

(11) **EP 3 330 351 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

06.06.2018 Bulletin 2018/23

(51) Int Cl.:

C11D 3/386 (2006.01)

(21) Application number: 17204763.1

(22) Date of filing: 30.11.2017

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA MD

(30) Priority: **02.12.2016 EP 16202072**

(71) Applicant: The Procter & Gamble Company Cincinnati, OH 45202 (US)

. __ _ _ _ _ _ _

(72) Inventors:

 LANT, Neil Joseph Newcastle upon Tyne, NE12 9TS (GB)

 FERNANDEZ PRIETO, Susana 1853 Strombeek-Bever (BE)

(74) Representative: Peet, Jillian Wendy

Procter & Gamble Technical Centres Limited

Whitley Road Longbenton

Newcastle upon Tyne

NE12 9TS (GB)

(54) CLEANING COMPOSITIONS INCLUDING ENZYME AND PLANT FIBER

(57) Cleaning compositions that include a galactanase enzyme and water-insoluble plant fibers. Methods of making and using such cleaning compositions. Use of water-insoluble plant fibers.

Description

15

20

25

30

35

45

50

55

REFERENCE TO A SEQUENCE LISTING

[0001] This application contains a Sequence Listing in computer readable form, which is incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention relates to cleaning compositions that include a galactanase enzyme and water-insoluble plant fibers. The present invention also relates to methods of making and using such cleaning compositions. The present invention also relates to the use of galactanase enzymes and water-insoluble plant fibers.

BACKGROUND OF THE INVENTION

[0003] The laundry detergent formulator is constantly aiming to improve the performance of detergent compositions. Enzymes may be added to liquid detergent formulations in order to improve cleaning performance, but soils may remain on the targeted surface.

[0004] There is a need for improved cleaning compositions that provide improved soil removal benefits.

SUMMARY OF THE INVENTION

[0005] The present invention provides a cleaning composition comprising an endo-beta-1,6-galactanase enzyme and water-insoluble plant fibers.

[0006] The present invention also relates to a method of cleaning a surface, preferably a textile, where the method comprises mixing the cleaning composition described herein with water to form an aqueous liquor and contacting a surface, preferably a textile, with the aqueous liquor in a laundering step.

[0007] The present invention also relates to a use of an endo-beta-1,6-galactanase enzyme and water-insoluble plant fibers in a cleaning composition to enhance stain-removal and/or malodor-reducing benefits.

DETAILED DESCRIPTION OF THE INVENTION

[0008] The present invention relates to cleaning compositions, for example liquid cleaning compositions, comprising a specific galactanase enzyme and water-insoluble plant fiber. Without wishing to be bound by theory, it is believed that the water-insoluble plant fibers result in microabrasion of a target surface, such as a soiled fabric, thereby complementing the cleaning mechanism of the galactanase enzyme and enhancing the removal of the soil matrix. This effect may be particularly strong in instances of direct application of a neat liquid detergent onto the fabric surface, such as in a pretreatment process.

[0009] The components of the compositions and processes of the present invention are described in more detail below. [0010] As used herein, the articles "a" and "an" when used in a claim, are understood to mean one or more of what is claimed or described. As used herein, the terms "include," "includes," and "including" are meant to be non-limiting. The compositions of the present invention can comprise, consist essentially of, or consist of, the components of the present disclosure.

[0011] The terms "substantially free of or "substantially free from" may be used herein. This means that the indicated material is at the very minimum not deliberately added to the composition to form part of it, or, preferably, is not present at analytically detectable levels. It is meant to include compositions whereby the indicated material is present only as an impurity in one of the other materials deliberately included. The indicated material may be present, if at all, at a level of less than 1%, or less than 0.1%, or less than 0.01%, or even 0%, by weight of the composition.

[0012] As used herein, "insoluble" means having a water solubility of less than 10% when 1g of the dry material is stirred in 100g of deionized water in a 250ml beaker for 15 minutes at 20°C using a magnetic stirrer set at 100rpm. The degree of solubility is calculated by comparing the mass of dry fiber before (mi = 1g) and after (m_f) the solubility test as follows:

% Solubility = $100[1 - (m_f / m_i)]$

[0013] Unless otherwise noted, all component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may

be present in commercially available sources of such components or compositions.

[0014] All temperatures herein are in degrees Celsius (°C) unless otherwise indicated. Unless otherwise specified, all measurements herein are conducted at 20°C and under the atmospheric pressure.

[0015] In all embodiments of the present disclosure, all percentages are by weight of the total composition, unless specifically stated otherwise. All ratios are weight ratios, unless specifically stated otherwise.

[0016] It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.

[0017] As used herein, the term "alkoxy" is intended to include C1-C8 alkoxy and C1-C8 alkoxy derivatives of polyols having repeating units such as butylene oxide, glycidol oxide, ethylene oxide or propylene oxide.

[0018] As used herein, unless otherwise specified, the terms "alkyl" and "alkyl capped" are intended to include C1-C18 alkyl groups, or even C1-C6 alkyl groups.

[0019] As used herein, unless otherwise specified, the term "aryl" is intended to include C3-12 aryl groups.

[0020] As used herein, unless otherwise specified, the term "arylalkyl" and "alkaryl" are equivalent and are each intended to include groups comprising an alkyl moiety bound to an aromatic moiety, typically having C1-C18 alkyl groups and, in one aspect, C1-C6 alkyl groups.

[0021] The terms "ethylene oxide," "propylene oxide" and "butylene oxide" may be shown herein by their typical designation of "EO," "PO" and "BO," respectively.

[0022] As used herein, the term "cleaning and/or treatment composition" includes, unless otherwise indicated, granular, powder, liquid, gel, paste, unit dose, bar form and/or flake type washing agents and/or fabric treatment compositions.

[0023] As used herein, "cellulosic substrates" are intended to include any substrate which comprises cellulose, either 100% by weight cellulose or at least 20% by weight, or at least 30 % by weight or at least 40 or at least 50 % by weight or even at least 60 % by weight cellulose. Cellulose may be found in wood, cotton, linen, jute, and hemp. Cellulosic substrates may be in the form of powders, fibers, pulp and articles formed from powders, fibers and pulp. Cellulosic fibers, include, without limitation, cotton, rayon (regenerated cellulose), acetate (cellulose acetate), triacetate (cellulose triacetate), and mixtures thereof. Typically cellulosic substrates comprise cotton. Articles formed from cellulosic fibers include textile articles such as fabrics. Articles formed from pulp include paper.

[0024] As used herein, the term "maximum extinction coefficient" is intended to describe the molar extinction coefficient at the wavelength of maximum absorption (also referred to herein as the maximum wavelength), in the range of 400 nanometers to 750 nanometers.

[0025] As used herein "average molecular weight" is reported as a weight average molecular weight, as determined by its molecular weight distribution; as a consequence of their manufacturing process, polymers disclosed herein may contain a distribution of repeating units in their polymeric moiety.

[0026] As used herein the term "variant" refers to a polypeptide that contains an amino acid sequence that differs from a wild type or reference sequence. A variant polypeptide can differ from the wild type or reference sequence due to a deletion, insertion, or substitution of a nucleotide(s) relative to said reference or wild type nucleotide sequence. The reference or wild type sequence can be a full-length native polypeptide sequence or any other fragment of a full-length polypeptide sequence. A polypeptide variant generally has at least about 70% amino acid sequence identity with the reference sequence, but may include 75% amino acid sequence identity within the reference sequence, 80% amino acid sequence identity within the reference sequence, 85% amino acid sequence identity with the reference sequence, 86% amino acid sequence identity with the reference sequence, 87% amino acid sequence identity with the reference sequence, 88% amino acid sequence identity with the reference sequence, 89% amino acid sequence identity with the reference sequence, 90% amino acid sequence identity with the reference sequence, 91% amino acid sequence identity with the reference sequence, 92% amino acid sequence identity with the reference sequence, 93% amino acid sequence identity with the reference sequence, 94% amino acid sequence identity with the reference sequence, 95% amino acid sequence identity with the reference sequence, 96% amino acid sequence identity with the reference sequence, 97% amino acid sequence identity with the reference sequence, 98% amino acid sequence identity with the reference sequence, 98.5% amino acid sequence identity with the reference sequence or 99% amino acid sequence identity with the reference sequence.

[0027] As used herein, the term "solid" includes granular, powder, bar and tablet product forms.

[0028] As used herein, the term "fluid" includes liquid, gel, paste, and gas product forms.

Cleaning Composition

10

30

35

40

45

50

55

[0029] The present disclosure relates to cleaning and/or treatment compositions. The cleaning composition may be

selected from the group of light duty liquid detergents compositions, heavy duty liquid detergent compositions, solid, for example particulate/powder or "dry" cleaning compositions, hard surface cleaning compositions, detergent gels commonly used for laundry, bleaching compositions, laundry additives, fabric enhancer compositions, shampoos, body washes, other personal care compositions, and mixtures thereof. The cleaning composition may be a hard surface cleaning composition (such as a dishwashing composition) or a laundry composition (such as a heavy duty liquid or solid detergent composition).

[0030] The cleaning compositions may be in any suitable form. The composition can be selected from a liquid, solid, or combination thereof. As used herein, "liquid" includes free-flowing liquids, as well as pastes, gels, foams and mousses. Non-limiting examples of liquids include light duty and heavy duty liquid detergent compositions, fabric enhancers, detergent gels commonly used for laundry, bleach and laundry additives. Gases, e.g., suspended bubbles, or solids, e.g. particles, may be included within the liquids. A "solid" as used herein includes, but is not limited to, powders, agglomerates, and mixtures thereof. Non-limiting examples of solids include: granules, micro-capsules, beads, noodles, and pearlised balls. Solid compositions may provide a technical benefit including, but not limited to, through-the-wash benefits, pre-treatment benefits, and/or aesthetic effects.

[0031] The cleaning composition may be in the form of a unitized dose article, such as a tablet or in the form of a pouch. Such pouches typically include a water-soluble film, such as a polyvinyl alcohol water-soluble film, that at least partially encapsulates a composition. Suitable films are available from MonoSol, LLC (Indiana, USA). The composition can be encapsulated in a single or multi-compartment pouch. A multi-compartment pouch may have at least two, at least three, or at least four compartments. A multi-compartmented pouch may include compartments that are side-by-side and/or superposed. The composition contained in the pouch may be liquid, solid (such as powders), or combinations thereof.

Galactanase Enzyme

10

20

30

35

45

50

55

The endo-beta-1,6-galactanase enzyme is an extracellular polymer-degrading enzyme. The term "endo-beta-1,6-galactanase" or "a polypeptide having endo-beta-1,6-galactanase activity" means a endo-beta-1,6-galactanase activity (EC 3.2.1.164) that catalyzes the hydrolytic cleavage of 1,6-3-D-galactooligosaccharides with a degree of polymerization (DP) higher than 3, and their acidic derivatives with 4-O-methylglucosyluronate or glucosyluronate groups at the non-reducing terminals.

[0033] For purposes of the present disclosure, endo-beta-1,6-galactanase activity is determined according to the procedure described in WO 2015185689 in Assay I. Suitable examples from class EC 3.2.1.164 are described in WO 2015185689, such as the mature polypeptide SEQ ID NO: 2 described therein. Preferably the galactanase enzyme is selected from Glycoside Hydrolase (GH) Family 30.

[0034] Preferably, the endo-beta-1,6-galactanase comprises a microbial enzyme. The endo-beta-1,6-galactanase may be fungal or bacterial in origin. Bacterial endo-beta-1,6-galactanase may be most preferred. Fungal endo-beta-1,6-galactanase may be most preferred.

[0035] A bacterial endo-beta-1,6-galactanase is obtainable from *Streptomyces*, for example *Streptomyces davawensis*. A preferred endo-beta-1,6-galactanase is obtainable from *Streptomyces davawensis* JCM 4913 defined in SEQ ID NO: 1 herein, or a variant thereof, for example having at least 40% or 50% or 60% or 70% or 75% or 80% or 85% or 90% or 95%, 96%, 97%, 98%, 99% or 100% identity thereto.

[0036] Other bacterial endo-beta-1,6-galactanase include those encoded by the DNA sequences of *Streptomyces avermitilis* MA-4680 with amino acid sequence defined in SEQ ID NO: 2 herein, or a variant thereof, for example having at least 40% or 50% or 60% or 70% or 75% or 80% or 85% or 90% or 95%, 96%, 97%, 98%, 99% or 100% identity thereto.

[0037] A fungal endo-beta-1,6-galactanase is obtainable from *Trichoderma*, for example *Trichoderma harzianum*. A preferred endo-beta-1,6-galactanase is obtainable from *Trichoderma harzianum* defined in SEQ ID NO: 3 herein, or a variant thereof, for example having at least 40% or 50% or 60% or 70% or 75% or 80% or 85% or 90% or 95%, 96%, 97%, 98%, 99% or 100% identical thereto.

[0038] Other fungal endo-beta-1,6-galactanases include those encoded by the DNA sequences of *Ceratocystis fimbriata* f. sp. Platani, *Muscodor strobelii* WG-2009a, *Oculimacula yallundae, Trichoderma viride* GD36A, *Thermomyces stellatus, Myceliophthora thermophilia.*

[0039] Preferably the galactanase has an amino acid sequence having at least 60%, or at least 80%, or at least 90% or at least 95% identity with the amino acid sequence shown in SEQ ID NO:1, SEQ ID NO:2 or SEQ ID NO:3. Preferably the galactanase is an isolated galactanase.

[0040] Preferably the galactanase enzyme is present in a laundering aqueous liquor in an amount of from 0.01ppm to 1000 ppm of the galactanase enzyme, or from 0.05 or from 0.1ppm to 750 or 500ppm.

[0041] The galactanase or composition comprising galactanase may also give rise to biofilm-disrupting effects.

Water-Insoluble Plant Fiber

10

20

30

35

40

45

50

55

[0042] The liquid cleaning compositions of the present invention include water-soluble plant fiber. Without wishing to be bound by theory, it is believed that the insoluble fibers may microabrade a target surface, thereby synergistically facilitating the cleaning benefits provided by other components of the composition. Additionally, such fibers may be particularly useful in liquid compositions, as they can provide structuring benefits.

[0043] The liquid cleaning compositions of the present invention may include from about 0.01% to about 5%, by weight of the cleaning composition, of water-insoluble fiber.

[0044] The water-insoluble plant fiber may be derived from any member of the plant kingdom, including trees, herbaceous plants and the fruits of these plants. Example sources of such fibers are wood, chicory root, sugar beet and citrus or other fruits such as apple. The fibers may be produced as a side-stream from the processing of such crops for other purposes, for example in sugar refining, inulin production and fruit juice production.

[0045] Examples of suitable materials include parenchymal cellulose compositions and activated citrus fibers.

[0046] Suitable parenchymal cellulose compositions include particulate cellulose material containing, by dry weight of the particulate cellulose material, at least 70% cellulose, less than 10% pectin and at least 3% hemicellulose, wherein the particulate material has a volume-weighted median major particle dimension within the range of 25-75 μ m, preferably within the range of 35-65 μm, as measured by laser light diffractometry in accordance with the established protocol ISO13320 (2009). The particulate cellulose material of this invention may contain particles of specific structure, shape and size. Typically the material contains particles having the form of platelets comprising parenchymal cellulose structures or networks. It is preferred that the size distribution of the particulate material falls within certain limits. When the distribution is measured with a laser light scattering particle size analyzer, such as the Malvern Mastersizer or another instrument of equal or better sensitivity, the diameter data is preferably reported as a volume distribution. Thus the reported median for a population of particles will be volume-weighted, with about one-half of the particles, on a volume basis, having diameters less than the median diameter for the population. Typically, the median major dimension of the particles of the parenchymal cellulose composition is within the range of 25-75 µm. More preferably the median major dimension of the particles of the parenchymal cellulose composition is within the range of 35-65 μm. Typically at least about 90%, on a volume basis, of the particles has a diameter less than about 120 μm, more preferably less than 110 μm, more preferably less than 100 μm. Preferably, the particulate cellulose material has a volume-weighted median minor dimension larger than 0.5 μ m, preferably larger than 1 μ m.

[0047] The parenchymal cellulose is characterized by the fact that the majority of the cellulose material is present in the form of particles that are distinct from the nanofibrilised cellulose described in the prior art in that the cellulose nanofibrils are not substantially unraveled. Preferably, less than 10%, or more preferably less than 1% or less than 0.1% by dry weight of the cellulose within the composition is in the form of nanofibrillated cellulose. This is advantageous as nanofibrillated cellulose negatively affects the redispersability of the material, as indicated herein before. By 'nanofibrils' we refer to the fibrils making up the cellulose fibers, typically having a width in the nanometer range (e.g., less than 1 μ m) and a length of up to 20 μ m. The nomenclature used in the field over the past decades has been somewhat inconsistent in that the terms 'microfibril' and 'nanofibril' have been used to denote the same material. In the context of this invention, the two terms are deemed to be fully interchangeable.

[0048] In accordance with the invention, the plant parenchymal cellulose material has been treated, modified and/or some components may have been removed but the cellulose at no time has been broken down to individual microfibrils, thereby losing the structure of plant cell wall sections. As mentioned before, the cellulose material of this invention has a reduced pectin content, as compared to the parenchymal cell wall material from which it is derived. Removal of some of the pectin is believed to result in enhanced thermal stability. The term "pectin" as used herein refers to a class of plant cell-wall heterogeneous polysaccharides that can be extracted by treatment with acids and chelating agents. Typically, 70-80% of pectin is found as a linear chain of alpha-(1,4)-linked D-galacturonic acid monomers. The smaller RG-I fraction of pectin is comprised of alternating (1-4)-linked galacturonic acid and (1,2)-linked L-rhamnose, with substantial arabinogalactan branching emanating from the L-rhamnose residue. Other monosaccharides, such as D-fucose, D-xylose, apiose, aceric acid, Kdo, Dha, 2-O-methyl-D-fucose, and 2-O-methyl-D-xylose, are found either in the RG-II pectin fraction (<2%), or as minor constituents in the RG-I fraction. Proportions of each of the monosaccharides in relation to D-galacturonic acid vary depending on the individual plant and its micro-environment, the species, and time during the growth cycle. For the same reasons, the homogalacturonan and RG-I fractions can differ widely in their content of methyl esters on GalA residues, and the content of acetyl residue esters on the C-2 and C-3 positions of GalA and neutral sugars. It is preferred that the particulate cellulose material of the invention comprises less than 5 wt.% of pectin, by dry weight of the particulate cellulose material, more preferably less than 2.5 wt.%. The presence of at least some pectin in the cellulose material is nevertheless desired. Without wishing to be bound by any theory it is assumed that pectin plays a role in the electrostatic interactions between particles contained in the material and/or in supporting the network/structure of the cellulose. Hence, it is preferred that the particulate cellulose material contains at least 0.5 wt% of pectin by dry weight of the particulate cellulose material, more preferably at least 1 wt.%.

[0049] The composition of the present invention comprises, based on the total composition weight, from 0.01 to 5 %, preferably 0.05 to 1 %, more preferably from 0.1 to 0.75 % of water insoluble plant derived fibers.

[0050] By water insoluble plant derived fibers it is meant herein cellulose micro or nano fibrils and micro or nano crystals. The plant fibers can be extracted from plants, fruits or wood. Water insoluble plant derived fibers sources may be selected from the group consisting of citrus peels, such as lemons, oranges and/or grapefruit; fruits, such as apples, bananas and/or pear; vegetables such as carrots, peas, potatoes and/or chicory; plants such as bamboo, jute, abaca, flax, cotton and/or sisal, cereals, and different wood sources such as spruces, eucalyptus and/or oak. Preferably, the cellulose fibers source may be selected from the group consisting of wood or plants, in particular, spruce, eucalyptus, jute and sisal. After water-insoluble fibers have been activated by high pressure homogenizer (from 80 to 350 bars), the mean hydrodynamic diameter of such fibers is preferably from 3 microns to 130 microns (as measured using he hydrodynamic method), more preferably from 5 microns to 110 microns, even more preferably from 10 to 100microns and the average dimeter is from 1nm to 1 micron, preferably from 10 nm to 850 nm, even more preferably from 15 to 350 nm. Without wishing to be bound by any theory, acid hydrolysis of water-insoluble plant derived fibers, would lead to micro or nanocrystals having an average diameter from 1 nm to 100 nm and a length from 200 nm to 3 microns (as measured using the AFM method). Such materials are commercially available from American process under the tradename of Bioplus.

[0051] The content of cellulose will vary depending on the source and treatment applied for the extraction of the fibers, and will range from 15 to 100%, preferably above 30%, more preferably above 50%, and even more preferably above 80%. [0052] Such cellulose fibers may comprise pectin, hemicellulose, proteins, lignin and other impurities inherent to the cellulose based material source such as ash, metals, salts and combinations thereof. The cellulose fibers are preferably non-ionic.

[0053] Suitable activated citrus fruits may be produced from lemons and limes. These fruits may be de-juiced to leave an insoluble plant cell wall material with some internally contained sugars and pectin. The 'spongy microstructure', known as albedo, may be used to make acidic, powdered citrus fiber. The structure is dried, sieved and then washed to increase the fiber content. Dried materials are typically large (with cell fragments greater than 100 microns), consisting of tightly bound/bonded fibrils). After milling a powdered citrus fiber material is obtained. This procedure leaves much of the natural cell wall intact whilst sugars are removed. The resultant swellable citrus fiber materials are typically used as food additives and are often employed for example in low fat mayonnaise.

[0054] A preferred type of powdered citrus fiber for detergent formulations and used in accordance with the present invention is available from Herbafood Ingredients GmbH under the tradename, Herbacel™ AQ+ type N citrus fiber and Citri-Fi 100FG from Fiberstar. This citrus fiber has a total (soluble and insoluble) fiber content of greater than 80% by weight and soluble fiber content of greater than 20% by weight. It is supplied as a fine dried powder with low colour and has a water binding capacity of about 20 kg water per kg of powder.

[0055] The citrus fiber of the present disclosure may be activated citrus fiber. To activate the citrus fibers, powdered citrus fiber may be activated (hydrated and opened up structurally) by using a high shear dispersion process at low concentration, in water. It is also advantageous to include a preservative into the premix as the dispersed activated citrus fiber is biodegradable.

[0056] A particularly preferred plant fiber may be provided by is Exilva® (from Borregaard).

40 Adjuncts

15

20

25

30

35

45

50

55

[0057] The cleaning compositions described herein may optionally include other adjunct components, for example selected from surfactants, fabric shading dyes, fabric care benefit agent; additional enzyme; deposition aid; rheology modifier; builder; chelant; bleach; bleaching agent; bleach precursor; bleach booster; bleach activator, bleach catalyst; perfume and/or perfume microcapsules; perfume loaded zeolite; starch encapsulated accord; polyglycerol esters; whitening agent; pearlescent agent; enzyme stabilizing systems; scavenging agents including fixing agents for anionic dyes, complexing agents for anionic surfactants, and mixtures thereof; optical brighteners or fluorescers; polymer including but not limited to soil release polymer and/or soil suspension polymer; dispersants; antifoam agents; non-aqueous solvent; fatty acid; suds suppressors, e.g., silicone suds suppressors; cationic starches; scum dispersants; substantive dyes; colorants; opacifier; antioxidant; hydrotropes such as toluenesulfonates, cumenesulfonates and naphthalenesulfonates; color speckles; colored beads, spheres or extrudates; clay softening agents; anti-bacterial agents. Additionally or alternatively, the compositions may comprise surfactants, and/or solvent systems. Quaternary ammonium compounds may be present, particularly in fabric enhancer compositions, such as fabric softeners, and comprise quaternary ammonium cations that are positively charged polyatomic ions of the structure NR₄⁺, where R is an alkyl group or an aryl group.

Additional Enzymes

[0058] Preferably the composition of the invention comprises additional enzymes, for example selected from lipases, amylases, proteases, nucleases, pectate lyases, cellulases, cutinases, and mixtures thereof. The cleaning compositions preferably comprise one or more additional enzymes from the group selected from nucleases. The cleaning compositions preferably comprises one or more additional enzymes selected from the group amylases, lipases, proteases, pectate lyases, cellulases, cutinases, and mixtures thereof. Preferably, the cleaning compositions comprises one or more additional enzymes selected from amylases and proteases and mixtures thereof. Preferably the cleaning compositions comprise one or more additional enzymes selected from lipases. The compositions may also comprise hemicellulases, peroxidases, xylanases, pectinases, keratinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, ß-glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase and mixtures thereof. When present in the composition, the aforementioned additional enzymes may be present at levels from about 0.0001% to about 2%, from about 0.0001% to about 1% or even from about 0.001 % to about 0.5% enzyme protein by weight of the composition. Preferably the or each additional enzyme is present in the laundering aqueous liquor in an amount of from 0.01ppm to 1000 ppm of the active enzyme protein, or from 0.05 or from 0.1ppm to 750 or 500ppm.

Nucleases

10

15

20

30

35

40

45

50

55

[0059] Preferably the composition additionally comprises a nuclease enzyme. The nuclease enzyme is an enzyme capable of cleaving the phosphodiester bonds between the nucleotide subunits of nucleic acids. Suitable nuclease enzymes may be deoxyribonuclease or ribonuclease enzyme or a functional fragment thereof. By functional fragment or part is meant the portion of the nuclease enzyme that catalyzes the cleavage of phosphodiester linkages in the DNA backbone and so is a region of said nuclease protein that retains catalytic activity. Thus it includes truncated, but functional versions, of the enzyme and/or variants and/or derivatives and/or homologues whose functionality is maintained.

[0060] Preferably the nuclease enzyme is a deoxyribonuclease, preferably selected from any of the classes E.C. 3.1.21.x, where x=1, 2, 3, 4, 5, 6, 7, 8 or 9, E.C. 3.1.22.y where y=1, 2, 4 or 5, E.C. 3.1.30.z where z=1 or 2, E.C. 3.1.31.1 and mixtures thereof. Nuclease enzymes from class E.C. 3.1.21.x and especially where x=1 are particularly preferred. Nucleases in class E.C. 3.1.22.y cleave at the 5' hydroxyl to liberate 3' phosphomonoesters. Enzymes in class E.C. 3.1.30.z may be preferred as they act on both DNA and RNA and liberate 5'-phosphomonoesters. Suitable examples from class E.C. 3.1.31.2 are described in US2012/0135498A, such as SEQ ID NO:3 therein. Such enzymes are commercially available as DENARASE® enzyme from c-LECTA. Nuclease enzymes from class E.C. 3.1.31.1 produce 3 'phosphomonoesters.

[0061] Preferably, the nuclease enzyme comprises a microbial enzyme. The nuclease enzyme may be fungal or bacterial in origin. Bacterial nucleases may be most preferred. Fungal nucleases may be most preferred.

[0062] The microbial nuclease is obtainable from *Bacillus*, such as a *Bacillus licheniformis* or *Bacillus subtilis* bacterial nucleases. A preferred nuclease is obtainable from *Bacillus licheniformis*, preferably from strain El-34-6. A preferred deoxyribonuclease is a variant of *Bacillus licheniformis*, from strain El-34-6 nucB deoxyribonuclease defined in SEQ ID NO:4 herein, or variant thereof, for example having at least 70% or 75% or 80% or 85% or 90% or 95%, 96%, 97%, 98%, 99% or 100% identical thereto. Other suitable nucleases are defined in SEQ ID NO: 5 herein, or variant thereof, for example having at least 70% or 75% or 80% or 95%, 96%, 97%, 98%, 99% or 100% identical thereto. Other suitable nucleases are defined in SEQ ID NO: 6 herein, or variant thereof, for example having at least 70% or 75% or 80% or 85% or 90% or 95%, 96%, 97%, 98%, 99% or 100% identical thereto.

[0063] A fungal nuclease is obtainable from *Aspergillus*, for example *Aspergillus oryzae*. A preferred nuclease is obtainable from *Aspergillus oryzae* defined in SEQ ID NO: 7 herein, or variant thereof, for example having at least 60% or 70% or 75% or 80% or 85% or 90% or 95%, 96%, 97%, 98%, 99% or 100% identical thereto.

[0064] Another suitable fungal nuclease is obtainable from *Trichoderma*, for example *Trichoderma harzianum*. A preferred nuclease is obtainable from *Trichoderma harzianum* defined in SEQ ID NO: 8 herein, or variant thereof, for example having at least 60% or 70% or 75% or 80% or 85% or 90% or 95%, 96%, 97%, 98%, 99% or 100% identical thereto. [0065] Other fungal nucleases include those encoded by the DNA sequences of *Aspergillus oryzae* RIB40, *Aspergillus oryzae* 3.042, *Aspergillus flavus* NRRL3357, *Aspergillus parasiticus* SU-1, *Aspergillus nomius* NRRL13137, *Trichoderma reesei* QM6a, *Trichoderma virens* Gv29-8, *Oidiodendron maius* Zn, *Metarhizium guizhouense* ARSEF 977, *Metarhizium majus* ARSEF 297, *Metarhizium robertsii* ARSEF 23, *Metarhizium acridum* CQMa 102, *Metarhizium brunneum* ARSEF 3297, *Metarhizium anisopliae*, *Colletotrichum fioriniae* PJ7, *Colletotrichum sublineola*, *Trichoderma atroviride* IMI 206040, *Tolypocladium ophioglossoides* CBS 100239, *Beauveria bassiana* ARSEF 2860, *Colletotrichum higginsianum*, *Hirsutella minnesotensis* 3608, *Scedosporium apiospermum*, *Phaeomoniella chlamydospora*, *Fusarium verticillioides* 7600, *Fusarium oxysporum* f. sp. cubense race 4, *Colletotrichum graminicola* M1.001, *Fusarium oxysporum* FOSC 3-a, *Fusarium avenaceum*, *Fusarium langsethiae*, *Grosmannia clavigera* kw 1407, *Claviceps purpurea* 20.1, *Verticillium*

longisporum, Fusarium oxysporumf. sp. cubense race 1, Magnaporthe oryzae 70-15, Beauveria bassiana D1-5, Fusarium pseudograminearum CS3096, Neonectria ditissima, Magnaporthiopsis poae ATCC 64411, Cordyceps militaris CM01, Marssonina brunnea f. sp. 'multigermtubi' MB_m1, Diaporthe ampelina, Metarhizium album ARSEF 1941, Colletotrichum gloeosporioides Nara gc5, Madurella mycetomatis, Metarhizium brunneum ARSEF 3297, Verticillium alfalfae VaMs.102, Gaeumannomyces graminis var. tritici R3-111a-1, Nectria haematococca mpVI 77-13-4, Verticillium longisporum, Verticillium dahliae VdLs.17, Torrubiella hemipterigena, Verticillium longisporum, Verticillium dahliae VdLs.17, Botrytis cinerea B05.10, Chaetomium globosum CBS 148.51, Metarhizium anisopliae, Stemphylium lycopersici, Sclerotinia borealis F-4157, Metarhizium robertsii ARSEF 23, Myceliophthora thermophila ATCC 42464, Phaeosphaeria nodorum SN15, Phialophora attae, Ustilaginoidea virens, Diplodia seriata, Ophiostoma piceae UAMH 11346, Pseudogymnoascus pannorum VKM F-4515 (FW-2607), Bipolaris oryzae ATCC 44560, Metarhizium guizhouense ARSEF 977, Chaetomium thermophilum var. thermophilum DSM 1495, Pestalotiopsis fici W106-1, Bipolaris zeicola 26-R-13, Setosphaeria turcica Et28A, Arthroderma otae CBS 113480 and Pyrenophora tritici-repentis Pt-1C-BFP.

[0066] Preferably the nuclease is an isolated nuclease.

[0067] Preferably the nuclease enzyme is present in the laundering aqueous liquor in an amount of from 0.01ppm to 1000 ppm of the nuclease enzyme, or from 0.05 or from 0.1ppm to 750 or 500ppm.

Acetylglucosaminidases.

[0068] Preferably the composition comprises an acetylglucosaminidase enzyme, preferably a β -N-acetylglucosaminidase enzyme from E.C. 3.2.1.52, preferably an enzyme having at least 70%, or at least 75% or at least 80% or at least 85% or at least 90% or at least 95% or at least 96% or at least 97% or at least 98% or at least 99% or at least or 100% identity to SEQ ID NO: 9.

Mannanases

15

20

25

30

35

40

45

50

55

[0069] Preferably the composition comprises a mannanase enzyme. The term "mannanase" means a polypeptide having mannan endo-1,4- beta-mannosidase activity (EC 3.2.1.78) from the glycoside hydrolase family 26 that catalyzes the hydrolysis of 1 ,4-3-D-mannosidic linkages in mannans, galactomannans and glucomannans. Alternative names of mannan endo-1,4-beta-mannosidase are 1,4-3-D-mannan mannanohydrolase; endo-1,4-3-mannanase; endo- β -1,4-mannanase B; 3-1,4-mannan 4-mannanohydrolase; endo-3-mannanase; and β -D-mannanase. Preferred mannanases are members of the glycoside hydrolase family 26.

[0070] For purposes of the present disclosure, mannanase activity may be determined using the Reducing End Assay as described in the experimental section of WO 2015040159. Suitable examples from class EC 3.2.1.78 are described in WO 2015040159, such as the mature polypeptide SEQ ID NO: 2 described therein.

[0071] Preferred mannanases are variants having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 81 %, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% sequence identity to the mature polypeptide SEQ ID NO: 10 from *Ascobolus stictoideus;* [0072] Preferred mannanases are variants having at least 81 %, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% sequence identity to the mature polypeptide SEQ ID NO: 11 from *Chaetomium virescens*.

[0073] Preferred mannanases are variants having at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 99% or 100% sequence identity to the mature polypeptide SEQ ID NO: 12 from *Preussia aemulans*.

[0074] Preferred mannanases are variants having at least at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% sequence identity to the mature polypeptide SEQ ID NO: 13 from *Yunnania penicillata*.

[0075] Preferred mannanases are variants having at least at least 75%, at least 76%, at least 77%, at least 78%, at least 77%, at least 78%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 99% or 100% sequence identity to the mature polypeptide SEQ ID NO: 14 from *Myrothecium roridum*. Preferably the mannanase is an isolated mannanase.

[0076] Preferably the mannanase enzyme is present in the cleaning compositions in an amount from 0.001 to 1 wt% based on active protein in the composition, or from 0.005 to 0.5 wt% or from 0.01 to 0.25 wt%. Preferably the mannanase enzyme is present in the laundering aqueous liquor in an amount of from 0.01ppm to 1000 ppm of the mannanase enzyme, or from 0.05 or from 0.1ppm to 750 or 500ppm. The compositions of the invention comprising both galactanase and mannanase may be particularly effective against sticky soils and for improved cleaning. It is believed the two enzymes function together in a complementary way.

Further Glycosyl Hydrolases

10 [0077] The composition may comprise a glycosyl hydrolase selected from GH family 39 and GH family 114 and mixtures thereof, for example as described in co-pending applications having applicants reference numbers CM4645FM and CM4646 FM, respectively.

Proteases.

15

20

25

30

35

[0078] Preferably the composition comprises one or more proteases. Suitable proteases include metalloproteases and serine proteases, including neutral or alkaline microbial serine proteases, such as subtilisins (EC 3.4.21.62). Suitable proteases include those of animal, vegetable or microbial origin. In one aspect, such suitable protease may be of microbial origin. The suitable proteases include chemically or genetically modified mutants of the aforementioned suitable proteases. In one aspect, the suitable protease may be a serine protease, such as an alkaline microbial protease or/and a trypsin-type protease. Examples of suitable neutral or alkaline proteases include:

- (a) subtilisins (EC 3.4.21.62), preferably those derived from *Bacillus sp.*, such as *B. lentus*, *B. alkalophilus*, *B. subtilis*, *B. amyloliquefaciens*, *B. pumilus* and *B.* gibsonii and *B. akibaii* described in WO2004067737, WO2015091989, WO2015091990, WO2015024739, WO2015143360, US 6,312,936 B1, US 5,679,630, US 4,760,025, US7,262,042 and WO09/021867, DE102006022216A1, DE102006022224A1, WO2015089447, WO2015089441, WO2016066756, WO2016066757, WO2016069557, WO2016069563, WO2016069569.
- (b) trypsin-type or chymotrypsin-type proteases, such as trypsin (e.g., of porcine or bovine origin), including the *Fusarium* protease described in WO 89/06270 and the chymotrypsin proteases derived from *Cellumonas* described in WO 05/052161 and WO 05/052146.
- (c) metalloproteases, preferably those derived from *Bacillus amyloliquefaciens* described in WO 07/044993A2; from *Bacillus, Brevibacillus, Thermoactinomyces, Geobacillus, Paenibacillus, Lysinibacillus* or *Streptomyces spp.* Described in WO2014194032, WO2014194054 and WO2014194117; from *Kribella alluminosa* described in WO2015193488; and from *Streptomyces* and *Lysobacter* described in WO2016075078.
- (d) protease having at least 90% identity to the subtilase from Bacillus sp. TY145, NCIMB 40339, described in WO92/17577 (Novozymes A/S), including the variants of this Bacillus sp TY145 subtilase described in WO2015024739, and WO2016066757.
- [0079] Preferred proteases include those derived from Bacillus gibsonii or Bacillus Lentus.
- [0080] Suitable commercially available protease enzymes include those sold under the trade names Alcalase®, Savinase®, Primase®, Durazym®, Polarzyme®, Kannase®, Liquanase®, Liquanase Ultra®, Savinase Ultra®, Ovozyme®, Neutrase®, Everlase® and Esperase® by Novozymes A/S (Denmark), those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Properase®, Purafect®, Purafect Prime®, Purafect Ox®, FN3®, FN4®, Excellase® and Purafect OXP® by Genencor International, those sold under the tradename Opticlean® and Optimase® by Solvay Enzymes, those available from Henkel/ Kemira, namely BLAP (sequence shown in Figure 29 of US 5,352,604 with the following mutations S99D + S101 R + S103A + V104I + G159S, hereinafter referred to as BLAP), BLAP R (BLAP with S3T + V4I + V199M + V205I + L217D), BLAP X (BLAP with S3T + V4I + V205I) and BLAP F49 (BLAP with S3T + V4I + A194P + V199M + V205I + L217D) all from Henkel/Kemira; and KAP (*Bacillus alkalophilus* subtilisin with mutations A230V + S256G + S259N) from Kao, or as disclosed in WO2009/149144, WO2009/149145, WO2010/56653, WO2010/566640, WO2011/072117, US2011/0237487, WO2011/140316, WO2012/151480, EP2510092, EP2566960 OR EP2705145.

Amylases

55

[0081] Preferably the composition may comprise an amylase. Suitable alpha-amylases include those of bacterial or fungal origin. Chemically or genetically modified mutants (variants) are included. A preferred alkaline alpha-amylase is derived from a strain of Bacillus, such as Bacillus licheniformis, Bacillus amyloliquefaciens, Bacillus stearothermophilus, Bacillus subtilis, or other Bacillus sp., such as Bacillus sp. NCIB 12289, NCIB 12512, NCIB 12513, DSM 9375 (USP 7,153,818) DSM 12368, DSMZ no. 12649, KSM AP1378 (WO 97/00324), KSM K36 or KSM K38 (EP 1,022,334).

Preferred amylases include:

5

10

20

30

35

40

45

50

55

(a) the variants described in WO 94/02597, WO 94/18314, WO96/23874 and WO 97/43424, especially the variants with substitutions in one or more of the following positions versus the enzyme listed as SEQ ID No. 2 in WO 96/23874: 15, 23, 105, 106, 124, 128, 133, 154, 156, 181, 188, 190, 197, 202, 208, 209, 243, 264, 304, 305, 391, 408, and 444. (b) the variants described in USP 5,856,164 and WO99/23211, WO 96/23873, WO00/60060 and WO 06/002643, especially the variants with one or more substitutions in the following positions versus the AA560 enzyme listed as SEQ ID No. 12 in WO 06/002643:

26, 30, 33, 82, 37, 106, 118, 128, 133, 149, 150, 160, 178, 182, 186, 193, 203, 214, 231, 256, 257, 258, 269, 270, 272, 283, 295, 296, 298, 299, 303, 304, 305, 311, 314, 315, 318, 319, 339, 345, 361, 378, 383, 419, 421, 437, 441, 444, 445, 446, 447, 450, 461, 471, 482, 484, preferably that also contain the deletions of D183* and G184*.

- (c) variants exhibiting at least 90% identity with SEQ ID No. 4 in WO06/002643, the wild-type enzyme from Bacillus SP722, especially variants with deletions in the 183 and 184 positions and variants described in WO 00/60060, which is incorporated herein by reference.
 - (d) variants exhibiting at least 95% identity with the wild-type enzyme from Bacillus sp.707 (SEQ ID NO:7 in US 6,093, 562), especially those comprising one or more of the following mutations M202, M208, S255, R172, and/or M261. Preferably said amylase comprises one or more of M202L, M202V, M202S, M202T, M202I, M202Q, M202W, S255N and/or R172Q. Particularly preferred are those comprising the M202L or M202T mutations.
 - (e) variants described in WO 09/149130, preferably those exhibiting at least 90% identity with SEQ ID NO: 1 or SEQ ID NO:2 in WO 09/149130, the wild-type enzyme from Geobacillus Stearophermophilus or a truncated version thereof;
- ²⁵ (f) variants as described in EP2540825 and EP2357220, EP2534233; (g) variants as described in WO2009100102 and WO2010115028.

[0082] Suitable commercially available alpha-amylases include DURAMYL®, LIQUEZYME®, TERMAMYL®, TERMAMYL ULTRA®, NATALASE®, SUPRAMYL®, STAINZYME®, STAINZYME PLUS®, FUNGAMYL® and BAN® (Novozymes A/S, Bagsvaerd, Denmark), KEMZYM® AT 9000 Biozym Biotech Trading GmbH Wehlistrasse 27b A-1200 Wien Austria, RAPIDASE®, PURASTAR®, ENZYSIZE®, OPTISIZE HT PLUS®, POWERASE® and PURASTAR OXAM® (Genencor International Inc., Palo Alto, California) and KAM® (Kao, 14-10 Nihonbashi Kayabacho, 1-chome, Chuoku Tokyo 103-8210, Japan). In one aspect, suitable amylases include NATALASE®, STAINZYME® and STAINZYME PLUS® and mixtures thereof.

Lipases

[0083] Preferably the composition comprises one or more lipases, including "first cycle lipases" such as those described in U.S. Patent 6,939,702 B1 and US PA 2009/0217464. Preferred lipases are first-wash lipases. In one embodiment of the invention the composition comprises a first wash lipase. First wash lipases includes a lipase which is a polypeptide having an amino acid sequence which: (a) has at least 90% identity with the wild-type lipase derived from Humicola lanuginosa strain DSM 4109; (b) compared to said wild-type lipase, comprises a substitution of an electrically neutral or negatively charged amino acid at the surface of the three-dimensional structure within 15A of E1 or Q249 with a positively charged amino acid; and (c) comprises a peptide addition at the C-terminal; and/or (d) comprises a peptide addition at the N-terminal and/or (e) meets the following limitations: i) comprises a negative amino acid in position E210 of said wild-type lipase; ii) comprises a negatively charged amino acid in the region corresponding to positions 90-101 of said wild-type lipase; and iii) comprises a neutral or negative amino acid at a position corresponding to N94 or said wild-type lipase and/or has a negative or neutral net electric charge in the region corresponding to positions 90-101 of said wild-type lipase. Preferred are variants of the wild-type lipase from Thermomyces lanuginosus comprising one or more of the T231R and N233R mutations. The wild-type sequence is the 269 amino acids (amino acids 23 - 291) of the Swissprot accession number Swiss-Prot O59952 (derived from Thermomyces lanuginosus (Humicola lanuginosa)). Preferred lipases include those sold under the tradenames Lipex® and Lipoclean®. Other suitable lipases include those described in European Patent Application No. 12001034.3 or EP2623586.

Endoglucanases

[0084] Other preferred enzymes include microbial-derived endoglucanases exhibiting endo-beta-1,4-glucanase activity (E.C. 3.2.1.4), including a bacterial polypeptide endogenous to a member of the genus Bacillus which has a

sequence of at least 90%, 94%, 97% and even 99% identity to the amino acid sequence SEQ ID NO:2 in US7,141,403B2) and mixtures thereof. Suitable endoglucanases are sold under the tradenames Celluclean® and Whitezyme® (Novozymes A/S, Bagsvaerd, Denmark).

5 Pectate Lyases

10

20

30

35

40

45

50

55

[0085] Other preferred enzymes include pectate lyases sold under the tradenames Pectawash®, Pectaway®, Xpect® and mannanases sold under the tradenames Mannaway® (all from Novozymes A/S, Bagsvaerd, Denmark), and Purabrite® (Genencor International Inc., Palo Alto, California).

Cleaning Cellulase

[0086] The cleaning composition described herein may additionally comprise a cleaning cellulase. The cellulase may be an endoglucanase. The cellulase may have endo beta 1,4-glucanase activity and a structure which does not comprise a class A Carbohydrate Binding Module (CBM). A class A CBM is defined according to A. B. Boraston et al. Biochemical Journal 2004, Volume 382 (part 3) pages 769-781. In particular, the cellulase does not comprise a class A CBM from families 1, 2a, 3, 5 and 10.

[0087] The cellulase may be a glycosyl hydrolase having enzymatic activity towards amorphous cellulose substrates, wherein the glycosyl hydrolase is selected from GH families 5, 7, 12, 16, 44 or 74. Preferably, the cellulase is a glycosyl hydrolase selected from GH family 5. A preferred cellulase is Celluclean, supplied by Novozymes. This preferred cellulase is described in more detail in WO2002/099091. The glycosyl hydrolase (GH) family definition is described in more detail in Biochem J. 1991, v280, 309-316. Another preferred cellulase is a glycosyl hydrolase having enzymatic activity towards both xyloglucan and amorphous cellulose substrates, wherein the glycosyl hydrolase is selected from GH families 5, 12, 44 or 74. Preferably, the glycosyl hydrolase selected from GH family 44.

[0088] For purposes of the present invention, the degree of identity between two amino acid sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends in Genetics 16: 276-277), preferably version 3.0.0 or later. The optional parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix. The output of Needle labeled "longest identity" (obtained using the -nobrief option) is used as the percent identity and is calculated as follows: (Identical Residues x 100)/(Length of Alignment - Total Number of Gaps in Alignment).

[0089] Suitable cleaning cellulase glycosyl hydrolases are selected from the group consisting of: GH family 44 glycosyl hydrolases from *Paenibacillus polyxyma* (wild-type) such as XYG1006 described in WO 01/062903 or are variants thereof; GH family 12 glycosyl hydrolases from *Bacillus licheniformis* (wild-type) such as Seq. No. ID: 1 described in WO 99/02663 or are variants thereof; GH family 5 glycosyl hydrolases from *Bacillus agaradhaerens* (wild type) or variants thereof; GH family 5 glycosyl hydrolases from *Bacillus* (wild type) such as XYG1034 and XYG 1022described in WO 01/064853 or variants thereof; GH family 74 glycosyl hydrolases from *Jonesia sp.* (wild type) such as XYG1020 described in WO 2002/077242 or variants thereof; and GH family 74 glycosyl hydrolases from *Trichoderma Reesei* (wild type), such as the enzyme described in more detail in Sequence ID no. 2 of WO03/089598, or variants thereof.

[0090] Preferred glycosyl hydrolases are selected from the group consisting of: GH family 44 glycosyl hydrolases from *Paenibacillus polyxyma* (wild-type) such as XYG1006 or are variants thereof.

[0091] Typically, the cellulase modifies the fabric surface during the laundering process so as to improve the removal of soils adhered to the fabric after the laundering process during wearing and usage of the fabric, in subsequent wash cycles. Preferably, the cellulase modifies the fabric surface during the laundering process so as to improve the removal of soils adhered to the fabric after the laundering process during wearing and usage of the fabric, in the subsequent two, or even three wash cycles.

[0092] Typically, the cellulase is used at a concentration of 0.005ppm to 1.0ppm in the aqueous liquor during the first laundering process. Preferably, the cellulase is used at a concentration of 0.02ppm to 0.5ppm in the aqueous liquor during the first laundering process.

Surfactant system

[0093] The cleaning composition may comprise a surfactant system. The cleaning composition may comprise from about 1% to about 80%, or from 1% to about 60%, preferably from about 5% to about 50% more preferably from about 8% to about 40%, by weight of the cleaning composition, of a surfactant system.

[0094] Surfactants suitable for use in the surfactant system may be derived from natural and/or renewable sources.

[0095] The surfactant system may comprise an anionic surfactant, more preferably an anionic surfactant selected from the group consisting of, alkyl benzene sulfonate, alkyl sulfate, alkyl alkoxy sulfate, especially alkyl ethoxy sulfate,

paraffin sulfonate and mixtures thereof, alkyl benzene sulfonates are particularly preferred. The surfactant system may further comprise a surfactant selected from the group consisting of nonionic surfactant, cationic surfactant, amphoteric surfactant, zwitterionic surfactant, and mixtures thereof. The surfactant system preferably comprises a nonionic surfactant, for example an ethoxylated nonionic surfactant. The surfactant system may comprise an amphoteric surfactant, for example an amine oxide surfactant, such as an alkyl dimethyl amine oxide. The surfactant system may comprise a zwitterionic surfactant, such as a betaine.

[0096] The most preferred surfactant system for the detergent composition of the present invention comprises from 1% to 40%, preferably 6% to 35%, more preferably 8% to 30% weight of the total composition of an anionic surfactant, preferably comprising an alkyl benzene sulphonate. The preferred surfactant system may optionally in addition comprise an alkyl alkoxy sulfate surfactant, more preferably an alkyl ethoxy sulfate, optionally combined with 0.5% to 15%, preferably from 1% to 12%, more preferably from 2% to 10% by weight of the composition of amphoteric and/or zwitterionic surfactant, more preferably an amphoteric and even more preferably an amine oxide surfactant, especially an alkyl dimethyl amine oxide.

[0097] Preferably the composition further comprises a nonionic surfactant, especially an alcohol alkoxylate in particular an alcohol ethoxylate nonionic surfactant. Most preferably the surfactant system comprises an anionic and a nonionic surfactant, preferably the weight ratio of the anionic to nonionic surfactant is from 25:1 to 1:2.

Anionic surfactant

10

15

25

30

35

40

45

50

[0098] Anionic surfactants may be in salt form or acid form, typically in the form of a water-soluble sodium, potassium, ammonium, magnesium or mono-, di- or tri- C2-C3 alkanolammonium salt, with the sodium cation being the usual one chosen.

Sulfonate Surfactant

[0099] Suitable anionic sulfonate surfactants for use herein include water-soluble salts of C8-C18 alkyl or hydroxyalkyl sulfonates; C11-C18 alkyl benzene sulfonates (LAS), modified alkylbenzene sulfonate (MLAS) as discussed in WO 99/05243, WO 99/05242, WO 99/05244, WO 99/05082, WO 99/05084, WO 99/05241, WO 99/07656, WO 00/23549, and WO 00/23548; methyl ester sulfonate (MES); and alpha-olefin sulfonate (AOS). Those also include the paraffin sulfonates may be monosulfonates and/or disulfonates, obtained by sulfonating paraffins of 10 to 20 carbon atoms. The sulfonate surfactant may also include the alkyl glyceryl sulfonate surfactants.

Sulfated anionic surfactant

[0100] Preferably the sulfated anionic surfactant is alkoxylated, more preferably, an alkoxylated branched sulfated anionic surfactant having an alkoxylation degree of from about 0.2 to about 4, even more preferably from about 0.3 to about 3, even more preferably from about 0.4 to about 1.5 and especially from about 0.4 to about 1. Preferably, the alkoxy group is ethoxy. When the sulfated anionic surfactant is a mixture of sulfated anionic surfactants, the alkoxylation degree is the weight average alkoxylation degree of all the components of the mixture (weight average alkoxylation degree). In the weight average alkoxylation degree calculation the weight of sulfated anionic surfactant components not having alkoxylated groups should also be included.

Weight average alkoxylation degree = (x1 * alkoxylation degree of surfactant 1 + x2 * alkoxylation degree of surfactant 2 +) / <math>(x1 + x2 +)

wherein x1, x2, ... are the weights in grams of each sulfated anionic surfactant of the mixture and alkoxylation degree is the number of alkoxy groups in each sulfated anionic surfactant.

[0101] Preferably, the branching group is an alkyl. Typically, the alkyl is selected from methyl, ethyl, propyl, butyl, pentyl, cyclic alkyl groups and mixtures thereof. Single or multiple alkyl branches could be present on the main hydrocarbyl chain of the starting alcohol(s) used to produce the sulfated anionic surfactant used in the detergent of the invention. Most preferably the branched sulfated anionic surfactant is selected from alkyl sulfates, alkyl ethoxy sulfates, and mixtures thereof.

[0102] The branched sulfated anionic surfactant can be a single anionic surfactant or a mixture of anionic surfactants. In the case of a single surfactant the percentage of branching refers to the weight percentage of the hydrocarbyl chains that are branched in the original alcohol from which the surfactant is derived.

[0103] In the case of a surfactant mixture the percentage of branching is the weight average and it is defined according

to the following formula:

5

10

25

30

35

40

50

55

Weight average of branching (%)= [(x1 * wt% branched alcohol 1 in alcohol 1 + x2 * wt% branched alcohol 2 in alcohol 2 +) / <math>(x1 + x2 +)] * 100

wherein x1, x2, ... are the weight in grams of each alcohol in the total alcohol mixture of the alcohols which were used as starting material for the anionic surfactant for the detergent of the invention. In the weight average branching degree calculation the weight of anionic surfactant components not having branched groups should also be included.

[0104] Suitable sulfate surfactants for use herein include water-soluble salts of C8-C18 alkyl or hydroxyalkyl, sulfate and/or ether sulfate. Suitable counterions include alkali metal cation or ammonium or substituted ammonium, but preferably sodium.

[0105] The sulfate surfactants may be selected from C8-C18 primary, branched chain and random alkyl sulfates (AS); C8-C18 secondary (2,3) alkyl sulfates; C8-C18 alkyl alkoxy sulfates (AExS) wherein preferably x is from 1-30 in which the alkoxy group could be selected from ethoxy, propoxy, butoxy or even higher alkoxy groups and mixtures thereof.

[0106] Alkyl sulfates and alkyl alkoxy sulfates are commercially available with a variety of chain lengths, ethoxylation and branching degrees. Commercially available sulfates include, those based on Neodol alcohols ex the Shell company, Lial - Isalchem and Safol ex the Sasol company, natural alcohols ex The Procter & Gamble Chemicals company.

[0107] Preferred alkyl sulfates are those in which the anionic surfactant is an alkyl ethoxy sulfate with a degree of ethoxylation of from about 0.2 to about 3, more preferably from about 0.3 to about 2, even more preferably from about 0.4 to about 1.5, and especially from about 0.4 to about 1. They are also preferred anionic surfactant having a level of branching of from about 5% to about 40%, even more preferably from about 10% to 35% and especially from about 20% to 30%.

Nonionic surfactant

[0108] Preferably the surfactant system comprises a nonionic surfactant, in an amount of from 0.1% to 40%, preferably 0.2% to 20%, most preferably 0.5% to 10% by weight of the composition. Suitable nonionic surfactants include the condensation products of aliphatic alcohols with from 1 to 25 moles of ethylene oxide. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 8 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 10 to 18 carbon atoms, preferably from 10 to 15 carbon atoms with from 2 to 18 moles, preferably 2 to 15, more preferably 5-12 of ethylene oxide per mole of alcohol. Highly preferred nonionic surfactants are the condensation products of guerbet alcohols with from 2 to 18 moles, preferably 2 to 15, more preferably 5-12 of ethylene oxide per mole of alcohol.

[0109] Other suitable non-ionic surfactants for use herein include fatty alcohol polyglycol ethers, alkylpolyglucosides and fatty acid glucamides.

Amphoteric surfactant

[0110] The surfactant system may include amphoteric surfactant, such as amine oxide. Preferred amine oxides are alkyl dimethyl amine oxide or alkyl amido propyl dimethyl amine oxide, more preferably alkyl dimethyl amine oxide and especially coco dimethyl amino oxide. Amine oxide may have a linear or mid-branched alkyl moiety. Typical linear amine oxides include water-soluble amine oxides containing one R1 C8-18 alkyl moiety and 2 R2 and R3 moieties selected from the group consisting of C1-3 alkyl groups and C1-3 hydroxyalkyl groups. Preferably amine oxide is characterized by the formula R1 - N(R2)(R3) O wherein R1 is a C8-18 alkyl and R2 and R3 are selected from the group consisting of methyl, ethyl, propyl, isopropyl, 2-hydroxethyl, 2-hydroxypropyl and 3-hydroxypropyl. The linear amine oxide surfactants in particular may include linear C10-C18 alkyl dimethyl amine oxides and linear C8-C12 alkoxy ethyl dihydroxy ethyl amine oxides. Preferred amine oxides include linear C10, linear C10-C12, and linear C12-C14 alkyl dimethyl amine oxides. As used herein "mid-branched" means that the amine oxide has one alkyl moiety having n1 carbon atoms with one alkyl branch on the alkyl moiety having n2 carbon atoms. The alkyl branch is located on the α carbon from the nitrogen on the alkyl moiety. This type of branching for the amine oxide is also known in the art as an internal amine oxide. The total sum of n1 and n2 is from 10 to 24 carbon atoms, preferably from 12 to 20, and more preferably from 10 to 16. The number of carbon atoms for the one alkyl moiety (n1) should be approximately the same number of carbon atoms as the one alkyl branch (n2) such that the one alkyl moiety and the one alkyl branch are symmetric. As used herein "symmetric" means that | n1 - n2 | is less than or equal to 5, preferably 4, most preferably from 0 to 4 carbon atoms in at least 50 wt%, more preferably at least 75 wt% to 100 wt% of the mid-branched amine oxides for use herein. [0111] The amine oxide may further comprise two moieties, independently selected from a C1-3 alkyl, a C1-3 hydroxy-

alkyl group, or a polyethylene oxide group containing an average of from about 1 to about 3 ethylene oxide groups. Preferably the two moieties are selected from a C1-3 alkyl, more preferably both are selected as a C1 alkyl.

Zwitterionic surfactant

[0112] Other suitable surfactants include betaines, such as alkyl betaines, alkylamidobetaine, amidazoliniumbetaine, sulfobetaine (INCI Sultaines) as well as the Phosphobetaine and preferably meets formula (I):

$$R^{1}$$
-[CO-X(CH₂)_n]_x-N⁺(R²)(R₃)-(CH₂)_m-[CH(OH)-CH₂]_v-Y- (I)

wherein

5

10

15

20

25

30

35

40

45

50

55

R¹ is a saturated or unsaturated C6-22 alkyl residue, preferably C8-18 alkyl residue, in particular a saturated C10-16 alkyl residue, for example a saturated C12-14 alkyl residue;

X is NH, NR⁴ with C1-4 Alkyl residue R⁴, O or S,

n a number from 1 to 10, preferably 2 to 5, in particular 3,

x 0 or 1, preferably 1,

R², R³ are independently a C1-4 alkyl residue, potentially hydroxy substituted such as a hydroxyethyl, preferably a methyl.

m a number from 1 to 4, in particular 1, 2 or 3,

y 0 or 1 and

Y is COO, SO3, OPO(OR⁵)O or P(O)(OR⁵)O, whereby R⁵ is a hydrogen atom H or a C1-4 alkyl residue.

[0113] Preferred betaines are the alkyl betaines of the formula (Ia), the alkyl amido propyl betaine of the formula (Ib), the Sulfo betaines of the formula (Ic) and the Amido sulfobetaine of the formula (Id);

$$R^{1}-N^{+}(CH_{3})_{2}-CH_{2}COO^{-}$$
 (Ia)

$$R^{1}$$
-CO-NH(CH₂)₃-N⁺(CH₃)₂-CH₂COO⁻ (Ib)

$$R^{1}-N^{+}(CH_{3})_{2}-CH_{2}CH(OH)CH_{2}SO_{3}-$$
 (Ic)

[0114] R¹-CO-NH-(CH₂)₃-N⁺(CH₃)₂-CH₂CH(OH)CH₂SO₃- (Id) in which R¹1 as the same meaning as in formula I. Particularly preferred betaines are the Carbobetaine [wherein Y⁻=COO⁻], in particular the Carbobetaine of the formula (Ia) and (Ib), more preferred are the Alkylamidobetaine of the formula (Ib).

[0115] Examples of suitable betaines and sulfobetaine are the following [designated in accordance with INCI]: Almondamidopropyl of betaines, Apricotam idopropyl betaines, Avocadamidopropyl of betaines, Babassuamidopropyl of betaines, Behenam idopropyl betaines, Behenyl of betaines, betaines, Canolam idopropyl betaines, Capryl/Capram idopropyl betaines, Carnitine, Cetyl of betaines, Cocamidoethyl of betaines, Cocamidopropyl betaines, Cocamidopropyl Hydroxysultaine, Coco betaines, Coco Hydroxysultaine, Coco/Oleam idopropyl betaines, Coco Sultaine, Decyl of betaines, Dihydroxyethyl Oleyl Glycinate, Dihydroxyethyl Soy Glycinate, Dihydroxyethyl Stearyl Glycinate, Dihydroxyethyl Tallow Glycinate, Dimethicone Propyl of PG-betaines, Erucam idopropyl Hydroxysultaine, Hydrogenated Tallow of betaines, Isostearam idopropyl betaines, Lauram idopropyl betaines, Lauryl of betaines, Lauryl Hydroxysultaine, Lauryl Sultaine, Milkam idopropyl betaines, Minkamidopropyl of betaines, Myristam idopropyl betaines, Myristyl of betaines, Oleam idopropyl betaines, Oleam idopropyl betaines, Palmam idopropyl betaines, Palm itam idopropyl betaines, Palmitoyl Carnitine, Palm Kernelam idopropyl betaines, Polytetrafluoroethylene Acetoxypropyl of betaines, Ricinoleam idopropyl betaines, Sesam idopropyl betaines, Soyam idopropyl betaines, Stearam idopropyl betaines, Tallow Dihydroxyethyl of betaines, Undecylenam idopropyl betaines and Wheat Germam idopropyl betaines. A preferred betaine is, for example, Cocoamidopropylbetaine.

Fatty Acid

[0116] Especially when in liquid form, preferably, the detergent composition comprises between 1.5% and 20%, more preferably between 2% and 15%, even more preferably between 3% and 10%, most preferably between 4% and 8% by weight of the liquid detergent composition of soap, preferably a fatty acid salt, more preferably an amine neutralized fatty acid salt, wherein preferably the amine is an alkanolamine more preferably selected from monoethanolamine, diethanolamine, triethanolamine or a mixture thereof, more preferably monoethanolamine.

Perfume

5

10

15

20

25

40

45

[0117] Preferred compositions of the invention comprise perfume. Typically the composition comprises a perfume that comprises one or more perfume raw materials, selected from the group as described in WO08/87497. However, any perfume useful in a detergent may be used. A preferred method of incorporating perfume into the compositions of the invention is via an encapsulated perfume particle comprising either a water-soluble hydroxylic compound or melamine-formaldehyde or modified polyvinyl alcohol. In one aspect the encapsulate comprises (a) an at least partially water-soluble solid matrix comprising one or more water-soluble hydroxylic compounds, preferably starch; and (b) a perfume oil encapsulated by the solid matrix. In a further aspect the perfume may be pre-complexed with a polyamine, preferably a polyethylenimine so as to form a Schiff base.

Polymers

[0118] The detergent composition may comprise one or more polymers for example for cleaning and/or care. Examples are optionally modified carboxymethylcellulose, poly (ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid co-polymers and carboxylate polymers. **[0119]** Suitable carboxylate polymers include maleate/acrylate random copolymer or polyacrylate homopolymer. The carboxylate polymer may be a polyacrylate homopolymer having a molecular weight of from 4,000 Da to 9,000 Da, or from 6,000 Da to 9,000 Da. Other suitable carboxylate polymers are co-polymers of maleic acid and acrylic acid, and may have a molecular weight in the range of from 4,000 Da to 90,000 Da.

[0120] Other suitable carboxylate polymers are co-polymers comprising: (i) from 50 to less than 98 wt% structural units derived from one or more monomers comprising carboxyl groups; (ii) from 1 to less than 49 wt% structural units derived from one or more monomers comprising sulfonate moieties; and (iii) from 1 to 49 wt% structural units derived from one or more types of monomers selected from ether bond-containing monomers represented by formulas (I) and (II):

formula (I):

 $\begin{array}{c}
R_0 \\
H_2C = C \\
R \\
O \\
CH_2 \\
X \\
O = F
\end{array}$

wherein in formula (I), R_0 represents a hydrogen atom or CH_3 group, R represents a CH_2 group, CH_2CH_2 group or single bond, R represents a number 0-5 provided R represents a number 1-5 when R is a single bond, and R_1 is a hydrogen atom or R1 to R2 organic group;

formula (II)

 $\begin{array}{c}
R_{0} \\
H_{2}C = C \\
R \\
O \\
CH_{2} \\
HC - OH \\
H_{2}C - \left(O - CH_{2}CH_{2}\right)_{X} O - R_{1}
\end{array}$

in formula (II), R_0 represents a hydrogen atom or CH_3 group, R represents a CH_2 group, CH_2CH_2 group or single bond, R_1 is a hydrogen atom or R_2 to R_3 group.

[0121] The composition may comprise one or more amphiphilic cleaning polymers such as the compound having the following general structure: $bis((C_2H_5O)(C_2H_4O)n)(CH_3)-N^+-C_xH_{2x}-N^+-(CH_3)-bis((C_2H_5O)(C_2H_4O)n)$, wherein n = from 20 to 30, and x = from 3 to 8, or sulphated or sulphonated variants thereof. In one aspect, this polymer is sulphated or sulphonated to provide a zwitterionic soil suspension polymer.

[0122] The composition preferably comprises amphiphilic alkoxylated grease cleaning polymers which have balanced hydrophilic and properties such that they remove grease particles from fabrics and surfaces. Preferred amphiphilic alkoxylated grease cleaning polymers comprise a core structure and a plurality of alkoxylate groups attached to that core structure. These may comprise alkoxylated polyalkylenimines, preferably having an inner polyethylene oxide block and an outer polypropylene oxide block. Typically these may be incorporated into the compositions of the invention in amounts of from 0.005 to 10 wt%, generally from 0.5 to 8 wt%.

[0123] Alkoxylated polycarboxylates such as those prepared from polyacrylates are useful herein to provide additional grease removal performance. Such materials are described in WO 91/08281 and PCT 90/01815. Chemically, these materials comprise polyacrylates having one ethoxy side-chain per every 7-8 acrylate units. The side-chains are of the formula -(CH₂CH₂O)_m (CH₂)_nCH₃ wherein m is 2-3 and n is 6-12. The side-chains are ester-linked to the polyacrylate "backbone" to provide a "comb" polymer type structure. The molecular weight can vary, but is typically in the range of about 2000 to about 50,000. Such alkoxylated polycarboxylates can comprise from about 0.05% to about 10%, by weight, of the compositions herein.

[0124] The composition may comprise polyethylene glycol polymers and these may be particularly preferred in compositions comprising mixed surfactant systems. Suitable polyethylene glycol polymers include random graft co-polymers comprising: (i) hydrophilic backbone comprising polyethylene glycol; and (ii) side chain(s) selected from the group consisting of: C4-C25 alkyl group, polypropylene, polybutylene, vinyl ester of a saturated C1-C6 mono-carboxylic acid, C1-C6 alkyl ester of acrylic or methacrylic acid, and mixtures thereof. Suitable polyethylene glycol polymers have a polyethylene glycol backbone with random grafted polyvinyl acetate side chains. The average molecular weight of the polyethylene glycol backbone can be in the range of from 2,000 Da to 20,000 Da, or from 4,000 Da to 8,000 Da. The molecular weight ratio of the polyethylene glycol backbone to the polyvinyl acetate side chains can be in the range of from 1:1 to 1:5, or from 1:1.2 to 1:2. The average number of graft sites per ethylene oxide units can be in the range of from 0.5 to 0.9, or the average number of graft sites per ethylene oxide units can be in the range of from 0.1 to 0.5, or from 0.2 to 0.4. A suitable polyethylene glycol polymer is Sokalan HP22.

[0125] Typically these polymers when present are each incorporated into the compositions of the invention in amounts from 0.005 to 10 wt%, more usually from 0.05 to 8 wt%.

[0126] Preferably the composition comprises one or more carboxylate polymer, such as a maleate/acrylate random copolymer or polyacrylate homopolymer. In one aspect, the carboxylate polymer is a polyacrylate homopolymer having a molecular weight of from 4,000 Da to 9,000 Da, or from 6,000 Da to 9,000 Da. Typically these are incorporated into the compositions of the invention in amounts from 0.005 to 10 wt%, or from 0.05 to 8 wt%.

[0127] Preferably the composition comprises one or more soil release polymers.

[0128] Suitable soil release polymers are polyester soil release polymers such as Repel-o-tex polymers, including Repel-o-tex SF, SF-2 and SRP6 supplied by Rhodia. Other suitable soil release polymers include Texcare polymers, including Texcare SRA100, SRA300, SRN100, SRN170, SRN240, SRN260, SRN300 and SRN325 supplied by Clariant. Other suitable soil release polymers are Marloquest polymers, such as Marloquest SL supplied by Sasol.

[0129] Preferably the composition comprises one or more cellulosic polymer, including those selected from alkyl cellulose, alkyl alkoxyalkyl cellulose, carboxyalkyl cellulose, alkyl carboxyalkyl cellulose. Preferred cellulosic polymers are selected from the group comprising carboxymethyl cellulose, methyl cellulose, methyl hydroxyethyl cellulose, methyl carboxymethyl cellulose, and mixures thereof. In one aspect, the carboxymethyl cellulose has a degree of carboxymethyl substitution from 0.5 to 0.9 and a molecular weight from 100,000 Da to 300,000 Da.

[0130] The composition preferably comprises a cationically-modified polysaccharide polymer. Preferably, the cationic polysaccharide polymer is selected from cationically modified hydroxyethyl cellulose, cationically modified hydroxypropyl cellulose, cationically and hydrophobically modified hydroxyethyl cellulose, cationically and hydrophobically modified hydroxyethyl cellulose, cationically modified hydroxyethyl cellulose, cationically and hydrophobically modified hydroxyethyl cellulose, or a mixture thereof.

Amines

10

20

30

35

40

45

50

55

[0131] The cleaning compositions described herein may contain an amine. The cleaning compositions may include from about 0.1% to about 10%, or from about 0.2% to about 5%, or from about 0.5% to about 4%, or from about 0.1% to about 4%, or from about 0.1% to about 2%, by weight of the composition, of an amine. The amine can be subjected

to protonation depending on the pH of the cleaning medium in which it is used. Non-limiting examples of amines include, but are not limited to, etheramines, cyclic amines, polyamines, oligoamines (e.g., triamines, diamines, pentamines, tetraamines), or combinations thereof. The compositions described herein may comprise an amine selected from the group consisting of oligoamines, etheramines, cyclic amines, and combinations thereof. In some aspects, the amine is not an alkanolamine. In some aspects, the amine is not a polyalkyleneimine. Examples of suitable oligoamines include tetraethylenepentamine, triethylenetetraamine, diethylenetriamine, and mixtures thereof. Etheramines and cyclic amines may be particularly preferred.

Fabric Shading Dye

10

15

20

25

30

35

40

45

50

55

[0132] The composition may comprise a fabric shading agent. Suitable fabric shading agents include dyes, dye-clay conjugates, and pigments. Suitable dyes include small molecule dyes and polymeric dyes. Suitable small molecule dyes include small molecule dyes falling into the Colour Index (C.I.) classifications of Direct Blue, Direct Red, Direct Violet, Acid Blue, Acid Red, Acid Violet, Basic Blue, Basic Violet and Basic Red, or mixtures thereof. Preferered dyes include alkoxylated azothiophenes, Solvent Violet 13, Acid Violet 50 and Direct Violet 9. Particularly preferred dyes are polymeric dyes, particularly comprising polyalkoxy, most preferably polyethoxy groups, for example:

wherein the index values x and y are independently selected from 1 to 10.

Dye Transfer Inhibitors

[0133] Suitable dye transfer inhibitors include polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidone, polyvinyloxazolidone, polyvinylimidazole and mixtures thereof. Preferred are poly(vinyl pyrrolidone), poly(vinylpyridine betaine), poly(vinylpyridine N-oxide), poly(vinyl pyrrolidone-vinyl imidazole) and mixtures thereof. Suitable commercially available dye transfer inhibitors include PVP-K15 and K30 (Ashland), Sokalan® HP165, HP50, HP53, HP59, HP56K, HP56, HP66 (BASF), Chromabond® S-400, S403E and S-100 (Ashland).

Chelant

[0134] The composition may comprise chelant for example selected from phosphonic, sulphonic, succinic and acetic chelants or mixtures thereof. Suitable examples include HEDP, DTPA, EDTA, MGDA, GLDA, EDDS and 4,5-dihydroxy-1,3-benzenedisulfonic acids and salts thereof.

Encapsulated Benefit Agent

[0135] The composition may further comprise an encapsulated benefit agent. The encapsulated benefit may comprise a shell surrounding a core. The core may comprise a benefit agent. The benefit agent may comprise perfume raw materials.

[0136] The shell may comprise a material selected from the group consisting of aminoplast copolymer, an acrylic, an acrylate, and mixtures thereof. The aminoplast copolymer may be melamine-formaldehyde, urea-formaldehyde, cross-linked melamine formaldehyde, or mixtures thereof.

[0137] The shell may be coated with one or more materials, such as a polymer, that aids in the deposition and/or retention of the perfume microcapsule on the site that is treated with the composition disclosed herein. The polymer may be a cationic polymer selected from the group consisting of polysaccharides, cationically modified starch, cationically modified guar, polysiloxanes, poly diallyl dimethyl ammonium halides, copolymers of poly diallyl dimethyl ammonium chloride and vinyl pyrrolidone, acrylamides, imidazoles, imidazolinium halides, imidazolium halides, poly vinyl amine, copolymers of poly vinyl amine and N-vinyl formamide, and mixtures thereof.

[0138] The core may comprise a benefit agent. Suitable benefit agents include a material selected from the group consisting of perfume raw materials, silicone oils, waxes, hydrocarbons, higher fatty acids, essential oils, lipids, skin coolants, vitamins, sunscreens, antioxidants, glycerine, catalysts, bleach particles, silicon dioxide particles, malodor

reducing agents, odor-controlling materials, chelating agents, antistatic agents, softening agents, insect and moth repelling agents, colorants, antioxidants, chelants, bodying agents, drape and form control agents, smoothness agents, wrinkle control agents, sanitization agents, disinfecting agents, germ control agents, mold control agents, mildew control agents, antiviral agents, drying agents, stain resistance agents, soil release agents, fabric refreshing agents and freshness extending agents, chlorine bleach odor control agents, dye fixatives, dye transfer inhibitors, color maintenance agents, optical brighteners, color restoration/rejuvenation agents, anti-fading agents, whiteness enhancers, anti-abrasion agents, wear resistance agents, fabric integrity agents, anti-wear agents, anti-pilling agents, defoamers, anti-foaming agents, UV protection agents, sun fade inhibitors, anti-allergenic agents, enzymes, water proofing agents, fabric comfort agents, shrinkage resistance agents, stretch resistance agents, stretch recovery agents, skin care agents, glycerin, and natural actives, antibacterial actives, antiperspirant actives, cationic polymers, dyes and mixtures thereof. The benefit agent may comprise perfume raw materials.

[0139] The composition may comprise, based on total composition weight, from about 0.01% to about 10%, or from about 0.1% to about 5%, or from about 0.2% to about 1%, of encapsulated benefit agent. The encapsulated benefit agent may be friable and/or have a mean particle size of from about 10 microns to about 500 microns or from about 20 microns to about 200 microns.

[0140] Suitable encapsulated benefit agents may be obtained from Encapsys, LLC, of Appleton, Wisconsin USA.

[0141] Formaldehyde scavengers may also be used in or with such encapsulated benefit agents.

[0142] In a further preferred aspect of the invention, the composition is preferably liquid and comprises particulate benefit agents such as the encapsulated benefit agents mentioned above. The combination of the galactanase enzyme in addition to the plant fiber and particulate benefit agent has been found to provide the additional benefit of enhanced deposition of the particulate benefit agent. Thus, the present invention also provides a method of enhancing deposition of a particulate benefit agent comprising contacting a textile with an aqueous liquor comprising a composition defined herein, comprising a galactanase enzyme and a plant fiber and in addition a particulate benefit agent in a textile treatment step, preferably a laundering step, and optionally rinsing and drying the textile. In a preferred method, the aqueous liquor is an aqueous wash liquor. In a preferred method, the particulate benefit agent comprises an encapsulated perfume particle, most preferably comprising a shell which comprises a material selected from the group consisting of polymers or copolymers comprising acrylic acid and/or acrylates, and mixtures thereof.

Methods of Making the Composition

10

30

35

40

45

50

55

Methods of Making the Composition

[0143] The present invention relates to methods of making the compositions described herein. The compositions of the invention may be solid (for example granules or tablets) or liquid form. Preferably the compositions are in liquid form. They may be made by any process chosen by the formulator, including by a batch process, a continuous loop process, or combinations thereof.

[0144] When in the form of a liquid, the compositions of the invention may be aqueous (typically above 2 wt% or even above 5 or 10 wt% total water, up to 90 or up to 80wt% or 70 wt% total water) or non-aqueous (typically below 2 wt% total water content). Typically the compositions of the invention will be in the form of an aqueous solution or uniform dispersion or suspension of optical brightener, DTI and optional additional adjunct materials, some of which may normally be in solid form, that have been combined with the normally liquid components of the composition, such as the liquid alcohol ethoxylate nonionic, the aqueous liquid carrier, and any other normally liquid optional ingredients. Such a solution, dispersion or suspension will be acceptably phase stable. When in the form of a liquid, the detergents of the invention preferably have viscosity from 1 to 1500 centipoises (1-1500 mPa*s), more preferably from 100 to 1000 centipoises (100-1000 mPa*s), and most preferably from 200 to 500 centipoises (200-500 mPa*s) at 20s-1 and 21°C. Viscosity can be determined by conventional methods. Viscosity may be measured using an AR 550 rheometer from TA instruments using a plate steel spindle at 40 mm diameter and a gap size of 500 μm. The high shear viscosity at 20s-1 and low shear viscosity at 0.05-1 can be obtained from a logarithmic shear rate sweep from 0.1-1 to 25-1 in 3 minutes time at 21C. The preferred rheology described therein may be achieved using internal existing structuring with detergent ingredients or by employing an external rheology modifier. More preferably the detergents, such as detergent liquid compositions have a high shear rate viscosity of from about 100 centipoise to 1500 centipoise, more preferably from 100 to 1000 cps. Unit Dose detergents, such as detergent liquid compositions have high shear rate viscosity of from 400 to 1000cps. Detergents such as laundry softening compositions typically have high shear rate viscosity of from 10 to 1000, more preferably from 10 to 800 cps, most preferably from 10 to 500 cps. Hand dishwashing compositions have high shear rate viscosity of from 300 to 4000 cps, more preferably 300 to 1000 cps.

[0145] The cleaning and/or treatment compositions in the form of a liquid herein can be prepared by combining the components thereof in any convenient order and by mixing, e.g., agitating, the resulting component combination to form a phase stable liquid detergent composition. In a process for preparing such compositions, a liquid matrix is formed

containing at least a major proportion, or even substantially all, of the liquid components, e.g., nonionic surfactant, the non-surface active liquid carriers and other optional liquid components, with the liquid components being thoroughly admixed by imparting shear agitation to this liquid combination. For example, rapid stirring with a mechanical stirrer may usefully be employed. While shear agitation is maintained, substantially all of any anionic surfactants and the solid form ingredients can be added. Agitation of the mixture is continued, and if necessary, can be increased at this point to form a solution or a uniform dispersion of insoluble solid phase particulates within the liquid phase. After some or all of the solid-form materials have been added to this agitated mixture, particles of any enzyme material to be included, e.g., enzyme granulates, are incorporated. As a variation of the composition preparation procedure hereinbefore described, one or more of the solid components may be added to the agitated mixture as a solution or slurry of particles premixed with a minor portion of one or more of the liquid components. After addition of all of the composition components, agitation of the mixture is continued for a period of time sufficient to form compositions having the requisite viscosity and phase stability characteristics. Frequently this will involve agitation for a period of from about 30 to 60 minutes.

[0146] The adjunct ingredients in the compositions of this invention may be incorporated into the composition as the product of the synthesis generating such components, either with or without an intermediate purification step. Where there is no purification step, commonly the mixture used will comprise the desired component or mixtures thereof (and percentages given herein relate to the weight percent of the component itself unless otherwise specified) and in addition unreacted starting materials and impurities formed from side reactions and/or incomplete reaction. For example, for an ethoxylated or substituted component, the mixture will likely comprise different degrees of ethoxylation/substitution.

Method of Use

10

20

25

30

35

40

45

50

55

[0147] The present invention relates to methods of using the cleaning compositions of the present invention to clean a surface, such as a textile. In general, the method includes mixing the cleaning composition as described herein with water to form an aqueous liquor and contacting a surface, preferably a textile, with the aqueous liquor in a laundering step. The target surface may include a greasy soil such as a body soil. The compositions herein, typically prepared as hereinbefore described, can be used to form aqueous washing/treatment solutions for use in the laundering/treatment of fabrics and/or hard surfaces. Generally, an effective amount of such a composition is added to water, for example in a conventional fabric automatic washing machine, to form such aqueous liquor laundering solutions. The aqueous liquor so formed is then contacted, typically under agitation, with the fabrics to be laundered/treated therewith. An effective amount of the cleaning composition herein added to water to form aqueous liquors for washing can comprise amounts sufficient to form from about 500 to 25,000 ppm, or from 500 to 15,000 ppm of composition in aqueous liquor.

[0148] Typically, the aqueous liquor is formed by contacting the detergent with wash water in such an amount so that the concentration of the cleaning composition in the aqueous liquor is from above 0.1 g/l to 5g/l, or from 1g/l, and to 4.5g/l, or to 4.0g/l, or to 3.5g/l, or to 3.0g/l, or to 2.5g/l, or even to 2.0g/l, or even to 1.5g/l. The method of laundering fabric or textile may be carried out in a top-loading or front-loading automatic washing machine, or can be used in a hand-wash laundry application. In these applications, the aqueous liquor formed and concentration of laundry detergent composition in the aqueous liquor is that of the main wash cycle. Any input of water during any optional rinsing step(s) is not included when determining the volume of the aqueous liquor.

[0149] The aqueous liquor may comprise 40 litres or less of water, or 30 litres or less, or 20 litres or less, or 10 litres or less, or 8 litres or less, or even 6 litres or less of water. The wash liquor may comprise from above 0 to 15 litres, or from 2 litres, and to 12 litres, or even to 8 litres of water. Typically from 0.01kg to 2kg of fabric per litre of aqueous liquor is dosed into said aqueous liquor. Typically from 0.01kg, or from 0.05kg, or from 0.07kg, or from 0.10kg, or from 0.10kg, or from 0.25kg fabric per litre of aqueous liquor is dosed into said aqueous liquor. Optionally, 50g or less, or 45g or less, or 40g or less, or 35g or less, or 30g or less, or 25g or less, or 20g or less, or even 15g or less, or even 10g or less of the composition is contacted to water to form the aqueous liquor. Such compositions are typically employed at concentrations of from about 500 ppm to about 15,000 ppm in solution. When the wash solvent is water, the water temperature typically ranges from about 5 °C to about 90 °C and, when the situs comprises a fabric, the water to fabric ratio is typically from about 1:1 to about 30:1. Typically the aqueous liquor comprising the detergent of the invention has a pH of from 3 to 11.5.

[0150] In one aspect, such method comprises the steps of optionally washing and/or rinsing said surface or fabric, contacting said surface or fabric with any composition disclosed in this specification then optionally washing and/or rinsing said surface or fabric is disclosed, with an optional drying step.

[0151] Drying of such surfaces or fabrics may be accomplished by any one of the common means employed either in domestic or industrial settings: machine drying or open-air drying. The fabric may comprise any fabric capable of being laundered in normal consumer or institutional use conditions, and the invention is particularly suitable for synthetic textiles such as polyester and nylon and especially for treatment of mixed fabrics and/or fibres comprising synthetic and cellulosic fabrics and/or fibres. As examples of synthetic fabrics are polyester, nylon, these may be present in mixtures

with cellulosic fibres, for example, polycotton fabrics. The solution typically has a pH of from 7 to 11, more usually 8 to 10.5. The compositions are typically employed at concentrations from 500 ppm to 5,000 ppm in solution. The water temperatures typically range from about 5 °C to about 90 °C. The water to fabric ratio is typically from about 1:1 to about 30:1.

Use of Water-Insoluble Plant Fiber

[0152] The present invention further relates to a use of water-insoluble plant fiber in a cleaning composition to enhance the stain-removal and/or malodor-reducing benefits of a galactanase enzyme or composition comprising a galactanase enzyme.

Measurement Methods for Fibers

Sample preparation:

[0153]

5

10

15

20

25

30

35

40

45

50

55

- A) Cellulose fibers raw material: A cellulose fibers sample is prepared by adding 1% dry matter of cellulose fibers to water and activating it with a high pressure homogenizer (PANDA from GEA, 350 bars, 10 passes). Obtained sample is analyzed.
- B) Composition comprising cellulose fibers:

The composition sample is centrifuged at 4,000 rpm for 10 minutes using a 5804 centrifuge from Eppendorf, in order to remove potential particles to avoid interference in the measurement of the fiber size. The clarified composition is then decanted as the supernatant. The water insoluble plant derived fibers present in the composition (supernatant) are redispersed in ethanol using an Ultra Turrax device from IKA, T25 S 25 N - 25 G - ST, at a speed of 21,000 rpm for 10 minutes. Then, sample is centrifuged at 4,000 rpm for 10 minutes using a 5804 centrifuge from Eppendorf and supernatant is removed. Remaining cellulose fibers at the bottom are analyzed. Repeat the process as many times as needed to have enough amount for the analysis.

Measuring hydrodynamic diameter:

[0154] The instrument cell is cleaned and then filled with demineralised water. If the background has a laser intensity above 79%, the system is considered clean and the sample can be added to the vessel until the desired obscuration is achieved. Then ultrasounds are switched on for 30 seconds and once the sample is well dispersed, the measurement can start

[0155] Then, the hydrodynamic diameter (volume weight mean [4,3]) is measured. The hydrodynamic diameter is the diameter of the equivalent sphere that has the same translational diffusion coefficient as the fiber being measured assuming a hydration layer surrounding the fiber.

Sampler selection: Hydro 2000MU

Sampler settings: Pump/stir speed: 2500rpm; Ultrasonics: 30 seconds

Material: Refractive Index of the material: 1.53; Dispersant used: demineralised water in an amount as needed; Particle shape: Irregular.

Measurement: Measurement cycles: 3 measurements per aliquot with a delay of 10 seconds, Measurement time: 10 seconds; Measurement snaps: 10,000; Background time: 10 seconds; o Background snaps: 10,000; Lower obscuration limit: 5; Upper obscuration limit: 15

Method for determining average cellulose fiber diameter:

[0156] The average water-insoluble plant derived fiber diameter can be determined directly from the cellulose fiber raw material or from the composition comprising cellulose fibers following sample preparation described above.

[0157] Water-insoluble plant derived fiber diameter is analysed using Atomic force microscopy (AFM). A 0,02% w/w cellulose fiber dispersion in demineralized water is prepared, and a drop of this dispersion is deposited onto freshly cleaved mica (highest grade V1 Mica, 15x15mm - TED PELLA, INC., or equivalent). The sample is then allowed to dry in an oven at 40°C.

[0158] The mica sheet is mounted in an AFM (Nanosurf Flex AFM, ST Instruments or equivalent) and imaged in air under ambient conditions using a Si cantilever in dynamic mode with dynamic mode tip (ACTA -50 - APPNANO or

equivalent). The image dimensions are 20 micron by 20 micron, and 256 points per line are captured.

[0159] The AFM image is opened using suitable AFM data analysis software (such as Mountainsmap SPM 7.3, ST Instruments, or equivalent). Each image is leveled line by line. One or more profiles are extracted crossing perpendicularly one or multiple fibers avoiding bundles of fibers, and from each profile, a distance measurement is performed to obtain the diameter of the fibers. Ten diameter measurements are performed per picture counting each fiber only once.

[0160] Three sets of measurements (sample preparation, AFM measurement and image analysis) are made. The arithmetic mean of all fibers measured in all images is the Average water-insoluble plant derived fiber Diameter.

EXAMPLES

5

10

15

20

25

30

35

40

45

50

55

[0161] The following are illustrative examples of cleaning compositions according to the present invention and are not intended to be limiting.

Examples 1-7: Heavy Duty Liquid laundry detergent compositions.

[0162]

lu uus dis uds	1	2	3	4	5	6	7
Ingredients			(% weight			
AE _{1.8} S	6.77	5.16	1.36	1.30	-	-	-
AE ₃ S	-	-	-	-	0.45	-	-
LAS	0.86	2.06	2.72	0.68	0.95	1.56	3.55
HSAS	1.85	2.63	1.02	-	-	-	-
AE9	6.32	9.85	10.20	7.92			
AE8							35.45
AE7					8.40	12.44	
C ₁₂₋₁₄ dimethyl Amine Oxide	0.30	0.73	0.23	0.37	-	-	-
C ₁₂₋₁₈ Fatty Acid	0.80	1.90	0.60	0.99	1.20	-	15.00
Citric Acid	2.50	3.96	1.88	1.98	0.90	2.50	0.60
Optical Brightener 1	1.00	0.80	0.10	0.30	0.05	0.50	0.001
Optical Brightener 3	0.001	0.05	0.01	0.20	0.50	-	1.00
Sodium formate	1.60	0.09	1.20	0.04	1.60	1.20	0.20
DTI 1	0.32	0.05	-	0.60	0.10	0.60	0.01
DTI 2	0.32	0.10	0.60	0.60	0.05	0.40	0.20
Sodium hydroxide	2.30	3.80	1.70	1.90	1.70	2.50	2.30
Monoethanolamine	1.40	1.49	1.00	0.70	-	-	-
Diethylene glycol	5.50	-	4.10	-	-	-	-
Chelant 1	0.15	0.15	0.11	0.07	0.50	0.11	0.80
4-formyl-phenylboronic acid	-	-	-	-	0.05	0.02	0.01
Sodium tetraborate	1.43	1.50	1.10	0.75	-	1.07	-
Ethanol	1.54	1.77	1.15	0.89	-	3.00	7.00
Polymer 1	0.10	-	-	-	-	-	2.00
Polymer 2	0.30	0.33	0.23	0.17	-	-	-
Polymer 3	-	-	-	-	-	-	0.80
Polymer 4	0.80	0.81	0.60	0.40	1.00	1.00	-

(continued)

Ingradients	1	2	3	4	5	6	7
Ingredients			(% weight			
1,2-Propanediol	-	6.60	-	3.30	0.50	2.00	8.00
Structurant	0.10	-			-	-	0.10
Perfume	1.60	1.10	1.00	0.80	0.90	1.50	1.60
Perfume encapsulate	0.10	0.05	0.01	0.02	0.10	0.05	0.10
Protease	0.80	0.60	0.70	0.90	0.70	0.60	1.50
Mannanase	0.07	-		0.06	0.04	0.045	0.10
Amylase 1	0.30	-	0.30	0.10	-	0.40	0.10
Amylase 2	-	0.20	0.10	0.15	0.07	-	0.10
Xyloglucannase	0.20	0.10			0.05	0.05	0.20
Lipase	0.40	0.20	0.30	0.10	0.20	-	-
Polishing enzyme	-	0.04			-	0.004	-
Galactanase	0.05	0.03	0.01	0.03	0.03	0.003	0.003
Dispersin B	-	-		0.05	0.03	0.001	0.001
Acid Violet 50	0.05	-			-	-	0.005
Direct Violet 9	-	-	-	-	-	0.05	-
Violet DD	-	0.035	0.02	0.037	0.04	-	-
Water insoluble plant fiber	0.2	0.6	0.2	0.03	1.2	0.3	0.3
Water, dyes & minors				Balance			
рН				8.2			

[0163] Based on total cleaning and/or treatment composition weight. Enzyme levels are reported as raw material.

Examples 8 to 18: Unit Dose Compositions.

[0164] These examples provide various formulations for unit dose laundry detergents. Compositions 8 to 12 comprise a single unit dose compartment. The film used to encapsulate the compositions is polyvinyl alcohol-based film.

Ingradianta	8	9	10	11	12			
<u>Ingredients</u>	% weight							
LAS	19.09	16.76	8.59	6.56	3.44			
AE3S	1.91	0.74	0.18	0.46	0.07			
AE7	14.00	17.50	26.33	28.08	31.59			
Citric Acid	0.6	0.6	0.6	0.6	0.6			
C12-15 Fatty Acid	14.8	14.8	14.8	14.8	14.8			
Polymer 3	4.0	4.0	4.0	4.0	4.0			
Chelant 2	1.2	1.2	1.2	1.2	1.2			
Optical Brightener 1	0.20	0.25	0.01	0.01	0.50			
Optical Brightener 2	0.20	-	0.25	0.03	0.01			
Optical Brightener 3	0.18	0.09	0.30	0.01	-			

(continued)

Ingradiente	8	9	10	11	12			
Ingredients			% weight					
DTI 1	0.10	-	0.20	0.01	0.05			
DTI 2	-	0.10	0.20	0.25	0.05			
Glycerol	6.1	6.1	6.1	6.1	6.1			
Monoethanol amine	8.0	8.0	8.0	8.0	8.0			
Tri-isopropanol amine	-	-	2.0	-	-			
Tri-ethanol amine	-	2.0		-	-			
Cumene sulfonate	-	-	-	-	2.0			
Protease	0.80	0.60	0.07	1.00	1.50			
Mannanase	0.07	-	0.05	-	0.01			
Amylase 1	0.20	0.11	0.30	0.50	0.05			
Amylase 2	0.11	0.20	0.10	-	0.50			
Polishing enzyme	0.005	0.05	-	-	-			
Galactanase	0.005	0.05	0.005	0.010	0.005			
Dispersin B	0.010	0.05	0.005	0.005	-			
Cyclohexyl dimethanol	-		-	2.0	-			
Acid violet 50	0.03	0.02						
Violet DD			0.01	0.05	0.02			
Structurant	0.14	0.14	0.14	0.14	0.14			
Perfume	1.9	1.9	1.9	1.9	1.9			
Water insoluble plant fiber	0.02	0.3	0.02	0.03	0.3			
Water and miscellaneous	To 100%							
рН	7.5-8.2							

[0165] Based on total cleaning and/or treatment composition weight. Enzyme levels are reported as raw material.

[0166] In the following examples the unit dose has three compartments, but similar compositions can be made with two, four or five compartments. The film used to encapsulate the compartments is polyvinyl alcohol.

Base compositions Ingredients	13 14		15	16			
	% weight						
HLAS	26.82	16.35	7.50	3.34			
AE7	17.88	16.35	22.50	30.06			
Citric Acid	0.5	0.7	0.6	0.5			
C12-15 Fatty acid	16.4	6.0	11.0	13.0			
Polymer 1	2.9	0.1	-	-			
Polymer 3	1.1	5.1	2.5	4.2			
Cationic cellulose polymer	-	-	0.3	0.5			
Polymer 6	-	1.5	0.3	0.2			
Chelant 2	1.1	2.0	0.6	1.5			

(continued)

Base compositions Ingredients	13	14	15	16
		% we	eight	
Optical Brightener 1	0.20	0.25	0.01	0.005
Optical Brightener 3	0.18	0.09	0.30	0.005
DTI 1	0.1	-	0.2	-
DTI 2	-	0.1	0.2	-
Glycerol	5.3	5.0	5.0	4.2
Monoethanolamine	10.0	8.1	8.4	7.6
Polyethylene glycol	-	-	2.5	3.0
Potassium sulfite	0.2	0.3	0.5	0.7
Protease	0.80	0.60	0.40	0.80
Amylase 1	0.20	0.20	0.200	0.30
Polishing enzyme	-	-	0.005	0.005
Galactanase	0.05	0.010	0.005	0.005
Dispersin B	-	0.010	0.010	0.010
MgCl ₂	0.2	0.2	0.1	0.3
Structurant	0.2	0.1	0.2	0.2
Acid Violet 50	0.04	0.03	0.05	0.03
Perfume / encapsulates	0.10	0.30	0.01	0.05
Water-insoluble plant fiber	0.2	0.03	0.4	2.0
Solvents and misc.		To 1	00%	
рН		7.0-	-8.2	

Finishing compositions		17		18				
Compartment	Α	В	С	Α	В	С		
Volume of each compartment	40 ml	5 ml	5 ml	40 ml	5 ml	5 ml		
<u>Ingredients</u>	Active material in Wt.%							
Perfume	1.6	1.6	1.6	1.6	1.6	1.6		
Violet DD	0	0.006	0	0	0.004	-		
TiO2	-	-	0.1	-		0.1		
Sodium Sulfite	0.4	0.4	0.4	0.3	0.3	0.3		
Polymer 5	-			2	-	-		
Hydrogenated castor oil	0.14	0.14	0.14	0.14	0.14	0.14		
Base Composition 13, 14, 15 or 16	Add to 100%							

[0167] Based on total cleaning and/or treatment composition weight, enzyme levels are reported as raw material.

Examples 19 to 24

[0168] Granular laundry detergent compositions for hand washing or washing machines, typically top-loading washing

machines.

		19	20	21	22	23	24
5	Ingredient			% w	eight		
Ü	LAS	11.33	10.81	7.04	4.20	3.92	2.29
	Quaternary ammonium	0.70	0.20	1.00	0.60	-	-
	AE3S	0.51	0.49	0.32	-	0.08	0.10
10	AE7	8.36	11.50	12.54	11.20	16.00	21.51
	Sodium Tripolyphosphate	5.0	-	4.0	9.0	2.0	-
	Zeolite A	-	1.0	-	1.0	4.0	1.0
15	Sodium silicate 1.6R	7.0	5.0	2.0	3.0	3.0	5.0
	Sodium carbonate	20.0	17.0	23.0	14.0	14.0	16.0
	Polyacrylate MW 4500	1.0	0.6	1.0	1.0	1.5	1.0
	Polymer 6	0.1	0.2	-	-	0.1	-
20	Carboxymethyl cellulose	1.0	0.3	1.0	1.0	1.0	1.0
	Acid Violet 50	0.05	-	0.02	-	0.04	-
25	Violet DD	-	0.03	-	0.03	-	0.03
	Protease 2	0.10	0.10	0.10	0.10	-	0.10
	Amylase	0.03	-	0.03	0.03	0.03	0.03
	Lipase	0.03	0.07	0.30	0.10	0.07	0.40
	Polishing enzyme	0.002	-	0.05	_	0.02	-
30	Galactanase	0.001	0.001	0.01	0.05	0.002	0.02
	Dispersin B	0.001	0.001	0.05	_	0.001	-
	Optical Brightener 1	0.200	0.001	0.300	0.650	0.050	0.001
35	Optical Brightener 2	0.060	-	0.650	0.180	0.200	0.060
	Optical Brightener 3	0.100	0.060	0.050	-	0.030	0.300
	Chelant 1	0.60	0.80	0.60	0.25	0.60	0.60
40	DTI 1	0.32	0.15	0.15	-	0.10	0.10
40	DTI 2	0.32	0.15	0.30	0.30	0.10	0.20
	Sodium Percarbonate	-	5.2	0.1	ı	1	ı
	Sodium Perborate	4.4	ı	3.85	2.09	0.78	3.63
45	Nonanoyloxybenzensulfonate	1.9	0.0	1.66	0.0	0.33	0.75
	Tetraacetylehtylenediamine	0.58	1.2	0.51	0.0	0.015	0.28
	Photobleach	0.0030	0.0	0.0012	0.0030	0.0021	_
50	S-ACMC	0.1	0.0	0.0	0.0	0.06	0.0
	Water-insoluble plant fiber	1.5	3.2	2.4	2.2	2.8	0.9
	Sulfate/Moisture			Bala	ance		

Examples 25-30

55

[0169] Granular laundry detergent compositions typically for front-loading automatic washing machines.

Ingredient	25	26	27	28	29	30		
ingredient			% we	eight	jht			
LAS	6.08	5.05	4.27	3.24	2.30	1.09		
AE3S	-	0.90	0.21	0.18	-	0.06		
AS	0.34	-	-	-	-	-		
AE7	4.28	5.95	6.72	7.98	9.20	10.35		
Quaternary ammonium	0.5	-	-	0.3	-	-		
Crystalline layered silicate	4.1	-	4.8	-	-	-		
Zeolite A	5.0	-	2.0	-	2.0	2.0		
Citric acid	3.0	4.0	3.0	4.0	2.5	3.0		
Sodium carbonate	11.0	17.0	12.0	15.0	18.0	18.0		
Sodium silicate 2R	0.08	-	0.11	-	-	-		
Optical Brightener 1	-	0.25	0.05	0.01	0.10	0.02		
Optical Brightener 2	-	-	0.25	0.20	0.01	0.08		
Optical Brightener 3	-	0.06	0.04	0.15	-	0.05		
DTI 1	0.08	-	0.04	-	0.10	0.01		
DTI 2	0.08	-	0.04	0.10	0.10	0.02		
Soil release agent	0.75	0.72	0.71	0.72	-	-		
Acrylic /maleic acid copolymer	1.1	3.7	1.0	3.7	2.6	3.8		
Carboxymethyl cellulose	0.2	1.4	0.2	1.4	1.0	0.5		
Protease 3	0.20	0.20	0.30	0.15	0.12	0.13		
Amylase 3	0.20	0.15	0.20	0.30	0.15	0.15		
Lipase	0.05	0.15	0.10	-	-	-		
Amylase 2	0.03	0.07	-	-	0.05	0.05		
Cellulase 2	-	-	-	-	0.10	0.10		
Polishing enzyme	0.003	0.005	0.020	-	-	-		
Galactanase	0.002	0.010	0.020	0.020	0.010	0.003		
Dispersin B	0.002	0.010	0.020	0.020	0.010	0.002		
Tetraacetylehtylenediamine	3.6	4.0	3.6	4.0	2.2	1.4		
Sodium percabonate	13.0	13.2	13.0	13.2	16.0	14.0		
Chelant 3	-	0.2	-	0.2	-	0.2		
Chelant 2	0.2	-	0.2	-	0.2	0.2		
MgSO ₄	-	0.42	-	0.42	-	0.4		
Perfume	0.5	0.6	0.5	0.6	0.6	0.6		
Suds suppressor agglomerate	0.05	0.10	0.05	0.10	0.06	0.05		
Soap	0.45	0.45	0.45	0.45	-	-		
Acid Violet 50	0.04	-	0.05	_	0.04	-		
Violet DD	-	0.04	-	0.05	1	0.04		
S-ACMC	0.01	0.01	-	0.01	-	-		

(continued)

Ingredient	25	26	27	28	29	30				
ingredient		% weight								
Direct Violet 9 (active)	-	-	0.0001	0.0001	-	1				
Water-insoluble plant fiber	1.23	2.2	0.87	4.4	2.6	2.8				
Sulfate/ Water & Miscellaneous	Balance									

Examples 31-37: Heavy Duty Liquid laundry detergent compositions.

[0170]

In our diame	31	32	33	34	35	36	37
<u>Ingredients</u>			C	% weight			
AE _{1.8} S	6.77	5.16	1.36	1.30	-	-	-
AE ₃ S	-	-	-	-	0.45	-	-
LAS	0.86	2.06	2.72	0.68	0.95	1.56	3.55
HSAS	1.85	2.63	1.02	1	1	-	-
AE9	6.32	9.85	10.20	7.92			
AE8							35.45
AE7					8.40	12.44	
C ₁₂₋₁₄ dimethyl Amine Oxide	0.30	0.73	0.23	0.37	-	-	-
C ₁₂₋₁₈ Fatty Acid	0.80	1.90	0.60	0.99	1.20	-	15.00
Citric Acid	2.50	3.96	1.88	1.98	0.90	2.50	0.60
Optical Brightener 1	1.00	0.80	0.10	0.30	0.05	0.50	0.001
Optical Brightener 3	0.001	0.05	0.01	0.20	0.50	-	1.00
Sodium formate	1.60	0.09	1.20	0.04	1.60	1.20	0.20
DTI 1	0.32	0.05	-	0.60	0.10	0.60	0.01
DTI 2	0.32	0.10	0.60	0.60	0.05	0.40	0.20
Sodium hydroxide	2.30	3.80	1.70	1.90	1.70	2.50	2.30
Monoethanolamine	1.40	1.49	1.00	0.70	-	-	-
Diethylene glycol	5.50	-	4.10	-	1	-	-
Chelant 1	0.15	0.15	0.11	0.07	0.50	0.11	0.80
4-formyl-phenylboronic acid	-	-	-	-	0.05	0.02	0.01
Sodium tetraborate	1.43	1.50	1.10	0.75	1	1.07	-
Ethanol	1.54	1.77	1.15	0.89	1	3.00	7.00
Polymer 1	0.10	-	-	-	-	-	2.00
Polymer 2	0.30	0.33	0.23	0.17	-	-	-
Polymer 3	-	-	-	-	-	-	0.80
Polymer 4	0.80	0.81	0.60	0.40	1.00	1.00	-
1,2-Propanediol	-	6.60	-	3.30	0.50	2.00	8.00
Structurant	0.10	-	-	-	-	-	0.10

(continued)

	lu ave di ente	31	32	33	34	35	36	37
5	<u>Ingredients</u>			C	% weight			
5	Perfume	1.60	1.10	1.00	0.80	0.90	1.50	1.60
	Perfume encapsulate	0.10	0.05	0.01	0.02	0.10	0.05	0.10
	Protease	0.80	0.60	0.70	0.90	0.70	0.60	1.50
10	Galactanase of any of SEQ ID Nos: 1-3	0.07	0.05	0.045	0.06	0.04	0.045	0.10
	Amylase 1	0.30	-	0.30	0.10	-	0.40	0.10
15	Amylase 2	-	0.20	0.10	0.15	0.07	-	0.10
	Xyloglucanase	0.20	0.10	-	-	0.05	0.05	0.20
	Lipase	0.40	0.20	0.30	0.10	0.20	-	-
	Polishing enzyme	-	0.04		-	-	0.004	-
	Nuclease	0.05	0.03	0.01	0.03	0.03	0.003	0.003
20	Dispersin B	ı	ı	ı	0.05	0.03	0.001	0.001
	Acid Violet 50	0.05	-	ı	-	-	-	0.005
	Direct Violet 9	-	-	ı	ı	-	0.05	-
25	Violet DD	-	0.035	0.02	0.037	0.04	-	-
	Water insoluble plant fiber	0.2	0.1	0.3	0.25	1.2	1.5	0.25
	Dye control agent	-	0.3		0.5	-	0.3	-
	Alkoxylated polyaryl/ polyalkyl phenol	-	-	1.2	-	-	-	3.1
30	Water, dyes & minors				Balance			
	рН				8.2			

Based on total cleaning and/or treatment composition weight. Unless indicated otherwise, enzyme levels are reported as raw material.

AE1.8S is C_{12-15} alkyl ethoxy sulfate with an average degree of ethoxylation of 1.8 AE3S is C_{12-15} alkyl ethoxy sulfate with an av degree of ethoxylation of 3 AE7 is C_{12-13} alcohol ethoxylate, with an average degree of ethoxylation of 7 AE8 is C_{12-13} alcohol ethoxylate, with an average degree of ethoxylation of 8 AE9 is C_{12-13} alcohol ethoxylate, with an average degree of ethoxylation of 9

Alkoxylated polyaryl is alkoxylated polyaryl/polyalkyl phenol for example Emulsogen® TS160, Hostapal®

/ polyalkyl phenol BV conc., Sapogenat® T110 or Sapogenat® T139, all from Clariant

Amylase 1 is Stainzyme®, 15 mg active/g
Amylase 2 is Natalase®, 29 mg active/g
Amylase 3 is Stainzyme Plus®, 20 mg active/g,

AS is C₁₂₋₁₄ alkylsulfate

40

50

Cellulase 2 is Celluclean™ , 15.6 mg active/g
Xyloglucanase is Whitezyme®, 20mg active/g
Chelant 1 is diethylene triamine pentaacetic acid
Chelant 2 is 1-hydroxyethane 1,1-diphosphonic acid

Chelant 3 is sodium salt of ethylenediamine-N,N'-disuccinic acid, (S,S) isomer (EDDS)

Dispersin B is a glycoside hydrolase, reported as 1000mg active/g

55 DTI 1 is poly(4-vinylpyridine-1-oxide) (such as Chromabond S-403E®),
DTI 2 is poly(1-vinylpyrrolidone-co-1-vinylimidazole) (such as Sokalan HP56®).

Dye Control Agent is for example Suparex® O.IN (M1), Nylofixan® P (M2), Nylofixan® PM (M3), or Nylofixan®

HF (M4)

HSAS is mid-branched alkyl sulfate as disclosed in US 6,020,303 and US6,060,443

LAS is linear alkylbenzenesulfonate having an average aliphatic carbon chain length C₉-C₁₅

(HLAS is acid form).

5 Galactanase is SEQ ID NO: 1, 2 or 3, as active protein.

Lipase is Lipex®, 18 mg active/g
Mannanase is Mannaway®, 25 mg active/g

Optical Brightener 1 is disodium 4,4'-bis{[4-anilino-6-morpholino-s-triazin-2-yl]-amino}-2,2' -stilbenedisul-

fonate

Optical Brightener 2 is disodium 4,4'-bis-(2-sulfostyryl)biphenyl (sodium salt)

Optical Brightener 3 is Optiblanc SPL10® from 3V Sigma

Perfume encapsulate is a core-shell melamine formaldehyde perfume microcapsules.

Photobleach is a sulfonated zinc phthalocyanine

Polishing enzyme is Para-nitrobenzyl esterase, reported as 1000mg active/g

Polyetheramine as described in present disclosure.

Polymer 1 is $bis((C_2H_5O)(C_2H_4O)n)(CH_3)-N^+-C_xH_{2x}-N^+-(CH_3)-bis((C_2H_5O)(C_2H_4O)n)$, wherein n =

20-30,x = 3 to 8 or sulphated or sulfonated variants thereof

Polymer 2 is ethoxylated (EO₁₅) tetraethylene pentamine

Polymer 3 is ethoxylated polyethylenimine
Polymer 4 is ethoxylated hexamethylene diamine
Polymer 5 is Acusol 305, provided by Rohm&Haas

Polymer 6 is a polyethylene glycol polymer grafted with vinyl acetate side chains, provided by BASF.

Protease is Purafect Prime®, 40.6 mg active/g
Protease 2 is Savinase®, 32.89 mg active/g
Protease 3 is Purafect®, 84 mg active/g

Quaternary ammonium is C₁₂₋₁₄ Dimethylhydroxyethyl ammonium chloride

S-ACMC is Reactive Blue 19 Azo-CM-Cellulose provided by Megazyme

Soil release agent is Repel-o-tex® SF2
Structurant is Hydrogenated Castor Oil

30 Violet DD is a thiophene azo dye provided by Milliken

Water insoluble plant fiber Water insoluble plant fiber in accordance with the present disclosure, for example Herbacel

AQ+ Type N, supplied by Herbafood Ingredients GmbH, Werder, Germany and activated as a 2% aqueous slurry using a high pressure homogenizer PandaPlus from GEA (350 bars, 10 passes), then this slurry is added in the last step by using a Ultra-turrax with S

25 N - 18 G - ST Dispersing element from IKA.

[0171] The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm."

55

35

40

45

50

SEQUENCE LISTING

	<110>	P&G						
5	<120>	CLEANING	COMPOSI	TIONS I	NCLUDING	ENZYME A	ND BLEAC	Н
	<130>	CM04648F	М					
	<160>	14						
10	<170>	PatentIn	version	3.5				
15	<210> <211> <212> <213>	1 463 PRT Streptom	yces dav	rawensis				
	<400>	1						
20	Asp Al 1	a Thr Ile	Val Ile 5	Asn Pr	o Gly Thi 10	Arg Tyr	Gly Thr	Trp Glu 15
	Gly Tr	p Gly Thr 20	Ser Leu	ı Ala Tr	p Trp Gly 25	Asn Val	Phe Gly 30	Thr Arg
25	Asp As	p Phe Ala 35	Asp Leu	Phe Ph 40		Lys Ser	Val Thr 45	Tyr Asn
30	Gly Th 50	r Ser Leu	Pro Gly	Leu Gl 55	y Leu Asr	ı Ile Ala 60	Arg Tyr	Asn Leu
35	Gly Al 65	a Cys Ser	Trp Asr	ı Ala Va	l Asn Gly	Glu Thr 75	Met Val	Lys Ser 80
	Pro As	n Ile Pro	Ala Phe	. Lys Gl	n Ile Glu 90	ı Gly Phe	Trp Gln	Asp Trp 95
40	Asn As	n Glu Asp 100		: Ser Se	r Ala Trr 105	Asp Trp	Thr Ala 110	Asp Ala
45	Thr Gl	n Arg Ala 115	Met Lev	Val Ly 12	_	Gln Arg	Gly Ala 125	Val Thr
50	Glu Le 13	u Phe Ala O	Asn Ser	Pro Me	t Trp Tr	Met Cys 140	_	His Asn
	Pro Se 145	r Gly Ala	Ala Asp 150		y Asn Asr	Leu Gln 155	Thr Trp	Asn Tyr 160
55	Arg Gl	n His Ala	Ser His	Leu Al	a Ala Val 170		Tyr Ala	Arg Thr 175

	Asn	Trp	Gly	Val 180	Asn	Phe	Ala	Thr	Val 185	Asp	Pro	Phe	Asn	Glu 190	Pro	Ala
5	Ser	Ser	Trp 195	Trp	Thr	Ala	Ser	Gly 200	Thr	Gln	Glu	Gly	Cys 205	His	Leu	Asp
10	Pro	Ala 210	Val	Gln	Ala	Ala	Val 215	Leu	Pro	Tyr	Met	Arg 220	Ser	Glu	Leu	Asp
	Lys 225	Arg	Gly	Leu	Thr	Gly 230	Val	Arg	Ile	Ser	Ala 235	Ser	Asp	Glu	Thr	Asn 240
15	Tyr	Asp	Thr	Ala	Arg 245	Ser	Thr	Trp	Ser	Ser 250	Phe	Gly	Ser	Ala	Thr 255	Lys
20	Ala	Leu	Val	Ser 260	Gln	Val	Asn	Val	His 265	Gly	Tyr	Gln	Gly	Thr 270	Gly	Gly
25	Arg	Arg	Asp 275	Leu	Leu	Tyr	Thr	Asp 280	Val	Val	Thr	Thr	Ser 285	Gly	Lys	Lys
	Leu	Trp 290	Asn	Ser	Glu	Thr	Gly 295	Asp	Ser	Asp	Gly	Thr 300	Gly	Leu	Ser	Met
30	Ala 305	Arg	Asn	Leu	Суз	Tyr 310	Asp	Phe	Arg	Trp	Leu 315	His	Pro	Thr	Ala	Trp 320
35	Cys	Tyr	Trp	Gln	Val 325	Met	Asp	Pro	Ser	Thr 330	Gly	Trp	Ala	Met	Ile 335	Ala
40	Tyr	Asp	Ala	Asn 340		Leu	Gln	Pro		Thr			Pro	Lys 350	_	Tyr
40	Val	Met	Ala 355	Gln	Phe	Ser	Arg	His 360	Ile	Arg	Pro	Gly	Met 365	Thr	Ile	Leu
45	Asp	Thr 370	Gly	Val	Ser	Phe	Ala 375	Ala	Ala	Ala	Tyr	Asp 380	Ala	Ser	Ala	Arg
50	Arg 385	Leu	Val	Leu	Val	Ala 390	Val	Asn	Thr	Ser	Thr 395	Ser	Pro	Gln	Thr	Phe 400
	Thr	Phe	Asp	Leu	Ser 405	Arg	Phe	Thr	Thr	Val 410	Thr	Gly	Gly	Ser	Gly 415	Gly
55	Leu	Val	Pro	Arg 420	Trp	Asn	Thr	Val	Thr 425	Gly	Gly	Gly	Asp	Met 430	Tyr	Arg

	Ala	Tyr	Thr 435	Asn	Thr	Tyr	Val	Thr 440	Gly	Lys	Ser	Val	Ser 445	Ala	Thr	Phe
5	Ala	Ala 450	Gly	Ser	Val	Gln	Thr 455	Leu	Gln	Val	Asp	Gly 460	Val	Thr	Thr	
10	<210 <211 <212 <213	> 4 > E	164 PRT	otomy	yces	avei	rmiti	ilis								
	<400	> 2	2													
15	Asp	Ala	Thr	Ile	Ala 5	Val	Asn	Pro	Ser	Thr 10	Thr	Tyr	Gly	Lys	Trp 15	Glu
20	Gly	Trp	Gly	Thr 20	Ser	Leu	Ala	Trp	Trp 25	Ala	Asn	Val	Phe	Gly 30	Ala	Arg
	Asp	Asp	Phe 35	Ala	Asp	Leu	Phe	Phe 40	Thr	Thr	Lys	Ser	Val 45	Thr	Tyr	Asn
25	Gly	Arg 50	Thr	Leu	Pro	Gly	Leu 55	Gly	Leu	Asn	Ile	Ala 60	Arg	Tyr	Asn	Leu
30	Gly 65	Ala	Cys	Ser	Trp	Asn 70	Ser	Val	Ser	Gly	Glu 75	Ser	Met	Val	Ala	Ser 80
35	Ala	Asn	Ile	Pro	Ala 85	Phe	Lys	Gln	Ile	Glu 90	Gly	Tyr	Trp	Gln	Asp 95	Trp
	Asn	Asn	Glu	Asp 100	Pro	Thr	Ser	Ser	Ala 105	Trp	Lys	Trp	Thr	Ala 110	Asp	Ala
40	Ala	Gln	A rg 115	Thr	Met	Leu	Val	Lys 120	Ala	Thr	Ala	Arg	Gly 125	Ala	Thr	Thr
45	Glu	Leu 130	Phe	Ala	Asn	Ser	Pro 135	Met	Trp	Trp	Met	Cys 140	Leu	Asn	His	Asn
50	Pro 145	Ser	Gly	Ala	Ser	Gly 150	Gly	Gly	Asn	Asn	Leu 155	Gln	Ser	Trp	Asn	Tyr 160
	Arg	Gln	His	Ala	Ser 165	His	Leu	Ala	Ala	Val 170	Ala	Leu	Tyr	Ala	Lys 175	Ser
55	Asn	Trp	Gly	Val 180	Asn	Phe	Ala	Thr	Val 185	Asp	Pro	Phe	Asn	Glu 190	Pro	Ser

	Ser	Ser	Trp 195	Trp	Thr	Ala	Thr	Gly 200	Thr	Gln	Glu	Gly	Cys 205	His	Met	Asp
5	Ala	Ser 210	Val	Gln	Ala	Ala	Val 215	Leu	Pro	Tyr	Leu	Arg 220	Ser	Glu	Leu	Asp
10	Arg 225	Arg	Gly	Leu	Thr	Gly 230	Thr	Lys	Ile	Ser	Ala 235	Ser	Asp	Glu	Thr	Ser 240
45	Tyr	Asp	Leu	Ala	Arg 245	Thr	Thr	Trp	Gly	Ser 250	Phe	Gly	Ser	Ser	Thr 255	Lys
15	Ala	Leu	Val	Asn 260	Arg	Val	Asn	Val	His 265	Gly	Tyr	Gln	Gly	Ser 270	Gly	Gly
20	Arg	Arg	Asp 275	Leu	Leu	Tyr	Thr	Asp 280	Val	Val	Thr	Thr	Ala 285	Gly	Lys	Ala
25	Leu	Trp 290	Asn	Ser	Glu	Thr	Gly 295	Asp	Ser	Asp	Gly	Thr 300	Gly	Leu	Thr	Leu
	Ala 305	Ser	Asn	Leu	Cys	Leu 310	Asp	Phe	Arg	Trp	Leu 315	His	Pro	Thr	Ala	Trp 320
30	Val	Tyr	Trp	Gln	Val 325	Met	Asp	Pro	Ser	Ser 330	Gly	Trp	Ala	Met	Ile 335	Ala
35	Tyr	Asp	Ala	Ser 340	Thr	Leu	Gln	Pro	Gly 345	Ala	Val	Gln	Thr	Lys 350	Tyr	Tyr
40	Val	Met	Ala 355	Gln	Phe	Ser	Arg		Ile				Met 365	Thr	Ile	Val
70	Asp	Thr 370	Gly	Val	Gly	Tyr	Ala 375	Ala	Ala	Ala	Tyr	Asp 380	Ala	Thr	Ala	Arg
45	Arg 385	Leu	Val	Ile	Val	Ala 390	Val	Asn	Thr	Ser	Thr 395	Ser	Ala	Gln	Thr	Leu 400
50	Thr	Phe	Asp	Leu	Ser 405	Arg	Phe	Ser	Thr	Val 410	Thr	Gly	Gly	Thr	Gly 415	Gly
	Leu	Val	Arg	Arg 420	Trp	Asn	Thr	Val	Thr 425	Gly	Gly	Gly	Gly	Asp 430	Leu	Tyr
55	Ala	Ala	His 435	Ser	Asp	Thr	Tyr	Leu 440	Ser	Gly	Lys	Ser	Leu 445	Ser	Val	Pro

	Phe Ala Ala Gly Ala Val 450	Gln Thr Leu Glu Val 455	Asp Gly Val Thr Val
5	<210> 3 <211> 458 <212> PRT <213> Trichoderma harz	ianum	
10	<400> 3		
	Asp Thr Thr Leu Ser Ile	Asp Pro Thr Ser Asn	Trp Gly Thr Trp Glu
	1 5	10	15
15	Gly Trp Gly Val Ser Leu	Ala Trp Trp Ala Lys	Ala Phe Gly Asn Arg
	20	25	30
20	Asp Asp Leu Ala Asn Val 35	Phe Phe Thr Arg Asn 40	Asn Gln Val Ile Asn 45
25	Gly Gln Asn Leu Pro Gly	Leu Gly Phe Asn Ile	Ala Arg Tyr Asn Ala
	50	55	60
20	Gly Ala Cys Ser Thr Asn	Thr Tyr Asn Gly Ser	Ser Met Val Val Ser
	65 70	75	80
30	Ser Ser Ile Lys Pro Ser	Arg Gln Val Asp Gly	Tyr Trp Leu Asp Trp
	85	90	95
35	Ala Ser Thr Asp Pro Ala	Ser Ser Ser Trp Asn	Trp Asn Val Asp Ala
	100	105	110
40	Asn Gln Arg Ala Met Leu 115		Asn Gly Ala Asn Ile 125
40	Phe Glu Leu Phe Ser Asn	Ser Pro Met Trp Trp	Met Cys Leu Asn His
	130	135	140
45	Asn Pro Ser Gly Ser Gly	Ser Ser Asp Asn Leu	Gln Ser Trp Asn Tyr
	145 150	155	160
50	Gln Asn His Ala Val Tyr	Leu Ala Asn Ile Ala	Gln His Ala Gln Gln
	165	170	175
	Asn Trp Gly Ile Gln Phe	Gln Ser Val Glu Ala	Phe Asn Glu Pro Ser
	180	185	190
55	Ser Gly Trp Gly Pro Thr	Gly Thr Gln Glu Gly	Cys His Phe Ala Val
	195	200	205

	Ser	Thr 210	Met	Ala	Thr	Val	Ile 215	Gly	Tyr	Leu	Asn	Thr 220	Glu	Leu	Ala	Gln
5	Arg 225	Gly	Leu	Ser	Ser	Phe 230	Ile	Ser	Ala	Ser	Asp 235	Glu	Thr	Ser	Tyr	Asp 240
10	Leu	Ala	Ile	Ser	Thr 245	Trp	Gln	Gly	Leu	Gly 250	Ser	Ser	Ala	Gln	Asn 255	Ala
	Val	Lys	Arg	Val 260	Asn	Val	His	Gly	Tyr 265	Gln	Gly	Gly	Gly	Gly 270	Arg	Arg
15	Asp	Thr	Leu 275	Tyr	Ser	Leu	Val	Ser 280	Gln	Ala	Gly	Lys	Arg 285	Leu	Trp	Asn
20	Ser	Glu 290	Tyr	Gly	Asp	Ala	Asp 295	Ala	Ser	Gly	Lys	Ser 300	Met	Tyr	Thr	Asn
25	Leu 305	Leu	Leu	Asp	Phe	Thr 310	Trp	Leu	His	Pro	Thr 315	Ala	Trp	Val	Tyr	Trp 320
	Gln	Ala	Ile	Asp	Gly 325	Ser	Gly	Trp	Gly	Leu 330	Ile	Val	Gly	Asp	Asn 335	Asp
30	Gln	Leu	Thr	Leu 340	Ser	Ser	Ala	Ser	Thr 345	Lys	Tyr	Phe	Val	Leu 350	Ala	Gln
35	Leu	Thr	A rg 355	His	Ile	Arg	Pro	Gly 360	Met	Gln	Ile	Leu	Thr 365	Thr	Pro	Asp
40	Gly	Asn 370	Thr	Val	Ala	Ala	Tyr 375	Asp	Ser	Gly	Ser	Gln 380	Lys	Leu	Val	Ile
	Val 385	Ala	Ala	Asn	Trp	Gly 390	Ser	Ala	Gln	Thr	Ile 395	Thr	Phe	Asp	Leu	Thr 400
45	Arg	Ala	Lys	Thr	Ala 405	Gly	Ser	Asn	Gly	Ala 410	Thr	Val	Pro	Arg	Trp 415	Ser
50	Thr	Gln	Thr	Ser 420	Gly	Gly	Asp	Gln	Tyr 425	Lys	Ser	Tyr	Ser	Asp 430	Thr	Lys
	Ile	Asn	Asn 435	Gly	Lys	Phe	Ser	Val 440	Ser	Phe	Ser	Thr	Gly 445	Gln	Val	Gln
55	Thr	Phe	Glu	Ile	Ser	Gly	Val	Val	Leu	Lys						

5	<210 <211 <212 <213	L> 2>	4 109 PRT Bacil	llus	lich	neni:	formi	is								
	<400)>	4													
10	Ala 1	Arg	Tyr	Asp	Asp 5	Val	Leu	Tyr	Phe	Pro 10	Ala	Ser	Arg	Tyr	Pro 15	Glu
15	Thr	Gly	Ala	His 20	Ile	Ser	Asp	Ala	Ile 25	Lys	Ala	Gly	His	Ala 30	Asp	Val
	Cys	Thr	Ile 35	Glu	Arg	Ser	Gly	Ala 40	Asp	Lys	Arg	Arg	Gln 45	Glu	Ser	Leu
20	Lys	Gly 50	Ile	Pro	Thr	Lys	Pro 55	Gly	Phe	Asp	Arg	Asp 60	Glu	Trp	Pro	Met
25	Ala 65	Met	Cys	Glu	Glu	Gly 70	Gly	Lys	Gly	Ala	Ser 75	Val	Arg	Tyr	Val	Ser 80
30	Ser	Ser	Asp	Asn	Arg 85	Gly	Ala	Gly	Ser	Trp 90	Val	Gly	Asn	Arg	Leu 95	Asn
	Gly	Tyr	Ala	Asp 100	Gly	Thr	Arg	Ile	Leu 105	Phe	Ile	Val	Gln			
35	<210 <211 <212 <213	L> 2>	5 109 PRT Bacil	llus	subt	cilia	5									
40	<400)>	5													
70	Ala 1	Ser	Ser	Tyr	Asp 5	Lys	Val	Leu	Tyr	Phe 10	Pro	Leu	Ser	Arg	Tyr 15	Pro
45	Glu	Thr	Gly	Ser 20	His	Ile	Arg	Asp	Ala 25	Ile	Ala	Glu	Gly	His 30	Pro	Asp
50	Ile	Cys	Thr 35	Ile	Asp	Asp	Gly	Ala 40	Asp	Lys	Arg	Arg	Glu 45	Glu	Ser	Leu
	Lys	Gly 50	Ile	Pro	Thr	Lys	Pro 55	Gly	Tyr	Asp	Arg	Asp 60	Glu	Trp	Pro	Met
55	Ala 65	Val	Cys	Glu	Glu	Gly 70	Gly	Ala	Gly	Ala	Asp 75	Val	Arg	Tyr	Val	Thr 80

	Pro	Ser	Asp	Asn	Arg 85	Gly	Ala	Gly	Ser	Trp 90	Val	Gly	Asn	Gln	Met 95	Ser
5	Ser	Tyr	Pro	Asp 100	Gly	Thr	Arg	Val	Leu 105	Phe	Ile	Val	Gln			
10	<210 <211 <212 <213	L> 1 2> E	L09 PRT	llus	lich	nenif	formi	Ls								
	<400)> (5													
15	Ala 1	Arg	Tyr	Asp	Asp 5	Ile	Leu	Tyr	Phe	Pro 10	Ala	Ser	Arg	Tyr	Pro 15	Glu
20	Thr	Gly	Ala	His 20	Ile	Ser	Asp	Ala	Ile 25	Lys	Ala	Gly	His	Ser 30	Asp	Val
25	Cys	Thr	Ile 35	Glu	Arg	Ser	Gly	Ala 40	Asp	Lys	Arg	Arg	Gln 45	Glu	Ser	Leu
	Lys	Gly 50	Ile	Pro	Thr	Lys	Pro 55	Gly	Phe	Asp	Arg	Asp 60	Glu	Trp	Pro	Met
30	Ala 65	Met	Cys	Glu	Glu	Gly 70	Gly	Lys	Gly	Ala	Ser 75	Val	Arg	Tyr	Val	Ser 80
35	Ser	Ser	Asp	Asn	Arg 85	Gly	Ala	Gly	Ser	Trp 90	Val	Gly	Asn	Arg	Leu 95	Ser
40	Gly	Phe	Ala	Asp 100	_		Arg		Leu 105	Phe	Ile	Val	Gln			
	<210 <211 <212	L> 2 2> E	204 PRT													
45	<213	3> 1	lspe1	rgill	us o	ryza	ıe									
	<400)> 7	7													
50	Lys 1	Thr	Gly	Ser	Gly 5	Asp	Ser	Gln	Ser	Asp 10	Pro	Ile	Lys	Ala	Asp 15	Leu
	Glu	Val	Lys	Gly 20	Gln	Ser	Ala	Leu	Pro 25	Phe	Asp	Val	Asp	Cys 30	Trp	Ala
55	Ile	Leu	Cys 35	Lys	Gly	Ala	Pro	Asn 40	Val	Leu	Gln	Arg	Val 45	Asn	Glu	Lys

	Thr	Lys 50	Asn	Ser	Asn	Arg	Asp 55	Arg	Ser	GTA	Ala	Asn 60	Lys	GTĀ	Pro	Phe
5	Lys 65	Asp	Pro	Gln	Lys	Trp 70	Gly	Ile	Lys	Ala	Leu 75	Pro	Pro	Lys	Asn	Pro 80
10	Ser	Trp	Ser	Ala	Gln 85	Asp	Phe	Lys	Ser	Pro 90	Glu	Glu	Tyr	Ala	Phe 95	Ala
	Ser	Ser	Leu	Gln 100	Gly	Gly	Thr	Asn	Ala 105	Ile	Leu	Ala	Pro	Val 110	Asn	Leu
15	Ala	Ser	Gln 115	Asn	Ser	Gln	Gly	Gly 120	Val	Leu	Asn	Gly	Phe 125	Tyr	Ser	Ala
20	Asn	Lys 130	Val	Ala	Gln	Phe	Asp 135	Pro	Ser	Lys	Pro	Gln 140	Gln	Thr	Lys	Gly
25	Thr 145	Trp	Phe	Gln	Ile	Thr 150	Lys	Phe	Thr	Gly	Ala 155	Ala	Gly	Pro	Tyr	Cys 160
	Lys	Ala	Leu	Gly	Ser 165	Asn	Asp	Lys	Ser	Val 170	Cys	Asp	Lys	Asn	Lys 175	Asn
30	Ile	Ala	Gly	Asp 180	Trp	Gly	Phe	Asp	Pro 185	Ala	Lys	Trp	Ala	Tyr 190	Gln	Tyr
35	Asp	Glu	Lys 195	Asn	Asn	Lys	Phe	Asn 200	Tyr	Val	Gly	Lys				
40	<210 <211 <212 <213	L> 1 2> I	L88 PRT	nodei	rma h	narzi	Lanum	n								
	<400)> {	3													
45	Ala 1	Pro	Ala	Pro	Met 5	Pro	Thr	Pro	Pro	Gly 10	Ile	Pro	Thr	Glu	Ser 15	Ser
50	Ala	Arg	Thr	Gln 20	Leu	Ala	Gly	Leu	Thr 25	Val	Ala	Val	Ala	Gly 30	Ser	Gly
	Thr	Gly	Tyr 35	Ser	Arg	Asp	Leu	Phe 40	Pro	Thr	Trp	Asp	Ala 45	Ile	Ser	Gly
55	Asn	Cys 50	Asn	Ala	Arg	Glu	Tyr 55	Val	Leu	Lys	Arg	Asp 60	Gly	Glu	Gly	Val

	Gln 65	Val	Asn	Asn	Ala	Cys 70	Glu	Ser	Gln	Ser	Gly 75	Thr	Trp	Ile	Ser	Pro 80
5	Tyr	Asp	Asn	Ala	Ser 85	Phe	Thr	Asn	Ala	Ser 90	Ser	Leu	Asp	Ile	Asp 95	His
10	Met	Val	Pro	Leu 100	Lys	Asn	Ala	Trp	Ile 105	Ser	Gly	Ala	Ser	Ser 110	Trp	Thr
	Thr	Ala	Gln 115	Arg	Glu	Ala	Leu	Ala 120	Asn	Asp	Val	Ser	Arg 125	Pro	Gln	Leu
15	Trp	Ala 130	Val	Ser	Ala	Ser	Ala 135	Asn	Arg	Ser	Lys	Gly 140	Asp	Arg	Ser	Pro
20	Asp 145	Gln	Trp	Lys	Pro	Pro 150	Leu	Thr	Ser	Phe	Tyr 155	Cys	Thr	Tyr	Ala	Lys 160
25	Ser	Trp	Ile	Asp	Val 165	Lys	Ser	Phe	Tyr	Lys 170	Leu	Thr	Ile	Thr	Ser 175	Ala
	Glu	Lys	Thr	Ala 180	Leu	Ser	Ser	Met	Leu 185	Asp	Thr	Cys				
30	<210 <211 <212 <213	L> 3 2> E	9 361 PRT Aggre	egati	Lbact	er a	nctir	nomyc	ceten	ncomi	itans	3				
35	<400	0> 9)													
	Asn 1	Cys	Cys	Val	Lys 5	Gly	Asn	Ser	Ile	Tyr 10	Pro	Gln	Lys	Thr	Ser 15	Thr
40	Lys	Gln	Thr	Gly 20	Leu	Met	Leu	Asp	Ile 25	Ala	Arg	His	Phe	Tyr 30	Ser	Pro
45	Glu	Val	Ile 35	Lys	Ser	Phe	Ile	Asp 40	Thr	Ile	Ser	Leu	Ser 45	Gly	Gly	Asn
50	Phe	Leu 50	His	Leu	His	Phe	Ser 55	Asp	His	Glu	Asn	Tyr 60	Ala	Ile	Glu	Ser
	His 65	Leu	Leu	Asn	Gln	Arg 70	Ala	Glu	Asn	Ala	Val 75	Gln	Gly	Lys	Asp	Gly 80
55	Ile	Tyr	Ile	Asn	Pro 85	Tyr	Thr	Gly	Lys	Pro 90	Phe	Leu	Ser	Tyr	Arg 95	Gln

	Leu	Asp	Asp	Ile 100	Lys	Ala	Tyr	Ala	Lys 105	Ala	Lys	Gly	Ile	Glu 110	Leu	Ile
5	Pro	Glu	Leu 115	Asp	Ser	Pro	Asn	His 120	Met	Thr	Ala	Ile	Phe 125	Lys	Leu	Val
10	Gln	Lys 130	Asp	Arg	Gly	Val	Lys 135	Tyr	Leu	Gln	Gly	Leu 140	Lys	Ser	Arg	Gln
	Val 145	Asp	Asp	Glu	Ile	Asp 150	Ile	Thr	Asn	Ala	Asp 155	Ser	Ile	Thr	Phe	Met 160
15	Gln	Ser	Leu	Met	Ser 165	Glu	Val	Ile	Asp	Ile 170	Phe	Gly	Asp	Thr	Ser 175	Gln
20	His	Phe	His	Ile 180	Gly	Gly	Asp	Glu	Phe 185	Gly	Tyr	Ser	Val	Glu 190	Ser	Asn
25	His	Glu	Phe 195	Ile	Thr	Tyr	Ala	Asn 200	Lys	Leu	Ser	Tyr	Phe 205	Leu	Glu	Lys
	Lys	Gly 210	Leu	Lys	Thr	Arg	Met 215	Trp	Asn	Asp	Gly	Leu 220	Ile	Lys	Asn	Thr
30	Phe 225	Glu	Gln	Ile	Asn	Pro 230	Asn	Ile	Glu	Ile	Thr 235	Tyr	Trp	Ser	Tyr	Asp 240
35	Gly	Asp	Thr	Gln	Asp 245	Lys	Asn	Glu	Ala	Ala 250	Glu	Arg	Arg	Asp	Met 255	Arg
40	Val	Ser	Leu	Pro 260	Glu	Leu	Leu	Ala	Lys 265	Gly	Phe	Thr	Val	Leu 270	Asn	Tyr
40	Asn	Ser	Tyr 275	Tyr	Leu	Tyr	Ile	Val 280	Pro	Lys	Ala	Ser	Pro 285	Thr	Phe	Ser
45	Gln	Asp 290	Ala	Ala	Phe	Ala	Ala 295	Lys	Asp	Val	Ile	Lys 300	Asn	Trp	Asp	Leu
50	Gly 305	Val	Trp	Asp	Gly	Arg 310	Asn	Thr	Lys	Asn	Arg 315	Val	Gln	Asn	Thr	His 320
	Glu	Ile	Ala	Gly	Ala 325	Ala	Leu	Ser	Ile	Trp 330	Gly	Glu	Asp	Ala	Lys 335	Ala
55	Leu	Lys	Asp	Glu 340	Thr	Ile	Gln	Lys	Asn 345	Thr	Lys	Ser	Leu	Leu 350	Glu	Ala

Val Ile His Lys Thr Asn Gly Asp Glu 355 360

5	<210 <211 <212 <213	L> ! 2> I 3> I		oolus	s sti	icto	ideus	5								
10	<400 Gln 1		lO Tyr	Thr	Leu 5	Glu	Ala	Glu	Ala	Gly 10	Thr	Leu	Thr	Gly	Val 15	Thr
15	Val	Met	Asn	Glu 20	Ile	Ala	Gly	Phe	Ser 25	Gly	Thr	Gly	Tyr	Val 30	Gly	Gly
20	Trp	Asp	Glu 35	Asp	Ala	Asp	Thr	Val 40	Ser	Leu	Thr	Phe	Thr 45	Ser	Asp	Ala
25	Thr	Lys 50	Leu	Tyr	Asp	Val	Lys 55	Ile	Arg	Tyr	Ser	Gly 60	Pro	Tyr	Gly	Ser
-20	Lys 65	Tyr	Thr	Arg	Ile	Ser 70	Tyr	Asn	Gly	Ala	Thr 75	Gly	Gly	Asp	Ile	Ser 80
30	Leu	Pro	Glu	Thr	Thr 85	Glu	Trp	Ala	Thr	Val 90	Asn	Ala	Gly	Gln	Ala 95	Leu
35	Leu	Asn	Ala	Gly 100	Ser	Asn	Thr	Ile	Lys 105	Leu	His	Asn	Asn	Trp 110	Gly	Trp
40	Tyr	Leu	Ile 115	Asp	Ala	Val	Ile	Leu 120	Thr	Pro	Ser	Val	Pro 125	Arg	Pro	Pro
40	His	Gln 130	Val	Thr	Asp	Ala	Leu 135	Val	Asn	Thr	Asn	Ser 140	Asn	Ala	Val	Thr
45	Lys 145	Gln	Leu	Met	Lys	Phe 150	Leu	Val	Ser	Lys	Tyr 155	His	Lys	Ala	Tyr	Ile 160
50	Thr	Gly	Gln	Gln	Glu 165	Leu	His	Ala	His	Gln 170	Trp	Val	Glu	Lys	Asn 175	Val
	Gly	Lys	Ser	Pro 180	Ala	Ile	Leu	Gly	Leu 185	Asp	Phe	Met	Asp	Tyr 190	Ser	Pro
55	Ser	Arg	Val 195	Glu	Phe	Gly	Thr	Thr 200	Ser	Gln	Ala	Val	Glu 205	Gln	Ala	Ile

	Asp	Phe 210	Asp	Lys	Arg	Gly	Gly 215	Ile	Val	Thr	Phe	Ala 220	Trp	His	Trp	Asn
5	Ala 225	Pro	Ser	Gly	Leu	Ile 230	Asn	Thr	Pro	Gly	Ser 235	Glu	Trp	Trp	Arg	Gly 240
10	Phe	Tyr	Thr	Glu	His 245	Thr	Thr	Phe	Asp	Val 250	Ala	Ala	Ala	Leu	Gln 255	Asn
	Thr	Thr	Asn	Ala 260	Asn	Tyr	Asn	Leu	Leu 265	Ile	Arg	Asp	Ile	Asp 270	Ala	Ile
15	Ala	Val	Gln 275	Leu	Lys	Arg	Leu	Gln 280	Thr	Ala	Gly	Val	Pro 285	Val	Leu	Trp
20	Arg	Pro 290	Leu	His	Glu	Ala	Glu 295	Gly	Gly	Trp	Phe	Trp 300	Trp	Gly	Ala	Lys
25	Gly 305	Pro	Glu	Pro	Ala	Lys 310	Lys	Leu	Tyr	Lys	Ile 315	Leu	Tyr	Asp	Arg	Leu 320
	Thr	Asn	Tyr	His	Lys 325	Leu	Asn	Asn	Leu	Ile 330	Trp	Val	Trp	Asn	Ser 335	Val
30	Ala	Lys	Asp	Trp 340	Tyr	Pro	Gly	Asp	Glu 345	Ile	Val	Asp	Val	Leu 350	Ser	Phe
35	Asp	Ser	Tyr 355	Pro	Ala	Gln	Pro	Gly 360	Asp	His	Gly	Pro	Val 365	Ser	Ala	Gln
40	Tyr	Asn 370	Ala	Leu	Val	Glu	Leu 375	Gly	Lys	Asp	Lys	Lys 380	Leu	Ile	Ala	Ala
	Thr 385	Glu	Val	Gly	Thr	Ile 390	Pro	Asp	Pro	Asp	Leu 395	Met	Gln	Leu	Tyr	Glu 400
45	Ser	Tyr	Trp	Ser	Phe 405	Phe	Val	Thr	Trp	Glu 410	Gly	Glu	Phe	Ile	Glu 415	Asn
50	Gly	Val	His	Asn 420	Ser	Leu	Glu	Phe	Leu 425	Lys	Lys	Leu	Tyr	Asn 430	Asn	Ser
	Phe	Val	Leu 435	Asn	Leu	Asp	Thr	Ile 440	Gln	Gly	Trp	Lys	Asn 445	Gly	Ala	Gly
55	Ser	Ser	Thr	Thr	Thr	Val	Lys	Ser	Thr	Thr	Thr	Thr	Pro	Thr	Thr	Thr

		450					400					400				
5	Ile 465	Lys	Ser	Thr	Thr	Thr 470	Thr	Pro	Val	Thr	Thr 475	Pro	Thr	Thr	Val	Lys 480
	Thr	Thr	Thr	Thr	Pro 485	Thr	Thr	Thr	Ala	Thr 490	Thr	Val	Lys	Ser	Thr 495	Thr
10	Thr	Thr	Ala	Gly 500	Pro	Thr	Pro	Thr	Ala 505	Val	Ala	Gly	Arg	Trp 510	Gln	Gln
15	Cys	Gly	Gly 515	Ile	Gly	Phe	Thr	Gly 520	Pro	Thr	Thr	Cys	Glu 525	Ala	Gly	Thr
20	Thr	Cys 530	Asn	Val	Leu	Asn	Pro 535	Tyr	Tyr	Ser	Gln	Cys 540	Leu			
	<210 <210 <210 <210	1> ! 2> !	11 526 PRT Chaet	omi		iros	nong									
25				OIIIT	шι ν.	rres	ens									
	<400		11 Asp	Pro	Gly	Ala	Thr	Ala	Arg	Thr	Phe	Glu	Ala	Glu	Asp	Ala
30	1				5					10					15	
	Thr	Leu	Ala	Gly 20	Thr	Asn	Val	Asp	Thr 25	Ala	Leu	Ser	Gly	Phe 30	Thr	Gly
35	Thr	Gly	Tyr 35	Val	Thr	Gly	Phe	Asp 40	Gln	Ala	Ala	Asp	Lys 45	Val	Thr	Phe
40		Val 50	Asp	Ser	Ala		Thr 55	Glu	Leu		Asp		Ser	Ile	Arg	Val
	Ala 65	Ala	Ile	Tyr	Gly	Asp 70	Lys	Arg	Thr	Ser	Val 75	Val	Leu	Asn	Gly	Gly 80
45	Ala	Ser	Ser	Glu	Val 85	Tyr	Phe	Pro	Ala	Gly 90	Glu	Thr	Trp	Thr	Asn 95	Val
50	Ala	Ala	Gly	Gln 100	Leu	Leu	Leu	Asn	Gln 105	Gly	Ser	Asn	Thr	Ile 110	Asp	Ile
55	Val	Ser	Asn 115	Trp	Gly	Trp	Tyr	Leu 120	Ile	Asp	Ser	Ile	Thr 125	Leu	Thr	Pro
55	Ser	Thr	Pro	Arg	Pro	Ala	His	Gln	Ile	Asn	Glu	Ala	Pro	Val	Asn	Ala

	Δla	Δla	Agn	Lys	Aan	Δls	T.ve	Δla	T.011	Тиг	Sor	Тиг	T.011	Ara	Sor	Tle
5	145	ALG	nsp	цуз	non	150	шуз	nia	цец	TYT	155	-y-	цец	nry	Der	160
	Tyr	Gly	Lys	Lys	Ile 165	Leu	Ser	Gly	Gln	Gln 170	Glu	Leu	Ser	Leu	Ser 175	Asn
10	Trp	Ile	Ala	Gln 180	Gln	Thr	Gly	Lys	Thr 185	Pro	Ala	Leu	Val	Ser 190	Val	Asp
15	Leu	Met	Asp 195	Tyr	Ser	Pro	Ser	Arg 200	Val	Glu	Arg	Gly	Thr 205	Val	Gly	Thr
20	Ala	Val 210	Glu	Glu	Ala	Ile	Gln 215	His	His	Asn	Arg	Gly 220	Gly	Ile	Val	Ser
	Val 225	Leu	Trp	His	Trp	As n 230	Ala	Pro	Thr	Gly	Leu 235	Tyr	Asp	Thr	Glu	Glu 240
25	His	Arg	Trp	Trp	Ser 245	Gly	Phe	Tyr	Thr	Ser 250	Ala	Thr	Asp	Phe	Asp 255	Val
30	Ala	Ala	Ala	Leu 260	Ser	Ser	Thr	Thr	Asn 265	Ala	Asn	Tyr	Thr	Leu 270	Leu	Ile
35	Arg	Asp	Ile 275	Asp	Ala	Ile	Ala	Val 280	Gln	Leu	Lys	Arg	Leu 285	Gln	Ser	Ala
	Gly	Val 290	Pro	Val	Leu	Phe	Arg 295	Pro	Leu	His	Glu	Ala 300	Glu	Gly	Gly	Trp
40	Phe 305	Trp	Trp	Gly	Ala	Lys 310	Gly	Pro	Glu	Pro	Ala 315	Lys	Lys	Leu	Trp	Gly 320
45	Ile	Leu	Tyr	Asp	Arg 325	Val	Thr	Asn	His	His 330	Gln	Ile	Asn	Asn	Leu 335	Leu
50	Trp	Val	Trp	Asn 340	Ser	Ile	Leu	Pro	Glu 345	Trp	Tyr	Pro	Gly	Asp 350	Ala	Thr
	Val	Asp	Ile 355	Leu	Ser	Ala	Asp	Val 360	Tyr	Ala	Gln	Gly	Asn 365	Gly	Pro	Met
55	Ser	Thr 370	Gln	Tyr	Asn	Gln	Leu 375	Ile	Glu	Leu	Gly	Lys 380	Asp	Lys	Lys	Met

	Ile Ala 385	Ala Ala	Glu Val 390	_	Ala Pro	Leu Pro 395	Asp Leu	Leu Gln 400
5	Ala Tyr	Glu Ala	His Trp 405	Leu Trp	Phe Thr 410	Val Trp	Gly Asp	Ser Phe 415
10	Ile Asn	Asn Ala 420	Asp Trp	Asn Ser	Leu Asp 425	Thr Leu	Lys Lys 430	Val Tyr
45	Thr Ser	Asp Tyr 435	Val Leu	Thr Leu 440	_	Ile Gln	Gly Trp 445	Gln Gly
15	Ser Thr 450	Pro Ser	Ala Thr	Thr Thr 455	Ser Ser	Thr Thr 460	Thr Pro	Ser Ala
20	Thr Thr 465	Thr Thr	Thr Thr	Pro Ser	Thr Thr	Ala Thr 475	Thr Ala	Thr Pro 480
25	Ser Ala	Thr Thr	Thr Ala	Ser Pro	Val Thr 490	Tyr Ala	Glu His	Trp Gly 495
	Gln Cys	Ala Gly 500	Lys Gly	Trp Thr	Gly Pro 505	Thr Thr	Cys Arg 510	Pro Pro
30	Tyr Thr	Cys Lys 515	Tyr Gln	Asn Asp 520	Trp Tyr	Ser Gln	Cys Leu 525	
35	<211> 4 <212> E	.2 152 PRT Preussia	aemulan	s				
40		.2						
	Gln Thr 1	Val Ile	Tyr Gln 5	Ala Glu	Gln Ala 10	Lys Leu	Ser Gly	Val Thr 15
45	Val Glu	Phe Ser 20	Ile Ile	Lys Gln	Val Val 25	Gly Thr	Gly Tyr 30	Val Glu
50	Gly Phe	Asp Glu 35	Ser Thr	Asp Ser 40	Ile Thr	Phe Thr	Val Glu 45	Ser Thr
	Thr Ala 50	Ala Leu	Tyr Asp	Leu Ala 55	Leu Thr	Tyr Asn 60	Gly Pro	Tyr Gly
55	Asp Lys 65	Tyr Thr	Asn Val	Val Leu	Asn Asn	Ala Ala 75	Gly Ser	Gln Val 80

	Ser	Leu	Pro	Ala	Thr 85	Thr	Ala	Trp	Thr	Thr 90	Val	Pro	Ala	Gly	Gln 95	Val
5	Leu	Leu	Asn	Ala 100	Gly	Ala	Asn	Thr	Ile 105	Gln	Ile	Gln	Asn	Asn 110	Trp	Gly
10	Trp	Tyr	Leu 115	Val	Asp	Ser	Ile	Ser 120	Leu	Lys	Pro	Ala	Ala 125	Thr	Arg	Gly
	Ala	His 130	Gln	Ile	Thr	Thr	Lys 135	Pro	Val	Asn	Lys	Asn 140	Ala	Asn	Ser	Asp
15	Ala 145	Lys	Ala	Leu	Leu	Lys 150	Tyr	Leu	Gly	Ser	Ile 155	Tyr	Gly	Lys	Lys	Ile 160
20	Leu	Ser	Gly	Gln	Gln 165	Asp	Leu	Ser	Ser	Leu 170	Asp	Trp	Val	Thr	Lys 175	Asn
25	Val	Gly	Lys	Thr 180	Pro	Ala	Val	Leu	Gly 185	Leu	Asp	Thr	Met	Asp 190	Tyr	Ser
	Glu	Ser	Arg 195	Lys	Ser	Arg	Gly	Ala 200	Val	Ser	Thr	Asp	Val 205	Asp	Lys	Ala
30	Ile	Ala 210	Phe	Ala	Lys	Lys	Gly 215	Gly	Ile	Val	Thr	Phe 220	Cys	Trp	His	Trp
35	Gly 225	Ala	Pro	Thr	Gly	Leu 230	Phe	Asp	Ser	Ala	Ala 235	Gln	Pro	Trp	Tyr	Arg 240
40	Gly	Phe	Tyr	Thr	_			Asp					Thr	Ala	Leu 255	_
40	Asp	Thr	Thr	Asn 260	Ala	Asn	Tyr	Thr	Leu 265	Leu	Met	Lys	Asp	Ile 270	Asp	Thr
45	Ile	Ala	Val 275	Gln	Leu	Lys	Lys	Leu 280	Gln	Asp	Ala	Gly	Val 285	Pro	Val	Ile
50	Trp	Arg 290	Pro	Leu	His	Glu	Ala 295	Glu	Gly	Gly	Trp	Phe 300	Trp	Trp	Gly	Ala
	Lys 305	Gly	Pro	Glu	Pro	Ala 310	Lys	Lys	Leu	Trp	Lys 315	Ile	Met	Tyr	Asp	Arg 320
55	Leu	Thr	Asn	Gln	His 325	Gly	Leu	Asn	Asn	Leu 330	Val	Trp	Thr	Trp	Asn 335	Ser

	Val	ALa	Pro	340	Trp	Tyr	Pro	СТĀ	345	Asp	Thr	Val	Asp	350	Val	Ser
5	Ala	Asp	Thr 355	Tyr	Ser	Gln	Gly	Asp 360	His	Gly	Pro	Ile	Ser 365	Ala	Thr	Tyr
10	Asn	Asn 370	Leu	Leu	Ala	Leu	Thr 375	Asn	Asp	Thr	Lys	Ile 380	Ile	Ala	Ala	Ala
	Glu 385	Ile	Gly	Ser	Val	Met 390	Glu	Pro	Ala	Gln	Leu 395	Gln	Ala	Tyr	Gln	Ala 400
15	Asp	Trp	Val	Tyr	Phe 405	Cys	Val	Trp	Ser	Gly 410	Glu	Phe	Ile	Asp	Gly 415	Gly
20	Val	Trp	Asn	Ser 420	Leu	Asp	Phe	Leu	Lys 425	Lys	Val	Tyr	Asn	Asp 430	Pro	Tyr
25	Val	Leu	Thr 435	Leu	Asp	Glu	Ile	Gln 440	Gly	Trp	Lys	Thr	Ala 445	Arg	Gly	Lys
	Pro	Arg 450	Val	Ser												
30	<210 <211 <212 <213	L> 3 2> E	.3 312 PRT Junna	nnia	peni	lcill	Lata									
35	<400)> 1	.3													
	Ala 1	Pro	Ser	Thr	Thr 5	Pro	Val	Asn	Glu	Lys 10	Ala	Thr	Asp	Ala	Ala 15	Lys
40	Asn	Leu	Leu	Ser 20	Tyr	Leu	Val	Glu	Gln 25	Ala	Ala	Asn	Gly	Val 30	Thr	Leu
45	Ser	Gly	Gln 35	Gln	Asp	Leu	Glu	Ser 40	Ala	Gln	Trp	Val	Ser 45	Asp	Asn	Val
50	Gly	Lys 50	Trp	Pro	Ala	Ile	Leu 55	Gly	Ile	Asp	Phe	Met 60	Asp	Tyr	Ser	Pro
	Ser 65	Arg	Val	Glu	Tyr	Gly 70	Ala	Val	Gly	Ser	Thr 75	Val	Pro	Asp	Ala	Ile 80
55	Ser	Tyr	Asp	Ser	Asp 85	Gly	Gly	Ile	Val	Thr 90	Phe	Cys	Trp	His	Trp 95	Gly

	Ser Pr	o Ser	Gly 100	Thr	Tyr	Asn	Thr	Thr 105	Asp	Gln	Pro	Trp	Trp 110	Ser	Asn
5	Phe Ty	r Thr 115	Glu	Ala	Thr	Ala	Phe 120	Asp	Ile	Ala	Ala	Ala 125	Met	Asp	Asp
10	Pro As	_	Ala	Asp	Tyr	Asn 135	Leu	Leu	Val	Arg	Asp 140	Ile	Asp	Ala	Ile
	Ser Gl 145	u Leu	Leu	Leu	Gln 150	Leu	Gln	Asp	Leu	Asp 155	Ile	Pro	Ile	Leu	Trp 160
15	Arg Pr	o Leu	His	Glu 165	Ala	Glu	Gly	Gly	Trp 170	Phe	Trp	Trp	Gly	Ala 175	Lys
20	Gly Pr	o Glu	Ala 180	Cys	Ile	Ala	Leu	Tyr 185	Arg	Leu	Met	Phe	Asp 190	Arg	Met
25	Thr As	n His 195	His	Gly	Leu	Asn	Asn 200	Leu	Leu	Trp	Val	Trp 205	Asn	Ser	Val
	Asp Pr 21		Trp	Tyr	Pro	Gly 215	Asn	Asp	Val	Val	Asp 220	Ile	Val	Ser	Ala
30	Asp I] 225	e Tyr	Ala	Asp	Ala 230	Gly	Asp	His	Ser	Pro 235	Gln	Glu	Glu	Thr	Phe 240
35	Ala Se	r Leu	Gln	Ser 245	Leu	Thr	Gly	Asp	Thr 250	Lys	Leu	Val	Ala	Leu 255	Gly
	Glu Va	.l Gly	Asn 260			_	Pro	0.05		Thr	Gly	Gly	Val 270	Ala	Asp
40	Trp Al	a Tyr 275		Val	Thr	Trp	Asn 280	Gly	Asp	Phe	Ile	Lys 285	Gly	Glu	Asp
45	Tyr As		Leu	Glu	Tyr	Lys 295	Lys	Glu	Val	Phe	Ser 300	Ala	Glu	Asn	Ile
50	Ile Th	r Arg	Asp	Glu	Val 310	Asp	Val								
	<210> <211> <212>	14 327 PRT													
55	<213> <400>	Myro	thec:	ium 1	rorio	dum									

	Gly 1	Thr	Ile	Glu	Asn 5	Arg	Gln	Trp	Leu	Thr 10	Tyr	Asn	Pro	Val	Asp 15	Ser
5	Ala	Ala	Thr	Thr 20	Glu	Ala	Arg	Ala	Leu 25	Leu	Arg	Tyr	Ile	Gln 30	Ser	Gln
10	Tyr	Gly	Trp 35	Arg	Tyr	Leu	Ser	Gly 40	Gln	Gln	Glu	Arg	Ala 45	Glu	Val	Gln
	Trp	Leu 50	Lys	Ser	Asn	Ile	Gly 55	Lys	Thr	Pro	Ala	Ile 60	Gln	Gly	Ser	Asp
15	Leu 65	Ile	Asp	Tyr	Ser	Pro 70	Ser	Arg	Val	Ser	Tyr 75	Gly	Ala	Thr	Ser	Thr 80
20	Ala	Val	Glu	Asp	Ala 85	Ile	Ala	Phe	Asp	Arg 90	Gln	Gly	Gly	Ile	Val 95	Thr
25	Phe	Thr	Trp	His 100	Trp	Asn	Ala	Pro	Asn 105	Cys	Leu	Tyr	Asn	Ser 110	Ala	Asp
	Gln	Pro	Trp 115	Tyr	Phe	Gly	Phe	Tyr 120	Thr	Lys	Ala	Thr	Cys 125	Phe	Asn	Ile
30	Gln	A la 130	Ala	Leu	Ala	Gln	Gly 135	Ser	Asn	Gly	Ala	Asp 140	Tyr	Lys	Leu	Leu
35	Ile 145	Arg	Asp	Ile	Asp	Ala 150	Ile	Ala	Val	Gln	Leu 155	Lys	Arg	Leu	Arg	Asp 160
40	Ala	Lys	Val	Pro	Ile 165					Leu 170		Glu	Pro	-	Gly 175	
40	Trp	Phe	Trp	Trp 180	Gly	Ala	Lys	Gly	Ser 185	Gly	Pro	Phe	Lys	Gln 190	Leu	Trp
45	Asp	Ile	Leu 195	Tyr	Asp	Arg	Leu	Thr 200	Lys	Tyr	His	Gly	Leu 205	His	Asn	Met
50	Leu	Trp 210	Val	Сув	Asn	Thr	Glu 215	Lys	Ser	Asp	Trp	Tyr 220	Pro	Gly	Asn	Asn
	Lys 225	Cys	Asp	Ile	Ala	Thr 230	Thr	Asp	Val	Tyr	Val 235	Asn	Ala	Gly	Asp	His 240
55	Ser	Val	Gln	Lys	Ser 245	His	Trp	Asp	Ala	Leu 250	Tyr	Gly	Val	Ser	Gly 255	Gly

Gln Arg Ile Leu Ala Leu Gly Glu Val Gly Val Ile Pro Asp Pro Glu 260 265 270

Arg Gln Ala Ser Glu Asn Val Pro Trp Ala Tyr Trp Met Thr Trp Asn 275 280 285

Gly Tyr Phe Ile Arg Asp Gly Asn Tyr Asn Ser Arg Asn Phe Leu Gln 290 295 300

Ser Thr Phe Ser Asn Ala Arg Val Val Thr Leu Asp Gly Thr Ser Pro 305 310 315

Leu Gly Asn Trp Lys Ser Ser 325

Claims

5

10

15

20

25

30

40

- 1. A cleaning composition comprising:
 - a) an endo-beta-1,6-galactanase enzyme; and
 - b) from about 0.01% to about 5%, by weight of the cleaning composition, of water-insoluble plant fiber.
- 2. A cleaning composition according to claim 1, wherein the enzyme has an amino acid sequence having at least 60%, or at least 80%, or at least 90% or at least 95% identity with the amino acid sequence shown in SEQ ID NO:1, SEQ ID NO:2 or SEQ ID NO:3.
 - **3.** A cleaning composition according claims 1 and 2, wherein the galactanase enzyme is selected from Glycoside Hydrolase Family 30.
- 4. A cleaning composition according to any preceding claim, wherein the galactanase enzyme is obtainable from Streptomyces davawensis, Trichoderma harzianum, Streptomyces avermitilis, or a mixture thereof.
 - **5.** A cleaning composition according to any preceding claim, wherein the composition further comprises a β-N-acetylglu-cosaminidase enzyme from E.C. 3.2.1.52, preferably an enzyme having at least 70% identity to SEQ ID NO:9.
 - **6.** A cleaning composition according to any preceding claim, wherein the water-insoluble plant fiber is selected from the group consisting of particulate cellulose material, activated citrus fiber, and mixtures thereof.
- 7. A cleaning composition according to claim 6, wherein the water-insoluble plant fiber comprises particulate cellulose material containing, by dry weight of the particulate cellulose material, at least 70% cellulose.
 - **8.** A cleaning composition according to claim 6 or claim 7, wherein the particulate cellulose material further comprises less than about 10% pectin, and at least about 3% hemicellulose.
- 9. A cleaning composition according to any of claims 6 to 8, wherein the water-insoluble plant fiber comprises particulate cellulose material having a volume-weighted median major particle dimension of from about 25μm to about 75μm, preferably from about 35μm to about 65μm, as measured by laser light diffractometry.
 - **10.** A cleaning composition according to any of claims 6 to 9, wherein the water-insoluble plant fiber comprises particulate cellulose material, wherein less than about 10% by dry weight of the cellulose material is in the form of nanofibrillated cellulose.
 - 11. A cleaning composition according to any preceding claim, wherein the composition further comprises fabric shading

agent and/or an additional enzyme selected from lipases, amylases, proteases, mannanases, pectate lyases, cellulases, cutinases, and mixtures thereof, and/or an encapsulated benefit agent, wherein the encapsulated benefit agent comprises a shell surrounding a core, the core comprising a benefit agent, preferably the benefit agent comprising perfume raw materials.

12. A method of cleaning a surface, preferably a textile, comprising mixing the cleaning composition according to any preceding claim with water to form an aqueous liquor and contacting a surface, preferably a textile, with the aqueous liquor in a laundering step.

13. A method of enhancing deposition of a particulate benefit agent comprising contacting a surface, preferably a textile with an aqueous liquor comprising a composition comprising an endo-beta-1,6-galactanase enzyme, a water-insoluble plant fiber and a particulate benefit agent in a textile treatment step, preferably a laundering step, and optionally rinsing and drying the textile.

14. The use of an endo-beta-1,6-galactanase enzyme and a water-insoluble plant fiber in a cleaning composition to

enhance the stain-removal and/or malodor-reducing benefits.

EUROPEAN SEARCH REPORT

Application Number

EP 17 20 4763

10	
15	
20	
25	
30	
35	
40	

5

50

45

I	DOCUMENTS CONSIDER	l		
Category	Citation of document with indica of relevant passages		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
X,D	wo 2015/185689 A1 (NO 10 December 2015 (2015 * page 38, line 31 - page 38; examples; sequences are sequences as a sequence of the sequence of	VOZYMES AS [DK]) 5-12-10) page 54, line 24;	1-14	INV. C11D3/386
	The present search report has been	ı drawn up for all claims		
	Place of search	Date of completion of the se		Examiner
	Munich	11 January 2	018 Ve	rnier, Frédéric
X : parti Y : parti docu A : tech	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone cularly relevant if combined with another iment of the same category nological background written disclosure	E : earlier pa after the f D : documen L : documen	it cited in the application t cited for other reasons	lished on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 17 20 4763

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

11-01-2018

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 2015185689	A1	10-12-2015	CN EP WO	106414698 3152290 2015185689	A1	15-02-201 12-04-201 10-12-201
759						
ORM P0459						

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2015185689 A [0033]
- US 20120135498 A [0060]
- WO 2015040159 A [0070]
- WO 2004067737 A [0078]
- WO 2015091989 A [0078]
- WO 2015091990 A [0078]
- WO 2015024739 A [0078]
- WO 2015143360 A [0078]
- US 6312936 B1 [0078]
- US 5679630 A [0078]
- US 4760025 A [0078]
- US 7262042 B [0078]
- WO 09021867 A [0078]
- DE 102006022216 A1 [0078]
- DE 102006022224 A1 [0078]
- WO 2015089447 A [0078]
- WO 2015089441 A [0078]
- WO 2016066756 A [0078]
- WO 2016066757 A [0078]
- WO 2016069557 A [0078]
- WO 2016069563 A [0078]
- WO 2016069569 A [0078]
- WO 8906270 A [0078]
- WO 05052161 A [0078]
- WO 05052146 A [0078]
- WO 07044993 A2 [0078]
- WO 2014194032 A **[0078]**
- WO 2014194054 A **[0078]**
- WO 2014194117 A **[0078]**
- WO 2015193488 A [0078]
 WO 2016075078 A [0078]
- WO 2016075078 A **[0078]**
- WO 9217577 A [0078]
- US 5352604 A [0080]
- WO 2009149144 A [0080]
- WO 2009149145 A [0080]
- WO 201056653 A [0080]
- WO 201056640 A [0080]
- WO 2011072117 A [0080]
- US 20110237487 A [0080]
- WO 2011140316 A [0080]
- WO 2012151480 A [0080]
- EP 2510092 A [0080]
- EP 2566960 A [0080]
- EP 2705145 A [0080]
- US 7153818 B [0081]

- WO 9700324 A [0081]
- EP 1022334 A [0081]
- WO 9402597 A [0081]
- WO 9418314 A [0081]
- WO 9623874 A [0081]
- WO 9743424 A [0081]
- US 5856164 A [0081]
- WO 9923211 A [0081]
- WO 9623873 A [0081]
- WO 0060060 A [0081]
- WO 06002643 A [0081]
- US 6093 A [0081]
- US 562 A [0081]
- WO 09149130 A [0081]
- EP 2540825 A [0081]
- EP 2357220 A [0081]
- EP 2534233 A [0081]
- WO 2009100102 A [0081]
- WO 2010115028 A [0081]
- US 6939702 B1 [0083]
- US PA20090217464 A [0083]
- EP 12001034 A [0083]
- EP 2623586 A [0083]
- US 7141403 B2 [0084]
- WO 2002099091 A **[0087]**
- WO 01062903 A [0089]
- WO 9902663 A [0089]
- WO 01064853 A [0089]
- WO 2002077242 A [0089]
- WO 03089598 A [0089]
- WO 9905243 A [0099]
- WO 9905242 A [0099]
- WO 9905244 A [0099]
- WO 9905082 A [0099]
- WO 9905084 A [0099]
- WO 9905241 A [0099]
- WO 9907656 A [0099]
- WO 0023549 A [0099]
- WO 0023548 A [0099]
- WO 0887497 A [0117]
- WO 9108281 A [0123]
- WO 9001815 A [0123]
- US 6020303 A [0170]
- US 6060443 A [0170]

Non-patent literature cited in the description

- A. B. BORASTON et al. Biochemical Journal, 2004, vol. 382, 769-781 [0086]
- Biochem J., 1991, vol. 280, 309-316 [0087]
- NEEDLEMAN; WUNSCH. J. Mol. Biol., 1970, vol. 48, 443-453 [0088]
- RICE et al. EMBOSS: The European Molecular Biology Open Software Suite. *Trends in Genetics*, 2000, vol. 16, 276-277 [0088]