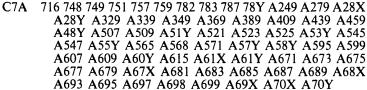
(11) **1 565 471**

PATENT SPECIFICATION

(21) Application No. 24707/77 (22) Filed 14 June 1977

(31) Convention Application No. 696970


(32) Filed 17 June 1976 in

(33) United States of America (US)

(44) Complete Specification published 23 April 1980

(51) INT CL3 C22C 38/32

(52) Index at acceptance

(19) The second second

(54) SILICON STEEL AND PROCESSING THEREFOR

(71) We, ALLEGHENY LUDLUM INDUSTRIES, INC., a Corporation organized under the laws of the Commonwealth of Pennsylvania, United States of America, of Two Oliver Plaza, Pittsburgh, Pennsylvania 15222, United States of America, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

The present invention relates to grain-oriented silicon steel and the manufacture thereof, and to a hot rolled band of silicon steel. Unless otherwise stated, percentages are by weight and the Patents referred to are United States ones.

Electromagnetic silicon steels, as with most items of commerce, command a price commensurate with their quality. Coils of steel from a particular heat are graded and sold according to grade. Coils with a particular core loss generally receive a lower grade than do coils with a lower core loss, all other factors being the same: and as a result thereof, command a lower selling price.

A number of recent patents (3,873,381; 3,905,842; 3,905,843 and 3,957,546) disclose that the quality of electromagnetic silicon steel can be improved by adding controlled amounts of boron to the melt. Steels having permeabilities of at least 1870 (G/O_e) at 10 oersteds and core losses of no more than 0.7 watts per pound at 17 kilogauss, have been achieved with said additions. However, the processes described therein leave room for improvement.

Meaningful additions of copper to the type of steel melts described in Patent Nos. 3,873,381, 3,905,842, 3,905,843 and 3,957,546 is not known from the prior art. None of the four cited patents attribute any benefit to copper despite the fact that three of them specify copper contents in their examples; and, moreover, none of them disclose copper additions as high as the minimum specified hereinbelow. Likewise, Patent Nos. 3,855,018, 3,855,019, 3,855,020, 3,855,021, 3,925,115, 3,929,522 and 3,873,380 fail to render the present invention evident. Although these patents disclose copper additions, they refer to dissimilar boron-free and/or aluminum-bearing steels. Moreover, none of the above patents disclose a process of improving the magnetic quality of steel such that at least 25% of the coils of a particular single stage cold rolled heat have a permeability of at least 1870 (G/O_e) at 10 oersteds and a core loss of no more than 0.7 watts per pound at 17 kilogauss.

It is an object of the present invention to provide an improvement in the manufacture of grain-oriented silicon steel.

The present invention provides a process for producing electromagnetic silicon steel having a cube-on-edge orientation, which process includes the steps of: preparing a melt of silicon steel containing, by weight, from 0.02 to 0.06% carbon, from 0.0006 to 0.008% boron up to 0.01% nitrogen, no more than 0.008% aluminum, from 2.5 to 4% silicon and 0.3 to 1% copper; casting said steel; hot rolling said steel to an intermediate thickness of from 0.05 to 0.12 inch; cold rolling said steel to a thickness no greater than 0.02 inch without an intermediate anneal between cold rolling passes; preparing several coils from said steel; decarburizing said steel; and final texture annealing said steel.

5

10

15

20

25

30

35

40

40

5

10

15

20

25

30

35

5	magnet silicon: the coil no mor appreci boron a	steel car s have a re than ated tha	ty of in be produced by the pr	dividual cessed so bility of tts per mprove:	coils of that at l at least 1 pound a ment is	f electro east 25% 870 (G/C t 17 kil achieved	magnetion, and sor and sor a	c silicon netimes oersteds at both h contr	n steel: a s more than s and a co colled am	prove the a heat of an 50% of ore loss of t will be nounts of	5
10	selenium copper, boron p least 0.	The process is preferably effected with a melt which consists of, by weight, 0.02 to 0.06% carbon, 0.015 to 0.15% manganese, 0.01 to 0.05% of sulfur or selenium, 0.0006 to 0.008% boron, up to 0.01% nitrogen, 2.5 to 4% silicon, 0.3 to 1% copper, up to 0.008% aluminum, balance iron and unavoidable impurities. The boron present is preferably at least 0.0008%. The preferred amount of copper is at least 0.5%. When the process of the invention is effected with a melt containing at least									10
15	said coi of no n	noron, ils have a nore that ecific pr	there can a perme in 0.7 was ocessing	an gener ability o atts per as to th	ally be p f at least pound a e conver	roduced 1870 (G it 17 kilo itional st	steel co. O _e) at 1 gauss, a ens can b	ils wher 0 oerste t both o	ein at lea eds and a ends. cordance	st 50% of core loss	15
20	The present invention also provides a hot rolled band of silicon steel having a thickness of from 0.05 to 0.12 inch and consisting of, by weight, 0.02 to 0.06% carbon, 0.015 to 0.15% manganese, 0.01 to 0.05% sulfur or selenium, 0.0006 to									20	
25	0.008% boron, up to 0.01% nitrogen, 2.5 to 4% silicon, 0.3 to 1% copper, up to 0.008% aluminum, balance iron and unavoidable impurities. It is to be understood that both sulfur and selenium may be present in the melt or band, providing their combined amount falls within the limits stipulated above.									25	
30	magneti and gra sensitivi	Although it is not definitely known why copper is beneficial, it is hypothesized that copper forms sulfide particles which act as an inhibitor; thereby improving magnetic properties through an advantageous effect on secondary recrystallization and grain growth. In addition, it is hypothesized that copper decreases the sensitivity of the alloy to hot working temperatures, and thereby increases the uniformity of the magnetic quality between individual coils and coil ends.								30	
35	process 1870 (G kilogaus	e hot ro ing into /O _e) at 1 ss.	olled bar cube-on 0 oerste	nd of sil -edge or ds and a	icon stee iented si core los	el of the licon ste s of no m	present el having ore than	inventi g a perm 0.7 wat	on is sui leability of its per po	table for of at least und at 17	35
40	The following examples are illustrative of several aspects of the invention. Three heats (Heats A, B and C) were melted and processed into coils of silicon steel having a cube-on-edge orientation. The chemistry of the heats appears hereinbelow in Table I. TABLE I									40	
				C	ompositi	on (wt. 5	%)				
45	Heat	С	Mn	S	В		Si	Cu	Al	Fe	45
	A B C	0.029 0.033 0.031	0.040 0.040 0.041	0.020 0.021 0.020	0.0013 0.0014 0.0013	0.0046	3.13 3.14 3.13	0.27 0.38 0.50	0.003 0.003 0.004	Bal. Bal. Bal.	
50	the nea	ts is in the oper con ocessing	neir copp tents of for the	per cont Heats I heats	ent. Hea B and C involved	t A has a are resp soaking	copper sectively	content 0.38 ar	of 0.27% nd 0.5%. I temper	emistry of whereas	50
55	gage, d anneali	nnealing ecarburi ng at a ils from	at a te izing at maximu i Heats	mperatu a tempe m tempe A. B	re of aptrature of and C value of and	oproxima f approx of 2150°] were me	tely 174 imately F in hyd asured	0°F, co 1475°F, rogen. for gag	old rolling , and fina re and to	at the roll of the	55

_3				1,303,471							
				TABLE II							
	Heat	Cu(%)	Coil No.	Gage (mils)	Core Loss (WPP at 17KB)	Permeability (at 10 O _e)					
_	Α	0.27	1 In	12.6	0.706	1918					
5			Out	9.5	0.645	1941	5				
			2 In	11.8	0.732	1901					
			Out 3 In	12.3 11.8	0.712 0.764	1922 1865					
			Out*	11.0	0.704	1003					
10			4 In	10.7	0.657	1896	10				
			Out	11.4	0.703	1913					
			5 In	11.6	0.678	1920					
			Out	10.8	0.674	1901					
1.5			6 In Out	12.2 11.3	0.698	1903 1897	1.5				
15			7 In	12.1	0.704 0.766	1881	15				
			Out	11.2	0.705	1892					
						10,2					
	В	0.38	1 In	11.5	0.685	1915					
20			Out 2 In	11.5	0.658	1914	30				
20			Out	11.0 11.3	0.667 0.715	1904 1880	20				
			3 In*	11.5	0.713	1000					
			Out	10.5	0.663	1901					
			4 In	11.6	0.698	1890					
25			Out	11.1	0.674	1912	25				
			5 In	12.0	0.748	1878					
			Out* 6 In	11.6	0.709	1886					
			Out	11.0	0.667	1910					
30			8 In	11.4	0.667	1910	30				
			Out	10.7	0.680	1890					
	С	0.50	1 In	11.7	0.684	1910					
			Out	11.1	0.657	1911					
			2 In	11.3	0.685	1910					
35			Out	10.8	0.655	1920	35				
			3 In	11.2	0.687	1904					
			Out 4 In	11.1 12.4	0.665 0.715	1925 1891					
			Out	12.2	0.696	1910					
40			5 In	11.6	0.679	1912	40				
			Out	11.2	0.678	1916	10				
			6 In	11.6	0.701	1903					
45			Out	10.3	0.698	1872					
			7 In Out	11.5 10.9	0.684	1894					
			8 In	10.9	0.668 0.679	1913 1909	45				
			Out	10.5	0.644	1922					
	*Heav	vy Gage									
	From	Table II it	is clear that	only one o	f the coils from Hea	at A had at both					
50	From Table II it is clear that only one of the coils from Heat A had at both ends a permeability of at least $1870 (G/O_e)$ at 10 oersteds and a core loss of no more										
	than 0.7 watts per pound at 17 kilogauss. Significantly, Heat A has a copper content										
	of 0.27%; a level below the minimum of the present invention. On the other hand, three coils from Heat B and six coils from Heat C had magnetic properties										
	inree coil	s irom He	at B and Size	coils from	1 Heat C had mag	netic properties					
55	exceeding those specified. Significantly, Heats B and C have copper contents within the subject invention; respectively 0.38 and 0.5%. Moreover, more than 50%										
55	of the coils from Heat C exceeded the specified properties. Such data indicates that										
	copper contents in excess of 0.5% should be most beneficial.										
	It will be apparent to those skilled in the art that the novel principles of the										

It will be apparent to those skilled in the art that the novel principles of the invention disclosed herein in connection with specific examples thereof will suggest various other modifications and applications of the same. It is accordingly desired

35

5

4 that in construing the breadth of the appended claims they shall not be limited to the specific examples of the invention described herein. WHAT WE CLAIM IS:-1. A process for producing electromagnetic silicon steel having a cube-on-edge 5 orientation, which process includes the steps of: preparing a melt of silicon steel containing by weight, from 0.02 to 0.06% carbon, from 0.0006 to 0.008% boron, up to 0.01% nitrogen, no more than 0.008% aluminum, from 2.5 to 4% silicon and 0.3 to 1% copper; casting said steel; hot rolling said steel to an intermediate thickness of from 0.05 to 0.12 inch; cold rolling said steel to a thickness no greater than 0.02 inch without an intermediate anneal between cold rolling passes; preparing several 10 10 coils from said steel; decarburizing said steel; and final texture annealing said steel. 2. A process according to Claim 1, wherein said melt consists of, by weight, 0.02 to 0.06% carbon, 0.015 to 0.15% manganese, 0.01 to 0.05% sulfur or selenium, 0.0006 to 0.008% boron, up to 0.01% nitrogen, 2.5 to 4% silicon, 0.3 to 1% copper, up to 0.008% aluminum, balance iron and unavoidable impurities. 15 15 3. A process according to Claim 1 or 2, wherein said melt contains at least 0.0008% boron. 4. A process according to Claim 1, 2 or 3, wherein the amount of copper is at least 0.5%. 5. A process for producing cube-on-edge oriented electromagnetic silicon 20 20 steel substantially as herein described with reference to Heat B or C. 6. Steel whenever produced by the process claimed in any one of the preceding 7. A hot rolled band of silicon steel having a thickness of from 0.05 to 0.12 inch and consisting of, by weight, 0.02 to 0.06% carbon, 0.015 to 0.15% manganese, 0.01 to 0.05% sulfur or selenium, 0.0006 to 0.008% boron, up to 0.01% nitrogen, 2.5 to 4%25 25 silicon, 0.3 to 1% copper, up to 0.008% aluminum, balance iron and unavoidable impurities. 8. A hot rolled band according to Claim 7, having at least 0.0008% boron. 9. A hot rolled band according to Claim 7 or 8, wherein the amount of copper 30 30

is at least 0.5%.

10. A hot rolled band of silicon steel substantially as herein described with reference to Heat B or C.

11. Cube-on-edge oriented electromagnetic steel made from the hot rolled band claimed in Claim 10. 35

> For the Applicants, G. H. MUNSTER & CO., Chartered Patent Agents, Munster House, 31c, Arterberry Road, London, SW20 8AG.

Printed for Her Majesty's Stationery Office, by the Courier Press, Leamington Spa, 1980 Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.