(19) **日本国特許庁(JP)**

B62D 25/08

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

テーマコード (参考)

特開2020-124956 (P2020-124956A)

(43) 公開日 令和2年8月20日(2020.8.20)

(51) Int.Cl.

(2006, 01)

B 6 2 D 25/08

FL

3D2O3

J

審査請求 未請求 請求項の数 7 OL (全 11 頁)

(21) 出願番号 (22) 出願日	特願2019-17204 (P2019-17204) 平成31年2月1日 (2019.2.1)	(71) 出願人	391002498 フタバ産業株式会社
	,		愛知県岡崎市橋目町字御茶屋1番地
		(71) 出願人	000003207
			トヨタ自動車株式会社
			愛知県豊田市トヨタ町1番地
		(74) 代理人	110000578
			名古屋国際特許業務法人
		(72) 発明者	田邊 雅俊
			愛知県岡崎市橋目町字御茶屋1番地 フタ
			バ産業株式会社内
		(72) 発明者	瀬戸口 大輔
			愛知県豊田市トヨタ町1番地 トヨタ自動
			車株式会社内
		Fターム (参	考) 3D203 BB37 CA66 CA69 CB19 CB21
		I	


(54) 【発明の名称】サイドブラケット

(57)【要約】

【課題】サイドブラケットとステアリングメンバとの締結箇所の捻り剛性を向上させる。

【解決手段】サイドブラケットは、車両のボディに締結される少なくとも1つのボディ締結部と、内側締結部と、外側接合部とを備える。内側接合部は、内側締結部の貫通穴を囲む縁部に設けられ、少なくとも1つのボディ締結部よりも車幅方向の中央側の位置で、貫通穴を貫通するステアリングメンバの外周面に接合される。外側接合部は、外側締結部に設けられ、少なくとも1つのボディ締結部よりも車幅方向の端側の位置で、ステアリングメンバの外周面の前側の部分に接合される。

【選択図】図2

【特許請求の範囲】

【請求項1】

車幅方向に延びた状態で車両に搭載される部材であって、ステアリングを支持する棒状の部材であるステアリングメンバの端部を、前記車両のボディに締結するよう構成されたサイドブラケットであって、

前記ボディに締結されるよう構成された少なくとも1つのボディ締結部を有する基部と

前記基部から後側に延びるよう構成された部位であって、前記ステアリングメンバにより貫通されるよう構成された貫通穴を有する部位である内側締結部と、

前記基部から後側に延びるよう構成された外側締結部と、

前記内側締結部における前記貫通穴を囲む縁部に、前記貫通穴を囲むように設けられた部位であって、前記少なくとも1つのボディ締結部よりも前記車幅方向の中央側の位置で、前記貫通穴を貫通する前記ステアリングメンバの外周面に接合されるよう構成された部位である内側接合部と、

前記外側締結部に設けられ、前記少なくとも 1 つのボディ締結部よりも前記車幅方向の端側の位置で、前記貫通穴を貫通する前記ステアリングメンバの外周面における前側の部分に接合されるよう構成された外側接合部と、

を備えるサイドブラケット。

【請求項2】

請求項1に記載されたサイドブラケットであって、

前記内側接合部は、フランジ状の部位である

サイドブラケット。

【請求項3】

請求項2に記載されたサイドブラケットであって、

前記内側接合部は、前記内側締結部における前記貫通穴を囲む縁部から、前記車幅方向の中央側に突出する

サイドブラケット。

【請求項4】

請求項1から請求項3のうちのいずれか1項に記載されたサイドブラケットであって、 前記外側接合部は、フランジ状の部位である サイドブラケット。

【請求項5】

請求項1から請求項4のうちのいずれか1項に記載されたサイドブラケットであって、前記内側締結部は、前記貫通穴を貫通する前記ステアリングメンバの前側に配置されるよう構成された前側部と、該ステアリングメンバの後側に配置されるよう構成された後側部と、を有し、

前記前側部には、第1前側取付部と、第2前側取付部と、前記第1及び第2前側取付部の間に位置する前側接合部とが設けられており、

前記後側部には、第1後側取付部と、第2後側取付部と、前記第1及び第2後側取付部の間に位置する後側接合部とが設けられており、

前記第1前側取付部と前記第1後側取付部とを接合すると共に、前記第2前側取付部と前記第2後側取付部とを接合することで、前記第1前側取付部及び前記第1後側取付部と、前記第2前側取付部及び前記第2後側取付部との間に前記貫通穴が形成されると共に、前記前側接合部と前記後側接合部とにより前記内側接合部が形成される

サイドブラケット。

【請求項6】

請求項5に記載されたサイドブラケットであって、

前記ステアリングメンバにおける前記車幅方向に直交する断面の略中心を通過する直線を、軸線とし、

上下方向に延び、且つ、前記軸線を含む面を、基準面とし、

10

20

30

40

前記前側接合部は、前記ステアリングメンバの外周面における、前記基準面よりも前側の部分に接合されるよう構成されており、

前記後側接合部は、前記ステアリングメンバの外周面における、前記基準面よりも後側の部分に接合されるよう構成されている

サイドブラケット。

【請求項7】

請求項1から請求項6のうちのいずれか1項に記載されたサイドブラケットであって、 前記基部は、上側ボディ締結部と下側ボディ締結部との少なくとも2つの前記ボディ締 結部を有し、

前記上側ボディ締結部は、前記内側締結部における前記貫通穴を貫通する前記ステアリングメンバよりも上側に位置し、前記下側ボディ締結部は、該ステアリングメンバよりも下側に位置するよう構成されている

サイドブラケット。

【発明の詳細な説明】

【技術分野】

[0001]

本開示は、ステアリングを支持する部材であるステアリングメンバを、車両のボディに締結するためのサイドブラケットに関する。

【背景技術】

[0002]

特許文献 1 に開示された技術では、フロントピラーに締結されたブラケットと、補強用のブラケットとによりステアリングメンバの端部を上下に挟み、これらのブラケットをボルトで結合することで、ステアリングメンバの両端が車両のボディに締結される。これにより、ステアリングメンバにおけるボディとの締結箇所の剛性が向上する。

【先行技術文献】

【特許文献】

[0003]

【特許文献1】特開2008-30679号公報

【発明の概要】

【発明が解決しようとする課題】

[0004]

しかしながら、特許文献 1 に開示された技術では、ステアリングメンバの端部は一箇所でブラケットに締結されている。このため、ブラケットとステアリングメンバとの締結箇所では、ステアリングメンバを捻る力に対する剛性(以後、捻り剛性)が十分に得られない恐れがある。

[0005]

本開示の一態様においては、サイドブラケットとステアリングメンバとの締結箇所の捻り剛性を向上させるのが望ましい。

【課題を解決するための手段】

[0006]

本開示の一態様は、車幅方向に延びた状態で車両に搭載される部材であって、ステアリングを支持する棒状の部材であるステアリングメンバの端部を、車両のボディに締結するよう構成されたサイドブラケットであって、基部と、内側締結部と、外側締結部と、外側接合部と、を備える。基部は、ボディに締結されるよう構成された少なくとも1つのボディ締結部を有する。内側締結部は、基部から後側に延びるよう構成された貫通穴を有する部位であって、ステアリングメンバにより貫通されるよう構成された貫通穴を有する部位である。外側締結部は、基部から後側に延びるよう構成された部位であって、少なくとも1つのボディ締結部よりも車幅方向の中央側の位置で、貫通穴を貫通するステアリングメンバの外周面に接合されるよう構成された部位である。外側接合部は、外側締結部に設

10

20

30

40

けられ、少なくとも 1 つのボディ締結部よりも車幅方向の端側の位置で、貫通穴を貫通するステアリングメンバの外周面における前側の部分に接合されるよう構成される。

[0007]

上記構成によれば、ステアリングメンバの端部は、外側接合部と、外側接合部よりも車幅方向の中央側に位置する内側接合部とに接合される。そして、外側接合部は、ステアリングメンバの外周面の前側の部分に接合でき、内側接合部は、ステアリングメンバの外周面を囲んだ状態で外周面に接合できる。つまり、車幅方向の中央側に位置する内側接合部は、外側接合部よりも強固にステアリングメンバに接合できる。これにより、ハンドル側に近いサイドブラケットとステアリングメンバとの締結箇所における、ステアリングメンバを捻る力に対する剛性(以後、捻り剛性)が向上する。

[00008]

本開示の一態様では、内側接合部は、フランジ状の部位であってもよい。

上記構成によれば、内側接合部の構造を簡素化でき、サイドブラケットの製造コスト及び重量を抑制できる。

[0009]

本開示の一態様では、内側接合部は、内側締結部における貫通穴を囲む縁部から、車幅 方向の中央側に突出してもよい。

上記構成によれば、車幅方向のより中央側の位置で、ステアリングメンバがサイドブラケットに接合される。このため、サイドブラケットとステアリングメンバとの締結箇所における捻り剛性が向上する。

[0010]

本開示の一態様では、外側接合部は、フランジ状の部位であってもよい。

上記構成によれば、外側接合部の構造を簡素化でき、サイドブラケットの製造コスト及び重量を抑制できる。

[0011]

本開示の一態様では、内側締結部は、前側部と、後側部と、を有してもよい。前側部は、貫通穴を貫通するステアリングメンバの前側に配置されるよう構成される。後側部は、ステアリングメンバの後側に配置されるよう構成される。前側部には、第1前側取付部と、第2前側取付部と、第1及び第2前側取付部の間に位置する前側接合部とが設けられていてもよい。後側部には、第1後側取付部と、第2後側取付部と、第1及び第2後側取付部の間に位置する後側接合部とが設けられていてもよい。第1前側取付部と第1後側取付部とを接合することで、第1前側取付部及び第1後側取付部と、第2前側取付部及び第2後側取付部との間に貫通穴が形成されると共に、前側接合部と後側接合部とにより内側接合部が形成されてもよい。

[0012]

上記構成によれば、前側部と後側部とによりステアリングメンバを前後に挟み、第1前側取付部及び第1後側取付部と、第2前側取付部及び第2後側取付部とをそれぞれ接合することで、貫通穴にステアリングメンバを配置できる。このため、サイドプラケットとステアリングメンバとを接合する作業負担を抑制できる。

[0013]

本開示の一態様では、ステアリングメンバにおける車幅方向に直交する断面の略中心を 通過する直線を、軸線としてもよい。上下方向に延び、且つ、軸線を含む面を、基準面と してもよい。前側接合部は、ステアリングメンバの外周面における、基準面よりも前側の 部分に接合されるよう構成されていてもよい。後側接合部は、ステアリングメンバの外周 面における、基準面よりも後側の部分に接合されるよう構成されていてもよい。

[0014]

上記構成によれば、サイドブラケットの貫通穴にステアリングメンバを好適に配置できる。

本開示の一態様では、基部は、上側ボディ締結部と下側ボディ締結部との少なくとも 2 つのボディ締結部を有してもよい。上側ボディ締結部は、内側締結部における貫通穴を貫 10

20

30

40

通するステアリングメンバよりも上側に位置し、下側ボディ締結部は、ステアリングメンバよりも下側に位置するよう構成されていてもよい。

[0015]

上記構成によれば、サイドブラケットを車両のボディに対しより強固に締結できる。

【図面の簡単な説明】

- [0016]
- 【図1】ステアリングメンバ及びサイドブラケットの後面図である。
- 【図2】サイドブラケットの斜視図である。
- 【図3】サイドブラケットの上面図である。
- 【図4】サイドブラケットの左面図である。
- 【図5】サイドブラケットの後面図である。
- 【図6】サイドブラケットの右面図である。
- 【図7】サイドブラケットの前面図である。
- 【図8】変形例のサイドブラケットの左面図である。
- 【発明を実施するための形態】
- [0017]

以下、本開示の実施形態について図面を用いて説明する。なお、本開示の実施の形態は、下記の実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の形態を採りうる。

[0018]

[1 . 概要]

本実施形態のサイドブラケット100は、車両に搭載されたステアリングメンバ4の両端に設けられ、ステアリングメンバ4の端部を車両のボディに締結する(図1参照)。ステアリングメンバ4は、左右方向(換言すれば、車幅方向)に延びた状態で車両に搭載され、車両のステアリングを上方から支持する。また、ステアリングメンバ4は、パイプ状の部材であり、第1部分と、第1部分よりも細い第2部分と、第1部分と第2部分とを繋ぐ縮径部とを有する。これらの部分は、左右方向に直交する断面が略円形となっている。

[0019]

以後、車両の前側、後側を、単に前側、後側と記載し、前側に向かって右側、左側を、単に右側、左側と記載する。また、以下では、ステアリングメンバ4の左端に設けられたサイドブラケット1000構成について詳しく説明する。サイドブラケット100は、基部1と、内側締結部2と、外側締結部3と、内側接合部21と、外側接合部30とを有する(図2~7参照)。

[0 0 2 0]

[2.基部について]

基部1は、サイドブラケット100を車両のボディに締結するための矩形の板状の部位である。基部1は、その長辺をなす縁部が上下方向に延び、且つ、その短辺をなす縁部が左右方向に延びた状態で、車両のボディに締結される(図2~7参照)。基部1は、上側ボディ締結部10と、下側ボディ締結部11とを少なくとも有する(図2、5、7参照)

[0 0 2 1]

上側及び下側ボディ締結部10、11は、一例として、ボルトが挿入される穴として構成されており、基部1は該ボルトによりボディに締結される。一例として、上側ボディ締結部10は、後述する内側締結部2の貫通穴20を貫通した状態で車両に搭載されたステアリングメンバ4よりも上側に位置し、下側ボディ締結部11は、該ステアリングメンバ4よりも下側に位置する。より詳しくは、上側ボディ締結部10は、基部1における上側の縁部の付近に位置し、下側ボディ締結部11は、基部1における下側の縁部の付近に位置する。なお、1つのボディ締結部、又は、3つ以上のボディ締結部により、基部1を車両のボディに締結しても良い。

[0022]

10

20

30

[3.内側締結部について]

内側締結部 2 は、基部 1 における上側及び下側ボディ締結部 1 0 、 1 1 よりも右側(換言すれば、車幅方向の中央側)の位置から後側に延びる板状の部位である(図 2 ~ 7 参照)。より詳しくは、内側締結部 2 は、基部 1 における右側の長辺をなす縁部から後側に延び、左右方向に略直交する向きに配置される。また、内側締結部 2 は、貫通穴 2 0 と、内側接合部 2 1 とを有する。

[0 0 2 3]

貫通穴20は、上側及び下側ボディ締結部10、11よりも右側に位置し、左右方向の延びた状態で車両に搭載されたステアリングメンバ4により貫通される。

内側接合部 2 1 は、内側締結部 2 における貫通穴 2 0 を囲む縁部に設けられ、該縁部から一例として右側に突出するフランジ状の部位である。なお、内側接合部 2 1 は、該縁部から左側に突出していても良い。内側接合部 2 1 は、貫通穴 2 0 を囲むように配置される。換言すれば、内側接合部 2 1 は、貫通穴 2 0 を貫通するステアリングメンバ 4 の外周面を囲むように配置される。また、内側接合部 2 1 は、上側及び下側ボディ締結部 1 0、 1 1 よりも右側に位置する。そして、内側接合部 2 1 は、該外周面に溶接される。なお、内側接合部 2 1 は、例えば、該外周面を周回するように延びる経路に沿って溶接されても良い。

[0024]

より詳しくは、内側締結部2は、前側部22と、後側部23と、第1前側取付部220と、第2前側取付部221と、前側接合部222と、第1後側取付部230と、第2後側取付部231と、後側接合部232とを有する。

[0 0 2 5]

[4.前側部について]

前側部22は、基部1における右側の長辺をなす縁部から後側に延びる板状の部位である(図2~7参照)。前側部22は、貫通穴20を貫通するステアリングメンバ4の前側に、左右方向に略直交する向きに配置される。また、前側部22における後側の縁部には、半円状の前側切欠き223が形成されている。

[0026]

第1及び第2前側取付部220、221は、前側部22における後側の縁部に設けられたフランジ状の部位であり、該後側の縁部から一例として右側に突出する。また、第1前側取付部220は、前側切欠き223の上側に位置し、第2前側取付部221は、前側切欠き223の下側に位置する。また、第1及び第2前側取付部220、221は、上下方向に真っ直ぐに延びる。

[0 0 2 7]

前側接合部 2 2 2 は、前側部 2 2 における前側切欠き 2 2 3 に隣接する縁部に沿って設けられるフランジ状の部位であり、該縁部から一例として右側に突出する。前側接合部 2 2 は、第 1 及び第 2 前側取付部 2 2 0 、 2 2 1 の間に位置する。

[0028]

[5.後側部について]

後側部23は、板状の部位であり、貫通穴20を貫通するステアリングメンバ4の後側に、左右方向に略直交する向きに配置される(図2~6参照)。また、後側部23における前側の縁部には、半円状の後側切欠き233が形成されている。

[0029]

第1及び第2後側取付部230、231は、後側部23における前側の縁部に設けられたフランジ状の部位であり、該前側の縁部から一例として右側に突出する。また、第1後側取付部230は、後側切欠き233の下側に位置する。また、第1及び第2後側取付部230、231は、上下方向に真っ直ぐに延びる。

[0030]

後側接合部232は、後側部23における後側切欠き233に隣接する縁部に沿って設

10

20

30

30

40

けられるフランジ状の部位であり、該縁部から一例として右側に突出する。後側接合部 23 2 は、第 1 及び第 2 後側取付部 2 3 0 、 2 3 1 の間に位置する。

[0031]

[6.前側部及び後側部の結合について]

前側部22の第1、第2前側取付部220、221と、後側部23の第1、第2後側取付部230、231とをそれぞれ溶接することで、内側締結部2が形成される(図2~4、6参照)。具体的には、前側部22の前側切欠き223、及び、後側部23の後側切欠き233にステアリングメンバ4が配置された状態で、第1前側取付部220及び第1後側取付部230と、第2前側取付部221及び第2後側取付部231とがそれぞれ当接される。

[0032]

この時、第1前側取付部220及び第1後側取付部230と、第2前側取付部221及び第2後側取付部231との間で前側切欠き223と後側切欠き233とが結合し、貫通穴20が形成される。そして、ステアリングメンバ4は、貫通穴20を貫通した状態となり、前側接合部222と後側接合部232とにより前後方向に挟持される。また、前側接合部222及び後側接合部232は、貫通穴20の縁部に沿って延び、ステアリングメンバ4の外周面を囲んだ状態になる。つまり、前側接合部222及び後側接合部232により、内側接合部21が形成される。

[0033]

そして、第1前側取付部220及び第1後側取付部230と、第2前側取付部221及び第2後側取付部231とがそれぞれ溶接される。なお、これらの取付部は、それぞれ、上下方向の一端から他端にわたって溶接されても良い。また、前側接合部222及び後側接合部232が、ステアリングメンバ4の外周面に溶接される。これらの接合部もまた、貫通穴20の縁部に沿って、一端から他端にわたって溶接されても良い。

[0034]

ここで、ステアリングメンバ4におけるサイドブラケット100により締結される部分において、左右方向に直交する断面の略中心を通過する仮想的な直線を、軸線40とする。また、上下方向に延び、且つ、軸線40を含む仮想的な面を、基準面41とする。図4、6に示すように、前側接合部222は、ステアリングメンバ4の外周面における基準面41よりも前側の部分に溶接される。また、後側接合部232は、該外周面における基準面41よりも後側の部分に溶接される。

[0035]

なお、前側部22と後側部23とにより内側締結部2が形成された際、第1、第2前側取付部220、221及び第1、第2後側取付部230、231は、上下方向に真っ直ぐに延びた状態となる。しかし、これらの取付部は、上下方向に対し傾斜していても良い。具体的には、例えば、図8に示すように、第1前側取付部220及び第1後側取付部230は、上側に向かうに従い基部1に接近するように傾斜していても良い。また、第2前側取付部221及び第2後側取付部231は、下側に向かうに従い基部1に接近するように傾斜していても良い。

[0036]

[7.外側締結部について]

外側締結部 3 は、基部 1 における上側及び下側ボディ締結部 1 0、 1 1 よりも左側(換言すれば、車両の車幅方向の端側)の位置から後側に延びる板状の部位である(図 2 ~ 7 参照)。より詳しくは、外側締結部 3 は、基部 1 における左側の長辺をなす縁部から後側に延び、左右方向に略直交する向きに配置される。外側締結部 3 における後側の縁部には、半円状の切欠き 3 1 が形成されている。切欠き 3 1 は、上側及び下側ボディ締結部 1 0、1 1 よりも左側に位置する。また、外側締結部 3 は、外側接合部 3 0 を有する。

[0037]

外側接合部30は、外側締結部3における切欠き31に隣接する縁部に沿って設けられ、該縁部から一例として左側に突出するフランジ状の部位である。なお、外側接合部30

10

20

30

40

は、該縁部から右側に突出していても良い。また、外側接合部30は、上側及び下側ボディ締結部10、11よりも左側に位置する。

[0038]

外側接合部 3 0 は、貫通穴 2 0 を貫通するステアリングメンバ 4 の外周面の前側の部分に溶接される。なお、外側接合部 3 0 は、切欠き 3 1 の縁部に沿って、一端から他端にわたって外周面に溶接されても良い。

[0039]

[8.その他]

外側締結部3、基部1、及び、内側締結部2の前側部22と、内側締結部2の後側部23とは、それぞれ、1枚の板材を加工することで形成されても良い。つまり、サイドブラケット100を、外側締結部3、基部1、及び前側部22を有する部品と、後側部23を有する部品との2部品から構成しても良い。これにより、サイドブラケット100の構造を簡素化できる。

[0040]

また、ステアリングメンバ4の右端に設けられたサイドブラケット100も、上述した 左端のサイドブラケット100と同様の構成を有する。すなわち、右端のサイドブラケット100も、上述したのと同様に構成された基部、内側締結部、外側締結部、内側接合部 、及び、外側接合部等を有する。しかし、右端のサイドブラケット100の各構成要素は 、左右方向の位置が左端のサイドブラケット100とは反対となっている。

[0041]

[9.効果]

(1)上記実施形態によれば、ステアリングメンバ4の左端は、サイドブラケット100の外側接合部30と、外側接合部30よりも右側に位置する内側接合部21とに溶接される。そして、外側接合部30は、ステアリングメンバ4の外周面の前側の部分に溶接され、内側接合部21は、ステアリングメンバ4の外周面を囲んだ状態で外周面に溶接される。つまり、左右方向の中央側に位置する内側接合部21は、外側接合部30よりも強固にステアリングメンバ4に接合される。これにより、サイドブラケット100とステアリングメンバ4との締結箇所における捻り剛性が向上する。

[0042]

(2)また、基部1から後側に延びる板状の内側締結部2及び外側締結部3に設けられたフランジ状の内側接合部21及び外側接合部30に、ステアリングメンバ4が溶接される。このため、サイドブラケット100の構造を簡素化できると共に、サイドブラケット100における東両のボディとの締結位置と、ステアリングメンバ4との締結位置と、ステアリングメンバ4との締結位置とが離間している場合であっても、サイドブラケット100の構造が複雑化するのを抑制しつつ、好適にステアリングメンバ4を締結できる。

[0043]

(3)また、内側接合部 2 1 は、フランジ状の部位である。このため、内側接合部 2 1 の構造を簡素化でき、サイドブラケット 1 0 0 の製造コスト及び重量を抑制できる。

(4)また、内側接合部21は、貫通穴20を囲む縁部から、左右方向の中央側に突出する。このため、左右方向のより中央側の位置で、ステアリングメンバ4がサイドブラケット100に溶接される。その結果、サイドブラケット100とステアリングメンバ4との締結箇所における捻り剛性が向上する。

[0044]

(5)また、外側接合部30は、フランジ状の部位である。このため、外側接合部30 の構造を簡素化でき、サイドブラケット100の製造コスト及び重量を抑制できる。

(6)また、内側接合部21は、前側部22と後側部23とを有する。このため、前側部22と後側部23とによりステアリングメンバ4を前後に挟み、第1前側取付部220 及び第1後側取付部230と、第2前側取付部221及び第2後側取付部231とをそれぞれ溶接することで、貫通穴20にステアリングメンバ4を配置できる。これにより、サ 10

20

30

40

イドブラケット100とステアリングメンバ4とを接合する作業負担を抑制できる。

[0045]

(7)また、前側接合部222は、ステアリングメンバ4の外周面における、基準面41よりも前側の部分に溶接される。また、後側接合部232は、ステアリングメンバ4の外周面における、基準面41よりも後側の部分に溶接される。このため、貫通穴20にステアリングメンバ4を好適に配置できる。

[0046]

(8)また、基部1は、ステアリングメンバ4の上側に位置する上側ボディ締結部10と、ステアリングメンバ4の下側に位置する下側ボディ締結部11とにより、車両のボディに締結される。このため、車両のボディに対し、サイドブラケット100をより強固に締結できる。

[0047]

「10.他の実施形態]

(1)上記実施形態では、内側締結部2は前側部22と後側部23とを有している。そして、前側部22と後側部23とを溶接することで、貫通穴20及び内側接合部21が形成される。しかし、これに限らず、内側締結部2は、3以上の部位を溶接することで形成されても良いし、1の板状の部位から形成されても良い。また、貫通穴20を1の板状の部位に形成すると共に、貫通穴20に対しバーリング加工を行うことで、内側締結部2を形成しても良い。

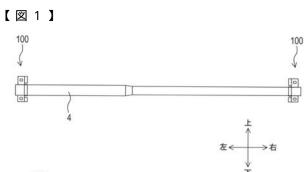
[0048]

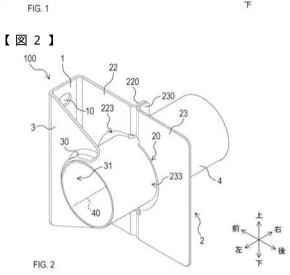
(2)上記実施形態では、前側部22と後側部23とを溶接することで、内側締結部2が形成される。しかし、溶接以外の方法で前側部22と後側部23とを接合することで、内側締結部2が形成されても良い。また、上記実施形態では、内側接合部21及び外側接合部30が、ステアリングメンバ4の外周面に溶接される。しかしながら、溶接以外の方法で、内側接合部21及び外側接合部30がステアリングメンバ4の外周面に接合されても良い。

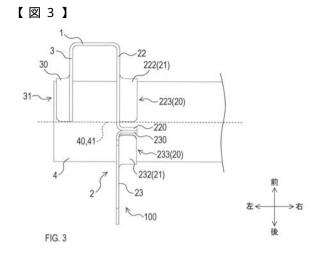
[0049]

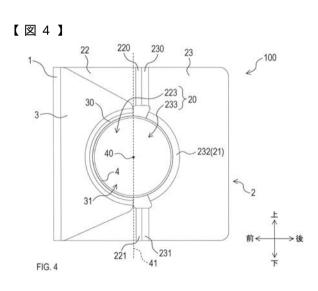
(3)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成に対して付加又は置換してもよい。

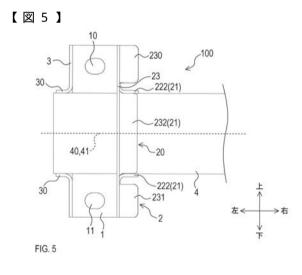
【符号の説明】

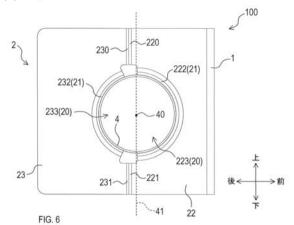

[0050]


1 ... 基部、 1 0 ... 上側ボディ締結部、 1 1 ... 下側ボディ締結部、 2 ... 内側締結部、 2 0 ... 貫通穴、 2 1 ... 内側接合部、 2 2 ... 前側部、 2 2 0 ... 第 1 前側取付部、 2 2 1 ... 第 2 前側取付部、 2 2 2 ... 前側接合部、 2 3 ... 後側部、 2 3 0 ... 第 1 後側取付部、 2 3 1 ... 第 2 後側取付部、 2 3 2 ... 後側接合部、 3 ... 外側締結部、 3 0 ... 外側接合部、 4 ... ステアリングメンバ、 4 0 ... 軸線、 4 1 ... 基準面、 1 0 0 ... サイドブラケット。

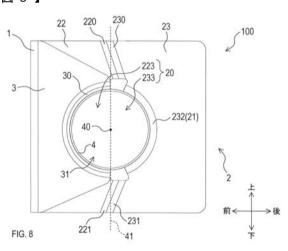

10


20


30






【図6】

【図7】

【図8】

