Office de la Propriete Canadian CA 2542379 A1 200/7/10/07

Intellectuelle Intellectual Property
du Canada Office (21) 2 542 379
v organisme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
13) A1
(22) Date de depot/Filing Date: 2006/04/07 (51) CLInt./Int.Cl. GO6Q 70/00(2006.01)
(41) Mise a la disp. pub./Open to Public Insp.: 200/7/10/07 (71) Demandeur/Applicant:

COGNOS INCORPORATED, CA

(72) Inventeurs/Inventors:
FAZAL, TOM, CA;
AI)ENI)ORFF MICHAEL, CA;
PALMER, SIMON GB;
TULCHINSKY ANATOLY CA
EVANS, SIMON, GB;

JANN ET =AU CARM, CA
DORVAL, GREGORY, CA

(74) Agent: GOWLING LAFLEUR HENDERSON LLP

(54) Titre : SYSTEME DE SOLUTION A L'ENTREPOSAGE D'OBJETS EMBALLES
(54) Title:. PACKAGED WAREHOUSE SOLUTION SYSTEM

_____ 40
120 i W
:i REPORT
BUSINESS INTELLIGENCE TOOL _jer—{ el o
| ATASER
32 22 |
] L INFO NEEDS MODEL |-
- - | 52
= TARGET
TARGET FRAMEWORK MODEL ¢! FRAMEWORK
—a

oA — PT—— by —p— R S : BREE

MODELING s
Ul
| DB DATA DB TABLE
| | MANAGER MANAGER
’ ‘ N
102\ | | SOURCE
] SOURCE FRAMEWORK MODEL 1+ FRAMEWORK
g - |_MANAGER 1

26~ v 100 B
CONTENT|| [SOURCE|{SOURCE||[SOURCE||SOURCE [|
LIBRARY SYSTEM}|{SYSTEM||SYSTEM||SYSTEM|! ENGINE |

(57) Abrégée/Abstract:
A data warehouse solution system comprises a metadata model, a user interface and an engine. The metadata model has an
iInformation needs model including metadata regarding information needs for building reports by users, and a data information

< o
SR -%‘@ VNN
T e
3 e [[/ 4
Q"

C an a d a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC ' CIPO
OPIC - CIPO 191 SRR

CA 2542379 A1 200/7/10/07

en 2 542 379
13) A1

(57) Abrege(suite)/Abstract(continued):

model Including metadata describing data that is available for building reports. The user interface has a customer user interface for
presenting the information needs model to the users for report generation, and a modeling user interface for presenting the data
Information model to the users for manipulating data warehouse objects. The engine has a report management service unit for
providing report management service using the information needs model, and a data management service unit for providing data
management service including generation of a data warehouse using the data information model.

CA 02542379 2006-04-07

ABSTRACT

A data warehouse solution system comprises a metadata model, a userinterface and an
engine. The metadata model has an information needs model including metadata
regarding information needs for building reports by users, and a data information model
including metadata describing data that is available for building reports. The user
interface has a customer user interface for presenting the information needs model to
the users for report generation, and a modeling user interface for presenting the data
information model to the users for manipulating data warehouse objects. The engine has
a report management service unit for providing report management service using the
information needs model, and a data management sewice unit for providing data

management service including generation of a data warehouse using the data
information model.

CA 02542379 2006-04-07

Packaged Warehouse Solution System

FIELD OF INVENTION

[001] The present invention relates to a packaged data warehouse solution system.

BACKGROUND OF THE INVENTION

[002] Many organizations use enterprise resource planning (ERP) systems to manage
their databases. It is common that each ofvarious sections in an organization
developed and selected its own ERP system, suitable to the section to manage the
database used by the section. Thus, within a single organization, various databases and
ERP systems are used. In order to gain the overall business view, many organizations
felt a need to have a system that integrates those ERP systems existing within the

organizations.

[003] One approach to this problem, also called data dnven approach, is to extract
data from the ERP systems, and build a data warehouse for the entire organization to
store the extracted data. Managers of organizations use business intelligence tools to
extract desired data from the data warehouse and view the data through reports.
Business Intelligence tools expose a business view of available information and allow
users to select information and format reports. While business intelligence tools typically
provide predefined reports along with transaction processing systems, most business

intelligence reports are custom written.

[004] This data driven approach provides a simple solution in theory. In reality,
however, it involves various problems in getting data from ERP systems, putting it in a
data warehouse, and then getting the data out fom the data warehouse. It is often
difficult to get the right information to the right people at the right time. It is therefore
desirable to provide a mechanism that makes it easierto extract data out of ERP
systems and deliver it to the right people at the nght time.

[005] Existing data warehouses are customary made based on the existing ERP
systems in individual organizations. It is a costly process that involves multiple

specialists for many months to only create an application for a single one of many
functional areas of the organization. Once a data warehouse is created, it is often

difficult to adapt to changes.

CA 02542379 2006-04-07

[006] In view of the problems relating to the data dnven approach, it is proposed to
adopt a model driven approach in managing data warehouses and business intelligence
tools. In an article "A model-driven approach to Bl and data warehousing puts analytical
power back in step with business requirements" (by Neil Raden; Intelligent Enterprise,
The New Deal, March 2004)," Raden proposes to use conceptual models based on
metadata that describes transparent data structure. Extract-transform-load (ETL)
processes are specified at a level of abstraction and directed at the conceptual models.
Bl queries are framed in the conceptual models.

[007] There exist some tools that employ the concept of the model driven approach as
described in the article. However, those tools are limited to specific tasks, e.g., ETL. It
IS desirable to provide a packaged solution that allows efficient construction and
management of both data warehouse and business intelligence capabilities.

'008] In an article "The 38 Subsystems of ETL" (by Ralph Kimball; Intelligent
Enterprise, December 2004), Kimball describes 38 subsystems that are needed In
almost every ETL system in holding and maintaining a data warehouse. Existing ETL
tools are not satisfactory at automating the best practice for implementation of those
subsystems. '

[009] It is desirable to provide a mechanism that implements and substantiates the
best practice as an integrated packaged system.

SUMMARY OF THE INVENTION

[010] It is an object of the invention to provide a packaged data warehouse solution
system that obviates or mitigates at least one of the disadvantages of existing data

warehouses.

[011] The invention uses a data warehouse solution system comprises a metadata
model, a user interface and an engine which generates a data warehouse from one or
more data source systems using the metadata model.

[012] In accordance with an aspect of the present invention, there is provided a data
warehouse solution system comprising a metadata model, an engine and a user
interface. The metadata model has a data information model including metadata that
describes models for generating a data warehouse, and an information needs model

including metadata regarding information needs for building reports by users. The
i 2

CA 02542379 2006-04-07

engine has a data management service unit for providing data management services
including generation of a data warehouse using the data information model, and a report
management service unit for providing report management services including generation
of reports using the information needs model and the data warehouse. The user
interface has a modeling user interface for presenting the data information model to the
users for manipulating data warehouse objects, and a customer user interface for
presenting the information needs model to the users for report generation.

[013] In accordance with another aspect of the invention, there is provided a method of
generating and maintaining a data warehouse. The method comprises the steps of
providing a metadata model having a data information model including metadata
describing models for generating a data warehouse, and an information needs model
including metadata regarding information needs for building reports by users; providing
data management services by a data warehouse solution system engine to automatically
generate a data warehouse from one or more source systems using the data information
model; and providing a modeling user interface for presenting the data information

model to a user for allowing the user to manipulate objects of the data warehouse.

[014] In accordance with another aspect of the invention, there is provided a computer
readable medium storing instructions or statements for use in the execution in a
computer of a method of generating and maintaining a data warehouse. The method
comprises the steps of providing a metadata model having a data information model
including metadata describing models for generating a data warehouse, and an
information needs model including metadata regarding information needs for building
reports by users; providing data management services by a data warehouse solution
system engine to automatically generate a data warehouse using the data information
model from one or more source systems; and providing a user interface for presenting
the data information model to users for allowing users to manipulate objects of the data
warehouse.

[015] In accordance with another aspect of the invention, there is provided a
propagated signal carrier carrying signals containing computer executable instructions
that can be read and executed by a computer, the computer executable instructions
being used to execute a method of generating and maintaining a data warehouse. The
method comprises the steps of providing a metadata model having a data information

model including metadata describing models for generating a data warehouse, and an

-3 -

CA 02542379 2006-04-07

information needs model including metadata regarding information needs for building
reports by users; providing data management services by a data warehouse solution
system engine to automatically generate a data warehouse using the data information
model from one or more source systems; and providing a user interface for presenting

the data information model to users for allowing

[016] This summary of the invention does not necessarily describe all features of the

invention.
BRIEF DESCRIPTION OF THE DRAWINGS

[017] These and other features of the invention will become more apparent from the
following description in which reference is made to the appended drawings wherein:

Figure 1 is a block diagram showing a data warehouse solution system in
accordance with an embodiment of the present invention,;

Figure 2 is a block diagram showing the detail of the data warehouse solution
system shown In Figure 1,

Figure 3 is a block diagram showing a metadata model of the data warehouse
solution system;

Figure 4 is a block diagram showing a user interface of the data warehouse
solution system;

Figure 5 is a block diagram showing an engine of the data warehouse solution
system,

Figure 6 is a diagram showing a framework of analysis types used in the data
warehouse solution system; .

Figure 7 is a diagram showing an architecture of an example of a data
warehouse;'

Figure 8 is a diagram showing operation of the data warehouse solution system;

Figure 9 is a diagram showing metadata flow in the data warehouse solution
system;

Figure 10 is a flowchart showing generation of a source framework model;

Figure 11 is a flowchart showing table generation in a data warehouse;

Figure 12 is a flowchart showing table management durnng the table generation;

Figure 13 is a flowchart showing column management during the table
generation; .

Figure 13A is a flowchart showing column companson during the column

_4 -

CA 02542379 2006-04-07

management;

Figure 14 is a flowchart showing index management during the table generation;

Figure 14A is a flowchart showing index comparison during the index
management;

Figure 15 is a flowchart showing foreign key management durng the table
generation;

Figure 16 is a diagram showing an example of data movement and
transformation;

Figure 17 is a diagram showing another example of data movement and
transformation; '

Figure 18 is a diagram showing an example of data transformations of the
engine;

Figure 19 is a diagram showing an example of data transformation;

Figure 20 is a diagram showing another example of data transformation;

Figure 21 is a diagram showing another example of data transformation;

Figure 22 is a diagram showing another example of data transformation;

Figure 23 is a diagram showing another example of data transformation;

Figure 24 is a diagram showing another example of data transformation;

Figure 25 is a diagram showing another example of data transformation;

Figure 26 is a diagram showing an example of customization;

Figure 27 is a diagram showing an example of effects of ERP upgrade;

Figure 28 is a diagram showing another example of effects of ERP upgrade;

Figure 29 is a diagram showing an example of content upgrade;

Figure 30 is a diagram showing another example of content upgrade;

Figure 31 is a flowchart showing a high level upgrade process;

Figure 32 is a flowchart showing a process of adding a warehouse object item
during upgrade; '

Figure 33 is a diagram showing an example of dimension to dimension
references with no history;

Figure 34 is a diagram showing another example of dimension to dimension
references with no history;

Figure 35 is a diagram showing another example of dimension to dimension
references with no history; '

Figure 36 is a diagram showing another example of dimension to dimension

references with no history;

CA 02542379 2006-04-07

Figure 37 is a diagram showing another example of dimensibn to dimension
references with no history; '

Figure 38 is a diagram showing another example of dimension to dimension
references with no history,

Figure 39 is a diagram showing another example of dimension to dimension
references with no history;

Figure 40 is a diagram showing another example of dimension to dimension
references with no history;

Figure 41 is a diagram showing another example of dimension to dimension
references with no history;

Figure 42 is a diagram showing another example of dimension to dimension
references with no history;

Figure 43 is a diagram showing another example of dimension to dimension
references with no history;

Figure 44 is a diagram showing another example of dimension to dimension
references with no history,

Figure 45 is a diagram showing an example of dimension to dimension
references with history;

Figure 46 is a diagram showing another example of dimension to dimension
references with history; and

Figure 47 is a diagram showing another example of dimension to dimension
references with history.

DETAILED DESCRIPTION

[018] Figure 1 shows a packaged data warehouse solution system 10 in accordance
with an embodiment of the invention. Tha data warehouse solution system 10 is used In
a computer system to manage construction, maintenance and use of a data warehouse
110 for an organization. The data warehouse solution system 10 builds the data
warehouse 110 from one or more data source systems 100, such as ERP systems, and
delivers information of data in the data warehouse 110 to one or more business
intelligence tools 120.

[019] The data warehouse solution system 10 provides a metadata driven soIUtion to
manage the data warehouse 110. The data warehouse solution system 10 has a

metadata model 20 (Figure 2) containing metadata that descnbes a report manager 50

-6 -

CA 02542379 2006-04-07

(Figure 5) that manages reports, data warehouse models, and the business logic for
extracting information from the source systems 100 and transforming it into the data
waréhouse structure. In this embodiment, the data warehouse solution system 10
constructs a star schema based data warehouse 110. Different schemas may be used
in different embodiments.

[020] As shown in‘Figure 2, the data warehouse solution system 10 includes a
metadata model 20, a userinterface 30 and an engine 40.

[021] Figure 3 shows an example of the metadata model 20. The metadata model 20
contains metadata that descnbes information based on which the data warehouse
solution system 10 is managed. The meiadata model 20 includes an information needs
model 22 and a data information model 24. The information needs model 22 and the
data information model 24 are stored in a form of a content library 26 in the data

warehouse solution system 10.

[022] The information needs model 22 includes descriptions of metadata regarding
information needs for building reports by users. The information needs model 22
includes metadata about user roles, the measures important to the roles, members of
the roles, context filters that apply to the members, display styles and templates, and
dimensions used for building reports. These metadata describes who in the
organization needs data; what information they need, which information is expressed in
terms of performance measures that they need, such as revenue, discount and
expenses; by what they need the information, such as customer, time and product; how
they look at the information; what style of analysis they need to perform on the
information; what types of reporting they need to do; and what kind of train analysis over
time that they need to do.

[023] The data information model 24 descrbes data that is available for building
reports and satisfies the information needs indicated in the information needs model 22.

The data information model 24 contains star schema models of the data warehouse
110, mapping of source systems 100 to ihe star schema models, and including data
transformation rules.

[024] The structures of metadata provides actual instances of the metadata model 20.
Actual instances of the metadata model 20 may vary depending on embodiments of the
data warehouse solution system 10.

CA 02542379 2006-04-07

[025] The content library 26 is a predefined library of metadata for reports, i.e.,
metadata for the information needs model 22, and metadata for the data warehouse
110, i.e., metadata for the data information model 24. The content library 26 allows
packaging of the metadata models 22 and 24 in a form of reusable library. This is
contrary to existing approaches in which the contents for the ETL tools and reports are
developed on site and it was difficult to re-implement on a different site against the

different environment.

[026] The structure of the content library 26 may vary depending on embodiments of

the data warehouse solution system 10.

[027] The metadata model 20 realizes a mechanism that takes the knowledge about
who the users are, what information they need, what information exists in the source
systems 100, and how to get the information in the data warehouse 110 in a form where
it can be used. Taking such knowledge and being able to package it as an application is
possible by the data warehouse solution system 10 through the user interface 30 and
the engine 40 in cooperation with the metadata model 20.

[028] Figure 4 shows an example of the user interface 30. The user interface 30
allows the users to manipulate the metadata in the metadata model 20 br building the

data warehouse 110 and for generating reports. The user interface 30 has a modeling

Ul 32 and a consumer Ul 34.

[029] The modeling Ul 32 provides a visual design environment for managing the
metadata model 20. The modeling Ul 32 also works with the metadata model 20 and
allows users to view and customize star schemas of the data warehouse 110. The
modeling Ul 32 visualizes the data warehouse models as star and/or snowflake

schemas with facts, dimensions and relationships in a dimensional map.

[030] The engine 40 interprets the metadata and generates the business intelligence
content that satisfies the information needs described in the metadata model 20. The
engine 40 allows the users to actually work with the metadata model 20. The engine 40
translates the metadata, which is a description, into data warehouse objects in the data

warehouse 110.

[031] The consumer Ul 34 allows users to view and customize the information needs
model 22. An example of information needs is where a sales manager needs a report

_8.

CA 02542379 2006-04-07

on sales revenue and discount by customer and product. The consumer Ul 34 provides
a model 22 of the information needs and allows the user to change it. Forexample, the
user may remove product, and add service for a corporation providing services.

[032] Figure 5 shows an example of the engine 40. The engine 40 has a report
management service unit 42, a data management seivice unit 44 and source model

generator 46.

[033] The report management service unit 42 provides a report generation service.
The report management service unit 42 has a report manager 50 that translates the
metadata of the information needs model 22 into reports that are meaningful to the
users. The metadata can be useful to the users when it takes a form of reports.

[034] The report management service unit 42 may also have a target framework
manager 52 that extends a target framework model 112 (Figure 7) generated by the
engine 40 and sits on top of the data warehouse 110 to provide a semantic layer for
querying and reporting. The target framework model 112 is a semantic layer of the data

warehouse 110.

[035] Some of traditional data warehouse systems geherates a model, which Is
incomplete and lacks calculations and security filiers. These calculations and secunty
filters need to be added in manually. Once they are added in manually, if the model is
regenerated, the manual extensions are not preserved and they must be re-applied
manually. In contrast, the data warehouse solution system 10 allows the target semantic
layer, I.e., the target framework model 112, to be extended after generation and
automatically preserves these extensions on regeneration. Also, traditional models
resemble the physical database and require substantial manual rework to be able to be
practically usable to answer Bl quenes. In contrast, the data warehouse solution system
10 generates the target framework model 112 which is comprehensive and can be used
as it is without manual rework. The target framework model 112 is build to caterfor a
large number of reporting needs, such as role playing dimensions, dimension history and
dimension perspective, multi-currency, multidlanguage, time intelligence, inferring facts '
from dimensions, scope relations, and altemative hierarchies.

[036] The target framework manager 52 generates the target framework model 112 or
target model 112 using various business rules. The business rules include generai rules
including a target model package rule and a general organization rule of the target

_Q .

CA 02542379 2006-04-07

model, and rules relating to database layer, business view, dimensional view, and
metadata.

[037] The target model package rule is that the target model contains one package
that is publ.ished to the content store for use with the Bl tools. This package includes a
database layer (which may be hidden), business view, dimensional view, namespace for
those warehouse objects that have at least one calendar reference and at least one
measure, other warehouse object naméspaces (which may be hidden).

[038] The general organization rules of the target model are that the root namespace
has the same name as the oot of the warehouse model. Under the root are top-level
namespaces. There are typically three top-level namespaces, one for each logical view.
The layout follows the structure below. "Root Namespace" refers to the root of the
published package. This can physically exist anywhere within the framework model.
Root Namespace
- Database Layer
- All Time
- All Time (Generic)
- All Time (Role 1)
- All Time (Role 2)
- Materialized Views
- Work Tables
- Warehouse Meta Data
- WHO Namespace1
- WHO Namespace?2

[039] The rules relating to a data base layer include rules relating to data source query
subjects, query subject description and screen tip, calendar warehouse objects, multi-
-currency reporting, dimension (with history) to calendar references, work tables,
materialized views, workaround for bug, data source query items, query item descnption
and screen tip, query item aggregate property, warehouse object references, dimension
history, references to dimensions with history, dimension perspective, role-playing
dimensions, supporting stitching by user-prompted dimension roles, dimension to

dimension references, usage property, and multidanguage attrnbutes.

-10 -

CA 02542379 2006-04-07

[040] The data source query subjects rule is that for each physical data warehouse
table that is not an ETL work table, the target framework manager52 creates a data
source query subject. The name and description properties are derived from the logical
data warehouse metadata. In the cases where the ETL best practices create two tables,
then the target framework manager 52 determines the names as follows: For fact
warehouse objects, the query subject for the fact table suffixes "Measures" to the
warehouse object name, e.g., [Financial Account Balance Measures]. The query sUbject
for the degenerate dimension is given the same name as the warehouse object, e.g.,
[Financial Account Balance]. Fora dimension with history, the query subject for the non-
history table is given the same name as the warehouse object, e.g., [Job]. The query
subject for the history table suffixes "History" to the warehouse object name, e.g., [Job
History].

[041] The query subject description and screen tip rule is that for all generated query
subjects, both the Description and Screen Tip properties are set to the warehouse object

description.

[042] The calendar warehouse objects rule is that the target framework manager 52
loads calendar warehouse objects into a single All Time table. The All Time query
subject is contained in its own namespace named "All Time". Each All Time shortcut (for
the different roles) is also contained in its own namespace within the All Time
namespace. Additionally, there is a special, reserved shortcut named "All Time
(Generic)", which is also contained in its own namespace. This shortcut is used In
relationships to dimension history query subjects. For example, the structure of
namespaces may be as follows:

- Database Layer

- All Time
- All Time (Generic)
- All Time (Role 1)
- All Time (Role 2)

[043] Each reference to calendar warehouse objects is implemented in the Database
Layer as a relationship between the referencing query subject and All Time (or the
appropriate role-playing shortcut to All Time). For each warehouse object that

references a calendar dimension, a relationship shortcut is created to all calendar roles

- 1] -

CA 02542379 2006-04-07

that it does not directly reference. Each of these relationship shortcuts point to its
primary calendar relationship. This allows queries to stitch by non-primary roles.

[044] The multi-currency reporting rule is that the database contains a quety subject for
currency conversion as well as relationships that join each fact to it via the pimary

calendar reference.

[045] The dimension (with history) to calendar references rule is that a dimension to
calendar reference provides a means to analyze history at multiple points in time
simultaneously. In order to achieve this, the target framework manager 52 creates a
copy of the Dimension History query subject (including all of its relationships) and name
it Dimension History Measures. The purpose of having the [Dimension History
Measures] query subject is to force the query engine to use query stitching when
querying dimension history measures with measures from other fact tables over time.
IDimension History Measures] query subjects do not have relationships for references to
the dimension. They have relationships for references from the dimension. In other
words, for any warehouse object [W] that references [Dimension] (directly or indirectly),
the target framework manager 52 does not create a relationship from [W] to [Dimension
History Measures]. For any warehouse object [Z] that is referenced by [Dimension], the

target framework manager 52 creates a relationship from [Dimension History Measures]
to [Z].

[046] The target framework manager 52 creates a relationship between [Dimension
History Measures] (1..n) and [All Time (<Role>)] (1..1) as follows. The target framework
manager 52 sets reference at the '‘Day grain. The target framework manager 52 maps
calendar variant only if calendar type is other than Gregorian. For example, .
[ALL TIME (<Role>)].[All Time (<Role>)].[Calendar Type Name] = 'Fiscal’
And
[ALL_TIME (<Role>)].[All Time (<Role>)].[Calendar Grain] = 'DAY’
And
[ALL_TIME (<Role>)].[All Time (<Role>)].[Calendar Variant Code] = [Dimension History
Measures].[Calendar Variant Code]
And ‘
" add days(9999-12-31,(-[ALL_TIME (<Role>)].[ALL_TIME
(<Role>)].[CALENDAR_END_DATE_EOT])) Between

[Database Layer].[Dimension History Measures].[Dimension Effective Date]

- 12 -

CA 02542379 2006-04-07

And
[Database Layer].[Dimension History Measures].[End Date]

[047] The work tables rule is that the Database Layer contains a namespace called
"ETL Work Tables" that contains a data source query subject for each work table. There
are no relationships between these query subjects. There is no renaming of query
subjects or items.

[048] The matenalized views rule is that the database layer contains a namespace
named "Materialized Views" that contains the model query subjects associated with the
materialized views defined in the model of the data warehouse solution system 10.

[049] The workaround for bug rule is to work around the issue of a shorter join path
being selected over a longer join path even though the shorter join path results in query
stitching and the longer path does not need query stitching. The target framework
manager 52 provides a direct relationship between all pairs of query subjects that are
indirectly related via dimension-to-dimension references. Therefore, in the case where
warehouse object [W] has an indirect reference to [D] (via dimension to dimension
references), then the target framework manager 52 creates a relationship [W <--> D]
whose join expression is the cumulative chain of expressions for the join path between
W] and [D]. Forexample, [W] references [A] and [A] references [D], the target
framework manager 52 creates relationship [W <--> D] as,

[W].[A Sid] = [A].[A Sid]

And

[A].[D Sid] =[D].[D Sid]
Herein Sid is a surrogate key that uniquely identifies the warehouse object [A] or [D].

[050] For role-playing dimensions and dimension history, the target framework
manager 52 uses special rules for the relationship from [W] to [D] as described in their
respective best practices.

[051] The data source query items rule is that each data source query subject contains
a query item for each physical column in the physical data warehouse table. The query
item name and descrnption are derived from the logical data warehouse metadata \object
item. For physical columns that do not have an associated warehouse object item, a
standard name and descnption is used as follows:

- 13 -

CA 02542379 2006-04-07

Type Name Description

SID <dimension> Sid Surrogate key that uniquely identifies <dimension>
DIM _ID <dimension> Dim Id Concatenated business key for <dimension>
CREATED_DT Created Date Date when the warehouse record was created

CHANGED DT Changed Date Date when the warehouse record was last changed

- [052] The query item description and screen tip rule is that for all non-system
generated query items, both the Descnption and Screen Tip properties are set to the

warehouse object item descrnption.

[053] The query item aggregate property rule is that for fact query items, the aggregate
property is based on the equivalent warehouse object item property.

[054] The warehouse object references rule is that for every warehouse object
reference (excluding dimension to calendar), the target framework manager 52 creates a
relationship in the database layer between the surrogate keys of the respective query
subjects. The cardinalities for the relationship are as follows:

From To
1n 11

[055] For example, W1 references W2, then in the database layer, the target
framework manager 52creates a relationship W1 <--> WZ2] as,
[W1].IW2 Sid] = [W2].[W2 Sid]

[056] The special cases of the warehouse object references rules include the
References to dimensions with history rules, Role-Playing Dimensions, rules and
Dimension (with history) to Calendar references rules.

[057] The dimension history rule is that for each dimension [D] with history and for
each of its roles (role 1...role n), the database layer contains two query subjects, data
source query subject for the non-historic attnbutes [D (role 1)] that contains a query item
for each column in the D table, data source query subject for historic attnbutes [D (role 1)
History] that contains a query item for each column in the D_HIST table, and contains a
filter with the expression

1=1

#$[Dimension Perspectivel{ prompt('Dimension Perspective', 'integer, 'D (role 1) F1',

- 14 -

CA 02542379 2006-04-07

'D (role i) F', [DATABASE_LAYER].[Dimension Perspective].[Dimension Perspective]')
» .

[058] The database layer also contains a relationship between them with cardinality

(1..1to 1..n)
[D].[D (role i) Sid] = [D Historyl.[D (role i) Sid].

[059] The references to dimensions with history rule is that every reference to a
dimension [D] with history has a relationship to [D] and a relationship to [D History].
Given dimension [D] with history, and warehouse object [W] that references [D], the
target framework manager 52 creates the following relationships in the database layer:
1. [W] <-->[D]

[W].[D Sid] =[D].[D Sid]
2. [W] <--> [D History]

[W].[D Sid] =[D History].[D Sid]

And

#$[Dimension Perspectivel{ prompt('Dimension Perspective’, 'integer, '1', ",
'[DATABASE_LAYER].[Dimension Perspective].[Dimension Perspective]') J#
Between

[D History].[DEffective Date]

And
[D History].[END_DATE]

[060] The cardinalities for both relationships are as follows:

From To
T.n 11

[061] The dimension perspective rule is that in order to provide a drop-down pick-list by
default (in the studios) for the dimension perspective prompts, the database layer
contains the following database query subject [Dimension Perspective]:
- Select SELECTION_CODE,
SELECTION_VALUE
from PWW_USER_SELECTION
where SELECTION_DOMAIN = 'Dimension History'

[062] The query items are named [Dimension Perspective], and [Dimension
Perspective Description] respectively. The following properties are set on the

- 15 -

CA 02542379 2006-04-07

' [Dimension Perspective].[Dimension Perspective] query item:

Prompt Type = Select Value

Display Item Reference = [Database Layer].[Dimension Perspective].[Dimension
Perspective Description]

[063] The values in this table are:
Key Value

1 Cument Values

2 Histonc Values

3 Values as of user-prompted date

[064] Additionally, a parameter map named "Dimension Perspective" is created with
the following key-value combinations:

1, current_date

2, add_days(9999-12-31, (-[All Time
(Generic)].[ALL_TIME].[CALENDAR_END DATE_EOT]))

3, [All Time].[As At Date]

Measures Suffix2, " Measures" <-- no quotes, but note the leading space

Perspective Date, #3[Dimension Perspective]{ prompt('Dimension Perspective', 'integer,
1", ", [DATABASE_LAYER].[Dimension Perspective].[Dimension Perspective]’) }#

[065] Also, for each dimension [D] with history and for each of its roles (role 1 ... role
n), the "Dimension Perspective" parameter map contains the following two key-value
pairs: '

D (role i) F1, And current_date Between [Database Layer].[D (role i) History].[D Effective
Date] And [Database Layer].[D (role 1) History].[END_DATE]

D (role i) F3, And [All Time (Generic)].[As At Date] Between [Database Layer].[D (role i)
History].[D Effective Date] And [Database Layer].[D (role i) History].[END_DATE]

[066] The role-playing dimensions rule is that a dimension warehouse object (Dim A)
may be referenced by one or more roles. For each role by which Dim A is referenced,
the target framework manager 52 creates a copy of [Dim A] query subject, called [Dim A
(Role Name)]. For each warehouse object (WHO1) reference to Dim A by a role create
a relationship as follows:
- A relationship between [WHO1] and [Dim A (Role Name)]

[WHO1].[Role Name A Sid] =[Dim A (Role Name)].[A Sid]

- 16 -

CA 02542379 2006-04-07

[067] Also, for each warehouse object WHO1) that references Dim A, the target

framework manager 52 creates a relationship to the nonvole query subject as follows:
[WHO1].#3%[WHO1 - Dimension Roles]{ prompt('WHO1 - Dim A Role', 'varchar(100)',

Dim A (Role Name),, ", '[Referenced Dimension Roles].[WHO1 - Dim A Roles].[WHO1

Role]) #
= [Dim A].[A Sid]

[068] The supporting stitching by user-prompted dimension roles rule is that in order to
support the case where the user projects from a role-less dimension as well as
measures from a fact that references that dimension by multiple roles, the target
framework manager 52 prompts the user to select which of the roles they wish to use.
To support this, in the target model, the [Warehouse Metadata] namespace contains a
namespace nhamed [Referenced Dimension Roles]. Also, the [Referenced Dimension
Roles] namespace contains the following:
1.[PWT_RF REFERENCE] - datasource query subject

SQL: Select * From [Mart]. PWT_RF_REFERENCE as PWT_RF_REFERENCE

Filters: ’

1. [Cumrent Version] =
[Referenced Dimension Roles].[PWT_RF_REFERENCE].[REF_VERSION_NO] =
maximum([Referenced Dimension
Roles].[PWT_RF_REFERENCE].[REF_VERSION_NO] for [Referenced Dimension
Roles].[PWT_RF_REFERENCE].[REFERENCE_ID])

[069] The [Referenced Dimension Roles] namespace also contains, for each
warehouse Object (wFrom), for each warehouse object (wTo) that wFrom references via
one or more roles,
[wFrom - wTo Roles] - model query subject
Query ltems:
1. [Role Name] =[Referenced Dimension
Roles].[PWT_RF_REFERENCE].[ROLE_NAME]
2. (wWFrom Role] ='wTo (' || [Referenced Dimension
Roles].[PWT _RF_REFERENCE].[ROLE_NAME] || ')
Prompt Type: Select Value
Display ltem Reference: [Referenced Dimension Roles].[wFrom - wTo Roles].[Role
Name)]
Filters:

-17 -

CA 02542379 2006-04-07

1. [From] = [Referenced Dimension |
Roles].[PWT_RF_REFERENCE].[WAREHOUSE_OBJECT _ID_FROM] = <wFrom
GUID>

2. [To] =[Referenced Dimension
Roles].[PWT_RF_REFERENCE].[WAREHOUSE_OBJECT_ID_TO] = <wTo GUID>

3. [Role Name] =[Referenced Dimension
Roles].[PWT RF _REFERENCE].[ROLE_NAME] Is Not Null

[070] For each warehouse object (wFrom), that references another warehouse object
(WTo) via one or more roles, a parameter map is nhamed [wFrom - Dimension Roles] and
includes the following key/value pairs (one key value pair per wTo role): '

wTo (Role Name) | [wTo Role Name Sid] <---i.e. the name of the sid in wkrom that

corresponds to its reference to wlo by that role.

[071] The dimension to dimension references rule is that dimensions reference
conformed dimensions. The dimension to dimension references rule is further described
referring to Figures 33-47. '

[072] Figures 33-44 show examples of the dimension to dimension references rules
with no history. Figure 33 shows an example of the warehouse model 900 containing a
single dimension that references a conformed dimension, the resultant target framework
model 902, and the dimensional view 904 of the framework model. Figure 34 shows an
example of the warehouse model 910 containing a single dimension with multiple roles
that reference a conformed dimension, the resultant target framework model 912, and
the dimensional view 914 of the framework model. Figure 35 shows another example of
the warehouse model 920 containing a single dimension that references a conformed
dimension, the resultant target framework model 922, and the dimensional view 924 of
the framework model.

[073] Figure 36 shows an example of the warehouse model 930 containing multiple
dimensions that reference conformed dimensions, the resultant target framework model
932, and the dimensional view 934 of the framework model. Figure 37 shows an
example of the warehouse model 940 containing a single dimension with multiple roles
that reference conformed dimensions, the resultant target framework model 942, and the
dimensional view 944 of the framework model. Figure 38 shows an example of the
warehouse model 950 containing a single dimension with multiple roles that reference

‘conformed dimensions by multiple roles, the resultant target framework model 952, and
- 18 -

CA 02542379 2006-04-07

the dimensional view 954 of the framework model. Figure 39 shows an example of the
warehouse model 960 containing a single dimension with multiple roles that reference

conformed dimensions with a reference having a "Include Me" flag, the resultant target
framework model 962, and the dimensional view 964 of the framework model. Figure 40
shows an example of the warehouse model 970 containing multiple dimensions that
reference conformed dimensions with reference shaving a "Include Me" flag, the
resultant target framework model 972, and the dimensional iew 974 of the framework
model.

[074] Figure 41 shows an example of the warehouse model 980 containing multiple
dimensions referenced by a single dimension by conformed or no roles, both references
having "Include Me" flag set, the resultant target framework model 982, and the
dimensional view 984 of the framework model. Figure 42 shows an example of the
warehouse model 990 containing multiple dimensions referenced by a single dimension
by different roles, both references having "Incilude Me" flag set, the resultant target
framework model 992, and the dimensional view 994 of the framework model. Figure 43
shows an example of the warehouse model 1000 containing muitiple dimensions that
reference conformed dimensions, the resultant target framework model 1002, and the
dimensional view 1004 of the framework model. Figure 44 shows an example of the
warehouse model 1010 containing multiple dimensions that reference conformed
dimensions, the resultant target framework model 1012, and the dimensional view 1014
of the framework model.

[075] Figures 45-47 show examples of the dimension to dimension references rules
with history. Figure 45 shows an example of the warehouse model 1020 containing a
single dimension that references a conformed dimension, the resultant target framework
model 1022, and the dimensional view 1024 of the framework model. Figure 46 shows
an example of the warehouse model 1030 containing a single dimension with multiple
roles that reference a conformed dimension, the resultant target framework model 1032,
and the dimensional view 1034 of the framework model. Figure 47 shows another
example of the warehouse model 1040 containing a single dimension with multiple roles
that reference a conformed dimension, the resultant target framework model 1042, and
the dimensional view 1044 of the framework model.

[076] The usage property rule is that target framework manager 52 generates the
target model based on the equivalent warehouse object item properties. Forthe

- 19 -

CA 02542379 2006-04-07

warehouse object item, the value is based on the same rules that the target framework
manager 52 uses. |dentifier, e.g., a key, index, date, and datetime, represents a column
that is used to group or summarize the data in a Fact column with which it has a
relationship. It also represents an indexed column, and represents a column that is of
the date or time type. Fact, e.g., numerc, and timeinterval, represents a column that
contains numeric data that can be grouped or summarized, such as Product Cost.
Attribute. e.g., string, represents a column that is neither an ldentifier or Fact, such as

Description.

[077] The multi-language attributes rule is applicable to warehouse object items for
which multiple language data is sourced. Query subject contains Query item for each
sourced language, and calculated query item that returns the appropriate language-
specific query item based on the userrun locale. The list of languages supported Is
derived from the warehouse object metadata. Forexample,
Case

When substring(#sq($runl.ocale)#, 1, 2) ='en' Then coalesce (
[ORGANIZATION_NAME_EN], [ORGANIZATION_NAME_EN]})

When substring(#sq($runLocale)#, 1, 2) ='fr' Then coalesce (
[ORGANIZATION_NAME_FR], [ORGANIZATION_NAME_EN])

Else [ORGANIZATION_NAME_EN]
End

[078] The rules relating to a business view include rules relating to business view
query subjects, dimension to calendar references, calendar warehouse objects, anad

currency conversion.

[079] The business view query subjects rules for each warehouse object W, the target

framework manager 52 creates a query subject [W] that contains all non-system query
items from all of its database layer qUery subjects. The name, description and screen tib
match the database layer counterpart. Query subjects for dimensions contain items
from both the type 1 query subject and the dimension history query subject. It also
contains [W Sid] and [W Dim ID] from the type 1 table. In the case where the dimension
has history, then the target framework manager 52 also adds a query item named
IDimension Perspective Date], with the expression:

#3[Dimension Perspective{ prompt('Dimension Perspective', 'integer, '1', ",
'IDATABASE_LAYER].[Dimension Perspective].[Dimension Perspective]') }#

-20 -

CA 02542379 2006-04-07

[080] Query subjects for facts contain items from both the fact query subject (including
all Sids) and the degenerate dimension query subject. For each role that W plays, the
target framework manager 52 creates a query subject [W (role)] as above, based on the
role-specific query subjects in the database layer. Each of the above query subjects is
created in W's warehouse object namespace.

[081] The dimension to calendar references rule is that hen a dimension D references
a calendar, then target framework manager 52 creates an additional query subject
named [D Measures]. For each query item [Q Item] in [D Histoly] in the database layer,
the target framework manager 52 includes a query item in [D Measures] of the same
name with the expression:

#[DATABASE_LAYER].[D History' + $[Dimension Perspective]{'Measures Suffix' +
prompt('Dimension Perspective', 'integer, '1', ", IDATABASE_LAYER].[Dimension
Perspective].[Dimension Perspective]', ")} + '].[Q [tem]'#

[082] The name, description and screen tip of each item match the database layer
counterpart. The above query subject is created in D's warehouse object namespace.

[083] The calendar warehouse objects rule is that the Business View query subject for
each calendar/role contains only those items required for the specific type of calendar.
Gregorian Calendar uses Calendar Year, Calendar Quarter, Calendar Month, Calendar
Month Name, Calendar Week, Calendar Weekday, Calendar Day, Calendar Date,
Calendar Start Date, and Calendar End Date.

[084] Other calendar types use the following:

Name ltem

<Calendar Type> Variant Code - Calendar Variant Code
<Calendar Type> Variant Name Calendar Variant Name
<Calendar Type> Year Calendar Year Value
<Calendar Type> Quarter Calendar Quarter Value
<Calendar Type> Period Calendar Period Number
<Calendar Type> Week Calendar Week Value
<Calendar Type> Period Count Calendar Period Count

<Calendar Type> Year End Period Ind Calendar Year End Pernod Ind

[085] Additionally, the query subject uses a filter named Calendar Type [Calendar
Type] = <Calendar Type>.

291 -

CA 02542379 2006-04-07

[086] The currency conversion rule applies only to warehouse objects that contain one
or more monetary measures. The target framework manager 52 creates the following
query items in the business view query subject for the warehouse object. For each
supported reporting currency defined ih the Currency Conversion warehouse object, the
target framework manager 52 creates query items of type attribute for Currency Code
and Currency Name. For example:

[Base Currency Code]

[Base Currency Name]

[Currency 1 Code]

[Currency 1 Name]

[Currency 2 Code]

[Currency 2 Name]

[Currency 4 Code]
[Currency 4 Name]

[087] Also, for each monatary fact, and for each supported reporting currency, the
target framework manager 52 creates a fact query item for the converted measure. For
example:
[Measure 1 (Base Currency)]:

[Database Layer].[Fact1 Measures].[Measure 1] *
[Database Layer].[Financial Currency Conversion Base).[Rate]

[Measure 1 (Currency 1)
[Database Layer].[Fact1 Measures].[Measure 1] *
[Database Layer].[Financial Currency Conversion Curr 1].[Rate]

[088] The rules relating to a dimensional view include rules relating to namespace '
structure of the dimensional view, dimension to calendar references, role-playing
dimensions, fact warehouse object items, dimension warehouse object items, scope
relationships, calendar warehouse objects, and multi-currency reporting.

[089] The namespace structure of the dimensional view rule is that or each warehouse
object WO, the Dimensional View namespace contains a namespace named [WO)],
which contains Business View Query subject(s), the dimensional object(s) for WO, and a
shortcut to all regular dimension (role) objects whose parent warehouse object is

_29 .

CA 02542379 2006-04-07

referenced by WO (either directly or indirectly via Dimension to Dimension references).
When WO references a dimension by a role (e.g. Person (Employee)), then the target
framework manager 52 also includes in its namespace a shoirtcut to the role-less
dimension (e.g. Person).

[090] The dimension to calendar references rule is that or any dimension D that has a
calendar reference, the target framework manager 52 creates a measure dimension in
D's warehouse object namespace that contains a measure for each warehouse item of
type measure. These measures reference the appropriate query item in the [D
Measures] query subject. The name, description and screen tip for each measure match
its Business View counterpart.

[091] The role-playing dimensions rule is that or each dimension role, the target
framework manager 52 creates a regular dimension with items denved from the
appropriate query subject in the Business View, e.g., [Dimension A (Role1)]. The
Business View query subjects are contained in the Warehouse Object hamespace along
side the dimensional objects.

[092] The fact warehouse object items rule is that for each fact warehouse object, the
warehouse object namespace in the Dimensional Layer contains the following objects,
all of which contain items that reference the appropriate Busineés View query subiject.

A measure dimension that includes all fact warehouse object items that are
identified as measures |

A regular (member) dimension that includes all identifiers and attrnibutes from
both the fact table and the degenerative dimension table (including all fact surrogate
key). Each query item references the dimension's model query subject in "Warehouse

Object Model Queries”.
The degenerative dimension surrogate key is set as the _businessKey role.

[093] The name, description and screen tip for each measure or dimension item match
its Business View counterpart.

[094] The dimension warehouse object items rule is that for each dimension
warehouse object, its namespace in the dimensional layer contains a regular dimension
that contains one hierarchy, which contains an "Al)" level plus one child level, which
includes a query item for each warehouse object item, except for those items that are

keys to referenced dimensions. Each query item references the dimension’'s model

.23 -

CA 02542379 2006-04-07

query subject in the Business View. The name, description and screen tip for each
dimension item match its Business View counterpart. For example,
Person <-- Dimension
- Person <-- Hierarchy
- Person (All) <-- "All" Level
- Person <-- Child level
- Attnbute 1
Level Attribute Roles
- Assign the role " _businessKey" to the DIM_ID attrbute of the child level.
The _memberCaption role Is not assigned since it is up to the modelerto identify it. |

[095] The scope relationships rule is that for each measure dimension, a scope
relationship is created between it and each dimension that it references (either directly or
indirectl.y). The scope relationship is scoped to the lowest level of the dimension
hierarchy. There is only one level when the dimension is first generated. Additionally,
for each scope relationship to a role-playing dimension, another scope relationship iIs
created to the role-less version of the same dimension. Once the scope elationship is
created, it is maintained within the framework model interface (except for actions that
cause it to be deleted). Calendar dimensions are handled by the calendar warehouse
objects rule. '

[096] The calendar warehouse objects rule is that for each calendar warehouse object,
the target framework manager 52 creates a dimension for each of its roles. The items
reference the associated Calendar query subject in the Business View. Gregorian
calendar dimensions are named "Calendar (<Role>)" and contain two hierarchies as

follows
YMD: YMD (All), Year, Month, Day
YQMD: YQMD (All), Year, Quarter, Month, Day

[097] Other calendars are named "<Calendar Name> (<Role>)" and contain four
hierarchies. For example, for a fiscal Calendar, the following hierarchies are used:

Fiscal YPD: Fiscal (YPD) (All), Fiscal Variant, Fiscal Year, Fiscal Penod, Fiscal Day

Fiscal YQPD: Fiscal (YQPD) (All), Fiscal Variant, Fiscal Year, Fiscal Quarter, Fiscal
Period, Fiscal Day

-24 -

CA 02542379 2006-04-07

YMD: Year, Month, Day
YQMD: Year, Quarter, Month, Day

[098] Level Attribute Roles is used for each level in each hierarchy to identify the items
that represent the _businessKey and _memberCaption roles. The target framework
manager 52 assigns the "_businessKey" role as follows:

Calendar Type Level businessKey
Gregorian Year [Calendar Yeaf]
Quarter [Calendar Quarter]
Month ‘ - [Calendar Month]
Day ' [Calendar Day]
Other <Calendar Type> Year [<Calendar Type> Year]

<Calendar Type> Quarter [<Calendar Type> Quarter]
<Calendar Type> Period [<Calendar Type> Period]
<Calendar Type> Day [Calendar Date}

[099] For _memberCaption, an additional item is created with the name
[memberCaption]. This is done as follows:
For Gregorian calendars
Year

[memberCaption] = cast([Calendar Year], char(4))
Quarter

[memberCaption] = cast([Calendar Quarter], char(1))
Month

[memberCaption] = [Calendar Month Name]
Day

[_ memberCaption] =

Case

When [Calendar Day] >= 10 Then
cast([Calendar Day], char(2))
Eise '0' | cast([Calendar Day], char(1))

End
For <Calendar Type> calendars
<Calendar Type> Year .

[memberCaption)] = cast([<Calendar Type> Year], char(4))
<Calendar Type> Quarter b

_75 .

CA 02542379 2006-04-07

[memberCaption] = cast([<Calendar Type> Quarter], char(1))
<Calendar Type> Period
[memberCaption] =
Case
When [<Calendar Type> Period] >= 10 Then
cast([<Calendar Type> Period], char(2))
Else '0' | cast([<Calendar Type> Period], char(1))
End
<Calendar Type> Day
[memberCaption] =
Case
When [<Calendar Type> Day] >= 10 Then
cast([<Calendar Type> Day}, char(2))
Else '0' || cast([<Calendar Type> Day], char(1))
End

[0100] The multi-currency reporting rule is that each measure identified in the
warehouse model as "monetary” is presented in local currency as well as inup to 5 .
reporting currencies. The measures are created within the measure dimension and the
target currency attributes are created within the regular dimension.

[0101] The rules relating to metadata include rules relating to metadata data source,
and metadata name space.

[0102] The metadata data source rule is that in order to support the case where the mart
and the metadata are in separate machines, the metadata objects use a separate data

source connection.

[0103] The metadata name space nule is that the target model contains a namespace
that contains objects used to report against the metadata ofthe data warehouse solution

system 10. The target framework manager 52 uses production management and
lineage.

[0104] On the data warehouse side, the metadata model 20 provides a logical data
model, i.e., data information model 24, for the data warehouse 110. The data
management service unit 44 specifies the sourcing logic as to how to get data into the
data warehouse 110 from the source systems 100. The data management service unit

_76 -

CA 02542379 2006-04-07

44 has a data warehouse objects manager 60, ETL code generator 62, data load
manager 68, database data manager 64 and database table manager 66.

[0105] The data warehouse objects manager 60 manages creation and alteration of
objects, e.g., data warehouse tables, in the data warehouse 110.

[0106] The ETL code generator 62 generates ETL code to extract, transform and loaa
data in the data warehouse 110 from the source systems 100. The logical data model
24 becomes reality once the engine 40 generates the ETL code for creation and
alteration of the data warehouse tables, and for loading of the data in the data
warehouse tables. The ETL code generator 62 provides the generated ETL code to the
database data manager 64 and the database table manager66. The database data
manager 64 is provided for loading of data into data warehouse tables. The database
table manager 66 is provided for creating data warehouse tables and altenng them when
the structure of the data warehouse 110 changes.

[0107] The ETL code generator 62 automatically determines the order of load so that
data warehouse tables are loaded in the comrect order. With traditional ETL
development, the developer needed to specify the load order to correctly load data
warehouse tables. With the data warehouse management system 10, the load order is
inferred automatically from the metadata that indicates dependencies between
warehouse objects. For example, In a snowflake schema, the ETL code generator 62
determines the load order such that the outrigger table is loaded before the main
dimension.

[0108] The ETL code generator 62 supports changed data capture. Changed data
capture is the ability to extract only the data that has been updated orcreated since the

previous load. The ETL code generator 62 identifies changes from one of more date or
integer fields on the source system 10. For example, the ETL code generator 62 may
extract the data using From and To date range in the source date. The ETL code
generator 62 may give the user an option to change From/To Dates to desired dates in
past or the future according to the user's needs. On incremental load, the ETL code
generator 62 re-sets From Date to the value equal to the To Date of the previous load
and To Date incremented by a predetermined interval.

.27 .

CA 02542379 2006-04-07

[0109] The ETL code generator 62 may alse use additional rules related to data
dependency and load size control. It uses dependencies between warehouse objects
based on load phase, rather than on extract phase.

[0110] The ETL code generator 62 may use dependency by reference and dependency
by data. The dependency by reference can be described through the example of fact
object, which includes the surrogate keys reference of the dimensional object. This
reference between a fact object and dimensional object creates the dependency, which
dictates the sequence of data extraction. In this case, the ETL code generator 62
extracts a dimensional object before the fact object.

[0111] The dependency by data allows keeping the data synchronized between various
data warehouse objects. For example, consider that the data is loaded in Sales Order
fact up to 01/01/2004. It is impottant to insure that the data in the dimension is also
loaded up to 01/01/2004. Ifthis is not a case, the ETL code generator 62 checks if the
dimensional data is refreshed before loading the fact data. Ifthe data is not refreshed In
the dimension, the ETL code generator 62 extracts the fact data only to the last changed
date of the dimension. When more then one dimension is extracted, the ETL code -
generator 62 selects the minimum date of all the dimensions’ last changed date.

[0112] The ETL code generator 62 may allow the user to “skip” the dimensional job. In
that case, the ETL code generator 62 ignores the data dependency. For example, the
user may decide to skip the load job for the data for some warehouse objeCts, e.g., All
Time, Status, Unit Of Measure, because these data are not likely to change very often
and thus these objects are not needed to be refreshed frequently. To control the load of
these objects, the ETL code generator 62 allows the user to skip the job execution and
put the job on hold until certain date in a future. For example, if All Time dimension is
loaded until 01/01/2010, there is no need to execute All Time job before 01/01/2010.
User can specify to skip the All Time job and put All Time job on hold until 01/01/2010.
Also, the user may decide to skip the load job to peifform ad-hoc execution of one or any
set of objects. In this case, the ETL code generator 62 checks the references and data
dependencies to validate the job and to insure the right job execution sequence.

[0113] The ETL code generator 62 provides load size control to provide the user an
option to load large volumes of data in small batches. The load size control may be
provided through a "load interval” setting that sets the size of each batch. When the

load size is specified, the ETL code generator 62 sets To Date to a value of From Date
28 -

CA 02542379 2006-04-07

plus the number of days to load. Forexample, if the user wants to extract the data for
one year using 120 days of data at a time, the usercan set a "load interval" to 120 days
so that the ETL code generator 62 extracts and load the data three times for this year.

[0114] The ETL code generator 62 also allows phase control. Some of source
operational systems allow only limited time access window to extract the data. In order
to use those source systems, the ETL code generator 62 provides the user with an
option to optimize the load processes. The ETL code generator 62 allows the user to
decide to first extract the data for all warehouse objects and then load the result of the
extraction into the warehouse, or perform complete load of one object before starting to
extract an another object. For example, the ETL code generator 62 may provide load
phase options of extract all objects and load all objects, exract and load per warehouse
object, extract only, and load only.

[0115] The ETL code generator 62 may allow the user to set these dates and intewals
or select options through the data load manager 68. The data load manager 68
manages job scheduling. The data load manager 68 manages the incremental load of
data into the data warehouse 110 to avoid reloading all data every time when the data
warehouse 110 is activated. For example, the data load manager 68 can incrementally
load a month at a time, and once the whole historical set of data is loaded, it can
incrementally add on a day by day basis just the data that is added orchanged on that
day.

[0116] The data management service unit 44 generates the initial target framework
model 112 which then becomes available for consumption and extension by the report
management service unit 42.

[0117] The source model generator 46 generates one or more source framework
models (102 in Figure 7) for the data source systems 100 to provide a level of
abstraction between the source systems 100 and the data management sewice unit 44.
A source framework model Is a semantic layer that provides a logical business
representation of a complex physical data model of the source systems 100. The source
model generator 46 has one or more source framework managers 70. A source
framework manager 70 is a query and reporting model manager that is capable of
generating and managing a model for its associated data source system 100 that the
engine 40 uses for getting data from the source system 100. Because the structure of

each source system 100 varies by implementation, it is not possible to create a
- 20

CA 02542379 2006-04-07

predefined model of each source system 100 and package such a model In advance.
The 'packaged data warehouse solution system 10 contains the source framework
manager 70 that accesses and reads the logic information, e.g., business names,
descriptions, user defined columns and tables, and other configuration information, from
the source systems 110 and reflects it in the source framework model 102 so that the
data warehouse solution system 10 can build a data warehouse 110 from the specific
implementation of the source systems 100. The engine 40 typically provides a single
model generator 46 which generates a source framework model 102 per each source

system type and version.

[0118] Figure 6 shows an analysis type framework 80 on which the report manager 50
of the engine 40 is based to provide templates for generating reports. The framework 80
illustrates the way that users typically view information. The framework 80 includes
analytic analysis type 82 and operational analysis type 84. The analytic analysis type 82
includes templates that are optimized for looking at variances 91, trends 92, dimensional
breakdown of information including contributions 93 and cross-tab contribution 94,
detailed summaries 95, profile 96 and cycle time aging 97. The operational analysis
type 84 includes templates that are optimized for looking at transaction list 98 and
transaction detail 99 such as sales order, invoice, purchase order, requisition and

contract.

[0119] Figures 7-9 show an architecture illustrating how the data warehouse solution
system 10 works. The basic principle is shbwn in Figure 7. The daté warehouse
solution system 10 takes data from source ERP systems 100 via one or more source
framework models 102, and loads the data into a data warehouse 110. The data
warehouse solution system 10 generates a target framework model 112 on top of the

data warehouse 110 so that the desired data is served up to users via the business

intelligence tools 120 as reports.

[0120] The source framework models 102 are semantic layers that contain logical
business representation of source systems 100. The source framework models 102
describe the information available from that source systems 100. The data warehouse
solution system 10 source data from these semantic layers. Providing the semantic
layers makes easier to find desired data. By using such source framework models 102,
the data warehouse solution system 10 coes not need to use a direct connection to the

data source systems 100. This eliminates the need to write by the data warehouse

- 30 -

CA 02542379 2006-04-07

solution system 10 database code, such as SQL code, r the data warehouse
extraction. The data warehouse solution system 10 instead has the level of abstraction
by the source framework model 102 between the source systems 100 and the extraction
code that the data warehouse solution system 10 generates.

[0121] The data warehouse solution system 10 also uses the target framework model
112 that gives the business intelligence tools 120 a semantic layer from which they read
the data warehouse 110. Thus, the user can view the desired data via the business
intelligence tools 120 through reports.

[0122] Figure 8 shows how the data warehouse solution system 10 is designed to
manage the creation of the data warehouse 110 and the delivery of reports. Figure 9

shows the metadata flows among the components and models shown in Figure 8.

[0123] The data warehouse solution system 10 uses the content library 26 and the
modeling Ul 32 throughout the process. The data warehouse solution system 10 also

uses various components of the engine 40.

[0124] The source framework manager 70 of the engine 40 accesses the source
systems 100, and implements the source framework models 102. The modeling Ul 32
presents to the users a data information model 24 which was originally depioyed out of
the content library 26. The database data manager 64 and database table manager 66
of the engine 40 work on this data information model 24 to extract data from the source
systems 100, create the data warehouse 110, and load the extracted data into the data

warehouse 110.

[0125] The target framework manager 52 of the engine 40 builds a target framework
model 112 on top of the data warehouse 110, which then gets consumed by information
 needs model 22. The modeling Ul 32 presents to the users the information needs model
22. The report manager 42 generates reports from the information needs model 22.

[0126] The source framework manger 70 of the source mode! generator 46 is further
described in detail. The source framework manger 70 provides auto configuration

functions for the source framework models 102.

[0127] Source systems 100 may be ERP systems having database tables which store
technical database information without much business specific intelligence. Each

database table simply contains multiple segments of data for multiple attributes.
-31 -

CA 02542379 2006-04-07

Examples of such ERP systems 100 include SAP, OFA, JD Edwards, and PeopleSoft
(PSFT). A typical ERP system 100 presents to users a business view of the data in the
database tables with additional business information, e.g., business names and
descriptions, so that the technical database information is tumed into business readable
information that is useable for the users. The source framework manager 70 obtains
business logic information regarding the business views of the source systems 100, and
creates and maps the logic information to a source framework model 102. The source
framework manger 70 obtains the logic information, e.g., business names and
descriptions, user defined columns and tables, lookups which are used within the source
system 100, and the mannerthat information is stored in the source system 100.

[0128] The source framework manger 70 automatically performs this logic loading from
the source systems 100. As shown in Figure 10, the source framework manger 70
access a model of a data dictionary of an ERP system (150). The source framework
manger 70 then reads from the ERP system business descnptions, scaling factors and
other configuration information (152), and generates a source framework metadata
(154). The source framework manger 70 applies corrections for, e.g., missing
relationships or duplicate names, to the metadata (156), and generates a source
framework model 102 based on the comected metadata (158).

[0129] These corrections (156) aliow the data warehouse solution system 10 to

- compensation for poor metadata on the source system100. The corrections also
provide a buffer that protects the application from changes to the source system 100.
For example, if a column is renamed in the source system 100, the source framework
manager 70 issues a correction that makes a new vérsion of the source appear like the

original version, and hence preserves the source to target mappings.

[0130] The database table manager 66 allows the user, through the modeling Uil 32, to
create and modify indices created as a result of the warehouse object design of the data

iInformation model 24.

[0131] When a user is creating a new dimension or fact warehouse object in data
iInformation model 24, the database table manager66 creates a physical table in the
data store of the data warehouse 110. When a user deletes a previously created
‘warehouse object from data information model 24, the database table manager66
deletes the object in question from the data warehouse 110.

.32 .

CA 02542379 2006-04-07

[0132] The same also applies for warehouse item., When a user deletes warehouse
item, the database table manager 66 automatically deletes the coresponded column. If
this column is used in an index, the database table manager 66 automatically drops the
index and recreates it without the column that was removed.

[0133] When the user adds a new column for sourcing for the data warehouse object,
the database table manager 66 adds the new column to the physical table in the target
data store in the data warehouse 110.

[0134] When a user changes the sourcing\for a particular dimension or fact in a data
source system 100, the database table manager66 does not change the physical table
in the data warehouse 110 in cases when the data type does not change. In cases
where the sourcing data type is different than the original, the database table manager
66 performs additional processing to update columns and indices of the tables in the
data warehouse 110 as necessary, as further described below. The database table
manager 66 permits changing of data types only if the data values are consistent. Ifthis
column is used else where, for example, as a reference, the database table manager 66
informs the user of these dependencies through the modeling Ul 32.

- [0135] When a user changes the name of a previously defined warehouse object, if this
object is used else where, for example, as a reference, the database table manager 66
automatically updates all the references.

[0136] When a user changes the nhame of a specific warehouse item, if this item is used
else where, for example, as a reference, the database table manager automatically
updates all the references.

[0137] When a user wants to add a new index, the database table manager 66 creates
an index statement, and uses the same abbmeviation standards as per creation of tables.
In the case where a user modifies an index, the database table manager 66 may drop
the index and create a new index, or alter the index. The database table manager 66
maintains index names unique across a database or database schema. Whenever
columns are removed from a table, the database table manager66 performs a
dependency analysis across the database to see if any indices have been impacted.

[0138] The database table manager 66 generates basic Data Descniption Language
(DDL) scripts for managing or preserving properties of data warehouse tables. The

-33 -

CA 02542379 2006-04-07

database table manager 66 manages properties of data warehouse tables, columns,
foreign keys, indices and matenalized views. The database table manager 66 manages
table properties, i.e., table name, oftables created within the context of the data
warehouse 110. The database table manager 66 manages column properties i.e. name,
data types, nullability and defauit values. In addition, the database table manager66
provides the user with the option to bnng in columns from data warehouse objects in the
database 100 into the data warehouse 110, which provides a three way check.

[0139] Figures 11-15 are flowcharts showing examples of the table management
process by the database table manager66. As shown in Figure 11, the database table
manager 66 starts the table management process 200 with table and column
managements 201, then performs indices management 202. The database table
manager 66 performs these managements 201, 202 for all relevant tables 203, and then

performs foreign key management 204.

[0140] Figure 12 shows an example of the table management of the tables and columns
managements 201 shown in Figure 11. In this example, the database has three groups
of tables: Green — required tables for current stage of data information model 24, Yellow
— required tables for previous stage of data information model 24 (as of last information
model 24 change) and White — the tables that are presently in a database. The
database table manager 66, for each Green table 210, checks if the Green table ID is in
Yellow tables 211. Ifno ID matches, it checks ifthe Green table name is in White tables
212. If no, the database table manager66 creates a new table based on the Green
table with all columns 213.

[0141] If the Green table name is in a White table 212, the database table manager66

compares all columns of the Green table and the White table 214. Ifthe tables are
equivalent 215, the database table manager 66 maps the Green table to the White table

216. If the tables are not equivalent, the database table manager 66 issues an error
message to indicate the mismatch and that it bunds a table in the White group with the
same name as the Green table but with different and unmappable contents 217.

[0142] If the Green table |ID is in a Yellow table 21 1, the database table manager66
checks if the Green table name is the same as the Yellow table name 218. |f no match,
it further checks if the Yellow table name is in the White tables 219. If no, it checks if the
Green table name is in the White tables 220. If yes, the process goes to step 214. Ifno,

the database table manager 66 creates a new Green table in the White tables 221. As
- 34 -

CA 02542379 2006-04-07

the Yellow table name is missing from the White tables, it creates the Green table in the
White tables including all columns.

[0143] If the Yellow table name is in a White table 219, the database table manager 66
checks if the Green table name is in the White table 222. If yes, it compares all columns
in the Green table and in the White table 223. Ifthe tables are equivalent 224, the
database table manager 66 maps the Green table to the White table 225. It provides the
user choices to drop or delete the Yellow named table from the White tables, or to keep
the Yellow named table in the White tables. [fthe tables are not equivalent 226, the
database table manager 66 generates an ermror message to indicates mismatch and that
it tried to create a Green table in White but failed because one already exists with

unmappable contents.

[0144] If the Green table name is in a White table 222, the database table manager66
compares all columns in the Green table and the White table with the Yellow table name
227. Ifthe equivalence test is passed 228, the database table manager66 renames the
White table to a Green table 229. Ifthe equivalent test is not passed 228, the database
table manager 66 generates an error message to indicate mismatch and that it tred to
rename a White table from the Yellow table to a Green table but failed because of

unmappable contents 230.

[0145] If the Green table name is not the same as the Yellow table name 218, the
database table manager 66 checks if the Green name is in the White tables 231. Ifno
match was found, then the database table manager66 creates a new table in the White
tables based on the Green table a".dding all columns 232.

[0146] If the Green table name is in a White table 231, the database table manager66
compares all columns in the Green table and the White table 233. Ifthe comparison
succeeded 234, the database table manager 66 does not need to do anything 235. If
no, the database table manager 66 generates an error message to indicates mismatch
and that it tred to alter the White table from the Green table but failed because of

unmappable contents 236.

[0147] When the database table manager 66 finishes with all Green tables 237, it
selects a next table from the Yellow table 238. It checks ifthe yellow table ID is in the
Green tables 239. If no, it checks if the ‘Yellow table name is in the White tables 240. If

the Yellow table name is in a White table, the database table manager66 compares all

- 35 -

CA 02542379 2006-04-07

columns in the Yellow table and the White table 241. If the tables are equivalent 242,
the database table manager 66 drops the Yellow table from the White tables as it found
the old Yellow table in the White tables and not in the Green tables 243. If they are not
equivalent 242, the database table manager66 generates an error message to indicates
mismatch and that it found a table in the White tables with the same name as the Yellow
table but different and unmappable contents 244.

[0148] If the Yellow table name is not in the White tables 240, the database table
manager 66 does not do any thing as the reference was found in the Yellow table but not
found in the White tables 245. The database table manager 66 returns to step 238 until

all Yellow tables are processed 246.

[0149] The column processing steps 214, 223, 227, 233 and 241 maybe performed as

shown In Figure 13.

[0150] The database table manager 66, for each column from the Green table 250,
checks if the Green column ID is in the Yellow tables 251. If no ID match, it checks ifthe
Green column name exists in the White table 252. If no match, the database table

manager 66 creates a column with the Green definition 253.

[0151] If the Green column name exits in the White table 252, the database table
manager 66 compares columns of the Green table and the White table 254. Iifthe
comparison did not throw an error 255, the database table manager 66 maps the Green
columns to the White table as it found the Green table in the White tables but not in the
Yellow tables 256. Ifthe companson threw an error 255, the database table manager
66 issues an error message to indicate the mapping the Green columns to the White
table failed as it found the Green column in the White tables but it could not map 257.

[0152] If the Green column ID is in a Yellow table 251, the database table manager66
checks if the Green column name is the same as the Yellow column name 258. Ifno, it
checks if the Yellow column name iIs In the White 259. If no, it checks if the Green
column name is In White 260. If yes, the process goes to step 254. Ifno, the database
table manager 66 creates a column with the Green definition in the Yellow table, not in

the White table 261.

[0153] It the Yellow column name is in the White table 259, the database table manager
66 checks if the Green column name is in the White table 262. If yes, it compares

- 36 -

CA 02542379 2006-04-07

columns in the Green table and in the White tables 263. Ifthe comparnson threw an
error 264, the database table manager 66 generates an error message to indicates that
it found the Green column in the White tables but not in the Yellow tables, and that it
attempted to map the Green columns to the White table but could not map 265. Ifthe
comparison did not throw an error 264, the database table manager 66 maps the Green
columns to the White table 266. The database table manager 66 compares columns in
-~ the Yellow table and in the White table 267. Ifthe comparison threw an error 268, the

- database table manager 66 generates an emror message to indicates that it found the
Green column in the Yellow tables with different details, but found the Green columns
equivalent with the White table and successfully mapped, and that also it found the
Yellow column in the White tables but with different details, and left the White table
alone and removed the Yellow column from the Yellow table 269. If the comparison did
not throw an error 268, the database table manager 66 drops the Yellow column from
the White table 270.

[0154] If The Green column name is in the White table 262, the database table manager
66 compares columns in the Green table and the White table returned to in the Yellow
table 271. If the comparison threw an error 268, the database table manager 66 creates
a Green column in the White table as it found the Green column in the Yellow table with
different name and no Green column in the White table, and it tried matching the new
Green column with the old White column referred to in the Yellow table and failed 273. It
can optionally drop the White column referred to in the Yellow table at step 273. Ifthe
comparison did not throw an error 268, tne database table manager 66 alters the White
column referred to in the Yellow table to match the Green column 274.

[0155] If the Green column name is the same as the Yellow column name 258, the
database table manager 66 checks if the Green column is in the White table 275. If no,
it creates a column with Green definition 276. If yes, it compares columns in the Green
table and in the White table 277. Ifthe companson did not throw an error, the database
table manager 66 does not need to do anything 279. If the comparison threw an error
278, the database table manager 66 generates an error message to indicates that it
found the Green column in the Yellow table and the White table, but could not map 280.
It gives the user options to change the Vvhite column to the Green column or to change
the Green column to the White column at step 280.

- 37 -

CA 02542379 2006-04-07

[0156] When the database table manager 66 finishes with all Green columns 281, it
selects next column from the Yellow tables 282. It checks ifthe Yellow column ID is in
the Green table 283. If yes, it goes back to step 282. Ifno, it checks if the Yellow
column name is in the White table 284. If yes, the database table manager 66 provides
the user options to drop the Yellow column name from the White table, leave it in the
White table, or put it back in the Green table 285. If no, the database table manager 66
skips as it found an old reference in the Yellow table but not in the White table 286.

[0157] When the database table manager 66 finishes with all Yellow columns 287, it
selects next column from the White table 288. It checks ifthe White column ID is in the
Yellow table 289. If yes, it goes back to step 288. Ifno, the database table manager 66
provides the user options to drop the Yellow column from the White table, leave it in the
White table, orimport it into the Green table 290. The database table manager 66
returns to step 288 until all White columns are processed 291.

[0158] The column comparison steps 254, 263, 267, 271 and 277 maybe performed as
shown in Figure 13A. To compare column A with column B 300, the database table
manager 66 checks if the columns A and B are different types 301. If no, it checks if
they'have different names 302. If different names, the database table manager66
renames B column to A column 303. The comparison is successful and it provides the
information 304. Ifthey are not different names 302, it goes to step 304. Ifthe columns
A and B are different types 301, the database table manager66 checks if they can
coerce 305. Ifyes, it switches the column type from B to A 306 and goes to step 302. If
no, it detemines that it cannot coerce column from B to A 307 and generates an error
308.

[0159] Figure 14 shows an example of the index management 202 shown in Figure 11.
The database table manager 66, for each index from the Green table 310, checks if the
Green index ID is in the Yellow table 311. If no ID match, it checks ifthe Green index
name exists in the White table 312. If no match, the' database table manager66 creates
an index with the Green definition 313.

[0160] If the Green index name exits in the White table 312, the database table
manager 66 compares indices of the Green table and the White table 314. Ifthe
comparison did not throw an error 315, the database table manager 66 maps the Green
table to the White table as it found the Green index in the White table but not in the

Yellow table 316. If the comparison threw an error 315, the database table manager66
- 38 -

CA 02542379 2006-04-07

Issues an error message to indicate the mapping the Green table to the White table
failed as it found the Green index in the White table but it could not map 317.

[0161] If the Green index ID is in the Yellow table 311, the database table manager66
checks if the Green index name is the same as the Yellow index name 318. Ifno, it
checks if the Yellow index name is in the White table 319. If no, it checks if the Green
index nhame Is ih the White table 320. If yes, the process goes to step 314. Ifno, the
database table manager 66 creates an index with the Green definition in the Yellow
table, not in the White table 321.

[0162] If the Yellow index name is in the White table 319, the database table manager
66 checks if the Green index name is in the White table 322. If yes, it compares indices
in the Green table and the White table 323. Ifthe companson threw an error 324, the
database table manager 66 generates an emror message to indicates that it found the
Green index in the White table but not in the Yellow table, and that it attempted to map
the Green indices to the White .table but could not map 325. Ifthe comparison did not
throw an error 324, the database table manager 66 maps the Green indices to the White
table 326. The database table manager 66 compares indices in the Yellow table and the
White table 327. Ifthe comparison threw an error 328, the database table manager 66
generates an error message to indicates that it ound the Green index in the Yellow table
with different details, but found the Green indices equivalent in the White table and
successfully mapped, and that also it found the Yellow index in the White table but with
different details, and left the White table alone and removed the Yellow index from the
Yellow table 329. Ifthe comparison did notl throw an error 328, the database table
manager 66 drops the Yellow index from the White table 330.

[0163] If The Green index name is in the White table 322, the database table manager
66 compares indices in the Green table and the White index returned to in the Yellow
table 331. Ifthe comparison threw an error 328, the database table manager66 can
create and/or drop as it found the Green index in the Yellow table with different name
and no Green index in the White table, and it tned matching the new Green index with
the old White index referenced to in the Yellow table and failed 333. It provides the user
options to create new Green index and drop the White index referred to in the Yellow
table, to upload the White index into the Green table and keep the Green index name, or
to upload the White index into the Green table and keep the White index name. Ifthe

-390 .

CA 02542379 2006-04-07

comparison did not throw an error 328, the database table manager 66 alters the White
iIndex referred to in the Yellow table to match Green 334.

[0164] If the Green index name is the same as the Yellow index 318, the database table
manager 66 checks if the Green index is in the White table 335. Ifno, it creates an
“index with the Green definition 336. If yes, it compares indices in the Green table and
the White table 337. Ifthe companson did not throw an error, the database table
manager 66 does not need to do anything 339. Ifthe companson threw an error 338,
the database table manager 66 generates an error message to indicates that it found the
Green index in the Yellow table and the White table but could not map 340. It gies the
user options to change the White index to the Green index or to‘change the Green index
to the White index at step 340.

[0165] When the database table manager 66 finishes with all Green indices 341, it
selects a next index from the Yellow table 342. It checks ifthe Yellow index ID is in the
Green table 343. Ifyes, it goes back to step 342. Ifno, it checks if the Yellow index
name is in the White table 344. If yes, the database table manager 66 provides the user
options to drop the yellow index from the White table, or leave it in the White table 345.
If no, the database table manager 66 skips as it found an old reference in the Yellow
table but not in the White table 346.

[0166] When the database table manager 66 finishes with all Yellow indices 347, it
selects a next index from the White table 348. It checks ifthe White index name in the
Yellow table or the Green table 349. Ifyes, it goes back to step 348. Ifno, the database
table manager 66 checks if all the index columns exist in the Green table 350. If no, it
generates an ermror massage that it found the index in the White table but it is not
supported by the new Green table 351. If yes, it checks if all the columns are of the
same type 352. If no, it checks if the mismatching columns can be coerced 353. Ifno, it
generates an error message that it found the index in the White table with support in the
new Green table but column types do not match 354. If yes, It generates an error
message that it found the index in the White table with support in the new Green table
but column types need coercing, and gives the user options to drop the index from the
White table or recreate it with new column types 355. If all the columns are of the same
type 352, the database table manager 66 generates an error message that it found
unreferenced index in the White tabhle with a match in the Green table, and gives the

user options to drop the index from the White table, leave it in the White table, or import

_ 40 -

CA 02542379 2006-04-07

it into the Green table 356. The database table manager 66 returns to step 348 until all
White indices are processed 357.

[0167] The index comparison steps 314, 323, 333, 331 and 337, maybe performed as
shown in Figure 14A. To compare index A with index B 360, the database table
manager 66 checks if all columns used in the B indexare in A 361. Ifno, it generates an
error message that it duplicate index name is found with different definition, and gives
options to drop B and create A, delete A, or delete A and update B definition 362. It
returns an error 363. If all columns used in B index are in A 361, the database table
manager 66 checks if the column order of A and B match 364. Ifno, it goes to step 362.
If yes, it checks if column types of A and B match 365. Ifno, it checks'if it can be
corrected 366. If no, it goes to step 362. Ifyes, it drops B and recreate with definition of
A 367. If column types of A and B match 365, the database table manager66 checks if
table is being renamed 368. If yes, it drops and recreate the index 369. If no, the
comparison is successful 370.

[0168] Figure 15 shows an example of the foreign key management 204 shown in
Figure 11. The database table manager 66, for each key from the Green tables 380,
checks if the parent table exist in the Green tables 381. If no, it checks if the child table
exists in the Green tables 382. If no, the database table manager 66 determines that the
key is out of scope 383. If yes, it checks if the parent table exist in the White tables 384.
If no, the database table manager 66 drops the key as the parent table definition is
missing from the Green tables and White tables 385. If yes, it checks if all the key
columns exist in the parent table 386. If no, it drops the key as columns are missing
from the White parent 387. If yes, it checks if the key columns are the pnmary key of the
parent table 388. Ifno, it drops the key as the primary key is mismatch on the White
parent table 389. If yes, it checks if the key columns are the same types 390. Ifno, it
checks if columns can be coerced 391. If no, it drops the key as primary key column
type mismatch on the White parent table 392.

[0169] If the parent table exist in the Green tables 381, the database table manager66
checks if all the key columns exist in parent table 393. If no, it drops the key as columns
are missing from Green parent table 394. If yes, it checks if the key columns are the
primary key of the parent table 395. Ifno, it drops the key as the pnmary key is
mismatch on the White parent table 396. If yes, it checks if the key columns are the

- 41 -

CA 02542379 2006-04-07

same types 397. If no, it checks if columns can be coerced 398. If no, it drops the key
as primary key column type mismatch on the Green parent table 399.

[0170] If yes at steps 390, 391, 397 and 398, the database table manager66 checks if
the child table exists in the Green tables 382. If no, it checks if the child table exists in
‘the White tables 401. If no, the database table manager 66 drops the key as child table
definition is missing from Green tables and White tables 402. If yes, it checks if all the
key columns exist in child 403. If no, it drops the key as columns are missing from the
White child table 404. If yes, it checks if the key columns are the same types 405. If no,
it checks if columns can be coerced 406. If no, it drops the key as primary key column
type mismatch on the White child table 407.

[0171] If the child table exists in the Green tables 400, it checks if all the key columns
exist in child table 408. Ifno, it drops the key as columns are missing from Green child
table 409. If yes, it checks if the key columns are the same types 410. If no, it checks if
columns can be coerced 411. If no, it drops the key as primary key column type
mismatch on the Green child table 412.

[0172] If yes at steps 405, 406, 410 and 411, the database table manager66 creates a
key 413. The database table manager 66 returns to step 380 until all foreign keys are
processed 414.

[0173] The database table manager 66 manages foreign keys created within the data
warehouse 110, and allows bringing in foreign keys in from the database 100 only if both
tables (parent and child) exist in the source framework model 102. The database table
manager 66 manages the name and columns for a foreign key relationship. It may use
an assumption that the foreign key is to the pnmary key of the parent.

[0174] The database table manager 66 also manages indices within the data
warehouse 110. The database table manager 66 gives the user the option to brng in
indices from the database 100 into the data warehouse 110. The modeling Ul 32 allows

users to create indices with column specification, index type property and ordering.

[0175] The database table manager 66 preserves foreign key relationships when a table
Is dropped or recreated. [f a destructive action has occurred, such as change in pnmary
key, then the database table manager 66 drops the foreign key will be dropped, and

_4) -

CA 02542379 2006-04-07

maintains the relationships regardless of whether it is the parent or child table that is in
the data warehouse 110.

[0176] The database table manager 66 preserves tablespace settings for tables,
indices, and matenalized views. The database table manager 66 may use a preserve
tablespace flag. If the flag is set to yes, when views, tables or columns need to be
dropped/recreated in the database 100, the database table manager66 queries the
database 100 to see which tablespace in which the objects reside and when recreating
them specify the same tablespace. VWhen a new object is being created, the database
table manager 66 uses a default tablespace. Ifthe flag Is set to no, when views, tables
or columns need to be drop/recreated from the database, or when creating a new
'table/column, the database table manager66 may use a default tablespace.

[0177] The database table manager 66 also manages matenalized views created within
the data warehouse 110. The database table manager 66 does not give users the ability
to import views created in the database 100 that are not previously in the data
warehouse 110.

[0178] The database table manager 66 also preserves matenalized view commit setting.
If the user changes this setting in the database 100, the database table manager66
preserves the change when dropping and recreating the view.

[0179] The modeling Ul 32 displays to the user the impacts on the physical objects in
the data source systems 100 as a result or a design change of the data source systems
100. The modeling Ul 32 allows the user to see the resulting structure from the design
change, compared to the last physical object design, compared to the structure of the
physical object in the data source systems 100.

[0180] Model changes by a user such as rename in some relational database
management systems (RDBMS) that require a drop and recreate of a physical table in
order to carry out the change by the table management engine 62 are transparent to the
user. The database data manager 64 preserves data dunng this process of dropping
and recreating the table. The database data manager 64 also allows the user to
manage existing indices and the pnmary keys, i.e., to change the name and composition
of the indices and also to allow for the creation of new keys.

-43 -

CA 02542379 2006-04-07

[0181] The data movement and transformation performed by the database data
manager 64 is now described in detail. The best practice logic for ETL consists of two
stages: an extract and transformation stage, and a load stage. All tansformations
happen in the extract and transformation stage. The load stage is the same regardless
of the structure and logic used in the extract and transformation stage.

[0182] To manager data movement and transformations, existing systems define each
process of data movement or transformations, and specify each step of the process as
to what the system should do, e.g., specify each step to read data, transform the data
and write the data. The database data manager 64 eliminates the need of specifying
each of intermediate steps. The database data manager 64 contains the predefined
data processing steps or rules needed to camry out various types of movement and
transformations. The database data manager 64 takes data, and tums it into output
data using these steps contained in the database data manager64. This allows
upgrade of the data warehouse solution system 10 without user intervention.

[0183] Thus, the data warehouse solution system 10 Is upgradeable. A customer can
implement a version of the data warehouse solution system 10 and make modifications
to the system 10. Then, the customer can implement a new version of the data
warehouse solution system 10 and preserve\ in the new version automatically the
modifications that the customer has made to the previous version, as further described
below.

[0184] Figure 16 shows an example of data movement from a model 500 of the source
system 100 to a model 510 ofthe data warehouse 110. The source system model 500
has boxes 502 beside items to allow the user to select desired items. The warehouse
model 510 shows how the selected items appear in the warehouse 110. Figure 16
conceptually visualizes the data movement carried out by the database data manager 64
with a big pipe 520 in which data of the items selected from the source model 500 is
entered, and from which the data comes out at the side ofthe warehouse model 510.
This is possible since the database data manager 64 contains the steps needed to cany
out this data movement.

[0185] The database data manager 64 may perform various types of data movement,
including performance related type, capture and manage seed data type and
management related type. The performance related type data movement includes data

movement with changed data capture, bulk load, stage and then load, and update
- 44 -

CA 02542379 2006-04-07

database statistics. The capture and manage seed data type data movement uses
seed, or manually entered data into warehouse. The management related type data
movement includes data movement with phased initial load, load a../load singular, auto
load dependency setting, set load parameters, hold load, error recovery , and ob audit
and logging. The database data manager 64 contains the steps needed to cany out
these types of data movement.

[0186] Figure 17 shows another example which includes the notion of data
transformation while the data is moved from the source system model 500 to the
warehouse model 512. Data of the items selected from the source model 500 is entered
into the pipe 520, and transformed data comes out from the pipe 520 at the side ofthe
warehouse model 512. Some times the users want to add things to the data while it is In
the pipe 520. In this example, a hierarchy flattening transformation 522 is applied to the
data. The hierarchy flattening transformation 522 produces flattened hierarchy columns.
There is a single level for Customer id and Customer Name in the source system model
500, but there are level 1 to level 5 for Customer |ID and Customer Name in the output
warehouse model 512. The database data manager 64 contains the hierarchy flattening
transformation 522.

[0187] The database data manager 64 may include various data transformations in a
similar manner to the hierarchy flattening transformation 522. Figure 18 shows
examples of data transformations that the database data manager64 may contain in
addition to hierarchy flattening transformation: transformations for pivot 560, aggregation
580, combining data 590, change management 600, and domain 610 specifc.

[0188] A pivot transformation 560 provides data pivoting. There are two types of pivot

transformations 560: "column to row" pivot transformation 562 and "row to column” pivot
transformation 564. "Column to row" data pivoting is a technique that treats multiple

table columns as though they were a single column with multiple values. The "column to
" row" pivot transformation 562 rotates specified table columns through 90° to form rows.
The "row to column" pivot transformation 564 rotates specified table rows through 90° to
form columns. Using a pivot transformation, the user can change the shape of the data.
The user can create a single pivot or multiple pivot values. |

[0189] Figure 19 shows an example of & single "column to row" pivot transformation
562. When the user identify a pivot by attribute and the values; i.e., by target pivot

attributes 658 and query attnbutes 656, a table 650 is pivoted to a table 652.
- 45 -

CA 02542379 2006-04-07

[0190] A hierarchy flattening transformation 570 has two types: parent/child hierarchy
flattening transformation 572 and implied hierarchy transformation 572. A parent/chiid
hierarchy transformation 572 presents a particular view of a business dimension. |t

organizes the structure data into levels that represent parent/child relationships. Each

hierarchy can have as many levels as the user requires. Each level contains a set of

members.

[0191] Figure 20 shows an example of a parent/child hierarchy flattening transformation
572. In this example, a product hierarchy is based upon the relationships between rows
of the same table 660. In relational terms, these are recursive relationships. The source
table 660 includes columns named product type, product_cd, and parent_product_cd.

~ Within the parent_product_cd column, each row refers to the product_cd value of its
parent. The parent/child hierarchy transformation 572 flattens out to the number of level
columns specified by the user, e.g., as shown in the target table 662. To flatten the
hierarchy structure and to build the number of required hierarchy levels, the user
specifies parent hierarchy attribute, child hierarchy attribute, number of levels, and

hierarchy descriptive attnibutes.

10192] An implied hierarchy transformation 574 derives the hierarchy information
through the data values of the dimension. The highest number is a top level and the
lowest number is the lowest level. For example, Chart of Account may have a
numbering system that is an implied hierarchy.

[0193] Figure 21 illustrates a set of input data 670 that contains an implicit hierarchy.
The account number 674 is a numernc series of data. Each account numberimplies a
position in a hierarchy 672. For exampie Account Number 1000 is a top level node In
the hierarchy. Account Numbers 1100 and 1200 are children of Account Number 1000.
Account Number 1110 and 1111 are children of 1100.

[0194] The implied hierarchy transformation 572 dernves a hierarchy 672 from a set of
input data' 670 that contains a column indicating a numeic or character series 674 and a
level number that identifies how deep in the hierarchy each node resides. The parent of
each row of data is established by sorting the data in the order of the senes and then for

~ each row of input data looking for the most immediate prior row with a level number of 1
less than the given row. For example in the input data 670 the ow with Account Number
1111 has a level of 3. Its parent is the most immediate piior row with level number 2, i.e.,

Account Number 1100.
- 46 -

CA 02542379 2006-04-07

[0195] An aggregation transformation 580 has several types, including a simple
aggregates transformation 582, balances calculation transformation 584, snapshot
summaries transformation 586 and matenalized views transformation 588.

[0196] A data aggregation transformation 580 organizes and summarizes large amounts
of data coming from disparate data sources 100. For example, an organization may
wish to summarize the data by various time periods like month or year. There are
number of different aggregation types: regular aggregation, such as sum, min, max
average, count, last, and first; balance aggregation, such as open balance, close
balance, average balance, min balance, max balance, and moving averages; and
ranking usage, such as forecast usage, required usage, and over usage. The
aggregation transformation 580 is used when the data should be expressed in the
summary form based on the grouping key. For example, the aggregation of the fact data
along the employee dimension to get the total sale amount of particular employee. The
duplicate employee data is grouped together by employee number and summed by

sales amount.

[0197] Figure 22 shows an example of an aggregation transformation 580 from a source
table 680 to a target table 682. In this example, the aggregation transformation 580
summarized the Net Amount by grouping keys of Line No and Document No. The user
identifies the group key, which may be more then one column, and the aggregation rules

for other attnbutes.

[0198] The database data manager 64 may provide predefined aggregation methods.
Examples of reqular aggregation rules include SUM that adds together the duplicate
attribute’s values, MAX that takes the maxmum value of the attribute, MIN that takes the
minimum value of the attrnbute, COUNT that counts the members, AVG that averages
the members, FIRST that takes the first value that occurs (the first answer is always the
correct one), FIRST NON-NULL that takes the first non-null value that occurs (the first
answer is always correct, provided it is present), LAST that takes the last value that
occurs (the latest information is always best), LAST NON-NULL that takes the last non-
null value that occurs where the last record represents the last update, but a null value Is
never an improvement on a previous real value, and ANY that takes one as the merged
value. Examples of special aggregation rules include Balances such as open balance,

close balance, avg balance, and moving avgs; Ranking, such as forecast usage,

-47 -

CA 02542379 2006-04-07

required usage, and over usage; and Accuracy, such as absolute accuracy %, and

relative accuracy %.

[0199] A snapshot summaries transformation 586 has two types: periodic snapshots
transformation and accumulating snapshots transformation. A penod snapshot
transformation is used for assessment of period productivity and end of the period
workioad. A periodic snapshots transformation is suitably used in Procurement, Sales
~and HR. An accumulating snapshots transformation is used to perform cycle time

analysis by measuring the duration of various business stages.

[0200] The balances accumulation transformation 584 takes the daily transactional data
and creates open, close and average balances for the set of calendar periods. This
transformation is typically used in financial application where a user needs to know the

account balance in a period start, end and an average balance during a calendar period.

[0201] A combining data transformation 590 may include a join transformation 592,

merge transformation 594 and lookup transformation 596.
[0202] A join transformation 592 joins two or more tables together in relational database.

[0203] A merge transformation 594 is used when the data is coming from several
different data sources and needs to be combined togetherin the single data set. The
merge transformation 594 may also be used for merging disparate input data so that

similar key sets of figures, for example, forecast and actual sales figures can be

compared.

[0204] Figure 23 shows an example of a merge transformation 594. In order to

determine the key for the merge transforimation 594, the user sets the merge keys for
each input query. In this example, the merge transformation 594 merged two source

tables 690, 692 into target table 694 by the merge keys of Line No and Document No.
The same number of keys is used from all the inputs and that the same names ae used
for the key columns across all the inputs. Forexample, if employee data is coming from
two sources, which will have to be merged together by employee id, then in both inpUts
the merge key should be called employee id. '

[0205] A lookup transformation 596 pre-caches and joins the data in the memory
instead of pushing it to be processed by the database. The data cached by the lookup

_48 -

CA 02542379 2006-04-07

transformation 596 can be shared and called at the same time from multiple reference

queries.

[0206] Figure 24 shows an example of lookup transformation 596. To define the lookup
transformation 596, the user specifies the source and the reference attributes of the
lookup transformation 596. A lookup transformation 596 includes a business key
attribute to identify reference attributes. In this example, Company ID is identified as the
business key attribute to identify the as a Company_Sid reference attribute. The
business key attribute is used in the join between the input query and the lookup. The
same name is used for the lookup business key attribute and “Join From” attribute from
the input query to ensure the proper join. The user can either lookup the data from the
source framework model 102 or from the target framework model 112 of the data
warehouse 110.

[0207] A change management 600 may include track attribute changes transformations
602 and late arriving dimensions transformation 604.

[0208] A track attribute changes transformation 602 is a technique for managing
historical data. It allows the user to maintain dimensions for which non-key attnibutes
can change over time without corresponding changes in the business key, for example,
employees may change their departmen: without changing their employee number, or
the specification for a product may change without changing the product code.

[0209] There are four types of tracking the attnbute changes: Type 1 where a changead
dimension attribute is overwritten; Type 2 where a changed dimension attribute causes a
new dimension member to be created; Type 3 where a changed dimension attribute

causes an altemate attribute to be created so that both the old and new values of the
attribute are simultaneously accessible in the same dimension memberrecord; and Type
0 where the change to the dimensional attnbute is ignored. The user can set the update
type for each table attnbute. '

[0210] Figure 25 shows examples of Types 1 and 2 transformations 602. The track
attribute changes transformation 602 uses overwrite attribute changes when historical
values are not required, i.e., for a type 1 change. For example, a customers address
may change but there Is no business requirement to track previous addresses. All

customer records containing the address are updated with the new address.

- 49 .

CA 02542379 2006-04-07

[0211] The track attribute changes transformation 602 tracks attribute changes when
historical data has to be preserved, i.e., for a type 2 change. For example, when an
employee is moved from branch to branch, all old transactions should remain in the old
branch, and only new transactions should relate to the new branch. If the database data
manager 64 encounters an attribute that needs a type 2 change, it creates a new
dimension data record with the new attribute values, a new surrogate key, the effective
start date and cumrent indicator, current values of unchanged attributes, and updates the
previous record by setting the effective end date and cumrent indicator with the

appropriate previous record behavior.

[0212] A late armriving dimension transformation 604 transforms late arriving dimensions.
For example, the employee transaction dimension contains the HR transactions for
every action taken on an employee, such as hinng, transferring, promoting, and enrolling
in benefits programs and teminations. This dimension captures what an employee
looks like after a transaction. It is the employee’s profile at a point in time. HR
transactions are sourced from an operational system and inserted into the Employee
Transaction Dimension. Usually, the source data is spread across different tables where
each table represents different employee activity e.g., address change, salary change,
department change, etc.. Each row of data is a point in time representation of an
employee. It is defined by an effective start date and effective end date. The late amiving
dimension transformation 604 handies regular history transactions (as they are created
in a source system), future dated transactions, and back dated history transactions.

[0213] A domain specific transformation 610 may include invoice offset transformation
612 for Account Payable and Account Receivable applications, inventory ranking
transformation 614 for ranking the level of stock in the inventory.

[0214] An invoice offset transformation is typically used for Account Receivable and/or
Account Payable analysis to track status of payments and adjustments applied to inwoice
over period of time. The invoice offset transformation provides the linkage between
iInvoices and payments and used to calculate the measures like remaining invoice
amount, number of open and closed invoices and period opening and closing balances.
Generally speaking an invoice can be considered any type of transaction that will
increase a balance amount where as a payment or an adjustment is any type of
transaction that will decrease a balance amount. The offset transformation handies, for
example, Fully Paid Invoice, Partiaily Paid Invoice, Pre-payment, and Invoice only. |t

- 50 -

CA 02542379 2006-04-07

facilitates linkages between invoices, payments and invoices linked to payments. The
end result is an additive fact (i.e. offset) that allows for the calculation of balances for
invoices and facilitates cycle time analysis.

[0215] A stock ranking transformation is an inventory specific transformation, which
uses inventory rank table manually populated by the user for the analysis of the
cumulative usage value of an item in relation to the total plant usage value within an

historic period.

[0216] The database data manager 64 is capable of creating warehouse objects using
these transformations 550. The database data manager 64 may include other

transformations.

[0217] A change data capture (CDC) filters transformation is used to capture data
changes. Data warehouse environments typically involve extraction, transformation, and
loading data into the data warehouse from the source systems. It is often desirable to
capture the incrementally changed data (deita) from the source system with respect to
the previous extract and load into the data warehouse. The changed data capture filter
transformation detects and extracts datz using a from and to date range. The changed
data capture filter transformation detects the new and changed data using an attribute
with the date data type, or an attribute with numenc data type. The changed data
capture filter transformation may also use external database and ERP logs.

[0218] A Query filters transformation is used to control what data is loaded into the
target data warehouse, and the source table fields used for the data extraction.

[0219] A CDC filters transformation and a Query filters transformation are predefined in
the source framework model 102. A CDC filter transformation is created for each date
column. Dunng the mapping process, the user can either add the filter from the list of
predefined filters or can create a completely new filter.

[0220] An output expression transformation is a value that is calculated using an
expression that user defines, instead of obtained directly from the source data. The user
can derive values from individual columns in the source data. For example, you can
multiply Price by Units_Sold to create a column named Daily_Sales_Revenue.

[0221] An input expression transformation has the same characteristics as output

expressions except it is initialized before the transformation.
-51-

CA 02542379 2006-04-07

[0222] Creation of Expressions is supported in the source model, target model and as
part of transformation process. The source framework manager 70 creates source
expressions. Expressions may appear as items and filters in source queries and the
target framework model 112. Expressions may also be performed as part of the
transformation stage (post query). The results of expressions may be stored as columns
in the warehouse or may be used to filter data at the time of loading the warehouse.

[0223] An output filters transformation is used to restrict a delivery to specific data rows
using an output filter. An output filters transformation is an expression that results in
TRUE or FALSE when applied to each output row. Typically, user would use an output
filter to honzontally partition data other than by hierarchical levels. An output filter

transformation can also use output expression to define the filter.

[0224] A time table transformation is used for the analysis of the data over time. It holds
the calendar date periods and other relevant calendar dates based the date range

specified by the user.

[0225] A currency conversion transformation is used to hold exchange rates when the

user needs to see the reports in more than one curmrency.

[0226] An unmatched members transformation is used to add the missing dimensional
keys <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>