
(12) United States Patent 
Hayes et al. 

USOO95O1244B2 

US 9,501,244 B2 
Nov. 22, 2016 

(10) Patent No.: 
(45) Date of Patent: 

(54) 

(71) 

(72) 

(73) 

(*) 

(21) 

(22) 

(65) 

(63) 

(51) 

(52) 

(58) 

SCHEDULING POLICY FOR QUEUES IN A 
NON-VOLATILE SOLD-STATESTORAGE 

Applicant: Pure Storage, Inc., Mountain View, CA 
(US) 

Inventors: John Hayes, Mountain View, CA (US); 
Shantanu Gupta, Mountain View, CA 
(US); 

(Continued) 

Assignee: Pure Storage, Inc., Mountain View, CA 
(US) 

Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 0 days. 

Appl. No.: 14/523,719 

Filed: Oct. 24, 2014 

Prior Publication Data 

US 2016/OOO4479 A1 Jan. 7, 2016 

Related U.S. Application Data 
Continuation of application No. 14/323.707, filed on 
Jul. 3, 2014, now Pat. No. 8,874,836. 

Int. C. 
G06F 3/06 (2006.01) 
G06F 2/02 (2006.01) 
G06F 3/16 (2006.01) 
U.S. C. 
CPC ............. G06F 3/0659 (2013.01); G06F 3/061 

(2013.01); G06F 3/0679 (2013.01); 
(Continued) 

Field of Classification Search 
None 
See application file for complete search history. 

(56) References Cited 

U.S. PATENT DOCUMENTS 

6,725,392 B1 4/2004 Frey et al. 
6,836,816 B2 12/2004 Kendall 

(Continued) 

FOREIGN PATENT DOCUMENTS 

EP 2256621 12/2010 

OTHER PUBLICATIONS 

Ju-Kyeong Kim et al., “Data Access Frequency based Data Repli 
cation Method using Erasure Codes in Cloud Storage System'. 
Journal of the Institute of Electronics and Information Engineers, 
Feb. 2014, vol. 51, No. 2, pp. 85-91. 

(Continued) 

Primary Examiner — Michael Krofcheck 
(74) Attorney, Agent, or Firm — Womble Carlyle 
Sandridge & Rice LLP 

(57) ABSTRACT 
A method of applying scheduling policies is provided. The 
method includes distributing user data throughout a plurality 
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rality of storage nodes are housed within a single chassis 
coupling the storage nodes as a cluster. The method includes 
receiving operations relating to a non-volatile memory of 
one of the plurality of storage nodes into a plurality of 
operation queues. The method includes evaluating each of 
the operations in the plurality of operation queues as to 
benefit to the non-volatile solid-state storage according to a 
plurality of policies. For each channel of a plurality of 
channels coupling the operation queues to the non-volatile 
memory, the method includes iterating a selection and an 
execution of a next operation from the plurality of operation 
queues, with each next operation having a greater benefit 
than at least a Subset of operations remaining in the opera 
tion queues. 
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SCHEDULING POLICY FOR QUEUES IN A 
NON-VOLATILE SOLD-STATESTORAGE 

BACKGROUND 

Solid-state memory, such as flash, is currently in use in 
solid-state drives (SSD) to augment or replace conventional 
hard disk drives (HDD), writable CD (compact disk) or 
writable DVD (digital versatile disk) drives, collectively 
known as spinning media, and tape drives, for storage of 
large amounts of data. Flash and other Solid-state memories 
have characteristics that differ from spinning media, which 
may lead to scheduling conflicts in Solid-state storage. Yet, 
many Solid-state drives are designed to conform to hard disk 
drive standards for compatibility reasons, which makes it 
difficult to provide enhanced features or take advantage of 
unique aspects of flash and other solid-state memory. 

It is within this context that the embodiments arise. 

SUMMARY 

In some embodiments, a method of applying scheduling 
policies to a non-volatile solid-state storage is provided. The 
method includes distributing user data throughout a plurality 
of storage nodes through erasure coding, wherein the plu 
rality of storage nodes are housed within a single chassis that 
couples the storage nodes as a cluster. The method includes 
receiving operations relating to a flash memory of a non 
Volatile solid-state storage of one of the plurality of storage 
nodes into a plurality of operation queues. The method 
includes evaluating each of the operations in the plurality of 
operation queues as to benefit to the non-volatile solid-state 
storage according to a plurality of policies. For each channel 
of a plurality of channels coupling the operation queues to 
the flash memory, the method includes iterating a selection 
and an execution of a next operation from the plurality of 
operation queues, with each next operation having a greater 
benefit than at least a Subset of operations remaining in the 
operation queues. 

Other aspects and advantages of the embodiments will 
become apparent from the following detailed description 
taken in conjunction with the accompanying drawings which 
illustrate, by way of example, the principles of the described 
embodiments. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The described embodiments and the advantages thereof 
may best be understood by reference to the following 
description taken in conjunction with the accompanying 
drawings. These drawings in no way limit any changes in 
form and detail that may be made to the described embodi 
ments by one skilled in the art without departing from the 
spirit and scope of the described embodiments. 

FIG. 1 is a perspective view of a storage cluster with 
multiple storage nodes and internal storage coupled to each 
storage node to provide network attached storage, in accor 
dance with Some embodiments. 

FIG. 2 is a system diagram of an enterprise computing 
system, which can use one or more of the storage clusters of 
FIG. 1 as a storage resource in some embodiments. 

FIG. 3 is a multiple level block diagram, showing con 
tents of a storage node and contents of one of the non 
Volatile Solid-state storage units in accordance with some 
embodiments. 
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2 
FIG. 4 is a block diagram showing a communication path 

for redundant copies of metadata, with further details of 
storage nodes and Solid-state storages in accordance with 
Some embodiments. 

FIG. 5 is an address and data diagram showing address 
translation as applied to user data being stored in a non 
Volatile Solid-state storage in some embodiments. 

FIG. 6 is a block diagram of a controller with operation 
queues coupled to flash memory in accordance with some 
embodiments. 

FIG. 7 is a flow diagram of a method for applying 
scheduling policies to a non-volatile solid-state storage in 
accordance with Some embodiments. 

FIG. 8 is an illustration showing an exemplary computing 
device which may implement the embodiments described 
herein. 

DETAILED DESCRIPTION 

The embodiments below describe a storage cluster that 
stores user data, Such as user data originating from one or 
more user or client systems or other sources external to the 
storage cluster. The storage cluster distributes user data 
across storage nodes housed within a chassis, using erasure 
coding and redundant copies of metadata. Erasure coding 
refers to a method of data protection in which data is broken 
into fragments, expanded and encoded with redundant data 
pieces and stored across a set of different locations. Such as 
disks, storage nodes or geographic locations. Flash memory 
is one type of Solid-state memory that may be integrated 
with the embodiments, although the embodiments may be 
extended to other types of solid-state memory or other 
storage medium, including non-solid State memory. Control 
of storage locations and workloads are distributed across the 
storage locations in a clustered peer-to-peer system. Tasks 
Such as mediating communications between the various 
storage nodes, detecting when a storage node has become 
unavailable, and balancing I/OS (inputs and outputs) across 
the various storage nodes, are all handled on a distributed 
basis. Data is laid out or distributed across multiple storage 
nodes in data fragments or stripes that Support data recovery 
in Some embodiments. Ownership of data can be reassigned 
within a cluster, independent of input and output patterns. 
This architecture described in more detail below allows a 
storage node in the cluster to fail, with the system remaining 
operational, since the data can be reconstructed from other 
storage nodes and thus remain available for input and output 
operations. In various embodiments, a storage node may be 
referred to as a cluster node, a blade, or a server. 
The storage cluster is contained within a chassis, i.e., an 

enclosure housing one or more storage nodes. A mechanism 
to provide power to each storage node, such as a power 
distribution bus, and a communication mechanism, Such as 
a communication bus that enables communication between 
the storage nodes are included within the chassis. The 
storage cluster can run as an independent system in one 
location according to some embodiments. In one embodi 
ment, a chassis contains at least two instances of both the 
power distribution and the communication bus which may 
be enabled or disabled independently. The internal commu 
nication bus may be an Ethernet bus, however, other tech 
nologies such as Peripheral Component Interconnect (PCI) 
Express, InfiniBand, and others, are equally suitable. The 
chassis provides a port for an external communication bus 
for enabling communication between multiple chassis, 
directly or through a switch, and with client systems. The 
external communication may use a technology Such as 
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Ethernet, InfiniBand, Fibre Channel, etc. In some embodi 
ments, the external communication bus uses different com 
munication bus technologies for inter-chassis and client 
communication. If a switch is deployed within or between 
chassis, the Switch may act as a translation between multiple 
protocols or technologies. When multiple chassis are con 
nected to define a storage cluster, the storage cluster may be 
accessed by a client using either proprietary interfaces or 
standard interfaces such as network file system (NFS). 
common internet file system (CIFS), Small computer system 
interface (SCSI) or hypertext transfer protocol (HTTP). 
Translation from the client protocol may occur at the Switch, 
chassis external communication bus or within each storage 
node. 

Each storage node may be one or more storage servers and 
each storage server is connected to one or more non-volatile 
solid state memory units, which may be referred to as 
storage units. One embodiment includes a single storage 
server in each storage node and between one to eight 
non-volatile Solid State memory units, however this one 
example is not meant to be limiting. The storage server may 
include a processor, dynamic random access memory 
(DRAM) and interfaces for the internal communication bus 
and power distribution for each of the power buses. Inside 
the storage node, the interfaces and storage unit share a 
communication bus, e.g., PCI Express, in some embodi 
ments. The non-volatile Solid state memory units may 
directly access the internal communication bus interface 
through a storage node communication bus, or request the 
storage node to access the bus interface. The non-volatile 
Solid state memory unit contains an embedded central pro 
cessing unit (CPU), solid state storage controller, and a 
quantity of Solid state mass storage, e.g., between 2-32 
terabytes (TB) in some embodiments. An embedded volatile 
storage medium, Such as DRAM, and an energy reserve 
apparatus are included in the non-volatile Solid state 
memory unit. In some embodiments, the energy reserve 
apparatus is a capacitor, Super-capacitor, or battery that 
enables transferring a subset of DRAM contents to a stable 
storage medium in the case of power loss. In some embodi 
ments, the non-volatile solid state memory unit is con 
structed with a storage class memory, such as phase change 
or magnetoresistive random access memory (MRAM) that 
substitutes for DRAM and enables a reduced power hold-up 
apparatus. 

Embodiments of a non-volatile solid-state storage with 
multiple operation queues and Scheduling policies are dis 
cussed below. Some embodiments feature a controller that 
evaluates operations in operation queues according to the 
scheduling policies for improved system performance. 
Operations are selected based on the best benefit to the 
system in Some embodiments. The system or storage grid 
may be a collection of storage nodes, storage units, etc. It 
should be appreciated that both global (system wide) and 
local information may be utilized to determine what is best, 
i.e., has the best benefit, whereas traditional solid state 
devices are limited to local knowledge. Each storage node 
has one or more non-volatile Solid-state storages, each of 
which has non-volatile random-access memory (NVRAM) 
and flash memory. The non-volatile solid-state storage units 
apply various address spaces for storing user data. In some 
embodiments, an address space has sequential, nonrepeating 
addresses, as applied to medium addresses, segment 
addresses and/or virtual allocation units of the user data. 
Flash and NVRAM in general provide more parallelism 
opportunities relative to HDD at the channel level and 
within a channel. The embodiments described below take 
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4 
advantage of the increased parallelism opportunities as well 
as availability of global information. 

FIG. 1 is a perspective view of a storage cluster 160, with 
multiple storage nodes 150 and internal solid-state memory 
coupled to each storage node to provide network attached 
storage or storage area network, in accordance with some 
embodiments. A network attached storage, storage area 
network, or a storage cluster, or other storage memory, could 
include one or more storage clusters 160, each having one or 
more storage nodes 150, in a flexible and reconfigurable 
arrangement of both the physical components and the 
amount of storage memory provided thereby. The storage 
cluster 160 is designed to fit in a rack, and one or more racks 
can be set up and populated as desired for the storage 
memory. The storage cluster 160 has a single chassis 138 
having multiple slots 142. It should be appreciated that 
chassis 138 may be referred to as a housing, enclosure, or 
rack unit. In one embodiment, the chassis 138 has fourteen 
slots 142, although other numbers of slots are readily 
devised. For example, some embodiments have four slots, 
eight slots, sixteen slots, thirty-two slots, or other Suitable 
number of slots. Each slot 142 can accommodate one storage 
node 150 in some embodiments. Chassis 138 includes flaps 
148 that can be utilized to mount the chassis 138 on a rack. 
Fans 144 provide air circulation for cooling of the storage 
nodes 150 and components thereof, although other cooling 
components could be used, or an embodiment could be 
devised without cooling components. A switch fabric 146 
couples storage nodes 150 within chassis 138 together and 
to a network for communication to the memory. In an 
embodiment depicted in FIG. 1, the slots 142 to the left of 
the switch fabric 146 and fans 144 are shown occupied by 
storage nodes 150, while the slots 142 to the right of the 
switch fabric 146 and fans 144 are empty and available for 
insertion of storage node 150 for illustrative purposes. This 
configuration is one example, and one or more storage nodes 
150 could occupy the slots 142 in various further arrange 
ments. The storage node arrangements need not be sequen 
tial or adjacent in some embodiments. Storage nodes 150 are 
hot pluggable, meaning that a storage node 150 can be 
inserted into a slot 142 in the chassis 138, or removed from 
a slot 142, without stopping or powering down the system. 
Upon insertion or removal of storage node 150 from slot 
142, the system automatically reconfigures in order to rec 
ognize and adapt to the change. Reconfiguration, in some 
embodiments, includes restoring redundancy and/or rebal 
ancing data or load. 

Each storage node 150 can have multiple components. In 
the embodiment shown here, the storage node 150 includes 
a printed circuit board 158 populated by a CPU 156, i.e., 
processor, a memory 154 coupled to the CPU 156, and a 
non-volatile solid state storage 152 coupled to the CPU 156, 
although other mountings and/or components could be used 
in further embodiments. The memory 154 has instructions 
which are executed by the CPU 156 and/or data operated on 
by the CPU 156. As further explained below, the non 
volatile solid state storage 152 includes flash or, in further 
embodiments, other types of Solid-state memory. 

Storage cluster 160 is scalable, meaning that storage 
capacity with non-uniform storage sizes is readily added, as 
described above. One or more storage nodes 150 can be 
plugged into or removed from each chassis and the storage 
cluster self-configures in Some embodiments. Plug-in stor 
age nodes 150, whether installed in a chassis as delivered or 
later added, can have different sizes. For example, in one 
embodiment a storage node 150 can have any multiple of 4 
TB, e.g., 8 TB, 12 TB, 16 TB, 32 TB, etc. In further 
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embodiments, a storage node 150 could have any multiple of 
other storage amounts or capacities. Storage capacity of each 
storage node 150 is broadcast, and influences decisions of 
how to stripe the data. For maximum storage efficiency, an 
embodiment can self-configure as wide as possible in the 
stripe, Subject to a predetermined requirement of continued 
operation with loss of up to one, or up to two, non-volatile 
solid state storage units 152 or storage nodes 150 within the 
chassis. 

FIG. 2 is a system diagram of an enterprise computing 
system 102, which can use one or more of the storage nodes, 
storage clusters and/or non-volatile Solid-state storage of 
FIG. 1 as a storage resource 108. For example, flash storage 
128 of FIG. 2 may integrate the storage nodes, storage 
clusters and/or non-volatile solid-state storage of FIG. 1 in 
Some embodiments. The enterprise computing system 102 
has processing resources 104, networking resources 106 and 
storage resources 108, including flash storage 128. A flash 
controller 130 and flash memory 132 are included in the 
flash storage 128. In various embodiments, the flash storage 
128 could include one or more storage nodes or storage 
clusters, with the flash controller 130 including the CPUs, 
and the flash memory 132 including the non-volatile solid 
state storage of the storage nodes. In some embodiments 
flash memory 132 may include different types of flash 
memory or the same type of flash memory. The enterprise 
computing system 102 illustrates an environment Suitable 
for deployment of the flash storage 128, although the flash 
storage 128 could be used in other computing systems or 
devices, larger or Smaller, or in variations of the enterprise 
computing system 102, with fewer or additional resources. 
The enterprise computing system 102 can be coupled to a 
network 140, such as the Internet, in order to provide or 
make use of services. For example, the enterprise computing 
system 102 could provide cloud services, physical comput 
ing resources, or virtual computing services. 

In the enterprise computing system 102, various resources 
are arranged and managed by various controllers. A pro 
cessing controller 110 manages the processing resources 
104, which include processors 116 and random-access 
memory (RAM) 118. Networking controller 112 manages 
the networking resources 106, which include routers 120, 
switches 122, and servers 124. A storage controller 114 
manages storage resources 108, which include hard drives 
126 and flash storage 128. Other types of processing 
resources, networking resources, and storage resources 
could be included with the embodiments. In some embodi 
ments, the flash storage 128 completely replaces the hard 
drives 126. The enterprise computing system 102 can pro 
vide or allocate the various resources as physical computing 
resources, or in variations, as virtual computing resources 
Supported by physical computing resources. For example, 
the various resources could be implemented using one or 
more servers executing software. Files or data objects, or 
other forms of data, are stored in the storage resources 108. 

In various embodiments, an enterprise computing system 
102 could include multiple racks populated by storage 
clusters, and these could be located in a single physical 
location Such as in a cluster or a server farm. In other 
embodiments the multiple racks could be located at multiple 
physical locations such as in various cities, states or coun 
tries, connected by a network. Each of the racks, each of the 
storage clusters, each of the storage nodes, and each of the 
non-volatile Solid-state storage could be individually con 
figured with a respective amount of storage space, which is 
then reconfigurable independently of the others. Storage 
capacity can thus be flexibly added, upgraded, Subtracted, 
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6 
recovered and/or reconfigured at each of the non-volatile 
Solid-state storages. As mentioned previously, each storage 
node could implement one or more servers in some embodi 
mentS. 

FIG. 3 is a multiple level block diagram, showing con 
tents of a storage node 150 and contents of a non-volatile 
solid state storage 152 of the storage node 150. Data is 
communicated to and from the storage node 150 by a 
network interface controller (NIC) 202 in some embodi 
ments. Each storage node 150 has a CPU 156, and one or 
more non-volatile Solid state storage 152, as discussed 
above. Moving down one level in FIG. 3, each non-volatile 
solid state storage 152 has a relatively fast non-volatile solid 
state memory, such as nonvolatile random access memory 
(NVRAM) 204, and flash memory 206. In some embodi 
ments, NVRAM 204 may be a component that does not 
require program/erase cycles (DRAM, MRAM, PCM), and 
can be a memory that can Support being written vastly more 
often than the memory is read from. Moving down another 
level in FIG. 3, the NVRAM 204 is implemented in one 
embodiment as high speed volatile memory, such as 
dynamic random access memory (DRAM) 216, backed up 
by energy reserve 218. Energy reserve 218 provides suffi 
cient electrical power to keep the DRAM 216 powered long 
enough for contents to be transferred to the flash memory 
206 in the event of power failure. In some embodiments, 
energy reserve 218 is a capacitor, Super-capacitor, battery, or 
other device, that Supplies a Suitable Supply of energy 
sufficient to enable the transfer of the contents of DRAM 
216 to a stable storage medium in the case of power loss. 
The flash memory 206 is implemented as multiple flash dies 
222, which may be referred to as packages of flash dies 222 
or an array of flash dies 222. It should be appreciated that the 
flash dies 222 could be packaged in any number of ways, 
with a single die per package, multiple dies per package (i.e. 
multichip packages), in hybrid packages, as bare dies on a 
printed circuit board or other Substrate, as encapsulated dies, 
etc. In the embodiment shown, the non-volatile solid state 
storage 152 has a controller 212 or other processor, and an 
input output (I/O) port 210 coupled to the controller 212. I/O 
port 210 is coupled to the CPU 156 and/or the network 
interface controller 202 of the flash storage node 150. Flash 
input output (I/O) port 220 is coupled to the flash dies 222, 
and a direct memory access unit (DMA) 214 is coupled to 
the controller 212, the DRAM 216 and the flash dies 222. In 
the embodiment shown, the I/O port 210, controller 212, 
DMA unit 214 and flash I/O port 220 are implemented on a 
programmable logic device (PLD) 208, e.g., a field pro 
grammable gate array (FPGA). In this embodiment, each 
flash die 222 has pages, organized as sixteen kB (kilobyte) 
pages 224, and a register 226 through which data can be 
written to or read from the flash die 222. In further embodi 
ments, other types of Solid-state memory are used in place 
of, or in addition to flash memory illustrated within flash die 
222. 

In NVRAM 204, redundancy is not organized by seg 
ments but instead by messages, where each message (128 
bytes to 128 kB) establishes its own data stripe, in some 
embodiments. NVRAM is maintained at the same redun 
dancy as segment storage and operates within the same 
storage node groups in some embodiments. Because mes 
sages are stored individually the stripe width is determined 
both by message size and the storage cluster configuration. 
Larger messages may be more efficiently stored as wider 
strips. 
Two of the many tasks of the CPU 156 on a storage node 

150 are to break up write data, and reassemble read data. 
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When the system has determined that data is to be written, 
an authority for that data is located in one of the non-volatile 
solid-state storages 152. The authority may be embodied as 
metadata, including one or more lists such as lists of data 
segments which the nonvolatile solid-state storage 152 man 
ages. When a segment ID for data is already determined the 
request to write is forwarded to the non-volatile solid-state 
storage 152 currently determined to be the host of the 
authority determined from the segment. The host CPU 156 
of the storage node 150, on which the non-volatile solid 
state storage 152 and corresponding authority reside, then 
breaks up or shards the data and transmits the data out to 
various non-volatile solid-state storage 152. The transmitted 
data is written as a data stripe in accordance with an erasure 
coding scheme. In some embodiments, data is requested to 
be pulled, and in other embodiments, data is pushed. In 
reverse, when data is read, the authority for the segment ID 
containing the data is located as described above. The host 
CPU 156 of the storage node 150 on which the non-volatile 
Solid-state storage 152 and corresponding authority reside 
requests the data from the non-volatile solid-state storage 
and corresponding storage nodes pointed to by the authority. 
In some embodiments the data is read from flash storage as 
a data stripe. The host CPU 156 of storage node 150 then 
reassembles the read data, correcting any errors (if present) 
according to the appropriate erasure coding scheme, and 
forwards the reassembled data to the network. In further 
embodiments, some or all of these tasks can be handled in 
the non-volatile solid-state storage 152. In some embodi 
ments, the segment host requests the data be sent to storage 
node 150 by requesting pages from storage and then sending 
the data to the storage node making the original request. 

In some systems, for example in UNIX-style file systems, 
data is handled with an index node or inode, which specifies 
a data structure that represents an object in a file system. The 
object could be a file or a directory, for example. Metadata 
may accompany the object, as attributes Such as permission 
data and a creation timestamp, among other attributes. A 
segment number could be assigned to all or a portion of Such 
an object in a file system. In other systems, data segments 
are handled with a segment number assigned elsewhere. For 
purposes of discussion, the unit of distribution is an entity, 
and an entity can be a file, a directory or a segment. That is, 
entities are units of data or metadata stored by a storage 
system. Entities are grouped into sets called authorities. 
Each authority has an authority owner, which is a storage 
node that has the exclusive right to update the entities in the 
authority. In other words, a storage node contains the author 
ity, and that the authority, in turn, contains entities. 
A segment is a logical container of data in accordance 

with some embodiments. A segment may be an address 
space between medium address space and physical flash 
locations. Each data segment is protected, e.g., from 
memory and other failures, by breaking the segment into a 
number of data and parity shards, where applicable. The data 
and parity shards are distributed, i.e., striped, across non 
volatile solid-state storages 152 coupled to the host CPUs 
156 in accordance with an erasure coding scheme. Usage of 
the term segments refers to the container and its place in the 
address space of segments in some embodiments. Usage of 
the term stripe refers to the same set of shards as a segment 
and includes how the shards are distributed along with 
redundancy or parity information in accordance with some 
embodiments. 
A series of address-space transformations takes place 

across an entire storage system. At the top is the inode 
address space, which the filesystem uses to translate file 
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8 
paths to inode IDs (Identifications). Inodes point into 
medium address space, where data is logically stored. 
Medium addresses are mapped into segment address space. 
Segment addresses are then translated into physical flash 
locations. Physical flash locations have an address range 
bounded by the amount of flash in the system in accordance 
with Some embodiments. Medium addresses and segment 
addresses are logical containers, and in some embodiments 
use a 128 bit or larger identifier so as to be practically 
infinite, with a likelihood of reuse calculated as longer than 
the expected life of the system. Addresses from logical 
containers are allocated in a hierarchical fashion in some 
embodiments. Initially, each non-volatile solid-state storage 
152 may be assigned a range of address space. Within this 
assigned range, the non-volatile solid-state storage 152 is 
able to allocate addresses without synchronization with 
other non-volatile solid-state storage 152. 

Data and metadata are stored by a set of underlying 
storage layouts that are optimized for varying workload 
patterns and storage devices. These layouts incorporate 
multiple redundancy schemes, compression formats and 
index algorithms. Some of these layouts store information 
about authorities and authority masters, while others store 
file metadata and file data. The redundancy schemes include 
error correction codes that tolerate corrupted bits within a 
single storage device (such as a NAND flash chip), erasure 
codes that tolerate the failure of multiple storage nodes, and 
replication schemes that tolerate data center or regional 
failures. In some embodiments, low density parity check 
(LDPC) code is used within a single storage unit. Data is not 
further replicated within a storage cluster, as it is assumed a 
storage cluster may fail. Reed-Solomon encoding is used 
within a storage cluster, and mirroring is used within a 
storage grid in Some embodiments. Metadata may be stored 
using an ordered log structured index (such as a Log 
Structured Merge Tree), and large data may be stored in an 
unordered log structured layout (similar to log structured file 
systems). 

FIG. 4 is a block diagram showing a communication path 
234 for redundant copies of metadata 230, with further 
details of flash storage nodes 150 (i.e., storage nodes 150 
having flash memory) and non-volatile Solid-state storages 
152 in accordance with some embodiments. Metadata 230 
includes information about the user data that is written to or 
read from the flash memory 206. Metadata 230 can include 
messages, or derivations from the messages, indicating 
actions to be taken or actions that have taken place involving 
the data that is written to or read from the flash memory 206. 
Distributing redundant copies of metadata 230 to the non 
Volatile Solid-state storage units 152 through the communi 
cation interconnect 170 ensures that messages are persisted 
and can Survive various types of failure the system may 
experience. Each non-volatile solid-state storage 152 dedi 
cates a portion of the NVRAM 204 to storing metadata 230. 
In some embodiments, redundant copies of metadata 230 are 
stored in the additional non-volatile solid-state storage 152. 

Flash storage nodes 150 are coupled via the communica 
tion interconnect 170. More specifically, the network inter 
face controller 202 of each storage node 150 in the storage 
cluster is coupled to the communication interconnect 170, 
providing a communication path 234 among storage nodes 
150 and non-volatile solid-state storage 152. Storage nodes 
150 have one or more non-volatile solid-state storage units 
152. Non-volatile solid-state storage units 152 internal to a 
storage node can communicate with each other, for example 
via a bus, a serial communication path, a network path or 
other communication path 234 as readily devised in accor 
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dance with the embodiments disclosed herein. Communica 
tion interconnect 170 can be included in or implemented 
with the switch fabric of FIG. 1 in some embodiments. 
Storage nodes 150 of FIG. 4 form a storage cluster that is 
enclosed within a single chassis that has an internal power 
distribution bus within the chassis as described with refer 
ence to FIG. 1. 

Referring to FIGS. 3 and 4, in case of a power failure, 
whether local to non-volatile solid-state storage 152 or a 
storage node 150, data can be copied from the NVRAM 204 
to the flash memory 206. For example, the DMA unit 214 of 
FIG. 3 can copy contents of the NVRAM 204, including the 
metadata, to the flash memory 206, using power Supplied by 
the energy reserve 218. Energy reserve 218 is sized with 
Sufficient capacity to support copy operation. That is, the 
energy reserve 218 should be sized so as to provide sufficient 
current at a sufficient Voltage level for a time duration long 
enough to complete the copying so that messages that are in 
metadata 230 are persisted in the flash memory 206. 
A further mechanism for persisting messages in a storage 

system involves the communication path 234 described 
above in FIG. 4. Redundant copies of the metadata 230 can 
be distributed via the communication path 234, in various 
ways. For example, a message coming from the filesystem 
could be distributed via the communication interconnect 170 
as a broadcast over the communication path 234 to all of the 
non-volatile solid-state storages 152. A non-volatile solid 
state storage 152 could send a copy of metadata 230 over the 
communication path 234 to other non-volatile solid-state 
storage 152 in a storage node 150. CPU 156 on a storage 
node 150, receiving a message from the communication 
interconnect 170 via the network interface controller 202 
could send a copy of the message to each solid-state storage 
152. The CPU 156 may rebroadcast the message to other 
flash storage nodes 150, and the flash storage nodes 150 
could then distribute the message to the solid-state storages 
152 in each of these flash storage nodes 150 in some 
embodiments. In these and other uses of the communication 
path 234, redundant copies of the metadata 230 can be 
distributed to the non-volatile solid-state storages 152. Then, 
if one non-volatile Solid-state storage 152, or one storage 
node 150 experiences a failure, redundant copies of any 
message are available in metadata 230 of at least one other 
non-volatile solid-state storage 152. Each non-volatile solid 
state storage 152 can apply decision logic 232 when evalu 
ating various situations such as local power failure, an 
unreachable node, or instructions to consider or commence 
a data recovery or a data rebuild. The decision logic 232 
includes witnessing logic, voting logic, consensus logic 
and/or other types of decision logic in various embodiments. 
Decision logic 232 could be implemented in hardware, 
software executing on the controller 212, firmware, or 
combinations thereof, and could be implemented as part of 
the controller 212 or coupled to the controller 212. The 
decision logic 232 is employed in consensus decisions 
among multiple solid-state storage units 152, in some 
embodiments. In further embodiments, the decision logic 
232 could cooperate with the other non-volatile solid-state 
storage units 152 in order to gather copies of the redundant 
metadata 230, and make local decisions. The mechanisms 
for persisting messages in a storage system are useful in the 
event of a failure, and can be used in data recovery and 
reconstruction as described above. 

Examples of messages include a request to write data, a 
request to read data, a request to lock or unlock a file, a 
change in permission of a file, an update to a file allocation 
table or other file or directory structure, a request to write a 
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10 
file that has executable instructions or to write a file name 
that is reserved and interpreted as an executable direction, 
updates to one or more authorities, updates to a fingerprint 
table, list or other data used in deduplication, updates to hash 
tables, updates to logs, and so on. When a message is 
received in non-volatile Solid-state storage 152 of a storage 
node 150, indicating some action has taken place, the 
message or a derivation of the message is stored as metadata 
230 in the NVRAM 204 of that solid-state storage 152. By 
applying the redundant copies of the metadata 230, actions 
are captured that are in progress, so that if a failure happens, 
these actions can be replayed and replacement actions can 
then be performed, for example upon restart. Actions span 
storage nodes and use cluster messaging, so the act of 
sending a message can be made persistent data via one or 
more of the mechanisms for persisting messages. These 
mechanisms address some of the known failure scenarios in 
order to ensure availability of data. In some embodiments, 
the messages don’t require permanence beyond completion 
of the actions. In other embodiments the messages are 
further retained to facilitate rollback or other recovery 
operations. 

For example, if a command is sent out to carry out a write 
operation, this message is recorded and redundant. If there 
is a failure, it can be determined whether or not that action 
has been carried out, and whether or not the action should be 
driven to completion. Such determination can be carried out 
using the decision logic 232 in each non-volatile solid-state 
storage 152. There is dedicated storage in NVRAM 204 for 
messages and other metadata 230. So that messages are 
recorded in the non-volatile solid-state storage 152 and 
replicated in some embodiments. The messages and other 
metadata 230 are written into flash memory 206 if one 
non-volatile Solid-state storage 152 experiences a power 
failure, or if the entire system experiences a power failure or 
otherwise shuts down. The redundancy level of the messages 
matches the redundancy level of the metadata in some 
embodiments. When there are sufficient numbers of copies 
of messages, the message becomes irrevocable. If one node 
goes down, other nodes can vote, achieve consensus, or 
witness the various copies of the message and determine 
what action, if any, to carry to completion. If the entire 
system goes down, e.g., through a global power failure, then 
a sufficient number of these messages get written from 
NVRAM 204 to flash memory 206. Upon restoration of 
power, the nodes can again open copies of the message and 
determine what action, if any, to carry to completion to 
prevent any corruption. 

With continued reference to FIGS. 3 and 4, storage node 
150 of a storage cluster 160 includes two levels of control 
lers. There is a host CPU 156 in the storage node 150, and 
there is a controller 212 in the non-volatile solid-state 
storage 152. The controller 212 can be considered a flash 
memory controller, which serves as a bridge between the 
host CPU 156 and the flash memory 206. Each of these 
controllers, namely the host CPU 156 and the flash control 
ler 212, can be implemented as one or more processors or 
controllers of various types from various manufacturers. The 
host CPU 156 can access both the flash memory 206 and the 
NVRAM 204 as distinct resources, with each being inde 
pendently (i.e., individually) addressable by the host CPU 
156. 
By separating the NVRAM 204 and the flash memory 206 

into distinct resources, not all data placed in the NVRAM 
204 must be written to the flash memory 206. The NVRAM 
204 can also be employed for various functions and pur 
poses. For example, updates to the NVRAM 204 can be 
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made obsolete by newer updates to the NVRAM 204. A later 
transfer of user data from the NVRAM 204 to the flash 
memory 206 can transfer the updated user data, without 
transferring the obsolete user data to the flash memory 206. 
This reduces the number of erasure cycles of the flash 
memory 206, reduces wear on the flash memory 206, and 
moves data more efficiently. The CPU 156 can write to the 
NVRAM 204 at a smaller granularity than the granularity of 
the transfers from the NVRAM 204 to the flash memory 
206. For example, the CPU 156 could perform 4 kB writes 
to the NVRAM 204, and the DMA unit 214 could perform 
a page write of 16 kB from the NVRAM 204 to the flash 
memory 206 under direction of the controller 212. The 
ability to collect multiple writes of user data to the NVRAM 
204 prior to writing the user data from the NVRAM 204 to 
the flash memory 206 increases writing efficiency. In some 
embodiments, a client write of user data is acknowledged at 
the point at which the user data is written to the NVRAM 
204. Since the energy reserve 218, described above with 
reference to FIG. 3, provides sufficient power for a transfer 
of contents of the NVRAM 204 to the flash memory 206, the 
acknowledgment of the client write does not need to wait 
until the user data is written to the flash memory 206. 
As further examples of differences between present 

embodiments and previous Solid-state drives, the metadata 
230 in the NVRAM 204 is not written into the flash memory 
206, except in cases of power loss. Here, a portion of the 
NVRAM 204 acts as a workspace for the CPU 156 of the 
storage node 150 to apply the metadata 230. The CPU 156 
of the storage node 150 can write to the NVRAM 204 and 
read the NVRAM 204, in order to access the metadata 230. 
The CPU 156 is responsible for migrating data from the 
NVRAM 204 down to the flash memory 206 in one embodi 
ment. Transfer from the NVRAM 204 to the flash memory 
206 is not automatic and predetermined, in such embodi 
ments. Transfer waits until there is sufficient user data in the 
NVRAM 204 for a page write to the flash memory 206, as 
determined by the CPU 156 and directed to the DMA unit 
214. The DMA unit 214 can be further involved in the path 
of the user data. In some embodiments, the DMA unit 214 
(also known as a DMA engine) is designed to detect and 
understand various data formats. The DMA unit 214 can 
perform a cyclic redundancy check (CRC) calculation to 
check the integrity of the user data. In some embodiments, 
the DMA unit 214 inserts the CRC calculation into the data 
and verifies that the data is consistent with a previously 
inserted CRC calculation. 
Work may be offloaded to the controller 212 of the 

non-volatile solid-state storage 152. Processing that is 
offloaded to flash controller 212 can be co-designed with 
processing performed by the CPU 156 of the storage node 
150. Various mapping tables that translate from one address 
space to another, e.g., index trees or address translation 
tables, can be managed within the non-volatile Solid-state 
storage 152, in some embodiments. The controller 212 of the 
non-volatile solid-state storage 152 can perform various 
tasks such as looking through these mapping tables, finding 
metadata associated with the mapping tables, and determin 
ing physical addresses, e.g., for user data sought by the CPU 
156 of the storage node 150. In order to find an authority 
associated with a segment number, a standard Solid-state 
drive might bring back an entire 16 kB flash page, and the 
CPU 156 would search in this page. In some embodiments, 
the controller 212 of the non-volatile solid-state storage 152 
can perform this search much more efficiently, and pass the 
results to the CPU 156 of the storage node 150, without 
sending back the entire flash page to the CPU 156. 
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FIG. 5 is an address and data diagram showing address 

translation as applied to user data being stored in an embodi 
ment of a non-volatile solid-state storage 152. In some 
embodiments, one or more of the address translations 
applies an address space having sequential, nonrepeating 
addresses. User data, arriving for storage in a storage cluster, 
is associated with a file path according to a file system. The 
user data is separated into data segments, each of which is 
assigned a segment address. Each data segment is separated 
into data shards, each of which is stored in flash memory 
206. Various address translation tables 502 (e.g., mapping 
tables) are applied by either the CPU of the storage node or 
the controller of the non-volatile Solid-state storage to trans 
late, track and assign addresses to the user data and portions 
thereof. 

These address translation tables 502 reside as metadata in 
the memory 154 (See FIG. 1) of the storage node, the 
NVRAM 204 of the non-volatile solid-state storage, and/or 
the flash memory of the non-volatile solid-state storage, in 
various embodiments. Generally, address translation tables 
502 that occur later in the chain of translations have a greater 
number of entries (e.g., address translation tables 502D and 
502E) and should be located in the flash memory 206, as 
there may not be sufficient memory space for these in the 
NVRAM or the memory 154. Further, messages regarding 
updates to the tables 502, or derivations of these messages, 
could be stored as metadata in the above-described memo 
ries. Metadata in one or more of these locations can be 
Subjected to replication (i.e., redundancy) and decisions for 
various degrees of fault tolerance and system recovery, as 
described above. 

For a particular portion of user data, the file path is 
translated or mapped to an inode ID with use of an address 
translation table 502A. This may be in accordance with a 
filesystem, and could be performed by the CPU of the 
storage node in Some embodiments. The inode ID is trans 
lated or mapped to a medium address with use of an address 
translation table 502B, which could be performed by CPU. 
In some embodiments, the medium address, which is in a 
medium address space, is included as one of the sequential 
nonrepeating addresses. The medium address is translated or 
mapped to the segment address, with use of an address 
translation table 502C through the CPU in some embodi 
ments. The segment address, which is in a segment address 
space, may be included as one of the sequential nonrepeating 
addresses. The segment address, as assigned to the data 
segment, is translated to a virtual allocation unit, as assigned 
to the data shard, with use of an address translation table 
502D. Controller 212 of the non-volatile solid-state storage 
may perform this translation by accessing address transla 
tion table 502D in the flash memory 206. The virtual 
allocation unit is translated to a physical flash memory 
location with the use of an address translation table 502E. 
The physical flash memory location may be assigned to the 
data shard. 
The address space with the sequential nonrepeating 

addresses may be applied to the medium address space, the 
segment address space and/or the virtual allocation unit 
address space in various embodiments. In each case, a range 
of addresses from the address space is assigned to each of 
the non-volatile Solid-state storages in a storage cluster, or to 
each of the storage nodes in a storage cluster. The ranges 
may be non-overlapping, Such that each non-volatile Solid 
state storage unit is assigned a range that differs from the 
ranges of the other non-volatile solid-state storage units. In 
this mechanism, no address from this address space repeats 
anywhere in the storage cluster. That is, each address from 
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this address space is unique, and no two portions of user data 
are assigned the same address from this address space, 
during the expected lifespan of the system. Each time one of 
the addresses from this address space is assigned to a portion 
of user data in a non-volatile solid-state storage unit, 
whether the address is a medium address, a segment address, 
or a virtual allocation unit, the address (upon assignment) 
should be greater than all Such addresses previously 
assigned in that non-volatile Solid-state storage unit. Thus, 
the addresses may be referred to as sequential, nonrepeating 
in this address space. The address space with these proper 
ties could include the medium address space, the segment 
address space and/or the virtual allocation unit address 
space. A non-volatile Solid-state storage unit can allocate the 
assigned range of addresses in the non-volatile solid-state 
storage without synchronization with other non-volatile 
Solid-state storage units in a storage cluster. 

Each range of the address space has upper and lower 
bounds in Some embodiments. Overall, the address space 
has an upper bound that exceeds the likely maximum 
address that would be assigned during the expected lifespan 
of a system. In one embodiment, the sequential nonrepeating 
addresses in the address space are binary numbers with at 
least 128 bits. The amount of bits may vary in embodiments, 
however with 128 bits, two raised to the 128' power is 
greater than the expected maximum address occurring for 
the lifetime of the system. The upper bound of the address 
space is greater than or equal to this number, or could 
include or be this number, in some embodiments. Larger 
numbers could be applied as technology further advances to 
higher operating speeds and lower time delays for reading 
and/or writing. The lower bound of the address space could 
be zero or one, or some other suitable low number. 

Applying the sequential nonrepeating addresses to one or 
more of the medium addresses, the segment addresses, or the 
virtual allocation units, enhance data recovery and flash 
writes. In some embodiments, the storage cluster, the storage 
node or the non-volatile, Solid-state storage unit performs a 
Snapshot of the present contents of the cluster, the storage 
node, or the non-volatile solid-state storage unit. At a later 
time, a particular version of user data can be recovered by 
referring to the Snapshot. Since the relevant addresses do not 
have duplicates, there is an unambiguous record of the 
version of the user data at the time of the Snapshot, and data 
is readily recovered if still existing in the relevant memory. 
Formats for Snapshots are readily devised, and may include 
a file with a record of the contents of the cluster, the storage 
node, or the non-volatile Solid-state storage unit, applying 
one or more address Schemes. Depending on which address 
scheme or schemes is present in the Snapshot, the address 
translation tables 502A, 502B, 502C, 502D, 502E can be 
applied to determine physical flash memory locations and 
presence or absence in the flash memory 206 of the desired 
data for recovery. 

For flash writes, in some embodiments blocks of flash 
pages 224 are erased, and then individual flash pages 224 
(see FIG. 3) are written in sequential order within a single 
erased block. This operation is supported by the above 
described addressing mechanism, which assigns sequen 
tially increasing addresses to data segments and/or data 
shards as they arrive for storage. In some embodiments, 
information relating to the medium address, the segment 
address, and/or the virtual allocation unit is written to a 
header of the flash page 224, thus identifying data stored in 
the flash page 224 (e.g., as data shards). The flash page 224, 
in Such embodiments, becomes self-describing and self 
checking, via the information in the header. 
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FIG. 6 is a block diagram of a controller 212 with 

operation queues 510 coupled to flash memory 206 in an 
embodiment of a non-volatile solid-state storage unit, oper 
ating according to scheduling policies 514. The scheduling 
policies 514 are employed by the controller 212 to prioritize 
operations in the operation queues 510. As described above 
with reference to FIG. 3, the flash memory 206 has multiple 
flash dies 222, shown here organized into channels. Each 
channel has a channel bus 512, which is eight bits wide in 
the embodiment shown, but could have other widths in 
further embodiments. Each channel, and channel bus 512, is 
associated with multiple operation queues 510. Each chan 
nel bus 512 couples multiple operation queues 510 to 
multiple flash dies 222. The operation queues 510 include 
read queues, write queues, and erase queues, and may 
include further queues organized according to traffic classes 
or other classes. Traffic classes could include read operations 
and write operations relating to user data, metadata, address 
tables and further system data and operations. In various 
embodiments, the operation queues 510 are implemented in 
hardware, firmware, Software and memory, or various com 
binations thereof. 
The controller 212 of FIG. 6 receives requests for opera 

tions, and places (i.e., deposits or writes) the operations into 
the operation queues 510. The operations may be sorted 
according to operation classes, or channels, or both. For 
example, the controller 212 could receive these requests for 
operations as messages passed down from the CPU of the 
storage node to the non-volatile solid-state storage. Opera 
tions typically include reading data, writing data, or erasing 
(e.g., a block of flash), although further operations at higher 
or lower level could be performed. Operations are over 
lapped for high throughput to and from the flash memory 
206. In order to increase efficiency and prevent conflicts, 
scheduling policies 514 are adopted. These scheduling poli 
cies 514 can be held in a memory in or coupled to the 
controller 212, and can have various formats as readily 
devised. In some embodiments, versions of flash memory 
206 allow interruptible writes or interruptible erases, which 
may allow a different set of scheduling policies 514. 

Still referring to FIG. 6, the controller 212 evaluates 
operations waiting in the operation queues 510 as to benefits 
to the system. That is, the controller 212 determines a 
relative benefit for each of the operations in accordance with 
the scheduling policies 514 in some embodiments. In one 
embodiment, the controller 212 weights the operations, i.e., 
assigns a weighting value to each of the operations in the 
operation queues 510 based on the operation and the sched 
uling policies 514. The operation queues 510 contain suffi 
cient memory to have these weights written adjacent to the 
operations in the queues 510. Weighting scales with increas 
ing or decreasing values to represent greater benefit, ranges 
of weighting values, and further mechanisms for evaluating, 
weighting, or associating weights and operations are readily 
devised. 

For each of the channels of FIG. 6, the controller 212 
selects or determines an operation from the operation queues 
510 that has a greater benefit than other operations in the 
operation queues 510. It may be preferable to pick an 
operation with a maximum benefit, but there also may be 
operations with equal or approximately equal benefits, and 
Some tie-breaking algorithm could be employed. In some 
embodiments it may also be expedient to pick an operation 
with a locally maximum benefit, without examining all of 
the operations in all of the queues 510, or without finding a 
globally maximum benefit. This may be an iterative process, 
with the controller 212 evaluating operations, selecting 



US 9,501,244 B2 
15 

operations, and executing operations. In various embodi 
ments, the controller 212 selects the next operation from the 
operation queues 510 for each of the channels in various 
manners. In one embodiment, the controller 212 selects an 
operation from among operations at the heads of the opera 
tion queues 510. In other embodiments, the controller 212 
selects an operation from anywhere in the operation queues 
coupled to each channel, e.g., operations out of sequence 
relative to the queues 510. 
One type of scheduling policy 514 of FIG. 6 is to perform 

the quickest operation or shortest job first, i.e., execute first 
the operation that consumes the least amount of time. This 
policy is based on expected execution time. For example, a 
write operation could take from 1 to 3 milliseconds (ms), 
depending on whether the write is to an odd or an even page 
in the flash memory 206. As a further example, read opera 
tions could vary between 100 micro seconds (us) and 500 us, 
which may be page dependent. Block erases of flash 
memory 206 typically take a longer amount of time than 
either the reads or the writes. An interruptible write, or 
interruptible erase, could be paused in order to perform a 
more beneficial write, or a read with a greater benefit value. 
An erase, even if the erase takes a long time, should be 
performed at high priority if failing to do so results in 
running out of storage capacity for new writes. 
An aging mechanism is employed in Some embodiments, 

in order to prevent operations from stagnating in the queues 
510. For example, without an aging mechanism, an opera 
tion having a low system benefit could remain for too long 
in a queue 510. In these embodiments, an aging parameter 
could be employed that increases in value (i.e., indicates a 
greater benefit) the longer an operation remains in a queue 
510. Each location in each queue 510 could have an aging 
parameter, Such as a timestamp or a value that increments 
with each evaluation cycle, associated with the operation at 
that location. The weighting could take the aging parameter 
into account. In some embodiments, this aging is accounted 
for in the scheduling policies 514. The data may be explicitly 
tagged in some embodiments. For example, tags could 
indicate that an inode number or identifier is being accessed, 
or a medium address is being accessed. Tags indicating 
priority could be attached by a file system based on analytics 
performed in the inode or medium layer. In some embodi 
ments, tags could indicate levels of priority assigned else 
where in the system. A tag may indicate a client critical path, 
which should be given a high priority and high relative 
benefit. In embodiments with tags, the scheduling policies 
514 may relate at least in part to the tags. 

In some embodiments, some or all operations are not 
explicitly tagged. In Such cases, a determination of relative 
benefit to the system could be according to the address 
and/or the content of data associated with the operation. 
Garbage collection may involve read and write operations, 
to move data out of an area so that a block can be reclaimed 
in flash memory 206. The operations involved with garbage 
collection could be given lower weighting than reads or 
writes of user data requested by a client. This determination 
could be based on tags as above, or could be based on 
addresses. Increasing addresses, within a bounded address 
space, may be assigned to newly arriving data write opera 
tions. Thus, garbage collection read and write operations 
would tend to have lower numbered addresses than newly 
arriving data write operations. A lower benefit could be 
accorded to the garbage collection read and write operations, 
based on the addresses of the garbage collection read and 
write operations. A higher benefit could be accorded to the 
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newly arriving data write operations, based on the addresses 
of the newly arriving data write operations. 
A list of policies which could be included in various 

combinations in the scheduling policies 514 is provided. 
This list is not exhaustive, in any particular precedence 
order, and should not be considered limiting to the embodi 
ments as further policies, expressions of the policies, and 
formats for the policies are readily devised in accordance 
with the teachings herein. 

a) Writing user data per client request has higher benefit 
than a data write resulting from garbage collection. 

b) Reading user data per client request has higher benefit 
than a data read resulting from garbage collection. 

c) Reading user data has higher benefit than erasing. 
d) Writing user data has higher benefit than erasing. 
e) Erasing has highest benefit if the erasing prevents 

having insufficient storage capacity for new writes. 
f) Data writes having shorter latency have higher benefit 

than data writes having longer latency. 
g) Data reads having shorter latency have higher benefit 

than data reads having longer latency. 
h) Data reads or writes on an indicated client critical path 

have higher benefit than data reads or writes not on an 
indicated client critical path. 

i) A data write operation that has been in a queue for a 
longer time has greater benefit than a data write opera 
tion that has been in a queue for a shorter time. 

j) A data read operation that has been in a queue for a 
longer time has greater benefit than a data read opera 
tion that has been in a queue for a shorter time. 

The embodiments described above may be applied across 
queues as well as across queues of different devices. Thus, 
the policies have a local component for the solid state device 
associated with the queue and a global component associ 
ated with different devices of the system or storage grid. In 
Some embodiments, reads, writes or erases or any other 
operations in general from different queues may be priori 
tized based on a logical age of the operation or other 
characteristics. The embodiments encompass intra-schedul 
ing options within a device or storage unit and inter 
scheduling options that extend across multiple devices or 
storage units. 

FIG. 7 is a flow diagram of a method for applying 
scheduling policies, which can be practiced on or by various 
storage clusters, storage nodes and/or non-volatile solid 
state storage units in accordance with some embodiments. 
The method is suitable for a controller coupled to flash 
memory in some embodiments. The method initiates with 
decision action 702, where it is determined if a new opera 
tion (or operations) is arriving. The operation could include 
a read operation, a write operation, or an erase operation, 
directed to flash memory. The operation could be arriving as 
a message from the storage node to a non-volatile solid-state 
storage. If the answer is no, flow branches to the action 706. 
If the answer is yes, flow proceeds to the action 704. In the 
action 704, the operation is deposited into operation queues. 
In an action 706, the operations in the operation queues are 
evaluated according to scheduling policies. The evaluation 
establishes relative benefits of the operations, in various 
manners as described above. In an action 706, for each 
channel, the next operation is selected from the operation 
queues, for best benefit according to the evaluation. Selec 
tion of the next operation is in accordance with results of the 
evaluation. Action 706 could be implemented as an iterative 
loop, a multithreaded operation, or a parallel processing 
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operation, in various embodiments. Flow proceeds back to 
the action 702, in order to determine if new operations are 
arriving. 

It should be appreciated that the methods described herein 
may be performed with a digital processing system, such as 
a conventional, general-purpose computer system. Special 
purpose computers, which are designed or programmed to 
perform only one function may be used in the alternative. 
FIG. 8 is an illustration showing an exemplary computing 
device which may implement the embodiments described 
herein. The computing device of FIG. 8 may be used to 
perform embodiments of the functionality for a storage node 
or a non-volatile solid-state storage in accordance with some 
embodiments. The computing device includes a central 
processing unit (CPU) 801, which is coupled through a bus 
805 to a memory 803, and mass storage device 807. Mass 
storage device 807 represents a persistent data storage 
device Such as a disc drive, which may be local or remote in 
some embodiments. The mass storage device 807 could 
implement a backup storage, in Some embodiments. 
Memory 803 may include read only memory, random access 
memory, etc. Applications resident on the computing device 
may be stored on or accessed via a computer readable 
medium such as memory 803 or mass storage device 807 in 
Some embodiments. Applications may also be in the form of 
modulated electronic signals modulated accessed via a net 
work modem or other network interface of the computing 
device. It should be appreciated that CPU 801 may be 
embodied in a general-purpose processor, a special purpose 
processor, or a specially programmed logic device in some 
embodiments. 

Display 811 is in communication with CPU 801, memory 
803, and mass storage device 807, through bus 805. Display 
811 is configured to display any visualization tools or reports 
associated with the system described herein. Input/output 
device 809 is coupled to bus 805 in order to communicate 
information in command selections to CPU 801. It should be 
appreciated that data to and from external devices may be 
communicated through the input/output device 809. CPU 
801 can be defined to execute the functionality described 
herein to enable the functionality described with reference to 
FIGS. 1-7. The code embodying this functionality may be 
stored within memory 803 or mass storage device 807 for 
execution by a processor such as CPU 801 in some embodi 
ments. The operating system on the computing device may 
be MS-WINDOWSTM, UNIXTM, LINUXTM, iOSTM, Cen 
tOSTM, AndroidTM, Redhat LinuxTM, z/OSTM, or other known 
operating systems. It should be appreciated that the embodi 
ments described herein may be integrated with virtualized 
computing system also. 

Detailed illustrative embodiments are disclosed herein. 
However, specific functional details disclosed herein are 
merely representative for purposes of describing embodi 
ments. Embodiments may, however, be embodied in many 
alternate forms and should not be construed as limited to 
only the embodiments set forth herein. 

It should be understood that although the terms first, 
second, etc. may be used herein to describe various steps or 
calculations, these steps or calculations should not be lim 
ited by these terms. These terms are only used to distinguish 
one step or calculation from another. For example, a first 
calculation could be termed a second calculation, and, 
similarly, a second step could be termed a first step, without 
departing from the scope of this disclosure. As used herein, 
the term “and/or” and the “7” symbol includes any and all 
combinations of one or more of the associated listed items. 
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As used herein, the singular forms “a”, “an and “the are 
intended to include the plural forms as well, unless the 
context clearly indicates otherwise. It will be further under 
stood that the terms “comprises”, “comprising”, “includes”, 
and/or “including', when used herein, specify the presence 
of stated features, integers, steps, operations, elements, 
and/or components, but do not preclude the presence or 
addition of one or more other features, integers, steps, 
operations, elements, components, and/or groups thereof. 
Therefore, the terminology used herein is for the purpose of 
describing particular embodiments only and is not intended 
to be limiting. 

It should also be noted that in some alternative imple 
mentations, the functions/acts noted may occur out of the 
order noted in the figures. For example, two figures shown 
in Succession may in fact be executed Substantially concur 
rently or may sometimes be executed in the reverse order, 
depending upon the functionality/acts involved. 

With the above embodiments in mind, it should be under 
stood that the embodiments might employ various com 
puter-implemented operations involving data stored in com 
puter systems. These operations are those requiring physical 
manipulation of physical quantities. Usually, though not 
necessarily, these quantities take the form of electrical or 
magnetic signals capable of being stored, transferred, com 
bined, compared, and otherwise manipulated. Further, the 
manipulations performed are often referred to in terms. Such 
as producing, identifying, determining, or comparing. Any 
of the operations described herein that form part of the 
embodiments are useful machine operations. The embodi 
ments also relate to a device or an apparatus for performing 
these operations. The apparatus can be specially constructed 
for the required purpose, or the apparatus can be a general 
purpose computer selectively activated or configured by a 
computer program stored in the computer. In particular, 
various general-purpose machines can be used with com 
puter programs written in accordance with the teachings 
herein, or it may be more convenient to construct a more 
specialized apparatus to perform the required operations. 
A module, an application, a layer, an agent or other 

method-operable entity could be implemented as hardware, 
firmware, or a processor executing software, or combina 
tions thereof. It should be appreciated that, where a soft 
ware-based embodiment is disclosed herein, the software 
can be embodied in a physical machine Such as a controller. 
For example, a controller could include a first module and a 
second module. A controller could be configured to perform 
various actions, e.g., of a method, an application, a layer or 
an agent. 
The embodiments can also be embodied as computer 

readable code on a non-transitory computer readable 
medium. The computer readable medium is any data storage 
device that can store data, which can be thereafter read by 
a computer system. Examples of the computer readable 
medium include hard drives, network attached storage 
(NAS), read-only memory, random-access memory, CD 
ROMs, CD-Rs, CD-RWs, magnetic tapes, and other optical 
and non-optical data storage devices. The computer readable 
medium can also be distributed over a network coupled 
computer system so that the computer readable code is 
stored and executed in a distributed fashion. Embodiments 
described herein may be practiced with various computer 
system configurations including hand-held devices, tablets, 
microprocessor systems, microprocessor-based or program 
mable consumer electronics, minicomputers, mainframe 
computers and the like. The embodiments can also be 
practiced in distributed computing environments where 
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tasks are performed by remote processing devices that are 
linked through a wire-based or wireless network. 

Although the method operations were described in a 
specific order, it should be understood that other operations 
may be performed in between described operations, 
described operations may be adjusted so that they occur at 
slightly different times or the described operations may be 
distributed in a system which allows the occurrence of the 
processing operations at various intervals associated with 
the processing. 

In various embodiments, one or more portions of the 
methods and mechanisms described herein may form part of 
a cloud-computing environment. In such embodiments, 
resources may be provided over the Internet as services 
according to one or more various models. Such models may 
include Infrastructure as a Service (IaaS), Platform as a 
Service (PaaS), and Software as a Service (SaaS). In IaaS. 
computer infrastructure is delivered as a service. In Such a 
case, the computing equipment is generally owned and 
operated by the service provider. In the PaaS model, soft 
ware tools and underlying equipment used by developers to 
develop Software solutions may be provided as a service and 
hosted by the service provider. SaaS typically includes a 
service provider licensing Software as a service on demand. 
The service provider may host the software, or may deploy 
the software to a customer for a given period of time. 
Numerous combinations of the above models are possible 
and are contemplated. 

Various units, circuits, or other components may be 
described or claimed as “configured to perform a task or 
tasks. In Such contexts, the phrase “configured to is used to 
connote structure by indicating that the units/circuits/com 
ponents include structure (e.g., circuitry) that performs the 
task or tasks during operation. As such, the unit/circuit/ 
component can be said to be configured to perform the task 
even when the specified unit/circuit/component is not cur 
rently operational (e.g., is not on). The units/circuits/com 
ponents used with the “configured to language include 
hardware—for example, circuits, memory storing program 
instructions executable to implement the operation, etc. 
Reciting that a unit/circuit/component is “configured to 
perform one or more tasks is expressly intended not to 
invoke 35 U.S.C. 112, sixth paragraph, for that unit/circuit/ 
component. Additionally, "configured to can include 
generic structure (e.g., generic circuitry) that is manipulated 
by software and/or firmware (e.g., an FPGA or a general 
purpose processor executing software) to operate in manner 
that is capable of performing the task(s) at issue. “Config 
ured to may also include adapting a manufacturing process 
(e.g., a semiconductor fabrication facility) to fabricate 
devices (e.g., integrated circuits) that are adapted to imple 
ment or perform one or more tasks. 
The foregoing description, for the purpose of explanation, 

has been described with reference to specific embodiments. 
However, the illustrative discussions above are not intended 
to be exhaustive or to limit the invention to the precise forms 
disclosed. Many modifications and variations are possible in 
view of the above teachings. The embodiments were chosen 
and described in order to best explain the principles of the 
embodiments and its practical applications, to thereby 
enable others skilled in the art to best utilize the embodi 
ments and various modifications as may be Suited to the 
particular use contemplated. Accordingly, the present 
embodiments are to be considered as illustrative and not 
restrictive, and the invention is not to be limited to the details 
given herein, but may be modified within the scope and 
equivalents of the appended claims. 
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What is claimed is: 
1. A method of applying scheduling policies to a non 

Volatile Solid-state storage, comprising: 
receiving requests for operations into a plurality of opera 

tion queues; and 
evaluating each of the operations in the plurality of 

operation queues as to benefit to the non-volatile Solid 
state storage, with a benefit of at least one of the 
operations based on addressing from an address trans 
lation scheme applied to data of the at least one of the 
operations, wherein newly arriving data write opera 
tions have higher benefit than at least one other opera 
tion, based on addresses of the newly arriving data 
write operations in accordance with the address trans 
lation scheme. 

2. The method of claim 1, wherein the receiving and the 
evaluating is for one of a plurality of storage nodes of a 
storage cluster, wherein the operations include reading from 
the non-volatile memory, writing to the non-volatile 
memory, and erasing a portion of the non-volatile memory, 
and wherein the method further comprises: 

repeating the receiving for additional storage nodes of the 
storage cluster, and 

evaluating operations across the additional storage nodes 
as to the benefit. 

3. The method of claim 1, further comprising: 
for each channel of a plurality of channels coupled to the 

operation queues, iterating a selection and an execution 
of a next operation from the plurality of operation 
queues, with each next operation having a greater 
benefit than at least a Subset of operations remaining in 
the operation queues. 

4. The method of claim 1, further comprising: 
mapping the data of the at least one of the operations to 

an address space with sequential nonrepeating 
addresses in accordance with the address translation 
Scheme. 

5. The method of claim 1, wherein the addressing from the 
address translation scheme applies increasing addresses to 
the newly arriving data write operations. 

6. The method of claim 1, wherein garbage collection read 
and write operations have lower numbered addresses than 
the newly arriving data write operations, in accordance with 
the address translation scheme. 

7. A storage cluster, comprising: 
a plurality of storage nodes, each of the plurality of 

storage nodes having nonvolatile solid-state memory, 
the nonvolatile Solid-state memory comprising: 
a plurality of operation queues; 
a plurality of channel busses, each of the plurality of 

channel busses having a channel; and 
a processor, configured to perform repeating actions 

including: 
receiving requests for operations into the plurality of 

operation queues; and 
evaluating each of the operations in the plurality of 

operation queues as to benefit to the non-volatile 
solid-state storage, with a benefit of at least one of 
the operations based on addressing from an 
address translation scheme applied to data of the at 
least one of the operations, wherein newly arriving 
data write operations have higher benefit than at 
least one other operation, based on addresses of 
the newly arriving data write operations in accor 
dance with the address translation scheme. 
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8. The storage cluster of claim 7, wherein the operations 
include reading from the non-volatile memory, writing to the 
non-volatile memory, and erasing a portion of the non 
Volatile memory. 

9. The storage cluster of claim 7, wherein the repeating 
actions further comprise: 

for each channel of a plurality of channels coupled to the 
operation queues, based on the each of the plurality of 
channel busses having a channel, iterating a selection 
and an execution of a next operation from the plurality 
of operation queues, with each next operation having a 
greater benefit than at least a Subset of operations 
remaining in the operation queues. 

10. The storage cluster of claim 7, wherein the processor 
of the non-volatile solid-state memory or a processor of at 
least one of the plurality of storage nodes is configured to 
perform an action comprising: 

mapping the data of the at least one of the operations to 
an address space with sequential nonrepeating 
addresses in accordance with the address translation 
Scheme. 

11. The storage cluster of claim 7, wherein the addressing 
from the address translation scheme applies increasing 
addresses to the newly arriving data write operations. 

12. The storage cluster of claim 7, wherein garbage 
collection read and write operations have lower numbered 
addresses than the newly arriving data write operations, in 
accordance with the address translation scheme. 

13. A storage cluster comprising: 
a plurality of storage nodes; 

each of the plurality of storage nodes having nonvola 
tile solid-state memory, the nonvolatile solid-state 
memory comprising: 
a non-volatile memory; 
a controller, coupled to the non-volatile memory; 
a plurality of operation queues, coupled to or 

included in the controller, the plurality of opera 
tion queues coupled to the non-volatile memory 
by a plurality of channels, each of the plurality of 
operation queues configured to hold a plurality of 
operations relating to the non-volatile memory; 
and 
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the controller configured to perform actions includ 

ing: 
receiving requests for operations into the plurality 

of operation queues; and 
evaluating each of the operations in the plurality 

of operation queues as to benefit to the non 
volatile solid-state storage, with a benefit of at 
least one of the operations based on addressing 
from an address translation scheme applied to 
data of the at least one of the operations, 
wherein newly arriving data write operations 
have higher benefit than at least one other 
operation, based on addresses of the newly 
arriving data write operations in accordance 
with the address translation scheme. 

14. The storage cluster of claim 13, wherein the repeating 
actions further comprise: 

for each channel of the plurality of channels coupled to 
the operation queues, iterating a selection and an 
execution of a next operation from the plurality of 
operation queues, with each next operation having a 
greater benefit than at least a Subset of operations 
remaining in the operation queues. 

15. The storage cluster of claim 13, wherein the controller 
of the non-volatile solid-state memory or a processor of at 
least one of the plurality of storage nodes is configured to 
perform an action comprising: 
mapping the data of the at least one of the operations to 

an address space with sequential nonrepeating 
addresses in accordance with the address translation 
Scheme. 

16. The storage cluster of claim 13, wherein the address 
ing from the address translation scheme applies increasing 
addresses to the newly arriving data write operations. 

17. The storage cluster of claim 13, wherein garbage 
collection read and write operations have lower numbered 
addresses than the newly arriving data write operations, in 
accordance with the address translation scheme. 
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