
United States Patent (19)
Dockter et al.

(54)

75

(73)

21
22
(51)
52
58

56)

SYSTEMAND METHOD FOR
SYNCHRONIZATION OF MULTIMEDIA
STREAMS

Inventors: Michael J. Dockter, Hollister;
Charles L. Haug, Santa Cruz, both of
Calif.; Kevin D. Seppi, Austin, Tex.

Assignee: International Business Machines
Corporation, Armonk, N.Y.

Appl. No.: 976,159
Fed: Nov. 13, 1992
Int, Cl......................... G06F 9/00; G06F 13/00
U.S.C. .. 364/514 R
Field of Search 364/514, 468, 131, 419,

364/133, DIG. 1, 271.2, 271.3, 271.4, DIG. 2,
945.9; 434/185; 340/825.14, 825.2, 714, 721;

358/140, 142, 185, 182; 360/14.3; 395/152, 154,
650, 250; 377/20, 110; 81/603; 84/DIG. 12

References Cited

U.S. PATENT DOCUMENTS

3,631,452 12/1971 Richard 364/419
3,761,884 9/1973 Avsan et al. 364/DIG.
3,787,617 1/1974 Fiori................................... 360/14.3
3,867,615 2/1975 Sioufi.................................... 377/20
3,932,847 1/1976 Smith......... 364/DIG.
4,067,049 1/1978 Kelly et al. 360/14.3
4,369,494 1/1983 Bienvenu et al.364/DIG.
4,412,471 1/1983 Stier met al. 84/DIG. 12
4,507,691 3/1985 Ishiguro et al..................... 360/14.3
4,531,052 7/1985 Moore 364/514
4,82,101 4/1989 Short et al. 358/181
4,855,730 8/1989 Venners et al. ... 34.0/825.24
4,858,033 8/1989 Chippendale 360/14.2
4,884,972 12/1989 Gasper 395/132
4,937,780 6/1990 Geyer et al. 364/900
4,945,486 7/1990 Nitschke et al..................... 364/133
4,956,784 9/1990 Hadoviet al. 364/468
4969,092 11/1990 Shorter 364/O G.
4,989,133 1/1991 May et al.......... ... 364/O.G.
4,994,912 2/1991 Lamelsky et al. 358/140
5,007,005 3/1991 Hatakeyama 395/52
5,065,345 11/1991. Knowles et al... ... 395/154
5,101,340 3/1992. Nonaka et al. 395/650
5,111,409 5/1992 Gasper et al. 395/52

USOO54208O1A

11 Patent Number: 5,420,801
45 Date of Patent: May 30, 1995

5,119,474 6/1992 Beitel et al. 395/154
5,129,036 7/1992 Doan et al. 358/144
5,185,665 2/1993 Okura et al. ... 358/185
5,239,641 8/1993 Horst ... 364/DIG.
5,286,908 2/1994 Jungleib 81/603
5,291,468 3/1994 Carmon et al. 395/250

FOREIGN PATENT DOCUMENTS

3214487 1/1990 Japan G11B 27/024

OTHER PUBLICATIONS

Mercer et al; "Preemplibility in Real-time Operating
System”; IEEE 1992.
Ralston et al; "Encyclopedia of Computer Science'
Petrocelli/Chartor 1976.
Little et al; “Multimedia object models for synchroniza
tion and Data Bases”; IEEE 1990.
Hodges et al; "A Construction Set for Multimedia Ap
plications'; IEEE 1989.
Primary Examiner-Ellis B. Ramirez
Attorney, Agent, or Firm-Prentiss Wayne Johnson;
David J. Kappos
57 ABSTRACT
A computer-based multimedia presentation system is
provided with a synchronization scheme for recording
and playing independent media. The disclosed system
and method allows media processes and single medium
processes to achieve and maintain synchronization with
each other without process interdependence and with
out interprocess communication. This capability is pro
vided by assigning a common clock for all processes,
requiring all participating media processes to reference
the common clock, informing each process of, a syn
chronization basepoint called a "zero-time', and then
allowing each process to independently synchronize
itself to the common clock. The common clock itself
does not provide any stimulus to a media process; it is a
passive component in the synchronization. The media
process is the active component, referring to the com
mon clock as required to maintain synchronization for
the particular media it is handling.

34 Claims, 8 Drawing Sheets

Sheet 1 of 8 5,420,801 May 30, 1995 U.S. Patent

Sheet 2 of 8 5,420,801 May 30, 1995 U.S. Patent

||||||||||||||||||X|00|0 uouuuu00 ~ 10?

Sheet 4 of 8 5,420,801 May 30, 1995 U.S. Patent

5,420,801
1.

SYSTEMAND METHOD FOR
SYNCHRONIZATION OF MULTIMEDIA

STREAMS

FIELD OF THE INVENTION

This invention relates in general to multiprocessing
computer systems and in particular to synchronization
of multiple independent processes in such computer
systems.

BACKGROUND OF THE INVENTION
The dramatic advances being made in computer pro

cessing speed and storage capacity have created new
opportunities for computer applications. One of these
opportunities lies in the area of multimedia presenta
tions, which combine computerized audio, still pictures,
video, text, and other media to create dynamic, sensory
rich communication with computer users.
One of the important challenges involved in present

ing multimedia information in a cohesive, life-like fash
ion is synchronization of the numerous components that
make up a typical presentation. This synchronization
includes two aspects: first, the presentation components
must start in synchrony; second, they must progress at
the same rate. Moreover, both aspects of synchroniza
tion must be adhered to even when the presentation is
played after fast-forward or reverse, or is started at a
point other than its beginning.

Because the modern computer systems used to play
multimedia presentations frequently run multiple tasks,
programs, and processes concurrently, and use multiple
processors simultaneously, synchronization of pro
cesses can become a significant problem. Thus, the
audio portion of a presentation, which comprises one
process, may proceed faster than the video portion,
which comprises a second process, for reasons which
cannot be known prior to playing the presentation. For
example, if a multimedia presentation which plays the
audio and video of a human speaker is interrupted by an
extraneous concurrent process, the audio and video can
become unsynchronized, resulting in the perception by
the observer that the speaker's lip movements and
words do not match. Such effects can significantly de
tract from the overall quality of the presentation.

Various techniques have been devised for dealing
with the synchronization problems that arise in multi
media presentation systems. There are three methods
which have been user to solve the synchronization
problem. The first of these is a barrier method, that is,
each media is allowed to proceed at its own pace until
a barrier time or "sync-point' is encountered. Each
media waits at the sync-point until all other media have
arrived. Once all media have reached the sync-point the
media are again allowed to proceed at there own pace.
A second approach uses messages or "pulses' to

indicate to the component media, the current position,
time, or offset in the multimedia presentation. A master
process is sends out these pulses at some rate. Each
medium is responsible for making adjustment to its rate
to try to match the current or anticipated position (time)
of the master.
The third approach is to use a common clock which

is adjustable by a master process (or processes). Al
though such methods have been openly discussed, we
are unaware of any complete algorithm which includes
methods For initiating, and re-initiating, the synchroni

O

15

20

25

30

35

40

45

55

2
zation and allows for "re-winding' and "fast-forward
ing” in the presentation.
While these various approaches all tend to improve

the synchronization of multimedia presentations vis-a-
vis a Free-running paradigm, they are not without seri
ous drawbacks. For example, the sync-pointing ap
proaches can be dependent on the processor speed or
the hardware. This may allow a presentation to work
well in some cases but fail to synchronize in other cases
or on different hardware. The pulsing approaches re
quire the pulses to be sent out a sufficient rate to allow
For synchronization (this rate may vary on the presen
tation) video For example may require significant pulse,
requiring significant system resources. Pulsing also re
quires that processes quickly identify the reception or a
pulse. Unfortunately, pulse may arrive at times which
are inconvenient For the receiving process. Other com
non-clock approaches may not have clear startup or
re-start methods. All of the methods described above
have some sort of master process, the rate of that pro
cess is assumed to be correct. However, even a master
process running at a high priority will experience some
variance in its rate. This variance make the task of the
slave processes even more difficult, not only do they
have to adjust for there own variance, they must also
adjust to the variance in the master process's execution
rate. The master process also becomes a single point of
failure. The methods described above all rely on a clock
with encoded clock values. These clock values are typi
cally stored in fixed length fields. With out some care,
these clock values may be subject to wrapping, just as a
regular clock wraps from 12:00 back to 1:00. Also, the
methods described above, may not be applicable to the
recording of a synchronized presentation.
Thus, there has heretofore existed an unmet need for

a system and method of synchronizing multiple pro
cesses in a multimedia presentation without the use of
an active clock or a resident controlling process.

SUMMARY OF THE INVENTION

In accordance with the invention, a computer-based
multimedia presentation system is provided with a syn
chronization scheme for recording and playing inde
pendent media. The disclosed system and method al
lows media processes and single medium processes to
achieve and maintain synchronization with each other
without process interdependence and Without interpro
cess communication. This capability is provided by
assigning a common clock for all processes, requiring
all participating media processes to reference the com
mon clock, informing each process of a synchronization
basepoint called a "zero-time', and then allowing each
process to independently synchronize itself to the com
mon clock.
The common clock is used by all media processes in

the computer system to control the rate at which the
media is presented. The common clock is made accessi
ble to all processes so that all can maintain synchroniza
tion. It is referenced as needed by the various processes
participating in a particular presentation and its value is
used to determine when to present the next media event.
A media event can be broadly viewed as that which
stimulates human perception. The duration of a media
event is determined by the individual media processes.
The coded zero-time given to each media process

consists of a field the same size as the common clock's
field. The zero-time field contains a binary pattern
which is to be logically added to the common clock.

5,420,801
3

The result of the addition yields another time scale
called the zero-time scale. When the common clock
advances to zero-time the resulting zero-time scale
value equals zero, because of the wrapping of the logi
cal addition, the multimedia presentation begins. In this
way, the system is protected against improper operation
caused by wrapping of the common clock.
The value of the common clock in conjunction with

the coded zero-time is the basis by which a media pro
cess determines when to present the next media event.
The common clock itself does not provide any stimulus
to a media process; it is a passive component in the
synchronization. The media process is the active com
ponent. As the common clock value increases, so does
the value on the zero-time scale. The zero-time scale
represents the time elapsed since the start of the presen
tation. A media process determines when to present the
next media event by comparing the time the event needs
to be presented with the current zero-time scale value.
The process then waits until the time of the next event
equals the value on the zero-time scale and at that time
presents the event.

Additional aspects of the invention include algo
rithms for starting, re-starting, rewinding, fast-forward
ing, and recording presentations.
Numerous advantageous effects flow from the zero

time synchronization technique of the present inven
tion. First, media processes are able to work in concert
with one another without the necessity for intercommu
nication. By synchronizing itself to the common clock,
each process is automatically synchronized with all
other processes which themselves are synchronized
with the common clock. Since each process has inde
pendent control of synchronization; each process can
determine its own optimum times for checking synchro
nization. Second, because the coded zero-time estab
lishes a point in time which each process must use as
time zero (i.e. 00:00:00), a process can be started either
before or after time zero and is still able to synchronize
with the other media processes. Moreover, processes
can re-synchronize themselves by performing a resyn
chronization action such as sleeping, compressing, trun
cating, deleting, or elongating because they can deter
mine tile synchronization discrepancy by comparing the
time within tile presentation to the time on the zero-time
scale. Sleeping involves waiting for the next-event time.
Compressing is accomplished by performing the media
at a higher rate than originally recorded. Truncating
and deleting are methods of not performing certain
parts of a multimedia presentation. Elongating is ac
complished by performing the media at a lower rate
than originally recorded. Third, because only the com
mon clock is required for synchronization, processes do
not need operating system support for synchronization
or for interprocess communication generally. Fourth,
since the coded zero-time augments the information in
the common clock for each presentation, a single clock
can be used for multiple concurrent presentations. Fi
nally, because the coded information allows the com
mon clock to appear as time zero, the entire range of the
clock can be used before the clock wraps to its initial
value. Thus, long presentations can be created without
concern for the timing confusion caused by clock wrap
ping.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating the major pro
cesses contributing to the synchronization or multime

10

15

20

25

30

35

45

50

55

65

4
dia presentations in accordance with the present inven
tion.

FIG. 2 is a timeline illustrating the components
to develop zero-time.

FIG. 3 is a timeline illustrating the synchronized
recording of multi-media.
FIG. 4 is a timeline illustrating the synchronized

playback of multi-media.
FIG. 5 is a timeline illustrating the synchronized

playback and recording of multimedia.
FIG. 6 is a timeline illustrating the determination of

zero-time and creation of coded Zero-time.
FIG. 7 is a timeline illustrating the use of coded zero

time.
FIG. 8 is a timeline illustrating the use of zero-time in

media repositioning operations.
DETAILED DESCRIPTION OF THE

INVENTION

. Shown if FIG. 1 is a high level representation or the
system components and information flow which pro
vide multimedia synchronization in accordance with
the present invention. The major components include:
starter process 100 which performs the functions of
determining zero-time at 101 and initiating the media
processes at 103, media processes 104 105 106, also
known as media operations, which record and/or play
back asynchronized multimedia presentation, and clock
means 102 which provides the current time in the com
puter system. The current time is the interpretation of
the temporal bit pattern into standard time nomencla
ture hours, minutes, seconds, milliseconds, etc.
The system executes on computer processor 180,

recording and playing media to/from computer storage
182. Processor 180 may be a microprocessor or any
other instruction-executing computer processor means.
Computer storage 182 may be RAM memory, disk
memory, optical, tape, bubble, or any other form of
electronically accessible data storage. Normally, cur
rently accessed information including media is stored in
RAM where it is readily available to processor 180.
Other data, such as media not currently being presented
or recorded is stored on disk or tape where it is still
accessible albeit at a lower rate.

In operation, starter process 100, executing on com
puter processor 180, first determines zero-time at 101 by
gathering estimated initialization times 108,109, and 110
from participating media processes 104, 105, and 106.
This can be accomplished by a variety of techniques,
including querying each process for an estimated initial
ization time or encapsulating the estimated initialization
times within starter process 100. The estimated initial
ization time for the media processes is then calculated.
Next, clock 102 is used to obtain a reference to the
current time via 107, this is also known as the initializa
tion-time value. By adding together the current time
with the estimated initialization time for the media pro
cesses, known as a process preparation time, starter
process 100 determines a zero-time value and constructs
the coded zero-time. The determined zero-time, now in
the form of coded zero-time 111, is then used to initiate
the media processes at 103. This involves dispatching
each of media processes 104,105, and 106, while passing
to them coded zero-time via 112, 113, and 114. Each of
the media processes 104, 105, and 106, acts as a receiv
ing process in that they receive the coded zero-time 111.
This completes communication required to create syn
chronization. Given this single receipt of zero-time,

used

5,420,801
5

each media process can proceed to perform its function
without further input from starter process 100. To
achieve and maintain synchronization, each of media
processes 104,105, and 106 uses the zero-time informa
tion in conjunction with repeated references to the
current time from clock 102 via 115, 116, and 117.
The basic components necessary for synchronizing

multimedia processes in accordance with the present
invention are shown in FIG. 2. Included are common
clock 201, zero-time register 204, zero-time broadcast
means 203, and the zero-time scale 234. The common
clock 201 is accessible to all participating processes. It
advances at a predictable rate, and has a frequency
suitable multimedia presentations. If a clock having a
period (i.e. the clock can "wrap') is chosen for common
clock 201, that period must be longer than the multime
dia presentation in order to avoid the apparent anomaly
that occurs when the lime progression experiences a
step function from a high value to a low value. In the
preferred embodiment, the standard system clock of an
IBM PS/2 personal computer is used to generate the
common clock. This clock has a period of over 49 days,
which is of ample length in comparison with virtually
all multimedia presentations.

Zero-time register 204 is loaded with data, deter
mined in a manner that will be described in detail below,
identifying a time at which the multimedia presentation
is to begin. This point in time will be referred to as
zero-time 205. Zero-time broadcast means 203 is loaded
with a value, determined in a manner that will be de
scribed in detail below, identifying which is broadcast
to the various participating media processes and from
which each process can determine zero-time 205 and
the zero-time scale 234. This data will be referred to as
coded zero-time 202.

Recording Multimedia
Shown in FIG. 3 is a multimedia recording system in

accordance with the present invention. Two major
components are included in the system. The first is a
process which establishes zero-time 301 and creates the
coded zero-time 302. This process is called the record
ing starter process, and is designated as 303. From the
coded zero-time 302 and the common clock 201 a zero
time scale 334 can be constructed by any process. The
second component is one or more processes which will
use coded zero-time 302 in conjunction with common
clock 201 in recording multimedia or single media
events. These processes are called media recording
processes and are designated as 304. Examples of multi
media recording processes 304 are audio recording
process 305, text recording process 306, and image re
cording process 307.

During operation of the system, common clock 201
advances continuously. Recording starter process303 is
started to establish zero-time 301 during zero-time ini
tialization 308 and initiate all or media recording pro
cesses 304 during process initiation 335. Recording
starter process 303 calculates zero-time 301 based upon
the current time 322 on common clock 201 and the
estimated process preparation 309 needed by media
recording processes 304. Recording starter process 303
constructs coded zero-time 302 and initiates audio re
cording process 305, text recording process 306, and
image recording process 307, passing in coded zero
time 302 to each of media recording processes 304 Al
ternatively, recording starter process 303 may keep
coded zero-time 302 available For query by any of

10

15

20

25

35

45

55

65

6
media recording processes 304. After all media record
ing processes 304 have been initiated, recording starter
process 303 can either cease, become a member of
media recording processes 304, or perform other tasks.
Each of media recording processes 304 will perform

process preparation, designated as 310, in order to pre
pare internal resources and acquire external resources.
If zero-time 301 has not passed when one of media
recording processes 304 has finished process prepara
tion 310, that process will perform a process wait, desig
nated as 311, until zero-time 301 occurs. This time is
known as media start-time or more generically a first
event start-time. Each of media recording processes 304
will operate independently of the other media recording
processes. This is possible because each of media re
cording processes 304 knows of common clock 201 and
possesses coded zero-time 302.
Once audio recording process 305 has been initiated,

it begins audio recording process preparation, desig
nated as 312. Audio recording process 305 will acquire
control of the audio recording hardware, allocate
filename(s), prepare a place to put the digitized data,
and initialize internal control mechanisms. If zero-time
301 has not passed by the time audio recording process
preparation 312 is finished, audio recording process 305
will calculate the amount of time it must perform audio
recording process wait, designated as 313, in order to
begin the multimedia at zero-time 301. The recorded
data from the audio recording process 305 contains
information indicating that recording started at zero
time 301. If zero-time 301 has passed by the time audio
recording process preparation 312 is finished, the re
corded data from audio recording process 305 contains
the knowledge that recording started after zero-time
301 by the difference in time between zero-time 301 and
the end audio recording process preparation 312. In all
cases the ACTUAL offset, not the intended offset from
zero time is recorded for the event. This offset, the
offset time, is used during play-back to synchronize the
media just as they were observed during recording.
Once text recording process 306 has been initiated, it

begins text recording process preparation, designated as
314. Likewise, image recording process 307 will begin
image recording process preparation, designated as 315,
at this time. As with audio recording process prepara
tion 312, each process must allocate its own internal and
external resources. Text recording process 306 must
then determine whether to enter text recording process
wait, designated as 316; likewise, image recording pro
cess 307 must determine whether to enter image record
ing process wait, designated as 317. Each of media re
cording processes 304 keeps track of whether it started
at zero-time 301 or how long after zero-time 301 it
started.
As audio recording process 305, text recording pro

cess 306, and image recording process 307 are record
ing, they periodically check the difference between
zero-time 301 and current time 318. This difference,
denoted as relative time 319, is used to adjust the rate of
recording, to log the time of an event, known as an
event offset, or to determine the duration of an event.
An alternative to logging the time of certain media
events is keeping a constant rate at which the media
events are recorded. From the rate, information similar
to a log can be constructed.

5,420,801
7

Playing Multimedia
Shown in FIG. 4 is a multimedia playing system in

accordance with the present invention. Two major
components are included in the system. The first is a 5
process which establishes zero-time 401 and creates
coded zero-time 402. This process is called the playback
starter process, and is designated as 403. From the
coded zero-time 302 and the common clock 201 a zero
time scale 434 can be constructed by any process. The
second component is one or more processes which use
coded zero-time 402 in conjunction with common clock
201 to play multimedia or single media events. These
processes are called media playback processes and are
designated as 404. Examples of media playback pro
cesses 404 are audio playback process 405, text playback
process 406, and image playback process 407.
As common clock 201 is advancing, playback starter

process 403 is started to establish zero-time 401 during
zero-time initialization 408, and initiate media playback 20
processes 404 during process initiation 435. Playback
starter process 403 calculates zero-time 401 based upon
the current time 422 on common clock 201 and the
estimated process preparation 409 needed by media
playback processes 404. Playback starter process 403 25
constructs coded zero-time 402 and initiates audio play
back process 405, text playback process 406, and image
playback process 407, passing in coded zero-time 402 to
each of media playback processes 404. Alternatively,
playback starter process 403 may retain coded zero
time 402 available for query by any of media playback
processes 404. After media playback processes 404 have
been initiated, playback starter process 403 can either
cease, become a member of media playback processes
404, or perform other tasks.
Each of media playback processes 404 will perform a

process preparation 410 in order to prepare all of its
internal resources and acquire all of its external re
sources. If zero-time 401 has not passed when one of
media playback processes 404 has completed process 40
preparation 410, that media playback process will per
form a process wait 411 until zero-time 401 occurs. This
time is known as media start-time. Each or media play
back processes 404 will operate independently or the
other media playback processes. This is possible be
cause each of media playback processes 404 is aware of
common clock 201 and is provided with coded zero
time 402.
Once audio playback process 405 has been initiated, it

begins audio playback process preparation 412. Audio
playback process 405 acquires control or the audio
playback hardware, locates the audio data file(s) (in
cluding a log file in which the zero-time offsets are
given for all audio events, such as, when to start the
audio, and when to switch audio data files), prepares
storage space for the digitized data, and initializes the
audio playback hardware, any data buffers required for
audio playback, as well as locating the common clock,
determining the first audio event anti and other general
initialization. If zero-time 401 has not passed by the time
audio playback process preparation 412 is finished,
audio playback process 405 determines the amount of
time it must perform audio playback process wait 413 in
order to begin the multimedia presentation at zero-time
401. If zero-time'401 has passed by the time audio play- 65
back process preparation 412 is finished, audio playback
process 405 advances into the recorded audio data to
account for the difference in time between zero-time

10

15

30

35

45

50

55

60

8
401 and the end of audio playback process preparation
412. If the audio data contains information indicating
that the original recording began after zero-time, audio
playback process 405 continues its audio playback pro
cess wait 413 until that amount of time after zero-time
40.
Once text playback process 406 has been initiated, it

begins text playback process preparation 414. Likewise,
image playback process 407 begins image playback
process preparation 415. As with audio playback pro
cess preparation 412, each process must allocate its
internal anti external resources. Text playback process
406 then determines whether to enter text playback
process wait 416 until zero-time 401, whether to enterit
until after zero-time 401, or whether to advance
through the text data. Image playback process 407 de
termines whether to enter image playback process wait
417 until zero-time 401, whether to enter it until after
zero-time 401, or whether to advance through the
image data.
As audio playback process 405, text playback process

406, and image playback process 407 are playing, they
periodically check the difference between zero-time 401
and current time 418. This difference, relative time 419,
is used to adjust the rate of playing, and to detect the
need to skip forward or wait for the next event in the
case where synchronization is lost. In cases where an
unforeseen system load has caused the process to fall
out of synchronization, the process must adjust the rate
at which is plays to get backinto sync. The process may
choose to skip ahead if it has fallen behind in the presen
tation, or it may choose to wait if it has gotten ahead.
Both skipping and waiting may be implemented using a
variety of techniques known in the art. Waiting, in
stance, may be implemented by polling or sleeping.
Sleeping is chosen in the preferred embodiment because
it allows other processes to have the greatest possible
access to computer resources. While skipping/waiting
approach may be appropriate for an image or video
process, which can simply skip a frame, it is not the best
choice for an audio process. Skipping forward in audio
will result in a discontinuity in the audio. The preferred
approach for audio is to increase the rate at which the
audio plays. If the adjustment is small this temporary
increase in the rate may not be noticeable. Similarly, the
audio process may need to decrease the rate if the audio
process has somehow become ahead of time. If large
adjustments are needed in the audio rate, the frequency
spectrum of the audio may be adjusted to preserve the
tonal properties of the audio, using methods well known
in the field of signal processing.

Adding Multimedia
Shown in FIG. 5 is a set of time lines depicting the

sequence of adding multimedia to a presentation. Three
processes participate in this sequence. The first process
establishes zero time at 501 and creates coded zero-time
at 502. This process is designated as playback/record
starter process 503. From the coded zero-time 302 and
the common clock 201 a zero-time scale 534 can be
constructed by any process. The second process is in
practice one or more processes which use coded zero
time 502 in conjunction with common clock 201 in
playing multimedia or single media events. These pro
cesses are called media playback processes, designated
generally as 504. Examples of media playback processes
504 include audio playback process 505, text playback
process 506, and image playback process 507. The third

5,420,801
process is also actually one or more processes, which in
this instance use coded zero-time 502 in conjunction
with common clock 201 in recording multimedia or
single media events. These processes are called media
recording processes 520. An example of a media record
ing process is image recording process 521.
As common clock 201 advances, playback/record

starter process 503 is started to establish zero-time 501
during zero-time initialization 508 and initiate media
playback processes 504 and media recording processes
520 during process initiation 535. Playback/record
starter process 503 calculates zero-time 501 based upon
the current time 522 on common clock 201 and the
estimated process preparation 509 needed by media
playback processes 504 and media recording processes
520. Playback/record starter process 503 constructs
coded zero-time 502 and initiates audio playback pro
cess 505, text playback process 506, image playback
process 507, and image recording process 521, passing
coded zero-time 502 to each of media playback pro
cesses 504 and media recording processes 520. Alterna
tively, playback/record starter process 503 may keep
coded zero-time 502 available for query by any of media
playback processes 504 or media recording processes
520. After media playback processes 504 and media
recording processes 520 have been initiated, playback
/record starter process 503 can either cease, become a
member of media playback processes 504, become a
member of media recording processes 520, or perform
other tasks.
During this time, media playback processes 504 and

media recording processes 520 continue to function as
described above. The result of the simultaneous play
back and recording of multimedia is that the newly
recorded media will be in synchronization with the
previously recorded media. Each of the recorded media
has time synchronization information which can be
used by a multimedia player having the ability to recog
nize common clock 201 and coded zero-time 502.

Creating Coded Zero-time
Shown in FIG. 6 is a set of timelines depicting the

creation of coded zero-time. The process involves two
principal components. The first is the current time on
common clock 201. This is denoted as current time 622.
The second is information indicative of the anticipated
startup times of media recording processes 620 and/or
media playback processes 604. This information is used
to construct estimated process preparation time 609.
The calculation of zero-time is most easily under

stood in the context of a specific example. For this
purpose, reference will be made to the numerical quan
tities in FIG. 6. It is to be noted that these quantities and
the resulting calculations are presented for illustrative
purposes only. As contemplated by the present inven
tion, any clock base and timing may be selected. With
reference to FIG. 6, calculation of zero-time 601 begins
with selection of a common clock. The exemplary chick
selected is 32-bits in length and has increment represent
ing one millisecond. Current time 622 on common clock
201 is 9:47:23.150, the equivalent of 35,243,150 millisec
onds. Estimated process preparation time 609 is 5 sec
onds, which is 5000 milliseconds. Zero-time 601 is cal
culated as current time 622 added to estimated process
preparation time 609. The result is 35,248,150 millisec
onds, or 0219D816 in hexadecimal notation.

Using a clock value of zero-time as the basis for a
multimedia presentation has an inherent problem, clock

10

15

20

25

30

35

45

50

55

65

10
wrap. If the highest value of the clock is 999;99.99.999
and zero-time is 999:98:00,000, the multimedia presenta
tion must detect the wrapping of the clock and handle
the exception in the next minute. By coding zero-time,
the full range of the clock can be used without having to
special case for pre-mature clock wrap.
To create coded zero-time 602, also known as coding

the zero-time value, the two's complement of zero-time
601 is calculated. Zero-time 601 is 0219D816 (hex). The
one's complement of zero-time 601 is FDE627E9 (hex).
This quantity can be generated by XORing zero-time
601 with FFFFFFFF (hex). Next, the two's comple
ment of zero-time 601 is FDE627EA (hex). This is de
termined by adding 1 to the one's complement. Thus,
coded zero-time 602 for this example is FDE627EA
(hex). From the coded zero-time 602 and the common
clock 201 a zero-time scale 634 can be constructed by
any process.

Using coded Zero-time
Shown in FIG. 7 is a timeline depicting the use of

coded zero-time. The process involves four principal
components. The first is coded zero-time 702, which is
given to or obtained by process 723. From the coded
zero-time 702 and the common clock 201 a zero-time
scale 734 can be constructed by any process. The sec
ond is the current time on common clock 201. This is
denoted as current time 724. The third is a schedule of
when each media event occurs, this is a list of event
offsets and is designated as event schedule 725. This
component could be a rate at which to perform media
events rather than a list of discrete media events. The
fourth component is a stream of data and a given rate at
which to play the data.
The general equation when using zero-time is:

where E is the offset of the actual event within the
presentation 726 729, T is the current time 724730 on
the clock 201, Z is the zero-time 701 for the presenta
tion, and C is the correction 732 733 needed by the
media process 723 in the presentation of the media event
to reproduce the timing of the actual event. In the case
of playback, E, T, and Z are given and C is calculated.
C, the correction, will result in the process waiting to
perform the next event, performing the event, or ad
vancing within the presentation to "catch up'. In the
case of record, T, Z, and C are given and E is calcu
lated. C, the correction, is 0 since the time of the actual
event is the same as the time of the recorded media
event. Since C=0, the general equation becomes:

which is algebraically equal to:

In the example which follows, zero-time, Z, is not used
in the equation. Instead coded zero-time, Z, is used.
Since z=-Z, because coded zero-time is two's comple
ment of zero-time used to negate the clock wrap prob
lem, the general equation becomes:

5,420,801
11

As with the calculation of zero-time, use of Zero-time
is most easily understood in the context of a specific
example. For this purpose, reference will be made to the
numerical quantities in FIG. 7, while noting that these
quantities and the resulting calculations are presented
for illustrative purposes only. As shown, process 723
obtains coded zero-time 702 and stores it for frequent
access. In particular, zero-time information 702 is
FDE627EA (hex), and the time of event #1 726 on
event schedule 725 is 0:00:00,000. Based on this informa
tion, precisely at zero-time 701 process 723 determines
when to play the event. Current time 724 is 9:47:25.600,
which is 35,245,600 milliseconds or 0219CE20 (hex). To
determine how long the process 723 should wait for
event #1 727, the sum of coded zero-time 702 and cur
rent time 724 is subtracted from the time of event #1
726, yielding a result of 000009F6 (hex), which is 2550
milliseconds. (That is: 00000000 (hex)-(FDE627EA
(hex)+0219CE20 (hex)=000009F6 (hex).) The result
is that process 723 must wait 2550 milliseconds before
executing the event, i.e. playing event #1727.

After event #1 727 has been performed by process
723, process 723 immediately begins preparing for event
#2 728. A media process, such as process 723, should
accomplish as much preparatory work as possible be
fore determining the next-event time, the time of event
#n-1. By doing this, a media process will have the
shortest code path length between the time the process
is done waiting and the time the media event is to occur.
This decreases the opportunity for variability in when
the media event actually occurs. After process 723 has
completed as much preparatory work as possible with
out actually performing event #2 728, it determines
when to play event #2728. Based on a time of event #2
729 of 0:00:03.250 on event schedule 725, it is noted that
event #2 is to begin at 3250 milliseconds into the multi
media presentation, or 00000CB2 (hex). Current time
730 is now 9:47:29.950, which is 35,249,950 milliseconds
or 0219DF1E (hex). To determine how long the process
723 should wait for event #2 728, the sum of coded
zero-time 702 and current time 730 is subtracted from
the time of event #2729, yielding a result of 000005AA
(hex), which is 1450 milliseconds. (That is: 00000CB2
(hex)-(FDE627EA (hex)--0219DF1E (hex))=0000
05AA (hex).) Thus, process 723 must wait 1450 millisec
onds before playing event #2 728.
The above procedure is used to determine the timing

for each media event. Where the result of the equation
is positive, process 723 must wait the number of milli
seconds given by the result. Where the result of the
equation equals zero, process 723 plays the event imme
diately. Where the result of the equation is negative,
process 723 must "catch up', by the absolute value of
the result in milliseconds. Each of media playback pro
cesses may determine its method for regaining synchro
nization, as described above.

In certain circumstances, a time lag may occur be
tween the starting of a media event and the actual pre
sentation of the event to the observer. This may be
caused by latent processing, hardware speed, or other
dependencies. If the lag time is predictable, a correction
for the lag time, called the correction time, can be ap
pended to the calculations described above. In particu
lar, the sum coded zero-time 702 and current time is
subtracted from the time of event in 731; then the
predicted amount of lag time is subtracted from this
quantity.

5

O

15

20

25

30

35

45

SO

55

60

65

12
For streams of data, zero-time 701 is periodically

checked, by the process responsible for that media,
against the current position in the stream to determine if
the stream should be consumed at the same rate, accel
erated, or decelerated. In this way, slight discrepancies
between the playing speed of various media can be
corrected dynamically.

Media Repositioning
FIG. 8 shows a representation or the use or the pres

entinvention in synchronizing multimedia during media
repositioning commands. Media repositioning com
mands may include fast forward, fast rewind, stop, in
stant replay, rewind, etc.
The example given in FIG. 8 represents how a user

might interact with a system which uses zero-time based
synchronization and how the system would respond. In
this example, the user initially wants to see the multime
dia presentation from the beginning. After watching
and listening for a minute or two, the user would like to
see what's ahead in the multimedia presentation. The
user fast forwards twenty-five minutes into the presen
tation and plays from that point for a little over two
minutes. Realizing that there is some importantinforma
tion earlier in the multimedia presentation, the user
rewinds back to the twelve minute mark and plays to
the end of the presentation.
The components of FIG. 8 are: A command sequence

801 which the user passes into the system 827. The time
at which the commands are given are at the discretion
of the user. A coordination process 802 which receives
the command sequence 801 and issues coordination
messages 828829.830 through interprocess communica
tion 803 804805 to each of the media processes 806 807
808. A timeline demarcated by the passing of time in the
common clock 201 will be used to demonstrate the
activity within the system.
At time 9:47:00.00 on the common clock 201, the user

issues command #1816 “Play” which is translated into
“Play from 0:00:00 809. This command is passed to the
coordination process 802 which performs the actions of
the starter process described in the "PLAYING MUL
TIMEDIA' section. It determines zero-time if 821,
creates coded zero-time as described in the "CREAT
ING CODED ZERO-TIME section, initiates media
processes 806807808, and transmits 828 829 830 coded
zero-time and the offset into the presentation at which
to begin, 0:00:00.000 through interprocess communica
tion 803 804805. The media processes 806 807 808
perform the actions of the playback processes described
in the "PLAYING MULTIMEDIA' section. They
perform process preparation, potentially perform pro
cess wait, and perform media events as described in the
'USING CODED ZERO-TIME Section.
The user decides after watching/listening to one

minute and thirty seconds 824 of the presentation that
it's time to advance into the presentation. First, the user
issues command #2817 “Stop' 810 which is sent to the
coordination process 802 and transmitted 828 829 830
through interprocess communication 803 804805 to
each of the media processes 806 807 808. Each media
process 806.807 808stops presenting its media. Second,
the user issues command #3-'Fast Forward' 811.
This command is not sent to the media processes 806
807 808; it is handled completely within the coordina
tion process 802. The coordination process 802 gives
the user a feedback as to how far 'Fast Forward' has
advanced into the multimedia presentation. These two

5,420,801
13

commands 810811 could be combined into one at the
user interface level, but would be kept as two com
mands at the operational level.
When the user is notified that the multimedia presen

tation has been advanced to 0:25:15, the user issues
command #4818 "Play” which is translated into "Play
from 0:25:15” 812. This command is passed to the coor
dination process 802 which performs the actions of the
starter process described in the "PLAYING MULTI
MEDIA' section. It determines zero-time #2822, cre
ates coded zero-time as described in the "CREATING
CODEDZERO-TIME section, and transmits 828 829
830 coded zero-time and the offset into the presentation
at which to begin, 0:25:15.000, through interprocess
communication 803 804805. The media processes 806
807 808 perform the actions of the playback processes
described in the "PLAYING MULTIMEDIA' sec
tion. They perform process preparation, potentially
perform process wait, and perform media events as
described in the 'USING CODED ZERO-TIME'
section.
The user decides after watching/listening to about

two and one-quarter minutes 825 of the presentation
that it's time to return to an earlier spot in the presenta
tion. First, the user issues command #5819 "Stop” 813
which is sent to the coordination process 802 and trans
mitted 828 829 830 through interprocess communica
tion 803 804805 to each of the media processes 806.807
808. Each media process 806807808stops presenting its
media. Second, the user issues command #6-"Fast
Rewind' 814. This command is not sent to the media
processes 806 807 808; it is handled completely within
the coordination process 802. The coordination process
802 gives the user a feedback as to how far "Fast Re
wind' has backed up in the multimedia presentation.
These two commands 813 814 could be combined into
one at the user interface level, but would be kept as two
commands at the operational level.
When the user is notified that the multimedia presen

tation has backed up to 0:12:30, the user issues com
mand #7820 "Play' which is translated into "Play from
0:12:30” 815. This command is passed to the coordina
tion process 802 which performs the actions of the
starter process described in the "PLAYING MULTI
MEDIA' section. It determines zero-time if3 823, cre
ates coded zero-time as described in the 'CREATING
CODED ZERO-TIME section, and transmits 828 829
830 coded zero-time and the offset into the presentation
at which to begin, 0:12:30.000, through interprocess
communication 803 804805. The media processes 806
807 808 perform the actions of the playback processes
described in the 'PLAYING MULTIMEDIA' sec
tion. They perform process preparation, potentially
perform process wait, and perform media events as
described in the USING CODED ZERO-TIME
section. Since the user does notissue another command,
each media process 806 807 808 continues performing
826 until it has no more events to perform, at which
time it behaves as if it were sent a "Stop” command.

Conclusion
While the invention has been described and illus

trated in terms of synchronization of multimedia, it is to
be noted that the principles and concepts presented may
be readily adapted for use in synchronizing any comput
er-based process or processes, both in terms of initiation
anti ongoing execution. Thus, for example, in a multi
programming computer system, performance measur

10

15

20

25

30

35

45

55

65

14
ing processes or vectorized processes requiring simulta
neous data availability may be synchronized using a
single common clock and a starter process to determine
and broadcast a zero-time value in the same fashion as
described above.

Additionally, while the foregoing description has
included detailed discussion of the mathematics used to
determine zero-time, coded zero-time, and numerous
offset/adjustment values, it is to be noted that many
alternative schemes could be devised for combining
values, separating values, scaling values, or shifting
values. Thus, for instance, zero-time could be replaced
by 1000-time, which additionally could be combined
with the media-start time and used in combined form to
drive synchronization for a particular media process.
Such modifications are considered to be of form rather
than substance, and hence within the spirit and scope or
the present invention.
Using the foregoing specification, the invention may

be implemented by standard programming and/or engi
neering techniques. The resulting program(s) may be
stored on disk, diskettes, memory cards, ROM or any
other memory device. For execution, the program(s)
may be copied into a system memory (RAM) associated
with a computer processor. One skilled in the art of
computer science will readily be able to combine the
system and process created as described above with
appropriate general purpose or special purpose com
puter hardware to create a computer system embodying
the invention, While the invention has been particularly
described and illustrated with reference to a preferred
embodiment, it will be understood by those skilled in
the art that changes in the description and illustrations
may be made with respect to form or detail without
departing from the spirit and scope of the invention.
What is claimed is:
1. A method for synchronizing initiation of media

operations in a multimedia recording and playback sys
tem, comprising the steps of:

in a starter process, receiving the current time from a
clock means, assigning the received current time as
an initialization-time value, determining a zero
time value by adding a process preparation time to
the initialization-time value, broadcasting the zero
time value to at least one media process; and

in the media process, receiving the zero-time value,
upon the current time reaching the zero-time value,
initiating the media operations,

thereby, synchronizing initiation of the media opera
tions.

2. A method for synchronizing initiation as recited in
claim 1, wherein the media operation is any of image
recording, image playback, text recording, text play
back, audio recording, and audio playback.

3. A method for synchronizing initiation as recited in
claim 1, wherein the clock means is a system real-time
clock.

4. A method for synchronizing initiation as recited in
claim 1, wherein the media process initiates its media
operation independently of other media processes.

5. A method for synchronizing initiation as recited in
claim 4, wherein media process receives exactly one
zero-time value transmission, and wherein the zero-time
value transmission constitutes the only synchronization
transmission initiated from the starter process to the
media process.

5,420,801
15

6. A method for synchronizing initiation of media
operations in a multimedia recording and playback sys
tem, comprising the steps of:

in a starter process, receiving the current time from a
clock means, assigning the received current time as
an initialization-time value, determining a zero
time value by adding a process preparation time to
the initialization-time value, broadcasting the zero
time value to at least one media process; and

in the media process, receiving the zero-time value,
determining a media start-time by combining an
offset time with the zero-time value, and upon the
current time reaching the media start-time, initiat
ing the media operation,

thereby, synchronizing initiation of the media opera
tions.

7. A method for synchronizing initiation as recited in
claim 6, wherein the media start-time is determined by
adding the offset time to the zero-time value.

8. A method for synchronizing media recording in a
multimedia recording and playback system, comprising
the steps of:

in a starter process, receiving the current time from a
clock means, assigning the received current time as
an initialization-time value, determining a zero
time value by adding a process preparation time to
the initialization-time value; broadcasting the zero
time value to at least one media process; and

in the media process, receiving the zero-time value,
upon the current time reaching the zero-time value,
repeating for each media event the sub-steps of
obtaining the current time from the clock means,
determining an event offset based on the zero-time
value and the current time, logging the event offset
in association with the media event, recording the
media event,

thereby, synchronizing the media recording.
9. A method for synchronizing media recording as

recited in claim 8, wherein the step of repenting for
each media event further comprises the sub-step of,
after recording the media event, waiting for arrival of
the next media event.

10. A method for synchronizing media recording as
recited in claim 8, wherein a media event includes any
of a single presentation object and a set of presentation
objects.

11. A method for synchronizing media recording as
recited in claim 8, wherein the logging step logs the
event offset into the data rate of the recorded data.

12. A method for synchronizing media recording as
recited in claim wherein the event offset is determined
by subtracting the zero-time value from the current
time.

13. A method for synchronizing media recording as
recited in claim 8, wherein the step of determining in
zero-time value further includes coding the zero-time
value by computing its two's complement.

14. A method for synchronizing media recording as
recited in claim 8, wherein the media process deter
mines the granularity and number of media events inde
pendently of the starter process and other media pro
CCSSS

15. A method for synchronizing media recording as
recited in claim 8, wherein the clock means is a system
real-time clock.

16. A method for synchronizing media recording as
recited in claim 8, wherein the media process operates

10

15

20

25

30

35

40

45

50

55

16
independently of other media processes and the starter
process.

17. A method for synchronizing media recording as
recited in claim 16, wherein the media process receives
exactly one zero-time value transmission, and wherein
the zero-time value transmission constitutes the only
synchronization transmission initiated from the starter
process to the media process.

18. A method for synchronizing media recording in a
multimedia recording and playback system, comprising
the steps of:

in a starter process, receiving the current time from a
clock means, assigning the received current time as
an initialization-time value, determining a zero
time value by adding a process reparation time to
the initialization-time value, broadcasting the zero
time value to at least one media process; and

in the media process, receiving the zero-time value,
determining a media start-time by adding an offset
time to the zero-time value, upon the current time
reaching the media start-time, repeating for each
media event the sub-steps of obtaining the current
time from the clock means, determining an event
offset based on the zero-time value and the current
time, logging the event offset in association with
the media event, recording the media event,

thereby, synchronizing the media recording.
19. A method for synchronizing media playback in a

multimedia recording and playback system, comprising
the steps of

in a starter process, receiving the current time from a
clock means, assigning the received current time as
an initialization-time value, determining a zero
time value by adding a process preparation time to
the initialization-time value; broadcasting the zero
time value to at least one media process; and

in the media process, receiving the zero-time value,
accessing a log of event offset times associated with
a plurality of media events, for each logged event
offset time, performing the sub-steps of readying
the associated media event for playing, and when
the event offset time arrives, playing the media
event,

thereby, synchronizing the media playback.
20. A method for synchronizing media playing as

recited in claim 19, wherein the event offset time arrival
is determined by comparing the current time with the
sum of the zero-time value and the logged event offset
time.

21. A method for synchronizing media playing as
recited in claim 19, wherein the log of event offset times
is provided in the data rate of the recorded data.

22. A method for synchronizing media playing as
recited in claim 19, wherein the log of event offset times
is created by any of recording and authorship.

23. A method for synchronizing media playing as
recited in claim 19, wherein the step of performing
sub-steps further comprises the sub-steps of

determining a correction time based on the event
offset time, the current time, and zero-time,

for a non-zero correction time, performing a resyn
chronization action on the next media event.

24. A method for synchronizing media playing as
recited in claim 19, wherein the correction time is deter
mined by subtracting the current time from the sum of
zero-time and the event offset time.

25. A method for synchronizing media playing as
recited in claim 19, wherein for a negative correction

5,420,801
17

time the resynchronization action includes any of com
pression, truncation, and deletion.

26. A method for synchronizing media playing as
recited in claim 19, wherein for a positive correction
time the resynchronization action includes any of wait
ing and elongation.

27. A method for synchronizing media playing as
recited in claim 19, wherein the step of determining a
zero-time value further includes coding the zero-time
value by computing its two's complement.

28. A method for synchronizing media playing as
recited in claim. 19, wherein the clock means is a system
real-time clock.

29. A method for synchronizing media playing as
recited in claim 19, wherein the media process operates
independently of other media processes and the starter
process.

30. A method for synchronizing media playing as
recited in claim 29, wherein the media process receives
exactly one zero-time value transmission, and wherein
the zero-time value transmission constitutes the only
synchronization transmission initiated from the starter
process to the media process.

31. A method for synchronizing media recording as
recited in claim 19, wherein the media process termi
nates itself upon playing its final media event.

32. A method for synchronizing media playback in a
multimedia recording and playback system, comprising
the steps of:

in a starter process, receiving the current time from a
clock means, assigning the received current time as
an initialization-time value, determining a zero
time value by adding a process preparation time to
the initialization-time value; broadcasting the zero
time value to at least one media process; and

15

25

30

35

45

50

55

18
in the media process, receiving the zero-time value,

accessing a log of event offset times associated with
a plurality of media events, for each logged event
offset time, performing the sub-steps of readying
the associated media event for playing, and when
the event offset time arrives, playing the media
event,

thereby, synchronizing the media playback.
33. A method for synchronizing initiation of events in

a multiprogramming computer system, comprising the
steps of:

in a starter process, receiving the current time from a
clock means, assigning the received current time as
an initialization-time value, determining a zero
time value by adding a process preparation time to
the initialization-time value, broadcasting the zero
time value to at least one receiving process; and

in the receiving process, receiving the zero-time
value, upon the current time reaching the zero-time
value, initiating the event,

thereby, synchronizing initiation of the media events.
34. A method for synchronizing events in a multipro

gramming computer system, comprising the steps of:
in a starter process, receiving the current time from a

clock means, assigning the received current time as
an initialization-time value, determining a zero
time value by adding a process preparation time to
the initialization-time value; broadcasting the zero
time value to at least one receiving process; and

in the receiving process, receiving the zero-time
value, upon the current time reaching the zero-time
value, repeating for each event the sub-steps of
executing the event, determining a next-event time,
waiting until the current time reaches the next
event time,

thereby, synchro the events.
k

3.
k k

