of the primary root, the fresh root weight, the extent of lateral and adventitious root formation, the vasculature system, meristem development, or radial expansion. **[0180]** Methods for modulating root development in a plant are provided. The methods comprise modulating the level and/or activity of the AMT polypeptide in the plant. In one method, an amt sequence of the invention is provided to the plant. In another method, the AMT nucleotide sequence is provided by introducing into the plant a polynucleotide comprising an amt nucleotide sequence of the invention, expressing the AMT sequence, and thereby modifying root development. In still other methods, the AMT nucleotide construct introduced into the plant is stably incorporated into the genome of the plant.

[0181] In other methods, root development is modulated by altering the level or activity of the AMT polypeptide in the plant. A decrease in AMT activity can result in at least one or more of the following alterations to root development, including, but not limited to, larger root meristems, increased in root growth, enhanced radial expansion, an enhanced vasculature system, increased root branching, more adventitious roots, and/or an increase in fresh root weight when compared to a control plant.

[0182] As used herein, "root growth" encompasses all aspects of growth of the different parts that make up the root system at different stages of its development in both mono-cotyledonous and dicotyledonous plants. It is to be understood that enhanced root growth can result from enhanced growth of one or more of its parts including the primary root, lateral roots, adventitious roots, etc.

[0183] Methods of measuring such developmental alterations in the root system are known in the art. See, for example, US Patent Application Publication Number 2003/ 0074698 and Werner, et al., (2001) *PNAS* 18:10487-10492, both of which are herein incorporated by reference.

[0184] As discussed above, one of skill will recognize the appropriate promoter to use to modulate root development in the plant. Exemplary promoters for this embodiment include constitutive promoters and root-preferred promoters. Exemplary root-preferred promoters have been disclosed elsewhere herein.

[0185] Stimulating root growth and increasing root mass by decreasing the activity and/or level of the AMT polypeptide also finds use in improving the standability of a plant. The term "resistance to lodging" or "standability" refers to the ability of a plant to fix itself to the soil. For plants with an erect or semi-erect growth habit, this term also refers to the ability to maintain an upright position under adverse (environmental) conditions. This trait relates to the size, depth and morphology of the root system. In addition, stimulating root growth and increasing root mass by decreasing the level and/ or activity of the AMT polypeptide also finds use in promoting in vitro propagation of explants.

[0186] Furthermore, higher root biomass production due to an decreased level and/or activity of AMT activity has a direct effect on the yield and an indirect effect of production of compounds produced by root cells or transgenic root cells or cell cultures of said transgenic root cells. One example of an interesting compound produced in root cultures is shikonin, the yield of which can be advantageously enhanced by said methods.

[0187] Accordingly, the present invention further provides plants having modulated root development when compared to the root development of a control plant. In some embodiments, the plant of the invention has an increased level/activity of the AMT polypeptide of the invention and has enhanced root growth and/or root biomass. In other embodiments, such

plants have stably incorporated into their genome a nucleic acid molecule comprising an amt nucleotide sequence of the invention operably linked to a promoter that drives expression in the plant cell.

[0188] v. Modulating Shoot and Leaf Development

[0189] Methods are also provided for modulating shoot and leaf development in a plant. By "modulating shoot and/or leaf development" is intended any alteration in the development of the plant shoot and/or leaf. Such alterations in shoot and/or leaf development include, but are not limited to, alterations in shoot meristem development, in leaf number, leaf size, leaf and stem vasculature, internode length, and leaf senescence. As used herein, "leaf development" and "shoot development" encompasses all aspects of growth of the different parts that make up the leaf system and the shoot system, respectively, at different stages of their development, both in monocotyledonous and dicotyledonous plants. Methods for measuring such developmental alterations in the shoot and leaf system are known in the art. See, for example, Werner, et al., (2001) PNAS 98:10487-10492 and US Patent Application Publication Number 2003/0074698, each of which is herein incorporated by reference.

[0190] The method for modulating shoot and/or leaf development in a plant comprises modulating the activity and/or level of an AMT polypeptide of the invention. In one embodiment, an amt sequence of the invention is provided. In other embodiments, the AMT nucleotide sequence can be provided by introducing into the plant a polynucleotide comprising an amt nucleotide sequence of the invention, expressing the AMT sequence, and thereby modifying shoot and/or leaf development. In other embodiments, the AMT nucleotide construct introduced into the plant is stably incorporated into the genome of the plant.

[0191] In specific embodiments, shoot or leaf development is modulated by increasing the level and/or activity of the AMT polypeptide in the plant. An increase in AMT activity can result in at least one or more of the following alterations in shoot and/or leaf development, including, but not limited to, reduced leaf number, reduced leaf surface, reduced vascular, shorter internodes and stunted growth, and retarded leaf senescence, when compared to a control plant.

[0192] As discussed above, one of skill will recognize the appropriate promoter to use to modulate shoot and leaf development of the plant. Exemplary promoters for this embodiment include constitutive promoters, shoot-preferred promoters, shoot meristem-preferred promoters, and leaf-preferred promoters. Exemplary promoters have been disclosed elsewhere herein.

[0193] Increasing AMT activity and/or level in a plant results in shorter internodes and stunted growth. Thus, the methods of the invention find use in producing dwarf plants. In addition, as discussed above, modulation AMT activity in the plant modulates both root and shoot growth. Thus, the present invention further provides methods for altering the root/shoot ratio. Shoot or leaf development can further be modulated by decreasing the level and/or activity of the AMT polypeptide in the plant.

[0194] Accordingly, the present invention further provides plants having modulated shoot and/or leaf development when compared to a control plant. In some embodiments, the plant of the invention has an increased level/activity of the AMT polypeptide of the invention. In other embodiments, the plant of the invention has a decreased level/activity of the AMT polypeptide of the invention.

[0195] vi Modulating Reproductive Tissue Development [0196] Methods for modulating reproductive tissue development are provided. In one embodiment, methods are provided to modulate floral development in a plant. By "modulating floral development" is intended any alteration in a structure of a plant's reproductive tissue as compared to a control plant in which the activity or level of the AMT polypeptide has not been modulated. "Modulating floral development" further includes any alteration in the timing of the development of a plant's reproductive tissue (i.e., a delayed or a accelerated timing of floral development) when compared to a control plant in which the activity or level of the AMT polypeptide has not been modulated. Macroscopic alterations may include changes in size, shape, number, or location of reproductive organs, the developmental time period that these structures form, or the ability to maintain or proceed through the flowering process in times of environmental stress. Microscopic alterations may include changes to the types or shapes of cells that make up the reproductive organs.

[0197] The method for modulating floral development in a plant comprises modulating AMT activity in a plant. In one method, an AMT sequence of the invention is provided. AN AMT nucleotide sequence can be provided by introducing into the plant a polynucleotide comprising an amt nucleotide sequence of the invention, expressing the AMT sequence, and thereby modifying floral development. In other embodiments, the AMT nucleotide construct introduced into the plant is stably incorporated into the genome of the plant.

[0198] In specific methods, floral development is modulated by increasing the level or activity of the AMT polypeptide in the plant. An increase in AMT activity can result in at least one or more of the following alterations in floral development, including, but not limited to, retarded flowering, reduced number of flowers, partial male sterility, and reduced seed set, when compared to a control plant. Inducing delayed flowering or inhibiting flowering can be used to enhance yield in forage crops such as alfalfa. Methods for measuring such developmental alterations in floral development are known in the art. See, for example, Mouradov, et al., (2002) *The Plant Cell S*11-S130, herein incorporated by reference.

[0199] As discussed above, one of skill will recognize the appropriate promoter to use to modulate floral development of the plant. Exemplary promoters for this embodiment include constitutive promoters, inducible promoters, shootpreferred promoters, and inflorescence-preferred promoters. [0200] In other methods, floral development is modulated by decreasing the level and/or activity of the AMT sequence of the invention. Such methods can comprise introducing an amt nucleotide sequence into the plant and decreasing the activity of the AMT polypeptide. In other methods, the AMT nucleotide construct introduced into the plant is stably incorporated into the genome of the plant. Decreasing expression of the AMT sequence of the invention can modulate floral development during periods of stress. Such methods are described elsewhere herein. Accordingly, the present invention further provides plants having modulated floral development when compared to the floral development of a control plant. Compositions include plants having a decreased level/ activity of the AMT polypeptide of the invention and having an altered floral development. Compositions also include plants having a decreased level/activity of the AMT polypeptide of the invention wherein the plant maintains or proceeds through the flowering process in times of stress.

[0201] Methods are also provided for the use of the AMT sequences of the invention to increase nitrogen use efficiency. The method comprises decreasing or increasing the activity of the AMT sequences in a plant or plant part, such as the roots, shoot, epidermal cells, etc.

[0202] As discussed above, one of skill will recognize the appropriate promoter to use to manipulate the expression of AMTs. Exemplary promoters of this embodiment include constitutive promoters, inducible promoters, and root or shoot or leaf preferred promoters.

[0203] vii. Method of Use for AMT Promoter Polynucleotides

[0204] The polynucleotides comprising the AMT promoters disclosed in the present invention, as well as variants and fragments thereof, are useful in the genetic manipulation of any host cell, preferably plant cell, when assembled with a DNA construct such that the promoter sequence is operably linked to a nucleotide sequence comprising a polynucleotide of interest. In this manner, the AMT promoter polynucleotides of the invention are provided in expression cassettes along with a polynucleotide sequence of interest for expression in the host cell of interest. As discussed in Example XX below, the AMT promoter sequences of the invention are expressed in a variety of tissues and thus the promoter sequences can find use in regulating the temporal and/or the spatial expression of polynucleotides of interest.

[0205] Synthetic hybrid promoter regions are known in the art. Such regions comprise upstream promoter elements of one polynucleotide operably linked to the promoter element of another polynucleotide. In an embodiment of the invention, heterologous sequence expression is controlled by a synthetic hybrid promoter comprising the AMT promoter sequences of the invention, or a variant or fragment thereof, operably linked to upstream promoter element(s) from a heterologous promoter. Upstream promoter elements that are involved in the plant defense system have been identified and may be used to generate a synthetic promoter. See, for example, Rushton, et al., (1998) *Curr. Opin. Plant Biol.* 1:311-315. Alternatively, a synthetic AMT promoter sequence may comprise duplications of the upstream promoter elements found within the AMT promoter sequences.

[0206] It is recognized that the promoter sequence of the invention may be used with its native AMT coding sequences. A DNA construct comprising the AMT promoter operably linked with its native AMT gene may be used to transform any plant of interest to bring about a desired phenotypic change, such as, modulating root, shoot, leaf, floral, and embryo development, stress tolerance, and any other phenotype described elsewhere herein.

[0207] The promoter nucleotide sequences and methods disclosed herein are useful in regulating expression of any heterologous nucleotide sequence in a host plant in order to vary the phenotype of a plant. Various changes in phenotype are of interest including modifying the fatty acid composition in a plant, altering the amino acid content of a plant, altering a plant's pathogen defense mechanism, and the like. These results can be achieved by providing expression of heterologous products or increased expression of endogenous products in plants. Alternatively, the results can be achieved by providing for a reduction of expression of one or more endogenous products, particularly enzymes or cofactors in the plant. These changes result in a change in phenotype of the transformed plant.

[0208] Genes of interest are reflective of the commercial markets and interests of those involved in the development of the crop. Crops and markets of interest change, and as developing nations open up world markets, new crops and technologies will emerge also. In addition, as our understanding of agronomic traits and characteristics such as yield and heterosis increase, the choice of genes for transformation will change accordingly. General categories of genes of interest include, for example, those genes involved in information, such as zinc fingers, those involved in communication, such as kinases, and those involved in housekeeping, such as heat shock proteins. More specific categories of transgenes, for example, include genes encoding important traits for agronomics, insect resistance, disease resistance, herbicide resistance, sterility, grain characteristics, and commercial products. Genes of interest include, generally, those involved in oil, starch, carbohydrate, or nutrient metabolism as well as those affecting kernel size, sucrose loading, and the like.

[0209] In certain embodiments the nucleic acid sequences of the present invention can be used in combination ("stacked") with other polynucleotide sequences of interest in order to create plants with a desired phenotype. The combinations generated can include multiple copies of any one or more of the polynucleotides of interest. The polynucleotides of the present invention may be stacked with any gene or combination of genes to produce plants with a variety of desired trait combinations, including but not limited to traits desirable for animal feed such as high oil genes (e.g., U.S. Pat. No. 6,232,529); balanced amino acids (e.g., hordothionins (U.S. Pat. Nos. 5,990,389; 5,885,801; 5,885,802; and 5,703, 409); barley high lysine (Williamson, et al., (1987) Eur. J. Biochem. 165:99-106; and WO 98/20122); and high methionine proteins (Pedersen, et al., (1986) J. Biol. Chem. 261:6279; Kirihara, et al., (1988) Gene 71:359; and Musumura, et al., (1989) Plant Mol. Biol. 12: 123)); increased digestibility (e.g., modified storage proteins (U.S. patent application Ser. No. 10/053,410, filed Nov. 7, 2001); and thioredoxins (U.S. patent application Ser. No. 10/005,429, filed Dec. 3, 2001)), the disclosures of which are herein incorporated by reference. The polynucleotides of the present invention can also be stacked with traits desirable for insect, disease or herbicide resistance (e.g., Bacillus thuringiensis toxic proteins (U.S. Pat. Nos. 5,366,892; 5,747,450; 5,737,514; 5,723,756; 5,593, 881; Geiser, et al., (1986) Gene 48:109); lectins (Van Damme, et al., (1994) Plant Mol. Biol. 24:825); fumonisin detoxification genes (U.S. Pat. No. 5,792,931); avirulence and disease resistance genes (Jones, et al., (1994) Science 266:789; Martin, et al., (1993) Science 262:1432; Mindrinos, et al., (1994) Cell 78:1089); acetolactate synthase (ALS) mutants that lead to herbicide resistance such as the S4 and/or Hra mutations; inhibitors of glutamine synthase such as phosphinothricin or basta (e.g., bar gene); and glyphosate resistance (EPSPS gene)); and traits desirable for processing or process products such as high oil (e.g., U.S. Pat. No. 6,232,529); modified oils (e.g., fatty acid desaturase genes (U.S. Pat. No. 5,952,544; WO 94/11516)); modified starches (e.g., ADPG pyrophosphorylases (AGPase), starch synthases (SS), starch branching enzymes (SBE) and starch debranching enzymes (SDBE)); and polymers or bioplastics (e.g., U.S. Pat. No. 5,602,321; beta-ketothiolase, polyhydroxybutyrate synthase, and acetoacetyl-CoA reductase (Schubert, et al., (1988) J. Bacteriol. 170:5837-5847) facilitate expression of polyhydroxyalkanoates (PHAs)), the disclosures of which are herein incorporated by reference. One could also combine the

polynucleotides of the present invention with polynucleotides affecting agronomic traits such as male sterility (e.g., see, U.S. Pat. No. 5,583,210), stalk strength, flowering time, or transformation technology traits such as cell cycle regulation or gene targeting (e.g., WO 99/61619; WO 00/17364; WO 99/25821), the disclosures of which are herein incorporated by reference.

[0210] In one embodiment, sequences of interest improve plant growth and/or crop yields. For example, sequences of interest include agronomically important genes that result in improved primary or lateral root systems. Such genes include, but are not limited to, nutrient/water transporters and growth induces. Examples of such genes, include but are not limited to, maize plasma membrane H+-ATPase (MHA2) (Frias, et al., (1996) Plant Cell 8:1533-44); AKT1, a component of the potassium uptake apparatus in Arabidopsis, (Spalding, et al., (1999) J Gen Physiol 113:909-18); RML genes which activate cell division cycle in the root apical cells (Cheng, et al., (1995) Plant Physiol 108:881); maize glutamine synthetase genes (Sukanya, et al., (1994) Plant Mol Biol 26:1935-46) and hemoglobin (Duff, et al., (1997) J. Biol. Chem. 27:16749-16752, Arredondo-Peter, et al., (1997) Plant Physiol. 115: 1259-1266; Arredondo-Peter, et al., (1997) Plant Physiol 114:493-500 and references sited therein). The sequence of interest may also be useful in expressing antisense nucleotide sequences of genes that that negatively affects root development.

[0211] Additional, agronomically important traits such as oil, starch, and protein content can be genetically altered in addition to using traditional breeding methods. Modifications include increasing content of oleic acid, saturated and unsaturated oils, increasing levels of lysine and sulfur, providing essential amino acids, and also modification of starch. Hordothionin protein modifications are described in U.S. Pat. Nos. 5,703,049, 5,885,801, 5,885,802, and 5,990,389, herein incorporated by reference. Another example is lysine and/or sulfur rich seed protein encoded by the soybean 2S albumin described in U.S. Pat. No. 5,850,016, and the chymotrypsin inhibitor from barley, described in Williamson, et al., (1987) *Eur. J. Biochem.* 165:99-106, the disclosures of which are herein incorporated by reference.

[0212] Derivatives of the coding sequences can be made by site-directed mutagenesis to increase the level of preselected amino acids in the encoded polypeptide. For example, the gene encoding the barley high lysine polypeptide (BHL) is derived from barley chymotrypsin inhibitor, U.S. patent application Ser. No. 08/740,682, filed Nov. 1, 1996, and WO 98/20133, the disclosures of which are herein incorporated by reference. Other proteins include methionine-rich plant proteins such as from sunflower seed (Lilley, et al., (1989) Proceedings of the World Congress on Vegetable Protein Utilization in Human Foods and Animal Feedstuffs, ed. Applewhite (American Oil Chemists Society, Champaign, Ill.), pp. 497-502; herein incorporated by reference); corn (Pedersen, et al., (1986) J. Biol. Chem. 261:6279; Kirihara, et al., (1988) Gene 71:359; both of which are herein incorporated by reference); and rice (Musumura, et al., (1989) Plant Mol. Biol. 12:123, herein incorporated by reference). Other agronomically important genes encode latex, Floury 2, growth factors, seed storage factors, and transcription factors.

[0213] Insect resistance genes may encode resistance to pests that have great yield drag such as rootworm, cutworm, European Corn Borer, and the like. Such genes include, for example, *Bacillus thuringiensis* toxic protein genes (U.S. Pat.

Nos. 5,366,892; 5,747,450; 5,736,514; 5,723,756; 5,593,881; and Geiser, et al., (1986) *Gene* 48:109); and the like.

[0214] Genes encoding disease resistance traits include detoxification genes, such as against fumonosin (U.S. Pat. No. 5,792,931); avirulence (avr) and disease resistance (R) genes (Jones, et al., (1994) *Science* 266:789; Martin, et al., (1993) *Science* 262:1432; and Mindrinos, et al., (1994) *Cell* 78:1089); and the like.

[0215] Herbicide resistance traits may include genes coding for resistance to herbicides that act to inhibit the action of acetolactate synthase (ALS), in particular the sulfonylureatype herbicides (e.g., the acetolactate synthase (ALS) gene containing mutations leading to such resistance, in particular the S4 and/or Hra mutations), genes coding for resistance to herbicides that act to inhibit action of glutamine synthase, such as phosphinothricin or basta (e.g., the bar gene), or other such genes known in the art. The bar gene encodes resistance to the herbicide basta, the nptII gene encodes resistance to the antibiotics kanamycin and geneticin, and the ALS-gene mutants encode resistance to the herbicide chlorsulfuron.

[0216] Sterility genes can also be encoded in an expression cassette and provide an alternative to physical detasseling. Examples of genes used in such ways include male tissue-preferred genes and genes with male sterility phenotypes such as QM, described in U.S. Pat. No. 5,583,210. Other genes include kinases and those encoding compounds toxic to either male or female gametophytic development.

[0217] The quality of grain is reflected in traits such as levels and types of oils, saturated and unsaturated, quality and quantity of essential amino acids, and levels of cellulose. In corn, modified hordothionin proteins are described in U.S. Pat. Nos. 5,703,049, 5,885,801, 5,885,802 and 5,990,389.

[0218] Commercial traits can also be encoded on a gene or genes that could increase for example, starch for ethanol production, or provide expression of proteins. Another important commercial use of transformed plants is the production of polymers and bioplastics such as described in U.S. Pat. No. 5,602,321. Genes such as β -Ketothiolase, PHBase (polyhydroxyburyrate synthase), and acetoacetyl-CoA reductase (see, Schubert, et al., (1988) *J. Bacteriol.* 170:5837-5847) facilitate expression of polyhyroxyalkanoates (PHAs).

[0219] Exogenous products include plant enzymes and products as well as those from other sources including procaryotes and other eukaryotes. Such products include enzymes, cofactors, hormones, and the like. The level of proteins, particularly modified proteins having improved amino acid distribution to improve the nutrient value of the plant, can be increased. This is achieved by the expression of such proteins having enhanced amino acid content.

[0220] This invention can be better understood by reference to the following non-limiting examples. It will be appreciated by those skilled in the art that other embodiments of the invention may be practiced without departing from the spirit and the scope of the invention as herein disclosed and claimed.

EXAMPLES

Example 1

Isolation of AMT Sequences

[0221] A routine for identifying all members of a given species' ammonium transporter (AMT) gene family was employed. First, a diverse set of all the known available members of the gene family as protein sequences was pre-

pared from public and proprietary sources. This data could include orthologous sequences from other species besides these four. Then, as in the example of maize, these protein query sequences were BLAST algorithm searched against a combination of proprietary and public maize, genomic or transcript, nucleotide sequence datasets, and a non-redundant set of candidate AMTs or 'hits' was identified. These sequences were combined with any existing maize gene family sequences, and then curated and edited to arrive at a new working set of unique maize AMT gene or transcript sequences and their translations. This search for gene family members was repeated. If there were recovered new sequences whose nucleotide sequences were unique (not same-gene matches), the process repeated until completion, that is until no new and distinct nucleotide sequences were found. In this way it was determined that the maize AMT family of genes consisted of at least seven members. Eleven distinct soybean sequences were found. Without the complete genome sequences of maize or soybean available, researchers were less certain of the exact gene family size, than they were for Arabidopsis (6 members) and rice (17 members). The availability of complete genome sequences for Arabidopsis and rice simplified the search, aided also by availability of fairly mature gene models and annotations for these species.

Example 2

Transformation and Regeneration of Transgenic Plants

[0222] Immature maize embryos from greenhouse donor plants are bombarded with a plasmid containing the AMT sequence operably linked to the drought-inducible promoter RAB17 promoter (Vilardell, et al., (1990) *Plant Mol Biol* 14:423-432) and the selectable marker gene PAT, which confers resistance to the herbicide Bialaphos. Alternatively, the selectable marker gene is provided on a separate plasmid. Transformation is performed as follows. Media recipes follow below.

[0223] Preparation of Target Tissue:

[0224] The ears are husked and surface sterilized in 30% Clorox bleach plus 0.5% Micro detergent for 20 minutes, and rinsed two times with sterile water. The immature embryos are excised and placed embryo axis side down (scutellum side up), 25 embryos per plate, on 560Y medium for 4 hours and then aligned within the 2.5-cm target zone in preparation for bombardment.

[0225] Preparation of DNA:

[0226] A plasmid vector comprising the AMT sequence operably linked to an ubiquitin promoter is made. This plasmid DNA plus plasmid DNA containing a PAT selectable marker is precipitated onto 1.1 μ m (average diameter) tungsten pellets using a CaCl₂ precipitation procedure as follows:

[0227] 100 µl prepared tungsten particles in water

[0228] 10 μ l (1 μ g) DNA in Tris EDTA buffer (1 μ g total DNA)

[0229] 100 µl 2.5 M CaCl₂

[0230] 10 µl 0.1 M spermidine

[0231] Each reagent is added sequentially to the tungsten particle suspension, while maintained on the multitube vortexer. The final mixture is sonicated briefly and allowed to incubate under constant vortexing for 10 minutes. After the precipitation period, the tubes are centrifuged briefly, liquid removed, washed with 500 ml 100% ethanol, and centrifuged for 30 seconds. Again the liquid is removed, and 105 μ l 100%

ethanol is added to the final tungsten particle pellet. For particle gun bombardment, the tungsten/DNA particles are briefly sonicated and 10 μ l spotted onto the center of each macrocarrier and allowed to dry about 2 minutes before bombardment.

[0232] Particle Gun Treatment:

[0233] The sample plates are bombarded at level #4 in particle gun #HE34-1 or #HE34-2. All samples receive a single shot at 650 PSI, with a total of ten aliquots taken from each tube of prepared particles/DNA.

[0234] Subsequent Treatment:

[0235] Following bombardment, the embryos are kept on 560Y medium for 2 days, then transferred to 560R selection medium containing 3 mg/liter Bialaphos, and subcultured every 2 weeks. After approximately 10 weeks of selection, selection-resistant callus clones are transferred to 288J medium to initiate plant regeneration. Following somatic embryo maturation (2-4 weeks), well-developed somatic embryos are transferred to medium for germination and transferred to the lighted culture room. Approximately 7-10 days later, developing plantlets are transferred to 272V hormonefree medium in tubes for 7-10 days until plantlets are well established. Plants are then transferred to inserts in flats (equivalent to 2.5" pot) containing potting soil and grown for 1 week in a growth chamber, subsequently grown an additional 1-2 weeks in the greenhouse, then transferred to classic 600 pots (1.6 gallon) and grown to maturity. Plants are monitored and scored for increased drought tolerance. Assays to measure improved drought tolerance are routine in the art and include, for example, increased kernel-earring capacity yields under drought conditions when compared to control maize plants under identical environmental conditions. Alternatively, the transformed plants can be monitored for a modulation in meristem development (i.e., a decrease in spikelet formation on the ear). See, for example, Bruce, et al., (2002) Journal of Experimental Botany 53:1-13.

[0236] Bombardment and Culture Media:

[0237] Bombardment medium (560Y) comprises 4.0 g/l N6 basal salts (SIGMA C-1416), 1.0 ml/l Eriksson's Vitamin Mix (1000×SIGMA-1511), 0.5 mg/l thiamine HCl, 120.0 g/l sucrose, 1.0 mg/l 2,4-D, and 2.88 g/l L-proline (brought to volume with D-1 H₂O following adjustment to pH 5.8 with KOH); 2.0 g/l Gelrite (added after bringing to volume with D-I H₂O); and 8.5 mg/l silver nitrate (added after sterilizing the medium and cooling to room temperature). Selection medium (560R) comprises 4.0 g/l N6 basal salts (SIGMA C-1416), 1.0 ml/l Eriksson's Vitamin Mix (1000×SIGMA-1511), 0.5 mg/l thiamine HCl, 30.0 g/l sucrose, and 2.0 mg/l 2,4-D (brought to volume with D-IH₂O following adjustment to pH 5.8 with KOH); 3.0 g/l Gelrite (added after bringing to volume with D-I H₂O); and 0.85 mg/l silver nitrate and 3.0 mg/l bialaphos (both added after sterilizing the medium and cooling to room temperature).

[0238] Plant regeneration medium (288J) comprises 4.3 g/l MS salts (GIBCO 11117-074), 5.0 ml/l MS vitamins stock solution (0.100 g nicotinic acid, 0.02 g/l thiamine HCL, 0.10 g/l pyridoxine HCL, and 0.40 g/l glycine brought to volume with polished D-I H₂O) (Murashige and Skoog (1962) *Physiol. Plant.* 15:473), 100 mg/l myo-inositol, 0.5 mg/l zeatin, 60 g/l sucrose, and 1.0 ml/l of 0.1 mM abscisic acid (brought to volume with polished D-I H₂O) after adjusting to pH 5.6); 3.0 g/l Gelrite (added after bringing to volume with D-I H₂O); and 1.0 mg/l indoleacetic acid and 3.0 mg/l bialaphos (added after sterilizing the medium and cooling to 60°

C.). Hormone-free medium (272V) comprises 4.3 g/l MS salts (GIBCO 11117-074), 5.0 ml/l MS vitamins stock solution (0.100 g/l nicotinic acid, 0.02 g/l thiamine HCL, 0.10 g/l pyridoxine HCL, and 0.40 g/l glycine brought to volume with polished D-I H₂O), 0.1 g/l myo-inositol, and 40.0 g/l sucrose (brought to volume with polished D-I H₂O) after adjusting pH to 5.6); and 6 g/l bacto-agar (added after bringing to volume with polished D-I H₂O), sterilized and cooled to 60° C.

Example 3

Agrobacterium-Mediated Transformation

[0239] For Agrobacterium-mediated transformation of maize with an antisense sequence of the AMT sequence of the present invention, preferably the method of Zhao is employed (U.S. Pat. No. 5,981,840, and PCT patent publication WO98/ 32326; the contents of which are hereby incorporated by reference). Briefly, immature embryos are isolated from maize and the embryos contacted with a suspension of Agrobacterium, where the bacteria are capable of transferring the antisense AMT sequences to at least one cell of at least one of the immature embryos (step 1: the infection step). In this step the immature embryos are preferably immersed in an Agrobacterium suspension for the initiation of inoculation. The embryos are co-cultured for a time with the Agrobacterium (step 2: the co-cultivation step). Preferably the immature embryos are cultured on solid medium following the infection step. Following this co-cultivation period an optional "resting" step is contemplated. In this resting step, the embryos are incubated in the presence of at least one antibiotic known to inhibit the growth of Agrobacterium without the addition of a selective agent for plant transformants (step 3: resting step). Preferably the immature embryos are cultured on solid medium with antibiotic, but without a selecting agent, for elimination of Agrobacterium and for a resting phase for the infected cells. Next, inoculated embryos are cultured on medium containing a selective agent and growing transformed callus is recovered (step 4: the selection step). Preferably, the immature embryos are cultured on solid medium with a selective agent resulting in the selective growth of transformed cells. The callus is then regenerated into plants (step 5: the regeneration step), and preferably calli grown on selective medium are cultured on solid medium to regenerate the plants. Plants are monitored and scored for a modulation in tissue development.

Example 4

Soybean Embryo Transformation

[0240] Soybean embryos are bombarded with a plasmid containing an antisense AMT sequences operably linked to an ubiquitin promoter as follows. To induce somatic embryos, cotyledons, 3-5 mm in length dissected from surface-sterilized, immature seeds of the soybean cultivar A2872, are cultured in the light or dark at 26° C. on an appropriate agar medium for six to ten weeks. Somatic embryos producing secondary embryos are then excised and placed into a suitable liquid medium. After repeated selection for clusters of somatic embryos that multiplied as early, globular-staged embryos, the suspensions are maintained as described below. **[0241]** Soybean embryogenic suspension cultures can be maintained in 35 ml liquid media on a rotary shaker, 150 rpm, at 26° C. with florescent lights on a 16:8 hour day/night

schedule. Cultures are subcultured every two weeks by inoculating approximately 35 mg of tissue into 35 ml of liquid medium.

[0242] Soybean embryogenic suspension cultures may then be transformed by the method of particle gun bombardment (Klein, et al., (1987) Nature (London) 327:70-73, U.S. Pat. No. 4,945,050). A Du Pont Biolistic PDS1000/HE instrument (helium retrofit) can be used for these transformations. [0243] A selectable marker gene that can be used to facilitate soybean transformation is a transgene composed of the 35S promoter from Cauliflower Mosaic Virus (Odell, et al., (1985) Nature 313:810-812), the hygromycin phosphotransferase gene from plasmid pJR225 (from E. coli; Gritz, et al., (1983) Gene 25:179-188), and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens. The expression cassette comprising an antisense AMT sequence operably linked to the ubiquitin promoter can be isolated as a restriction fragment. This fragment can then be inserted into a unique restriction site of the vector carrying the marker gene.

[0244] To 50 μ l of a 60 mg/ml 1 μ m gold particle suspension is added (in order): 5 μ l DNA (1 μ g/ μ l), 20 μ l spermidine (0.1 M), and 50 μ l CaCl₂ (2.5 M). The particle preparation is then agitated for three minutes, spun in a microfuge for 10 seconds and the supernatant removed. The DNA-coated particles are then washed once in 400 μ l 70% ethanol and resuspended in 40 μ l of anhydrous ethanol. The DNA/particle suspension can be sonicated three times for one second each. Five microliters of the DNA-coated gold particles are then loaded on each macro carrier disk.

[0245] Approximately 300-400 mg of a two-week-old suspension culture is placed in an empty 60×15 mm petri dish and the residual liquid removed from the tissue with a pipette. For each transformation experiment, approximately 5-10 plates of tissue are normally bombarded. Membrane rupture pressure is set at 1100 psi, and the chamber is evacuated to a vacuum of 28 inches mercury. The tissue is placed approximately 3.5 inches away from the retaining screen and bombarded three times. Following bombardment, the tissue can be divided in half and placed back into liquid and cultured as described above.

[0246] Five to seven days post bombardment, the liquid media may be exchanged with fresh media, and eleven to twelve days post-bombardment with fresh media containing 50 mg/ml hygromycin. This selective media can be refreshed weekly. Seven to eight weeks post-bombardment, green, transformed tissue may be observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each new line may be treated as an independent transformation event. These suspensions can then be subcultured and maintained as clusters of immature embryos or regenerated into whole plants by maturation and germination of individual somatic embryos.

Example 5

Sunflower Meristem Tissue Transformation

[0247] Sunflower meristem tissues are transformed with an expression cassette containing an antisense AMT sequences operably linked to a ubiquitin promoter as follows (see also, European Patent Number EP 0 486233, herein incorporated by reference, and Malone-Schoneberg, et al., (1994) *Plant*

Science 103:199-207). Mature sunflower seed (*Helianthus annuus* L.) are dehulled using a single wheat-head thresher. Seeds are surface sterilized for 30 minutes in a 20% Clorox bleach solution with the addition of two drops of Tween 20 per 50 ml of solution. The seeds are rinsed twice with sterile distilled water.

[0248] Split embryonic axis explants are prepared by a modification of procedures described by Schrammeijer, et al. (Schrammeijer, et al., (1990) Plant Cell Rep. 9:55-60). Seeds are imbibed in distilled water for 60 minutes following the surface sterilization procedure. The cotyledons of each seed are then broken off, producing a clean fracture at the plane of the embryonic axis. Following excision of the root tip, the explants are bisected longitudinally between the primordial leaves. The two halves are placed, cut surface up, on GBA medium consisting of Murashige and Skoog mineral elements (Murashige, et al., (1962) Physiol. Plant., 15:473-497), Shepard's vitamin additions (Shepard (1980) in Emergent Techniques for the Genetic Improvement of Crops (University of Minnesota Press, St. Paul, Minn.), 40 mg/l adenine sulfate, 30 g/l sucrose, 0.5 mg/l 6-benzyl-aminopurine (BAP), 0.25 mg/l indole-3-acetic acid (IAA), 0.1 mg/l gibberellic acid (GA₃), pH 5.6, and 8 g/l Phytagar.

[0249] The explants are subjected to microprojectile bombardment prior to *Agrobacterium* treatment (Bidney, et al., (1992) *Plant Mol. Biol.* 18:301-313). Thirty to forty explants are placed in a circle at the center of a 60×20 mm plate for this treatment. Approximately 4.7 mg of 1.8 mm tungsten microprojectiles are resuspended in 25 ml of sterile TE buffer (10 mM Tris HCl, 1 mM EDTA, pH 8.0) and 1.5 ml aliquots are used per bombardment. Each plate is bombarded twice through a 150 mm nytex screen placed 2 cm above the samples in a PDS 1000® particle acceleration device.

[0250] Disarmed Agrobacterium tumefaciens strain EHA105 is used in all transformation experiments. A binary plasmid vector comprising the expression cassette that contains the AMT gene operably linked to the ubiquitin promoter is introduced into Agrobacterium strain EHA105 via freezethawing as described by Holsters, et al., (1978) Mol. Gen. Genet. 163:181-187. This plasmid further comprises a kanamycin selectable marker gene (i.e., nptII). Bacteria for plant transformation experiments are grown overnight (28° C. and 100 RPM continuous agitation) in liquid YEP medium (10 gm/l yeast extract, 10 gm/l Bactopeptone, and 5 gm/l NaCl, pH 7.0) with the appropriate antibiotics required for bacterial strain and binary plasmid maintenance. The suspension is used when it reaches an OD_{600} of about 0.4 to 0.8. The Agrobacterium cells are pelleted and resuspended at a final OD of 0.5 in an inoculation medium comprised of 12.5 mM MES pH 5.7, 1 gm/l NH₄Cl, and 0.3 gm/l MgSO₄.

[0251] Freshly bombarded explants are placed in an *Agrobacterium* suspension, mixed, and left undisturbed for 30 minutes. The explants are then transferred to GBA medium and co-cultivated, cut surface down, at 26° C. and 18-hour days. After three days of co-cultivation, the explants are transferred to 374B (GBA medium lacking growth regulators and a reduced sucrose level of 1%) supplemented with 250 mg/l cefotaxime and 50 mg/l kanamycin sulfate. The explants are cultured for two to five weeks on selection and then transferred to fresh 374B medium lacking kanamycin for one to two weeks of continued development. Explants with differentiating, antibiotic-resistant areas of growth that have not produced shoots suitable for excision are transferred to GBA medium containing 250 mg/l cefotaxime for a second 3-day

phytohormone treatment. Leaf samples from green, kanamycin-resistant shoots are assayed for the presence of NPTII by ELISA and for the presence of transgene expression by assaying for a modulation in meristem development (i.e., an alteration of size and appearance of shoot and floral meristems). [0252] NPTII-positive shoots are grafted to Pioneer® hybrid 6440 in vitro-grown sunflower seedling rootstock. Surface sterilized seeds are germinated in 48-0 medium (halfstrength Murashige and Skoog salts, 0.5% sucrose, 0.3% gelrite, pH 5.6) and grown under conditions described for explant culture. The upper portion of the seedling is removed, a 1 cm vertical slice is made in the hypocotyl, and the transformed shoot inserted into the cut. The entire area is wrapped with parafilm to secure the shoot. Grafted plants can be transferred to soil following one week of in vitro culture. Grafts in soil are maintained under high humidity conditions followed by a slow acclimatization to the greenhouse environment. Transformed sectors of T_o plants (parental generation) maturing in the greenhouse are identified by NPTII ELISA and/or by AMT activity analysis of leaf extracts while transgenic seeds harvested from NPTII-positive To plants are identified by AMT activity analysis of small portions of dry seed cotyledon.

An alternative sunflower transformation protocol [0253] allows the recovery of transgenic progeny without the use of chemical selection pressure. Seeds are dehulled and surfacesterilized for 20 minutes in a 20% Clorox bleach solution with the addition of two to three drops of Tween 20 per 100 ml of solution, then rinsed three times with distilled water. Sterilized seeds are imbibed in the dark at 26° C. for 20 hours on filter paper moistened with water. The cotyledons and root radical are removed, and the meristem explants are cultured on 374E (GBA medium consisting of MS salts, Shepard vitamins, 40 mg/l adenine sulfate, 3% sucrose, 0.5 mg/l 6-BAP, 0.25 mg/IIAA, 0.1 mg/IGA, and 0.8% Phytagar at pH 5.6) for 24 hours under the dark. The primary leaves are removed to expose the apical meristem, around 40 explants are placed with the apical dome facing upward in a 2 cm circle in the center of 374M (GBA medium with 1.2% Phytagar), and then cultured on the medium for 24 hours in the dark.

[0254] Approximately 18.8 mg of $1.8 \mu\text{m}$ tungsten particles are resuspended in $150 \mu\text{l}$ absolute ethanol. After sonication, $8 \mu\text{l}$ of it is dropped on the center of the surface of macrocarrier. Each plate is bombarded twice with 650 psi rupture discs in the first shelf at 26 mm of Hg helium gun vacuum.

[0255] The plasmid of interest is introduced into Agrobacterium tumefaciens strain EHA105 via freeze thawing as described previously. The pellet of overnight-grown bacteria at 28° C. in a liquid YEP medium (10 g/l yeast extract, 10 g/l Bactopeptone, and 5 g/l NaCl, pH 7.0) in the presence of 50 µg/l kanamycin is resuspended in an inoculation medium (12.5 mM 2-mM 2-(N-morpholino) ethanesulfonic acid, MES, 1 g/l NH₄Cl and 0.3 g/l MgSO₄ at pH 5.7) to reach a final concentration of 4.0 at OD 600. Particle-bombarded explants are transferred to GBA medium (374E), and a droplet of bacteria suspension is placed directly onto the top of the meristem. The explants are co-cultivated on the medium for 4 days, after which the explants are transferred to 374C medium (GBA with 1% sucrose and no BAP, IAA, GA3 and supplemented with 250 µg/ml cefotaxime). The plantlets are cultured on the medium for about two weeks under 16-hour day and 26° C. incubation conditions.

[0256] Explants (around 2 cm long) from two weeks of culture in 374C medium are screened for a modulation in

meristem development (i.e., an alteration of size and appearance of shoot and floral meristems). After positive (i.e., a decrease in AMT expression) explants are identified, those shoots that fail to exhibit a decrease in AMT activity are discarded, and every positive explant is subdivided into nodal explants. One nodal explant contains at least one potential node. The nodal segments are cultured on GBA medium for three to four days to promote the formation of auxiliary buds from each node. Then they are transferred to 374C medium and allowed to develop for an additional four weeks. Developing buds are separated and cultured for an additional four weeks on 374C medium. Pooled leaf samples from each newly recovered shoot are screened again by the appropriate protein activity assay. At this time, the positive shoots recovered from a single node will generally have been enriched in the transgenic sector detected in the initial assay prior to nodal culture.

[0257] Recovered shoots positive for a decreased AMT expression are grafted to Pioneer hybrid 6440 in vitro-grown sunflower seedling rootstock. The rootstocks are prepared in the following manner. Seeds are dehulled and surface-sterilized for 20 minutes in a 20% Clorox bleach solution with the addition of two to three drops of Tween 20 per 100 ml of solution, and are rinsed three times with distilled water. The sterilized seeds are germinated on the filter moistened with water for three days, then they are transferred into 48 medium (half-strength MS salt, 0.5% sucrose, 0.3% gelrite pH 5.0) and grown at 26° C. under the dark for three days, then incubated at 16-hour-day culture conditions. The upper portion of selected seedling is removed, a vertical slice is made in each hypocotyl, and a transformed shoot is inserted into a V-cut. The cut area is wrapped with parafilm. After one week of culture on the medium, grafted plants are transferred to soil. In the first two weeks, they are maintained under high humidity conditions to acclimatize to a greenhouse environment.

Example 6

Identification, Phylogenetic Analysis and Chloroplast Targeting Peptide (cTP) Predictions of AMTs in *Arabidopsis*, Rice, Soybean and Maize

[0258] Taking a 'genomic' approach AMTs were identified in several higher plants. In Arabidopsis 6 AMTs have been identified, and phylogenetic analyses reveals that AtAMT1 (SEQ ID NO: 2) AtAMT1;2 (SEQ ID NO: 4), AtAMT1;3 (SEQ ID NO: 6) and At3g24290 (SEQ ID NO: 10) cluster in one group where as AtAMT2 (SEQ ID NO: 8) and At4g28700 (SEQ ID NO: 12) are independent. Chloroplast targeting peptide (cTP) prediction by ChloroP program reveals that AtAMT1;2 (SEQ ID NO: 4) have a putative cTP (with 55% probability) where as all other AtAMTs did not contain any predicted cTP In rice, soybean and maize, 17, 11, 7 AMTs have been identified, respectively. cTP prediction in AMTs proteins from maize and soybean didn't identify any AMT candidate with a putative cTP, however in rice one AMT has putative cTP with more than 50% probability. Phylogenetic analyses of all the AMTs from Arabidopsis, rice, maize and soybean are shown in FIG. 1.

Example 7

Expression Analysis of AMTs in Maize

[0259] In order to identify leaf specific/preferred/expressed AMT(s) in maize, Lynx MPSS expression analyses in ~300

libraries reveal that ZmAMT1 (SEQ ID NO: 14), 2, 7 are expressed both in roots and leaves (FIG. 2) whereas ZmAMT4 (SEQ ID NO: 20) is a root preferred AMT. ZmAMT6 (SEQ ID NO: 24) expresses at very low level in comparison to other ZmAMTs. In case of ZmAMT5 there was no specific Lynx tag available. Researchers also performed RT-PCR on leaf and roots of B73 maize and the results confirm Lynx analysis results that there is no leaf specific AMT in maize, although ZmAMT1, 2, 7 (SEQ ID NOS: 14, 16 and 26) are expressed in leaves and roots.

Example 8

CTP Predictions in Chloroplast Outer Envelope Proteins

[0260] Initial cTP prediction couldn't detect a putative cTP in most of the higher plant AMTs analyzed. The chloroplast localized AMT (if any) has to be in the outer envelope of the chloroplast. In order to determine whether proteins localized in outer envelop of the chloroplast have any predicted cTP, researchers searched the NCBI database using 'chloroplast outer envelop/membrane' as keyword and identified the 14, 14, and 5 proteins from Arabidopsis, rice and maize, respectively that are suppose to be localized in outer envelop of chloroplast. Some of these are well characterized proteins and known to be localized in the outer membrane of chloroplast. ChloroP program was used to identify putative cTP in these 33 candidate proteins and interestingly none of these proteins show any putative cTP with high probability. These observations suggest that either a cTP is not required or not identified/ characterized for these proteins so far. This also suggests that although most of the AMTs don't have a predicted cTP but some of them might be localized in the chloroplast outer membrane.

Example 9

Isolation and Characterization of AtAMT1;2 (SEQ ID NO: 4) T-DNA Mutant

[0261] In cTP prediction analyses, AtAMT1;2 (SEQ ID NO: 4) posses a putative cTP. For functional analyses of AtAMT1;2 (SEQ ID NO: 4) and to determine it's role in N-assimilation, researchers identified a T-DNA mutant line (SM_3.15680) from the Arabidopsis T-DNA mutant data base. The T-DNA mutant line was ordered from ABRC and the homozygous plants were subjected to molecular analyses. In this mutant line T-DNA was inserted in c-terminal of AtAMT1;2 (SEQ ID NO: 4) gene (FIG. 3A). Genomic PCRs using AtAMT1;2 (SEQ ID NO: 4) gene and T-DNA specific primers show that T-DNA is indeed inserted in the AtAMT1;2 (SEQ ID NO: 4) (FIG. 3B). AtAMT1;2 (SEQ ID NO: 4) gene specific primers flanking the T-DNA insert couldn't amplify any DNA region in mutant plants where as an expected PCR product was detected in wild type plant (FIG. 4B, upper panel). Similarly, genomic PCR with AtAMT1;2 (SEQ ID NO: 4) specific forward primer and T-DNA specific reverse primers amplify an expected product in mutant lines and nothing in wild type plants as expected (FIG. 4B, lower panel). Saturated RT-PCRs (35 cycles) analyses couldn't detect a full length atamt1;2 mRNA in mutant (FIG. 4C, upper panel) suggesting that AtAMT1;2 (SEQ ID NO: 4) is

completely knocked out in this T-DNA mutant. Actin control RT-PCR worked fine in both mutant and wild type plants (FIG. **3**C, lower panel).

Example 10

Generation and Molecular Characterization of AtAMT1;2 (SEQ ID NO: 4) RNAi Lines

[0262] In addition to T-DNA mutant, another parallel approach was also undertaken for functional analysis of AtAMT1;2 (SEQ ID NO: 4). A RNAi vector containing ZM-UBI promoter driven RNAi cassette consisting of inverted repeats of AtAMT1;2 (SEQ ID NO: 4) specific DNA regions and ADH intron as a spacer was constructed. Wild type Arabidopsis (Columbia-0) was transformed with this RNAi vector by Agrobacterium mediated 'floral-dip' method. Several transgenic lines were identified by selecting the T0 seeds for herbicide resistance in soil. Molecular characterization of these transgenic lines were performed by RT-PCR for Actin, AtAMT1;2 (SEQ ID NO: 4) RNAi cassette, endogenous AtAMT1;2 (SEQ ID NO: 4) and presence of gDNA in RNA preparations. Several lines with a significant reduced levels of AtAMT1;2 (SEQ ID NO: 4) were identified after molecular analysis.

Example 11

Sub-Cellular Localization and Regulation of Expression of AtAMT1;2 (SEQ ID NO: 4)

[0263] cTP prediction analyses indicate that AtAMT1;2 (SEQ ID NO: 4) contains a putative predicted cTP (but with only 55% probability). The objectives of the experiments described in this example are to determine sub-cellular localization and regulation of expression the endogenous AtAMT1;2 (SEQ ID NO: 4). The coding sequence of AtAMT1;2 (SEQ ID NO: 4) was tagged with green fluorescent protein (GFP) as an in-frame C-terminal fusion under the control of AtAMT1;2 (SEQ ID NO: 4) native promoter and a strong constitutive (ZM-UBI) promoter. *Arabidopsis* transgenic lines were generated and analyzed for GFP expression by confocal microscopy. Analyses show that AtAMT1;2:GFP is localized in the plasma membrane of endodermis and the cortex in roots.

Example 12

Knock-Out/Knock-Down of Zm-AMTs in Maize

[0264] ESTs corresponding to all seven maize AMTs were identified and annotated and full length cDNA clones were obtained. Experiments to knock-out/knock-down of all these individual ZmAMTs by RNAi are in progress. TUSC screening experiments were used to identify knock-out mutants for three leaf expressed ZmAMT1 (SEQ ID NO: 14), ZmAMT2 (SEQ ID NO: 16) and ZmAMT7 (SEQ ID NO: 26).

Example 13

Knock-Out/Knock-Down of Multiple AtAMTs with Single RNAi Vector in *Arabidopsis*

[0265] Six AMT genes are present in *Arabidopsis* genome. Hence, it is very likely that due to functional redundancy one might need to manipulate the expression of multiple AMTs simultaneously. The DNA sequence of all these AMTs was analyzed and identified the high homology regions among them. For example there is such a stretch of ~200 bp among AtAMT1;2 (SEQ ID NO: 4), AtAMT1 (SEQ ID NO: 2), AMT1;3 (SEQ ID NO: 6), At3g24290 (SEQ ID NO: 10) and At4g28700 (SEQ ID NO: 12) where as AMT2 (SEQ ID NO: 8) stood independent (FIG. 4). These regions were amplified (bold and underlined in FIG. 4) by PCR from AtAMT1;2 (SEQ ID NO: 4) and AtAMT2 (SEQ ID NO: 8) and performed a multi-way ligation to make an inverted repeat using ADH-intron as a spacer. The RNAi cassette of these hybrid inverted repeats is driven by a constitutive or root-specific or leaf-specific promoter. Several transgenic Arabidopsis lines were generated for these three constructs. Molecular analyses of these lines were performed by genomic and RT-PCR. Several lines were identified that expressed significantly reduced levels of multiple AtAMTs. These transgenic lines show a methyl ammonium (ammonium analog toxic to plants) tolerant/better growth phenotype as compared to wild type control when grown on MS media supplemented with 10-30 mM of methyl ammonium. These results indicate multiple AMTs were knocked-down in these lines, resulting in reduced uptake of methyl ammonium.

Example 14

Knock-Out/Knock-Down of Multiple ZmAMTs in Maize by Single RNAi Vector

[0266] In maize at least 7 AMT like genes were identified and at least 3 of them are expressed both in leaf and root (see, Example 2). For improving NUE by reducing loss of ammonia by volatilization, one might have to knock-out/knockdown multiple AMTs. Detailed analyses of all 7 maize AMTs were performed to identify the DNA regions showing high homology among different ZmAMTs. This analysis reveals that ZmAMT1 (SEQ ID NO: 14) and ZmAMT5 (SEQ ID NO: 22), ZmAMT3 (SEQ ID NO: 18) and ZmAMT4 (SEQ ID NO: 20) and ZmAMT2 (SEQ ID NO: 16), ZmAMT6 (SEQ ID NO: 24) and ZmAMT7 (SEQ ID NO: 26) form three separate groups and there is a very high homology in stretches of DNA sequences with in each group (FIG. 5). Three DNA fragments (bold and underlined in FIG. 5) from ZmAMT 1, 4 and 7 (SEQ ID NOS: 14, 20 and 26) representing each of the different groups were amplified by PCR. Multi-way ligations were performed to make inverted repeats with hybrid of these 3 fragments and ADH intron as a spacer to facilitate the formation of stem-loop structure. This hybrid RNAi cassette of 'ZmAMT1 (SEQ ID NO: 14):ZmAMT4 (SEQ ID NO: 20):ZmAMT7 (SEQ ID NO: 26)' inverted repeats was driven by Zm-UBI promoter and a leaf-specific promoter. MOPAT driven by Zm-UBI promoter was used as herbicide resistance marker for selected. In addition to that RFP driven by a pericarp specific promoter LTP2 was also used to sort out the transgenic seeds (red) from there segregating non-transgenic seeds. Transgenic lines for the constructs were generated, with molecular analyses of the T0 events performed by genomic and RT-PCR. Several lines with significantly reduced expression of individual/multiple ZmAMTs have been identified and characterized.

Example 15

Variants of AMT Sequences

[0267] A. Variant Nucleotide Sequences of AMT that do not Alter the Encoded Amino Acid Sequence

[0268] The AMT nucleotide sequences are used to generate variant nucleotide sequences having the nucleotide sequence

27

of the open reading frame with about 70%, 75%, 80%, 85%, 90% and 95% nucleotide sequence identity when compared to the starting unaltered ORF nucleotide sequence of the corresponding SEQ ID NO. These functional variants are generated using a standard codon table. While the nucleotide sequence of the variants are altered, the amino acid sequence encoded by the open reading frames do not change.

[0269] B. Variant Amino Acid Sequences of AMT Polypeptides

[0270] Variant amino acid sequences of the AMT polypeptides are generated. In this example, one amino acid is altered. Specifically, the open reading frames are reviewed to determine the appropriate amino acid alteration. The selection of the amino acid to change is made by consulting the protein alignment (with the other orthologs and other gene family members from various species). An amino acid is selected that is deemed not to be under high selection pressure (not highly conserved) and which is rather easily substituted by an amino acid with similar chemical characteristics (i.e., similar functional side-chain). Using the protein alignment set forth in FIG. 2, an appropriate amino acid can be changed. Once the targeted amino acid is identified, the procedure outlined in the following section C is followed. Variants having about 70%, 75%, 80%, 85%, 90% and 95% nucleic acid sequence identity are generated using this method.

[0271] C. Additional Variant Amino Acid Sequences of AMT Polypeptides

[0272] In this example, artificial protein sequences are created having 80%, 85%, 90% and 95% identity relative to the reference protein sequence. This latter effort requires identifying conserved and variable regions from the alignment set forth in FIG. **2** and then the judicious application of an amino acid substitutions table. These parts will be discussed in more detail below.

[0273] Largely, the determination of which amino acid sequences are altered is made based on the conserved regions among AMT protein or among the other AMT polypeptides. Based on the sequence alignment, the various regions of the AMT polypeptide that can likely be altered are represented in lower case letters, while the conserved regions are represented by capital letters. It is recognized that conservative substitutions can be made in the conserved regions below without altering function. In addition, one of skill will understand that functional variants of the AMT sequence of the invention can have minor non-conserved amino acid alterations in the conserved domain.

[0274] Artificial protein sequences are then created that are different from the original in the intervals of 80-85%, 85-90%, 90-95% and 95-100% identity. Midpoints of these intervals are targeted, with liberal latitude of plus or minus 1%, for example. The amino acids substitutions will be effected by a custom Perl script. The substitution table is provided below in Table 2.

TABLE 2

	-	Substitution	Table					
Amino Acid	Strongly Similar and Optimal Substitution	Rank of Order to Change	Comment					
I L	L, V I, V	1	50:50 substitution 50:50 substitution					

TABLE 2-continued

	_	Substitution	1 Table
Amino Acid	Strongly Similar and Optimal Substitution	Rank of Order to Change	Comment
v	I, L	3	50:50 substitution
A	G	4	
G	А	5	
D	Е	6	
Е	D	7	
W	Y	8	
Y	W	9	
S	Т	10	
Т	S	11	
K	R	12	
R	K	13	
N	Q	14	
Q	Ν	15	
F	Y	16	
М	L	17	First methionine cannot change
Н		Na	No good substitutes
С		Na	No good substitutes
Р		Na	No good substitutes

[0275] First, any conserved amino acids in the protein that should not be changed is identified and "marked off" for insulation from the substitution. The start methionine will of course be added to this list automatically. Next, the changes are made. H, C, and P are not changed in any circumstance. The changes will occur with isoleucine first, sweeping N-terminal to C-terminal. Then leucine, and so on down the list until the desired target it reached. Interim number substitutions can be made so as not to cause reversal of changes. The list is ordered 1-17, so start with as many isoleucine changes as needed before leucine, and so on down to methionine. Clearly many amino acids will in this manner not need to be changed. L, I and V will involve a 50:50 substitution of the two alternate optimal substitutions.

[0276] The variant amino acid sequences are written as output. Perl script is used to calculate the percent identities. Using this procedure, variants of the AMT polypeptides are generating having about 80%, 85%, 90%, and 95% amino acid identity to the starting unaltered ORF nucleotide sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79 or 81.

Example 16

Over-Expression of AMTs in Plants to Improve NUE

[0277] The over-expression of AMTs has been demonstrated with strong constitutively or organ-specific (e.g. in roots) expression which improves ammonium uptake (especially in low ammonium soils in anaerobic conditions typical of rice field conditions) leading to improved nitrogen use efficiency. In other plants, such as maize, typically most of the N is absorbed by roots in the form of nitrate, the available source in most soil, however there is still a considerable proportion of N available as ammonium. Over-expression of AMTs in these conditions leads to improved nitrogen utilization. Since nitrate needs to be reduced to ammonium by an energy expensive reaction before it is assimilated, ammonium is a preferable source of N when available to the plant.

[0278] All publications and patent applications in this specification are indicative of the level of ordinary skill in the

art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated by reference. **[0279]** The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.

SEQUENCE LISTING <160> NUMBER OF SEQ ID NOS: 82 <210> SEO ID NO 1 <211> LENGTH: 1736 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 1 ageststetg tttsatstte ttststaaas tstsaasatg tsttgstegg scacegatst 60 cgctgtcctg ttgggtccta atgccacggc ggcggccaac tacatctgtg gccagttagg 120 cgacgtcaac aacaaattta tcgacaccgc tttcgctata gacaacactt accttctctt 180 ctccgcctac cttgtcttct ctatgcagct tggcttcgct atgctctgtg ccggttccgt 240 gagagccaag aatactatga acatcatgct taccaacgtc cttgacgctg cagccggtgg 300 tetettetat tatetgtttg getacgeett tgeetttgga teteegteea atggttteat 360 cggtaaacac tactttggtc tcaaagacat ccccacggcc tctgctgact actccaactt 420 tetetaceaa tgggeetttg caategetge ggetggaate acaagtgget egategetga 480 acggacacag ttcgtggctt acctaatcta ttcctctttc ttaaccgggt ttgtttaccc 540 ggtcgtctct cactggttct ggtcagttga tggatgggcc agcccgttcc gtaccgatgg 600 agatttgctt ttcagcaccg gagcgataga tttcgctggg tccggtgttg ttcatatggt 660 cggaggtatc gctggactct ggggtgcgct catcgaaggt ccacgacttg gccggttcga 720 taacggaggc cgtgccatcg ctcttcgtgg ccactcggcg tcacttgttg tccttggaac 780 attectecte tggtttggat ggtacggatt taacceeggt teetteaaca agateetagt 840 cacqtacqaq acaqqcacat acaacqqcca qtqqaqcqcq qtcqqacqqa caqctqtcac 900 aacaacgtta getggetgea eegeggeget gacaaceeta tttgggaaae gtetaetete 960 1020 gggacattgg aacgtcactg atgtatgcaa cggcctcctc ggagggtttg cagccataac 1080 tggtggctgc tctgtcgttg agccatgggc tgcgatcatc tgcgggttcg tggcggccct aqtectecte qqatqcaaca aqeteqetqa qaaqeteaaa tacqaeqaee etettqaqqe 1140 1200 agcacaacta cacggtggtt gcggtgcgtg gggactaata ttcacggctc tcttcgctca agaaaagtac ttgaaccaga tttacggcaa caaacccgga aggccacacg gtttgtttat 1260 gggcggtgga ggaaaactac ttggagctca gctgattcag atcattgtga tcacgggttg 1320 ggtaagtgcg accatgggga cacttttctt catcctcaag aaaatgaaat tgttgcggat 1380 atcgtccgag gatgagatgg ccggtatgga tatgaccagg cacggtggtt ttgcttatat 1440 gtactttgat gatgatgagt ctcacaaagc cattcagctt aggagagttg agccacgatc 1500 tccttctcct tctggtgcta atactacacc tactccggtt tgatttggat ttttactttt 1560 attetetatt ttetagagta ttattttaaa tgatgttttg tgataettaa atattgtttt 1620 ggatattttt ttgcatttca gtaatgtttt agatgtacag tttcatgggg ttgtgatgat 1680 aatatctatg tggtcatttg tgttctcttt ggagtttttt ctataacgct tttttc 1736

-continued

<210: <211: <212:	> LE > TY	NGTH	I: 50 PRT	01											
<213:					orqoi	sis	tha	lana	1						
Met 1	Ser	Сув	Ser	Ala 5	Thr	Asp	Leu		Val LO	Leu	Leu	Gly		Asn L5	Ala
Thr . 20	Ala	Ala	Ala	Asn	Tyr 25	Ile	Сув	Gly	Gln	Leu 30	Gly	Asp	Val	Asn	Asn
Lуз 35	Phe	Ile	Asp	Thr	Ala 40	Phe	Ala	Ile	Asp	Asn 45	Thr	Tyr	Leu	Leu	Phe
Ser . 50	Ala	Tyr	Leu	Val	Phe 55	Ser	Met	Gln	Leu	Gly 60	Phe	Ala	Met	Leu	Cys
Ala 65	Gly	Ser	Val	Arg	Ala 70	Lys	Asn	Thr	Met	Asn 75	Ile	Met	Leu	Thr	Asn 80
Val 85	Leu	Asp	Ala	Ala	Ala 90	Gly	Gly	Leu	Phe	Tyr 95	Tyr	Leu	Phe	Gly	Tyr
Ala 100	Phe	Ala	Phe	Gly	Ser 105	Pro	Ser	Asn	Gly	Phe 110	Ile	Gly	Lys	His	Tyr
Phe 115	Gly	Leu	Lys	Asp	Ile 120	Pro	Thr	Ala	Ser	Ala 125	Asp	Tyr	Ser	Asn	Phe
Leu 130	Tyr	Gln	Trp	Ala	Phe 135	Ala	Ile	Ala	Ala	Ala 140	Gly	Ile	Thr	Ser	Gly
Ser 145	Ile	Ala	Glu	Arg	Thr 150	Gln	Phe	Val	Ala	Tyr 155	Leu	Ile	Tyr	Ser	Ser 160
Phe 1 165	Leu	Thr	Gly	Phe	Val 170	Tyr	Pro	Val	Val	Ser 175	His	Trp	Phe	Trp	Ser
Val . 180	Aab	Gly	Trp	Ala	Ser 185	Pro	Phe	Arg	Thr	Asp 190	Gly	Asp	Leu	Leu	Phe
Ser 195	Thr	Gly	Ala	Ile	Asp 200	Phe	Ala	Gly	Ser	Gly 205	Val	Val	His	Met	Val
Gly 210	Gly	Ile	Ala	Gly	Leu 215	Trp	Gly	Ala	Leu	Ile 220	Glu	Gly	Pro	Arg	Leu
Gly . 225	Arg	Phe	Asp	Asn	Gly 230	Gly	Arg	Ala	Ile	Ala 235	Leu	Arg	Gly	His	Ser 240
Ala 245	Ser	Leu	Val	Val	Leu 250	Gly	Thr	Phe	Leu	Leu 255	Trp	Phe	Gly	Trp	Tyr
Gly 2 260	Phe	Asn	Pro	Gly	Ser 265	Phe	Asn	Lys	Ile	Leu 270	Val	Thr	Tyr	Glu	Thr
Gly 275	Thr	Tyr	Asn	Gly	Gln 280	Trp	Ser	Ala	Val	Gly 285	Arg	Thr	Ala	Val	Thr
Thr 290	Thr	Leu	Ala	Gly	Cys 295	Thr	Ala	Ala	Leu	Thr 300	Thr	Leu	Phe	Gly	Lys
Arg 305	Leu	Leu	Ser	Gly	His 310	Trp	Asn	Val	Thr	Asp 315	Val	Суз	Asn	Gly	Leu 320
Leu 325	Gly	Gly	Phe	Ala	Ala 330	Ile	Thr	Gly	Gly	Суз 335	Ser	Val	Val	Glu	Pro
Trp . 340	Ala	Ala	Ile	Ile	Cys 345	Gly	Phe	Val	Ala	Ala 350	Leu	Val	Leu	Leu	Gly
Cya .	Asn	Lys	Leu	Ala	Glu	Lys	Leu	Lys	Tyr	Asp	Asp	Pro	Leu	Glu	Ala

-continued

355 360 365
Ala Gln Leu His Gly Gly Cys Gly Ala Trp Gly Leu Ile Phe Thr Ala 370 375 380
Leu Phe Ala Gln Glu Lys Tyr Leu Asn Gln Ile Tyr Gly Asn Lys Pro 385 390 395 400
Gly Arg Pro His Gly Leu Phe Met Gly Gly Gly Lys Leu Leu Gly 405 410 415
Ala Gln Leu Ile Gln Ile Ile Val Ile Thr Gly Trp Val Ser Ala Thr 420 425 430
Met Gly Thr Leu Phe Phe Ile Leu Lys Lys Met Lys Leu Arg Ile 435 440 445
Ser Ser Glu Asp Glu Met Ala Gly Met Asp Met Thr Arg His Gly Gly 450 455 460
Phe Ala Tyr Met Tyr Phe Asp Asp Glu Ser His Lys Ala Ile Gln 465 470 475 480
Leu Arg Arg Val Glu Pro Arg Ser Pro Ser Pro Ser Gly Ala Asn Thr 485 490 495
Thr Pro Thr Pro Val 500
<210> SEQ ID NO 3 <211> LENGTH: 1860 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 3
acttaagcaa acacgtteea caateaagta eeetetetet ateteteeet eeeteete 60
ccaccatgga caccgcaacc accacatgct ctgccgtaga tctatctgcc ctcctatcct 120
cttcttctaa ctcaacatct tccctcgccg cggcaacctt tttatgttcc caaatttcaa 180
acateteeaa caaactetee gacacaactt atgeegtega caacaegtat eteetettet 240
ccgcctacct tgtctttgcc atgcagctcg gtttcgctat gctttgtgct ggatcagtcc 300
gagccaagaa cactatgaac atcatgctta ccaatgtcct tgatgctgcc gctggagcca 360
tetettaeta eetettegga ttegeatteg eetttggtae acetteeaae ggatteateg 420
gtcgccacca tagettette getttaaget ettaceetga aegeeeegge teegaettea 480
gettttteet etaecaatgg gettttgeea tageegegge eggaateaet ageggtteea 540
tegeegageg aaegeaatte gttgettace ttatetaete taetttettg aeeggttttg 600
tttacccgac agtctcgcac tggttctggt caagtgatgg atgggctagc gcgtcccggt 660
ctgacaacaa tetettgttt ggeteaggtg etattgattt egeaggttea ggagttgtte 720
acatggtagg tggaattgcc ggtttatgtg gagcgttagt tgaaggacca agaataggta 780
gatttgaccg gtcaggccgg tccgtggctt tacgtggtca cagtgcatcc cttgtcgtgc 840
ttggtacett ettgttgtgg tttggatggt atgggtttaa eeetggttee tttttaacea 900
ttettaaagg etaegacaag teteggeeat attatggtea atggageget gtaggtegea 960
ccgcggtcac cacaacgctt tctggctgca ccgctgcgtt gactactcta ttcagtaaac 1020
ggcttttagc aggtcattgg aacgttattg acgtatgcaa cggacttcta ggcggctttg 1080
cagctataac ctccggatgt gccgtggtgg agccgtgggc tgctatagta tgtggctttg 1140
tggcatcatg ggttttaatc ggatttaact tgcttgccaa gaaacttaaa tatgatgacc 1200

30

cactegagge tgetcagete caeggtggat gtggageatg gggattaate tttaceggge tqttcqcaaq qaaaqaatac qttaacqaqa tttactccqq tqataqqcct tacqqactqt tcatgggcgg gggaggaaaa ctgctcgccg cgcagatcgt tcagattatt gtgatcgttg ggtgggtgac ggtaactatg ggaccgttgt tttatgggtt acataagatg aatcttttga ggatatcagc agaagatgag atggcaggaa tggacatgac acgtcatgga ggatttgctt acgcatacaa tgacgaagac gacgtgtcga ctaaaccatg gggtcatttc gctggaagag tggagcctac aagccggagc tcgactccta caccgacctt gactgtttga tactttgatt ggagaattga gtggtcccaa acgagtcagt tttaatgtgg tgaagacaag agttcgggca ccaaacatgt tggacgcatc tttgtgtatt attggtcttc ttcttcttct ttttttttct cttggttatc gctctgttgt ggacagatag tgtggaactg ttaacaataa catgatcagt atgtcttttt aattaaagtg aacgtttggt atcaaaatta aacattggaa tttgagcggt <210> SEQ ID NO 4 <211> LENGTH: 514 <212> TYPE: PRT <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 4 Met Asp Thr Ala Thr Thr Thr Cys Ser Ala Val Asp Leu Ser Ala Leu Leu Ser Ser Ser Ser Asn Ser Thr Ser Ser Leu Ala Ala Ala Thr Phe Leu Cys Ser Gln Ile Ser Asn Ile Ser Asn Lys Leu Ser Asp Thr Thr Tyr Ala Val Asp Asn Thr Tyr Leu Leu Phe Ser Ala Tyr Leu Val Phe Ala Met Gln Leu Gly Phe Ala Met Leu Cys Ala Gly Ser Val Arg Ala Lys Asn Thr Met Asn Ile Met Leu Thr Asn Val Leu Asp Ala Ala Ala Gly Ala Ile Ser Tyr Tyr Leu Phe Gly Phe Ala Phe Ala Phe Gly Thr Pro Ser Asn Gly Phe Ile Gly Arg His His Ser Phe Phe Ala Leu Ser Ser Tyr Pro Glu Arg Pro Gly Ser Asp Phe Ser Phe Phe Leu Tyr Gln Trp Ala Phe Ala Ile Ala Ala Ala Gly Ile Thr Ser Gly Ser Ile Ala Glu Arg Thr Gln Phe Val Ala Tyr Leu Ile Tyr Ser Thr Phe Leu Thr Gly Phe Val Tyr Pro Thr Val Ser His Trp Phe Trp Ser Ser Asp Gly Trp Ala Ser Ala Ser Arg Ser Asp Asn Asn Leu Leu Phe Gly Ser Gly Ala Ile Asp Phe Ala Gly Ser Gly Val Val His Met Val Gly Gly Ile Ala Gly Leu Cys Gly Ala Leu Val Glu Gly Pro Arg Ile Gly Arg Phe

-cont	1 111	ied

-continued	
Asp Arg Ser Gly Arg Ser Val Ala Leu Arg Gly His Ser Ala Ser Leu 245 250 255	
Val Val Leu Gly Thr Phe Leu Leu Trp Phe Gly Trp Tyr Gly Phe Asn 260 265 270	
Pro Gly Ser Phe Leu Thr Ile Leu Lys Gly Tyr Asp Lys Ser Arg Pro 275 280 285	
Tyr Tyr Gly Gln Trp Ser Ala Val Gly Arg Thr Ala Val Thr Thr Thr 290 295 300	
Leu Ser Gly Cys Thr Ala Ala Leu Thr Thr Leu Phe Ser Lys Arg Leu 305 310 315 320	
Leu Ala Gly His Trp Asn Val Ile Asp Val Cys Asn Gly Leu Leu Gly 325 330 335	
Gly Phe Ala Ala Ile Thr Ser Gly Cys Ala Val Val Glu Pro Trp Ala 340 345 350	
Ala Ile Val Cys Gly Phe Val Ala Ser Trp Val Leu Ile Gly Phe Asn 355 360 365	
Leu Leu Ala Lys Lys Leu Lys Tyr Asp Asp Pro Leu Glu Ala Ala Gln 370 375 380	
Leu His Gly Gly Cys Gly Ala Trp Gly Leu Ile Phe Thr Gly Leu Phe 385 390 395 400	
Ala Arg Lys Glu Tyr Val Asn Glu Ile Tyr Ser Gly Asp Arg Pro Tyr 405 410 415	
Gly Leu Phe Met Gly Gly Gly Gly Lys Leu Leu Ala Ala Gln Ile Val 420 425 430	
Gln Ile Ile Val Gly Trp Val Thr Val Thr Met Gly Pro Leu 435 440 445	
Phe Tyr Gly Leu His Lys Met Asn Leu Leu Arg Ile Ser Ala Glu Asp 450 455 460	
Glu Met Ala Gly Met Asp Met Thr Arg His Gly Gly Phe Ala Tyr Ala 465 470 475 480	
Tyr Asn Asp Glu Asp Asp Val Ser Thr Lys Pro Trp Gly His Phe Ala 485 490 495	
Gly Arg Val Glu Pro Thr Ser Arg Ser Ser Thr Pro Thr Pro Thr Leu 500 505 510	
Thr Val	
<210> SEQ ID NO 5 <211> LENGTH: 1758 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 5	
gtatetetet ttetetetet eagetetete aaacatgtea ggageaataa eatgetetge 60 ggeegatete geeaceetae ttggeeceaa egeeaeggeg geggeegaet acatttgegg 120	
ccaattaggc accgttaaca acaagttcac cgatgcagcc ttcgccatag acaacaccta 180	
ceteetete tetgeetace tigtettege catgeagete ggettegeta tgettigtge 240	
tggttetgtt agageeaaga ataegatgaa eateatgett aceaatgtee ttgaegetge 300	
ageeggagga etettetaet atetetttgg ttaegeettt geetttggag gateeteega 360	
agggttcatt ggaagacaca actttgctct tagagacttt ccgactccca cagctgatta 420	
ctctttcttc ctctaccaat gggcgttcgc aatcgcggcc gctggaatca caagtggttc 480	

gategeagag aggaeteagt tegtggetta ettgatatae tettetttet taaceggatt	540
tgtttacccg gttgtctctc actggttttg gtccccggat ggatgggcca gtccctttcg	600
ttcagcggat gatcgtttgt ttagcaccgg agccattgac tttgctggct ccggtgttgt	660
tcacatggtt ggtggcatag caggtttatg gggtgctctt attgaaggtc ctcgtcgtgg	720
teggttegag aaaggtggte gegetattge tetgegegge caetetgeet egetagtagt	780
cttaggaacc ttcctcctat ggtttggatg gtatggtttc aaccccggtt ccttcactaa	840
gatactcgtt ccgtataatt ctggttccaa ctacggccaa tggagcggaa tcggccgtac	900
ageggttaac accacactet caggatgeac ageageteta accacactet ttggtaaaeg	960
tctcctatca ggccactgga acgtaacgga cgtttgcaac gggttactcg gtgggtttgc	1020
ggccataacc gcaggttgct ccgtcgtaga gccatgggca gcgattgtgt gcggcttcat	1080
ggcttctgtc gtccttatcg gatgcaacaa gctcgcggag cttgtacaat atgatgatcc	1140
actcgaggca gcccaactac atggagggtg tggcgcgtgg gggttgatat tcgtaggatt	1200
gtttgccaaa gagaagtatc taaacgaggt ttatggcgcc accccgggaa ggccatatgg	1260
actatttatg ggcggaggag ggaagctgtt gggagcacaa ttggttcaaa tacttgtgat	1320
tgtaggatgg gttagtgcca caatgggaac actcttcttc atcctcaaaa ggctcaatct	1380
gettaggate teggageage atgaaatgea agggatggat atgaeaegte aeggtggett	1440
tgettatate taccatgata atgatgatga gteteataga gtggateetg gateteett	1500
ccctcgatca gctactcctc ctcgcgttta attttcaact ttttggtaat ttattaccgt	1560
ttaagtattg tttgggtttt ggttttgaaa tataaatatt tggatgtttt ggtttgttt	1620
aagtgaccta togtottttt gtgtttataa gtgttttagt ttatgttttt tttttttt	1680
ttgaatttta attttacatg cctcggctaa tgtttatgct atttcttaga aatttatata	1740
tacaactttt ggtgatcc	1758
<210> SEQ ID NO 6 <211> LENGTH: 498 <212> TYPE: PRT <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 6	
Met Ser Gly Ala Ile Thr Cys Ser Ala Ala Asp Leu Ala Thr Leu Leu	
1 5 10 15	
Gly Pro Asn Ala Thr Ala Ala Ala Asp Tyr Ile Cys Gly Gln Leu Gly 20 25 30	
Thr Val Asn Asn Lys Phe Thr Asp Ala Ala Phe Ala Ile Asp Asn Thr 35 40 45	
Tyr Leu Leu Phe Ser Ala Tyr Leu Val Phe Ala Met Gln Leu Gly Phe 50 55 60	
Ala Met Leu Cys Ala Gly Ser Val Arg Ala Lys Asn Thr Met Asn Ile 65 70 75 80	
Met Leu Thr Asn Val Leu Asp Ala Ala Ala Gly Gly Leu Phe Tyr Tyr 85 90 95	
Leu Phe Gly Tyr Ala Phe Ala Phe Gly Gly Ser Ser Glu Gly Phe Ile 100 105 110	
Gly Arg His Asn Phe Ala Leu Arg Asp Phe Pro Thr Pro Thr Ala Asp 115 120 125	

Tyr 130	Ser	Phe	Phe	Leu	Tyr 135	Gln	Trp	Ala	Phe	Ala 140	Ile	Ala	Ala	Ala	Gly
Ile 145	Thr	Ser	Gly	Ser	Ile 150	Ala	Glu	Arg	Thr	Gln 155	Phe	Val	Ala	Tyr	Leu 160
Ile 165	Tyr	Ser	Ser	Phe	Leu 170	Thr	Gly	Phe	Val	Tyr 175	Pro	Val	Val	Ser	His
Trp 180	Phe	Trp	Ser	Pro	Asp 185	Gly	Trp	Ala	Ser	Pro 190	Phe	Arg	Ser	Ala	Asp
Asp 195	Arg	Leu	Phe	Ser	Thr 200	Gly	Ala	Ile	Asp	Phe 205	Ala	Gly	Ser	Gly	Val
Val 210	His	Met	Val	Gly	Gly 215	Ile	Ala	Gly	Leu	Trp 220	Gly	Ala	Leu	Ile	Glu
Gly 225	Pro	Arg	Arg	Gly	Arg 230	Phe	Glu	Lys	Gly	Gly 235	Arg	Ala	Ile	Ala	Leu 240
Arg 245	Gly	His	Ser	Ala	Ser 250	Leu	Val	Val	Leu	Gly 255	Thr	Phe	Leu	Leu	Trp
Phe 260	Gly	Trp	Tyr	Gly	Phe 265	Asn	Pro	Gly	Ser	Phe 270	Thr	Lys	Ile	Leu	Val
Pro 275	Tyr	Asn	Ser	Gly	Ser 280	Asn	Tyr	Gly	Gln	Trp 285	Ser	Gly	Ile	Gly	Arg
Thr 290	Ala	Val	Asn	Thr	Thr 295	Leu	Ser	Gly	Cys	Thr 300	Ala	Ala	Leu	Thr	Thr
Leu 305	Phe	Gly	Lys	Arg	Leu 310	Leu	Ser	Gly	His	Trp 315	Asn	Val	Thr	Aab	Val 320
Суз 325	Asn	Gly	Leu	Leu	Gly 330	Gly	Phe	Ala	Ala	Ile 335	Thr	Ala	Gly	Cys	Ser
Val 340	Val	Glu	Pro	Trp	Ala 345	Ala	Ile	Val	Cys	Gly 350	Phe	Met	Ala	Ser	Val
Val 355	Leu	Ile	Gly	Cys	Asn 360	Lys	Leu	Ala	Glu	Leu 365	Val	Gln	Tyr	Aab	Asp
Pro 370	Leu	Glu	Ala	Ala	Gln 375	Leu	His	Gly	Gly	Cys 380	Gly	Ala	Trp	Gly	Leu
Ile 385	Phe	Val	Gly	Leu	Phe 390	Ala	Lys	Glu	Lys	Tyr 395	Leu	Asn	Glu	Val	Tyr 400
Gly 405	Ala	Thr	Pro	Gly	Arg 410	Pro	Tyr	Gly	Leu	Phe 415	Met	Gly	Gly	Gly	Gly
Lys 420	Leu	Leu	Gly	Ala	Gln 425	Leu	Val	Gln	Ile	Leu 430	Val	Ile	Val	Gly	Trp
Val 435	Ser	Ala	Thr	Met	Gly 440	Thr	Leu	Phe	Phe	Ile 445	Leu	Lys	Arg	Leu	Asn
Leu 450	Leu	Arg	Ile	Ser	Glu 455	Gln	His	Glu	Met	Gln 460	Gly	Met	Asp	Met	Thr
Arg 465	His	Gly	Gly	Phe	Ala 470	Tyr	Ile	Tyr	His	Asp 475	Asn	Asp	Asp	Glu	Ser 480
His 485	Arg	Val	Asp	Pro	Gly 490	Ser	Pro	Phe	Pro	Arg 495	Ser	Ala	Thr	Pro	Pro
Arg	Val														

<210> SEQ ID NO 7 <211> LENGTH: 1428 <212> TYPE: DNA

-continued	
<213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 7	
atggccggag cttacgatcc aagcttgccg gaggttcctg aatggctcaa caaaggagac	60
aacgcgtggc agctcacggc agcgactctg gttggtctac agagtatgcc aggtcttgtt	120
atcctctatg cctccatcgt caagaagaaa tgggctgtga attcagcttt tatggctctt	180
tacgettteg eegeegttet tetetgttgg gtteteetet gttacaaaat ggettttgga	240
gaagagettt tgeegttttg gggeaaaggt ggteeagett tegaceaagg ataeettaag	300
ggacaagcaa agatcccaaa tagtaatgtg gcggcgccgt attttccgat ggcgacgttg	360
gtgtattttc agttcacatt cgcggcgata acgacgatac ttgtggcggg atctgtgttg	420
gggaggatga atattaaagc atggatggct tttgtgccat tgtggttgat ctttagctac	480
acagttggag cttatagtat atggggaggt gggtttctgt atcagtgggg agttattgat	540
tattccggcg gttatgttat tcatctctcc tccggtgttg ccggtttcgt cgctgcttac	600
tgggtaggac caaggeetaa ggetgacaga gagagattee caeegaacaa tgttetteta	660
atgettgetg gagetggaet tttatggatg ggatggteeg gttttaaegg tggtgeteet	720
tacgcggcca acttaacete etetategee gtgttaaaca ecaacetete ggeegeeaca	780
ageeteettg tatggactae acttgatgte atettetttg geaaacette tgteategga	840
gcaattcaag gcatggttac tggcttagcc ggcgtcactc ccggagcagg tttgatccaa	900
acatgggcag ctataataat tggagtagtc tcaggaacag ctccatgggc ctctatgatg	960
atcattcaca agaaatccgc tctccttcaa aaggtggatg atacattagc ggtgttttac	1020
acacacgccg tggctggttt acttggtgga ataatgacag ggttgtttgc acaccctgat	1080
ctctgcgttt tggtacttcc tctcccagcg accagaggag ctttctacgg tggcaatggc	1140
ggcaaacagc ttttgaaaca gttggctgga gctgccttca ttgccgtctg gaatgtggtg	1200
tcgactacta tcattctact cgctattagg gtgttcatac cattgagaat ggctgaggaa	1260
gageteggga ttggagaega egeageaeat ggggaagaag ettatgetet ttggggagat	1320
ggagagaagt ttgatgctac aaggcatgtg caacagtttg agagagatca agaagctgct	1380
catcettett atgtteatgg tgetagaggt gteaceattg ttetatga	1428
<210> SEQ ID NO 8 <211> LENGTH: 475 <212> TYPE: PRT <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 8	
Met Ala Gly Ala Tyr Asp Pro Ser Leu Pro Glu Val Pro Glu Trp Leu 1 5 10 15	
Asn Lys Gly Asp Asn Ala Trp Gln Leu Thr Ala Ala Thr Leu Val Gly 20 25 30	
Leu Gln Ser Met Pro Gly Leu Val Ile Leu Tyr Ala Ser Ile Val Lys 35 40 45	
Lys Lys Trp Ala Val Asn Ser Ala Phe Met Ala Leu Tyr Ala Phe Ala 50 55 60	
Ala Val Leu Leu CysTrp Val Leu Leu CysTyr LysMet Ala Phe Gly65707580	
Glu Glu Leu Leu Pro Phe Trp Gly Lys Gly Gly Pro Ala Phe Asp Gln	

-continued

											-	con	tin	ued	
85					90					95					
Gly 100		Leu	ГÀа	Gly	Gln 105	Ala	Lys	Ile	Pro	Asn 110	Ser	Asn	Val	Ala	Ala
Pro 115	-	Phe	Pro	Met	Ala 120	Thr	Leu	Val	Tyr	Phe 125	Gln	Phe	Thr	Phe	Ala
Ala 130	Ile	Thr	Thr	Ile	Leu 135	Val	Ala	Gly	Ser	Val 140	Leu	Gly	Arg	Met	Asn
Ile 145		Ala	Trp	Met	Ala 150	Phe	Val	Pro	Leu	Trp 155	Leu	Ile	Phe	Ser	Tyr 160
Thr 165	Val	Gly	Ala	Tyr	Ser 170	Ile	Trp	Gly	Gly	Gly 175	Phe	Leu	Tyr	Gln	Trp
Gly 180	Val	Ile	Asp	Tyr	Ser 185	Gly	Gly	Tyr	Val	Ile 190	His	Leu	Ser	Ser	Gly
Val 195	Ala	Gly	Phe	Val	Ala 200	Ala	Tyr	Trp	Val	Gly 205	Pro	Arg	Pro	Гла	Ala
Asp 210	Arg	Glu	Arg	Phe	Pro 215	Pro	Asn	Asn	Val	Leu 220	Leu	Met	Leu	Ala	Gly
Ala 225	Gly	Leu	Leu	Trp	Met 230	Gly	Trp	Ser	Gly	Phe 235	Asn	Gly	Gly	Ala	Pro 240
Tyr 245		Ala	Asn	Leu	Thr 250	Ser	Ser	Ile	Ala	Val 255	Leu	Asn	Thr	Asn	Leu
Ser 260	Ala	Ala	Thr	Ser	Leu 265	Leu	Val	Trp	Thr	Thr 270	Leu	Asp	Val	Ile	Phe
Phe 275	Gly	Lys	Pro	Ser	Val 280	Ile	Gly	Ala	Ile	Gln 285	Gly	Met	Val	Thr	Gly
Leu 290	Ala	Gly	Val	Thr	Pro 295	Gly	Ala	Gly	Leu	Ile 300	Gln	Thr	Trp	Ala	Ala
Ile 305	Ile	Ile	Gly	Val	Val 310	Ser	Gly	Thr	Ala	Pro 315	Trp	Ala	Ser	Met	Met 320
Ile 325	Ile	His	Гла	Lys	Ser 330	Ala	Leu	Leu	Gln	Lys 335	Val	Asp	Asp	Thr	Leu
Ala 340	Val	Phe	Tyr	Thr	His 345	Ala	Val	Ala	Gly	Leu 350	Leu	Gly	Gly	Ile	Met
	Gly	Leu	Phe	Ala	His 360	Pro	Asp	Leu	Суз		Leu	Val	Leu	Pro	Leu
	Ala	Thr	Arg	Gly	Ala 375	Phe	Tyr	Gly	Gly		Gly	Gly	Lys	Gln	Leu
	Lys	Gln	Leu	Ala	Gly 390	Ala	Ala	Phe	Ile		Val	Trp	Asn	Val	Val 400
	Thr	Thr	Ile	Ile	Leu 410	Leu	Ala	Ile	Arg		Phe	Ile	Pro	Leu	
	Ala	Glu	Glu	Glu	410 Leu 425	Gly	Ile	Gly	Asp		Ala	Ala	His	Gly	Glu
Glu	Ala	Tyr	Ala	Leu	425 Trp 440	Gly	Asp	Gly	Glu		Phe	Asp	Ala	Thr	Arg
	Val	Gln	Gln	Phe	Glu	Arg	Asp	Gln	Glu	Ala	Ala	His	Pro	Ser	Tyr
	His	Gly	Ala	Arg	455 Gly	Val	Thr	Ile	Val						
465					470					475					
<21	0> SH	EQ II	NO NO	9											

- <211> LENGTH: 1491 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 9	
atgreaggag ctattacttg ctctgcggct gateteteag cectactegg cecaaatg	ICC 60
acggcagcgg ctgactacat ttgcggccag ttgggttccg ttaacaacaa gtttaccg	
gcagcetacg etatagaeaa caegtaeete teteteetee etaagaeaa atagaeaa atagaeaa	5
cagetegget tegetatget ttgtgetgge teegttagag etaagaacae gatgaaca atgeteacta atgteettga tgetgeagee ggaggaetet tetaetaeet etttggtt	
gcatttgeet ttggtgaate etcegatgga tteattggaa gacacaaett tggtette	
aactttccga ctctcacctc ggattactcc ttcttcctct accaatgggc gtttgcaa	
gcagcegetg gaatcaccag eggetecatt geogagagga ctaagttegt ggegtatt	
atatactett ettttttgae eggettegtt tacceagttg teteteactg gttetggt	5
ccggatggat gggctagtcc cttccgttca gaagaccgtt tgtttggcac tggagcca	
gactttgctg ggtcaggtgt tgttcacatg gttggtggta tcgcaggatt atggggtg	
cttattgaag geeeteggat tggteggttt eetgatgggg gteatgetat tgetetge	
ggccactetg cetcactegt egtettaggg acettectte tetggtttgg ttggtacg	-
ttcaaccctg gttccttcac caagatactc attccctaca attctggttc caactatg	
caatggagtg gaataggccg caccgcggtt acaactacac tctcgggatg cacagcgg	
ctaaccacac tetteggaaa acgteteeta teaggeeaet ggaacgtaac tgacgttt	
aacgggttac tcggagggtt tgcggccata acggcaggtt gctctgtggt tgatccat	-
gcagcgatcg tatgtggctt cgtggcttcc ctcgtcctta tcggatgcaa caagctcg	55
gagetettaa aatatgacga tecaettgag geogeacaae tacaeggagg gtgtggtg	
tggggtttga tatttgtagg actgtttgca aaagagaagt atataaatga ggtttacg	
gcgagcccag gaaggcacta cgggctattt atgggcggag gagggaagct attgggag	
caactggttc aaataattgt gattgttgga tgggttagtg ccacaatggg aacactct	
ttcatcctca aaaagctcaa tttgcttagg atctcggagc agcatgaaat gcgaggaa	
gatttagcag gtcatggtgg ttttgcttat atctaccatg ataatgatga tgattcca	5
ggagtgcctg gatetecagt acctegtgeg cetaaceete cageegtttg a	1491
<pre><210> SEQ ID NO 10 <211> LENGTH: 496 <212> TYPE: PRT <213> ORGANISM: Arabidopsis thaliana</pre>	
<400> SEQUENCE: 10	
Met Ser Gly Ala Ile Thr Cys Ser Ala Ala Asp Leu Ser Ala Leu Leu 1 5 10 15	L
Gly Pro Asn Ala Thr Ala Ala Ala Asp Tyr Ile Cys Gly Gln Leu Gly 20 25 30	
Ser Val Asn Asn Lys Phe Thr Asp Ala Ala Tyr Ala Ile Asp Asn Thr 35 40 45	
Tyr Leu Leu Phe Ser Ala Tyr Leu Val Phe Ala Met Gln Leu Gly Phe 50 55 60	

											-	con	tın	ued						
Ala 65	Met	Leu	Суз	Ala	Gly 70	Ser	Val	Arg	Ala	Lys 75	Asn	Thr	Met	Asn	Ile 80					
Met 85	Leu	Thr	Asn	Val	Leu 90	Asp	Ala	Ala	Ala	Gly 95	Gly	Leu	Phe	Tyr	Tyr					
Leu 100	Phe	Gly	Tyr	Ala	Phe 105	Ala	Phe	Gly	Glu	Ser 110	Ser	Asp	Gly	Phe	Ile					
Gly 115		His	Asn	Phe	Gly 120	Leu	Gln	Asn	Phe	Pro 125	Thr	Leu	Thr	Ser	Asp					
Tyr 130	Ser	Phe	Phe	Leu	Tyr 135	Gln	Trp	Ala	Phe	Ala 140	Ile	Ala	Ala	Ala	Gly					
Ile 145	Thr	Ser	Gly	Ser	Ile 150	Ala	Glu	Arg	Thr	Lys 155	Phe	Val	Ala	Tyr	Leu 160					
Ile 165	Tyr	Ser	Ser	Phe	Leu 170	Thr	Gly	Phe	Val	Tyr 175	Pro	Val	Val	Ser	His					
Trp 180	Phe	Trp	Ser	Pro	Asp 185	Gly	Trp	Ala	Ser	Pro 190	Phe	Arg	Ser	Glu	Asp					
Arg 195	Leu	Phe	Gly	Thr	Gly 200	Ala	Ile	Aap	Phe	Ala 205	Gly	Ser	Gly	Val	Val					
	Met	Val	Gly	Gly		Ala	Gly	Leu	Trp		Ala	Leu	Ile	Glu	Gly					
	Arg	Ile	Gly	Arg		Pro	Asp	Gly	Gly		Ala	Ile	Ala	Leu	Arg 240					
		Ser	Ala	Ser		Val	Val	Leu	Gly		Phe	Leu	Leu	Trp						
	Trp	Tyr	Gly	Phe		Pro	Gly	Ser	Phe		ГЛа	Ile	Leu	Ile	Pro					
		Ser	Gly	Ser		Tyr	Gly	Gln	Trp		Gly	Ile	Gly	Arg	Thr					
	Val	Thr	Thr	Thr		Ser	Gly	Суз	Thr		Ala	Leu	Thr	Thr	Leu					
	Gly	Lys	Arg	Leu		Ser	Gly	His	Trp		Val	Thr	Asp	Val	Cys 320					
		Leu	Leu	Gly		Phe	Ala	Ala	Ile		Ala	Gly	Сүз	Ser						
		Pro	Trp	Ala		Ile	Val	Суз	Gly		Val	Ala	Ser	Leu	Val					
Leu	Ile	Gly	Сүз	Asn	Lys	Leu	Ala	Glu	Leu	Leu	ГÀа	Tyr	Asp	Asp	Pro					
		Ala	Ala	Gln		His	Gly	Gly	Cys		Ala	Trp	Gly	Leu	Ile					
		Gly	Leu	Phe		Lys	Glu	Lys	Tyr	380 Ile 395	Asn	Glu	Val	Tyr	-					
	Ser	Pro	Gly	Arg		Tyr	Gly	Leu	Phe	Met	Gly	Gly	Gly	Gly	400 Lys					
	Leu	Gly	Ala	Gln		Val	Gln	Ile	Ile		Ile	Val	Gly	Trp	Val					
	Ala	Thr	Met	Gly		Leu	Phe	Phe	Ile		Lys	Lys	Leu	Asn	Leu					
		Ile	Ser	Glu		His	Glu	Met	Arg	-	Met	Aap	Leu	Ala	Gly					
450 His		Gly	Phe	Ala	455 Tyr	Ile	Tyr	His	Asp	460 Asn	Asp	Asp	Asp	Ser	Ile					

						_
465	470	475		480		
Gly Val Pro Gly Se 485	er Pro Val Pro 490	Arg Ala Pro 495	Asn Pro Pro	Ala Val		
105	190	495				
<210> SEQ ID NO 11						
<211> LENGTH: 1515 <212> TYPE: DNA		4				
<213> ORGANISM: Ar	-	.iana				
<400> SEQUENCE: 11						
atggegtegg etetete	ttg ctctgcctct	gatctgattc	cattactatc	aggtggagcc	60	
aacgccaccg cagcago	agc cgccgctgaa	a tacatctgcg	ggagattcga	cacagtcgcc	120	
gggaaattca ctgatgo	ggc ttacgcaato	gacaacactt	accttctctt	ctctgcttac	180	
ctcgttttcg cgatgca	aget eggttteged	e atgetetgtg	ccggatccgt	acgtgcaaaa	240	
aacacgatga acattat	gct cacgaacgto	c atcgacgctg	cagccggagg	tctcttctat	300	
tatetetteg gtttege	ttt tgettttgga	a tctccttcta	atggattcat	cggaaaacat	360	
ttctttggaa tgtatga	attt tcctcaacct	acgtttgatt	atccttattt	tctatatcaa	420	
tggactttcg ctatcgc	cgc cgctggaato	c acgagtggtt	cgatagcgga	gaggactcag	480	
ttcgttgcgt atttgat	cta ttettette	c ttgacgggtc	ttgtttaccc	gattgtgtcg	540	
cattggtttt ggtcttc	tga tggttgggcg	g teteeggeta	gatctgagaa	ccttctgttt	600	
caatcaggtg tgattga	attt cgctggctct	ggtgttgttc	atatggttgg	tggtattgct	660	
ggtttatggg gagcttt	aat tgaaggacct	aggattggtc	ggtttggagt	tgggggtaaa	720	
ccggttacgt tgcgtgg	stca tagtgctace	g ttggttgttc	ttggaacgtt	tttgttatgg	780	
ttcggatggt acgggtt	taa cccgggctcg	g tttgcaacta	ttttaaggc	gtatggggag	840	
actccaggga gctcgtt	tta cggacaatge	g agcgcagttg	ggagaaccgc	ggtaacaact	900	
acgttagctg gttgcac	ggc ggcgttaac	g actctgtttg	ggaaaagact	tattgatggg	960	
tattggaatg taactga	atgt ttgcaatggt	t ttgttaggcg	ggtttgcggc	tataactagc	1020	
ggatgttcgg ttgtgga	acc gtgggctgcg	g cttgtatgtg	ggtttgtagc	cgcatgggtg	1080	
ctgatgggat gcaatag	jact agcggaaaag	g ctccaatttg	atgatccgtt	ggaagcggct	1140	
cagetteacg gtggttg	tgg tgcgtggggg	g attatttca	ccgggttgtt	cgcggagaaa	1200	
agatacattg ccgagat					1260	
ggaggaggta ggttgct					1320	
agtgtgacaa tggggac					1380	
gcggaggatg agatago	-				1440	
acagaagatg agattag				-	1500	
aatgtaggtg tttga		,	555-55-54		1515	
<210> SEQ ID NO 12 <211> LENGTH: 504	:					
<212> TYPE: PRT	abidonaia thal	iana				
<213> ORGANISM: Ar	-	. 1 4114				
<400> SEQUENCE: 12			Lou Ilo Des			
Met Ala Ser Ala Le 1 5	eu ser cys ser	10	Leu IIe Pro	15 Leu Leu		

											-	con	tin	led	
Ser 20	Gly	Gly	Ala	Asn	Ala 25	Thr	Ala	Ala	Ala	Ala 30	Ala	Ala	Glu	Tyr	Ile
Суя 35	Gly	Arg	Phe	Aap	Thr 40	Val	Ala	Gly	Lys	Phe 45	Thr	Asp	Ala	Ala	Tyr
Ala 50	Ile	Asp	Asn	Thr	Tyr 55	Leu	Leu	Phe	Ser	Ala 60	Tyr	Leu	Val	Phe	Ala
Met 65	Gln	Leu	Gly	Phe	Ala 70	Met	Leu	Сув	Ala	Gly 75	Ser	Val	Arg	Ala	Lys 80
Asn 85	Thr	Met	Asn	Ile	Met 90	Leu	Thr	Asn	Val	Ile 95	Asp	Ala	Ala	Ala	Gly
Gly 100	Leu	Phe	Tyr	Tyr	Leu 105	Phe	Gly	Phe	Ala	Phe 110	Ala	Phe	Gly	Ser	Pro
Ser 115	Asn	Gly	Phe	Ile	Gly 120	Lys	His	Phe	Phe	Gly 125	Met	Tyr	Asp	Phe	Pro
Gln 130	Pro	Thr	Phe	Asp	Tyr 135	Pro	Tyr	Phe	Leu	Tyr 140	Gln	Trp	Thr	Phe	Ala
Ile 145	Ala	Ala	Ala	Gly	Ile 150	Thr	Ser	Gly	Ser	Ile 155	Ala	Glu	Arg	Thr	Gln 160
Phe 165	Val	Ala	Tyr	Leu	Ile 170	Tyr	Ser	Ser	Phe	Leu 175	Thr	Gly	Leu	Val	Tyr
Pro 180	Ile	Val	Ser	His	Trp 185	Phe	Trp	Ser	Ser	Asp 190	Gly	Trp	Ala	Ser	Pro
Ala 195	Arg	Ser	Glu	Asn	Leu 200	Leu	Phe	Gln	Ser	Gly 205	Val	Ile	Asp	Phe	Ala
Gly 210	Ser	Gly	Val	Val	His 215	Met	Val	Gly	Gly	Ile 220	Ala	Gly	Leu	Trp	Gly
Ala 225	Leu	Ile	Glu	Gly	Pro 230	Arg	Ile	Gly	Arg	Phe 235	Gly	Val	Gly	Gly	Lys 240
Pro 245	Val	Thr	Leu	Arg	Gly 250	His	Ser	Ala	Thr	Leu 255	Val	Val	Leu	Gly	Thr
Phe 260	Leu	Leu	Trp	Phe	Gly 265	Trp	Tyr	Gly	Phe	Asn 270	Pro	Gly	Ser	Phe	Ala
Thr 275	Ile	Phe	Lys	Ala	Tyr 280	Gly	Glu	Thr	Pro	Gly 285	Ser	Ser	Phe	Tyr	Gly
Gln 290	Trp	Ser	Ala	Val	Gly 295	Arg	Thr	Ala	Val	Thr 300	Thr	Thr	Leu	Ala	Gly
Сув 305	Thr	Ala	Ala	Leu	Thr 310	Thr	Leu	Phe	Gly	Lys 315	Arg	Leu	Ile	Asp	Gly 320
Tyr 325	Trp	Asn	Val	Thr	Asp 330	Val	Суз	Asn	Gly	Leu 335	Leu	Gly	Gly	Phe	Ala
Ala 340	Ile	Thr	Ser	Gly	Cys 345	Ser	Val	Val	Glu	Pro 350	Trp	Ala	Ala	Leu	Val
	Gly	Phe	Val	Ala	Ala 360	Trp	Val	Leu	Met	Gly 365	Сүз	Asn	Arg	Leu	Ala
Glu 370	Lys	Leu	Gln	Phe	Asp 375	Asp	Pro	Leu	Glu	Ala 380	Ala	Gln	Leu	His	Gly
Gly 385	Суз	Gly	Ala	Trp	Gly 390	Ile	Ile	Phe	Thr	Gly 395	Leu	Phe	Ala	Glu	Lys 400
Arg 405	Tyr	Ile	Ala	Glu	Ile 410	Phe	Gly	Gly	Asp	Pro 415	Asn	Arg	Pro	Phe	Gly
	Leu	Met	Gly	Gly	Gly	Gly	Arg	Leu	Leu	Ala	Ala	His	Val	Val	Gln

0 425 430 a Leu Val Ile Thr Gly Trp Val Ser Val Thr Met Gly Thr Leu Phe 440 445 a lle Leu His Lys Leu Lys Leu Leu Arg Ile Pro Ala Glu Asp Glu 455 416 Gly Val Asp Pro Thr Ser His Gly Gly Leu Ala Tyr Met Tyr 470 475 475 475 475 475 475 475 475
5 440 445 a Ile Leu His Lys Leu Lys Leu Leu Arg Ile Pro Ala Glu Asp Glu 455 470 475 480 400 455 470 475 480 470 470 480 47
 455 460 450 A460 450 460 450 A A G U Val Asp Pro Thr Ser His Gly Cly Leu Ala Tyr Met Tyr 470 470 470 470 475 480 r Glu Asp Glu Ile Arg Asn Gly Ile Met Val Arg Arg Val Gly Gly 495 495 495 480 p Asn Asp Pro Asn Val Gly Val A SEQ ID NO 13 11> LENGTH: 2073 12> 777E: DNA CCCCCCC accectecc attoccctccc cotegegtat ccacacttt cacaegegae 60 ccggagaga cagagegege gegegecega aagatgtega egtgegege gggactgge 120 getgeteg geceggegeg gegegecega aagatgtega egtgeggege gggactgge 120 getgeteg geceggegeg gegegecega aagatgtega egtgegege gtgegege 120 getgeteg eceggegeg gegegecega aagatgtega egtgegege gtgegegege 120 getgeteg eceggegege tegtcegg ccaagaacac catgaacatc 300 geteacea acgtgetega egegegege ggggegetet tetactact etteggette 360 ccttegee tegecaage tecetegeag acgatgtet eggeedge 420 cctgecaaga 420 cctgecaaga 420 cctgecaaga agatgtega egegeteteg ecegtegege tegecaagaa cacaetgt eggeedge tegecaage tecetegeag accagtge tegecaaga (100 cctgecaacg gggegedet teaceeggg gedeacege tegecaacge teegecaaga accaetgt eggeedge tegecaaga 420 cctgecaacg gggeedee tegecaage teegecaaga accagtge ecegtegege tegecaaga (100 cctaecae gggeedee tegecaage teegecage tegecaaga (100 cctaecae gggeedee tegecaage teegecage (100 cctaecae gggeedee gegeedee teegeage (100 cctaecae gggeedee gggeedee gegegeede gegegeedee (100 cctaecae gggeedee gggetege tegecaege tegecaege tegecaege (100 cctaecae gggeedee gggetege tegecaege tegecaege gggeedee (100 ccgaegeg (100 cctaecae gegegeedee gegegeedee (100 ccgaegeg (100 ccgaecae gegegeedee gegegeedee (100 ccgaegeg (100 ccgaecae gegeedee (100 ccgaegeg (100 ccgaecae gegeedee (100 ccgaecae (100 c
s 1 470 475 480 r Glu Asp Glu Ile Arg Asm Gly Ile Met Val Arg Arg Val Gly Gly 490 Asm Asp Pro Asm Val Gly Val 0 Ass Asp Pro Asm Val Gly Val 0 Asp Asp Pro Asm Asp Pro Asm Asp Pro Asm Asp
490 495 495 495 495 495 495 495 495 495 495
10) SEQ ID NO 13 11) LENGTH: 2073 12> TYPE: DNA 13> ORGANISM: Zea mays DO> SEQUENCE: 13 DOOS SEQUENCE: 13 DOS GUEGGGGGGG goggggggggggggggggggggggggggggg
<pre>11> LENGTH: 2073 12> TYPE: DNA 13> ORGANISM: Zea mays 000> SEQUENCE: 13 cccgcgcca caccetecea ateccetece cetegegtat ccacaettit cacaegegae 60 cggagaga cagagegege gegegaegee acggaetaee tgtgeggege ggaeetggee 120 getegete geceggegeg gegaaegee acggaetaee tgtgegggea gttegeggae 180 ggeetege eggtggaege cacgtaeetg etetteegg ectaegete gttegeetg 240 getegget tegecatget gtgegeegge teegteegg ecaagaaeae catgaaeate 300 ggeteacea acgtgetega egeegeegg gggggggetet tetaetaeet etteggette 360 cctdegeet tegecatget gtgegeegge teetteetge ageagteet egeetaegt 420 cctdegeet ggaeegget egaetaege teetteet accagtggge ettegeetge 480 ccggeeggg geateaegte gggetegte taeceegtg tgtegeetg feetteetge 540 cctaeteeg egteetgae ggggteget taeceegtg tgtegeetg feetteetgg feetggetge 660 cgaeegget gggeeggee cageegeege teeggeeege tgetettegg feetggeget 720 geteateg agggeeggee categggege ttegaeeag ceggeegete egtggggete 780 geteateg agggeegeet egtegteet ggeaeette tgetggtgt eggetggtae </pre>
cocgegeeacacecteeaatcecteeccetegegtatceacattttcacaegegae60coggegeeacagagegegegegegeeeaaagatgtegacggegeggeggacttggeg120getgeteggeceggegeggeggaaaegeeaeggactaeetgtgeggggaa180getegetecageatgeecacetteegegttegeggaa240geteggettegecatgetgtegegeeggececatgeege240geteggettegecatgetgtegeceggececatgeegecetateegegeteggettegecatgegtegecegggegegeeggececatgeegegeteggettegecatgeggegeggegegegeggececatgegegeteggettegecatgeggegeggeggggggggecetategeageteggettegecatgeggegegggggggggggggggggetetateteegeteggettegecatgeggegeggggggggggggggggggggggggggggggggggggg
cggagagacagagcgcgcgcgcgcccgaaagatgtcgacgtgcgcggcggacctggcgg120gctgctcggcccggcggcggcgacccggcggggacagttgggggacg180ggcctcgcggtggacgccacgtacctgctcttctcggcctacccgtgttcgccatgggcctggcttcgccatgctgtgggccggcggggggggggggggggggggggggggggggggg
getgeteg geceggegge ggegaacgee acggactaee tgtgegggea gttegeggae 180 ggeetegge tegeeatget gtgegeegge teegteegg eeaagaacae catgaacate 300 getegget tegeeatget gtgegeegge ggggegetet tetaetaeet etteggette 360 eettegeet teggeacgee etceategge teetteetggea ageagteett eggeetaag 420 eettegeet teggeacgee etceategge teetteet aceagtggge etteggeeatg 420 eetgeeeggg geateacgte ggggeteett etteeteet aceagtggge etteggeeate 480 eetgeegg geateacgte ggggtegte taeceegtgg tgtegeactg egeetaeet 540 etaeteeg egtteetgae ggggttegte taeceegtgg tgtegeactg gttetggtee 660 egaeegget gggeeggege eageegeaeg teeggeeege tgetettegg teeggegte 660 egaeetge eggeeteegg egtegteeae atggtegge geategeggg gettggggge 720 geteateg agggeeeeeg eategggege ttegaeegg eetgegggt eggegeete 780 ggeteateg aggegeegt egtggtgete ggeaeettee tgetgtggtt eggetggtae 840
<pre>ggoctccg cggtggacgc cacgtacctg ctcttctcgg cctacctcgt gttcgccatg 240 gctcggct tcgccatgct gtgcgccggc tccgtccgcg ccaagaacac catgaacatc 300 gctcacca acgtgctcga cgccgccgcg ggggcgctct tctactacct cttcggcttc 360 cttcgcct tcggcacgcc ctccaacggc ttcatcggca agcagttctt cgggctcaag 420 cctgccca ggaccggctt cgactacgac ttcttcctct accagtgggc cttcgccatc 480 cgccgcgg gcatcacgtc ggggttcgtc taccccgtgg tgtcgcactg cgcctacctc 540 ctactccg cgttcctgac ggggttcgtc taccccgtgg tgtcgcactg gttctggtcc 600 cgacggct gggccggcg cagccgcacg tccggccgc tgctcttcgg gtccggcgt 660 cgacttcg ccggctccgg cgtcgtccac atggtcggcg gcatcgcgg gctgtggggc 720 gctcatcg agggcccccg catcgggcgc ttcgaccacg ccggccgct cgtggcgtc 780 gggccaca gcgcgtcgt cgtggtgct ggcaccttc tgctgtggtt cggctggtac 840</pre>
getegget tegeeatget gtgegeegge teegteegeg ecaagaacae eatgaacate 300 geteacea aegtgetega egeegeegeg ggggegetet tetactaeet etteggette 360 eettegeet teggeaegee etceaaegge tteateggea ageagttett egggeteaag 420 eetgeeeg ggaeegget eggeteeate geegagegga eceagttegt egeetaeete 540 eetaeteeg egtteetgae ggggttegte taeeegtgg tgtegeaetg gttetggtee 600 egaeegget gggeeggege eageegaeg teeggeege tgetettegg gteeggegte 660 egaeetteg eeggeteegg egtegteeaa atggteggeg geategeggg getgtgggge 720 geteateg agggeeeeg eategggege ttegaeeaeg eeggeegte egtggggete 780 gggeeaea gegegteget egtggtgete ggeaeettee tgetgtggtt eggetggtae 840
geteacea acgtgetega egeegeegeg ggggegetet tetaceet etteggette 360 ettegeet teggeacgee etceaacgge tteateggea ageagttett egggeteaag 420 eetgeegegg geateacgte egggeteet egeegagegga eeeagtegt egeetaecte 540 eegaegget gggeeggege eageegeaeg teeggeege tgetetegg gteeggegte 660 egaeegget gggeeggege eageegeaeg teeggeege tgetettegg gteeggegte 660 egaeetteg eeggeteegg egtegteeae atggteggeg geategeggg getgtgggge 720 geteateg agggeeeeeg eategggege ttegaeeaeg eeggeegete 780 gggeeaea gegegteget egtggteete ggeaeettee tgetgtggtt eggetggtae 840
cttcgccttcggcacgccctccaacggcttcatcggcaagcagttcttcgggctcaag420cctgcccaggaccggcttcgactacgacttcttcctctaccagtgggc480cgccgcggggcatcacgtcgggctccatcgccgaggggacccagttcgt540ctactccgcgttcctgacggggttcgtctaccccgtggtgtcgcactg540cgacggctggggctggcgccagccgcgggtaccccgtggtgtcgcactg540cgacggctggggctggcgccagccgcgggtaccccgtggtgtcgcactg600cgacggctgggccggcgccagccgccgctgctcttcgg660cgacttcgccggctccggcgtcgtccacatggtcggcggcacggcg720gctcatcgagggcccccgcatcgggcgctcgaccacgcggcggcgc780gggccacagcgcgtcgtcgtggtgctcggcaccttcctgctgtggtac840
cetgecea ggaeeggett egaetaegae ttetteetet aceagtggge etteggeeate 480 egeeggeg geateaegte gggeteeate geegagegga eceagttegt egeetaeete 540 etaeteeg egtteetgae ggggttegte taeeeegtgg tgteggeaetg gttetggtee 600 egaeegget gggeeggege eageegeaeg teeggeeege tgetettegg gteeggegte 660 egaeetteg eeggeteegg egtegteeae atggteggeg geategeggg getgtgggge 720 geteateg agggeeeeeg eategggege ttegaeeaeg eeggeegete egtggegete 780 gggeeaea gegegteget egtggtgete ggeaeettee tgetgtggtt eggetggtae 840
cgocgogg gcatcacgtc gggotccatc gccgagcgga cccagttcgt cgcctacetc 540 ctactccg cgtteetgae ggggttegte taeeeegtgg tgtegeaetg gttetggtee 600 cgaeegget gggeeggege eageegeaeg teeggeeege tgetettegg gteeggegte 660 cgaetteg eeggeteegg egtegteeae atggteggeg geategeggg getgtgggge 720 geteateg agggeeeeeg eategggege ttegaeeaeg eeggeegete egtggegete 780 gggeeaea gegegteget egtggtgete ggeaeettee tgetgtggtt eggetggtae 840
ctacteeg egtteetgae ggggttegte taeeeegtgg tgtegeaetg gttetggtee 600 egaegget gggeeggege eageegeaeg teeggeeege tgetettegg gteeggegte 660 egaetteg eeggeteegg egtegteeae atggteggeg geategeggg getgtggggge 720 geteateg agggeeeeeg eategggege ttegaeeaeg eeggeegete egtggegete 780 gggeeaea gegegteget egtggtgete ggeaeettee tgetgtggtt eggetggtae 840
cgacgget gggeeggege eageeggeaeg teeggeegge tgetettegg gteeggegge 660 egaetteg eeggeteegg egtegteeae atggteggeg geategeggg getgtgggge 720 geteateg agggeeeeeg eategggege ttegaeeaeg eeggeegete egtggegete 780 gggeeaea gegegteget egtggtgete ggeaeettee tgetgtggtt eggetggtae 840
cgactteg eeggeteegg egtegteeae atggteggeg geategeggg getgtgggge 720 geteateg agggeeeeeg eategggege ttegaceaeg eeggeegete egtggegete 780 gggeeaea gegegteget egtggtgete ggeaeettee tgetgtggtt eggetggtae 840
ggggccaca gcgcgtcgct cgtggtgctc ggcaccttcc tgctgtggtt cggctggtac 840
gggecaca gegegteget egtggtgete ggeaeettee tgetgtggtt eggetggtae 840
gttcaacc ccgggtcctt caccaccatc ctcaagtcgt acggccccgc cgggaccgtc 900
cgggcagt ggtcggccgt gggccgcacc gccgtcacca ccaccctcgc cggcagcgtc 960
cgcgctca ccacgctgtt cgggaagcgg ctccagacgg gccactggaa cgtggtggac 1020
ctgcaacg gcctcctcgg cgggttcgcg gccatcacgg ccgggtgcag cgtggtggag 1080
gtgggegg eegteatetg egggttegtg teegegtggg tgeteategg egeeaaegee 1140
cgcggcgc gcttcaggtt cgacgacccg ctggaggcgg cgcagctgca cggcgggtgt 1200
cgcctggg gcgtcctctt cacggggctc ttcgcgaggc gaaagtacgt ggaggagatc 1260
cggcgccg ggaggcccta cgggctgttc atgggcggcg gcgggaagct cctcgccgcg 1320
gatcatec agateetggt gategeeggg tgggtgaget geaceatggg eeegetette 1380
cgcgctca agaagctggg cctgctgcgc atctcggccg acgacgagat gtccggcatg 1440
cctgaccc ggcacggcgg cttcgcctac gtctaccacg acgaggaccc tggcgacaag 1500
cggggttg gtgggttcat gctcaagtcc gcgcagaacc gtgtcgagcc ggcggcggcg 1560

gtggcggcgg cgaccagcag ccaggtgtaa aaaaaaaatc aggagcaaat tgaaaccgag ctgaagttac gtgcttgcct ttttcagtat gttgtcgcgt atcacgtttg aggtggatcg tatctgccgg tcagtacgca gtgtttgggc aaatacttgg ctacttggga gtcgcaagaa attgtgtaaa ttatatagag gaggatggcg acgaagcacg catgtgttac gtagttgggg tttgtgtgca catggtggtg ggcagggggct aggagagggt ttatctttag gttattttcg tagtggaatg aatcttatga tcggatatcc atcgtcggaa ggtgtggcgg gctgctggtc aagataggtg gcttctatga ctatgagggt tgaaacaaca agtggacgat tctgtcctgt ggtcactgct catcatccaa tctagcggct ttgacggtcg tgccttttta gtatcaataa tattattcca agtttaaaaa aaaaaaaaaa aaa <210> SEQ ID NO 14 <211> LENGTH: 498 <212> TYPE: PRT <213> ORGANISM: Zea mays <400> SEQUENCE: 14 Met Ser Thr Cys Ala Ala Asp Leu Ala Pro Leu Leu Gly Pro Ala Ala Ala Asn Ala Thr Asp Tyr Leu Cys Gly Gln Phe Ala Asp Thr Ala Ser Ala Val Asp Ala Thr Tyr Leu Leu Phe Ser Ala Tyr Leu Val Phe Ala Met Gln Leu Gly Phe Ala Met Leu Cys Ala Gly Ser Val Arg Ala Lys Asn Thr Met Asn Ile Met Leu Thr Asn Val Leu Asp Ala Ala Ala Gly Ala Leu Phe Tyr Tyr Leu Phe Gly Phe Ala Phe Ala Phe Gly Thr Pro Ser Asn Gly Phe Ile Gly Lys Gln Phe Phe Gly Leu Lys His Leu Pro Arg Thr Gly Phe Asp Tyr Asp Phe Phe Leu Tyr Gln Trp Ala Phe Ala Ile Ala Ala Ala Gly Ile Thr Ser Gly Ser Ile Ala Glu Arg Thr Gln Phe Val Ala Tyr Leu Ile Tyr Ser Ala Phe Leu Thr Gly Phe Val Tyr Pro Val Val Ser His Trp Phe Trp Ser Ala Asp Gly Trp Ala Gly Ala Ser Arg Thr Ser Gly Pro Leu Leu Phe Gly Ser Gly Val Ile Asp Phe Ala Gly Ser Gly Val Val His Met Val Gly Gly Ile Ala Gly Leu Trp Gly Ala Leu Ile Glu Gly Pro Arg Ile Gly Arg Phe Asp His Ala Gly Arg Ser Val Ala Leu Lys Gly His Ser Ala Ser Leu Val Val Leu Gly Thr Phe Leu Leu Trp Phe Gly Trp Tyr Gly Phe Asn Pro Gly Ser Phe Thr Thr Ile Leu Lys Ser Tyr Gly Pro Ala Gly Thr Val His Gly Gln

-continued	
0 265 270	
p Ser Ala Val Gly Arg Thr Ala Val Thr Thr Thr Leu Ala Gly Ser 5 280 285	
l Ala Ala Leu Thr Thr Leu Phe Gly Lys Arg Leu Gln Thr Gly His 0 295 300	
p Asn Val Val Asp Val Cys Asn Gly Leu Leu Gly Gly Phe Ala Ala 5 310 315 320	
e Thr Ala Gly Cys Ser Val Val Glu Pro Trp Ala Ala Val Ile Cys 5 330 335	
y Phe Val Ser Ala Trp Val Leu Ile Gly Ala Asn Ala Leu Ala Ala 0 345 350	
g Phe Arg Phe Asp Asp Pro Leu Glu Ala Ala Gln Leu His Gly Gly 5 360 365	
s Gly Ala Trp Gly Val Leu Phe Thr Gly Leu Phe Ala Arg Arg Lys 0 375 380	
r Val Glu Glu Ile Tyr Gly Ala Gly Arg Pro Tyr Gly Leu Phe Met 5 390 395 400	
y Gly Gly Gly Lys Leu Leu Ala Ala Gln Ile Ile Gln Ile Leu Val	
5 410 415 e Ala Gly Trp Val Ser Cys Thr Met Gly Pro Leu Phe Tyr Ala Leu	
0 425 430 s Lys Leu Gly Leu Arg Ile Ser Ala Asp Asp Glu Met Ser Gly	
5 440 445 t Asp Leu Thr Arg His Gly Gly Phe Ala Tyr Val Tyr His Asp Glu	
0 455 460 p Pro Gly Asp Lys Ala Gly Val Gly Gly Phe Met Leu Lys Ser Ala	
5 470 475 480	
n Asn Arg Val Glu Pro Ala Ala Ala Val Ala Ala Ala Thr Ser Ser 5 490 495	
n Val	
10> SEQ ID NO 15 11> LENGTH: 1597 12> TYPE: DNA 13> OPCIMISM: Zoo mous	
13> ORGANISM: Zea mays 00> SEQUENCE: 15	
~ tgctagcg aagtccagta gtgcaactca ccccttcctg gtcctgctgc tccgccctct	60
acctaget accaetecet tagagegeea etgecaagee atggegggag gaggggegge	120
accagage tegteggegt egeeggaetg getgaacaag ggegacaatg egtggeagat	180
cgtccgcg acgctggtgg gcctgcagag catgcccggg ctggtgatcc tgtacggcag	240
tegtgaag aagaagtggg ceateaacte ggegtteatg gegetgtaeg eettegeege	300
tetggete tgetgggtgg tgtggggeeta caacatgteg tteggegaee ggetgetgee	360
tetgggge aaggegagge eggegetegg geagegette etggtggege agteeeaget	420
cggccacc gccgtgcggt accgcgacgg gtcgctcgag gcggagatgc tccacccctt	480
accoggee gecaceatgg tgtaetteea gtgegtgtte gecageatea eegteateat	540
tegeegge tegetgetgg geegeatgga cateaaggee tggatggeet tegteeeget	600
ggatcacc tteteetaca cegteteege ettetegete tggggeggeg getteetett	660

-continued	
ccagtggggc gtcatcgact actccggcgg ctacgtcatc cacctctcct cgggaatcgc	720
cggcctcacc gccgcttact gggtagggcc aaggtcggcg tcggacaggg agcggttccc	780
teecaacaac atactgetgg tgetggeggg ggeaggeetg etgtggeteg gatggaetgg	840
cttcaacggc ggcgacccgt actcggccaa catcgactcg tccatggcgg tgctcaacac	900
gcacatetge geetecaeca geetecteat gtggaceete ettgaegtet tettettegg	960
gaagccgtcg gtgatcggtg ctgtgcaggg catgatcacc ggccttgtgt gcatcacgcc	1020
tggcgcaggc ctggtgcaag ggtgggcagc cattgtcatg ggaattetet caggtagcat	1080
cccctggtac actatgatgg tactgcacaa gaaatggtcc ttcatgcaga ggatcgacga	1140
caccctcggc gtattccaca cccatgcggt cgctgggctc ctcggcggcg ccactactgg	1200
actetttget gageetgtee tetgeaacet etteetegee ateeeggaet eeagaggtge	1260
attttatggt ggtggtggat cacagtttgg gaagcagatc gctggcgcac tcttcgtcat	1320
tggctggaac attgttatca cttccataat ctgtgttctt attggcctag tcctgcccct	1380
ccgaatteet gatgeacage tgettategg ggatgatget gtacatggtg aggaggegta	1440
tgctatatgg gcagaaggcg agctcaacga tgtaacccgc caagatgaaa gcaggcatgg	1500
cagcgtcgct gtaggagtca cacaatgttt gagcatagtt cttgtaaggt tgaaagaaag	1560
aaaaatacaa gtgcatttgt ttgctaattg ctattaa	1597
<212> TYPE: PRT <213> ORGANISM: Zea mays <400> SEQUENCE: 16	
Met Ala Gly Gly Gly Ala Ala Tyr Gln Ser Ser Ala Ser Pro Asp 1 5 10 15	
Trp Leu Asn Lys Gly Asp Asn Ala Trp Gln Met Thr Ser Ala Thr Leu 20 25 30	
Val Gly Leu Gln Ser Met Pro Gly Leu Val Ile Leu Tyr Gly Ser Ile 35 40 45	
Val Lys Lys Trp Ala Ile Asn Ser Ala Phe Met Ala Leu Tyr Ala 50 55 60	
Phe Ala Ala Val Trp Leu Cys Trp Val Val Trp Ala Tyr Asn Met Ser 65 70 75 80	
Phe Gly Asp Arg Leu Leu Pro Phe Trp Gly Lys Ala Arg Pro Ala Leu 85 90 95	
Gly Gln Arg Phe Leu Val Ala Gln Ser Gln Leu Thr Ala Thr Ala Val 100 105 110	
Arg Tyr Arg Asp Gly Ser Leu Glu Ala Glu Met Leu His Pro Phe Tyr 115 120 125	
Pro Ala Ala Thr Met Val Tyr Phe Gln Cys Val Phe Ala Ser Ile Thr	
130 135 140	
130135140Val Ile Ile Leu Ala Gly Ser Leu Leu Gly Arg Met Asp Ile Lys Ala145150155160	
Val Ile Ile Leu Ala Gly Ser Leu Leu Gly Arg Met Asp Ile Lys Ala	

-continued	
sp Tyr Ser Gly Gly Tyr Val Ile His Leu Ser Ser Gly Ile Ala Gly 95 200 205	У
eu Thr Ala Ala Tyr Trp Val Gly Pro Arg Ser Ala Ser Asp Arg Glu 10 215 220	u
rg Phe Pro Pro Asn Asn Ile Leu Leu Val Leu Ala Gly Ala Gly Leu 25 230 235 240	
eu Trp Leu Gly Trp Thr Gly Phe Asn Gly Gly Asp Pro Tyr Ser Ala 45 250 255	a
sn Ile Asp Ser Ser Met Ala Val Leu Asn Thr His Ile Cys Ala Ser 60 265 270	r
hr Ser Leu Leu Met Trp Thr Leu Leu Asp Val Phe Phe Gly Lys	s
75 280 285 ro Ser Val Ile Gly Ala Val Gln Gly Met Ile Thr Gly Leu Val Cys	s
90 295 300 le Thr Pro Gly Ala Gly Leu Val Gln Gly Trp Ala Ala Ile Val Met	t
05 310 315 320 ly Ile Leu Ser Gly Ser Ile Pro Trp Tyr Thr Met Met Val Leu His	
ys Lys Trp Ser Phe Met Gln Arg Ile Asp Asp Thr Leu Gly Val Phe	
40 345 350	
is Thr His Ala Val Ala Gly Leu Leu Gly Gly Ala Thr Thr Gly Leu 55 360 365	u
he Ala Glu Pro Val Leu Cys Asn Leu Phe Leu Ala Ile Pro Asp Ser 70	r
rg Gly Ala Phe Tyr Gly Gly Gly Gly Ser Gln Phe Gly Lys Gln Ile 85 390 395 400	
la Gly Ala Leu Phe Val Ile Gly Trp Asn Ile Val Ile Thr Ser Ile 05 410 415	e
le Cys Val Leu Ile Gly Leu Val Leu Pro Leu Arg Ile Pro Asp Ala 20 425 430	a
ln Leu Leu Ile Gly Asp Asp Ala Val His Gly Glu Glu Ala Tyr Ala 35 440 445	a
le Trp Ala Glu Gly Glu Leu Asn Asp Val Thr Arg Gln Asp Glu Ser 50 455 460	r
rg His Gly Ser Val Ala Val Gly Val Thr Gln Cys Leu Ser Ile Val 65 470 475 480	
eu Val Arg Leu Lys Glu Arg Lys Ile Gln Val His Leu Phe Ala Asr	
85 490 495 ys Tyr	
210> SEQ ID NO 17 211> LENGTH: 964 212> TYPE: DNA 213> ORGANISM: Zea mays	
400> SEQUENCE: 17	
gttgtccac atggtgggcg gaatcgccgg cetetgggge geeetcateg agggeeee	ccg 60
attggeegg ttegaeeaeg eeggeegete ggtggegetg egeggeeaea gegegtee	gct 120
gtegtgete ggeaetttee tgetgtggtt eggetggtte gggtteaaee eegggtee	
ctcaccatc ctcaagagct acggcccggc cggcagcatc cacgggcagt ggtcggcc	
ggeegeaeg geegtgaeea ceacetege eggeageaeg geggegetea egaegete	ctt 300

cgggaagagg ctccagacgg ggcactggaa cgtggtcgac gtctgcaacg gcctcctcgg cqqcttcqcq qcqatcaccq cqqqctqctc cqtqqtcqac ccctqqqcqq ccatcatatq cgggttcgtg tcggcgtggg tgctcatcgg gctcaacgcg ctggccgcga ggctccggtt cgacgacccg ctggaggccg cgcagttgca cggtgggtgc ggcgcgtggg gggtcctctt cacgggcctg ttcgcgcgca gggagtacgt ggagcagatc tacggcacgc cggggcggcc gtacggcctg ttcatgggcg gcggcgggag gctgctggcc gcgaacgtgg tgatgatcct ggtgatcgcc gcgtgggtta gcgtcaccat ggctccgctg ttcctggcgc tcaacaagat ggggctgctc cgagtctcgg ccgaggacga gatggccggc atggaccaga cgcggcacgg cgggttcgcg tacgcgtacc acgacgacga cttgagcttg agcagcaggc ccaaggggat gcagagcacg cagatcgcgg acgcgggccag cggcgagttc tagtgtgttg gatcacaaat ctcagtatgc tagtcctaca tcatgattgt caatagggcc attttaaaac cccttcttt gggt <210> SEQ ID NO 18 <211> LENGTH: 293 <212> TYPE: PRT <213> ORGANISM: Zea mays <400> SEQUENCE: 18 Val Val His Met Val Gly Gly Ile Ala Gly Leu Trp Gly Ala Leu Ile Glu Gly Pro Arg Ile Gly Arg Phe Asp His Ala Gly Arg Ser Val Ala 3.0 Leu Arg Gly His Ser Ala Ser Leu Val Val Leu Gly Thr Phe Leu Leu Trp Phe Gly Trp Phe Gly Phe Asn Pro Gly Ser Phe Leu Thr Ile Leu Lys Ser Tyr Gly Pro Ala Gly Ser Ile His Gly Gln Trp Ser Ala Val Gly Arg Thr Ala Val Thr Thr Thr Leu Ala Gly Ser Thr Ala Ala Leu Thr Thr Leu Phe Gly Lys Arg Leu Gln Thr Gly His Trp Asn Val Val Asp Val Cys Asn Gly Leu Leu Gly Gly Phe Ala Ala Ile Thr Ala Gly Cys Ser Val Val Asp Pro Trp Ala Ala Ile Ile Cys Gly Phe Val Ser Ala Trp Val Leu Ile Gly Leu Asn Ala Leu Ala Ala Arg Leu Arg Phe Asp Asp Pro Leu Glu Ala Ala Gln Leu His Gly Gly Cys Gly Ala Trp Gly Val Leu Phe Thr Gly Leu Phe Ala Arg Arg Glu Tyr Val Glu Gln Ile Tyr Gly Thr Pro Gly Arg Pro Tyr Gly Leu Phe Met Gly Gly Gly Gly Arg Leu Leu Ala Ala Asn Val Val Met Ile Leu Val Ile Ala Ala Trp Val Ser Val Thr Met Ala Pro Leu Phe Leu Ala Leu Asn Lys Met

			-
-	cont	ın	ued

			-contin	nued	
225	230	235		240	
Gly Leu Leu Arg Val 245	Ser Ala Glu 2 250	Asp Glu Met 255	Ala Gly Me	t Asp Gln	
Thr Arg His Gly Gly 260	Phe Ala Tyr 2 265	Ala Tyr His 270	Aap Aap Aa	p Leu Ser	
Leu Ser Ser Arg Pro 275	Lys Gly Met (280	Gln Ser Thr 285	Gln Ile Al	a Asp Ala	
Ala Ser Gly Glu Phe 290					
<210> SEQ ID NO 19 <211> LENGTH: 1587 <212> TYPE: DNA <213> ORGANISM: Zea	mays				
<400> SEQUENCE: 19					
atggcgacgt gcgctacga	ic cctcgcacct	cttctgggcc	cggcggcaaa	cgcgacggag	60
tacctttgca accaattcg	IC ggacaccacg	tcggcggtgg	actcgacgta	cctgctcttc	120
teggeetace tegtetteg	c catgcagctc	gggttcgcca	tgetetgege	gggctccgtc	180
cgcgccaaga acaccatga	a catcatgctc	accaacgtgc	tcgacgccgc	cgccggcgcg	240
ctcttctact acctattcg	g cttcgccttc	gcgtacggga	ccccgtccaa	cggcttcatc	300
ggcaagcact tetteggee	t caageggett	ccccaggtcg	ggttcgacta	cgacttcttc	360
ctcttccagt gggctttcg	c catcgccgcc	gccgggatca	cgtccggctc	catcgccgag	420
cgcacgcagt tcgtggcgt	a cctcatctac	tccgccttcc	tcaccggctt	cgtgtacccg	480
gtggtgtccc actgggtct	g gtccgccgac	ggctgggcct	cgccgtcacg	gacgtcgggg	540
aageteetet teggeteeg	g catcatcgac	ttcgccgggt	ccagcgttgt	ccacatggtg	600
ggcggaatcg ccggcctct	g gggegeeete	atcgagggcc	cccgcattgg	ccggttcgac	660
cacgccggcc gctcggtgg	le getgegegge	cacagegegt	cgctcgtcgt	gctcggcact	720
tteetgetgt ggttegget	g gttegggtte	aaccccgggt	cgttcctcac	catcctcaag	780
agetaeggee eggeeggea	lg catccacggg	cagtggtcgg	ccgtgggccg	cacggccgtg	840
accaccaccc tcgccggca	lg cacggcggcg	ctcacgacgc	tcttcgggaa	gaggctccag	900
acgggggcact ggaacgtgg	t cgacgtctgc	aacggcctcc	tcggcggctt	cgcggcgatc	960
accgcgggct gctccgtgg	t cgacccctgg	gcggccatca	tatgcgggtt	cgtgtcggcg	1020
tgggtgctca tcgggctca	a cctggccgcg	aggeteeggt	tcgacgaccc	ccgggaggcc	1080
gcgcagttgc acggtgggt	g cggcgcgtgg	ggggtcctct	tcacgggcct	gttcgcgcgc	1140
agggagtacg tggagcaga	lg cacgccgggg	cggccgtacg	gcctgttcat	gggcggcggc	1200
aggetgetgg eegegaaeg	ıt ggtgatgatc	ctggtgatcg	ccgcgtgggt	tagcgtcacc	1260
atggeteege tgtteetgg	c gctcaacaag	atggggctgc	tccgagtctc	ggccgaggac	1320
gagatggccg gcatggacc	a gacgcggcac	ggcgggttcg	cgtacgcgta	ccacgacgac	1380
gacttgagct tgagcagca	ıg gcccaagggg	atgcgagcac	gcagatcgcg	gacgcggcca	1440
gcggcgagtt ctagtgtgt	t ggatcacaaa	tctcagtatg	ctagtectae	atcatgattg	1500
tacaataaca accatgagt	a tactcccttc	gttctaagga	ttactttgac	gaagtatcta	1560
gttaatttaa agataaaga	a aatttaa				1587

```
-continued
```

<210> SEO ID NO 20 <211> LENGTH: 498 <212> TYPE: PRT <213> ORGANISM: Zea mays <400> SEOUENCE: 20 Met Ala Thr Cys Ala Thr Thr Leu Ala Pro Leu Leu Gly Pro Ala Ala Asn Ala Thr Glu Tyr Leu Cys Asn Gln Phe Ala Asp Thr Thr Ser Ala 3.0 Val Asp Ser Thr Tyr Leu Leu Phe Ser Ala Tyr Leu Val Phe Ala Met Gln Leu Gly Phe Ala Met Leu Cys Ala Gly Ser Val Arg Ala Lys Asn Thr Met Asn Ile Met Leu Thr Asn Val Leu Asp Ala Ala Ala Gly Ala Leu Phe Tyr Tyr Leu Phe Gly Phe Ala Phe Ala Tyr Gly Thr Pro Ser Asn Gly Phe Ile Gly Lys His Phe Phe Gly Leu Lys Arg Leu Pro Gln Val Gly Phe Asp Tyr Asp Phe Phe Leu Phe Gln Trp Ala Phe Ala Ile Ala Ala Ala Gly Ile Thr Ser Gly Ser Ile Ala Glu Arg Thr Gln Phe Val Ala Tyr Leu Ile Tyr Ser Ala Phe Leu Thr Gly Phe Val Tyr Pro Val Val Ser His Trp Val Trp Ser Ala Asp Gly Trp Ala Ser Pro Ser Arg Thr Ser Gly Lys Leu Leu Phe Gly Ser Gly Ile Ile Asp Phe Ala Gly Ser Ser Val Val His Met Val Gly Gly Ile Ala Gly Leu Trp Gly Ala Leu Ile Glu Gly Pro Arg Ile Gly Arg Phe Asp His Ala Gly Arg Ser Val Ala Leu Arg Gly His Ser Ala Ser Leu Val Val Leu Gly Thr Phe Leu Leu Trp Phe Gly Trp Phe Gly Phe Asn Pro Gly Ser Phe Leu Thr Ile Leu Lys Ser Tyr Gly Pro Ala Gly Ser Ile His Gly Gln Trp Ser Ala Val Gly Arg Thr Ala Val Thr Thr Thr Leu Ala Gly Ser Thr Ala Ala Leu Thr Thr Leu Phe Gly Lys Arg Leu Gln Thr Gly His Trp Asn Val Val Asp Val Cys Asn Gly Leu Leu Gly Gly Phe Ala Ala Ile Thr Ala Gly Cys Ser Val Val Asp Pro Trp Ala Ala Ile Ile Cys Gly Phe Val Ser Ala Trp Val Leu Ile Gly Leu Asn Leu Ala Ala Arg Leu Arg Phe Asp Asp Pro Arg Glu Ala Ala Gln Leu His Gly Gly Cys Gly

```
-continued
```

Ala Trp Gly Val Leu Phe Thr Gly Leu Phe Ala Arg Arg Glu Tyr Val 380 370 375 Glu Gln Ser Thr Pro Gly Arg Pro Tyr Gly Leu Phe Met Gly Gly Gly 385 390 395 400 Arg Leu Leu Ala Ala Asn Val Val Met Ile Leu Val Ile Ala Ala Trp 405 410 415 Val Ser Val Thr Met Ala Pro Leu Phe Leu Ala Leu Asn Lys Met Gly 430 420 425 Leu Leu Arg Val Ser Ala Glu Asp Glu Met Ala Gly Met Asp Gln Thr 435 440 445 Arg His Gly Gly Phe Ala Tyr Ala Tyr His Asp Asp Leu Ser Leu 455 450 460 Ser Ser Arg Pro Lys Gly Met Arg Ala Arg Arg Ser Arg Thr Arg Pro 465 470 475 480 Ala Ala Ser Ser Ser Val Leu Asp His Lys Ser Gln Tyr Ala Ser Pro 490 485 495 Thr Ser <210> SEQ ID NO 21 <211> LENGTH: 744 <212> TYPE: DNA <213> ORGANISM: Zea mays <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 715 <223> OTHER INFORMATION: n = A, T, C or G <400> SEQUENCE: 21 teccaateec etecceteq eqtatecaea etttteaeae qeqaeqeeqq aqaqaeaqaq 60 cgcgcgcgcg cccgaaagat ggcgacgtgc gcgacggacc tggcgccgct gctcggcccg 120 geggeggeaa acgecaegga etacetetge aaceaatteg eggacaecae eteegeggtg 180 gacgccacgt acctgctctt ctcggcctac ctcgtcttcg ccatgcagct cggcttcgcc 240 atgetetgeg eeggeteegt eegegeeaag aacaecatga acateatget caceaaegtg 300 ctcgacgccg ccgccggcgc gctcttctac tacctattcg gcttcgcctt cgcctacggc 360 accccgtcca acggetteat eggeaageae ttetteggee teaagegeet geceaagaee 420 ggettegaet acgaettett ectataceag tgggeetteg ceategeege egeeggeate 480 acgtccggct ccatcgccga gagcacccag ttcgtcgcct acctcatcta ctccgccttc 540 ctcaccggct tcgtgtaccc cgtggcgtcc cactgggtct ggtccgccga cggctgggcc 600 gccgccggcc gcacgtccgg cccgctgctc ttcgggtccg gcgccatcga cttcgccggc 660 tccggcgtgg tccacatggt cggcggcatc gcgggggttct ggggcgcgct cgtcnagggc 720 ccccgtatcg ggcgcttcga ccac 744<210> SEQ ID NO 22

<211> LENGTH: 222 <212> TYPE: PRT <213> ORGANISM: Zea mays <220> FEATURE: <221> NAME/KEY: VARIANT <222> LOCATION: 213 <223> OTHER INFORMATION: Xaa = Any Amino Acid

<400> SEQUENCE: 22

Met A 1	la '	Thr	Суа	Ala 5	Thr	Asp	Leu		Pro LO	Leu	Leu	Gly		Ala 15	Ala	
Ala A: 20	sn .	Ala	Thr	Asp	Tyr 25	Leu	Суз	Asn	Gln	Phe 30	Ala	Asp	Thr	Thr	Ser	
Ala Va 35	al	Asp	Ala	Thr	Tyr 40	Leu	Leu	Phe	Ser	Ala 45	Tyr	Leu	Val	Phe	Ala	
Met G 50	ln i	Leu	Gly	Phe	Ala 55	Met	Leu	Cys	Ala	Gly 60	Ser	Val	Arg	Ala	Lys	
Asn Tl 65	hr 1	Met	Asn	Ile	Met 70	Leu	Thr	Asn	Val	Leu 75	Asp	Ala	Ala	Ala	Gly 80	
Ala Le 85	eu 1	Phe	Tyr	Tyr	Leu 90	Phe	Gly	Phe	Ala	Phe 95	Ala	Tyr	Gly	Thr	Pro	
Ser As 100	sn (Gly	Phe	Ile	Gly 105	Lys	His	Phe	Phe	Gly 110	Leu	Lys	Arg	Leu	Pro	
Lys Tl 115	hr (Gly	Phe	Asp	Tyr 120	Asp	Phe	Phe	Leu	Tyr 125	Gln	Trp	Ala	Phe	Ala	
Ile A 130	la	Ala	Ala	Gly	Ile 135	Thr	Ser	Gly	Ser	Ile 140	Ala	Glu	Ser	Thr	Gln	
Phe Va 145	al J	Ala	Tyr	Leu	Ile 150	Tyr	Ser	Ala	Phe	Leu 155	Thr	Gly	Phe	Val	Tyr 160	
Pro Va 165	al J	Ala	Ser	His	Trp 170	Val	Trp	Ser	Ala	Asp 175	Gly	Trp	Ala	Ala	Ala	
Gly A: 180	rg	Thr	Ser	Gly	Pro 185	Leu	Leu	Phe	Gly	Ser 190	Gly	Ala	Ile	Asp	Phe	
Ala G 195	ly :	Ser	Gly	Val	Val 200	His	Met	Val	Gly	Gly 205	Ile	Ala	Gly	Phe	Trp	
Gly A 210	la	Leu	Val	Хаа	Gly 215	Pro	Arg	Ile	Gly	Arg 220	Phe	Asp	His			
<210> <211> <212> <213>	LEI TYI	NGTH PE :	(: 10 DNA	24	mays	3										
<400>	SEQ	QUEN	ICE :	23												
gaggt	cgt	cg t	ctct	aget	a go	ctgct	aaga	a gaq	gagaq	gaga	gaga	agago	gta 1	cacgt	aggac	60
cgccg	gca	ac t	aget	caact	ca ad	catgi	cgto	gt g	gtco	cggg	acga	acgat	cgc (gct	ggcgta	120
ccaga	cgt	cg g	gegto	gtci	c c	cgagt	gget	: gaa	acaaç	gggc	gaca	aacgo	gt g	ggcaq	gctgac	180
ggcgg	cga	cg c	tggt	aaaa	ge to	gcaga	agett	c cco	cgggt	cctg	gtg	gtcct	gt a	acggo	cggcgt	240
ggtgaa	aga	ag a	agto	gggc	g tạ	gaact	cggo	c ctt	cate	ggcg	ctgi	cacgo	cgt 1	ccgc	ggeggt	300
gtgga	tct	gc t	gggt	gaco	st ge	ggcct	acaa	a cat	gtco	ette	ggc	gacaq	ggc t	gete	geeget	360
gtggg	gca	ag g	lcdcð	ggccá	gg cá	gctga	ageca	a ggg	gcggg	gctg	gtg	gggca	agg (ccgg	cctccc	420
cgcca	cgg	cg c	acca	actto	cg co	cage	ggcgo	c cct	ggaq	gacc	ccgé	geego	cgg a	agecç	gctgta	480
cccgat	tgg	cc a	cggt	ggt	gt ad	ette	cagto	g ogt	gtto	cgcg	gcca	atca	ccc t	ggt	gctggt	540
cgccg	ggt	cg c	tget	ggg	cc ge	gatga	agett	c cgo	cegeç	gtgg	atgo	ctgti	ccg t	gccé	gctctg	600
gctca	cct	tc t	ccta	acaco	cg to	cggcó	geett	c cto	ccgta	atgg	ggc	ggcgá	ggt 1	cct	etteca	660
gtggg	gcg	tc a	tcga	acta	ct go	cggcó	ggeta	a cgt	cato	ccac	ctci	cccgo	ctg 🤉	getto	cgccgg	720
gttcad	cgg	ca g	geeta	actg	gg tạ	99990	caac	a aa	cgca	gaag	gaca	aggga	aga 🤉	ggtto	ecegec	780

gaacaacatc ctgttcacgc tcaccggcgc gggcctgctg tggatggggt gggccggctt caacggcqgc qqqccqtacq ccqccaacgt qqtqqcqtcc atqtcqqtqc tcaacaccaa catctgcacc gccatgagcc tcctcgtctg gacctgcctc gacgtcgtct tcttcaagaa gecetecgte gtgggegeeg teeagggeat gateacegga etegtetgea teaegeeege cgca <210> SEQ ID NO 24 <211> LENGTH: 314 <212> TYPE: PRT <213> ORGANISM: Zea mays <400> SEOUENCE: 24 Met Ser Ser Ser Ser Gly Thr Thr Met Pro Leu Ala Tyr Gln Thr Ser Ala Ser Ser Pro Glu Trp Leu Asn Lys Gly Asp Asn Ala Trp Gln Leu Thr Ala Ala Thr Leu Val Gly Leu Gln Ser Phe Pro Gly Leu Val Val Leu Tyr Gly Gly Val Val Lys Lys Tyr Ala Val Asn Ser Ala Phe Met Ala Leu Tyr Ala Phe Ala Ala Val Trp Ile Cys Trp Val Thr Trp Ala Tyr Asn Met Ser Phe Gly Asp Arg Leu Leu Pro Leu Trp Gly Lys Ala Arg Pro Ala Leu Ser Gln Gly Gly Leu Val Gly Gln Ala Gly Leu Pro Ala Thr Ala His His Phe Ala Ser Gly Ala Leu Glu Thr Pro Ala Ala Glu Pro Leu Tyr Pro Met Ala Thr Val Val Tyr Phe Gln Cys Val Phe Ala Ala Ile Thr Leu Val Leu Val Ala Gly Ser Leu Leu Gly Arg Met Ser Phe Ala Ala Trp Met Leu Phe Val Pro Leu Trp Leu Thr Phe Ser Tyr Thr Val Gly Ala Phe Ser Val Trp Gly Gly Gly Phe Leu Phe Gln Trp Gly Val Ile Asp Tyr Cys Gly Gly Tyr Val Ile His Leu Ser Ala Gly Phe Ala Gly Phe Thr Ala Ala Tyr Trp Val Gly Pro Arg Ala Gln Lys Asp Arg Glu Arg Phe Pro Pro Asn Asn Ile Leu Phe Thr Leu Thr Gly Ala Gly Leu Leu Trp Met Gly Trp Ala Gly Phe Asn Gly Gly Gly Pro Tyr Ala Ala Asn Val Val Ala Ser Met Ser Val Leu Asn Thr Asn Ile Cys Thr Ala Met Ser Leu Leu Val Trp Thr Cys Leu Asp Val Val Phe Phe Lys Lys Pro Ser Val Val Gly Ala Val Gln Gly Met Ile

-continued

60

120

180

240 300

360

420

480

540

600 660

720 780

840

900

960

1020

1080

1140

1200

1260

1320

1380

1440

1500

1560

1620

1680

1740

1798

Thr Gly Leu Val Cys Ile Thr Pro Ala Ala 305 310

<210> SEO TD NO 25 <211> LENGTH: 1798 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEOUENCE: 25 ttatgatcca cttggttaac tagcataatt aatcgcagat gaagcagcag ttcatgaagg caggaagcag ctaaatcacc catataaatg gtcgcgcgcg ctagcatagc atagtagcga tagccaccac cgatcgaagc atgatggcgg cgtcgggcgc gtacgcggcg caactcccgg cggtgccgga gtggctgaac aagggcgaca acgcgtggca gctgacggcg gcgacgctgg tgggcatcca gtcgatgccg gggctggtgg tgctgtacgg cagcatcgtg aagaagaagt gggcggtgaa ctcggcgttc atggcgctgt acgcctacgc gtcgtcgctg ctggtgtggg tgctggcggg gttccgcatg gcgttcgggg agcggctgct cccgttctgg ggcaaggccg gggtggcgct ctcccagggc tacctggtcc ggcgcgcctc gctctcggcg accgcgcacg gggccacgcc ccgcaccgag cccctgtacc cggaggcgac gctggtgctg ttccagttcg agttegeege cateaegetg gtgeteetgg eeggeteegt gettggeege atgaacatea aggectggat ggeettcace cegetetgge teetettete etacacegte ggegeettca gcatctgggg cggcggcttc ctctaccact ggggcgtcat cgactactcc ggcggatacg tcatccacct ctcctccggc atcgccggct tcaccgccgc atactgggtg ggcccgaggc tgaagagega cegggagege tteteceega acaacateet getgatgate gegggeggeg qqctqctqtq qatqqqctqq qccqqqttca acqqcqqcqc qccctacqcc qccaacatcq cqqcqtccqt qqccqtqctc aacaccaacq tctccqccqc caccaqcctc ctcacctqqa cctgcctcga cgtcatcttc ttcggcaagc cgtccgtgat cggcgccgtg cagggcatga tqacqqqqct cqtctqcatc acccccqqaq caqqqctqqt qcaqacctqq qcqqcqqtqa tcatgggcgt gttcgcgggc agcgtgccgt ggttcaccat gatgatcctg cacaagaagg tggegetget gaegagggtg gaegacaege tgggegtett ceacaegeae geegtegegg gcctgctggg cggcgtcctc acggggctgc tggccacgcc ggagctgctg gagatcgagt cccccgtgcc gggcctccgc ggcgcgttct acggcggagg gatccgccag gtcggcaagc agetggeggg ggeegeette gtggtggegt ggaaegtegt ggteaegteg eteateetge tggccatcgg cctgctggtg cccctgcgga tgcccgagga ccagctcatg atcggcgacg acgccgcgca cggggaggag gcctacgcgc tctggggcga cggggagaag ttcgatgcca ccaggcacga cgcggtcagg gtcgccggcg tcatggatag agaagggtcc gcggagcagc ggctatcagg gggcgtcacc attcagctgt aggcgcacgc ccgacggtcc ataagacacg actttttagc ggacattttt ttttcatggg agaagagcag tgttttaggc tttttattat tagcatgaaa ggttgtccat gtatcatatt tggcccagag cacgtagtct ctgctagttt ataaagaaat taggtcatgt atttttcctc ttaatctagt ctacccgcaa catgtact <210> SEQ ID NO 26

<210> SEQ 1D NO 26
<211> LENGTH: 483
<212> TYPE: PRT
<213> ORGANISM: Zea mays

<400)> SE	EQUEN	ICE :	26											
Met 1	Met	Ala	Ala	Ser 5	Gly	Ala	Tyr	Ala 1	Ala 10	Gln	Leu	Pro		Val L5	Pro
Glu 20	Trp	Leu	Asn	Lys	Gly 25	Asp	Asn	Ala	Trp	Gln 30	Leu	Thr	Ala	Ala	Thr
Leu 35	Val	Gly	Ile	Gln	Ser 40	Met	Pro	Gly	Leu	Val 45	Val	Leu	Tyr	Gly	Ser
Ile 50	Val	Lys	Lys	Lys	Trp 55	Ala	Val	Asn	Ser	Ala 60	Phe	Met	Ala	Leu	Tyr
Ala 65	Tyr	Ala	Ser	Ser	Leu 70	Leu	Val	Trp	Val	Leu 75	Ala	Gly	Phe	Arg	Met 80
Ala 85	Phe	Gly	Glu	Arg	Leu 90	Leu	Pro	Phe	Trp	Gly 95	Lys	Ala	Gly	Val	Ala
Leu 100	Ser	Gln	Gly	Tyr	Leu 105	Val	Arg	Arg	Ala	Ser 110	Leu	Ser	Ala	Thr	Ala
His 115	Gly	Ala	Thr	Pro	Arg 120	Thr	Glu	Pro	Leu	Tyr 125	Pro	Glu	Ala	Thr	Leu
Val 130	Leu	Phe	Gln	Phe	Glu 135	Phe	Ala	Ala	Ile	Thr 140	Leu	Val	Leu	Leu	Ala
Gly 145	Ser	Val	Leu	Gly	Arg 150	Met	Asn	Ile	Lys	Ala 155	Trp	Met	Ala	Phe	Thr 160
Pro 165	Leu	Trp	Leu	Leu	Phe 170	Ser	Tyr	Thr	Val	Gly 175	Ala	Phe	Ser	Ile	Trp
Gly 180	Gly	Gly	Phe	Leu	Tyr 185	His	Trp	Gly	Val	Ile 190	Asp	Tyr	Ser	Gly	Gly
Tyr 195	Val	Ile	His	Leu	Ser 200	Ser	Gly	Ile	Ala	Gly 205	Phe	Thr	Ala	Ala	Tyr
Trp 210	Val	Gly	Pro	Arg	Leu 215	Lys	Ser	Asp	Arg	Glu 220	Arg	Phe	Ser	Pro	Asn
Asn 225	Ile	Leu	Leu	Met	Ile 230	Ala	Gly	Gly	Gly	Leu 235	Leu	Trp	Met	Gly	Trp 240
Ala 245	Gly	Phe	Asn	Gly	Gly 250	Ala	Pro	Tyr	Ala	Ala 255	Asn	Ile	Ala	Ala	Ser
Val 260	Ala	Val	Leu	Asn	Thr 265	Asn	Val	Ser	Ala	Ala 270	Thr	Ser	Leu	Leu	Thr
Trp 275	Thr	Сув	Leu	Asp	Val 280	Ile	Phe	Phe	Gly	Lys 285	Pro	Ser	Val	Ile	Gly
Ala 290	Val	Gln	Gly	Met	Met 295	Thr	Gly	Leu	Val	Cys 300	Ile	Thr	Pro	Gly	Ala
Gly 305	Leu	Val	Gln	Thr	Trp 310	Ala	Ala	Val	Ile	Met 315	Gly	Val	Phe	Ala	Gly 320
Ser 325	Val	Pro	Trp	Phe	Thr 330	Met	Met	Ile	Leu	His 335	Lys	Lys	Val	Ala	Leu
Leu 340	Thr	Arg	Val	Asp	Asp 345	Thr	Leu	Gly	Val	Phe 350	His	Thr	His	Ala	Val
Ala 355	Gly	Leu	Leu	Gly	Gly 360	Val	Leu	Thr	Gly	Leu 365	Leu	Ala	Thr	Pro	Glu
Leu 370	Leu	Glu	Ile	Glu	Ser 375	Pro	Val	Pro	Gly	Leu 380	Arg	Gly	Ala	Phe	Tyr
Gly	Gly	Gly	Ile	Arg	Gln	Val	Gly	Lys	Gln	Leu	Ala	Gly	Ala	Ala	Phe

-continued	
385 390 395 400	
Val Val Ala Trp Asn Val Val Val Thr Ser Leu Ile Leu Leu Ala Ile 405 410 415	
Gly Leu Leu Val Pro Leu Arg Met Pro Glu Asp Gln Leu Met Ile Gly 420 425 430	
Asp Asp Ala Ala His Gly Glu Glu Ala Tyr Ala Leu Trp Gly Asp Gly 435 440 445	
Glu Lys Phe Asp Ala Thr Arg His Asp Ala Val Arg Val Ala Gly Val 450 455 460	
Met Asp Arg Glu Gly Ser Ala Glu Gln Arg Leu Ser Gly Gly Val Thr 465 470 475 480	
Ile Gln Leu	
<210> SEQ ID NO 27 <211> LENGTH: 330 <212> TYPE: DNA <213> ORGANISM: Oryza sativa	
<400> SEQUENCE: 27	
atggtgccgg gactccgcgg cgcgttctac ggcggcggca tcaagcagat cagcaagca	ag 60
ctcggcggcg ctgcgtttgt gatcgcgtgg aacctcgtgg tcaccacggc catcctcct	ct 120
ggcatcggcc tgttcatccc gctgcggatg cccgacgagc agctcatgat cggcgacga	ac 180
geggegeaeg gegaggagge etaegegttg tggggegaeg gegagaagtt caaegegae	
cagcacgacc tatcgagggg tggcggcggc ggcgacaggg acggccccga gcggctctc	
atcctaggcg ccaggggcgt caccatctag	330
<210> SEQ ID NO 28 <211> LENGTH: 186 <212> TYPE: PRT <213> ORGANISM: Oryza sativa	
<400> SEQUENCE: 28	
Met Thr Pro Pro Arg Gly Pro Ser Pro Ser Thr Asn Ala Ala Arg Arg151015	
Cys Arg Leu Thr Lys His Arg His Gly Arg Ala Thr Pro Ser Pro Pro 20 25 30	
Ile Thr Cys Ala Ser Ser Arg Arg Pro Pro Arg Glu Thr Thr Leu Pro 35 40 45	
His Pro Arg Cys Gly Gly Ala Pro Arg Arg His Pro His Gly Pro Pro 50 55 60	
Gly His Pro Gly Ala Leu Leu Pro Arg Gly Leu Glu Ser Met Val Pro65707580	
Gly Leu Arg Gly Ala Phe Tyr Gly Gly Gly Ile Lys Gln Ile Ser Lys 85 90 95	
Gln Leu Gly Gly Ala Ala Phe Val Ile Ala Trp Asn Leu Val Val Thr 100 105 110	
Thr Ala Ile Leu Leu Gly Ile Gly Leu Phe Ile Pro Leu Arg Met Pro115120125	
Asp Glu Gln Leu Met Ile Gly Asp Asp Ala Ala His Gly Glu Glu Ala 130 135 140	
Tyr Ala Leu Trp Gly Asp Gly Glu Lys Phe Asn Ala Thr Gln His Asp 145 150 155 160	

Leu Ser Arg Gly Gly Gly Gly Gly Asp Arg Asp Gly Pro Glu Arg Leu 165 170 175 Ser Ile Leu Gly Ala Arg Gly Val Thr Ile 180 185 <210> SEQ ID NO 29 <211> LENGTH: 4123 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 29 gataaccaaa tcggacgctg accttgctgg gcgaactggg tgatcatcga tggcgatgcg 60 agacatcacc caactgcgtc gggtctccac aggagggagt tgcttgtgct tggtccgttt 120 ggggatcgtt aacttaaaca cttttacggc gacctcgaca cagctaaacc ctaaactaat 180 tgcgagttag aggettatet cgatetette tatgcagatg tttgacaaet tgggagtagt 240 ttactgctgg tttggagtat cttctcaact tgcaatttga ttatgtttaa acggggagtg 300 catgattggt gttcgcatgg ttttaaatca gattttataa actgatgctc gtcaagagac 360 gacaaggggc cagattaggg cagcagagta cgtgcttgct tgaattctga agcatgtacg 420 aaataaatac gatagaaatt tottaagaaa ttaggtattt ttotgacoot ocaataagat 480 540 cqcqtqqttq ccaqtattqc acqtcqacta ctacatatct qaattcaqaa caatccaaaa gagaagttac tgttgatatt tctacgtata aaaaaaacat caaaatgctt tgtatattac 600 gaaaacagag cgagttccct tattgaccag agcaaaaagg ttgagcctga ttaaacaaag 660 totatgaget tgcaggatge gtetetteee aaatttatte acaceaaagt eetettegat 720 780 qacatcqccc tatttqaatc ttatcqttqa cattqctcat tttqctcttt aqttaatctq ggcaaatgat tggcggtggt acttcgtgat gtggaacagt gaaactgttt gtcaatctgt 840 gcgctcgagg tacaaccagg tcggttcctt tgctgtttta ttaataaaag gagcataaat 900 tagegecaaa acteaagttt taecacaaaa aaacagteag ttttaataaa gattaageaa 960 accettgaat tgeactetgt aaaatgtttg ttteecetea aaagetgata aggaeggaeg 1020 ccgatgtgaa acgaaacctg ctatttcaac catgtacata tataatcaag aatttcctac 1080 acgacttcca ttttttgtgt gttgactagt ttctctcctt cctggaggtg ttaaaagagt 1140 tccgattctg tcaaaacttc catacagata aatccaacct gtcaaactac cagctgttta 1200 attattcctt ttcccatttt gttatggtac acaaaggcac ataaccattt acacggagca 1260 gaacagaata ggatatgtat taaaaaaaca gaatggaaga aaaatcctga gtcacaagca 1320 cgaaaaatga aggcgagatt aattcgaaac catacacatc atcatccaca tctcgtcgtt 1380 tgtctcacag gacatgacac agggagcgaa aaccacatca ttaatcgcgg cctacagcta 1440 cacatecaga tteteceggg ateceegaaa eggeteecae eeegaaceg eegeaageeg 1500 acccagccaa aggagateee eetecaecae ggaagattea etgegeggtg ggeeeegeeg 1560 ccaaaaaacca aaacgacgaa accatteege gteatetete eegeaeggeg agegagegag 1620 cgagegaeet gaeeteetee teetataaat eeggegeeag egtateteee eaaceteeea 1680 cgcccaatcc tgccgccgtt tcagcagctc tagtttgaac gagggatcgt agagaggagg 1740 1800 gtttggtgag ggagggagga agatggcgac gtgcgcggcg gacctggcgc cgctgctggg 1860 gccqqtqqcq qcqaacqcqa cqqactacct qtqcaaccqq ttcqccqaca cqacqtcqqc

ggtggacgcg	acgtacctgc	tcttctcggc	gtacctcgtg	ttcgccatgc	agctcgggtt	1920
cgcgatgctc	tgcgccgggt	cggtgcgggc	caagaacacg	atgaacatca	tgctcaccaa	1980
cgtgctcgac	gccgcggccg	gggcgctctt	ctactacctc	ttcggcttcg	ccttcgcctt	2040
cggcacgccg	tccaacggct	tcatcgggaa	gcagttette	ggcctcaagc	acatgccgca	2100
gaccgggttc	gactacgact	tetteetett	ccagtgggcc	ttcgccatcg	ccgccgccgg	2160
gatcacgtcg	ggctccatcg	ccgagaggac	gcagttcgtc	gcctacctca	tctactccgc	2220
cttcctcacc	gggttcgtct	acccggtggt	gtcccactgg	atctggtccg	ccgatgggtg	2280
ggcctctgcc	tcccgcacgt	ccggacctct	gctgttcggc	tccggtgtca	tcgacttcgc	2340
cggctccggc	gtcgtccaca	tggtcggcgg	tgtcgccggg	ctctgggggcg	cgctcatcga	2400
gggcccccgc	atcgggaggt	tcgaccacgc	cggccgatcg	gtggcgctca	agggccacag	2460
cgcgtcgctc	gtcgtgcttg	gcaccttcct	gctgtggttc	ggctggtacg	gattcaaccc	2520
cgggtcgttc	accaccatcc	tcaagacgta	cggcccggcc	ggcggcatca	acgggcagtg	2580
gtccggagtc	ggccgcaccg	ccgtgacgac	gaccctggcc	ggcagcgtgg	cggcgctcac	2640
cacgctgttc	gggaagcggc	tccagacggg	gcactggaac	gtggtcgacg	tctgcaacgg	2700
cctcctcggc	gggttcgccg	ccatcaccgc	cgggtgcagc	gtcgtcgacc	cgtgggccgc	2760
gatcatctgc	gggttcgtct	cggcgtgggt	gctcatcggc	ctcaacgcgc	tcgccgcgcg	2820
cctcaagttc	gacgacccgc	tcgaggccgc	ccagctccac	ggcgggtgcg	gcgcgtgggg	2880
gatcctcttc	accgcgctct	tcgcgaggca	gaagtacgtc	gaggagatct	acggcgccgg	2940
ccggccgtac	ggcctgttca	tgggcggcgg	cggcaagctg	ctcgccgcgc	acgtcatcca	3000
gatcctggtc	atcttcgggt	gggtcagctg	caccatggga	cctctcttct	acgggctcaa	3060
gaagetegge	ctgctccgca	tctccgccga	ggacgagacg	tccggcatgg	acctgacacg	3120
gcacggcggg	ttcgcgtacg	tctaccacga	cgaggacgag	cacgacaagt	ctggggttgg	3180
tgggttcatg	ctccggtccg	cgcagacccg	cgtcgagccg	gcggcggccg	gctgcctcca	3240
acagcaacaa	ccaagtgtaa	ccaatccaga	acgaacgacg	tcacagcgaa	ggaagaaatc	3300
acgggtttct	ctccctctcc	gatctcgatc	gtcacgtcat	aaatttgatc	cccatatttg	3360
attgccagtt	tctgtttggg	ccaaatgctt	ttgeegetet	ctctggtgtt	gcaagactgt	3420
aaaaacactg	taggatggac	gagtgtcttt	cacttttgct	gggettetet	tgtgtacagg	3480
catgcgtacg	tgtcttagaa	tgtgtggtgt	gaaggtggga	agaatcagag	gttagggttt	3540
aattttcttt	tgcacaatgg	ttactgctat	tattgtttta	ttttgtggtc	gaattttatc	3600
gtcataaggg	tgtggtggaa	tggtggtcaa	gataggtggc	tgtgcagggc	tcaaagactt	3660
tgcgtgggtc	cttttgtcct	gcagtgctct	acctctctat	caaaactttg	gcttatttcc	3720
tggaatctag	tggtttgaga	gtgtttgttt	tatactcagt	tctgcattat	gtttacgata	3780
tattttttt	tttaccaaaa	gcatttcatt	taaactctac	cgagagtact	tgtttatgct	3840
gaatcagtac	atctacactg	agtgatattt	agagcettat	actaattgaa	gattaaatag	3900
tcaaagtcca	tgtgcacatt	tctactcgcc	agttagtctg	aaagaaaaga	tteetgtgtg	3960
caattgtgca	tatcagcata	tgccacctgg	cgataaagta	aacatactat	agttgtgaac	4020
tgtgcgatga	caacgaccaa	attaagcagc	ctgatcttta	caacgaccgc	tgtatagaga	4080
acagactata	tcaaggtttt	gggtccgtgg	tcttctttt	<u>aaa</u>		4123

<211 <212	L> LH 2> TY	EQ II ENGTH ZPE :	H: 53 PRT	32			_								
		EQUEN		-	sa sa	ativa	4								
Met 1	Ala	Thr	Суз	Ala 5	Ala	Asp	Leu		Pro LO	Leu	Leu	Gly	Pro	Val L5	Ala
Ala 20	Asn	Ala	Thr	Asp	Tyr 25	Leu	Суз	Asn	Arg	Phe 30	Ala	Asp	Thr	Thr	Ser
Ala 35	Val	Asp	Ala	Thr	Tyr 40	Leu	Leu	Phe	Ser	Ala 45	Tyr	Leu	Val	Phe	Ala
Met 50	Gln	Leu	Gly	Phe	Ala 55	Met	Leu	Cys	Ala	Gly 60	Ser	Val	Arg	Ala	Lys
Asn 65	Thr	Met	Asn	Ile	Met 70	Leu	Thr	Asn	Val	Leu 75	Asp	Ala	Ala	Ala	Gly 80
Ala 85	Leu	Phe	Tyr	Tyr	Leu 90	Phe	Gly	Phe	Ala	Phe 95	Ala	Phe	Gly	Thr	Pro
Ser 100	Asn	Gly	Phe	Ile	Gly 105	ГЛЗ	Gln	Phe	Phe	Gly 110	Leu	Lys	His	Met	Pro
Gln 115	Thr	Gly	Phe	Asp	Tyr 120	Asp	Phe	Phe	Leu	Phe 125	Gln	Trp	Ala	Phe	Ala
Ile 130	Ala	Ala	Ala	Gly	Ile 135	Thr	Ser	Gly	Ser	Ile 140	Ala	Glu	Arg	Thr	Gln
Phe 145	Val	Ala	Tyr	Leu	Ile 150	Tyr	Ser	Ala	Phe	Leu 155	Thr	Gly	Phe	Val	Tyr 160
Pro 165	Val	Val	Ser	His	Trp 170	Ile	Trp	Ser	Ala	Asp 175	Gly	Trp	Ala	Ser	Ala
Ser 180	Arg	Thr	Ser	Gly	Pro 185	Leu	Leu	Phe	Gly	Ser 190	Gly	Val	Ile	Asp	Phe
Ala 195	Gly	Ser	Gly	Val	Val 200	His	Met	Val	Gly	Gly 205	Val	Ala	Gly	Leu	Trp
Gly 210	Ala	Leu	Ile	Glu	Gly 215	Pro	Arg	Ile	Gly	Arg 220	Phe	Asp	His	Ala	Gly
Arg 225	Ser	Val	Ala	Leu	Lys 230	Gly	His	Ser	Ala	Ser 235	Leu	Val	Val	Leu	Gly 240
Thr 245	Phe	Leu	Leu	Trp	Phe 250	Gly	Trp	Tyr	Gly	Phe 255	Asn	Pro	Gly	Ser	Phe
Thr 260	Thr	Ile	Leu	Lys	Thr 265	Tyr	Gly	Pro	Ala	Gly 270	Gly	Ile	Asn	Gly	Gln
Trp 275	Ser	Gly	Val	Gly	Arg 280	Thr	Ala	Val	Thr	Thr 285	Thr	Leu	Ala	Gly	Ser
Val 290	Ala	Ala	Leu	Thr	Thr 295	Leu	Phe	Gly	Lys	Arg 300	Leu	Gln	Thr	Gly	His
Trp 305	Asn	Val	Val	Asp	Val 310	Суз	Asn	Gly	Leu	Leu 315	Gly	Gly	Phe	Ala	Ala 320
Ile 325	Thr	Ala	Gly	Сүз	Ser 330	Val	Val	Asp	Pro	Trp 335	Ala	Ala	Ile	Ile	Суз
Gly 340	Phe	Val	Ser	Ala	Trp 345	Val	Leu	Ile	Gly	Leu 350	Asn	Ala	Leu	Ala	Ala
Arg	Leu	Lys	Phe	Asp	Asp	Pro	Leu	Glu	Ala	Ala	Gln	Leu	His	Gly	Gly

-continued

concinaca
355 360 365
Cys Gly Ala Trp Gly Ile Leu Phe Thr Ala Leu Phe Ala Arg Gln Lys 370 375 380
Tyr Val Glu Glu Ile Tyr Gly Ala Gly Arg Pro Tyr Gly Leu Phe Met 385 390 395 400
Gly Gly Gly Lys Leu Leu Ala Ala His Val Ile Gln Ile Leu Val 405 410 415
Ile Phe Gly Trp Val Ser Cys Thr Met Gly Pro Leu Phe Tyr Gly Leu 420 425 430
Lys Lys Leu Gly Leu Arg Ile Ser Ala Glu Asp Glu Thr Ser Gly 435
Met Asp Leu Thr Arg His Gly Gly Phe Ala Tyr Val Tyr His Asp Glu 450 455 460
Asp Glu His Asp Lys Ser Gly Val Gly Gly Phe Met Leu Arg Ser Ala 465 470 475 480
Gln Thr Arg Val Glu Pro Ala Ala Ala Gly Cys Leu Gln Gln Gln Gln 485 490 495
Pro Ser Val Thr Asn Pro Glu Arg Thr Thr Ser Gln Arg Arg Lys Lys 500 505 510
Ser Arg Val Ser Leu Pro Leu Arg Ser Arg Ser Ser Arg His Lys Phe 515 520 525
Asp Pro His Ile 530
<210> SEQ ID NO 31 <211> LENGTH: 4654 <212> TYPE: DNA <213> ORGANISM: Oryza sativa
<400> SEQUENCE: 31
gageteeact cagetaeegg atettgaeeg ggaaeetgtt tgtetaegta eteeaaegee 60
ttgaatgatg ccgccgtgca gccaatttta accagctgct gcgcaaccgg ccaaccgccc 120
agcegtgeag etgtggtgga gtgaceaegg eeaegaetee gtgegegegg gtggaegtaa 180
gegttgggee eteggetege gegegeggee geateeggeg atgeateggt egegttegeg 240
gtttgtgget tegegteate geegatgega acagaggetg etttgegttg tegteategg 300
cttgttgacg tccacgagtt ggcgagttgc tctgttcctc tctcgcgcgc gccgcagata 360
tccgaggtgg aaaaaatata ctacatatga acagatgtgg cccagctgtg agcaagacgc 420
caagaccaaa gataagtgca gttcaaatgg gcctgaaatt ggccttcatc aattacaaag 480
cccgtgaaaa gtttcagaaa agcattacaa agcttcagat aagttcaggg gtgactgaaa 540
tacacataca acaagtaacg tagagagatc cccaaatcag ctgcggcaga aggcagaaac 600
cgtgactagt acatctcata aacttaacga gcagtacaat ttctgtacat tggtttatca 660
ataagtcaag agtagcattt gggtaagaag agaaaaaaaa tcttttacgg tggcgtttat 720
tgacatttga teeetggage egagaagaet agtttatete ateegtgaaa aetatttgte 780
actagacatc aacgtetege tgaggacaee eggtttgeaa tttgetaata agaaacaete 840
gtttccgtcc aatggcgatt cgtttactag agatccgtcc attctctgaa cttctgaagg 900
tcaaccttct gatatgcata caggtgtggt agcaggcacg acaaaagtat aaaacaatag 960
gtatttaatc gcatcagcgt gatctatctc cagagtgtaa aaattagata cgcagcatct 1020

gcaagtcata	cttgcaagga	agaagcaatt	gcgtccctat	ccaccacatc	ttatccagtc	1080
ttgtcagagt	tttgacctaa	ggaattgctt	catcatctga	atttattcta	ctggaagaaa	1140
ttacctactg	ctatgccaag	aagtaagaat	acatggttaa	tctatgttga	caccctcatt	1200
tctgaagaca	aacaacataa	atttgcagtg	agttaaaaca	tatagtttca	gtgaaaatat	1260
cgtacaggtt	aatgtagcca	gaccaacaca	gagatctgat	tgacaattac	agagtactca	1320
gtagtcagca	agcaggttta	gcatggacta	cctgttgatt	acatggtttc	agtcagacac	1380
gagttettea	gggaggcaaa	ttaatcacaa	ggttcttcca	agacagaagc	cgccggtaag	1440
gtatggaagc	aaatgggttt	atctccgttt	gtgccaataa	ccttatcgaa	tatctaattg	1500
ttcgctaagt	acgcattgca	cacatcatat	accatctcga	ttgatgagtt	ttgtcgccat	1560
gttctgctag	gtacgaccta	tccgctgctg	ggtttacatg	catgcctgaa	gaacttaaac	1620
agttaatcaa	caaagtcaat	ggatattacg	catacaagta	tatggttgta	tatatgcaac	1680
ttcatgacac	aacagtatgc	gtatagtcgg	acgtgacgac	aagcaactac	ctcgtgcaag	1740
gatgcgagga	gataccagat	taaaacctgt	aatacttgaa	gttgacaaaa	tgcgattctt	1800
cagacgatat	aataacaaga	acatttctga	atcttccttt	aaaaaatgtt	gaatgcataa	1860
aagaatctta	gctgtgatgg	caacaacacg	actttctgat	agtgacattg	gatcttagtt	1920
gaatctggca	tcttgcgtat	gcgaccttgc	ttggatctgt	cggatactcc	caacccagca	1980
taaattactg	atgtctgaaa	ctttctgagc	aaagcgggaa	ctcaggctag	ttgagtcgct	2040
catcatcaaa	agtcaagaca	atacttaagt	aaaaacaaaa	caaatatcac	tgtcgcaaaa	2100
ccagtgtaaa	cctattggga	taattttaac	agtcttacaa	caccagcgcc	gagacgtcta	2160
ggtaacaaat	taaatcatca	ctgacaatat	ttgaagataa	gtgaatcaca	tgtctttctc	2220
aatgaactta	aatttatgaa	tgaaccaacc	tatacatgca	actaaatatg	atatcaagat	2280
cagttaaaaa	tcttgttttg	tgaaatttca	aaacaaaaaa	ataaaattgc	agcgtacctt	2340
tatttcaaga	gaaatttaat	tcactaaaaa	aaagtaattg	tatgtgccaa	attttacatt	2400
aaaaatggt	atctgcaatg	tattcttaag	gatgataaaa	ttatctcagt	aatattcaat	2460
cattcattaa	tagaggtgaa	ctgctcgttc	ttttactcat	cacacctgtt	ggatgaaaag	2520
attggttgct	gccactaaaa	aaattaatca	actcattgca	gttggcaaaa	aagaaaaaaa	2580
aaggttttca	ggcactagta	tatgtgatgt	tagaaggaat	ccaaaacagt	atacatgcat	2640
ccacgcgcac	ctcggttttg	catttcccgc	tgtctgtgat	catgaatcat	ccaattaaaa	2700
acaaccatca	accatggatt	ccaatgtgtt	ctgcccctat	aaatagtcca	gcatctcatt	2760
ctctcgtcta	cttcaaagaa	tcacacacca	aaacctccat	tagtteetaa	accctagcaa	2820
gaagcagcac	aaaaccttgc	cacacttggc	tagtgacact	gagacacacc	atggcgacgt	2880
gcttggacag	cctcgggccg	cttctcggcg	gcgcggcgaa	ctccaccgac	gcggccaact	2940
acatctgcaa	caggttcacg	gacacctcct	ccgcggtgga	cgcgacgtac	ctgctcttct	3000
cggcctacct	cgtgttcgcc	atgcagctcg	ggttcgccat	gctctgcgcg	ggeteegtee	3060
gcgccaagaa	ctcaatgaac	atcatgctca	ccaacgtgtt	cgacgccgcc	gccggcgcgc	3120
tcttctacta	cctcttcggc	ttcgcttcgc	gtcggacgcc	gtccaagggc	ttcatcggga	3180
agcagttctt	cgggctgaag	cacatgccgc	agacagggta	cgactacgac	ttetteetet	3240
tccagtgggc	cttcgccatc	gccgccgccg	gcatcacgtc	cggttccatc	gccgaacgga	3300

cgcgcttcag cgcgtatete atetactecg cettecteae cgggttcgtg tacceggtgg	3360
tgtcgcactg gttctggtcc accgacgggt gggcttcggc cggccggctg acgggtccgt	3420
tgctgttcaa gtcgggcgtc atcgacttcg ccggctccgg cgtcgtccat ctggtcggtg	3480
gcattgctgg cctgtggggt gccttcatcg agggcccccg catcgggcgc ttcgacgccg	3540
ccggccgcac ggtggcgatg aaagggcaca gcgcctcact ggtcgtgctc ggcaccttcc	3600
tgctgtggtt cgggtggttc ggcttcaacc cggggtcctt caccaccatc tccaagatct	3660
acggcgagtc gggcacgatc gacgggcagt ggtcggcggt gggccgcacc gccgtgacga	3720
cgtcgctggc gggcagcgtc gccgcgctta accacgctgt acggcaagag atggctgacg	3780
gggcactgga acgtgaccga cgtctgcaac ggtctcctcg gcgggttcgc gcgatcaccg	3840
cgggctgctc cgtggtcgac ccgtgggcgt cggtgatctg cgggttcgtg tcggcgtggg	3900
teeteategg etgeaacaag etggegetga tgeteaagtt egatgaeeeg etggaggega	3960
cgcagctgca cggcgggtgc ggcgcgtggg ggatcatctt caccgcgctg ttcgcgcgca	4020
aggagtacgt cgagctgatc tacggggtgc cgggggggcc gtacgggctg ttcatgggcg	4080
gcggcgggag gcttctcgcg gcgcacatcg tgcagatcct ggtgatcgtc gggtgggtca	4140
gegeeaceat ggggaegete ttetaegtge tgeaeaggtt egggetgete egegtetega	4200
cctcgacaga gatggaaggc atggacccgt cgtgccacgg cgggttcggg tacgtggacg	4260
aggacgaagg ccagcgccgc gtcagggcca agtcggcggc ggagacggct cgcgtggagc	4320
ccagaaagtc gccggagcaa gccgcggcgg gccagttggt gtagtaggat catatcgatc	4380
gtgtccgttc ggggaaagtg ttttgtgaag tgtgcatata taagctgagg cagtcagtcg	4440
tgtgggcgtg gtggcacttc agcccatggt ggttgtggct ttcttttgat atttgcttcc	4500
tttcttctct gcatttgcat ctgtatggat ttttgtggct ttcaatcttt tatgcttttc	4560
tttaggtatt cagtetttta tgetttettg taeatgttta gaegtgteea gtttgtatea	4620
gtatttaggt cattatgatg ttaacgtgga gctc	4654
<210> SEQ ID NO 32 <211> LENGTH: 497 <212> TYPE: PRT <213> ORGANISM: Oryza sativa	
<400> SEQUENCE: 32	
Met Ala Thr Cys Leu Asp Ser Leu Gly Pro Leu Leu Gly Gly Ala Ala 1 5 10 15	
Asn Ser Thr Asp Ala Ala Asn Tyr Ile Cys Asn Arg Phe Thr Asp Thr 20 25 30	
Ser Ser Ala Val Asp Ala Thr Tyr Leu Leu Phe Ser Ala Tyr Leu Val 35 40 45	
Phe Ala Met Gln Leu Gly Phe Ala Met Leu Cys Ala Gly Ser Val Arg 50 55 60	
Ala Lys Asn Ser Met Asn Ile Met Leu Thr Asn Val Phe Asp Ala Ala 65 70 75 80	
Ala Gly Ala Leu Phe Tyr Tyr Leu Phe Gly Phe Ala Ser Arg Arg Thr 85 90 95	
Pro Ser Lys Gly Phe Ile Gly Lys Gln Phe Gly Leu Lys His Met 100 105 110	

											-	con	tin	ued		 	 	 	
Pro 115	Gln	Thr	Gly	Tyr	Asp 120	Tyr	Asp	Phe	Phe	Leu 125	Phe	Gln	Trp	Ala	Phe				
Ala 130	Ile	Ala	Ala	Ala	Gly 135	Ile	Thr	Ser	Gly	Ser 140	Ile	Ala	Glu	Arg	Thr				
Arg 145	Phe	Ser	Ala	Tyr	Leu 150	Ile	Tyr	Ser	Ala	Phe 155	Leu	Thr	Gly	Phe	Val 160				
Tyr 165	Pro	Val	Val	Ser	His 170	Trp	Phe	Trp	Ser	Thr 175	Asp	Gly	Trp	Ala	Ser				
Ala 180	Gly	Arg	Leu	Thr	Gly 185	Pro	Leu	Leu	Phe	Lys 190	Ser	Gly	Val	Ile	Asp				
Phe 195	Ala	Gly	Ser	Gly	Val 200	Val	His	Leu	Val	Gly 205	Gly	Ile	Ala	Gly	Leu				
Trp 210	Gly	Ala	Phe	Ile	Glu 215	Gly	Pro	Arg	Ile	Gly 220	Arg	Phe	Asp	Ala	Ala				
Gly 225	Arg	Thr	Val	Ala	Met 230	Гла	Gly	His	Ser	Ala 235	Ser	Leu	Val	Val	Leu 240				
Gly 245	Thr	Phe	Leu	Leu	Trp 250	Phe	Gly	Trp	Phe	Gly 255	Phe	Asn	Pro	Gly	Ser				
Phe 260	Thr	Thr	Ile	Ser	Lys 265	Ile	Tyr	Gly	Glu	Ser 270	Gly	Thr	Ile	Asp	Gly				
Gln 275	Trp	Ser	Ala	Val	Gly 280	Arg	Thr	Ala	Val	Thr 285	Thr	Ser	Leu	Ala	Gly				
Ser 290	Val	Ala	Ala	Leu	Asn 295	His	Ala	Val	Arg	Gln 300	Glu	Met	Ala	Asp	Gly				
Ala 305	Leu	Glu	Arg	Asp	Arg 310	Arg	Leu	Gln	Arg	Ser 315	Pro	Arg	Arg	Val	Arg 320				
Ala 325	Ile	Thr	Ala	Gly	Суз 330	Ser	Val	Val	Asp	Pro 335	Trp	Ala	Ser	Val	Ile				
Cys 340	Gly	Phe	Val	Ser	Ala 345	Trp	Val	Leu	Ile	Gly 350	Суз	Asn	Lys	Leu	Ala				
Leu 355	Met	Leu	Lys	Phe	Asp 360	Asp	Pro	Leu	Glu	Ala 365	Thr	Gln	Leu	His	Gly				
Gly 370	Сув	Gly	Ala	Trp	Gly 375	Ile	Ile	Phe	Thr	Ala 380	Leu	Phe	Ala	Arg	Lys				
Glu 385	Tyr	Val	Glu	Leu	Ile 390	Tyr	Gly	Val	Pro	Gly 395	Arg	Pro	Tyr	Gly	Leu 400				
Phe 405	Met	Gly	Gly	Gly	Gly 410	Arg	Leu	Leu	Ala	Ala 415	His	Ile	Val	Gln	Ile				
Leu 420	Val	Ile	Val	Gly	Trp 425	Val	Ser	Ala	Thr	Met 430	Gly	Thr	Leu	Phe	Tyr				
Val 435	Leu	His	Arg	Phe	Gly 440	Leu	Leu	Arg	Val	Ser 445	Thr	Ser	Thr	Glu	Met				
Glu 450	Gly	Met	Asp	Pro	Ser 455	Суз	His	Gly	Gly	Phe 460	Gly	Tyr	Val	Asp	Glu				
Asp 465	Glu	Gly	Gln	Arg	Arg 470	Val	Arg	Ala	Lys	Ser 475	Ala	Ala	Glu	Thr	Ala 480				
Arg 485	Val	Glu	Pro	Arg	Lys 490	Ser	Pro	Glu	Gln	Ala 495	Ala	Ala	Gly	Gln	Leu				
Val																			

```
-continued
```

<211> LENGTH: 2987 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <220> FEATURE: <221> NAME/KEY: misc feature <222> LOCATION: 212 <223> OTHER INFORMATION: n = A, T, C or G <400> SEOUENCE: 33 attateteca atgattteat agetaateea tatgetggaa gggttaggaa tteaageeat 60 ttcaaattcc aaaaaattac ctatactaaa gtaaaaaaaa acctatgacc taccctcaat 120 gtttgttaac caatttaggc cttgtttgat tccacttaga attattataa tcctgattat 180 tattaggagt aagctgaaac aaacagataa cntattatga tagattatta taatctataa 240 gccagattac tataatctgg taatccactc taaaggtgct ttttttaatt attggatagc 300 taataactag caaacagcta ataatccaga taaacaaaca gctaacaact tattctatat 360 cggcttatta taatcttatt ataatccaat ttatagtaat ctagctcaat aatatatat 420 ataataatct taaactgaaa caaacagggc tttagaaatt catatgtttt gaaatggaga 480 tagtaccact cagaaagctt gaaggatttc atgtgttttg gttaacatat tcatgtgtgt 540 cttttcgtgc aaccaaaatt ttctttagaa acatggtgaa ccaattagat ttagaaatta 600 taaaatattt ccaagtgtta caagtggaaa tataataaaa ataatattgt taaaaaagta 660 aagaaagttt aagtacaaac tgaggaggaa atataacaag tgcttcacta tagacaaata 720 tagaggtgga cgaaatgtac aaacagtcgt ttttaaaaat acaaaccacc gtattgcgac 780 tcaggccttg tttagatccc aaaaaatttt agccaaaaat atcacatcaa atgtttggac 840 acatgcatag gatattaaat atggggaaaa aaaatcaatt acacagtttg caggtaaatt 900 gcgagacaaa tetttttagt etaattaegt eatgatttga eeatgtgatg etatagtaaa 960 catttactaa tqacaqattq attaqqctta ataaattcat ctcqcaattt acaaacaqaa 1020 tctataattt attttattat taqtctatat ttaatatttt aaatatatat ccqtqtaqtt 1080 caaaaacttt atatcaaaag aactaaacac agcctccagg ccgcagccta cagtaggcct 1140 1200 ataqaqaqat tccacqqqat tcqatqaact acqaccacqa acaqqaqqqq qacaaatcaa caagcaaatc ataggggtcg cacatttcag aggtagccaa agattcactg gcaggtgggc 1260 ccttcacact ttgaaggaat caacaacgac accccccaag tcatggattc cttctcgctc 1320 cetetecaeg tegeetataa ateegaegeg ggeegeteee caetecaeee acageeeaca 1380 cttccattgc tectececte tectetacag tetgtgttga gegegegteg ageggegagg 1440 atggcaacgt gcgcggatac cctcggcccg ctgctgggca cggcggcggc gaacgcgacg 1500 gactacctgt gcaaccagtt cgcggacacc acgtcggccg tggactcgac gtacctgctc 1560 ttctcggcgt acctcgtgtt cgccatgcag ctcggcttcg ccatgctctg cgccgggtcc 1620 1680 gtccgcgcca agaacaccat gaacatcatg cttaccaacg tgctcgacgc cgccggc gcgctcttct actacctctt cggcttcgcc ttcgccttcg gggcgccgtc caacggcttc 1740 atcgggaage acttettegg eetcaageag gteecaacgg teggettega etacagette 1800 tteetettee agtgggeett egecategee geegegggea teaegteegg etecategee 1860 gageggacee agttegtgge gtaceteate tacteegeet teeteacegg ettegtetae 1920 ccqqtqqtqt cccactqqat ctqqtccqcc gacqqqtqqq cctcqqcttc ccqaacqtcq 1980

-continued	
gggtcgctgc tettegggte eggegteate gaettegeeg ggteaggggt tgteeaatg	2040
gtggeggegt geeggaetet ggggegeeet categaggge eccegeattg geggttegae	2100
cacgeeggee geteggtgge getgegegge cacagegegt egetegtegt geteggeage	2160
tteetgetgt ggttegggtg gtaegggttt aacceegget egtteeteae eateeteaaa	2220
teetaeggee egeeeggtag catecaeggg eagtggtegg eggtgggaeg eaeegeegtg	2280
accaccaccc tcgccggcag cacggcggcg ctcacgacgc tcttcgggaa gaggctccag	2340
acggggcact ggaacgtgat cgacgtctgc aacggcctcc tcggcggctt cgcggcgatc	2400
accgccggtt getccgtcgt cgacccgtgg gccgcgatca tetgegggtt cgteteggcg	2460
tgggtgctca tcggcctcaa cgcgctggcg gcgaggctca agttcgacga cccgctcgag	2520
geggegeage tgeaeggegg gtgeggegeg tgggggggtea tetteaegge getgttegeg	2580
cgcaaggagt acgtggacca gatettegge eageeeggge geeegtatgg getgtteatg	2640
ggcggcggcg gccggctgct cggggcgcac atagtggtaa teetggteat egeggegtgg	2700
gtgagettea ceatggegee getgtteetg gtgeteaaca agetgggatt getgegeate	2760
toggoogagg acgagatggo oggoatggac cagaogogoc acggogggtt ogogtaogog	2820
taccacgacg acgacgcgag cggcaagccg gaccgcagct tcggcgggtt catgctcaag	2880
tcggcgcacg gcacgcaggt cgccgccgag atgggaggcc atgtctagtg gaaccggagg	2940
agetgageta gtagtacata catgcageat categateet egagete	2987
<212> TYPE: PRT <213> ORGANISM: Oryza sativa	
<400> SEQUENCE: 34	
<400> SEQUENCE: 34 Met Ala Thr Cys Ala Asp Thr Leu Gly Pro Leu Leu Gly Thr Ala Ala 1 5 10 15	
- Met Ala Thr Cys Ala Asp Thr Leu Gly Pro Leu Leu Gly Thr Ala Ala	
Met Ala Thr Cys Ala Asp Thr Leu Gly Pro Leu Leu Gly Thr Ala Ala 1 5 10 15 Ala Asn Ala Thr Asp Tyr Leu Cys Asn Gln Phe Ala Asp Thr Thr Ser	
Met Ala Thr Cys Ala Asp Thr Leu Gly Pro 1 Ala Asn Ala Thr Asp Tyr Leu Cys Asn Gln Phe Ala Asp Thr Thr Ser 20 Ala Val Asp Ser Thr Tyr Leu Leu Phe Ser Ala Tyr Leu Val Phe Ala 35 Met Gln Leu Gly Phe Ala Met Leu Cys Ala Gly Ser Val Arg Ala Lys	
Met Ala Thr Cys Ala Asp Thr Leu Gly Pro 1 Ala Asn Ala Thr Asp Tyr Leu Cys Asn Gln Phe Ala Asp Thr Thr Ser 2 Ala Val Asp Ser Thr Tyr Leu Leu Phe Ser Ala Tyr Leu Val Phe Ala 35 Gln Leu Gly Phe Ala Met Leu Cys Ala Gly Ser Val Arg Ala Lys 5 Asn Thr Met Asn Ile Met Leu Thr Asn Val Leu Asp Ala Ala Ala Gly	
MetAlaThrCysAlaAspThrLeuGlyProLeuGlyThrAlaAla1AsnAlaThrAspTyrLeuCysAsnGlnPheAlaAspThrThrSerAlaValAspSerThrTyrLeuCysAsnGlnPheAlaAspThrThrSerAsnGlnLeuGlyPheAlaMetLeuCysAlaGlySerValArgAlaLysSoThrMetAsnIleMetLeuThrAsnValAlaAlaGlySerAsnThrMetAsnIleMetLeuThrAsnValAlaAlaAlaSorAlaLeuPheTyrTyrLeuPheAlaPheAlaAlaSorSorAlaLeuPheTyrTyrLeuPheAlaPheAlaAlaSorSorAlaLeuPheGlyPheAlaPheAlaPheSor </td <td></td>	
MetAlaThrCysAlaAspThrLeuGlyProLeuGlyThrAlaAla1AsnAlaThrAspTyrLeuCysAsnGlnPheAlaAspThrThrSer20AsnAlaThrAspTyrLeuCysAsnGlnPheAlaAspThrThrSerAlaValAspSerThrTyrLeuLeuPheSerAlaTyrLeuAlaAspAsnGlnLeuGlyPheAlaMetLeuCysAlaGlySerValArgAlaLys65ThrMetAsnTheMetLeuThrAsnValLeuAspAlaAlaGly80	
MetAlaThrCysAlaAspThrLeuGlyProLeuLeuGlyThrAlaAlaAlaAssAlaThrAspThrAspTyrLeuCysAsnGlnAspThrThrSerAlaValAspSerThrTyrLeuCysAsnGlnSerValPheAlaAssGlnLeuGlyPheAlaMetLeuCysAlaGlySerValArgAlaLysAssThrMetAsnThrAsnMetLeuCysAlaGlySerValArgAlaLysAssThrMetAsnThrAsnThrAsnNaAlaAlaSerAssThrMetAsnThrAsnThrAsnNaAlaAlaAlaSerAssThrMetAsnThrMetLeuThrAsnValAsnSerAlaAlaAlaSerAssThrMetTyrLeuTyrLeuTyrAsnNaAlaAlaAlaSerAssLeuTyrTyrLeuTyrAsnNaAlaAlaAlaAlaSerAssLeuTyrTyrLeuPheAlaPheAlaAlaAlaAlaAlaAlaAlaAla	
MetAlaThrCysAlaAspThrLeuGlyProLeuGlyThrAlaAla1AsnAlaThrAspTyrLeuCysAsnGlnPheAlaAspThrThrSer20AsnAlaThrAspTyrLeuCysAsnGlnPheAlaAspThrThrSerAlaValAspSerThrTyrLeuLeuPheSerAlaTyrLeuValPheAla35GlnLeuGlyPheAlaMetLeuCysAlaGlySerValArgAlaLys60SerThrMetAsnIleMetLeuThrAsnValAlaAlaAlaGlySer65ThrMetAsnIleMetLeuThrAsnValLeuAspAlaAlaAlaSer65ThrMetAsnIleMetLeuThrAsnValLeuAspAlaAlaAlaSer65ThrMetAsnIleGlyPheGlyPheAlaPheSerAlaAlaAlaSer65ThrMetAsnThrAsnNaNaNaSerSerAlaAlaAlaAlaSer65SerAsnGly<	
MetAlaThrCysAlaAspThrLeuGly ProLeuGlyThrAlaAla1AsnAlaThrAspSTyrLeuCysAsnGlnPheAlaAspThrThrSer20AnAlaThrAspTyrLeuCysAsnGlnPheAlaAspThrThrSerAlaValAspSerThrTyrLeuLeuPheSerAlaTyrLeuPheAlaAssGlnLeuGlyPheAlaMetLeuCysAlaGlySerValArgAlaLysAssGlnLeuGlyPheAlaMetLeuCysAlaGlySerValArgAlaAlaAlaSoAssThrMetAssThrAssTyrLeuThrAsnValAssAlaAlaAlaAlaSoSoAlaAlaAlaAlaSoSoAlaAlaAlaSoSoAlaAlaAlaAlaAlaSoSoSoAlaAlaAlaAlaSoSoSoAlaAlaAlaAlaAlaAlaAlaAlaAlaSoSoSoSoAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAla	
MetAlaThrCysAlaAspThrLeuGlyProLeuGlyThrAlaAla1AsnAlaThrAspTyrLeuCysAsnGlnPheAlaAspThrThrSer20AsnAlaThrAspTyrLeuCysAsnGlnPheAlaAspThrThrSer20AsnAspAspThrAspTyrLeuCysAsnGlnAspThrThrSer20AsnAspSerThrTyrLeuLeuPheSerAlaThrSer20AsnAspSerThrTyrLeuLeuPheSerAlaThrSer20AsnAspSerThrTyrLeuLeuPheSerAlaThrAlaLys20AsnAspSerThrAspSerThrAspSerAlaAlaLysIs20AsnAspSerTyrAspAspAspAlaAlaAlaSerIs20GlnNetAspTyrLeuPheAlaPheAlaAlaSerIs20AspTyrAspTyrLeuPheAlaPheAlaPheIs20AspSerAspSerAspSerPheAla	
MetAlaThrCysAlaAspThrLeuGly ProLeuLeuGlyThrAlaAla1AsnAlaThrAspTyrLeuCysAsnGlnPheAlaAspThrThrSer20AsnAlaThrAspTyrLeuCysAsnGlnPheAlaAspThrThrSer20AsnAspSerThrApr25LeuCysAsnGlnPheAlaSerThrSer20AsnAspSerThrApr25LeuCysAsnGlnThrThrSer20AsnAspSerThrAprAprLeuPheSerAlaThrSerAla20AspSerThrAprAprLeuCysAlaGlySerValAprAlaAlaAlaAlaSer20ChNetAprAprAprAprAprAprAprAprSerAprAprSerAprSerAprAprAprSerAprSerAprSerAprSerAprSerAprSerAprSerAprSerAprSerAprSerAprSerAprSerAprSerAprSerAprSerAprSerAprAprSerAprApr <td></td>	

-continued

-concluded
180 185 190
Ala Gly Ser Gly Val Val His Met Val Ala Ala Cys Arg Thr Leu Gly 195 200 205
Arg Pro His Arg Gly Pro Pro His Trp Arg Phe Asp His Ala Gly Arg 210
Ser Val Ala Leu Arg Gly His Ser Ala Ser Leu Val Val Leu Gly Ser 225 230 235 240
Phe Leu Leu Trp Phe Gly Trp Tyr Gly Phe Asn Pro Gly Ser Phe Leu 245 250 255
Thr Ile Leu Lys Ser Tyr Gly Pro Pro Gly Ser Ile His Gly Gln Trp 260 265 270
Ser Ala Val Gly Arg Thr Ala Val Thr Thr Leu Ala Gly Ser Thr 275 280 285
Ala Ala Leu Thr Thr Leu Phe Gly Lys Arg Leu Gln Thr Gly His Trp 290 295 300
Asn Val Ile Asp Val Cys Asn Gly Leu Leu Gly Gly Phe Ala Ala Ile 305 310 315 320
Thr Ala Gly Cys Ser Val Val Asp Pro Trp Ala Ala Ile Ile Cys Gly 325 330 335
Phe Val Ser Ala Trp Val Leu Ile Gly Leu Asn Ala Leu Ala Ala Arg 340 345 350
Leu Lys Phe Asp Asp Pro Leu Glu Ala Ala Gln Leu His Gly Gly Cys 355 360 365
Gly Ala Trp Gly Val Ile Phe Thr Ala Leu Phe Ala Arg Lys Glu Tyr 370 375 380
Val Asp Gln Ile Phe Gly Gln Pro Gly Arg Pro Tyr Gly Leu Phe Met 385 390 395 400
Gly Gly Gly Arg Leu Leu Gly Ala His Ile Val Val Ile Leu Val 405 410 415
Ile Ala Ala Trp Val Ser Phe Thr Met Ala Pro Leu Phe Leu Val Leu 420 425 430
Asn Lys Leu Gly Leu Leu Arg Ile Ser Ala Glu Asp Glu Met Ala Gly 435
Met Asp Gln Thr Arg His Gly Gly Phe Ala Tyr Ala Tyr His Asp Asp 450 455 460
Asp Ala Ser Gly Lys Pro Asp Arg Ser Phe Gly Gly Phe Met Leu Lys 465 470 475 480
Ser Ala His Gly Thr Gln Val Ala Ala Glu Met Gly Gly His Val 485 490 495
<210> SEQ ID NO 35 <211> LENGTH: 900 <212> TYPE: DNA <213> ORGANISM: Oryza sativa
<400> SEQUENCE: 35
atggeggegg aggeggegee ggagtgggtg gagaaggggg acaaegegtg geegetageg 60
geggegaege tggtgggget geagagegtg eegaggetgg tgateetgta eggegaetge 120
ggcgcggtcg gtccgaggac ggagaaggac agggaggcgt tcccgccgaa caacgtcctg 180
ctcacgctcg ccggagcggg gctgctgctg tggatggggt ggacggggtt caacggcggc 240
gcgccgtacg ccgccaacgt cgacgcgtcg gtcaccgtcg tgaacacgca cctctgcacg 300

gcgacgagcc tcctggtgtg gctcctcctc gacagcttcg tcttcggccg cctctccgtc atcagegeeg tgeagggeat gatcacegge ctegtetgeg teacceegge ggeeaggetg gtgetgeaca ageggageeg eeteetggeg egegtegaeg acaegetege egtgeteeae acccaeggeg tegeoggeag ceteagegge gteetgaegg ggeteetget eetegeegag ccgcgcttcg ccaggetett etteggegae gaecegeget acgteggeet egegtaeget gtcagggacg gccgcggccgg ctcgggggctc cggcaggtcg gcgtgcagct ggccgggatc gcgttcgtgg tggcgctcaa cgtcgccgtg acgagcgccg tgtgcctggc cgtcagggtg gccgtgccgc agctcgccgg cggcggcgac gccatacacg gcgaggacgc gtacgcggtg tggggggacg gcgagacgta cgagcagtac tccgtgcacg gcggcggcag caaccacggc ggcttcccca tgacggccaa tcccgtggcg tccaaagccg acgagatgat atggatataa <210> SEQ ID NO 36 <211> LENGTH: 299 <212> TYPE: PRT <213> ORGANISM: Oryza sativa <400> SEQUENCE: 36 Met Ala Ala Glu Ala Ala Pro Glu Trp Val Glu Lys Gly Asp Asn Ala Trp Pro Leu Ala Ala Ala Thr Leu Val Gly Leu Gln Ser Val Pro Arg Leu Val Ile Leu Tyr Gly Asp Cys Gly Ala Val Gly Pro Arg Thr Glu Lys Asp Arg Glu Ala Phe Pro Pro Asn Asn Val Leu Leu Thr Leu Ala Gly Ala Gly Leu Leu Trp Met Gly Trp Thr Gly Phe Asn Gly Gly Ala Pro Tyr Ala Ala Asn Val Asp Ala Ser Val Thr Val Val Asn Thr His Leu Cys Thr Ala Thr Ser Leu Leu Val Trp Leu Leu Leu Asp Ser Phe Val Phe Gly Arg Leu Ser Val Ile Ser Ala Val Gln Gly Met Ile Thr Gly Leu Val Cys Val Thr Pro Ala Ala Arg Leu Val Leu His Lys Arg Ser Arg Leu Leu Ala Arg Val Asp Asp Thr Leu Ala Val Leu His Thr His Gly Val Ala Gly Ser Leu Ser Gly Val Leu Thr Gly Leu Leu Leu Leu Ala Glu Pro Arg Phe Ala Arg Leu Phe Phe Gly Asp Asp Pro Arg Tyr Val Gly Leu Ala Tyr Ala Val Arg Asp Gly Arg Ala Gly Ser Gly Leu Arg Gln Val Gly Val Gln Leu Ala Gly Ile Ala Phe Val Val Ala Leu Asn Val Ala Val Thr Ser Ala Val Cys Leu Ala Val Arg Val Ala Val Pro Gln Leu Ala Gly Gly Gly Asp Ala Ile His Gly Glu Asp

```
66
```

```
-continued
```

Ala Tyr Ala Val Trp Gly Asp Gly Glu Thr Tyr Glu Gln Tyr Ser Val 260 265 270 His Gly Gly Gly Ser Asn His Gly Gly Phe Pro Met Thr Ala Asn Pro 275 280 285 Val Ala Ser Lys Ala Asp Glu Met Ile Trp Ile 290 295 <210> SEQ ID NO 37 <211> LENGTH: 2040 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 37 ggaggetttg getaccetge teceetegee attteattgg cegtttegtg gecatecate 60 acgaactcga tcgattcccc tcttcgagcc cgtaccaatt attagctagt ttaactcgta 120 cgatgaatca cgccgaaaca caatataaat ggtggagtcg gctcgctgtc aaacgcgcgg 180 gagetegege caettgtaat ttttegegte teetetegte eggeacagea caggagegeg 240 300 gggactaggg gagggcgaga tggcggcggc gggggggtac tcggcgagcc taccggcggt 360 gccggactgg ctgaacaagg gggacaacgc gtggcagctg acggcgtcga cgctggtggg 420 gatecagteg atgeceggge tggtggtget gtacggeage ategtgaaga agaagtggge 480 540 ggtgaacteg gegtteatgg egetetaege etaegegteg tegetgetgg tgtgggtget qqtcqqcttc cqcatqqcqt tcqqcqacca qctqctqccq ttctqqqqca aqqccqqcqt 600 ggegetgace cagagetace tegteggeeg egecaegetg eeggeeaeeg egeaeggege 660 720 catecogege acegageeet tetacoegga ggecaegetg gtgetettee agttegagtt 780 egeogecate acgetegtee tectogeogg etcogteete ggeogeatga acateaagge ctqqatqqcc ttcaccccqc tctqqctcct cctctcctac accqtcqqcq ccttcaqcct 840 $\tt ctggggcggc\ ggcttcctct\ accgctgggg\ cgtcatcgac\ tactccggcg\ gctacgtcat$ 900 ccacctctcc tccggcatcg ccggcttcac cgccgcctac tgggtggggc caaggctgaa 960 gagcgaccgt gagcggttct caccgaacaa catcctgctg atgatcgcgg gcggcgggct 1020 gctgtggatg gggtgggccg ggttcaacgg cggcgcgccg tacgccgcca acatcgcggc 1080 gtcggtcgcc gtgctcaaca ccaacgtctg cgccgccacc agcctcctca tgtggacctg 1140 cctcgacgtc atcttcttcc gcaagccgtc cgtcatcggc gccgtgcagg gcatgatgac 1200 cggcctcgtc tgcatcaccc ccggcgcagg gctggtgcag acctgggcgg ccgtggtaat 1260 gggcatcttc gccggcagcg tgccgtggtt caccatgatg atcctgcaca agaagtcagc 1320 1380 gctgctgatg aaggtggacg acacgctcgc cgtgttccac acccacgccg tggcggggct 1440 cctcggcggc atcctcacgg gcctcctggc caccccggag ctcttctccc tcgagtccac ggtgccggga ctccgcggcg cgttctacgg cggcggtatc aagcagatcg gcaagcagct 1500 cggcggcgcc gcgttcgtga tcgcgtggaa cctcgtggtc accacggcca tcctcctcgg 1560 categgeetg tteatecege tgeggatgee egaegageag eteatgateg gegaegaege 1620 1680 1740 gcacgacctg togagggggg goggaggggg cgacagggac ggccccgccg gcgagcgcct

ccgcgccgcg ccgcggcctg gcctctaatt acacgcgcgt ttgtactgtt tttggacgtg ttattgttta ggagtagtga agtgaaccaa cgattgactg caaggtgaag ggtgagaacg cgagagacca gaccactata gtctatagta catatggatg ctgtaatgat gttgatccga <210> SEQ ID NO 38 <211> LENGTH: 486 <212> TYPE: PRT <213> ORGANISM: Oryza sativa <400> SEQUENCE: 38 Met Ala Ala Ala Gly Ala Tyr Ser Ala Ser Leu Pro Ala Val Pro Asp Trp Leu Asn Lys Gly Asp Asn Ala Trp Gln Leu Thr Ala Ser Thr Leu Val Gly Ile Gln Ser Met Pro Gly Leu Val Val Leu Tyr Gly Ser Ile Val Lys Lys Trp Ala Val Asn Ser Ala Phe Met Ala Leu Tyr Ala Tyr Ala Ser Ser Leu Leu Val Trp Val Leu Val Gly Phe Arg Met Ala Phe Gly Asp Gln Leu Leu Pro Phe Trp Gly Lys Ala Gly Val Ala Leu Thr Gln Ser Tyr Leu Val Gly Arg Ala Thr Leu Pro Ala Thr Ala His Gly Ala Ile Pro Arg Thr Glu Pro Phe Tyr Pro Glu Ala Thr Leu Val Leu Phe Gln Phe Glu Phe Ala Ala Ile Thr Leu Val Leu Leu Ala Gly Ser Val Leu Gly Arg Met Asn Ile Lys Ala Trp Met Ala Phe Thr Pro Leu Trp Leu Leu Ser Tyr Thr Val Gly Ala Phe Ser Leu Trp Gly Gly Gly Phe Leu Tyr Arg Trp Gly Val Ile Asp Tyr Ser Gly Gly Tyr Val Ile His Leu Ser Ser Gly Ile Ala Gly Phe Thr Ala Ala Tyr Trp Val Gly Pro Arg Leu Lys Ser Asp Arg Glu Arg Phe Ser Pro Asn Asn Ile Leu Met Ile Ala Gly Gly Gly Leu Leu Trp Met Gly Trp Ala Gly Phe Asn Gly Gly Ala Pro Tyr Ala Ala Asn Ile Ala Ala Ser Val Ala Val Leu Asn Thr Asn Val Cys Ala Ala Thr Ser Leu Leu Met Trp Thr Cys Leu Asp Val Ile Phe Phe Arg Lys Pro Ser Val Ile Gly Ala Val Gln Gly Met Met Thr Gly Leu Val Cys Ile Thr Pro Gly Ala Gly Leu Val Gln Thr Trp Ala Ala Val Val Met Gly Ile Phe Ala Gly Ser

-continued

-continued	
305 310 315 320	
Val Pro Trp Phe Thr Met Met Ile Leu His Lys Lys Ser Ala Leu Leu	
325 330 335	
Met Lys Val Asp Asp Thr Leu Ala Val Phe His Thr His Ala Val Ala 340 345 350	
Gly Leu Leu Gly Gly Ile Leu Thr Gly Leu Leu Ala Thr Pro Glu Leu	
355 360 365	
Phe Ser Leu Glu Ser Thr Val Pro Gly Leu Arg Gly Ala Phe Tyr Gly370375380	
Gly Gly Ile Lys Gln Ile Gly Lys Gln Leu Gly Gly Ala Ala Phe Val	
385 390 395 400	
Ile Ala Trp Asn Leu Val Val Thr Thr Ala Ile Leu Leu Gly Ile Gly405410415	
Leu Phe Ile Pro Leu Arg Met Pro Asp Glu Gln Leu Met Ile Gly Asp	
420 425 430	
Asp Ala Ala His Gly Glu Glu Ala Tyr Ala Leu Trp Gly Asp Gly Glu 435	
Lys Phe Asp Ala Thr Arg His Asp Leu Ser Arg Gly Gly Gly Gly Gly	
450 455 460	
Asp Arg Asp Gly Pro Ala Gly Glu Arg Leu Ser Ala Leu Gly Ala Arg 465 470 475 480	
Gly Val Thr Ile Gln Leu 485	
<210> SEQ ID NO 39 <211> LENGTH: 1494	
<212> TYPE: DNA	
<213> ORGANISM: Oryza sativa	
<400> SEQUENCE: 39	
atggegtege egaceeggee ggggeegtae atgeegegee eaceggeggt geeggagtgg	g 60
ctgaacaccg gggacaacgg gtggcagctc gcggcggcga cgttcgtcgg gctccagtcg	g 120
atgootgggo tggtggtgot gtacggcago atogtgaaga agaagtgggo ogtoaactog	g 180
gcetteatgg egetgtaege gtaegegtee aegeteateg tgtgggtget ggteggette	z 240
cgcatggcgt tcggcgaccg gctgctcccg ttctggggga aggccggcgc ggcgctgacc	g 300
gaggggttcc tcgtggcgcg cgcgtcggtc ccggccacgg cgcactacgg gaaggacggo	c 360
gccctggagt cgccgcgcac cgagccgttc tacccggagg cgtccatggt gctgttcca	g 420
ttegageteg eegecateae getggtgetg etegeegggt egeteetegg gaggatgaad	c 480
atcaaggegt ggatggegtt cacteegete tggeteetet teteetaeae egtetgegee	c 540
ttcagcetet ggggeggegg etteetetae cagtggggeg teategaeta eteeggegga	a 600
tacgtcatcc acctctcctc cggcatcgcc ggcttcaccg ccgcctactg ggtggggcc	g 660
aggetgaaga gegacaggga geggtteteg eegaacaaca teeteeteat gategeegge	e 720
ggegggetge tgtggetggg etgggeeggg tteaaeggeg gegegeegta egeeceaaa	
atcacegegt ceategeegt geteaacace aaegteageg eegeggegag eeteeteace	
tggacetgee tegaegteat ettettegge aageeeteeg teateggege egtgeaggge	
atgatgaccg gtctcgtctg catcaccccc ggcgcaggtc tggtgcacac gtgggcggcg	
atactgatgg gcatctgtgg cggcagcttg ccgtggttct ccatgatgat cctccacaag	J 1020

agateggege tgetecagaa ggtggaegae accetegeeg tettecaeae ceaegeegte gegggeetee teggeggett ceteaeggge etgttegeet tgeeggaeet eacegeegte cacaccccaca teeetggege gegeggegeg ttetaeggeg geggeatege eeaggtgggg aagcagateg eeggegeget ettegtegte gtgtggaaeg tegtggeeae eacegteate ctgctcggcg tcggcctcgt cgtcccgctc cgcatgcccg acgagcagct caagatcggc gacgacgcgg cgcacgggga ggaggcctac gcgctatggg gagacggcga gaggttcgac gtgacgcgcc atgagggggc gagggggggc gcgtgggggg ccgcggtcgt ggacgaggcg atggatcacc ggctggccgg aatgggagcg agaggagtca cgattcagct gtag <210> SEQ ID NO 40 <211> LENGTH: 497 <212> TYPE: PRT <213> ORGANISM: Oryza sativa <400> SEQUENCE: 40 Met Ala Ser Pro Thr Arg Pro Gly Pro Tyr Met Pro Arg Pro Pro Ala Val Pro Glu Trp Leu Asn Thr Gly Asp Asn Gly Trp Gln Leu Ala Ala Ala Thr Phe Val Gly Leu Gln Ser Met Pro Gly Leu Val Val Leu Tyr Gly Ser Ile Val Lys Lys Trp Ala Val Asn Ser Ala Phe Met Ala Leu Tyr Ala Tyr Ala Ser Thr Leu Ile Val Trp Val Leu Val Gly Phe Arg Met Ala Phe Gly Asp Arg Leu Leu Pro Phe Trp Gly Lys Ala Gly Ala Ala Leu Thr Glu Gly Phe Leu Val Ala Arg Ala Ser Val Pro Ala Thr Ala His Tyr Gly Lys Asp Gly Ala Leu Glu Ser Pro Arg Thr Glu Pro Phe Tyr Pro Glu Ala Ser Met Val Leu Phe Gln Phe Glu Leu Ala Ala Ile Thr Leu Val Leu Leu Ala Gly Ser Leu Leu Gly Arg Met Asn Ile Lys Ala Trp Met Ala Phe Thr Pro Leu Trp Leu Leu Phe Ser Tyr Thr Val Cys Ala Phe Ser Leu Trp Gly Gly Gly Phe Leu Tyr Gln Trp Gly Val Ile Asp Tyr Ser Gly Gly Tyr Val Ile His Leu Ser Ser Gly Ile Ala Gly Phe Thr Ala Ala Tyr Trp Val Gly Pro Arg Leu Lys Ser Asp Arg Glu Arg Phe Ser Pro Asn Asn Ile Leu Leu Met Ile Ala Gly Gly Gly Leu Leu Trp Leu Gly Trp Ala Gly Phe Asn Gly Gly Ala Pro Tyr Ala Pro Asn Ile Thr Ala Ser Ile Ala Val Leu Asn Thr Asn Val

-continued	

-continued	
Ser Ala Ala Ala Ser Leu Leu Thr Trp Thr Cys Leu Asp Val Ile Phe 275 280 285	
Phe Gly Lys Pro Ser Val Ile Gly Ala Val Gln Gly Met Met Thr Gly 290 295 300	
Leu Val Cys Ile Thr Pro Gly Ala Gly Leu Val His Thr Trp Ala Ala 305 310 315 320	
Ile Leu Met Gly Ile Cys Gly Gly Ser Leu Pro Trp Phe Ser Met Met 325 330 335	
Ile Leu His Lys Arg Ser Ala Leu Leu Gln Lys Val Asp Asp Thr Leu 340 345 350	
Ala Val Phe His Thr His Ala Val Ala Gly Leu Leu Gly Gly Phe Leu	
355 360 365 Thr Gly Leu Phe Ala Leu Pro Asp Leu Thr Ala Val His Thr His Ile	
370 375 380 Pro Gly Ala Arg Gly Ala Phe Tyr Gly Gly Gly Ile Ala Gln Val Gly	
385 390 395 400	
Lys Gln Ile Ala Gly Ala Leu Phe Val Val Val Trp Asn Val Val Ala 405 410 415	
Thr Thr Val Ile Leu Leu Gly Val Gly Leu Val Val Pro Leu Arg Met 420 425 430	
Pro Asp Glu Gln Leu Lys Ile Gly Asp Asp Ala Ala His Gly Glu Glu 435 440 445	
Ala Tyr Ala Leu Trp Gly Asp Gly Glu Arg Phe Asp Val Thr Arg His 450 455 460	
Glu Gly Ala Arg Gly Gly Ala Trp Gly Ala Ala Val Val Asp Glu Ala 465 470 475 480	
Met Asp His Arg Leu Ala Gly Met Gly Ala Arg Gly Val Thr Ile Gln 485 490 495	
Leu	
<210> SEQ ID NO 41 <211> LENGTH: 1494 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 41	
atggegtege egeegeagee egggeegtae atgeeggaee tgeeggeggt geeggegtgg	60
ctgaacaagg gcgacaccgc gtggcagctg gtggcggcga cgttcgtcgg catccagtcg	120
atgeetggge tggtggtgat etaeggeage ategtgaaga agaagtggge egteaaetee	180
geetteatgg egetgtaege etaegegtee aegettateg tgtgggtget egteggette	240
cgcatggcgt tcggcgaccg gctgctcccg ttctgggcca aggccgggcc ggcgctgacg	300
caggacttcc tggtgcaacg cgcggtgttc ccggcgacgg cgcactacgg cagcgacggc acgctcgaga cgccgcgcac cgagccgttc tacgcggagg cggcgctggt gctgttcgag	420
ttegagtteg eggecateae getggtgetg etegeegggt egeteetggg geggatgaae	480
atcaaggegt ggatggegtt cacceegete tggeteetet teteetacae egteggegeg	540
ttcageetet ggggeggegg etteetetae eagtggggeg teategaeta eteeggegga	600
tacgtcatcc acctetecte eggegtegee ggetteaceg eegeetaetg ggtgggeeeg	660
aggetgaaga gegacaggga geggtteteg eegaacaaca teetgeteat gategeegge	720

gcgggctgc tgtggttggg ctgggccggg ttcaacggcg gcgcgccgta cgcccccaac	780
tcaccgcca cggtcgccgt gctcaacacc aacgtcagcg ccgcgacgag cctcctcacc	840
ggacetgee tegaegteat ettettegge aageeeteeg teateggege egtgeagggt	900
tgatgacgg ggctcgtctg catcacgccc ggcgccgggc tggtgcacac gtggtcagcg	960
tgetgatgg geatgttege eggeagegte eegtggttea egatgatgat eetgeacaag	1020
aatccacct teeteatgaa ggtegaegae accetegeeg tetteeaeae ceaegeegte	1080
ccggcatcc tgggcggcgt cctcacgggc ctcctcgcca cgccggagct ctgcgctctc	1140
attgeeega teeegaacat gegeggegte ttetaeggea geggeategg eeageteggg	1200
ageageteg geggegeget gttegteace gtetggaace teategteae eagegeeatt	1260
teetetgea teggeetett catecegete egeatgteeg aegaecaget catgategge	1320
acgacgcgg cgcacgggga ggaggcctac gctctgtggg gggacggtga gaagttcgac	1380
tgacgcggc cggagacgac gaggacggga ggtgcaggcg gcgcgggcag ggaggacacc	1440
tggagcaga ggctgaccaa catgggagcc aggggtgtca ccattcagtt gtag	1494
210> SEQ ID NO 42 211> LENGTH: 497 212> TYPE: PRT 213> ORGANISM: Oryza sativa 400> SEQUENCE: 42	
et Ala Ser Pro Pro Gln Pro Gly Pro Tyr Met Pro Asp Leu Pro Ala 5 10 15	
al Pro Ala Trp Leu Asn Lys Gly Asp Thr Ala Trp Gln Leu Val Ala 0 25 30	
la Thr Phe Val Gly Ile Gln Ser Met Pro Gly Leu Val Val Ile Tyr 5 40 45	
ly Ser Ile Val Lys Lys Trp Ala Val Asn Ser Ala Phe Met Ala 0 55 60	
eu Tyr Ala Tyr Ala Ser Thr Leu Ile Val Trp Val Leu Val Gly Phe 5 70 75 80	
rg Met Ala Phe Gly Asp Arg Leu Leu Pro Phe Trp Ala Lys Ala Gly 5 90 95	
ro Ala Leu Thr Gln Asp Phe Leu Val Gln Arg Ala Val Phe Pro Ala 00 105 110	
hr Ala His Tyr Gly Ser Asp Gly Thr Leu Glu Thr Pro Arg Thr Glu 15 120 125	
ro Phe Tyr Ala Glu Ala Ala Leu Val Leu Phe Glu Phe Glu Phe Ala 30 135 140	
la Ile Thr Leu Val Leu Leu Ala Gly Ser Leu Leu Gly Arg Met Asn 45 150 155 160	
le Lys Ala Trp Met Ala Phe Thr Pro Leu Trp Leu Leu Phe Ser Tyr 65 170 175	
hr Val Gly Ala Phe Ser Leu Trp Gly Gly Gly Phe Leu Tyr Gln Trp 80 185 190	
ly Val Ile Asp Tyr Ser Gly Gly Tyr Val Ile His Leu Ser Ser Gly 95 200 205	

		-
-cont	าทา	1100

-continued
Asp Arg Glu Arg Phe Ser Pro Asn Asn Ile Leu Leu Met Ile Ala Gly 225 230 235 240
Gly Gly Leu Leu Trp Leu Gly Trp Ala Gly Phe Asn Gly Gly Ala Pro 245 250 255
Tyr Ala Pro Asn Val Thr Ala Thr Val Ala Val Leu Asn Thr Asn Val 260 265 270
Ser Ala Ala Thr Ser Leu Leu Thr Trp Thr Cys Leu Asp Val Ile Phe 275 280 285
Phe Gly Lys Pro Ser Val Ile Gly Ala Val Gln Gly Met Met Thr Gly 290 295 300
Leu Val Cys Ile Thr Pro Gly Ala Gly Leu Val His Thr Trp Ser Ala 305 310 315 320
Met Leu Met Gly Met Phe Ala Gly Ser Val Pro Trp Phe Thr Met Met 325 330 335
Ile Leu His Lys Ser Thr Phe Leu Met Lys Val Asp Asp Thr Leu 340 345 350
Ala Val Phe His Thr His Ala Val Ala Gly Ile Leu Gly Gly Val Leu 355 360 365
Thr Gly Leu Leu Ala Thr Pro Glu Leu Cys Ala Leu Asp Cys Pro Ile 370 375 380
Pro Asn Met Arg Gly Val Phe Tyr Gly Ser Gly Ile Gly Gln Leu Gly 385 390 395 400
Lys Gln Leu Gly Gly Ala Leu Phe Val Thr Val Trp Asn Leu Ile Val 405 410 415
Thr Ser Ala Ile Leu Cys Ile Gly Leu Phe Ile Pro Leu Arg Met 420 425 430
Ser Asp Asp Gln Leu Met Ile Gly Asp Asp Ala Ala His Gly Glu Glu 435 440 445
Ala Tyr Ala Leu Trp Gly Asp Gly Glu Lys Phe Asp Val Thr Arg Pro 450
Glu Thr Thr Arg Thr Gly Gly Ala Gly Gly Ala Gly Arg Glu Asp Thr 465 470 475 480
Met Glu Gln Arg Leu Thr Asn Met Gly Ala Arg Gly Val Thr Ile Gln 485 490 495
Leu
<210> SEQ ID NO 43 <211> LENGTH: 1440 <212> TYPE: DNA <213> ORGANISM: Oryza sativa
<400> SEQUENCE: 43
atgtegtegt eggegaeggt ggtgeegetg gegtaeeagg ggaaeaegte ggegteggtg 60
geggaetgge tgaacaaggg egacaaegeg tggeagetgg tggeggegae ggtggtgggg 120
ctgcagageg tgeegggett ggtggtgetg taeggeggeg tggtgaagaa gaagtgggeg 180
gtgaactegg egtteatgge getetaegee ttegeegeeg tgtggatetg etgggteaee 240
tgggcgtaca acatgtcgtt cggggagaag ctcctcccga tctgggggaa ggcgcgggccg 300
gcgctggacc agggcctcct cgtcggccgc gccgcgctgc cggcgacggt ccactaccgc 360 gccgacggca gcgtggagac ggcggcggtg gagccgctgt acccgatggc gacggtggtg 420
tacttecagt gegtgttege egecateace etcatecteg tegeogete ectectegge 480

cgcatgaget teetegeetg gatgatette gteeegetet ggeteacett etectaeace	540
gtcggcgcct tetecetetg gggcggcggc tteetettee aetggggegt categaetae	600
tgcggcggct acgtcatcca cgtctccgcc ggcatcgccg gcttcaccgc cgcctactgg	660
gtggggccaa gggcacagaa ggacagggag aggttcccgc cgaacaacat actgttcacg	720
ctgacgggggg cagggttact atggatgggg tgggcagggt tcaacggcgg tggtccgtac	780
geogecaact cogtogooto catggoogto otcaacacca acatotgoac ogocatgago	840
ctcatcgtct ggacatgcct cgacgtcatc ttcttcaaga agccctccgt cgtcggcgcc	900
gtccagggca tgatcaccgg cctcgtctgc atcacccccg ctgcaggggt ggtgcagggg	960
tgggcggcgc tggtgatggg ggtgctcgcc ggcagcatcc cgtggtacac catgatgatc	1020
ctccacaagc gctccaagat cctgcagcgc gtcgacgaca ccctcggcgt cttccacacc	1080
cacggcgtcg ccggcctcct cggcggcctc ctcaccggcc tcttcgccga gcccaccctc	1140
tgcaacetet teeteeeegt egeegaetee eggggegeet tetaeggegg egeeggegge	1200
gcccagttcg gcaagcagat cgccggtggc ctcttcgtcg tcgcctggaa cgtcgccgtc	1260
acctccctca tctgcctcgc catcaacctc ctcgtcccgc tccgcatgcc cgacgacaag	1320
ctcgaggtcg gcgacgacgc cgtccacggc gaggaggcct acgcgctctg gggcgacggc	1380
gagatgtacg acgtcaccaa gcacggctcc gacgccgccg ttgcgcccgt cgtcgtatga	1440
<210> SEQ ID NO 44 <211> LENGTH: 479 <212> TYPE: PRT <213> ORGANISM: Oryza sativa	
<400> SEQUENCE: 44	
Met Ser Ser Ala Thr Val Val Pro Leu Ala Tyr Gln Gly Asn Thr 1 5 10 15	
Ser Ala Ser Val Ala Asp Trp Leu Asn Lys Gly Asp Asn Ala Trp Gln 20 25 30	
Leu Val Ala Ala Thr Val Val Gly Leu Gln Ser Val Pro Gly Leu Val 35 40 45	
Val Leu Tyr Gly Gly Val Val Lys Lys Trp Ala Val Asn Ser Ala	
50 55 60	
Phe Met Ala Leu Tyr Ala Phe Ala Ala Val Trp Ile Cys Trp Val Thr 65 70 75 80	
Trp Ala Tyr Asn Met Ser Phe Gly Glu Lys Leu Leu Pro Ile Trp Gly 85 90 95	
Lys Ala Arg Pro Ala Leu Asp Gln Gly Leu Leu Val Gly Arg Ala Ala 100 105 110	
Leu Pro Ala Thr Val His Tyr Arg Ala Asp Gly Ser Val Glu Thr Ala 115 120 125	
Ala Val Glu Pro Leu Tyr Pro Met Ala Thr Val Val Tyr Phe Gln Cys 130 135 140	
100 110	
Val Phe Ala Ala Ile Thr Leu Ile Leu Val Ala Gly Ser Leu Leu Gly	
Val Phe Ala Ala Ile Thr Leu Ile Leu Val Ala Gly Ser Leu Leu Gly 145 150 155 160 Arg Met Ser Phe Leu Ala Trp Met Ile Phe Val Pro Leu Trp Leu Thr	
Val Phe Ala Ala Ile Thr Leu Ile Leu Val Ala Gly Ser Leu Leu Gly 145 150 155 160	

_	\sim	0	n	÷	п.	n	11		\sim
_	\sim	\sim	τт	L	_	τ.τ	u	-	u

Phe His Trp Gly Val Ile Asp Tyr Cys Gly Gly Tyr Val Ile His Val 195 200 205	
Ser Ala Gly Ile Ala Gly Phe Thr Ala Ala Tyr Trp Val Gly Pro Arg 210 215 220	
Ala Gln Lys Asp Arg Glu Arg Phe Pro Pro Asn Asn Ile Leu Phe Thr 225 230 235 240	
Leu Thr Gly Ala Gly Leu Leu Trp Met Gly Trp Ala Gly Phe Asn Gly 245 250 255	
Gly Gly Pro Tyr Ala Ala Asn Ser Val Ala Ser Met Ala Val Leu Asn 260 265 270	
Thr Asn Ile Cys Thr Ala Met Ser Leu Ile Val Trp Thr Cys Leu Asp 275 280 285	
Val Ile Phe Lys Lys Pro Ser Val Val Gly Ala Val Gln Gly Met 290 295 300	
Ile Thr Gly Leu Val Cys Ile Thr Pro Ala Ala Gly Val Val Gln Gly305310315320	
Trp Ala Ala Leu Val Met Gly Val Leu Ala Gly Ser Ile Pro Trp Tyr 325 330 335	
Thr Met Met Ile Leu His Lys Arg Ser Lys Ile Leu Gln Arg Val Asp 340 345 350	
Asp Thr Leu Gly Val Phe His Thr His Gly Val Ala Gly Leu Leu Gly 355 360 365	
Gly Leu Leu Thr Gly Leu Phe Ala Glu Pro Thr Leu Cys Asn Leu Phe 370 375 380	
Leu Pro Val Ala Asp Ser Arg Gly Ala Phe Tyr Gly Gly Ala Gly Gly385390395400	
Ala Gln Phe Gly Lys Gln Ile Ala Gly Gly Leu Phe Val Val Ala Trp 405 410 415	
Asn Val Ala Val Thr Ser Leu Ile Cys Leu Ala Ile Asn Leu Leu Val 420 425 430	
Pro Leu Arg Met Pro Asp Asp Lys Leu Glu Val Gly Asp Asp Ala Val 435 440 445	
His Gly Glu Glu Ala Tyr Ala Leu Trp Gly Asp Gly Glu Met Tyr Asp 450 455 460	
Val Thr Lys His Gly Ser Asp Ala Ala Val Ala Pro Val Val Val 465 470 475	
<210> SEQ ID NO 45 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 45	
atgtcggggg acgcgttcaa catgtcggtg gcgtaccagc cgtcggggat ggcggtgccg	60
gagtggetga acaagggega caaegegtgg eagatgatet eggegaeget ggtggggatg	120
cagagcgtgc cggggctggt gatcctgtac ggcagcatcg tgaagaagaa gtgggcggtg	180
aactoggogt toatggogot otaogootto googoogtgt ggotgtgotg ggtoacotgg	240
ggetacaaca tgtegttegg ecacaagete eteeegttet ggggeaagge geggeeggeg	300
ctgggccaga gcttcctcct cgcccaggcc gtgctcccgc agacgacgca gttctacaag	360
ggcggcggcg gcgccgacgc cgtggtggag acgccatggg tgaacccgct ctacccgatg	420

gccaccatgo	g tgta	cttcc	ca g	tgcgt	gtto	gco	cgcca	atca	cgct	cato	ct (cctcç	gccggc	480
tcgctgctg	g ggcg	gatga	aa c	atcaa	aggcg	tgg	gatgo	tgt	tcgt	cccç	jct (ctggo	ctcacc	540
ttctcctaca	a ccgt	cggcg	ge e	ttete	cgctg	l tgg	adaca	laca	gctt	cecto	tt (ccact	adada	600
gtcatggact	acto	cggcg	ad c.	tacgt	cato	cad	cctct	cgt	cggg	gtgto	gc (cggct	tcacc	660
gcggcgtact	gggt	ggggo	cc c	aggto	cgacc	aaç	ggaca	ıggg	agaç	ggtto	cc g	gccaa	aacaac	720
gtgctgctca	a tgct	cacco	gg c	geege	gcata	ctç	gtgga	atgg	ggt	gggcó	iaa k	gttca	aacggc	780
ggcgacccgt	acto	egeca	aa c	atcga	actcc	tcç	geteg	Jeeg	tgct	caad	ac (caaca	atctgc	840
geegeeacea	a gcct	cctcc	gt c	tggad	ettge	cto	cgace	gtca	tctt	ctto	aa g	gaago	ccgtcc	900
gtcatcggco	g ccgt	ccago	gg c	atgat	cacc	ggo	cctcg	gtct	gcat	cact	cc (cggcg	gcaggc	960
ctggtgcagg	g gttg	laacad	ge g	atcgt	gatg	l ddo	cated	tct	ccgé	gcago	at o	cccgt	ggttc	1020
acgatgatg	g tggt	gcaca	aa g	cggto	cgcgc	cto	cctgo	agc	aggt	ggad	ga (cacco	ctgggc	1080
gtcttccaca	a ccca	egeeg	gt c	geege	gatte	cto	ggcg	làcà	ccad	ccacç	igg (cctct	tegee	1140
gagecegtee	c tctg	lctccc	ct c	tteet	caca	gto	cacca	act	cccç	geggo	gc (cttct	cacccc	1200
ggccgcggcg	g gegg	lectec	ca g	ttcgt	ceege	caç	ggtgg	lccd	gcgo	ccct	tt (catca	atctgc	1260
tggaacgtgg	g tggt	cacca	ag c	ctcgt	cctgc	cto	gccg	gtcc	gcgo	ccgto	gt i	tcccc	ctccgg	1320
atgcccgago	g agga	igetee	ge e	atcgo	gegae	gad	gaag	ytgc	acgo	gggag	ıga	ggcgt	cacgcg	1380
ctgtggggcg	g acgg	Icgaga	aa g	tacga	actcc	aco	caago	cacg	gato	ggtad	tc (cgaca	aacaac	1440
gacacgcaco	c acaa	caaca	aa c	aaggo	ccgcg	l cco	cageg	làcà	tcad	cgcaç	jaa (cgtct	zga	1497
<210> SEQ <211> LENG <212> TYPE <213> ORGA	GTH: 4 S: PRT	98	a sa	ativa	1									
<400> SEQU	JENCE :	46												
Met Ser G] 1	ly Asp	Ala 5	Phe	Asn	Met		Val LO	Ala	Tyr	Gln		Ser 15	Gly	
Met Ala Va 20	al Pro	Glu	Trp 25	Leu	Asn	Lys	Gly	Asp 30	Asn	Ala	Trp	Gln	Met	
Ile Ser Al	la Thr	Leu		Glv	Met	G] n	Ser		Pro	Glv	Len	Val	Ile	
35	-~ 1111	Leu	40	CTY		5211	201	45		<u> </u>	Leu		110	
Leu Tyr Gl 50	ly Ser	Ile	Val 55	Lys	Lys	Lys	Trp	Ala 60	Val	Asn	Ser	Ala	Phe	
Met Ala Le	eu Tvr	Ala		Ala	Ala	Val	Tro		Cvs	Tro	Val	Thr	Trp	
65	- 1 -		70				· T.	75	1	-т.			80	
Gly Tyr As 85	an Met	Ser	Phe 90	Gly	His	Lys	Leu	Leu 95	Pro	Phe	Trp	Gly	Lys	
Ala Arg Pi	ro Ala	. Leu		Gln	Ser	Phe	Leu		Ala	Gln	Ala	Val	Leu	
100			105					110						
Pro Gln Tr 115	ır Thr	Gln	Phe 120	Tyr	Lys	Gly	Gly	Gly 125	Gly	Ala	Asp	Ala	Val	
Val Glu Tł	nr Prc	Trp		Asn	Pro	Leu	Tyr		Met	Ala	Thr	Met	Val	
130			135					140						
Tyr Phe G] 145	ln Cys	Val	Phe 150	Ala	Ala	Ile	Thr	Leu 155	Ile	Leu	Leu	Ala	Gly 160	
Ser Leu Le	eu Gly	' Arg	Met	Asn	Ile	Lys	Ala	Trp	Met	Leu	Phe	Val	Pro	

-continued

-continued
165 170 175
Leu Trp Leu Thr Phe Ser Tyr Thr Val Gly Ala Phe Ser Leu Trp Gly 180 185 190
Gly Gly Phe Leu Phe His Trp Gly Val Met Asp Tyr Ser Gly Gly Tyr 195 200 205
Val Ile His Leu Ser Ser Gly Val Ala Gly Phe Thr Ala Ala Tyr Trp 210 215 220
Val Gly Pro Arg Ser Thr Lys Asp Arg Glu Arg Phe Pro Pro Asn Asn 225 230 235 240
Val Leu Leu Met Leu Thr Gly Ala Gly Ile Leu Trp Met Gly Trp Ala 245 250 255
Gly Phe Asn Gly Gly Asp Pro Tyr Ser Ala Asn Ile Asp Ser Ser Leu 260 265 270
Ala Val Leu Asn Thr Asn Ile Cys Ala Ala Thr Ser Leu Leu Val Trp 275 280 285
Thr Cys Leu Asp Val Ile Phe Phe Lys Lys Pro Ser Val Ile Gly Ala
290 295 300 Val Gln Gly Met Ile Thr Gly Leu Val Cys Ile Thr Pro Gly Ala Gly
305 310 315 320 Leu Val Gln Gly Trp Ala Ala Ile Val Met Gly Ile Leu Ser Gly Ser
325 330 335 Ile Pro Trp Phe Thr Met Met Val Val His Lys Arg Ser Arg Leu Leu
340 345 350 Gln Gln Val Asp Asp Thr Leu Gly Val Phe His Thr His Ala Val Ala
355 360 365 Gly Phe Leu Gly Gly Ala Thr Thr Gly Leu Phe Ala Glu Pro Val Leu
370 375 380 Cys Ser Leu Phe Leu Pro Val Thr Asn Ser Arg Gly Ala Phe Tyr Pro
385 390 395 400
Gly Arg Gly Gly Gly Leu Gln Phe Val Arg Gln Val Ala Gly Ala Leu 405 410 415
Phe Ile Ile Cys Trp Asn Val Val Val Thr Ser Leu Val Cys Leu Ala 420
/al Arg Ala Val Val Pro Leu Arg Met Pro Glu Glu Glu Leu Ala Ile 135 440 445
Gly Asp Asp Ala Val His Gly Glu Glu Ala Tyr Ala Leu Trp Gly Asp 450 455 460
Gly Glu Lys Tyr Asp Ser Thr Lys His Gly Trp Tyr Ser Asp Asn Asn 465 470 475 480
Asp Thr His His Asn Asn Asn Lys Ala Ala Pro Ser Gly Val Thr Gln 485 490 495
Asn Val
<210> SEQ ID NO 47 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Oryza sativa
<400> SEQUENCE: 47
atggegaegt gegeggegga eetggegeeg etgetgggge eggtggeegge gaaegegaeg 60
jactacetgt geaaceggtt egeegacaeg aegteggegg tggaegegae gtaeetgete 120

-continued	
tteteggegt acctegtgtt egecatgeag etegggtteg egatgetetg egeegggteg	180
gtgegggeea agaacaegat gaacateatg eteaceaaeg tgetegaege egeggeeggg	240
gegetettet actacetett eggettegee ttegeetteg geaegeegte caaeggette	300
ategggaage agttettegg eeteaageae atgeegeaga eegggttega etaegaette	360
tteetettee agtgggeett egecategee geegeeggga teaegteggg etceategee	420
gagaggacge agttegtege etaceteate tacteegeet teeteacegg gttegtetae	480
ceggtggtgt cecaetggat etggteegee gatgggtggg eetetgeete eegeaegtee	540
ggacetetge tgtteggete eggtgteate gaettegeeg geteeggegt egteeacatg	600
gteggeggtg tegeeggget etggggegeg etcategagg geeeeegaat egggaggtte	660
gaccacgccg gccgatcggt ggcgctcaag ggccacagcg cgtcgctcgt cgtgcttggc	720
acetteetge tgtggttegg etggtaegga tteaaceeeg ggtegtteae eaceateete	780
aagacgtacg geeeggeegg eggeateaae gggeagtggt eeggagtegg eegeaeegee	840
gtgacgacga ccctggccgg cagcgtggcg gcgctcacca cgctgttcgg gaagcggctc	900
cagacggggc actggaacgt ggtcgacgtc tgcaacggcc teeteggegg gttegeegee	960
atcaccgccg ggtgcagcgt cgtcgacccg tgggccgcga tcatctgcgg gttcgtctcg	1020
gegtgggtge teateggeet caaegegete geegegegee teaagttega egaeeegete	1080
gaggeegeee ageteeaegg egggtgegge gegtgggggga teetetteae egegetette	1140
gcgaggcaga agtacgtcga ggagatctac ggcgccggcc ggccgtacgg cctgttcatg	1200
ggeggeggeg geaagetget egeegegeae gteateeaga teetggteat ettegggtgg	1260
gtcagetgea ceatgggaee tetettetae gggeteaaga ageteggeet geteegeate	1320
tccgccgagg acgagacgtc cggcatggac ctgacacggc acggcgggtt cgcgtacgtc	1380
taccacgacg aggacgagca cgacaagtet ggggttggtg ggtteatget eeggteegeg	1440
cagaccegeg tegageegge ggeggegget geeteeaaca geaacaacea agtgtaa	1497
<210> SEQ ID NO 48 <211> LENGTH: 498 <212> TYPE: PRT <213> ORGANISM: Oryza sativa <400> SEQUENCE: 48	
<pre><400> SEQUENCE: 48 Met Ala Thr Cys Ala Ala Asp Leu Ala Pro Leu Leu Gly Pro Val Ala</pre>	
1 5 10 15	
Ala Asn Ala Thr Asp Tyr Leu Cys Asn Arg Phe Ala Asp Thr Thr Ser 20 25 30	
Ala Val Asp Ala Thr Tyr Leu Leu Phe Ser Ala Tyr Leu Val Phe Ala 35 40 45	
Met Gln Leu Gly Phe Ala Met Leu Cys Ala Gly Ser Val Arg Ala Lys 50 55 60	
Asn Thr Met Asn Ile Met Leu Thr Asn Val Leu Asp Ala Ala Ala Gly 65 70 75 80	
Ala Leu Phe Tyr Tyr Leu Phe Gly Phe Ala Phe Ala Phe Gly Thr Pro 85 90 95	
Ser Asn Gly Phe Ile Gly Lys Gln Phe Phe Gly Leu Lys His Met Pro 100 105 110	
Gln Thr Gly Phe Asp Tyr Asp Phe Phe Leu Phe Gln Trp Ala Phe Ala	

-continued

												COII	ιm	ucu	
115					120					125					
Ile 130	Ala	Ala	Ala	Gly	Ile 135	Thr	Ser	Gly	Ser	Ile 140	Ala	Glu	Arg	Thr	Gln
Phe 145	Val	Ala	Tyr	Leu	Ile 150	Tyr	Ser	Ala	Phe	Leu 155	Thr	Gly	Phe	Val	Tyr 160
Pro 165	Val	Val	Ser	His	Trp 170	Ile	Trp	Ser	Ala	Asp 175	Gly	Trp	Ala	Ser	Ala
Ser 180	Arg	Thr	Ser	Gly	Pro 185	Leu	Leu	Phe	Gly	Ser 190	Gly	Val	Ile	Asp	Phe
Ala 195	Gly	Ser	Gly	Val	Val 200	His	Met	Val	Gly	Gly 205	Val	Ala	Gly	Leu	Trp
Gly 210	Ala	Leu	Ile	Glu	Gly 215	Pro	Arg	Ile	Gly	Arg 220	Phe	Asp	His	Ala	Gly
Arg 225	Ser	Val	Ala	Leu	Lys 230	Gly	His	Ser	Ala	Ser 235	Leu	Val	Val	Leu	Gly 240
Thr 245	Phe	Leu	Leu	Trp	Phe 250	Gly	Trp	Tyr	Gly	Phe 255	Asn	Pro	Gly	Ser	Phe
Thr 260	Thr	Ile	Leu	Lys	Thr 265	Tyr	Gly	Pro	Ala	Gly 270	Gly	Ile	Asn	Gly	Gln
Trp 275	Ser	Gly	Val	Gly	Arg 280	Thr	Ala	Val	Thr	Thr 285	Thr	Leu	Ala	Gly	Ser
Val 290	Ala	Ala	Leu	Thr	Thr 295	Leu	Phe	Gly	ГЛа	Arg 300	Leu	Gln	Thr	Gly	His
Trp 305	Asn	Val	Val	Asp	Val 310	Суз	Asn	Gly	Leu	Leu 315	Gly	Gly	Phe	Ala	Ala 320
Ile 325	Thr	Ala	Gly	Суз	Ser 330	Val	Val	Asp	Pro	Trp 335	Ala	Ala	Ile	Ile	Суз
Gly 340	Phe	Val	Ser	Ala	Trp 345	Val	Leu	Ile	Gly	Leu 350	Asn	Ala	Leu	Ala	Ala
Arg 355	Leu	Lys	Phe	Asp	Asp 360	Pro	Leu	Glu	Ala	Ala 365	Gln	Leu	His	Gly	Gly
Суз 370	Gly	Ala	Trp	Gly	Ile 375	Leu	Phe	Thr	Ala	Leu 380	Phe	Ala	Arg	Gln	Lys
Tyr 385	Val	Glu	Glu	Ile	Tyr 390	Gly	Ala	Gly	Arg	Pro 395	Tyr	Gly	Leu	Phe	Met 400
Gly 405	Gly	Gly	Gly	Lys	Leu 410	Leu	Ala	Ala	His	Val 415	Ile	Gln	Ile	Leu	Val
Ile 420	Phe	Gly	Trp	Val	Ser 425	Суз	Thr	Met	Gly	Pro 430	Leu	Phe	Tyr	Gly	Leu
Lys 435	Lys	Leu	Gly	Leu	Leu 440	Arg	Ile	Ser	Ala	Glu 445	Asp	Glu	Thr	Ser	Gly
Met 450	Asp	Leu	Thr	Arg	His 455	Gly	Gly	Phe	Ala	Tyr 460	Val	Tyr	His	Asp	Glu
Asp 465	Glu	His	Asp	Lys	Ser 470	Gly	Val	Gly	Gly	Phe 475	Met	Leu	Arg	Ser	Ala 480
Gln 485	Thr	Arg	Val	Glu	Pro 490	Ala	Ala	Ala	Ala	Ala 495	Ser	Asn	Ser	Asn	Asn
Gln	Val														
	• ···														
	0> SH 1> LH														

-continu	ed

<212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 49 atggcgtggg tgagetteac catggegetg etgtteetgg tgeteaacaa getgggettg 60 ctgcgcatct cggccgagga caagatggcc ggcatggacc agacgcgcca cggcgggtta 120 ccacgacgac gacgcgagcg gcaagccaga ccttggcatt ggcgggttca tgctcaagtc 180 ggtgcacggc acgcaggttc gtcggtgtcg acggaggcga cgactgcggg gatggtggcc 240 gcgagggccg tgcaggagtt gtggaacggt tcggacaccg agcagaagag gacataccca 300 ccggttctgc tcgccggaga gggaggggac aacgactgcg gtgtccatca ctggctgcgc 360 420 gaaagaaggg caatttga 438 <210> SEQ ID NO 50 <211> LENGTH: 145 <212> TYPE: PRT <213> ORGANISM: Oryza sativa <400> SEQUENCE: 50 Met Ala Trp Val Ser Phe Thr Met Ala Leu Leu Phe Leu Val Leu Asn 1 10 15 Lys Leu Gly Leu Leu Arg Ile Ser Ala Glu Asp Lys Met Ala Gly Met 20 25 30 Asp Gln Thr Arg His Gly Gly Leu Pro Arg Arg Arg Arg Glu Arg Gln 35 40 45 Ala Arg Pro Trp His Trp Arg Val His Ala Gln Val Gly Ala Arg His 50 60 55 Ala Gly Ser Ser Val Ser Thr Glu Ala Thr Thr Ala Gly Met Val Ala 65 70 75 80 Ala Arg Ala Val Gln Glu Leu Trp Asn Gly Ser Asp Thr Glu Gln Lys 85 90 95 Arg Thr Tyr Pro Pro Val Leu Leu Ala Gly Glu Gly Gly Asp Asn Asp 100 105 110 Cys Gly Val His His Trp Leu Arg Leu Pro Leu Pro Ser Leu Val Ser 115 120 125 Trp Lys Arg Gly Glu Gly Arg Lys Arg Lys Lys Lys Glu Arg Arg Ala 130 135 140 T1e 145 <210> SEQ ID NO 51 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 51 atggcgacgt gettggacag eetegggeeg etgeteggeeg gegeggegaa etecaeegae 60 gcggccaact acatetgcaa caggttcacg gacaceteet eegeggtgga egegaegtae 120 ctgctcttct cggcctacct cgtgttcgcc atgcagctcg ggttcgccat gctctgcgcg 180 240 qqctccqtcc qcqccaaqaa ctccatqaac atcatqctca ccaacqtqct cqacqccqcc 300 gecggegege tettetaeta cetettegge ttegeetteg egttegggae gecgteeaag

ggetteateg g	gaagcagtt	cttegg	gctg	aagcaca	atgc	cgcaga	cagg	gtace	jactac	360
gacttcttcc t	cttccagto	g ggcett	cgcc	atcgcco	geeg	ccggcat	tcac	gtccc	gttcc	420
atcgccgagc g	gacgcgctt	: cagege	gtat	ctcatct	act	ccgcct	tcct	cacco	ggttc	480
gtgtacccgg t	ggtgtcgca	a ctggtt	ctgg	tccacco	gacg	ggtggg	cttc	ggccg	gccgg	540
ttgacgggtc c	gttgctgtt	caagto	gggc	gtcatco	gact	tcgccg	gctc	cggcg	gtcgtc	600
catctggtcg g	tggcattgo	tggcct	gtgg	ggtgcct	tca	tcgagg	geee	tcgca	atcggg	660
cggttcgacg c	cgccggccg	g cacggt	ggcg	atgaaaq	gggc	acageg	cctc	actgo	gtcgtg	720
ctcggcacct t	cctgctgt	g gttcgg	gtgg	ttcggct	tca	acccgg	ggtc	cttca	accacc	780
atctccaaga t	ctacggcga	a gtcggg	cacg	atcgaco	gggc	agtggt	cggc	ggtgg	Jaccac	840
accgccgtga c	gacgtcgct	ggcggg	gagc	gtcgcc	gege	tgacga	cgct	ctace	Jgcaag	900
agatggctga c	ggggcacto	g gaacgt	gacc	gacgtct	cgca	acggtci	tcct	cggcg	gcttc	960
geegegatea e	cgcgggctg	g ctccgt	ggtc	gacccgt	ggg	cgtcggi	tgat	ctgcc	ggttc	1020
gtgtcggcgt g	ggtcctcat	cggctg	caac	aagctgt	cgc	tgattci	tcaa	gttcg	jacgac	1080
ccgctggagg c	gacgcagct	gcacgo	cggg	tgcggc	gcgt	gggggat	tcat	cttca	accgcg	1140
ctgttcgcgc g	ıcagggagta	a cgtcga	gctg	atctaco	9999	tgccgg	ggag	gccgt	acggg	1200
ctgttcatgg g	lcddcddcdd	g gagget	tctc	gcggcgo	caca	tcgtgca	agat	cctgg	gtgatc	1260
gtcgggtggg t	cagegeead	c catggg	gacg	ctcttct	acg	tgctgca	acag	gttcg	yggetg	1320
ctccgcgtct c	gcccgcgad	c agagat	ggaa	ggcatgo	gacc	cgacgt	gcca	cggcg	ggttc	1380
gggtacgtgg a	lcgaggacga	a aggcga	gcgc	cgcgtca	aggg	ccaagt	cggc	ggcgg	jagacg	1440
gctcgcgtgg a	Igcccagaaa	a gtcgcc	ggag	caageco	gegg	cgggcca	agtt	tgtgt	ag	1497
<210> SEQ ID <211> LENGTH <212> TYPE: <213> ORGANI	: 498 PRT	sativa								
<400> SEQUEN	CE: 52									
Met Ala Thr 1	Cys Leu A 5	Asp Ser	Leu G	ly Pro 10	Leu	Leu Gly		Ala 15	Ala	
Asn Ser Thr	-		Tyr I	le Cys		Arg Phe	∋ Thr	Asp	Thr	
20		25			30					
Ser Ser Ala 35	-	Ala Thr 40	Tyr L	eu Leu	Phe 45	Ser Ala	a Tyr	Leu	Val	
Phe Ala Met 50		3ly Phe 55	Ala M	let Leu	Сув 60	Ala Gly	y Ser	Val	Arg	
Ala Lys Asn 65		Asn Ile 70	Met L	eu Thr	Asn 75	Val Let	ı Asp	Ala	Ala 80	
Ala Gly Ala 85		Tyr Tyr 90	Leu P	he Gly	Phe 95	Ala Phe	e Ala	Phe	Gly	
Thr Pro Ser 100		Phe Ile 105	Gly L	ys Gln	Phe 110	Phe Gly	y Leu	Lys	His	
Met Pro Gln 115		fyr Asp 120	Tyr A	sp Phe	Phe 125	Leu Phe	∋ Gln	Trp	Ala	
Phe Ala Ile 130		Ala Gly 135	Ile T	hr Ser	Gly 140	Ser Ile	e Ala	Glu	Arg	

											_	con	CIII	ucu		
Thr 145	Arg	Phe	Ser	Ala	Tyr 150	Leu	Ile	Tyr	Ser	Ala 155	Phe	Leu	Thr	Gly	Phe 160	
Val 165	Tyr	Pro	Val	Val	Ser 170	His	Trp	Phe	Trp	Ser 175	Thr	Asp	Gly	Trp	Ala	
Ser 180	Ala	Gly	Arg	Leu	Thr 185	Gly	Pro	Leu	Leu	Phe 190	Lys	Ser	Gly	Val	Ile	
Asp 195	Phe	Ala	Gly	Ser	Gly 200	Val	Val	His	Leu	Val 205	Gly	Gly	Ile	Ala	Gly	
Leu 210	Trp	Gly	Ala	Phe	Ile 215	Glu	Gly	Pro	Arg	Ile 220	Gly	Arg	Phe	Asp	Ala	
Ala 225	Gly	Arg	Thr	Val	Ala 230	Met	Lys	Gly	His	Ser 235	Ala	Ser	Leu	Val	Val 240	
Leu 245	Gly	Thr	Phe	Leu	Leu 250	Trp	Phe	Gly	Trp	Phe 255	Gly	Phe	Asn	Pro	Gly	
Ser 260	Phe	Thr	Thr	Ile	Ser 265	Гла	Ile	Tyr	Gly	Glu 270	Ser	Gly	Thr	Ile	Asp	
Gly 275	Gln	Trp	Ser	Ala	Val 280	Gly	Arg	Thr	Ala	Val 285	Thr	Thr	Ser	Leu	Ala	
Gly 290	Ser	Val	Ala	Ala	Leu 295	Thr	Thr	Leu	Tyr	Gly 300	Lys	Arg	Trp	Leu	Thr	
Gly 305	His	Trp	Asn	Val	Thr 310	Asp	Val	Суз	Asn	Gly 315	Leu	Leu	Gly	Gly	Phe 320	
Ala 325	Ala	Ile	Thr	Ala	Gly 330	Суз	Ser	Val	Val	Asp 335	Pro	Trp	Ala	Ser	Val	
Ile 340	Cys	Gly	Phe	Val	Ser 345	Ala	Trp	Val	Leu	Ile 350	Gly	Суз	Asn	Гла	Leu	
Ser 355	Leu	Ile	Leu	ГЛа	Phe 360	Asp	Asp	Pro	Leu	Glu 365	Ala	Thr	Gln	Leu	His	
Ala 370	Gly	Суз	Gly	Ala	Trp 375	Gly	Ile	Ile	Phe	Thr 380	Ala	Leu	Phe	Ala	Arg	
Arg 385	Glu	Tyr	Val	Glu	Leu 390	Ile	Tyr	Gly	Val	Pro 395	Gly	Arg	Pro	Tyr	Gly 400	
Leu 405	Phe	Met	Gly	Gly	Gly 410	Gly	Arg	Leu	Leu	Ala 415	Ala	His	Ile	Val	Gln	
Ile 420	Leu	Val	Ile	Val	Gly 425	Trp	Val	Ser	Ala	Thr 430	Met	Gly	Thr	Leu	Phe	
Tyr 435	Val	Leu	His	Arg	Phe 440	Gly	Leu	Leu	Arg	Val 445	Ser	Pro	Ala	Thr	Glu	
Met 450	Glu	Gly	Met	Asp	Pro 455	Thr	Сүз	His	Gly	Gly 460	Phe	Gly	Tyr	Val	Asp	
Glu 465	Asp	Glu	Gly	Glu	Arg 470	Arg	Val	Arg	Ala	Lys 475	Ser	Ala	Ala	Glu	Thr 480	
Ala 485	Arg	Val	Glu	Pro	Arg 490	Lys	Ser	Pro	Glu	Gln 495	Ala	Ala	Ala	Gly	Gln	
Phe	Val															

<210> SEQ 1D NO 53
<211> LENGTH: 1853
<212> TYPE: DNA
<213> ORGANISM: Oryza sativa

<400> SEQUENCE: 53

		-continued	
cageceaca ettecattge	teeteeete teetetacag	ı tetgtgttga gegegegteg	60
ggcggcgag gatggcaacg	tgcgcggata ccctcggccc	gctgctgggc acggcggcgg	120
gaacgcgac ggactacctg	tgcaaccagt tcgcggacac	gacgtcggcc gtggactcga	180
gtacctgct cttctcggcg	tacctcgtgt tcgccatgca	gctcggcttc gccatgctct	240
cgccgggtc cgtccgcgcc	aagaacacca tgaacatcat	gcttaccaac gtgctcgacg	300
egeegeegg egegetette	tactacctct tcggcttcgc	cttegeette ggggegeegt	360
caacggctt catcgggaag	cacttetteg geeteaagea	ggtcccacag gtcggcttcg	420
ctacagett ettectette	cagtgggcct tcgccatcgc	cgccgcgggc atcacgtccg	480
ctccatcgc cgagcggacc	cagttcgtgg cgtacctcat	ctactccgcc ttcctcaccg	540
gettegteta eeeggtggtg	tcccactgga tctggtccgc	cgacgggtgg gcctcggctt	600
ccggacgtc ggggtcgctg	ctcttcgggt ccggcgtcat	cgacttcgcc gggtcagggg	660
tgtccacat ggtgggcggc	gtggccggac tctggggcgc	cctcatcgag ggcccccgca	720
tgggcggtt cgaccacgcc	ggccgctcgg tggcgctgcg	cggccacagc gcgtcgctcg	780
cgtgctcgg cagcttcctt	ctgtggttcg ggtggtacgg	gtttaacccc ggctcgttcc	840
caccatcct caaatcctac	ggcccgcccg gtagcatcca	cgggcagtgg tcggcggtgg	900
acgcaccgc cgtgaccacc	accetegeeg geageaegge	ggcgctcacg acgctcttcg	960
gaagagget ceagaegggg	cactggaacg tgatcgacgt	ctgcaacggc ctcctcggcg	1020
cttcgcggc gatcaccgcc	ggttgctccg tcgtcgaccc	gtgggccgcg atcatctgcg	1080
gttcgtctc ggcgtgggtg	ctcatcggcc tcaacgcgct	ggcggcgagg ctcaagttcg	1140
cgacccgct cgaggcggcg	cagetgeacg gegggtgegg	ı cgcgtggggg gtcatcttca	1200
ggcgctgtt cgcgcgcaag	gagtacgtgg accagatctt	. cggccagccc gggcgcccgt	1260
cgggctgtt catgggcggc	ggeggeegge tgetegggge	gcacatagtg gtcatcctgg	1320
catcgcggc gtgggtgagc	ttcaccatgg cgccgctgtt	cctggtgctc aacaagctgg	1380
cttgctgcg catctcggcc	gaggacgaga tggccggcat	ggaccagacg cgccacggcg	1440
gttcgcgta cgcgtaccac	gacgacgacg cgagcggcaa	geeggaeege agegteggeg	1500
gttcatgct caagtcggcg	cacggcacgc aggtcgccgc	cgagatggga ggccatgtct	1560
gtggaaccg gaggagctga	gctagtagta catacatgca	gcatcatcga tcgaacgaaa	1620
gcatataag cgtttttcaa	ggttgatctg atgctgcagg	ı tttcgtgatt gtataatagg	1680
agaaaaaga tagtagtatt	ttttatctga gatcatctgt	ttggaacagg ggatttgact	1740
agatttgat ataaatttac	acaaaatctt agcaaaaatc	cctttatctc aactctcaag	1800
agagctttg ctttgtacaa	caaagtatca tgtgtgatat	aattgtcagg tgg	1853
210> SEQ ID NO 54 211> LENGTH: 496 212> TYPE: PRT 213> ORGANISM: Oryza	sativa		
400> SEQUENCE: 54			
let Ala Thr Cys Ala A: . 5	sp Thr Leu Gly Pro Leu 10	Leu Gly Thr Ala Ala 15	
ala Asn Ala Thr Asp Ty 0 21	yr Leu Cys Asn Gln Phe 5 30	Ala Asp Thr Thr Ser	

-cont	inued

											-	con	tin	ued						
Ala 35	Val	Asp	Ser	Thr	Tyr 40	Leu	Leu	Phe	Ser	Ala 45	Tyr	Leu	Val	Phe	Ala					
Met 50	Gln	Leu	Gly	Phe	Ala 55	Met	Leu	Cys	Ala	Gly 60	Ser	Val	Arg	Ala	Lys					
Asn 65	Thr	Met	Asn	Ile	Met 70	Leu	Thr	Asn	Val	Leu 75	Asp	Ala	Ala	Ala	Gly 80					
Ala 85	Leu	Phe	Tyr	Tyr	Leu 90	Phe	Gly	Phe	Ala	Phe 95	Ala	Phe	Gly	Ala	Pro					
Ser 100	Asn	Gly	Phe	Ile	Gly 105	Гла	His	Phe	Phe	Gly 110	Leu	Гла	Gln	Val	Pro					
Gln 115	Val	Gly	Phe	Asp	Tyr 120	Ser	Phe	Phe	Leu	Phe 125	Gln	Trp	Ala	Phe	Ala					
Ile 130	Ala	Ala	Ala	Gly	Ile 135	Thr	Ser	Gly	Ser	Ile 140	Ala	Glu	Arg	Thr	Gln					
Phe 145	Val	Ala	Tyr	Leu	Ile 150	Tyr	Ser	Ala	Phe	Leu 155	Thr	Gly	Phe	Val	Tyr 160					
	Val	Val	Ser	His	Trp 170	Ile	Trp	Ser	Ala	Asp 175	Gly	Trp	Ala	Ser	Ala					
	Arg	Thr	Ser	Gly		Leu	Leu	Phe	Gly		Gly	Val	Ile	Asp	Phe					
	Gly	Ser	Gly	Val		His	Met	Val	Gly		Val	Ala	Gly	Leu	Trp					
		Leu	Ile	Glu		Pro	Arg	Ile	Gly		Phe	Asp	His	Ala	Gly					
		Val	Ala	Leu		Gly	His	Ser	Ala		Leu	Val	Val	Leu	Gly 240					
	Phe	Leu	Leu	Trp		Gly	Trp	Tyr	Gly		Asn	Pro	Gly	Ser						
	Thr	Ile	Leu	Lys		Tyr	Gly	Pro	Pro		Ser	Ile	His	Gly	Gln					
	Ser	Ala	Val	Gly	Arg	Thr	Ala	Val	Thr	Thr	Thr	Leu	Ala	Gly	Ser					
Thr		Ala	Leu	Thr		Leu	Phe	Gly	Lys	~	Leu	Gln	Thr	Gly	His					
		Val	Ile	Asp		Суз	Asn	Gly	Leu		Gly	Gly	Phe	Ala						
	Thr	Ala	Gly	Суз		Val	Val	Asp	Pro		Ala	Ala	Ile	Ile	320 Сув					
-		Val	Ser	Ala			Leu	Ile	Gly		Asn	Ala	Leu	Ala	Ala					
-	Leu	Lys	Phe	Asp			Leu	Glu	Ala		Gln	Leu	His	Gly	Gly					
	Gly	Ala	Trp	Gly		Ile	Phe	Thr	Ala		Phe	Ala	Arg	Lys	Glu					
		Asp	Gln	Ile		Gly	Gln	Pro	Gly		Pro	Tyr	Gly	Leu						
	Gly	Gly	Gly	Gly	-	Leu	Leu	Gly	Ala		Ile	Val	Val	Ile	400 Leu					
	Ile	Ala	Ala	Trp		Ser	Phe	Thr	Met		Pro	Leu	Phe	Leu	Val					
420 Leu	Asn	Lys	Leu	Gly	425 Leu	Leu	Arg	Ile	Ser	430 Ala	Glu	Asp	Glu	Met	Ala					

		- CC	ntinued		
435	440	445			
Gly Met Asp Gln Thr 450	Arg His Gly Gly 455	Phe Ala Tyr Al 460	a Tyr His Asp.		
Asp Asp Ala Ser Gly			v Phe Met Leu		
465	470	475	480		
Lys Ser Ala His Gly 485	Thr Gln Val Ala 490	Ala Glu Met Gl 495	y Gly His Val		
<210> SEQ ID NO 55 <211> LENGTH: 1870					
<212> TYPE: DNA <213> ORGANISM: Oryz	za sativa				
- <pre>-</pre> <400> SEQUENCE: 55					
cactagtact ccctccgt	cc caatataagt gca	tttagga caggat	gtga tatatcctag	60	
gactacaaat ctggacag	t gtctgttcat att	cgtagtc ctagga	atatg tcacatacta	120	
tactaggtgt atttatat	cg ggacggaggg ago	agtactt aaagta	atatt tgcaactttt	180	
tactgaactt ggtgtgctg	gt gtcaggcgac tac	tccagag gattga	attac ttcatgcctt	240	
gacaatgatg tgaagtag	ca tgaccttgcg att	catatgg tcgggg	gatcg aggcatatat	300	
acacccaacc cagttcat	cg agtgatcagt aga	gagattc ttcccc	tctt ctcctgccag	360	
ctcttccagg ttctgagt	cc tgaccatggc ggc	tggagcg attcca	atgg cgtaccagac	420	
cactccgtca tcgccaga	ct ggctgaacaa ggg	cgacaac gcatgo	gcaga tgacatcggc	480	
gaccetegte ggeetgeag	ga gcatgccagg gct	ggtgatc ctgtac	ggca gcattgtcaa	540	
gaagaagtgg gctatcaa	ct cggcgttcat ggc	gctgtat gcctto	gctg ctgtctggat	600	
ctgctgggtt gtctgggca	at acaacatgtc gtt	cggcgac cgccto	ctgc cattetgggg	660	
taaggcacgg ccagcgct	cg ggcagagett eet	cgtggcg cagtct	gage teactgetae	720	
cgctattcgc taccacaa	tg ggtcagctga ggc	gcccatg ctcaac	geegt tgtaeceagt	780	
cgccaccatg gtgtactt	cc agtgcatgtt tgc	gagcatc accato	atca tcctcgcagg	840	
ctcactgctt gggcgcat	ga acatcaaggc gtg	gatggcc tttgtg	geege tetggateae	900	
cttctcttac acggtctg	eg eetteteget etg	gggtggc ggttto	ctct tccagtgggg	960	
tgtcatagac tactctgg	eg getatgteat eea	tetetet tetgge	atcg caggcctcac	1020	
tgctgcctac tgggttgga	ac caaggtcagc atc	agatagg gagaga	attee egeceaacaa	1080	
catactgctg gtgctage	ag gggcgggggct gct	gtggett gggtgg	jacag gtttcaatgg	1140	
aggagaccca tattcagc	ca atattgattc atc	catggca gtgcto	aaca cacatatctg	1200	
cgcatccacc agcctact	cg tgtggacaat cct	ggatgtc ttcttc	ttcg ggaagccatc	1260	
ggtaattggc gcggtgcag	gg gcatgatcac tgg	cctggta tgcato	accc ctggtgcagg	1320	
cctggtgcaa ggttgggca	ag ctattgtgat ggg	aattete tetggt	agca ttccatggta	1380	
caccatgatg gtgctgca	ca agaaatggtc att	catgcag aggatt	gatg acacgcttgg	1440	
tgtettecae acceatge	gg tggctgggtt cct	tggtggc gccaco	actg gactcttcgc	1500	
cgagcccatc ctatgcag	c tetteetate tat	cccagat tctaaa	aggtg cattctacgg	1560	
tggccccggt ggatcaca	gt tegggaagea gat	tgctggc gcacta	atttg tcactgcctg	1620	
gaatattgtt atcacctc	ca tcatctgtgt cat	catcagc ctaato	ectge cecteogtat	1680	
agctgatcaa gaactgct	ta ttggagatga tgo	tgtacac ggtgag	ggagg catatgctat	1740	

ctgggcagag ggagagctca atgacatgac ccaccacaat gagagcacac atagtggtgt	1800
ctctgtagga gtgacacaga atgtttgaac agtacccact ttattgagga aaaagaaata	1860
taattgtott	1870
210. CPO ID NO 56	
<210> SEQ ID NO 56 <211> LENGTH: 480 <212> TYPE: PRT	
<213> ORGANISM: Oryza sativa	
<400> SEQUENCE: 56	
Met Ala Ala Gly Ala Ile Pro Met Ala Tyr Gln Thr Thr Pro Ser Ser 1 5 10 15	
Pro Asp Trp Leu Asn Lys Gly Asp Asn Ala Trp Gln Met Thr Ser Ala 20 25 30	
Thr Leu Val Gly Leu Gln Ser Met Pro Gly Leu Val Ile Leu Tyr Gly354045	
Ser Ile Val Lys Lys Trp Ala Ile Asn Ser Ala Phe Met Ala Leu 50 55 60	
Tyr Ala Phe Ala Ala Val Trp Ile Cys Trp Val Val Trp Ala Tyr Asn 65 70 75 80	
Met Ser Phe Gly Asp Arg Leu Leu Pro Phe Trp Gly Lys Ala Arg Pro 85 90 95	
Ala Leu Gly Gln Ser Phe Leu Val Ala Gln Ser Glu Leu Thr Ala Thr 100 105 110	
Ala Ile Arg Tyr His Asn Gly Ser Ala Glu Ala Pro Met Leu Lys Pro 115 120 125	
Leu Tyr Pro Val Ala Thr Met Val Tyr Phe Gln Cys Met Phe Ala Ser 130 135 140	
Ile Thr Ile Ile Ile Leu Ala Gly Ser Leu Leu Gly Arg Met Asn Ile145150150155	
Lys Ala Trp Met Ala Phe Val Pro Leu Trp Ile Thr Phe Ser Tyr Thr 165 170 175	
Val Cys Ala Phe Ser Leu Trp Gly Gly Gly Phe Leu Phe Gln Trp Gly 180 185 190	
Val Ile Asp Tyr Ser Gly Gly Tyr Val Ile His Leu Ser Ser Gly Ile 195 200 205	
Ala Gly Leu Thr Ala Ala Tyr Trp Val Gly Pro Arg Ser Ala Ser Asp 210 215 220	
Arg Glu Arg Phe ProProAsn Asn Ile Leu Leu Val Leu Ala Gly Ala225230235240	
Gly Leu Leu Trp Leu Gly Trp Thr Gly Phe Asn Gly Gly Asp Pro Tyr 245 250 255	
Ser Ala Asn Ile Asp Ser Ser Met Ala Val Leu Asn Thr His Ile Cys 260 265 270	
Ala Ser Thr Ser Leu Leu Val Trp Thr Ile Leu Asp Val Phe Phe275280285	
Gly Lys Pro Ser Val Ile Gly Ala Val Gln Gly Met Ile Thr Gly Leu 290 295 300	
Val Cys Ile Thr Pro Gly Ala Gly Leu Val Gln Gly Trp Ala Ala Ile305310315320	
Val Met Gly Ile Leu Ser Gly Ser Ile Pro Trp Tyr Thr Met Met Val	

-continued

-continued	
325 330 335	
Leu His Lys Lys Trp Ser Phe Met Gln Arg Ile Asp Asp Thr Leu Gly 340 345 350	
Val Phe His Thr His Ala Val Ala Gly Phe Leu Gly Gly Ala Thr Thr	
355 360 365	
Gly Leu Phe Ala Glu Pro Ile Leu Cys Ser Leu Phe Leu Ser Ile Pro 370 375 380	
Asp Ser Lys Gly Ala Phe Tyr Gly Gly Pro Gly Gly Ser Gln Phe Gly 385 390 395 400	
Lys Gln Ile Ala Gly Ala Leu Phe Val Thr Ala Trp Asn Ile Val Ile 405 410 415	
Thr Ser Ile Ile Cys Val Ile Ile Ser Leu Ile Leu Pro Leu Arg Ile 420 425 430	
Ala Asp Gln Glu Leu Leu Ile Gly Asp Asp Ala Val His Gly Glu Glu 435 440 445	
Ala Tyr Ala Ile Trp Ala Glu Gly Glu Leu Asn Asp Met Thr His His 450 455 460	
Asn Glu Ser Thr His Ser Gly Val Ser Val Gly Val Thr Gln Asn Val 465 470 475 480	
<pre><210> SEQ ID NO 57 <211> LENGTH: 981 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 57</pre>	
-	
atggegtegg eggeggtgee ggagtggetg aacaagggeg acaatgeetg geagatgete	60 120
gtcccccgca agtgggcgct cacctccgca ttcatggcgc tctacgccat ggccgccacc	180
atgccgtgct gggcgctctg ggcgcacaac atggccttcg gccgccgcct cctccccttc	240
gteggeegee eegeeeegge getegeeeag gaetaeatge teageeagge getgeteeee	300
tccaccctcc acctccgctc caacggcgag gttgagacgg ccgcggtggc gccgctgtac	360
ccgtcggcga gcatggtgtt cttccagtgg gccttcgccg gcgtcaccgt ggggctggtc	420
geeggegeeg tgetegggeg catgagegte aaggegtgga tggegttegt geegetgtgg	480
acgacgctgt cctacacggt gggagcgtac agcatctggg gcggaggctt cctcttccac	540
tggggcgtca tggactactc cggcggctac gtcgtgctcc tcgccgccgg cgtctccggc	600
tacacggccg cgtactgggt gggacccagg aggaaggagg aggacgagga ggaaatggca	660
acggcgagtg gtggcaacct ggtggtgatg gtggccggcg cgggcatcct gtggatgggg	720
tggaccggct tcaacggcgg cgacccette teegecaaca eegactegte ggtggeggtg	780
ctcaacacgc acatctgcgc caccaccagc atcgtcgctt gggtttgctg cgacgtcgcc	840
gtccgcggga ggccgtcggt ggtgggcgcg gtgcagggca tgatcaccgg cctggtgtgc	900
atcactccaa ggtcaaacat caagtacagc tttcttctag tagtaatttc tgatgagatg	960
cctgttcctg atctgagcta g	981
<210> SEQ ID NO 58 <211> LENGTH: 326 <212> TYPE: PRT	

<211> HENGIN: 320 <212> TYPE: PRT <213> ORGANISM: Oryza sativa

<400)> SE	QUEN	ICE :	58											
Met 1	Ala	Ser	Ala	Ala 5	Val	Pro	Glu	-	Leu .0	Asn	Lys	Gly	_	Asn L5	Ala
Trp 20	Gln	Met	Leu	Ser	Ala 25	Thr	Leu	Val	Ala	Leu 30	Gln	Gly	Phe	Pro	Gly
Leu 35	Ala	Leu	Phe	Tyr	Val 40	Gly	Ala	Val	Pro	Arg 45	Lys	Trp	Ala	Leu	Thr
Ser 50	Ala	Phe	Met	Ala	Leu 55	Tyr	Ala	Met	Ala	Ala 60	Thr	Met	Pro	Cys	Trp
Ala 65	Leu	Trp	Ala	His	Asn 70	Met	Ala	Phe	Gly	Arg 75	Arg	Leu	Leu	Pro	Phe 80
Val 85	Gly	Arg	Pro	Ala	Pro 90	Ala	Leu	Ala	Gln	Asp 95	Tyr	Met	Leu	Ser	Gln
Ala 100	Leu	Leu	Pro	Ser	Thr 105	Leu	His	Leu	Arg	Ser 110	Asn	Gly	Glu	Val	Glu
Thr 115	Ala	Ala	Val	Ala	Pro 120	Leu	Tyr	Pro	Ser	Ala 125	Ser	Met	Val	Phe	Phe
Gln 130	Trp	Ala	Phe	Ala	Gly 135	Val	Thr	Val	Gly	Leu 140	Val	Ala	Gly	Ala	Val
Leu 145	Gly	Arg	Met	Ser	Val 150	Lys	Ala	Trp	Met	Ala 155	Phe	Val	Pro	Leu	Trp 160
Thr 165	Thr	Leu	Ser	Tyr	Thr 170	Val	Gly	Ala	Tyr	Ser 175	Ile	Trp	Gly	Gly	Gly
Phe 180	Leu	Phe	His	Trp	Gly 185	Val	Met	Asp	Tyr	Ser 190	Gly	Gly	Tyr	Val	Val
Leu 195	Leu	Ala	Ala	Gly	Val 200	Ser	Gly	Tyr	Thr	Ala 205	Ala	Tyr	Trp	Val	Gly
Pro 210	Arg	Arg	Lys	Glu	Glu 215	Asp	Glu	Glu	Glu	Met 220	Ala	Thr	Ala	Ser	Gly
Gly 225	Asn	Leu	Val	Val	Met 230	Val	Ala	Gly	Ala	Gly 235	Ile	Leu	Trp	Met	Gly 240
Trp 245	Thr	Gly	Phe	Asn	Gly 250	Gly	Asp	Pro	Phe	Ser 255	Ala	Asn	Thr	Asp	Ser
Ser 260	Val	Ala	Val	Leu	Asn 265	Thr	His	Ile	Cya	Ala 270	Thr	Thr	Ser	Ile	Val
Ala 275	Trp	Val	Суз	Cys	Asp 280	Val	Ala	Val	Arg	Gly 285	Arg	Pro	Ser	Val	Val
Gly 290	Ala	Val	Gln	Gly	Met 295	Ile	Thr	Gly	Leu	Val 300	Суз	Ile	Thr	Pro	Arg
Ser 305	Asn	Ile	Lys	Tyr	Ser 310	Phe	Leu	Leu	Val	Val 315	Ile	Ser	Asp	Glu	Met 320
Pro 325	Val	Pro	Asp	Leu	Ser										
<210> SEQ ID NO 59 <211> LENGTH: 1377 <212> TYPE: DNA <213> ORGANISM: Oryza sativa															
<400> SEQUENCE: 59															

atggcgtcgg tggcggtgcc ggagtggctg aacaagggcg acaacgcctg gcagatgctc 60

-continued	
teegeeaege tegtegeeet geagggette eeeggteteg eeetetteta egeeggegee	120
gtcaccegea agtgegeget caceteegea tteatggege tetaegeeat ggeegeeace	180
atgeogtget gggegetetg ggegeacaac atggeetteg geeacegeet eetgeeette	240
gtoggoogoo oogooooggo gotogoocag cactacatgo toaccoaggo gotgotooco	300
ttcaccctcc acctccactc caacggcgag gtggagacgg ccgcggtggc gccgctgtac	360
ccgtcggcga gcatggtgtt cttccagtgg gcctccgccg gcgtcaccgt ggggctggtc	420
geoggegeeg tgetegggeg catgagegte aaggegtgga tggegttegt geogetgtgg	480
acgacgetgt eetataeggt gggagegtae ageatttggg gegggggett eetetteeae	540
tggggcgtca tggactactc cggcggctac gtcgttcacc tcgccgccgg cgtctccggc	600
tacacggccg cgtactgggt gggaccaagg aggaaggagg aggaggaaat gacaatggcg	660
ggtggtggca acctggtggc gatggtggcc ggcgcgggca tcctgtggat ggggtggacc	720
ggetteaaeg geggegaeee etteteegee aacaeegaet egteggtgge ggtgeteaae	780
acgcacatct gcaccaccac cagcateete gettgggttt getgegaeat egeegteege	840
gggaggccgt cggtggtggg cgcggtgcag ggcatgatca ccggcctggt gtgcataact	900
ccggcggcag ggctggtgca ggggtgggca gctctgctaa tgggcgtcgc gtcggggaca	960
ctgccatgct acaccatgaa cgccgccatg tcgttcaagg tagacgacac gctgggcatc	1020
ctgcacaccc acgcggtgtc cggtgttctg ggcggcgtcc tcaccggcgt tttcgcgcac	1080
cctactctct gtgacatgtt ccttccggtg accggctcaa ggggcctcgt ctacggcgtc	1140
cgcgccggcg gggtgcaggt gttgaagcag gtcgccgccg cattgttcgt tgccgcatgg	1200
aacgtggccg ccacgtccat catcttggtc gtcgtcaggg cgttcgtgcc gctgaggatg	1260
acggaagatg agctgctcgc cggagacatt gccgtacatg gggaacaagc ttattatttt	1320
tcgagtggca ccaattgtag tttaagccat gagaccattg aggtcggaaa ttcataa	1377
<210> SEQ ID NO 60 <211> LENGTH: 458 <212> TYPE: PRT <213> ORGANISM: Oryza sativa	
<400> SEQUENCE: 60	
Met Ala Ser Val Ala Val Pro Glu Trp Leu Asn Lys Gly Asp Asn Ala 1 5 10 15	
Trp Gln Met Leu Ser Ala Thr Leu Val Ala Leu Gln Gly Phe Pro Gly 20 25 30	
Leu Ala Leu Phe Tyr Ala Gly Ala Val Thr Arg Lys Cys Ala Leu Thr 35 40 45	
Ser Ala Phe Met Ala Leu Tyr Ala Met Ala Ala Thr Met Pro Cys Trp 50 55 60	
Ala Leu Trp Ala His Asn Met Ala Phe Gly His Arg Leu Leu Pro Phe 55 70 75 80	
Val Gly Arg Pro Ala Pro Ala Leu Ala Gln His Tyr Met Leu Thr Gln 35 90 95	
Ala Leu Leu Pro Phe Thr Leu His Leu His Ser Asn Gly Glu Val Glu 100 105 110	
Thr Ala Ala Val Ala Pro Leu Tyr Pro Ser Ala Ser Met Val Phe Phe 115 120 125	

-continued
Gln Trp Ala Ser Ala Gly Val Thr Val Gly Leu Val Ala Gly Ala Val 130 135 140
Leu Gly Arg Met Ser Val Lys Ala Trp Met Ala Phe Val Pro Leu Trp 145 150 155 160
Thr Thr Leu Ser Tyr Thr Val Gly Ala Tyr Ser Ile Trp Gly Gly Gly 165 170 175
Phe Leu Phe His Trp Gly Val Met Asp Tyr Ser Gly Gly Tyr Val Val 180 185 190
His Leu Ala Ala Gly Val Ser Gly Tyr Thr Ala Ala Tyr Trp Val Gly 195 200 205
Pro Arg Arg Lys Glu Glu Glu Glu Met Thr Met Ala Gly Gly Gly Asn 210 215 220
Leu Val Ala Met Val Ala Gly Ala Gly Ile Leu Trp Met Gly Trp Thr225230235240
Gly Phe Asn Gly Gly Asp Pro Phe Ser Ala Asn Thr Asp Ser Ser Val 245 250 255
Ala Val Leu Asn Thr His Ile Cys Thr Thr Ser Ile Leu Ala Trp 260 265 270
Val Cys Cys Asp Ile Ala Val Arg Gly Arg Pro Ser Val Val Gly Ala 275 280 285
Val Gln Gly Met Ile Thr Gly Leu Val Cys Ile Thr Pro Ala Ala Gly 290 295 300
Leu Val Gln Gly Trp Ala Ala Leu Leu Met Gly Val Ala Ser Gly Thr 305 310 315 320
Leu Pro Cys Tyr Thr Met Asn Ala Ala Met Ser Phe Lys Val Asp Asp 325 330 335
Thr Leu Gly Ile Leu His Thr His Ala Val Ser Gly Val Leu Gly Gly 340 345 350
Val Leu Thr Gly Val Phe Ala His Pro Thr Leu Cys Asp Met Phe Leu 355 360 365
Pro Val Thr Gly Ser Arg Gly Leu Val Tyr Gly Val Arg Ala Gly Gly 370 375 380
Val Gln Val Leu Lys Gln Val Ala Ala Ala Leu Phe Val Ala Ala Trp 385 390 395 400
Asn Val Ala Ala Thr Ser Ile Ile Leu Val Val Arg Ala Phe Val 405 410 415
Pro Leu Arg Met Thr Glu Asp Glu Leu Leu Ala Gly Asp Ile Ala Val 420 425 430
His Gly Glu Gln Ala Tyr Tyr Phe Ser Ser Gly Thr Asn Cys Ser Leu 435 440 445
Ser His Glu Thr Ile Glu Val Gly Asn Ser 450 455
<210> SEQ ID NO 61 <211> LENGTH: 1750 <212> TYPE: DNA <213> ORGANISM: Glycine max
<400> SEQUENCE: 61
atttcatata tgtatatata gcatcagaga gagaacaatt ctttgaaggg tgaaaaacct 60
tgatcaagaa ttgaagcatt aatcttcaac catggccaca cccttggcct accaagagca 120
ccttccggcg gcacccggtt ggctgaacaa aggtgacaac gcatggcagt taacagcage 180

caccctcgtt ggtcttcaaa	acatacacac	tataataata	ctctacccc	acatactoss	240
					300
gaagaaatgg gcagtgaatt					360
atgttgggtg cttgtgtgtt					
taagggtgct ccagcactag					420
catccaccac tttgataatg					480
ggeetegett gtgtatttee	aattcacttt	tgctgctatt	actcttattt	tgttggctgg	540
ctctgtcctt ggccgaatga	acatcaaggc	ttggatggct	tttgtgcctc	tttggttgat	600
cttttcctac acagtcgggg	cttttagtct	ttggggtggt	ggetttetet	accaatgggg	660
cgttattgat tattctggcg	gctatgtcat	acacctttct	tctggaatcg	ctggcttcac	720
tgctgcttac tgggttggac	caaggttgaa	gagtgatagg	gagaggttcc	caccaaacaa	780
tgtgcttctc atgcttgctg	gtgctgggtt	gttgtggatg	ggttggtcag	ggttcaacgg	840
tggagcacca tatgctgcaa	acattgcatc	ttcaattgcg	gtgttgaaca	caaacatttg	900
tgcagccact agcttccttg	tgtggacaac	tttggatgtc	atttttttg	ggaaaccttc	960
ggtgattgga gctgtgcagg	gcatgatgac	tggacttgta	tgcatcaccc	caggggcagg	1020
gcttgtgcat tcatgggctg	ttatagtgat	gggaatatta	tttgggagca	ttccatgggt	1080
gactatgatg attttgcata	aaaagtcaac	tttgctacag	aaggtagatg	acacccttgg	1140
tgtgtttcac acacatgctg	l tggctggcct	tttgggtggt	ctcctcacag	gtctattagc	1200
agaaccagcc ctttgtagac	ttctattgcc	agtaacaaat	tcaaggggtg	cattctatgg	1260
tggaggtggt ggtgtgcagt	tcttcaagca	attggtggcg	gccatgtttg	ttattggatg	1320
gaacttggtg tccaccacca	ttattctcct	tgtcataaaa	ttgttcatac	ccttgaggat	1380
gccggacgag cagctggaaa	tcggtgacga	cgccgtccac	ggtgaggaag	cttatgccct	1440
ttggggtgat ggagaaaaat	atgacccaac	taggcatggt	tccttgcaaa	gtggcaacac	1500
tactgtctca ccttatgtta	atggtgcaag	aggggtgact	ataaacttat	gagtcaagaa	1560
attaggetgt geettgetea	cacatgcatg	tgtataaatt	tatatgatta	acaaatgtga	1620
tgaatccgtg agtggtataa	gtagatattt	gattttgtca	tgaaagaaaa	tttccaaatt	1680
ttgagatgtg atgttcctct	ggtcatcttg	cattcgaaga	ctctggtcat	atatttctgg	1740
cacagaatgt					1750
<210> SEQ ID NO 62 <211> LENGTH: 486 <212> TYPE: PRT <213> ORGANISM: Glyci	ne max				
<400> SEQUENCE: 62					
Met Ala Thr Pro Leu A 1 5	ala Tyr Gln	Glu His Leu 10	Pro Ala Ala	a Pro Gly 15	
Trp Leu Asn Lys Gly A 20 2	sp Asn Ala 5	Trp Gln Leu 30	Thr Ala Ala	a Thr Leu	
Val Gly Leu Gln Ser M 35 4	let Pro Gly 0	Leu Val Ile 45	Leu Tyr Ala	a Ser Ile	
Val Lys Lys Lys Trp A 50 5	ala Val Asn 5	Ser Ala Phe 60	Met Ala Lev	ı Tyr Ala	
Phe Ala Ala Val Leu I	le Cys Trp `	Val Leu Val	Cys Tyr Arg	g Met Ala	

-continued

											-	con		uea	
65					70					75					80
Phe 85	Gly	Glu	Glu	Leu	Leu 90	Pro	Phe	Trp	Gly	Lys 95	Gly	Ala	Pro	Ala	Leu
Gly 100	Gln	Lys	Phe	Leu	Thr 105	Lys	Arg	Ala	Val	Val 110	Asn	Glu	Thr	Ile	His
His 115	Phe	Aab	Asn	Gly	Thr 120	Val	Glu	Ser	Pro	Pro 125	Glu	Glu	Pro	Phe	Tyr
Pro 130	Met	Ala	Ser	Leu	Val 135	Tyr	Phe	Gln	Phe	Thr 140	Phe	Ala	Ala	Ile	Thr
Leu 145	Ile	Leu	Leu	Ala	Gly 150	Ser	Val	Leu	Gly	Arg 155	Met	Asn	Ile	Lys	Ala 160
Trp 165	Met	Ala	Phe	Val	Pro 170	Leu	Trp	Leu	Ile	Phe 175	Ser	Tyr	Thr	Val	Gly
Ala 180	Phe	Ser	Leu	Trp	Gly 185	Gly	Gly	Phe	Leu	Tyr 190	Gln	Trp	Gly	Val	Ile
Asp 195	Tyr	Ser	Gly	Gly	Tyr 200	Val	Ile	His	Leu	Ser 205	Ser	Gly	Ile	Ala	Gly
Phe 210	Thr	Ala	Ala	Tyr	Trp 215	Val	Gly	Pro	Arg	Leu 220	ГЛа	Ser	Asp	Arg	Glu
Arg 225	Phe	Pro	Pro	Asn	Asn 230	Val	Leu	Leu	Met	Leu 235	Ala	Gly	Ala	Gly	Leu 240
Leu 245	Trp	Met	Gly	Trp	Ser 250	Gly	Phe	Asn	Gly	Gly 255	Ala	Pro	Tyr	Ala	Ala
	Ile	Ala	Ser	Ser	Ile 265	Ala	Val	Leu	Asn	Thr 270	Asn	Ile	Cys	Ala	Ala
Thr 275	Ser	Phe	Leu	Val	Trp 280	Thr	Thr	Leu	Asp	Val 285	Ile	Phe	Phe	Gly	Lys
	Ser	Val	Ile	Gly	Ala 295	Val	Gln	Gly	Met	Met 300	Thr	Gly	Leu	Val	Суз
	Thr	Pro	Gly	Ala	Gly 310	Leu	Val	His	Ser		Ala	Val	Ile	Val	Met 320
	Ile	Leu	Phe	Gly	Ser 330	Ile	Pro	Trp	Val		Met	Met	Ile	Leu	
	Lys	Ser	Thr	Leu	Leu 345	Gln	Lys	Val	Asp		Thr	Leu	Gly	Val	Phe
His	Thr	His	Ala		Ala				-	Gly		Leu	Thr	Gly	Leu
	Ala	Glu	Pro		360 Leu				Leu	Leu		Val	Thr	Asn	Ser
	Gly	Ala	Phe	Tyr	375 Gly	Gly	Gly	Gly	Gly		Gln	Phe	Phe	Lys	
	Val	Ala	Ala	Met	390 Phe	Val	Ile	Gly	Trp		Leu	Val	Ser	Thr	400 Thr
	Ile	Leu	Leu	Val	410 Ile	Гла	Leu	Phe	Ile		Leu	Arg	Met	Pro	Asp
	Gln	Leu	Glu	Ile	425 Gly	Asp	Asp	Ala	Val		Gly	Glu	Glu	Ala	Tyr
	Leu	Trp	Gly	Asp	440 Gly	Glu	Lys	Tyr	Asp		Thr	Arg	His	Gly	Ser
450 Leu	Gln	Ser	Gly	Asn	455 Thr	Thr	Val	Ser	Pro	460 Tyr	Val	Asn	Gly	Ala	Arg
465					470					475					480

-continued

Gly Val Thr Ile Asn Leu 485

<210> SEQ ID NO 63 <211> LENGTH: 2191 <212> TYPE: DNA <213> ORGANISM: Glycine max

<400> SEQUENCE: 63

CIOUS DEQUE	Mell. 05					
cgtaatacac	taaccaaccc	accatgtcgc	tgcctgcttg	tcccgccgaa	caactggccc	60
aacttctcgg	cccaaacacc	acagacgcct	ccgccgccgc	ctcccttatc	tgcggccatt	120
tcgccgccgt	ggacagcaag	ttcgtcgaca	cggccttcgc	cgtcgacaac	acctacctcc	180
tcttttccgc	ctacctcgtt	ttttctatgc	agctcggctt	cgccatgctc	tgcgccggct	240
ccgtccgcgc	caagaacacc	atgaacatca	tgctcaccaa	cgtcctggac	gctgccgccg	300
gcggcctctt	ctactacctc	ttcggcttcg	ccttcgcttt	cggctccccc	tccaacggct	360
tcatcggtaa	acatttcttc	ggcctcaagg	acatcccttc	atcctcctac	gactacagct	420
acttcctcta	ccaatgggcc	ttcgccatcg	ccgccgccgg	catcaccagc	ggaagcatcg	480
ccgaacgcac	acagttcgtg	gcctatctca	tctactcctc	cttcctcacc	ggcttcgtct	540
atccggtggt	ctcccactgg	ttctggtccc	cagacggctg	ggcctctgcc	tttaagatca	600
ccgaccggct	attttccacc	ggcgtaatag	acttcgccgg	ttccggcgta	gtccacatgg	660
tcggcggaat	agccggccta	tggggagcgc	tgatcgaagg	cccaagaatg	ggacgtttcg	720
atcatgcagg	acgagctgtg	gccttgcgag	gccacagcgc	gtccttagta	gtcctgggaa	780
ccttcttgct	ttggttcggt	tggtacggat	ttaaccccgg	ttcatttaac	aaaatcctac	840
ttacttacgg	taactcagga	aattactacg	gtcaatggag	cgcggttggc	agaaccgcgg	900
tcaccactac	cctagcgggg	tcaacagctg	ccttgaccac	gctattcggt	aaacgggtga	960
tatccggtca	ctggaacgtg	accgatgtct	gcaacgggct	gttaggcggt	ttcgcggcga	1020
taacagccgg	ttgctccgtg	gttgagccat	gggcagccat	cgtatgcggt	tttgttgctt	1080
ctatagtatt	aatagcttgc	aacaaattag	cagagaaggt	taagttcgac	gatcctctgg	1140
aggcggcgca	gttgcacggt	gggtgtggca	cgtggggggt	gatattcacg	gcgttgttcg	1200
caaaaaagga	gtatgtgaag	gaggtttacg	ggttggggag	ggcgcacggg	ttgctcatgg	1260
ggggtggtgg	gaagttgctg	gcggcgcacg	tgattcagat	tctggtgatt	gctgggtggg	1320
ttagtgcgac	catgggaccc	ttgttttggg	ggttgaataa	actgaagctg	ttgaggattt	1380
cttcagagga	tgagcttgcg	gggatggaca	tgactcgcca	tggaggcttt	gcttatgctt	1440
atgaggatga	tgagacgcac	aagcatggga	tgcagttgag	gagggttggg	cccaacgcgt	1500
cttccacacc	caccactgat	gaatgatctt	tttttcccat	atgcatgtct	cattagtcaa	1560
acattaaatt	tggatacata	ttccttgtaa	ggattcaaac	cttggttact	tgttacttct	1620
gttagatcca	actccggttg	atactcatga	ctttttactt	cttttttt	tatttgtctt	1680
gggtcttctt	ttttcgtaga	ttttcttt	tatgatgatg	ggcaattagg	gattttgatt	1740
tgtaattgtc	attggtcgtg	cattggtgga	tgctggaagt	taaagattct	ggtggaagat	1800
gcgtacgttt	ctgtgggggg	tggttgttga	ctaaggcatg	ttggtcctgg	aaatgacaga	1860
tggctgtgga	aaatggaaat	ttgtgggatt	tatttttgta	gttttcacca	aaaaagaagg	1920

-continued	
aagaagattg gtatatagta gaaatactac tgtttggccg tgaggcatat agttttttt	1980
tetttteett aatttgagae ttttatgtta aaetttttea ttatgtetaa tgtaaatata	2040
tggaagtagt ttttatattt tactgcctga atgtttgttt tttgtgttat atgtttttgt	2100
ttatatggaa ttgaaatcga ttgtaatatg ttacgtggaa gtaatgtaag ttaaaagatg	2160
atgtaggtag tgttatttag tgttttttt t	2191
<210> SEQ ID NO 64 <211> LENGTH: 500 <212> TYPE: PRT <213> ORGANISM: Glycine max	
<400> SEQUENCE: 64	
Met Ser Leu Pro Ala Cys Pro Ala Glu Gln Leu Ala Gln Leu Leu Gly 1 5 10 15	
Pro Asn Thr Thr Asp Ala Ser Ala Ala Ala Ser Leu Ile Cys Gly His 20 25 30	
Phe Ala Ala Val Asp Ser Lys Phe Val Asp Thr Ala Phe Ala Val Asp 35 40 45	
Asn Thr Tyr Leu Leu Phe Ser Ala Tyr Leu Val Phe Ser Met Gln Leu 50 55 60	
Gly Phe Ala Met Leu Cys Ala Gly Ser Val Arg Ala Lys Asn Thr Met	
65 70 75 80	
Asn Ile Met Leu Thr Asn Val Leu Asp Ala Ala Ala Gly Gly Leu Phe 85 90 95	
Tyr Tyr Leu Phe Gly Phe Ala Phe Ala Phe Gly Ser Pro Ser Asn Gly 100 105 110	
Phe Ile Gly Lys His Phe Phe Gly Leu Lys Asp Ile Pro Ser Ser Ser 115 120 125	
Tyr Asp Tyr Ser Tyr Phe Leu Tyr Gln Trp Ala Phe Ala Ile Ala Ala 130 135 140	
Ala Gly Ile Thr Ser Gly Ser Ile Ala Glu Arg Thr Gln Phe Val Ala 145 150 155 160	
Tyr Leu Ile Tyr Ser Ser Phe Leu Thr Gly Phe Val Tyr Pro Val Val 165 170 175	
Ser His Trp Phe Trp Ser Pro Asp Gly Trp Ala Ser Ala Phe Lys Ile	
180 185 190 Thr Asp Arg Leu Phe Ser Thr Gly Val Ile Asp Phe Ala Gly Ser Gly	
195 200 205	
Val Val His Met Val Gly Gly Ile Ala Gly Leu Trp Gly Ala Leu Ile 210 215 220	
Glu Gly Pro Arg Met Gly Arg Phe Asp His Ala Gly Arg Ala Val Ala225230235240	
Leu Arg Gly His Ser Ala Ser Leu Val Val Leu Gly Thr Phe Leu Leu 245 250 255	
Trp Phe Gly Trp Tyr Gly Phe Asn Pro Gly Ser Phe Asn Lys Ile Leu 260 265 270	
Leu Thr Tyr Gly Asn Ser Gly Asn Tyr Tyr Gly Gln Trp Ser Ala Val 275 280 285	
Gly Arg Thr Ala Val Thr Thr Leu Ala Gly Ser Thr Ala Ala Leu 290 295 300	
Thr Thr Leu Phe Gly Lys Arg Val Ile Ser Gly His Trp Asn Val Thr	

-continued	
305 310 315 320	
Asp Val Cys Asn Gly Leu Leu Gly Gly Phe Ala Ala Ile Thr Ala Gly 325 330 335	
Cys Ser Val Val Glu Pro Trp Ala Ala Ile Val Cys Gly Phe Val Ala 340 345 350	
Ser Ile Val Leu Ile Ala Cys Asn Lys Leu Ala Glu Lys Val Lys Phe 355 360 365	
Asp Asp Pro Leu Glu Ala Ala Gln Leu His Gly Gly Cys Gly Thr Trp 370 375 380	
Gly Val Ile Phe Thr Ala Leu Phe Ala Lys Lys Glu Tyr Val Lys Glu 385 390 395 400	
Val Tyr Gly Leu Gly Arg Ala His Gly Leu Leu Met Gly Gly Gly Gly 405 410 415	
Lys Leu Leu Ala Ala His Val Ile Gln Ile Leu Val Ile Ala Gly Trp 420 425 430	
Val Ser Ala Thr Met Gly Pro Leu Phe Trp Gly Leu Asn Lys Leu Lys 435 440 445	
Leu Leu Arg Ile Ser Ser Glu Asp Glu Leu Ala Gly Met Asp Met Thr 450 455 460	
Arg His Gly Gly Phe Ala Tyr Ala Tyr Glu Asp Asp Glu Thr His Lys 465 470 475 480	
His Gly Met Gln Leu Arg Arg Val Gly Pro Asn Ala Ser Ser Thr Pro 485 490 495	
Thr Thr Asp Glu 500	
<210> SEQ ID NO 65 <211> LENGTH: 800 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 65	
getteteeca eeteaaaege egtegtteg aceaeettet teggtegegg cacaaeeaat	60
aaccatgtcg ctgccagatt gtcccgccgt ccaacttgcc caactcctgg gcccaaatac	120
cacaaacget geegeegeeg eeteetteat etgegaeegg tteaeegeeg tggaeaacaa	180
gttegtegae aeggeetteg eggtegaeaa eaettaeete etetteteeg eetaeetegt	240
cttetegatg cagetegget tegecatget etgegeegge teegteegeg ceaagaacae	300
catgaacatc atgeteacea acgteetega egeegeegee ggeggeetet tetaetaeet	360
cttcggcttc gccttcgcct tcggctcccc ctccaacggc ttcattggca aacacttctt	420
eggeeteaag gaacteeeet eecaaagett egaetaeage aaetttetet ateaatggge	480
cttegecate geegeegeeg geateaceag eggeteeate geegaaegea caeagttegt	540
ggeetatete atetacteet cetteeteae eggettegte taeecegteg teteceaetg	600
gttetggtee geagaegget gggettetge cattteeeee ggagaeegge tatttteeae	660
cggcgtgata gacttcgccg gctccggcgt agtccacatg gttggtggag tagccggctt	720
ctggggcgca ctgatagaag gcccgagaat cggacgcttc gaccacgcgg gacgcgccgt	780
tgccctcaga ggccacagcg	800

<210> SEQ ID NO 66

-continued
<pre><211> LENGTH: 245 <212> TYPE: PRT <213> ORGANISM: Glycine max</pre>
<400> SEQUENCE: 66
Met Ser Leu Pro Asp Cys Pro Ala Val Gln Leu Ala Gln Leu Leu Gly 1 5 10 15
Pro Asn Thr Thr Asn Ala Ala Ala Ala Ala Ser Phe Ile Cys Asp Arg 20 25 30
Phe Thr Ala Val Asp Asn Lys Phe Val Asp Thr Ala Phe Ala Val Asp 35 40 45
Asn Thr Tyr Leu Leu Phe Ser Ala Tyr Leu Val Phe Ser Met Gln Leu 50 55 60
Gly Phe Ala Met Leu Cys Ala Gly Ser Val Arg Ala Lys Asn Thr Met 65 70 75 80
Asn Ile Met Leu Thr Asn Val Leu Asp Ala Ala Ala Gly Gly Leu Phe 85 90 95
Tyr Tyr Leu Phe Gly Phe Ala Phe Ala Phe Gly Ser Pro Ser Asn Gly 100 105 110
Phe Ile Gly Lys His Phe Phe Gly Leu Lys Glu Leu Pro Ser Gln Ser 115 120 125
Phe Asp Tyr Ser Asn Phe Leu Tyr Gln Trp Ala Phe Ala Ile Ala Ala 130 135 140
Ala Gly Ile Thr Ser Gly Ser Ile Ala Glu Arg Thr Gln Phe Val Ala 145 150 155 160
Tyr Leu Ile Tyr Ser Ser Phe Leu Thr Gly Phe Val Tyr Pro Val Val 165 170 175
Ser His Trp Phe Trp Ser Ala Asp Gly Trp Ala Ser Ala Ile Ser Pro 180 185 190
Gly Asp Arg Leu Phe Ser Thr Gly Val Ile Asp Phe Ala Gly Ser Gly 195 200 205
Val Val His Met Val Gly Gly Val Ala Gly Phe Trp Gly Ala Leu Ile 210 215 220
Glu Gly Pro Arg Ile Gly Arg Phe Asp His Ala Gly Arg Ala Val Ala 225 230 235 240
Leu Arg Gly His Ser 245
<210> SEQ ID NO 67 <211> LENGTH: 644 <212> TYPE: DNA <213> ORGANISM: Glycine max
<400> SEQUENCE: 67
cggtgcttaa caccaacatt tgcgccgcca ccagcctcct cgtatggacg tggttggacg 60
ttattttctt caagaaaccc tcagttattg gagccgttca gggcatgata actggccttg 120
tttgcatcac teeeggaget ggtetggtte aaggatggge tgeeatagtg atgggaette 180
tttcaggcag tgtcccatgg ttcagcatga tggtattagg gaaaaagctg aaattgtttc 240
aaatggttga tgacaccett getgtgttee acaeteatge tgtggetgge ettettggag 300
gcatactcac tggcctatt gccgaacctc gtctgtgtgc actctttcta cctgtcacca 360 actccaaaag aggagtctat ggaggccctg gtggagtcca aatccttaaa caaatcgtgg 420
according aggingerear ggaggereeg geggageree aareereaaa caaaregegg 720

gagetttgtt cateattggg tggaacettg tggteaette aattatttgt gtggttatta 480	
gtttcatagt tccacttaga atgacagagg aagagcttct cattggagat gatgcggttc 540	
atggggaaga ggcttatgct ctgtggggtg atggagagaa acttagcatc tacaaagatg 600	
ataccactca ccatggagtt gtgtctagtg gtgccactca agtg 644	
<210> SEQ ID NO 68 <211> LENGTH: 204 <212> TYPE: PRT <213> ORGANISM: Glycine max	
<400> SEQUENCE: 68	
Val Leu Asn Thr Asn Ile Cys Ala Ala Thr Ser Leu Leu Val Trp Thr 1 5 10 15	
Trp Leu Asp Val Ile Phe Phe Lys Lys Pro Ser Val Ile Gly Ala Val 20 25 30	
Gln Gly Met Ile Thr Gly Leu Val Cys Ile Thr Pro Gly Ala Gly Leu 35 40 45	
Val Gln Gly Trp Ala Ala Ile Val Met Gly Leu Leu Ser Gly Ser Val	
50 55 60 Pro Trp Phe Ser Met Wal Leu Gly Lys Lys Leu Lys Leu Phe Gln	
65 70 75 80	
Met Val Asp Asp Thr Leu Ala Val Phe His Thr His Ala Val Ala Gly 85 90 95	
Leu Leu Gly Gly Ile Leu Thr Gly Leu Phe Ala Glu Pro Arg Leu Cys 100 105 110	
Ala Leu Phe Leu Pro Val Thr Asn Ser Lys Arg Gly Val Tyr Gly Gly 115 120 125	
Pro Gly Gly Val Gln Ile Leu Lys Gln Ile Val Gly Ala Leu Phe Ile 130 135 140	
Ile Gly Trp Asn Leu Val Val Thr Ser Ile Ile Cys Val Val Ile Ser 145 150 155 160	
Phe Ile Val Pro Leu Arg Met Thr Glu Glu Glu Leu Leu Ile Gly Asp 165 170 175	
Asp Ala Val His Gly Glu Glu Ala Tyr Ala Leu Trp Gly Asp Gly Glu	
180 185 190 Lys Leu Ser Ile Tyr Lys Asp Asp Thr Thr His His	
195 200	
<210> SEQ ID NO 69 <211> LENGTH: 749 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 69	
gccacaaaca attcatcage tcatacaegt aatttettt eetetttee tettatecaa 60	
ttetaateae gateagaeat taaatgtaaa eaetteteta teaaaaattt gaaettagtt 120	
cgcctcacac ttttgttttg tcaccttgtg agagactaat tccctctaat aaacgcaacg 180	
ttgttcatca gtggcacata catatacagc atcacaattc tttgaagggt gaaaaagctt 240	
gatcaagaat tgaagcatat tgatcttcag ccatggctac acccttggcc taccaagagc 300	
acetteegge ggeaceegaa tggetgaaca aaggtgacaa egeatggeag etaacageag 360	
ccaccctcgt cggtcttcaa agcatgccgg gtctcgtgat cctctacgcc agcatagtga 420	

agaaaaaatg ggcagtgaac tcagctttca tggctctcta cgcctttgcg gcggttctaa	480
tatgttgggt gcttgtgtgt taccgcatgg cctttggaga aaaactttta cccttctggg	540
ggaagggtgc tcccagactt aggccagaat tcgtcacaaa acgagccgga gtcaatgaaa	600
cgctgcacca ctttgatagt ggcactgtag aatcccctcg cgaagagcca ctttacccta	660
atggcgtact tgtgtatgtc cgattgactt ttgctgctat gtaccatata gtgatggctg	720
gctctgtgct gccacgaaga acatcgaag	749
<210> SEQ ID NO 70 <211> LENGTH: 159 <212> TYPE: PRT <213> ORGANISM: Glycine max	
<400> SEQUENCE: 70	
Met Ala Thr Pro Leu Ala Tyr Gln Glu His Leu Pro Ala Ala Pro Glu 1 5 10 15	
Trp Leu Asn Lys Gly Asp Asn Ala Trp Gln Leu Thr Ala Ala Thr Leu 20 25 30	
Val Gly Leu Gln Ser Met Pro Gly Leu Val Ile Leu Tyr Ala Ser Ile 35 40 45	
Val Lys Lys Trp Ala Val Asn Ser Ala Phe Met Ala Leu Tyr Ala 50 55 60	
Phe Ala Ala Val Leu Ile Cys Trp Val Leu Val Cys Tyr Arg Met Ala 65 70 75 80	
Phe Gly Glu Lys Leu Leu Pro Phe Trp Gly Lys Gly Ala Pro Arg Leu 85 90 95	
Arg Pro Glu Phe Val Thr Lys Arg Ala Gly Val Asn Glu Thr Leu His 100 105 110	
His Phe Asp Ser Gly Thr Val Glu Ser Pro Arg Glu Glu Pro Leu Tyr 115 120 125	
Pro Asn Gly Val Leu Val Tyr Val Arg Leu Thr Phe Ala Ala Met Tyr 130 135 140	
His Ile Val Met Ala Gly Ser Val Leu Pro Arg Arg Thr Ser Lys 145 150 155	
<210> SEQ ID NO 71 <211> LENGTH: 1871 <212> TYPE: DNA <213> ORGANISM: Glycine max <400> SEQUENCE: 71	
-	6.0
ctctaacagc caaagcatgg cttctctct ttgctccgcc aacgaccttg ccccactctt	60
caacgacacc geogeogeca actacetetg egeocaatte gatteeatt etagaaaget	120
cgccgaaaca acctacgccg tcgacaacac ctaccttctg ttttcagcgt atcttgtctt	180 240
gaacatcatg ctcaccaacg teetegacge egeegeegge ggteteteet actaectatt	300
eggetttgea ttegeetteg geggeecete caaeggette ateggeegee actiettegg	360
cctacgagat tacccaatgg gctcctctcc ctccggcgac tacagcttct tcctctacca	420
gtgggeette gecategeeg eegcaggaat caecagegge teeategeeg agagaacaca	480
gttcgtggct taccttatct actettett ettaaceggt ttegtttace ceategttte	540

gcattggttc tggtcctcag acggttgggc cagcgcgact cgtagccacg gaaatgtttt	600
attegggtet ggagteateg acttegeggg eteaggegtt gtteaeatgg ttggegggat	660
agegggeetg tggggggett taattgaagg eeegaaate ggeeggtteg acegtteggg	720
ccggtcggtt gctttacgtg gccacagege gtctttagtt gtgcttggta cgtttttgtt	780
atggttcggc tggtacggct tcaaccctgg ttcgtttgtg acaatagaca aggggtatga	840
aagtggaggg tattatggtc aatggagcgc tatagggagg acagctgtca cgacgacatt	900
ggctgggagc actgcggctc tgacgacgtt gttcagcaag cggttattgg ttggccactg	960
gaacgtgatt gacgtgtgta acggcctgct tggcgggttc gctgccatta catcgggctg	1020
tgccgttgtg gaaccgtggg ccgcgattgt gtgtgggttt gtggcggcgt gggttttgat	1080
tgggettaat aagettgeeg egaaggtaga gtaegatgat eegttggagg eggegeaget	1140
tcacggcggg tgcggcgcgt ggggtgtttt cttcacggga ttgtttgcga agaaagtgta	1200
cgtggaggag atttacggtg ttggaaggcc gttcgggggct ttgatgggtg gcggagggag	1260
gctgctggcg gcgcaggtga ttcagatatt ggtggtgtgc gggtgggtta cggcgaccat	1320
ggcgccgttg ttctatgggc ttcataagat gaaactgttg agaatttcga gggatgatga	1380
gactgcgggg atggatttga cgaggcatgg tgggtttgct tatgcatacc atgatgatga	1440
agatggttca agcaggggag tagggttcat gctgcgtaga attgagcctg ctgctagtac	1500
cactccctct ccccccgctg caccacaagt ttaatcaaaa tgtggtttat gattttcaag	1560
cgttttttag tttcgtacct gcacatagct atgggcaaag ctagccttgt caaaaccata	1620
tacaagcaag acacgaggga tgcatatatg aagtataaaa attaatgcgt gggggtcaac	1680
atttaggaaa tgtcttctag agttactgta cattttaaaa tgtttgttgg cttggtttat	1740
tattttcatc tttgaattcc aagactagtt tggtcgactg ttgtcacgtt agtttgtatc	1800
ctgctgcaga ataacttgct tgtaattgta tactgattag ttggtatata gtgatatatt	1860
atatatacta a	1871
<210> SEQ ID NO 72 <211> LENGTH: 505 <212> TYPE: PRT <213> ORGANISM: Glycine max	
<400> SEQUENCE: 72	
Met Ala Ser Leu Ser Cys Ser Ala Asn Asp Leu Ala Pro Leu Phe Asn 1 5 10 15	
Asp Thr Ala Ala Ala Asn Tyr Leu Cys Ala Gln Phe Asp Ser Ile Ser 20 25 30	
Arg Lys Leu Ala Glu Thr Thr Tyr Ala Val Asp Asn Thr Tyr Leu Leu 35 40 45	
Phe Ser Ala Tyr Leu Val Phe Ala Met Gln Leu Gly Phe Ala Met Leu 50 55 60	
Cys Ala Gly Ser Val Arg Ala Lys Asn Thr Met Asn Ile Met Leu Thr 65 70 75 80	
Asn Val Leu Asp Ala Ala Ala Gly Gly Leu Ser Tyr Tyr Leu Phe Gly 85 90 95	
Phe Ala Phe Ala Phe Gly Gly Pro Ser Asn Gly Phe Ile Gly Arg His 100 105 110	

												0011	υIII	ucu	
Phe 115	e Phe	Gly	Leu	Arg	Asp 120	Tyr	Pro	Met	Gly	Ser 125	Ser	Pro	Ser	Gly	Asp
Ту1 130	Ser	Phe	Phe	Leu	Tyr 135	Gln	Trp	Ala	Phe	Ala 140	Ile	Ala	Ala	Ala	Gly
Ile 145	e Thr	Ser	Gly	Ser	Ile 150		Glu	Arg	Thr	Gln 155	Phe	Val	Ala	Tyr	Leu 160
Ile 165	e Tyr	Ser	Ser	Phe	Leu 170		Gly	Phe	Val	Tyr 175	Pro	Ile	Val	Ser	His
Tr <u>p</u> 180) Phe	Trp	Ser	Ser	Asp 185	Gly	Trp	Ala	Ser	Ala 190	Thr	Arg	Ser	His	Gly
Asr 195	n Val	Leu	Phe	Gly	Ser 200	_	Val	Ile	Asp	Phe 205	Ala	Gly	Ser	Gly	Val
Va] 210	His	Met	Val	Gly	Gly 215	Ile	Ala	Gly	Leu	Trp 220	Gly	Ala	Leu	Ile	Glu
Glչ 225	7 Pro	Arg	Ile	Gly	Arg 230	Phe	Asp	Arg	Ser	Gly 235	Arg	Ser	Val	Ala	Leu 240
Arg 245	g Gly	His	Ser	Ala	Ser 250	Leu	Val	Val	Leu	Gly 255	Thr	Phe	Leu	Leu	Trp
Phe 260	e Gly	Trp	Tyr	Gly	Phe 265	Asn	Pro	Gly	Ser	Phe 270	Val	Thr	Ile	Asp	Lys
Glչ 275	7 Tyr	Glu	Ser	Gly	Gly 280	-	Tyr	Gly	Gln	Trp 285	Ser	Ala	Ile	Gly	Arg
Th1 290	Ala	Val	Thr	Thr	Thr 295	Leu	Ala	Gly	Ser	Thr 300	Ala	Ala	Leu	Thr	Thr
Leu 305	ı Phe	Ser	Lys	Arg	Leu 310	Leu	Val	Gly	His	Trp 315	Asn	Val	Ile	Asp	Val 320
Cys 325	s Asn	Gly	Leu	Leu	Gly 330	_	Phe	Ala	Ala	Ile 335	Thr	Ser	Gly	Суз	Ala
Va] 340	Val	Glu	Pro	Trp	Ala 345	Ala	Ile	Val	Cys	Gly 350	Phe	Val	Ala	Ala	Trp
Va] 355	Leu	Ile	Gly	Leu	Asn 360	-	Leu	Ala	Ala	Lys 365	Val	Glu	Tyr	Asp	Asp
	> Leu	Glu	Ala	Ala			His	Gly	Gly		Gly	Ala	Trp	Gly	Val
	e Phe	Thr	Gly	Leu		Ala	Lys	Lys	Val		Val	Glu	Glu	Ile	Tyr 400
	/ Val	Gly	Arg	Pro			Ala	Leu	Met		Gly	Gly	Gly	Arg	
	ı Ala	Ala	Gln	Val		Gln	Ile	Leu	Val		-	Gly	Trp	Val	Thr
	a Thr	Met	Ala	Pro		Phe	Tyr	Gly	Leu			Met	Lys	Leu	Leu
	g Ile	Ser	Arg	Asp		Glu	Thr	Ala	Gly		Asp	Leu	Thr	Arg	His
	/ Gly	Phe	Ala	Tyr		Tyr	His	Asp	Asp		Asp	Gly	Ser	Ser	Arg 480
GlΣ	/ Val	Gly	Phe	Met	Leu	Arg	Arg	Ile	Glu	Pro	Ala	Ala	Ser	Thr	
) Ser	Pro	Pro	Ala			Gln	Val		495					
500	,				505										

```
-continued
```

<210> SEQ ID NO 73 <211> LENGTH: 1053 <212> TYPE: DNA <213> ORGANISM: Glycine max <400> SEQUENCE: 73 tttcacacac atgctgtggc tggccttttg ggtggtctcc tcacaggtct attagcagaa 60 ccagcccttt gtagactact attgccagtt accaactcaa ggggtgcatt ctatggtggt 120 ggtggtggta tgcagttctt caagcaattg gtggcggcca tgtttgtcat tggatggaac 180 ttggtgtcca ccaccatcat tctccttgtc ataaaattgt tcataccctt gaggatgccg 240 gatgagcagc tggaaatcgg cgacgacgcc gtccacggcg aggaagctta tgccctctgg 300 ggtgatggag aaaaatatga cccaactagg catggttcct tgcaaagtgg caacactttt 360 gtgtcacctt atgttaatgg tgcaagaggg gtgaccataa acttatgagt caagaaattc 420 ggctgtgctt tgctcacaca tatgtataaa gttatgtgat gaatccgtga gtggtgtaag 480 tagaaatttg attttgtcat gaaagaaaat tcaagttttg agatctgatg ttcctctggc 540 catccagcat tcgaagacct gatcatatat ttctggcaca gattgtgttg acatgtttat 600 aaaatttaga tttgtcaatt tttgaaggag cttgtgatta gttttctttt ccacttatat 660 gttttaatta ctagaagaat atcaaatttt ctttttacga aatgcttagt acataattgt 720 taaaaaaaat catcatgtaa tgggtacgaa atatttatca attctatgaa tgagtatttt 780 tttcttagat aacttcagtg accactttta gaaaatttat cctatgtata aattttaaaa 840 gaatggtttt aactccaaaa ttttcaccta gtccttgtca aacaaatttt attttggctc 900 acttaaaggt aaaattattt agttatgcat ttcagaatga agtttggttc gaaatatttt 960 qacaqtqtqt caaatataaa ttcttcaaaa qaaaaaqcca aqactacttt acaacaaaat 1020 agataagttt ctcataaact gagcacaagt ttt 1053 <210> SEO ID NO 74 <211> LENGTH: 135 <212> TYPE: PRT <213> ORGANISM: Glycine max <400> SEOUENCE: 74 Phe His Thr His Ala Val Ala Gly Leu Leu Gly Gly Leu Leu Thr Gly 1 5 10 15 Leu Leu Ala Glu Pro Ala Leu Cys Arg Leu Leu Leu Pro Val Thr Asn 25 30 20 Ser Arg Gly Ala Phe Tyr Gly Gly Gly Gly Gly Met Gl
n Phe Phe Lys 35 40 45 Gln Leu Val Ala Ala Met Phe Val Ile Gly Trp Asn Leu Val Ser Thr 50 55 60 Thr Ile Ile Leu Leu Val Ile Lys Leu Phe Ile Pro Leu Arg Met Pro 65 70 75 80 Asp Glu Gln Leu Glu Ile Gly Asp Asp Ala Val His Gly Glu Glu Ala 90 95 Tyr Ala Leu Trp Gly Asp Gly Glu Lys Tyr Asp Pro Thr Arg His Gly 100 105 110 Ser Leu Gln Ser Gly Asn Thr Phe Val Ser Pro Tyr Val Asn Gly Ala 120 125 115 Arg Gly Val Thr Ile Asn Leu

		-
-cont	ınu	leo

130 135 <210> SEO ID NO 75 <211> LENGTH: 799 <212> TYPE: DNA <213> ORGANISM: Glycine max <400> SEOUENCE: 75 gtgtgtggtt ttgtcgcttc agtgtttctg atagcgtgca acaaattagc agagaaggtt 60 aagttcgatg atcctttgga agcggcgcag ttacacggtg ggtgtggcgc gtggggggtg 120 180 gcgcacgggt tgttcatgag gggtggaggg aagttgctgg cggcgcacgt gattcagatt 240 ttggttattg ttgggtgggt gagtgcgacc atgggaccct tgttttgggg gttgaataaa 300 360 ttgaaattgt tgaggatttc ttccgaggat gagcttgcgg ggatggatct tacccgtcat ggaggatttg cttatgctta tgaggatgat gagtcgcaca agcatgggat tcagctgagg 420 aaggttgggc ccaacgcgtc gtccacaccc accactgatg aatgattacg atcacgatta 480 attcggcccc gacagtatta tcttcaattg aaattacgtg tgacttagaa gaagaaaaaa 540 agatgatgat gattttgttt gtaatttatt ttatttgttt tgggtttttt ttttaatttt 600 gtagattttt ctttttatga tgggtaagta gggattttaa tttgtaattg ttattggccg 660 720 tatattggta gatgctggaa attgaagatt ctgctggaag atgcgaacgt ttctgaaaat gatagatggc tgtggaaaat gaaaatattt tatttgtggg atttaatttt cgtagttttc 780 799 gccaaaaaag aaggaagag <210> SEQ ID NO 76 <211> LENGTH: 154 <212> TYPE: PRT <213> ORGANISM: Glycine max <400> SEOUENCE: 76 Val Cys Gly Phe Val Ala Ser Val Phe Leu Ile Ala Cys Asn Lys Leu 1 5 10 15 Ala Glu Lys Val Lys Phe Asp Asp Pro Leu Glu Ala Ala Gln Leu His 20 25 30 Gly Gly Cys Gly Ala Trp Gly Val Ile Phe Thr Ala Leu Phe Ala Lys 35 40 45 Lys Glu Tyr Val Ser Gln Val Tyr Gly Glu Gly Arg Ala His Gly Leu 50 55 60 Phe Met Arg Gly Gly Gly Lys Leu Leu Ala Ala His Val Ile Gln Ile 70 75 65 80 Leu Val Ile Val Gly Trp Val Ser Ala Thr Met Gly Pro Leu Phe Trp 85 90 95 Gly Leu Asn Lys Leu Lys Leu Arg Ile Ser Ser Glu Asp Glu Leu 100 105 110 Ala Gly Met Asp Leu Thr Arg His Gly Gly Phe Ala Tyr Ala Tyr Glu 115 120 125 Asp Asp Glu Ser His Lys His Gly Ile Gln Leu Arg Lys Val Gly Pro 130 135 140 Asn Ala Ser Ser Thr Pro Thr Thr Asp Glu 145 150

```
-continued
```

<210> SEO ID NO 77 <211> LENGTH: 90 <212> TYPE: DNA <213> ORGANISM: Glycine max <400> SEQUENCE: 77 tttctctacc aatggggggt tattgactat tctggcggct atgtcatcca cctttcttct 60 ggaatcgctg gtttaactgc tgcttactgg 90 <210> SEQ ID NO 78 <211> LENGTH: 30 <212> TYPE: PRT <213> ORGANISM: Glycine max <400> SEQUENCE: 78 Phe Leu Tyr Gln Trp Gly Val Ile Asp Tyr Ser Gly Gly Tyr Val Ile 1 5 10 15 His Leu Ser Ser Gly Ile Ala Gly Leu Thr Ala Ala Tyr Trp 25 20 30 <210> SEQ ID NO 79 <211> LENGTH: 459 <212> TYPE: DNA <213> ORGANISM: Glycine max <400> SEQUENCE: 79 caaattcgct ttacatacag tatggtaatt gtccaaattt ttacgaccga tttgtcaggt 60 acatcattta atqcatqqca acatacatqa taaqatqaat caataaatac attccaqctt 120 ccacgtacgt acgtctgcca acatagccgg cctcataatg tctcatccaa gtaaataaaa 180 cgacaaaatg attgattgta taaacctgct gcaaataact cagtatcata aagccttggc 240 cttgaacacc ctcactcgag ttttcagcca attaaccaaa tcacactgaa acactgaagt 300 actagttatt caactactag taataagcat aattaaatat agaggagccg aagacgaagc 360 aagcccagaa aggttgaaca aaggagacaa cgcatggcag ttaatggcag ccacagtggt 420 gggtatggtg attctctatg gaagcctaga gtgaaaaag 459 <210> SEQ ID NO 80 <211> LENGTH: 28 <212> TYPE: PRT <213> ORGANISM: Glycine max <400> SEQUENCE: 80 Pro Glu Arg Leu Asn Lys Gly Asp Asn Ala Trp Gln Leu Met Ala Ala 5 10 15 1 Thr Val Val Gly Met Val Ile Leu Tyr Gly Ser Leu 20 25 <210> SEQ ID NO 81 <211> LENGTH: 451 <212> TYPE: DNA <213> ORGANISM: Glycine max <400> SEQUENCE: 81 acttgtgcta cccatggcca ctcccacagc ataccaagaa cacctccctg catcccccca 60 ctggctaaac aaaggggaca acgcatggca gctgacagca gccactctcg taggtctcca 120

- CONE	inued	

aagcatgccg ggtctggtga tcctctacgc cagcatggtg aagaagaaat gggccgtgaa	180
ctctgcattc atggccctct acgcctttgc agcagtccta atatgctggg tgctcgtttg	240
tcaccgaatg gccttcggtg acaaactcct tcccttctgg gggaaggggg ccccagcact	300
aggccagaag tttttaacac accgcgccaa agtccccgaa agcacgcact attataacaa	360
tggtacggtc gaaagcgcga cttcggaacc gttgtttgcc acggcttctc ttgtgtattt	420
tcaattcacg tttgcggcta tcacgcttat c	451
<210> SEQ ID NO 82 <211> LENGTH: 146 <212> TYPE: PRT <213> ORGANISM: Glycine max	
<400> SEQUENCE: 82	
Met Ala Thr Pro Thr Ala Tyr Gln Glu His Leu Pro Ala Ser Pro His 1 5 10 15	
Trp Leu Asn Lys Gly Asp Asn Ala Trp Gln Leu Thr Ala Ala Thr Leu 20 25 30	
Val Gly Leu Gln Ser Met Pro Gly Leu Val Ile Leu Tyr Ala Ser Met 35 40 45	
Val Lys Lys Trp Ala Val Asn Ser Ala Phe Met Ala Leu Tyr Ala 50 55 60	
Phe Ala Ala Val Leu Ile Cys Trp Val Leu Val Cys His Arg Met Ala 65 70 75 80	
Phe Gly Asp Lys Leu Leu Pro Phe Trp Gly Lys Gly Ala Pro Ala Leu 85 90 95	
Gly Gln Lys Phe Leu Thr His Arg Ala Lys Val Pro Glu Ser Thr His 100 105 110	
Tyr Tyr Asn Asn Gly Thr Val Glu Ser Ala Thr Ser Glu Pro Leu Phe 115 120 125	
Ala Thr Ala Ser Leu Val Tyr Phe Gln Phe Thr Phe Ala Ala Ile Thr 130 135 140	
Leu Ile 145	

What is claimed is:

1. An isolated polynucleotide selected from the group consisting of:

- a. a polynucleotide having at least 70% sequence identity, as determined by the GAP algorithm under default parameters, to the full length sequence of a polynucleotide selected from the group consisting of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79 or 81; wherein the polynucleotide encodes a polypeptide that functions as a modifier of AMT;
- b. a polynucleotide encoding a polypeptide selected from the group consisting of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80 or 82;
- c. a polynucleotide selected from the group consisting of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25,

27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79 or 81; and

d. A polynucleotide which is complementary to the polynucleotide of (a), (b) or (c).

2. A recombinant expression cassette, comprising the polynucleotide of claim **1**, wherein the polynucleotide is operably linked, in sense or anti-sense orientation, to a promoter.

3. A host cell comprising the expression cassette of claim 2.

4. A transgenic plant comprising the recombinant expression cassette of claim 2.

5. The transgenic plant of claim 4, wherein said plant is a monocot.

6. The transgenic plant of claim 4, wherein said plant is a dicot.

7. The transgenic plant of claim 4, wherein said plant is selected from the group consisting of: maize, soybean, sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley, millet, peanut, switchgrass, myscanthus, triticale and cocoa.

8. A transgenic seed from the transgenic plant of claim 4.

- 9. A method of modulating the AMT in plants, comprising:
- a. introducing into a plant cell a recombinant expression cassette comprising the polynucleotide of claim 1 operably linked to a promoter; and
- b. culturing the plant under plant cell growing conditions; wherein the
- AMT in said plant cell is modulated.

10. The method of claim 9, wherein the plant cell is from a plant selected from the group consisting of: maize, soybean, sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley, millet, peanut, switchgrass, myscanthus, triticale and cocoa.

11. A method of modulating the AMT in a plant, comprising:

- a. introducing into a plant cell a recombinant expression cassette comprising the polynucleotide of claim 1 operably linked to a promoter;
- b. culturing the plant cell under plant cell growing conditions; and
- c. regenerating a plant form said plant cell; wherein the AMT in said plant is modulated.

12. The method of claim **11**, wherein the plant is selected from the group consisting of: maize, soybean, sorghum, canola, wheat, alfalfa, cotton, rice, barley, millet, peanut, switchgrass, myscanthus, triticale and cocoa.

13. A method of decreasing the AMT transporter polypeptide activity in a plant cell, comprising:

- a. providing a nucleotide sequence comprising at least 15 consecutive nucleotides of the complement of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79 or 81;
- b. providing a plant cell comprising an mRNA having the sequence set forth in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15,

17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79 or 81; and

c. introducing the nucleotide sequence of step (a) into the plant cell, wherein the nucleotide sequence inhibits expression of the mRNA in the plant cell.

14. The method of claim 13, wherein said plant cell is from a monocot.

15. The method of claim **14**, wherein said monocot is maize, wheat, rice, barley, sorghum, switchgrass, myscanthus, triticale or rye.

16. The method of claim 13, wherein said plant cell is from a dicot.

17. The transgenic plant of claim **4**, wherein the AMT transporter activity in said plant is decreased.

18. The transgenic plant of claim 17, wherein the plant has enhanced root growth.

19. The transgenic plant of claim **17**, wherein the plant has increased seed size.

20. The transgenic plant of claim **17**, wherein the plant has increased seed weight.

21. The transgenic plant of claim **17**, wherein the plant has seed with increased embryo size.

22. The transgenic plant of claim **17**, wherein the plant has increased leaf size.

23. The transgenic plant of claim **17**, wherein the plant has increased seedling vigor.

24. The transgenic plant of claim 17, wherein the plant has enhanced silk emergence.

25. The transgenic plant of claim **17**, wherein the plant has increased ear size.

26. The transgenic plant of claim **4**, wherein the AMT transporter activity in said plant is increased.

* * * * *