
(19) United States
US 201700.91317A1

(12) Patent Application Publication (10) Pub. No.: US 2017/0091317 A1
Cummings et al. (43) Pub. Date: Mar. 30, 2017

(54) LOCATION CORRELATION BETWEEN
QUERY SCRIPT AND DATA FLOW

(71) Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

(72) Inventors: David Joseph Cummings, Kirkland,
WA (US); Zhaoji Chen, Issaquah, WA
(US); Yifung Lin, Haidian District
(CN); Dian Zhang, Haidian District
(CN)

(21)

(22)

Appl. No.: 15/195,657

Filed: Jun. 28, 2016

Related U.S. Application Data
Provisional application No. 62/233,967, filed on Sep.
28, 2015.

(60)

Publication Classification

Int. C.
G06F 7/30
G06F 7/27

(51)
(2006.01)
(2006.01)

Scopescript

(52) U.S. Cl.
CPC. G06F 17/30684 (2013.01); G06F 17/30625

(2013.01); G06F 17/277 (2013.01); G06F
17/271 (2013.01)

(57) ABSTRACT

A computerized mechanism to automatically correlate posi
tions of query Script to portions of a data flow representation
of the query Script. When parsing the query script to generate
the tokens, at least Some of the tokens have an associated
Script location marker that identifies a location in the query
script where the token originated from. The syntax tree of
multiple nodes is then formulated, each node comprising
one or more of the tokens parsed from the query Script.
Accordingly, the syntax tree retains the script location
markers. A data flow representation of the query Script is
then formulated into a data flow representation. That data
flow representation might, for instance, be based on the
Syntax tree, but augmented with data types of the various
data flows. Nevertheless, the location marker is retained
within the data flow representation.

Script Preprocess Condition: Custer wy Split

w Condition v Filter w sode Contents: Statements w At — 100%

WHERE COunt > 5

SELECT2
abode

ORDER BY Price DESC

PRESORT line ASC

ockReduce
line abode

BlockOutpitter

TestData2.dat

LineExtractor

US 2017/0091317 A1 Mar. 30, 2017. Sheet 1 of 16 Patent Application Publication

? ?In61-I
| |nd|nO |------|

Ž?T (S)JOSS90OJ)

Patent Application Publication Mar. 30, 2017. Sheet 2 of 16 US 2017/0091317 A1

200

201A

21 f

221 -- H
245C |- 244C

k
Syntax Tree

232 230

231

Evaluator
233

242A

Patent Application Publication Mar. 30, 2017. Sheet 3 of 16 US 2017/0091317 A1

300A

321A / \r 331A

V

Figure 3A

Figure 3B

Patent Application Publication Mar. 30, 2017. Sheet 4 of 16 US 2017/0091317 A1

400

ACCeSS Query
Script

Formulate Syntax 410
Tree Retaining Script Visualize Query Script
Location Markers

Formulate Data Flow
Representation Retaining
Script Location Markers

COrrelate Portions Of Visualize Data 423
Query Script And Data
Flow Representation Flow Representation

Figure 4

Parse Query Script 510
To Generate Tokens

520
Generate Syntax Tree

Figure 5

Patent Application Publication Mar. 30, 2017. Sheet 5 of 16 US 2017/0091317 A1

600

610
ACCess Syntax Tree

Evaluate Each Node Of Syntax 620
Tree To identify Data Types

Formulate Data Flow Representation 630
Augmenting Syntax Tree With Data Types

Figure 6

700

Identify Input Data Type 710
Of Input(s) Of The Node

Apply Grammar Set Of Query 720
Script Language To Node Tokens

ldentify Output Data Types 730
Of Output(s) Of The Node

Figure 7

US 2017/0091317 A1 Mar. 30, 2017. Sheet 6 of 16 Patent Application Publication

US 2017/0091317 A1 Mar. 30, 2017. Sheet 7 of 16 Patent Application Publication

US 2017/0091317 A1 Mar. 30, 2017. Sheet 8 of 16 Patent Application Publication

US 2017/0091317 A1 Mar. 30, 2017. Sheet 9 of 16 Patent Application Publication

€) aun61-I

US 2017/0091317 A1 Mar. 30, 2017. Sheet 11 of 16 Patent Application Publication

y? ?In61-I

US 2017/0091317 A1 Patent Appl

US 2017/0091317 A1 Mar. 30, 2017. Sheet 13 of 16 Patent Application Publication

US 2017/0091317 A1 2017. Sheet 14 of 16 30, Mar ion icat Pub ion Ca Patent Appl

Z? ?Infil

US 2017/0091317 A1 2017. Sheet 15 Of 16 30, Mar ion icat Pub tion Ca Patent Appl

US 2017/0091317 A1 Mar. 30, 2017. Sheet 16 of 16 Patent Application Publication

US 2017/009 1317 A1

LOCATION CORRELATION BETWEEN
QUERY SCRIPT AND DATA FLOW

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application claims the benefit of U.S. Provi
sional Patent Application Ser. No. 62/233,967 filed Sep. 28,
2015, which provisional patent application is incorporated
herein by reference in its entirety.

BACKGROUND

0002 Computing systems and associated networks have
revolutionized the way human beings work, play, and com
municate. Nearly every aspect of our lives is affected in
Some way by computing systems. More recently cloud
computing has enabled users to offload much of the pro
cessing, storage, network I/O, memory, and other resource
usage to various datacenters. This offloading of hardware
capability is often referred to as Infrastructure As A Service
(IAAS). Datacenters can also provide Platforms. As A Ser
vice (PAAS), and even Software As a Service (SAAS). Since
the users themselves typically do not have to be concerned
about which datacenter or computing system are providing
such hardware and software, the user is now able to be less
concerned about the location of the hardware that is Sup
porting the service, or how the services are being accessed.
To the user, it is as though the user is simply reaching up into
the nearest cloud or portion of the sky to obtain the desired
computing service. The service seems ever present.
0003. With data now often being moved into the cloud,
the ability to store large quantities of data has improved
greatly, enabling a technology field often referred to simply
as “Big Data'. For instance, big data queries may be
processed against very large quantities of data, and those
queries are efficiently processed in the cloud computing
environment, allowing rapid return of results. Big data
queries, like normal database queries, are typically declara
tive in form and are often referred to as “query script' or
'script. There currently exist a variety of languages in
which big data queries may be authored. When queries are
processed, they are first parsed into tokens, and then the
grammar set appropriate for the script language is then used
to construct a syntax tree (also sometimes referred to as an
“Abstract Syntax Tree” or AST).
0004. The subject matter claimed herein is not limited to
embodiments that solve any disadvantages or that operate
only in environments such as those described above. Rather,
this background is only provided to illustrate one exemplary
technology area where some embodiments described herein
may be practiced.

BRIEF SUMMARY

0005. At least one embodiment described herein relates
to a computerized mechanism to correlate positions of query
Script to portions of a data flow representation of the query
script. Visualizations of such correlation would allow an
author or reviewer of the query script to be able to quickly
see what portions of the query Script are going to cause what
data flows. This gives the viewer and intuitive view on the
operation of the query script.
0006 When parsing the query script to generate the
tokens, at least some of the tokens have an associated Script
location marker that identifies a location in the query script

Mar. 30, 2017

where the token originated from. For instance, the script
location marker might be a line identifier of the query Script.
The syntax tree of multiple nodes is then formulated, each
node comprising one or more of the tokens parsed from the
query Script. Accordingly, the syntax tree retains the script
location markers. A data flow representation of the query
script is then formulated into a data flow representation. That
data flow representation might, for instance, be based on the
Syntax tree, but augmented with data types of the various
data flows. Nevertheless, the script location marker is
retained within the data flow representation.
0007 Accordingly, when the data flow representation is
visualized, each visualized node can be shown with its
corresponding Script portion emphasized. For instance, the
data flow representation might be visualized on one half of
a display, and the query Script shown on the other half of the
display. When a portion of the query script is selected, the
corresponding portion of the visualized data flow portion
may likewise be emphasized to show this correlation. Like
wise, when a portion of the data flow representation is
selected, the corresponding portion of the query script may
be emphasized to show the correlation. This allows for more
intuitive drafting and review of query script through com
puterized correlation of locations with the query script.
0008. This Summary is not intended to identify key
features or essential features of the claimed subject matter,
nor is it intended to be used as an aid in determining the
Scope of the claimed Subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

0009. In order to describe the manner in which the
above-recited and other advantages and features can be
obtained, a more particular description of various embodi
ments will be rendered by reference to the appended draw
ings. Understanding that these drawings depict only sample
embodiments and are not therefore to be considered to be
limiting of the scope of the invention, the embodiments will
be described and explained with additional specificity and
detail through the use of the accompanying drawings in
which:

0010 FIG. 1 illustrates an example computing system in
which the principles described herein may be employed:
0011 FIG. 2 illustrates a flow representing a process for
correlating query Script to portions of a data flow represen
tation of that query script in accordance with the principles
described herein;
0012 FIG. 3A represents an example of a syntax tree that
is used throughout the description;
0013 FIG. 3B represents an example of a data flow
representation corresponding to the syntax tree of FIG. 3A:
0014 FIG. 4 illustrates a flowchart of a method for
correlating positions of query Script to portions of a data
flow representation of the query Script;
(0015 FIG. 5 illustrates a flowchart of an example method
for formulating the syntax tree and represents an example of
the act 420 of FIG. 4.

0016 FIG. 6 illustrates a flowchart of a method for
generating a data flow representation from a syntax tree and
represents an example of act 421 in FIG. 4;
0017 FIG. 7 illustrates a flowchart of a method for
evaluating a node of the syntax tree and represents one
example of how the act 620 of FIG. 6 may be performed:

US 2017/009 1317 A1

0018 FIGS. 8 through 18 show various user interface
that are used to describe a specific user experience enabled
by the principles described herein, and is provided for
purposes of example only;
0019 FIG. 8 illustrates a user interface in which only the
query Script is illustrated;
0020 FIG. 9 illustrates the resulting user interface in this
example user experience in which the user Switches to a data
flow representation view that shows the data flow represen
tation of the query script shown in FIG. 8:
0021 FIG. 10 illustrates the split user interface that
shows both the script view (showing the query script of FIG.
8) and a data flow representation view (showing the data
flow representation of FIG. 9);
0022 FIG. 11 is similar to FIG. 10, except that the user
has selected the node circled on the data flow representation
view, resulting in a corresponding token being visually
emphasized in the Script view:
0023 FIG. 12 is similar to FIG. 10, except that the user
has selected a token in the script view, resulting in a
corresponding node being visually emphasized in the data
flow representation view:
0024 FIG. 13 illustrates a user interface in which the
upstream and downstream nodes of a selected node is
emphasized in the data flow representation view:
0025 FIG. 14 shows a user interface in which a user may
select to show only related nodes in the data flow represen
tation view:
0026 FIG. 15 shows a resulting user interface after the
user selects to show only the related nodes in FIG. 14;
0027 FIG. 16 illustrates a user interface in which there
are various options provided for hiding and showing param
eters associated with the data flow representation view:
0028 FIG. 17 illustrates a user interface in which the user
may switch the roles of nodes and edges in the data flow
representation view; and
0029 FIG. 18 illustrates a user interface in which the user
has switched the roles of nodes (now representing rowsets)
and edges (now representing statements) in the data flow
representation view.

DETAILED DESCRIPTION

0030. At least one embodiment described herein relates
to a computerized mechanism to correlate positions of query
Script to portions of a data flow representation of the query
script. Visualizations of such correlation would allow an
author or reviewer of the query script to be able to quickly
see what portions of the query Script are going to cause what
data flows. This gives the viewer and intuitive view on the
operation of the query script.
0031 When parsing the query script to generate the
tokens, at least some of the tokens have an associated Script
location marker that identifies a location in the query script
where the token originated from. For instance, the script
location marker might be a line identifier of the query Script.
The syntax tree of multiple nodes is then formulated, each
node comprising one or more of the tokens parsed from the
query Script. Accordingly, the syntax tree retains the script
location markers. A data flow representation of the query
script is then formulated into a data flow representation. That
data flow representation might, for instance, be based on the
Syntax tree, but augmented with data types of the various
data flows. Nevertheless, the script location marker is
retained within the data flow representation.

Mar. 30, 2017

0032. Accordingly, when the data flow representation is
visualized, each visualized node can be shown with its
corresponding Script portion emphasized. For instance, the
data flow representation might be visualized on one half of
a display, and the query Script shown on the other half of the
display. When a portion of the query script is selected, the
corresponding portion of the visualized data flow portion
may likewise be emphasized to show this correlation. Like
wise, when a portion of the data flow representation is
selected, the corresponding portion of the query script may
be emphasized to show the correlation. This allows for more
intuitive drafting and review of query script through com
puterized correlation of locations with the query script.
0033 Some introductory discussion of a computing sys
tem will be described with respect to FIG. 1. Then, the
general structure and operation of a mechanism to correlate
positions of query script to portions of a data flow repre
sentation of the query script will be described with respect
to FIGS. 2 through 7. Finally, a specific example user
experience will be described with respect to the user inter
faces illustrated in FIGS. 8 through 18.
0034 Computing systems are now increasingly taking a
wide variety of forms. Computing systems may, for
example, be handheld devices, appliances, laptop comput
ers, desktop computers, mainframes, distributed computing
systems, datacenters, or even devices that have not conven
tionally been considered a computing system, Such as wear
ables (e.g., glasses). In this description and in the claims, the
term “computing system” is defined broadly as including
any device or system (or combination thereof) that includes
at least one physical and tangible processor, and a physical
and tangible memory capable of having thereon computer
executable instructions that may be executed by a processor.
The memory may take any form and may depend on the
nature and form of the computing system. A computing
system may be distributed over a network environment and
may include multiple constituent computing systems.
0035. As illustrated in FIG. 1, in its most basic configu
ration, a computing system 100 typically includes at least
one hardware processing unit 102 and memory 104. The
memory 104 may be physical system memory, which may
be volatile, non-volatile, or some combination of the two.
The term “memory' may also be used herein to refer to
non-volatile mass storage such as physical storage media. If
the computing system is distributed, the processing, memory
and/or storage capability may be distributed as well.
0036. The computing system 100 also has thereon mul
tiple structures often referred to as an “executable compo
nent'. For instance, the memory 104 of the computing
system 100 is illustrated as including executable component
106. The term “executable component' is the name for a
structure that is well understood to one of ordinary skill in
the art in the field of computing as being a structure that can
be software, hardware, or a combination thereof. For
instance, when implemented in Software, one of ordinary
skill in the art would understand that the structure of an
executable component may include Software objects, rou
tines, methods that may be executed on the computing
system, whether such an executable component exists in the
heap of a computing system, or whether the executable
component exists on computer-readable storage media.
0037. In such a case, one of ordinary skill in the art will
recognize that the structure of the executable component
exists on a computer-readable medium Such that, when

US 2017/009 1317 A1

interpreted by one or more processors of a computing
system (e.g., by a processor thread), the computing system
is caused to perform a function. Such structure may be
computer-readable directly by the processors (as is the case
if the executable component were binary). Alternatively, the
structure may be structured to be interpretable and/or com
piled (whether in a single stage or in multiple stages) so as
to generate such binary that is directly interpretable by the
processors. Such an understanding of example structures of
an executable component is well within the understanding of
one of ordinary skill in the art of computing when using the
term “executable component'.
0038. The term “executable component' is also well
understood by one of ordinary skill as including structures
that are implemented exclusively or near-exclusively in
hardware, Such as within a field programmable gate array
(FPGA), an application specific integrated circuit (ASIC), or
any other specialized circuit. Accordingly, the term "execut
able component' is a term for a structure that is well
understood by those of ordinary skill in the art of computing,
whether implemented in Software, hardware, or a combina
tion. In this description, the terms “component”, “service'.
“engine”, “module”, “evaluator”, “monitor', 'scheduler,
“manager”, “module”, “compiler”, “virtual machine”, “con
tainer”, “environment’ or the like may also be used. As used
in this description and in the case, these terms (whether
expressed with or without a modifying clause) are also
intended to be synonymous with the term “executable com
ponent”, and thus also have a structure that is well under
stood by those of ordinary skill in the art of computing.
0039. In the description that follows, embodiments are
described with reference to acts that are performed by one or
more computing systems. If Such acts are implemented in
Software, one or more processors (of the associated com
puting system that performs the act) direct the operation of
the computing system in response to having executed com
puter-executable instructions that constitute an executable
component. For example, such computer-executable instruc
tions may be embodied on one or more computer-readable
media that form a computer program product. An example
of Such an operation involves the manipulation of data.
0040. The computer-executable instructions (and the
manipulated data) may be stored in the memory 104 of the
computing system 100. Computing system 100 may also
contain communication channels 108 that allow the com
puting system 100 to communicate with other computing
systems over, for example, network 110.
0041 While not all computing systems require a user
interface, in some embodiments, the computing system 100
includes a user interface 112 for use in interfacing with a
user. The user interface 112 may include output mechanisms
112A as well as input mechanisms 112B. The principles
described herein are not limited to the precise output mecha
nisms 112A or input mechanisms 112B as such will depend
on the nature of the device. However, output mechanisms
112A might include, for instance, speakers, displays, pro
jectors, tactile output, valves, actuators, holograms, virtual
reality environments, and so forth. Examples of input
mechanisms 112B might include, for instance, microphones,
touchscreens, holograms, cameras, keyboards, accelerom
eters, levers, pedals, buttons, knobs, mouse of other pointer
input, sensors of any type, a virtual reality environment, and
so forth.

Mar. 30, 2017

0042 Embodiments described herein may comprise or
utilize a special purpose or general-purpose computing
system including computer hardware. Such as, for example,
one or more processors and system memory, as discussed in
greater detail below. Embodiments described herein also
include physical and other computer-readable media for
carrying or storing computer-executable instructions and/or
data structures. Such computer-readable media can be any
available media that can be accessed by a general purpose or
special purpose computing system. Computer-readable
media that store computer-executable instructions are physi
cal storage media. Computer-readable media that carry
computer-executable instructions are transmission media.
Thus, by way of example, and not limitation, embodiments
of the invention can comprise at least two distinctly different
kinds of computer-readable media: Storage media and trans
mission media.

0043 Computer-readable storage media includes RAM,
ROM, EEPROM, CD-ROM or other optical disk storage,
magnetic disk storage or other magnetic storage devices, or
any other physical and tangible storage medium which can
be used to store desired program code means in the form of
computer-executable instructions or data structures and
which can be accessed by a general purpose or special
purpose computing system.

0044. A "network” is defined as one or more data links
that enable the transport of electronic data between com
puting systems and/or modules and/or other electronic
devices. When information is transferred or provided over a
network or another communications connection (either
hardwired, wireless, or a combination of hardwired or
wireless) to a computing system, the computing system
properly views the connection as a transmission medium.
Transmissions media can include a network and/or data links
which can be used to carry desired program code means in
the form of computer-executable instructions or data struc
tures and which can be accessed by a general purpose or
special purpose computing system. Combinations of the
above should also be included within the scope of computer
readable media.

0045. Further, upon reaching various computing system
components, program code means in the form of computer
executable instructions or data structures can be transferred
automatically from transmission media to storage media (or
Vice versa). For example, computer-executable instructions
or data structures received over a network or data link can
be buffered in RAM within a network interface module (e.g.,
a “NIC), and then eventually transferred to computing
system RAM and/or to less volatile storage media at a
computing system. Thus, it should be understood that Stor
age media can be included in computing system components
that also (or even primarily) utilize transmission media.
0046 Computer-executable instructions comprise, for
example, instructions and data which, when executed at a
processor, cause a general purpose computing System, spe
cial purpose computing system, or special purpose process
ing device to perform a certain function or group of func
tions. Alternatively, or in addition, the computer-executable
instructions may configure the computing system to perform
a certain function or group of functions. The computer
executable instructions may be, for example, binaries or
even instructions that undergo some translation (such as

US 2017/009 1317 A1

compilation) before direct execution by the processors. Such
as intermediate format instructions such as assembly lan
guage, or even source code.
0047 Although the subject matter has been described in
language specific to structural features and/or methodologi
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the
described features or acts described above. Rather, the
described features and acts are disclosed as example forms
of implementing the claims.
0048 Those skilled in the art will appreciate that the
invention may be practiced in network computing environ
ments with many types of computing system configurations,
including, personal computers, desktop computers, laptop
computers, message processors, hand-held devices, multi
processor Systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, main
frame computers, mobile telephones, PDAs, pagers, routers,
Switches, datacenters, wearables (such as glasses) and the
like. The invention may also be practiced in distributed
system environments where local and remote computing
systems, which are linked (either by hardwired data links,
wireless data links, or by a combination of hardwired and
wireless data links) through a network, both perform tasks.
In a distributed system environment, program modules may
be located in both local and remote memory storage devices.
0049. Those skilled in the art will also appreciate that the
invention may be practiced in a cloud computing environ
ment. Cloud computing environments may be distributed,
although this is not required. When distributed, cloud com
puting environments may be distributed internationally
within an organization and/or have components possessed
across multiple organizations. In this description and the
following claims, "cloud computing is defined as a model
for enabling on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services). The definition of "cloud
computing is not limited to any of the other numerous
advantages that can be obtained from Such a model when
properly deployed.
0050 For instance, cloud computing is currently
employed in the marketplace so as to offer ubiquitous and
convenient on-demand access to the shared pool of configu
rable computing resources. Furthermore, the shared pool of
configurable computing resources can be rapidly provi
Sioned via virtualization and released with low management
effort or service provider interaction, and then scaled accord
ingly.
0051. A cloud computing model can be composed of
various characteristics such as on-demand self-service,
broad network access, resource pooling, rapid elasticity,
measured service, and so forth. A cloud computing model
may also come in the form of various service models such
as, for example, Software as a Service (“SaaS), Platform as
a Service (“PaaS), and Infrastructure as a Service (IaaS).
The cloud computing model may also be deployed using
different deployment models such as private cloud, commu
nity cloud, public cloud, hybrid cloud, and so forth. In this
description and in the claims, a "cloud computing environ
ment' is an environment in which cloud computing is
employed.
0052 FIG. 2 illustrates a flow 200 representing a process
for correlating query script to portions of a data flow
representation of that query script in accordance with the

Mar. 30, 2017

principles described herein. The flow 200 begins with the
accessing of a query Script 210. The query Script 210 is
drafted in accordance with a query language. In some
embodiments, the query language is a big data query lan
guage. Examples of big data query languages include Hive
query language, Spark SQL, BigQuery, although there are
numerous other examples of big data query languages. The
principles described herein are not limited to any particular
big data query language, and are not limited to big data
query languages at all. The query script may be visualized
(as represented by arrow 201A) into a visual representation
201B that is output on a display 250. For instance, if the
process occurs on the computing system 100 of FIG. 1, the
query Script may be visualized on a display represented as
one of the output mechanisms 102A.
0053. The script query is first parsed (as represented by
arrow 211) into multiple tokens 220. This may be performed
by, for instance, the parser of a compiler. In this particular
example, the tokens 220 are shown as including three tokens
222A, 222B and 222C. However, the ellipses 222D sym
bolically represent that the principles described herein is not
limited to the number of tokens that query script is parsed
into. A typical segment of query script will often have many
more than three tokens.

0054. One, some, or all of the tokens may have a corre
sponding script location marker that identifies what portion
of the query Script the token is located in or originated from.
In this example, all of the tokens 222A, 222B and 222C have
a corresponding script location marker 223A, 223B and
223C. For instance, the script location marker might be a
line identifier for one or more lines, perhaps in conjunction
with a horizontal offset position or range for each line.
Accordingly, there is enough information within the script
location marker to highlight or otherwise visually emphasize
the token itself within with query script.
0055. The collection of tokens 220 is then formulated (as
represented by arrow 221) into a syntax tree 230 comprising
multiple nodes, each including one or more tokens. The
formulation of tokens into syntax trees are known in the art
and thus will not be described in detail herein. However,
unlike conventional formulation of syntax trees, some or all
of those Script location markers remain associated with the
tokens when the tokens are included within nodes of the
Syntax tree. This continued inclusion of the script location
markers is represented by the syntax tree 230 including
asterisk 232.

0056. The syntax tree 230 is then evaluated by an evalu
ator 235 to thereby generate (as represented by arrow 231)
a data flow representation 240 of the syntax tree 230. The
data flow representation 240 also continues to include the
Script location markers for the tokens as represented by the
data flow representation 240 having asterisk 241. For
instance, the data flow representation 240 is illustrated in
FIG. 2 as having the script location markers 223A, 223B and
223C that are associated with the respective tokens 222A,
222B and 222C. Accordingly, the script location markers
223A, 223B and 223C are in the data flow representation
240 and remain associated with the original tokens 222A,
222B, 222C. This allows positions and/or portions within
the data flow representation to be correlated with positions
in the query Script using the appropriate script location
marker.

0057. As represented by arrow 202A, a visualization
202B of the data flow representation may be presented on

US 2017/009 1317 A1

the display 250. For instance, if the process occurs on the
computing system 100 of FIG. 1, the data flow visualization
202B may be visualized on a display represented as one of
the output mechanisms 112A.
0058. The visualization 202B of the data flow represen
tation is illustrated in FIG. 2 as including controls 241A,
241B and 241C that are visually associated with visualiza
tions 243A, 243B and 243C of the respective tokens 222A,
222E and 222C within the visualization 201B. Each of the
controls 241A, 241B and 241C also has a reference (as
represented by corresponding arrows 242A, 242B and
242C) to the respective script location markers 223A, 223B
and 223C of the respective tokens 222A, 222B and 222C.
0059. Using this script location marker, when a control is
selected in the visualization of the data flow, the appropriate
portion (e.g., a token) of the visualization 201B of the query
Script is highlighted. For instance, upon selecting control
241A, a visualization 243A of the token 222A within the
visualization 201B of the query script 210 may be visually
emphasized as represented by arrow 244A. Upon selecting
control 241B, a visualization 243B of the token 222B within
the visualization 201B of the query script 210 may be
visually emphasized as represented by arrow 244B. Upon
selecting control 241C, a visualization 243C of the token
222C within the visualization 201B of the query script 210
may be visually emphasized as represented by arrow 244C.
0060. In addition to representing tokens, the boxes 243A,
243B and 243C within the visualization 201B of the query
script 210 may also themselves represent controls visually
associated with the tokens. Furthermore, in addition to
representing controls, the boxes 241A, 241B and 241C
within the visualization 202B of the data flow representation
240 may also themselves represent visualized portions of the
data flow representation that corresponding to the respective
tokens 222A, 222B and 222C. For instance, upon selecting
control 243A, a visualization 241A of the node 222A within
the visualization 202B of the data flow representation 240
may be visually emphasized as represented by arrow 245A.
Upon selecting control 243B, a visualization 241B of the
token 222B within the visualization 202B of the data flow
representation 240 may be visually emphasized as repre
sented by arrow 245B. Upon selecting control 243C, a
visualization 241C of the token 222C within the visualiza
tion 202B of the data flow representation 240 may be
visually emphasized as represented by arrow 245C.
0061 The visualization 202B of the data flow represen
tation 240 may also include other controls 251A and 251B
that allow for other types of operations on the visualization
202. For instance, as an example only, control 251A might
filter a view of the visualization to perhaps only a subset of
the nodes of the data flow representation, or may perhaps
aggregated nodes of the data flow representation. Control
252 might, for instance, visually emphasize visualized nodes
having a particular relationship with a selected visualized
node. For instance, the visually emphasized nodes might be
the upstream and/or downstream nodes of a selected node of
the data flow representation.
0062 FIG. 3A represents an example of a syntax tree
300A and will be used as an example throughout the
remainder of this description. However, the principles
described herein apply regardless of the particular structure
of the syntax tree 300 and the precise structure of the syntax
tree 300 will depend on the content of the query script and
the query language in which the query script is authored. In

Mar. 30, 2017

this particular syntax tree 300, there are five nodes shown
including nodes 310A, 320A, 330A, 340A and 350A. Each
node of the syntax tree 300A is symbolically illustrated in
FIG. 3A as a circle. Furthermore, there are five relation
311A, 321A, 331A, 341A and 351A. Each relation of the
syntax tree is symbolically illustrated in FIG. 3A as a dotted
line.

0063 FIG. 3B represents an example of a data flow
representation 300B, and is similar to the syntax tree 300A
of FIG. 3A. In the illustration of FIG. 3B, each node of the
data flow representation 300B is represented as a square, and
each flow is represented as an arrow line. In this example,
there is one node of the data flow representation 300B
corresponding to each node of the syntax tree 300A. For
instance, nodes 310A, 320A, 330A, 340A and 350A of the
syntax tree 300A correspond to respective nodes 310B,
320B, 330B, 340B and 350B of the data flow representation
300B. Furthermore, there is one data flow 311B, 321B,
331B, 341B and 351B for each corresponding link 311A,
321A, 331A, 341A and 351A of the syntax tree 300A.
0064. However, data flows often do not have one to one
representations between links in the syntax diagram and data
flows, and often there may be one or more nodes of a syntax
tree in a single node of a data flow. Accordingly, the
similarity in appearance between the syntax tree 300A of
FIG. 3A and the data flow representation 300B of FIG. 3B
is merely for purpose of clarity in explaining the principles
described herein.

0065 FIG. 4 illustrates a flowchart of a method 400 for
correlating positions of query Script to portions of a data
flow representation of the query script. The method 400
might be performed just once with respect to a query script
that is not anticipated to change. However, the method 400
might also be performed whenever a query Script changes.
Accordingly, the author of a query script might always be
able to tell the correlation between the query script they are
drafting and a data flow representation, and also be able to
understand what portion of the query Script corresponds to
what portion of the data flow representation, and vice versa.
The method 400 may be performed by, for instance, the
computing system 100 of FIG. 1.
0066. The method 400 includes accessing a query script
(act 401). For instance, in FIG. 2, the query script 210 is
accessed. Again, this accessing might occur often, even
perhaps whenever the query Script changes in a small way.
The query script is also visualized (act 410). For instance, if
the method 400 is performed by the computing system 100,
the query Script might be displayed on a display, which is an
example of the output mechanisms 112A. In addition, a
Syntax tree is formulated in a manner that retains the script
location marker of the tokens within the syntax tree (act
420). Furthermore, the data flow representation is created
from the syntax tree in a manner that retains the script
location marker of the tokens within the data flow repre
sentation (act 421). Accordingly, positions in the data flow
representation are correlated with positions in the query
Script (act 422) using the script location marker for at least
some of the tokens included within the nodes in the syntax
tree. Furthermore, the data flow representation is visualized
(act 423). For instance, if the method 400 is performed by
the computing system 100, the data flow representation
might be displayed on a display, perhaps next to the visu
alization of the query Script.

US 2017/009 1317 A1

0067 FIG. 5 illustrates a flowchart of an example method
500 for formulating the syntax tree and represents an
example of the act 420 of FIG. 4. The method 500 includes
parsing the query Script to generate multiple tokens (act
510), each of at least some of the tokens having an associ
ated Script location marker that identifies a location in the
query Script from where the token originated. For instance,
in Figure 2, the query Script 210 is parsed as represented by
arrow 211 into tokens 220 having script location markers
223A, 223B and 223C. This may be performed by, for
instance, a parser of a compiler, the parser being slightly
modified so that when a token is parsed out of the query
Script, a script location marker is created that identifies the
query script location that the token came from, and then the
Script location marker is associated with the token Such that
when the token moves or is copied, the script location
marker remains associated with the corresponding token.
0068. Next, a syntax tree is formulated having multiple
nodes (act 520). As previously mentioned, each node of the
Syntax tree has one or more tokens parsed from the query
Script. The syntax tree retains the script location markers
associated with the tokens, because the syntax tree includes
the tokens and the Script location markers follow the respec
tive tokens. An example of a syntax tree is an Abstract
Syntax Tree (AST).
0069 FIG. 6 illustrates a flowchart of an example method
600 for formulating a data flow representation from a syntax
tree and represents an example of the act 421 of FIG. 4. The
method 600 may be performed by the evaluator 235 of FIG.
2 for example, to build the data flow representation 240 from
the syntax tree 230. The method 600 includes first accessing
(act 610) the syntax tree. For instance, in FIG. 2, the
evaluator 235 access the syntax tree 230. Again, an example
of the syntax tree 230 is the syntax tree 300A of FIG. 3A.
0070 The evaluator then evaluates (act 620) each of at
least some of the nodes of the syntax tree to identify the
various data types of the node. For instance, the evaluator
635 of FIG. 2 evaluates each node of the syntax tree in order
to identify the data types of input(s) and output(s) of the
node. If the syntax tree 230 were structured as the syntax tree
300A of FIG. 3A, the evaluator would perform the act 620
for each of the nodes 310A, 320A, 330A, 340A and 350A of
the syntax tree. FIG. 7 illustrates a flowchart of a method
700 for evaluating a node of the syntax tree and represents
one example of how the act 620 may be performed. FIG. 7
will be explained in detail further below.
(0071. The evaluator then formulates (act 630) a data flow
representation based on the syntax tree and augmented with
the data types identified in the acts of evaluating. For
instance, in FIG. 2, the evaluator 235 formulates the data
flow representation 240.
0072. As previously mentioned, in order to generate the
data flow representation, the evaluator evaluates (act 620)
each of at least some of the nodes of the syntax tree. FIG. 7
illustrates a flowchart of a method 700 for evaluating a node
of the syntax tree. The goal of the evaluation of each node
is to identify a data type of any output(s) from that node.
0073 First, the evaluator identifies (act 710) a data type
of one or more inputs to the node of the syntax tree. It may
be that there are no inputs to the node of the syntax tree. In
that case, act 710 may be skipped. Furthermore, it may be
that due to upstream nodes not having been evaluated yet,
the data type of one of the input(s) to the node may not yet

Mar. 30, 2017

be identifiable. In that case, the method 700 is deferred for
that particular node of the syntax tree.
0074 Accordingly, the evaluation of nodes is subject to
evaluation of an order of dependency of the nodes of the
syntax tree. For instance, referring to FIG. 3A, node 310A
is evaluated so that the data types of the inputs 311B to the
node 320A may be identified. Furthermore, node 320A is
evaluated prior to nodes 330A and 340A so that the inputs
321B and 331 B to the respective nodes 330A and 340A may
be identified. Nodes 230A and 240A are then evaluated so
that inputs 341B and 351B to the node 350A may be
identified.
0075. Once the input data type of the input(s) (if any) are
determined for a given node of the syntax tree, the grammar
set of the query script may then be applied to the one or more
tokens of the node (act 720) to thereby identify (act 730)
output data types of output(s), if any, of the node of the
Syntax tree.
0076. The method 700 of FIG. 7 will now be described
with respect to the syntax tree 300A of FIG. 3A. In order to
generate the data flow representation 300B of FIG. 3B, the
data types of each of the input(s), if any, and the output(s),
if any, of the nodes of the syntax tree 300A are determined.
To do so, the method 700 is applied to each node of the
syntax tree 300A beginning at node 310A, which is a
dependee node for all other nodes of the syntax tree 300A.
(0077. As for node 310A, the data types of the input(s) of
the node 310A are identified (act 710). In the case of node
310A, there are no inputs to the node 310A. The grammar
rules of the query language are then applied (act 720) to the
token(s) of the node in order to identify (act 730) an output
data type 311B of the node 310A. By so doing, node 310B
having output data flows 311B may be formulated (see FIG.
3B). Node 320A is then ready to be evaluated, being a
dependent node from node 310A, and given that the output
data type of the output of its dependee node 310A has been
determined.
(0078. Again, the method 700 is performed, this time for
node 320A. As for node 320A, the input(s) of the node 320A
are identified (act 710). The input data type of the input of
the node 320A in this case is the same as the output type of
the output 311B of the node 310B. Accordingly, the input
data type can be readily identified. Now, the grammar rules
of the query language are applied (act 720) to the token(s)
of the node 320A in order to identify (act 730) an output data
type 321B and 331B of the node 320A. By so doing, node
320B having output data flows 321B and 331 B may be
formulated (see FIG. 3B). Either and both of nodes 330A
and 340 are then ready to be evaluated.
(0079. When the method 700 is performed for node 330A,
the input(s) of the node 330A are identified (act 710). The
input data type of the input of the node 330A in this case is
the same as the output data type of the output 321B of the
node 320B. Accordingly, the input data type can be readily
identified. Now, the grammar rules of the query language are
applied (act 720) to the token(s) of the node 330A in order
to identify (act 730) an output data type 341B of the node
330A. By so doing, node 330B having output data flow
341B may be formulated (see FIG. 3B).
0080 When the method 700 is performed for node 340A,
the input(s) of the node 340A are identified (act 710). The
input data type of the input of the node 340A in this case is
the same as the output data type of the output 331B of the
node 320B. Accordingly, the input data type can be readily

US 2017/009 1317 A1

identified. Now, the grammar rules of the query language are
applied (act 720) to the token(s) of the node 340A in order
to identify (act 730) an output data type 351B of the node
340A. By so doing, node 340B having output data flow
341B may be formulated.
I0081. The method 700 may now be performed for node
350A. The input types of inputs to the node 350A are
identified (act 710). The input data types of the inputs of the
node 350A in this case is the same as the output data type of
the output 341B of the node 330B, and the same as the
output data type of the output 351B of the node 340B. There
is no need to perform act 720 and 730 with respect to node
350A since there are no output data flows from the node
350A. Accordingly, node 350B of the data flow representa
tion 300B may be formulated, thereby completing the for
mulation of the data flow representation 300B of FIG. 3B.
0082. A user experience will now be described with
respect to several user interfaces with respect to FIGS. 8
through 18. Each of the FIGS. 8 through 18 represents a user
interface that may be displayed on a display (e.g., one of the
output mechanism 112A) of the computing system (e.g.,
computing system 100).
0083 FIG. 8 illustrates a user interface in which only the
query Script is illustrated. Accordingly, the user interface of
FIG. 8 represents an example of the visualization 201B of
FIG. 2. To switch over to the visualization of the data flow
representation, the user might select the “Diagram tab”
represented within circle 810. FIG. 9 illustrates the resulting
user interface in this example user experience. Accordingly,
FIG. 9 represents an example of the visualization 202B of
FIG 2.

0084. Alternatively, in either FIG. 8 (the query script
view) or FIG. 9 (the data flow representation view), the user
might select the split control 820 to view the query script and
the associated data flow representation side by side. FIG. 10
illustrates the resulting user interface showing the script
view 1010 and the data flow representation view 1020.
0085. Selecting something in the data flow representation
view 1020 will visually emphasize the relevant script. For
instance, FIG. 11 is similar to FIG. 10, except that the user
has selected the node circled by circle 1110. This results in
the corresponding token being visually emphasized as rep
resented by circle 1120. Throughout FIGS. 11 through 18,
the selected node in the data flow representation view is
represented by the node having rightward leaning hash
marking. Otherwise emphasized nodes are represented by
the node having dotted fill.
I0086 Conversely, selecting (e.g., putting the cursor over)
somewhere in the script view will select the corresponding
node in the data flow representation view. For instance, FIG.
12 is similar to FIG. 10, except that the user has put the
cursor at the location represented by circle 1210 in the script
view, causing the corresponding node 1220 of the data flow
representation view to be visually emphasized.
0087. Note that in the views of FIGS. 11 and 12, where
a node of the data flow representation has been selected
(either directly as in FIG. 11, or view placing the cursor in
the corresponding Script portion as in FIG. 12), the upstream
and downstream nodes may be visually emphasized. This
may be illustrated more clearly in FIG. 13, in which node
1310 is selected. That causes the corresponding upstream
nodes 1307, 1308 and 1309, and the corresponding down
stream nodes 1311 and 1312 to be visually emphasized also.

Mar. 30, 2017

I0088. The user might also choose to show only the
related nodes of a given node by interacting with a control
associated with that node. For instance, in FIG. 14, the user
might open a drop down menu 1410 and select the “Only
related nodes' option 1420 resulting in the user interface of
FIG. 15. In FIG. 15, only the selected node 1310, and its
related nodes 1307, 1308, 1309, 1311 and 1312 are shown.
0089. As illustrated in the user interface of FIG. 16, there
may be options for showing and hiding properties of the
statement within the diagram (as represented within the
circle 1610). The user can choose how much of the prop
erties, and which properties, to display. In this case, the user
has selected to see the schema, the condition, the filter, and
the sort properties of the nodes.
(0090. Furthermore, while FIGS. 9 through 16 show that
the nodes of the data flow representation view represent
operations (e.g., statements), and the edges represent data
flows (e.g., rowsets), the user can Switch this so that the
nodes represent data flows and the edges represent opera
tions. For instance, in FIG. 17, the user may interact with a
control, such as in the form of a drop down control 1710 and
select the “Rowsets” option 1720. FIG. 18 represents the
resulting user interface with rowsets represented by nodes,
and statements represented by edges.
0091. Accordingly, an effective and automated mecha
nism for correlating query Script positions with data flow
representation positions has been described, along with
various other convenient user experiences. This allows for
more efficient drafting of correct and intended query script,
and for the efficient evaluation of the same.
0092. The present invention may be embodied in other
specific forms without departing from its spirit or essential
characteristics. The described embodiments are to be con
sidered in all respects only as illustrative and not restrictive.
The scope of the invention is, therefore, indicated by the
appended claims rather than by the foregoing description.
All changes which come within the meaning and range of
equivalency of the claims are to be embraced within their
Scope.

What is claimed is:
1. A computing system comprising:
one or more processors;
one or more computer-readable storage media having

thereon computer-executable instructions that are con
figured to be executed by the one or more processors to
cause the computing system to configure the computing
system to perform a method for correlating positions of
query script to portions of a data flow representation of
the query Script, the method comprising:

an act of parsing the query Script to generate a plurality of
tokens, each of at least Some of the plurality of tokens
having an associated Script location marker that iden
tifies a location in the query Script where the token
originated;

an act of formulating a syntax tree having a plurality of
nodes, each node comprising one or more of the tokens
parsed from the query Script;

an act formulating a data flow representation of the query
Script from the syntax tree; and

an act of correlating positions in the data flow represen
tation with positions in the query Script using a script
location marker for at least some of the tokens included
within the plurality of nodes in the syntax tree.

US 2017/009 1317 A1

2. The computing system in accordance with claim 1, the
method further comprising:

an act of visualizing the data flow representation.
3. The computing system in accordance with claim 2, the

visualization of the data flow representation comprising a
plurality of visualized nodes, each visualized node corre
sponding to one or more of the plurality of nodes of the
Syntax tree.

4. The computing system in accordance with claim 2, the
method further comprising:

an act of visualizing the query Script.
5. The computing system in accordance with claim 4, the

visualization comprising a plurality of portions, each of the
plurality of portions corresponding to a corresponding visu
alized portion of the query script based on a respective script
location marker.

6. The computing system in accordance with claim 5, the
visualization of the data flow representation having a plu
rality of controls for visually correlating visualized portions
of the data flow representation with corresponding visual
ized portions of the query script.

7. The computing system in accordance with claim 2, the
visualization of the data flow representation having a control
for filtering a view of the visualization.

8. The computing system in accordance with claim 2, the
visualization of the data flow representation having a control
to visually emphasize visualized nodes having a particular
relationship with a selected visualized node.

9. The computing system in accordance with claim 1, the
associated Script location marker of at least one of the tokens
comprising a line identifier representing the line of the query
script from which the token was taken.

10. The computing system in accordance with claim 1, the
act of formulating a data flow representation of the query
Script from the syntax tree comprising:

an act of evaluating each of at least Some of the plurality
of nodes of the syntax tree to do the following for each
evaluated node: an act of identifying a data type of one
or more inputs to the node; an act of applying a
grammar set of a query language of the query Script to
the one or more tokens of the node to identify an output
data type of one or more outputs from the node; and an
act of formulating a data flow representation based on
the syntax tree and augmented with the data types
identified in the acts of evaluating.

11. The computing system in accordance with claim 10,
the query language being a big data query language.

12. A method for correlating positions of query Script to
portions of a data flow representation of the query script, the
method comprising:

an act of parsing the query script to generate a plurality of
tokens, each of at least some of the plurality of tokens
having an associated Script location marker that iden
tifies a location in the query Script where the token
originated;

Mar. 30, 2017

an act of formulating a syntax tree having a plurality of
nodes, each node comprising one or more of the tokens
parsed from the query Script;

an act formulating a data flow representation of the query
Script from the syntax tree; and

an act of correlating positions in the data flow represen
tation with positions in the query Script using a script
location marker for at least some of the tokens included
within the plurality of nodes in the syntax tree.

13. The method in accordance with claim 12, the method
further comprising:

an act of visualizing the data flow representation.
14. The method in accordance with claim 13, the visual

ization of the data flow representation comprising a plurality
of visualized nodes, each visualized node corresponding to
one or more of the plurality of nodes of the syntax tree.

15. The method in accordance with claim 13, the method
further comprising:

an act of visualizing the query Script.
16. The method in accordance with claim 15, the visual

ization comprising a plurality of portions, each of the
plurality of portions corresponding to a corresponding visu
alized portion of the script location marker.

17. The method in accordance with claim 16, the visual
ization of the data flow representation having a plurality of
controls for visually correlating visualized portions of the
data flow representation with corresponding visualized por
tions of the query Script.

18. The method in accordance with claim 13, the visual
ization of the data flow representation having a control for
filtering a view of the visualization.

19. The method in accordance with claim 13, the visual
ization of the data flow representation having a control to
visually emphasize visualized nodes having a particular
relationship with a selected visualized node.

20. A computer program product comprising one or more
computer-readable storage media having thereon computer
executable instructions that are structured such that, when
executed by one or more processors of the computing
system, cause the computing system to perform a method for
correlating positions of query Script to portions of a data
flow representation of the query Script, the method compris
ing:

an act of parsing the query Script to generate a plurality of
tokens, each of at least Some of the plurality of tokens
having an associated Script location marker that iden
tifies a location in the script where the token originated;

an act of formulating a syntax tree having a plurality of
nodes, each node comprising one or more of the tokens
parsed from the query Script;

an act formulating a data flow representation of the query
Script from the syntax tree; and

an act of correlating positions in the data flow represen
tation with positions in the query Script using a script
location marker for at least some of the tokens included
within the plurality of nodes in the syntax tree.

k k k k k

