
(12) United States Patent
Hayes et al.

USOO95O1244B2

US 9,501,244 B2
Nov. 22, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(63)

(51)

(52)

(58)

SCHEDULING POLICY FOR QUEUES IN A
NON-VOLATILE SOLD-STATESTORAGE

Applicant: Pure Storage, Inc., Mountain View, CA
(US)

Inventors: John Hayes, Mountain View, CA (US);
Shantanu Gupta, Mountain View, CA
(US);

(Continued)

Assignee: Pure Storage, Inc., Mountain View, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/523,719

Filed: Oct. 24, 2014

Prior Publication Data

US 2016/OOO4479 A1 Jan. 7, 2016

Related U.S. Application Data
Continuation of application No. 14/323.707, filed on
Jul. 3, 2014, now Pat. No. 8,874,836.

Int. C.
G06F 3/06 (2006.01)
G06F 2/02 (2006.01)
G06F 3/16 (2006.01)
U.S. C.
CPC G06F 3/0659 (2013.01); G06F 3/061

(2013.01); G06F 3/0679 (2013.01);
(Continued)

Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,725,392 B1 4/2004 Frey et al.
6,836,816 B2 12/2004 Kendall

(Continued)

FOREIGN PATENT DOCUMENTS

EP 2256621 12/2010

OTHER PUBLICATIONS

Ju-Kyeong Kim et al., “Data Access Frequency based Data Repli
cation Method using Erasure Codes in Cloud Storage System'.
Journal of the Institute of Electronics and Information Engineers,
Feb. 2014, vol. 51, No. 2, pp. 85-91.

(Continued)

Primary Examiner — Michael Krofcheck
(74) Attorney, Agent, or Firm — Womble Carlyle
Sandridge & Rice LLP

(57) ABSTRACT
A method of applying scheduling policies is provided. The
method includes distributing user data throughout a plurality
of storage nodes through erasure coding, wherein the plu
rality of storage nodes are housed within a single chassis
coupling the storage nodes as a cluster. The method includes
receiving operations relating to a non-volatile memory of
one of the plurality of storage nodes into a plurality of
operation queues. The method includes evaluating each of
the operations in the plurality of operation queues as to
benefit to the non-volatile solid-state storage according to a
plurality of policies. For each channel of a plurality of
channels coupling the operation queues to the non-volatile
memory, the method includes iterating a selection and an
execution of a next operation from the plurality of operation
queues, with each next operation having a greater benefit
than at least a Subset of operations remaining in the opera
tion queues.

17 Claims, 8 Drawing Sheets

15

Contreat inter Connect i
3 -------------------------------- ... - - - - - - !

Storage flode
2O2

fic 52 23

23
152

23
52

23). 23
52 52

23
52

23
52

US 9,501,244 B2
Page 2

(72) Inventors: John Davis, Mountain View, CA (US); 2003/0110205 A1* 6/2003 Johnson GO6F9,5016
Brian Gold, Mountain View, CA (US); 2006, OO15683 A1 1/2006 Ash tal T18, 104

SO ea.
Zhangxi Tan, Mountain View, CA (US) 2008/02951.18 A1 11/2008 Liao

2009/0138654 A1* 5/2009 Sutarda G06F 12fO246
(52) U.S. Cl. T11 103

CPC G06F 12/0246 (2013.01); G06F 13/1626 2009/021691.0 A1 8/2009 Duchesneau
(2013.01); G06F 3/0688 (2013.01); G06F 2992. A 299 Wetal

2206/1014 (2013.01) 2010/0268908 A1 10/2010 Ouyang et al.
2011 0119462 A1 5, 2011 Leach et al.
2011/0264.843 A1 10, 2011 Haines et al.
2012,019 1900 A1 7/2012 Kunimatsu et al.

(56) References Cited 2012fO246435 A1 9, 2012 Meir et al.
2013/004205.6 A1 2/2013 Shats G06F 12fO246

U.S. PATENT DOCUMENTS T11 103
2013/0060884 A1 3/2013 Bernbo et al.

7,164,608 B2 1/2007 Lee 2013/0073894 A1 3/2013 Xavier et al.
7,424,592 B1 9/2008 Karr 2013/03396.35 A1 12/2013 Amit et al.
7:53 R $38.8 &R .." 2014/0040535 A1 2/2014 Lee G06F 12fO246

w atterjee et al. T11 103

29: R 33 atters et al. 2014/0047263 A1 2/2014 Coatney et al.
8010,485 B 8, 2011 Chatterjee et al. 2014/0047269 A1 2/2014 Kim
8.010.829 B1 8/2011 Chatteri 1 2014/O136880 A1 5/2014 Shankar et al.
8,046,548 B1 10/2011 NE s A. 2014/0181402 A1* 6/2014 White GO6F 12,0897
8086.9 Bi 320i Taylor T11,122
8,145,838 B1 3/2012 Miller et al.
8,176,360 B2 5, 2012 Frost et al. OTHER PUBLICATIONS
8,225,006 B1 7/2012 Karamcheti
8,244.999 B1 8/2012 Chatterjee et al. International Search Report and the Written Opinion of the Inter
E. R 1323; Pit. im et al national Searching Authority, PCT/US2015/039136, mailed Sep.
4-1 Illingm et al. 23, 2015.
637 R 23. RE al International Search Report and the Written Opinion of the Inter

8,522,073 B2 & 2013 See C. a. national Searching Authority, PCT/US2015/039 137, mailed Oct. 1,
- 44 2015.

53 R. 33. past tal International Search Report, PCT/US2015/039142, mailed Sep. 24,
- w- 2015.

3.15. R: 3. SNE al. Storer, Mark W., et al., “Pergamum: Replacing Tape with Energy
8,661218 B1 2, 2014 Piszczeketal. Efficient, Reliable, Disk-Based Archival Storage,” Fast 08: 6th
8,700.875 B1 4/2014 Barron et al. USENIX Conference on File and Storage Technologies, San Jose,
8,706,694 B2 4/2014 Chatterjee et al. CA, Feb.26-29, 2008ppl-16,
8,706,914 B2 4/2014 Duchesneau Hwang, Kai, et al. RAID-x: A New Distributed Disk Array for
8,756.387 B2 6, 2014 Frost et al. I/O-Centric Cluster Computing,” HPDC’00 Proceedings of the 9th
8,856,593 B2 10/2014 Eckhardt et al. IEEE International Symposium on High Performance Distributed
8,862,840 B2 10/2014 Lee Computing, IEEE, 2000, pp. 279-286.
8,949,502 B2 2/2015 McKnight et al.
9,122.401 B2 9/2015 Zaltsman et al. * cited by examiner

US 9,501,244 B2 Sheet 1 of 8 Nov. 22, 2016 U.S. Patent

87),

U.S. Patent Nov. 22, 2016 Sheet 3 of 8 US 9,501,244 B2

Non-Volate Solid
State Memory

s 52

,' 152

Non-Volatile Solid State Memory
208 - R

20 PLD

O 216
"Canteer f ntroller

DMA
2 4.

US 9,501,244 B2 Sheet 4 of 8 Nov. 22, 2016 U.S. Patent

U.S. Patent Nov. 22, 2016 Sheet S of 8 US 9,501,244 B2

File Path 1He User Data

502a Address Translation
Table

InOde D 502b
Address Translation

Table

Medium Address 502C

Address Translation
Table

Segment Address --> Data Segment oo e Data Segment

502d-N ACldreSS Translation
Table

Virtual AIOCation Unit. He Data Shard Data Shard

502e NAddress Translation
Table

1Ho
Physical Flash

Memory Location

FIG. 5

U.S. Patent Nov. 22, 2016 Sheet 6 of 8 US 9,501,244 B2

212

Controller 514

Scheduling RD WR ER RD WR ER

U.S. Patent Nov. 22, 2016 Sheet 7 of 8 US 9,501,244 B2

702
New Operation(s) arrive

Deposit operation(s) into operations queues

706
Evaluate Operations in Operations queues

acCording to Scheduling policies

708
For each Channel

Select next operation from operations
queues for best benefit

Execute next operation

FIG. 7

U.S. Patent Nov. 22, 2016 Sheet 8 of 8 US 9,501,244 B2

801 803

807

811
Display

F.G. 8

US 9,501,244 B2
1.

SCHEDULING POLICY FOR QUEUES IN A
NON-VOLATILE SOLD-STATESTORAGE

BACKGROUND

Solid-state memory, such as flash, is currently in use in
solid-state drives (SSD) to augment or replace conventional
hard disk drives (HDD), writable CD (compact disk) or
writable DVD (digital versatile disk) drives, collectively
known as spinning media, and tape drives, for storage of
large amounts of data. Flash and other Solid-state memories
have characteristics that differ from spinning media, which
may lead to scheduling conflicts in Solid-state storage. Yet,
many Solid-state drives are designed to conform to hard disk
drive standards for compatibility reasons, which makes it
difficult to provide enhanced features or take advantage of
unique aspects of flash and other solid-state memory.

It is within this context that the embodiments arise.

SUMMARY

In some embodiments, a method of applying scheduling
policies to a non-volatile solid-state storage is provided. The
method includes distributing user data throughout a plurality
of storage nodes through erasure coding, wherein the plu
rality of storage nodes are housed within a single chassis that
couples the storage nodes as a cluster. The method includes
receiving operations relating to a flash memory of a non
Volatile solid-state storage of one of the plurality of storage
nodes into a plurality of operation queues. The method
includes evaluating each of the operations in the plurality of
operation queues as to benefit to the non-volatile solid-state
storage according to a plurality of policies. For each channel
of a plurality of channels coupling the operation queues to
the flash memory, the method includes iterating a selection
and an execution of a next operation from the plurality of
operation queues, with each next operation having a greater
benefit than at least a Subset of operations remaining in the
operation queues.

Other aspects and advantages of the embodiments will
become apparent from the following detailed description
taken in conjunction with the accompanying drawings which
illustrate, by way of example, the principles of the described
embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The described embodiments and the advantages thereof
may best be understood by reference to the following
description taken in conjunction with the accompanying
drawings. These drawings in no way limit any changes in
form and detail that may be made to the described embodi
ments by one skilled in the art without departing from the
spirit and scope of the described embodiments.

FIG. 1 is a perspective view of a storage cluster with
multiple storage nodes and internal storage coupled to each
storage node to provide network attached storage, in accor
dance with Some embodiments.

FIG. 2 is a system diagram of an enterprise computing
system, which can use one or more of the storage clusters of
FIG. 1 as a storage resource in some embodiments.

FIG. 3 is a multiple level block diagram, showing con
tents of a storage node and contents of one of the non
Volatile Solid-state storage units in accordance with some
embodiments.

10

15

25

30

40

45

50

55

60

65

2
FIG. 4 is a block diagram showing a communication path

for redundant copies of metadata, with further details of
storage nodes and Solid-state storages in accordance with
Some embodiments.

FIG. 5 is an address and data diagram showing address
translation as applied to user data being stored in a non
Volatile Solid-state storage in some embodiments.

FIG. 6 is a block diagram of a controller with operation
queues coupled to flash memory in accordance with some
embodiments.

FIG. 7 is a flow diagram of a method for applying
scheduling policies to a non-volatile solid-state storage in
accordance with Some embodiments.

FIG. 8 is an illustration showing an exemplary computing
device which may implement the embodiments described
herein.

DETAILED DESCRIPTION

The embodiments below describe a storage cluster that
stores user data, Such as user data originating from one or
more user or client systems or other sources external to the
storage cluster. The storage cluster distributes user data
across storage nodes housed within a chassis, using erasure
coding and redundant copies of metadata. Erasure coding
refers to a method of data protection in which data is broken
into fragments, expanded and encoded with redundant data
pieces and stored across a set of different locations. Such as
disks, storage nodes or geographic locations. Flash memory
is one type of Solid-state memory that may be integrated
with the embodiments, although the embodiments may be
extended to other types of solid-state memory or other
storage medium, including non-solid State memory. Control
of storage locations and workloads are distributed across the
storage locations in a clustered peer-to-peer system. Tasks
Such as mediating communications between the various
storage nodes, detecting when a storage node has become
unavailable, and balancing I/OS (inputs and outputs) across
the various storage nodes, are all handled on a distributed
basis. Data is laid out or distributed across multiple storage
nodes in data fragments or stripes that Support data recovery
in Some embodiments. Ownership of data can be reassigned
within a cluster, independent of input and output patterns.
This architecture described in more detail below allows a
storage node in the cluster to fail, with the system remaining
operational, since the data can be reconstructed from other
storage nodes and thus remain available for input and output
operations. In various embodiments, a storage node may be
referred to as a cluster node, a blade, or a server.
The storage cluster is contained within a chassis, i.e., an

enclosure housing one or more storage nodes. A mechanism
to provide power to each storage node, such as a power
distribution bus, and a communication mechanism, Such as
a communication bus that enables communication between
the storage nodes are included within the chassis. The
storage cluster can run as an independent system in one
location according to some embodiments. In one embodi
ment, a chassis contains at least two instances of both the
power distribution and the communication bus which may
be enabled or disabled independently. The internal commu
nication bus may be an Ethernet bus, however, other tech
nologies such as Peripheral Component Interconnect (PCI)
Express, InfiniBand, and others, are equally suitable. The
chassis provides a port for an external communication bus
for enabling communication between multiple chassis,
directly or through a switch, and with client systems. The
external communication may use a technology Such as

US 9,501,244 B2
3

Ethernet, InfiniBand, Fibre Channel, etc. In some embodi
ments, the external communication bus uses different com
munication bus technologies for inter-chassis and client
communication. If a switch is deployed within or between
chassis, the Switch may act as a translation between multiple
protocols or technologies. When multiple chassis are con
nected to define a storage cluster, the storage cluster may be
accessed by a client using either proprietary interfaces or
standard interfaces such as network file system (NFS).
common internet file system (CIFS), Small computer system
interface (SCSI) or hypertext transfer protocol (HTTP).
Translation from the client protocol may occur at the Switch,
chassis external communication bus or within each storage
node.

Each storage node may be one or more storage servers and
each storage server is connected to one or more non-volatile
solid state memory units, which may be referred to as
storage units. One embodiment includes a single storage
server in each storage node and between one to eight
non-volatile Solid State memory units, however this one
example is not meant to be limiting. The storage server may
include a processor, dynamic random access memory
(DRAM) and interfaces for the internal communication bus
and power distribution for each of the power buses. Inside
the storage node, the interfaces and storage unit share a
communication bus, e.g., PCI Express, in some embodi
ments. The non-volatile Solid state memory units may
directly access the internal communication bus interface
through a storage node communication bus, or request the
storage node to access the bus interface. The non-volatile
Solid state memory unit contains an embedded central pro
cessing unit (CPU), solid state storage controller, and a
quantity of Solid state mass storage, e.g., between 2-32
terabytes (TB) in some embodiments. An embedded volatile
storage medium, Such as DRAM, and an energy reserve
apparatus are included in the non-volatile Solid state
memory unit. In some embodiments, the energy reserve
apparatus is a capacitor, Super-capacitor, or battery that
enables transferring a subset of DRAM contents to a stable
storage medium in the case of power loss. In some embodi
ments, the non-volatile solid state memory unit is con
structed with a storage class memory, such as phase change
or magnetoresistive random access memory (MRAM) that
substitutes for DRAM and enables a reduced power hold-up
apparatus.

Embodiments of a non-volatile solid-state storage with
multiple operation queues and Scheduling policies are dis
cussed below. Some embodiments feature a controller that
evaluates operations in operation queues according to the
scheduling policies for improved system performance.
Operations are selected based on the best benefit to the
system in Some embodiments. The system or storage grid
may be a collection of storage nodes, storage units, etc. It
should be appreciated that both global (system wide) and
local information may be utilized to determine what is best,
i.e., has the best benefit, whereas traditional solid state
devices are limited to local knowledge. Each storage node
has one or more non-volatile Solid-state storages, each of
which has non-volatile random-access memory (NVRAM)
and flash memory. The non-volatile solid-state storage units
apply various address spaces for storing user data. In some
embodiments, an address space has sequential, nonrepeating
addresses, as applied to medium addresses, segment
addresses and/or virtual allocation units of the user data.
Flash and NVRAM in general provide more parallelism
opportunities relative to HDD at the channel level and
within a channel. The embodiments described below take

10

15

25

30

35

40

45

50

55

60

65

4
advantage of the increased parallelism opportunities as well
as availability of global information.

FIG. 1 is a perspective view of a storage cluster 160, with
multiple storage nodes 150 and internal solid-state memory
coupled to each storage node to provide network attached
storage or storage area network, in accordance with some
embodiments. A network attached storage, storage area
network, or a storage cluster, or other storage memory, could
include one or more storage clusters 160, each having one or
more storage nodes 150, in a flexible and reconfigurable
arrangement of both the physical components and the
amount of storage memory provided thereby. The storage
cluster 160 is designed to fit in a rack, and one or more racks
can be set up and populated as desired for the storage
memory. The storage cluster 160 has a single chassis 138
having multiple slots 142. It should be appreciated that
chassis 138 may be referred to as a housing, enclosure, or
rack unit. In one embodiment, the chassis 138 has fourteen
slots 142, although other numbers of slots are readily
devised. For example, some embodiments have four slots,
eight slots, sixteen slots, thirty-two slots, or other Suitable
number of slots. Each slot 142 can accommodate one storage
node 150 in some embodiments. Chassis 138 includes flaps
148 that can be utilized to mount the chassis 138 on a rack.
Fans 144 provide air circulation for cooling of the storage
nodes 150 and components thereof, although other cooling
components could be used, or an embodiment could be
devised without cooling components. A switch fabric 146
couples storage nodes 150 within chassis 138 together and
to a network for communication to the memory. In an
embodiment depicted in FIG. 1, the slots 142 to the left of
the switch fabric 146 and fans 144 are shown occupied by
storage nodes 150, while the slots 142 to the right of the
switch fabric 146 and fans 144 are empty and available for
insertion of storage node 150 for illustrative purposes. This
configuration is one example, and one or more storage nodes
150 could occupy the slots 142 in various further arrange
ments. The storage node arrangements need not be sequen
tial or adjacent in some embodiments. Storage nodes 150 are
hot pluggable, meaning that a storage node 150 can be
inserted into a slot 142 in the chassis 138, or removed from
a slot 142, without stopping or powering down the system.
Upon insertion or removal of storage node 150 from slot
142, the system automatically reconfigures in order to rec
ognize and adapt to the change. Reconfiguration, in some
embodiments, includes restoring redundancy and/or rebal
ancing data or load.

Each storage node 150 can have multiple components. In
the embodiment shown here, the storage node 150 includes
a printed circuit board 158 populated by a CPU 156, i.e.,
processor, a memory 154 coupled to the CPU 156, and a
non-volatile solid state storage 152 coupled to the CPU 156,
although other mountings and/or components could be used
in further embodiments. The memory 154 has instructions
which are executed by the CPU 156 and/or data operated on
by the CPU 156. As further explained below, the non
volatile solid state storage 152 includes flash or, in further
embodiments, other types of Solid-state memory.

Storage cluster 160 is scalable, meaning that storage
capacity with non-uniform storage sizes is readily added, as
described above. One or more storage nodes 150 can be
plugged into or removed from each chassis and the storage
cluster self-configures in Some embodiments. Plug-in stor
age nodes 150, whether installed in a chassis as delivered or
later added, can have different sizes. For example, in one
embodiment a storage node 150 can have any multiple of 4
TB, e.g., 8 TB, 12 TB, 16 TB, 32 TB, etc. In further

US 9,501,244 B2
5

embodiments, a storage node 150 could have any multiple of
other storage amounts or capacities. Storage capacity of each
storage node 150 is broadcast, and influences decisions of
how to stripe the data. For maximum storage efficiency, an
embodiment can self-configure as wide as possible in the
stripe, Subject to a predetermined requirement of continued
operation with loss of up to one, or up to two, non-volatile
solid state storage units 152 or storage nodes 150 within the
chassis.

FIG. 2 is a system diagram of an enterprise computing
system 102, which can use one or more of the storage nodes,
storage clusters and/or non-volatile Solid-state storage of
FIG. 1 as a storage resource 108. For example, flash storage
128 of FIG. 2 may integrate the storage nodes, storage
clusters and/or non-volatile solid-state storage of FIG. 1 in
Some embodiments. The enterprise computing system 102
has processing resources 104, networking resources 106 and
storage resources 108, including flash storage 128. A flash
controller 130 and flash memory 132 are included in the
flash storage 128. In various embodiments, the flash storage
128 could include one or more storage nodes or storage
clusters, with the flash controller 130 including the CPUs,
and the flash memory 132 including the non-volatile solid
state storage of the storage nodes. In some embodiments
flash memory 132 may include different types of flash
memory or the same type of flash memory. The enterprise
computing system 102 illustrates an environment Suitable
for deployment of the flash storage 128, although the flash
storage 128 could be used in other computing systems or
devices, larger or Smaller, or in variations of the enterprise
computing system 102, with fewer or additional resources.
The enterprise computing system 102 can be coupled to a
network 140, such as the Internet, in order to provide or
make use of services. For example, the enterprise computing
system 102 could provide cloud services, physical comput
ing resources, or virtual computing services.

In the enterprise computing system 102, various resources
are arranged and managed by various controllers. A pro
cessing controller 110 manages the processing resources
104, which include processors 116 and random-access
memory (RAM) 118. Networking controller 112 manages
the networking resources 106, which include routers 120,
switches 122, and servers 124. A storage controller 114
manages storage resources 108, which include hard drives
126 and flash storage 128. Other types of processing
resources, networking resources, and storage resources
could be included with the embodiments. In some embodi
ments, the flash storage 128 completely replaces the hard
drives 126. The enterprise computing system 102 can pro
vide or allocate the various resources as physical computing
resources, or in variations, as virtual computing resources
Supported by physical computing resources. For example,
the various resources could be implemented using one or
more servers executing software. Files or data objects, or
other forms of data, are stored in the storage resources 108.

In various embodiments, an enterprise computing system
102 could include multiple racks populated by storage
clusters, and these could be located in a single physical
location Such as in a cluster or a server farm. In other
embodiments the multiple racks could be located at multiple
physical locations such as in various cities, states or coun
tries, connected by a network. Each of the racks, each of the
storage clusters, each of the storage nodes, and each of the
non-volatile Solid-state storage could be individually con
figured with a respective amount of storage space, which is
then reconfigurable independently of the others. Storage
capacity can thus be flexibly added, upgraded, Subtracted,

5

10

15

25

30

35

40

45

50

55

60

65

6
recovered and/or reconfigured at each of the non-volatile
Solid-state storages. As mentioned previously, each storage
node could implement one or more servers in some embodi
mentS.

FIG. 3 is a multiple level block diagram, showing con
tents of a storage node 150 and contents of a non-volatile
solid state storage 152 of the storage node 150. Data is
communicated to and from the storage node 150 by a
network interface controller (NIC) 202 in some embodi
ments. Each storage node 150 has a CPU 156, and one or
more non-volatile Solid state storage 152, as discussed
above. Moving down one level in FIG. 3, each non-volatile
solid state storage 152 has a relatively fast non-volatile solid
state memory, such as nonvolatile random access memory
(NVRAM) 204, and flash memory 206. In some embodi
ments, NVRAM 204 may be a component that does not
require program/erase cycles (DRAM, MRAM, PCM), and
can be a memory that can Support being written vastly more
often than the memory is read from. Moving down another
level in FIG. 3, the NVRAM 204 is implemented in one
embodiment as high speed volatile memory, such as
dynamic random access memory (DRAM) 216, backed up
by energy reserve 218. Energy reserve 218 provides suffi
cient electrical power to keep the DRAM 216 powered long
enough for contents to be transferred to the flash memory
206 in the event of power failure. In some embodiments,
energy reserve 218 is a capacitor, Super-capacitor, battery, or
other device, that Supplies a Suitable Supply of energy
sufficient to enable the transfer of the contents of DRAM
216 to a stable storage medium in the case of power loss.
The flash memory 206 is implemented as multiple flash dies
222, which may be referred to as packages of flash dies 222
or an array of flash dies 222. It should be appreciated that the
flash dies 222 could be packaged in any number of ways,
with a single die per package, multiple dies per package (i.e.
multichip packages), in hybrid packages, as bare dies on a
printed circuit board or other Substrate, as encapsulated dies,
etc. In the embodiment shown, the non-volatile solid state
storage 152 has a controller 212 or other processor, and an
input output (I/O) port 210 coupled to the controller 212. I/O
port 210 is coupled to the CPU 156 and/or the network
interface controller 202 of the flash storage node 150. Flash
input output (I/O) port 220 is coupled to the flash dies 222,
and a direct memory access unit (DMA) 214 is coupled to
the controller 212, the DRAM 216 and the flash dies 222. In
the embodiment shown, the I/O port 210, controller 212,
DMA unit 214 and flash I/O port 220 are implemented on a
programmable logic device (PLD) 208, e.g., a field pro
grammable gate array (FPGA). In this embodiment, each
flash die 222 has pages, organized as sixteen kB (kilobyte)
pages 224, and a register 226 through which data can be
written to or read from the flash die 222. In further embodi
ments, other types of Solid-state memory are used in place
of, or in addition to flash memory illustrated within flash die
222.

In NVRAM 204, redundancy is not organized by seg
ments but instead by messages, where each message (128
bytes to 128 kB) establishes its own data stripe, in some
embodiments. NVRAM is maintained at the same redun
dancy as segment storage and operates within the same
storage node groups in some embodiments. Because mes
sages are stored individually the stripe width is determined
both by message size and the storage cluster configuration.
Larger messages may be more efficiently stored as wider
strips.
Two of the many tasks of the CPU 156 on a storage node

150 are to break up write data, and reassemble read data.

US 9,501,244 B2
7

When the system has determined that data is to be written,
an authority for that data is located in one of the non-volatile
solid-state storages 152. The authority may be embodied as
metadata, including one or more lists such as lists of data
segments which the nonvolatile solid-state storage 152 man
ages. When a segment ID for data is already determined the
request to write is forwarded to the non-volatile solid-state
storage 152 currently determined to be the host of the
authority determined from the segment. The host CPU 156
of the storage node 150, on which the non-volatile solid
state storage 152 and corresponding authority reside, then
breaks up or shards the data and transmits the data out to
various non-volatile solid-state storage 152. The transmitted
data is written as a data stripe in accordance with an erasure
coding scheme. In some embodiments, data is requested to
be pulled, and in other embodiments, data is pushed. In
reverse, when data is read, the authority for the segment ID
containing the data is located as described above. The host
CPU 156 of the storage node 150 on which the non-volatile
Solid-state storage 152 and corresponding authority reside
requests the data from the non-volatile solid-state storage
and corresponding storage nodes pointed to by the authority.
In some embodiments the data is read from flash storage as
a data stripe. The host CPU 156 of storage node 150 then
reassembles the read data, correcting any errors (if present)
according to the appropriate erasure coding scheme, and
forwards the reassembled data to the network. In further
embodiments, some or all of these tasks can be handled in
the non-volatile solid-state storage 152. In some embodi
ments, the segment host requests the data be sent to storage
node 150 by requesting pages from storage and then sending
the data to the storage node making the original request.

In some systems, for example in UNIX-style file systems,
data is handled with an index node or inode, which specifies
a data structure that represents an object in a file system. The
object could be a file or a directory, for example. Metadata
may accompany the object, as attributes Such as permission
data and a creation timestamp, among other attributes. A
segment number could be assigned to all or a portion of Such
an object in a file system. In other systems, data segments
are handled with a segment number assigned elsewhere. For
purposes of discussion, the unit of distribution is an entity,
and an entity can be a file, a directory or a segment. That is,
entities are units of data or metadata stored by a storage
system. Entities are grouped into sets called authorities.
Each authority has an authority owner, which is a storage
node that has the exclusive right to update the entities in the
authority. In other words, a storage node contains the author
ity, and that the authority, in turn, contains entities.
A segment is a logical container of data in accordance

with some embodiments. A segment may be an address
space between medium address space and physical flash
locations. Each data segment is protected, e.g., from
memory and other failures, by breaking the segment into a
number of data and parity shards, where applicable. The data
and parity shards are distributed, i.e., striped, across non
volatile solid-state storages 152 coupled to the host CPUs
156 in accordance with an erasure coding scheme. Usage of
the term segments refers to the container and its place in the
address space of segments in some embodiments. Usage of
the term stripe refers to the same set of shards as a segment
and includes how the shards are distributed along with
redundancy or parity information in accordance with some
embodiments.
A series of address-space transformations takes place

across an entire storage system. At the top is the inode
address space, which the filesystem uses to translate file

5

10

15

25

30

35

40

45

50

55

60

65

8
paths to inode IDs (Identifications). Inodes point into
medium address space, where data is logically stored.
Medium addresses are mapped into segment address space.
Segment addresses are then translated into physical flash
locations. Physical flash locations have an address range
bounded by the amount of flash in the system in accordance
with Some embodiments. Medium addresses and segment
addresses are logical containers, and in some embodiments
use a 128 bit or larger identifier so as to be practically
infinite, with a likelihood of reuse calculated as longer than
the expected life of the system. Addresses from logical
containers are allocated in a hierarchical fashion in some
embodiments. Initially, each non-volatile solid-state storage
152 may be assigned a range of address space. Within this
assigned range, the non-volatile solid-state storage 152 is
able to allocate addresses without synchronization with
other non-volatile solid-state storage 152.

Data and metadata are stored by a set of underlying
storage layouts that are optimized for varying workload
patterns and storage devices. These layouts incorporate
multiple redundancy schemes, compression formats and
index algorithms. Some of these layouts store information
about authorities and authority masters, while others store
file metadata and file data. The redundancy schemes include
error correction codes that tolerate corrupted bits within a
single storage device (such as a NAND flash chip), erasure
codes that tolerate the failure of multiple storage nodes, and
replication schemes that tolerate data center or regional
failures. In some embodiments, low density parity check
(LDPC) code is used within a single storage unit. Data is not
further replicated within a storage cluster, as it is assumed a
storage cluster may fail. Reed-Solomon encoding is used
within a storage cluster, and mirroring is used within a
storage grid in Some embodiments. Metadata may be stored
using an ordered log structured index (such as a Log
Structured Merge Tree), and large data may be stored in an
unordered log structured layout (similar to log structured file
systems).

FIG. 4 is a block diagram showing a communication path
234 for redundant copies of metadata 230, with further
details of flash storage nodes 150 (i.e., storage nodes 150
having flash memory) and non-volatile Solid-state storages
152 in accordance with some embodiments. Metadata 230
includes information about the user data that is written to or
read from the flash memory 206. Metadata 230 can include
messages, or derivations from the messages, indicating
actions to be taken or actions that have taken place involving
the data that is written to or read from the flash memory 206.
Distributing redundant copies of metadata 230 to the non
Volatile Solid-state storage units 152 through the communi
cation interconnect 170 ensures that messages are persisted
and can Survive various types of failure the system may
experience. Each non-volatile solid-state storage 152 dedi
cates a portion of the NVRAM 204 to storing metadata 230.
In some embodiments, redundant copies of metadata 230 are
stored in the additional non-volatile solid-state storage 152.

Flash storage nodes 150 are coupled via the communica
tion interconnect 170. More specifically, the network inter
face controller 202 of each storage node 150 in the storage
cluster is coupled to the communication interconnect 170,
providing a communication path 234 among storage nodes
150 and non-volatile solid-state storage 152. Storage nodes
150 have one or more non-volatile solid-state storage units
152. Non-volatile solid-state storage units 152 internal to a
storage node can communicate with each other, for example
via a bus, a serial communication path, a network path or
other communication path 234 as readily devised in accor

US 9,501,244 B2

dance with the embodiments disclosed herein. Communica
tion interconnect 170 can be included in or implemented
with the switch fabric of FIG. 1 in some embodiments.
Storage nodes 150 of FIG. 4 form a storage cluster that is
enclosed within a single chassis that has an internal power
distribution bus within the chassis as described with refer
ence to FIG. 1.

Referring to FIGS. 3 and 4, in case of a power failure,
whether local to non-volatile solid-state storage 152 or a
storage node 150, data can be copied from the NVRAM 204
to the flash memory 206. For example, the DMA unit 214 of
FIG. 3 can copy contents of the NVRAM 204, including the
metadata, to the flash memory 206, using power Supplied by
the energy reserve 218. Energy reserve 218 is sized with
Sufficient capacity to support copy operation. That is, the
energy reserve 218 should be sized so as to provide sufficient
current at a sufficient Voltage level for a time duration long
enough to complete the copying so that messages that are in
metadata 230 are persisted in the flash memory 206.
A further mechanism for persisting messages in a storage

system involves the communication path 234 described
above in FIG. 4. Redundant copies of the metadata 230 can
be distributed via the communication path 234, in various
ways. For example, a message coming from the filesystem
could be distributed via the communication interconnect 170
as a broadcast over the communication path 234 to all of the
non-volatile solid-state storages 152. A non-volatile solid
state storage 152 could send a copy of metadata 230 over the
communication path 234 to other non-volatile solid-state
storage 152 in a storage node 150. CPU 156 on a storage
node 150, receiving a message from the communication
interconnect 170 via the network interface controller 202
could send a copy of the message to each solid-state storage
152. The CPU 156 may rebroadcast the message to other
flash storage nodes 150, and the flash storage nodes 150
could then distribute the message to the solid-state storages
152 in each of these flash storage nodes 150 in some
embodiments. In these and other uses of the communication
path 234, redundant copies of the metadata 230 can be
distributed to the non-volatile solid-state storages 152. Then,
if one non-volatile Solid-state storage 152, or one storage
node 150 experiences a failure, redundant copies of any
message are available in metadata 230 of at least one other
non-volatile solid-state storage 152. Each non-volatile solid
state storage 152 can apply decision logic 232 when evalu
ating various situations such as local power failure, an
unreachable node, or instructions to consider or commence
a data recovery or a data rebuild. The decision logic 232
includes witnessing logic, voting logic, consensus logic
and/or other types of decision logic in various embodiments.
Decision logic 232 could be implemented in hardware,
software executing on the controller 212, firmware, or
combinations thereof, and could be implemented as part of
the controller 212 or coupled to the controller 212. The
decision logic 232 is employed in consensus decisions
among multiple solid-state storage units 152, in some
embodiments. In further embodiments, the decision logic
232 could cooperate with the other non-volatile solid-state
storage units 152 in order to gather copies of the redundant
metadata 230, and make local decisions. The mechanisms
for persisting messages in a storage system are useful in the
event of a failure, and can be used in data recovery and
reconstruction as described above.

Examples of messages include a request to write data, a
request to read data, a request to lock or unlock a file, a
change in permission of a file, an update to a file allocation
table or other file or directory structure, a request to write a

5

10

15

25

30

35

40

45

50

55

60

65

10
file that has executable instructions or to write a file name
that is reserved and interpreted as an executable direction,
updates to one or more authorities, updates to a fingerprint
table, list or other data used in deduplication, updates to hash
tables, updates to logs, and so on. When a message is
received in non-volatile Solid-state storage 152 of a storage
node 150, indicating some action has taken place, the
message or a derivation of the message is stored as metadata
230 in the NVRAM 204 of that solid-state storage 152. By
applying the redundant copies of the metadata 230, actions
are captured that are in progress, so that if a failure happens,
these actions can be replayed and replacement actions can
then be performed, for example upon restart. Actions span
storage nodes and use cluster messaging, so the act of
sending a message can be made persistent data via one or
more of the mechanisms for persisting messages. These
mechanisms address some of the known failure scenarios in
order to ensure availability of data. In some embodiments,
the messages don’t require permanence beyond completion
of the actions. In other embodiments the messages are
further retained to facilitate rollback or other recovery
operations.

For example, if a command is sent out to carry out a write
operation, this message is recorded and redundant. If there
is a failure, it can be determined whether or not that action
has been carried out, and whether or not the action should be
driven to completion. Such determination can be carried out
using the decision logic 232 in each non-volatile solid-state
storage 152. There is dedicated storage in NVRAM 204 for
messages and other metadata 230. So that messages are
recorded in the non-volatile solid-state storage 152 and
replicated in some embodiments. The messages and other
metadata 230 are written into flash memory 206 if one
non-volatile Solid-state storage 152 experiences a power
failure, or if the entire system experiences a power failure or
otherwise shuts down. The redundancy level of the messages
matches the redundancy level of the metadata in some
embodiments. When there are sufficient numbers of copies
of messages, the message becomes irrevocable. If one node
goes down, other nodes can vote, achieve consensus, or
witness the various copies of the message and determine
what action, if any, to carry to completion. If the entire
system goes down, e.g., through a global power failure, then
a sufficient number of these messages get written from
NVRAM 204 to flash memory 206. Upon restoration of
power, the nodes can again open copies of the message and
determine what action, if any, to carry to completion to
prevent any corruption.

With continued reference to FIGS. 3 and 4, storage node
150 of a storage cluster 160 includes two levels of control
lers. There is a host CPU 156 in the storage node 150, and
there is a controller 212 in the non-volatile solid-state
storage 152. The controller 212 can be considered a flash
memory controller, which serves as a bridge between the
host CPU 156 and the flash memory 206. Each of these
controllers, namely the host CPU 156 and the flash control
ler 212, can be implemented as one or more processors or
controllers of various types from various manufacturers. The
host CPU 156 can access both the flash memory 206 and the
NVRAM 204 as distinct resources, with each being inde
pendently (i.e., individually) addressable by the host CPU
156.
By separating the NVRAM 204 and the flash memory 206

into distinct resources, not all data placed in the NVRAM
204 must be written to the flash memory 206. The NVRAM
204 can also be employed for various functions and pur
poses. For example, updates to the NVRAM 204 can be

US 9,501,244 B2
11

made obsolete by newer updates to the NVRAM 204. A later
transfer of user data from the NVRAM 204 to the flash
memory 206 can transfer the updated user data, without
transferring the obsolete user data to the flash memory 206.
This reduces the number of erasure cycles of the flash
memory 206, reduces wear on the flash memory 206, and
moves data more efficiently. The CPU 156 can write to the
NVRAM 204 at a smaller granularity than the granularity of
the transfers from the NVRAM 204 to the flash memory
206. For example, the CPU 156 could perform 4 kB writes
to the NVRAM 204, and the DMA unit 214 could perform
a page write of 16 kB from the NVRAM 204 to the flash
memory 206 under direction of the controller 212. The
ability to collect multiple writes of user data to the NVRAM
204 prior to writing the user data from the NVRAM 204 to
the flash memory 206 increases writing efficiency. In some
embodiments, a client write of user data is acknowledged at
the point at which the user data is written to the NVRAM
204. Since the energy reserve 218, described above with
reference to FIG. 3, provides sufficient power for a transfer
of contents of the NVRAM 204 to the flash memory 206, the
acknowledgment of the client write does not need to wait
until the user data is written to the flash memory 206.
As further examples of differences between present

embodiments and previous Solid-state drives, the metadata
230 in the NVRAM 204 is not written into the flash memory
206, except in cases of power loss. Here, a portion of the
NVRAM 204 acts as a workspace for the CPU 156 of the
storage node 150 to apply the metadata 230. The CPU 156
of the storage node 150 can write to the NVRAM 204 and
read the NVRAM 204, in order to access the metadata 230.
The CPU 156 is responsible for migrating data from the
NVRAM 204 down to the flash memory 206 in one embodi
ment. Transfer from the NVRAM 204 to the flash memory
206 is not automatic and predetermined, in such embodi
ments. Transfer waits until there is sufficient user data in the
NVRAM 204 for a page write to the flash memory 206, as
determined by the CPU 156 and directed to the DMA unit
214. The DMA unit 214 can be further involved in the path
of the user data. In some embodiments, the DMA unit 214
(also known as a DMA engine) is designed to detect and
understand various data formats. The DMA unit 214 can
perform a cyclic redundancy check (CRC) calculation to
check the integrity of the user data. In some embodiments,
the DMA unit 214 inserts the CRC calculation into the data
and verifies that the data is consistent with a previously
inserted CRC calculation.
Work may be offloaded to the controller 212 of the

non-volatile solid-state storage 152. Processing that is
offloaded to flash controller 212 can be co-designed with
processing performed by the CPU 156 of the storage node
150. Various mapping tables that translate from one address
space to another, e.g., index trees or address translation
tables, can be managed within the non-volatile Solid-state
storage 152, in some embodiments. The controller 212 of the
non-volatile solid-state storage 152 can perform various
tasks such as looking through these mapping tables, finding
metadata associated with the mapping tables, and determin
ing physical addresses, e.g., for user data sought by the CPU
156 of the storage node 150. In order to find an authority
associated with a segment number, a standard Solid-state
drive might bring back an entire 16 kB flash page, and the
CPU 156 would search in this page. In some embodiments,
the controller 212 of the non-volatile solid-state storage 152
can perform this search much more efficiently, and pass the
results to the CPU 156 of the storage node 150, without
sending back the entire flash page to the CPU 156.

10

15

25

30

35

40

45

50

55

60

65

12
FIG. 5 is an address and data diagram showing address

translation as applied to user data being stored in an embodi
ment of a non-volatile solid-state storage 152. In some
embodiments, one or more of the address translations
applies an address space having sequential, nonrepeating
addresses. User data, arriving for storage in a storage cluster,
is associated with a file path according to a file system. The
user data is separated into data segments, each of which is
assigned a segment address. Each data segment is separated
into data shards, each of which is stored in flash memory
206. Various address translation tables 502 (e.g., mapping
tables) are applied by either the CPU of the storage node or
the controller of the non-volatile Solid-state storage to trans
late, track and assign addresses to the user data and portions
thereof.

These address translation tables 502 reside as metadata in
the memory 154 (See FIG. 1) of the storage node, the
NVRAM 204 of the non-volatile solid-state storage, and/or
the flash memory of the non-volatile solid-state storage, in
various embodiments. Generally, address translation tables
502 that occur later in the chain of translations have a greater
number of entries (e.g., address translation tables 502D and
502E) and should be located in the flash memory 206, as
there may not be sufficient memory space for these in the
NVRAM or the memory 154. Further, messages regarding
updates to the tables 502, or derivations of these messages,
could be stored as metadata in the above-described memo
ries. Metadata in one or more of these locations can be
Subjected to replication (i.e., redundancy) and decisions for
various degrees of fault tolerance and system recovery, as
described above.

For a particular portion of user data, the file path is
translated or mapped to an inode ID with use of an address
translation table 502A. This may be in accordance with a
filesystem, and could be performed by the CPU of the
storage node in Some embodiments. The inode ID is trans
lated or mapped to a medium address with use of an address
translation table 502B, which could be performed by CPU.
In some embodiments, the medium address, which is in a
medium address space, is included as one of the sequential
nonrepeating addresses. The medium address is translated or
mapped to the segment address, with use of an address
translation table 502C through the CPU in some embodi
ments. The segment address, which is in a segment address
space, may be included as one of the sequential nonrepeating
addresses. The segment address, as assigned to the data
segment, is translated to a virtual allocation unit, as assigned
to the data shard, with use of an address translation table
502D. Controller 212 of the non-volatile solid-state storage
may perform this translation by accessing address transla
tion table 502D in the flash memory 206. The virtual
allocation unit is translated to a physical flash memory
location with the use of an address translation table 502E.
The physical flash memory location may be assigned to the
data shard.
The address space with the sequential nonrepeating

addresses may be applied to the medium address space, the
segment address space and/or the virtual allocation unit
address space in various embodiments. In each case, a range
of addresses from the address space is assigned to each of
the non-volatile Solid-state storages in a storage cluster, or to
each of the storage nodes in a storage cluster. The ranges
may be non-overlapping, Such that each non-volatile Solid
state storage unit is assigned a range that differs from the
ranges of the other non-volatile solid-state storage units. In
this mechanism, no address from this address space repeats
anywhere in the storage cluster. That is, each address from

US 9,501,244 B2
13

this address space is unique, and no two portions of user data
are assigned the same address from this address space,
during the expected lifespan of the system. Each time one of
the addresses from this address space is assigned to a portion
of user data in a non-volatile solid-state storage unit,
whether the address is a medium address, a segment address,
or a virtual allocation unit, the address (upon assignment)
should be greater than all Such addresses previously
assigned in that non-volatile Solid-state storage unit. Thus,
the addresses may be referred to as sequential, nonrepeating
in this address space. The address space with these proper
ties could include the medium address space, the segment
address space and/or the virtual allocation unit address
space. A non-volatile Solid-state storage unit can allocate the
assigned range of addresses in the non-volatile solid-state
storage without synchronization with other non-volatile
Solid-state storage units in a storage cluster.

Each range of the address space has upper and lower
bounds in Some embodiments. Overall, the address space
has an upper bound that exceeds the likely maximum
address that would be assigned during the expected lifespan
of a system. In one embodiment, the sequential nonrepeating
addresses in the address space are binary numbers with at
least 128 bits. The amount of bits may vary in embodiments,
however with 128 bits, two raised to the 128' power is
greater than the expected maximum address occurring for
the lifetime of the system. The upper bound of the address
space is greater than or equal to this number, or could
include or be this number, in some embodiments. Larger
numbers could be applied as technology further advances to
higher operating speeds and lower time delays for reading
and/or writing. The lower bound of the address space could
be zero or one, or some other suitable low number.

Applying the sequential nonrepeating addresses to one or
more of the medium addresses, the segment addresses, or the
virtual allocation units, enhance data recovery and flash
writes. In some embodiments, the storage cluster, the storage
node or the non-volatile, Solid-state storage unit performs a
Snapshot of the present contents of the cluster, the storage
node, or the non-volatile solid-state storage unit. At a later
time, a particular version of user data can be recovered by
referring to the Snapshot. Since the relevant addresses do not
have duplicates, there is an unambiguous record of the
version of the user data at the time of the Snapshot, and data
is readily recovered if still existing in the relevant memory.
Formats for Snapshots are readily devised, and may include
a file with a record of the contents of the cluster, the storage
node, or the non-volatile Solid-state storage unit, applying
one or more address Schemes. Depending on which address
scheme or schemes is present in the Snapshot, the address
translation tables 502A, 502B, 502C, 502D, 502E can be
applied to determine physical flash memory locations and
presence or absence in the flash memory 206 of the desired
data for recovery.

For flash writes, in some embodiments blocks of flash
pages 224 are erased, and then individual flash pages 224
(see FIG. 3) are written in sequential order within a single
erased block. This operation is supported by the above
described addressing mechanism, which assigns sequen
tially increasing addresses to data segments and/or data
shards as they arrive for storage. In some embodiments,
information relating to the medium address, the segment
address, and/or the virtual allocation unit is written to a
header of the flash page 224, thus identifying data stored in
the flash page 224 (e.g., as data shards). The flash page 224,
in Such embodiments, becomes self-describing and self
checking, via the information in the header.

5

10

15

25

30

35

40

45

50

55

60

65

14
FIG. 6 is a block diagram of a controller 212 with

operation queues 510 coupled to flash memory 206 in an
embodiment of a non-volatile solid-state storage unit, oper
ating according to scheduling policies 514. The scheduling
policies 514 are employed by the controller 212 to prioritize
operations in the operation queues 510. As described above
with reference to FIG. 3, the flash memory 206 has multiple
flash dies 222, shown here organized into channels. Each
channel has a channel bus 512, which is eight bits wide in
the embodiment shown, but could have other widths in
further embodiments. Each channel, and channel bus 512, is
associated with multiple operation queues 510. Each chan
nel bus 512 couples multiple operation queues 510 to
multiple flash dies 222. The operation queues 510 include
read queues, write queues, and erase queues, and may
include further queues organized according to traffic classes
or other classes. Traffic classes could include read operations
and write operations relating to user data, metadata, address
tables and further system data and operations. In various
embodiments, the operation queues 510 are implemented in
hardware, firmware, Software and memory, or various com
binations thereof.
The controller 212 of FIG. 6 receives requests for opera

tions, and places (i.e., deposits or writes) the operations into
the operation queues 510. The operations may be sorted
according to operation classes, or channels, or both. For
example, the controller 212 could receive these requests for
operations as messages passed down from the CPU of the
storage node to the non-volatile solid-state storage. Opera
tions typically include reading data, writing data, or erasing
(e.g., a block of flash), although further operations at higher
or lower level could be performed. Operations are over
lapped for high throughput to and from the flash memory
206. In order to increase efficiency and prevent conflicts,
scheduling policies 514 are adopted. These scheduling poli
cies 514 can be held in a memory in or coupled to the
controller 212, and can have various formats as readily
devised. In some embodiments, versions of flash memory
206 allow interruptible writes or interruptible erases, which
may allow a different set of scheduling policies 514.

Still referring to FIG. 6, the controller 212 evaluates
operations waiting in the operation queues 510 as to benefits
to the system. That is, the controller 212 determines a
relative benefit for each of the operations in accordance with
the scheduling policies 514 in some embodiments. In one
embodiment, the controller 212 weights the operations, i.e.,
assigns a weighting value to each of the operations in the
operation queues 510 based on the operation and the sched
uling policies 514. The operation queues 510 contain suffi
cient memory to have these weights written adjacent to the
operations in the queues 510. Weighting scales with increas
ing or decreasing values to represent greater benefit, ranges
of weighting values, and further mechanisms for evaluating,
weighting, or associating weights and operations are readily
devised.

For each of the channels of FIG. 6, the controller 212
selects or determines an operation from the operation queues
510 that has a greater benefit than other operations in the
operation queues 510. It may be preferable to pick an
operation with a maximum benefit, but there also may be
operations with equal or approximately equal benefits, and
Some tie-breaking algorithm could be employed. In some
embodiments it may also be expedient to pick an operation
with a locally maximum benefit, without examining all of
the operations in all of the queues 510, or without finding a
globally maximum benefit. This may be an iterative process,
with the controller 212 evaluating operations, selecting

US 9,501,244 B2
15

operations, and executing operations. In various embodi
ments, the controller 212 selects the next operation from the
operation queues 510 for each of the channels in various
manners. In one embodiment, the controller 212 selects an
operation from among operations at the heads of the opera
tion queues 510. In other embodiments, the controller 212
selects an operation from anywhere in the operation queues
coupled to each channel, e.g., operations out of sequence
relative to the queues 510.
One type of scheduling policy 514 of FIG. 6 is to perform

the quickest operation or shortest job first, i.e., execute first
the operation that consumes the least amount of time. This
policy is based on expected execution time. For example, a
write operation could take from 1 to 3 milliseconds (ms),
depending on whether the write is to an odd or an even page
in the flash memory 206. As a further example, read opera
tions could vary between 100 micro seconds (us) and 500 us,
which may be page dependent. Block erases of flash
memory 206 typically take a longer amount of time than
either the reads or the writes. An interruptible write, or
interruptible erase, could be paused in order to perform a
more beneficial write, or a read with a greater benefit value.
An erase, even if the erase takes a long time, should be
performed at high priority if failing to do so results in
running out of storage capacity for new writes.
An aging mechanism is employed in Some embodiments,

in order to prevent operations from stagnating in the queues
510. For example, without an aging mechanism, an opera
tion having a low system benefit could remain for too long
in a queue 510. In these embodiments, an aging parameter
could be employed that increases in value (i.e., indicates a
greater benefit) the longer an operation remains in a queue
510. Each location in each queue 510 could have an aging
parameter, Such as a timestamp or a value that increments
with each evaluation cycle, associated with the operation at
that location. The weighting could take the aging parameter
into account. In some embodiments, this aging is accounted
for in the scheduling policies 514. The data may be explicitly
tagged in some embodiments. For example, tags could
indicate that an inode number or identifier is being accessed,
or a medium address is being accessed. Tags indicating
priority could be attached by a file system based on analytics
performed in the inode or medium layer. In some embodi
ments, tags could indicate levels of priority assigned else
where in the system. A tag may indicate a client critical path,
which should be given a high priority and high relative
benefit. In embodiments with tags, the scheduling policies
514 may relate at least in part to the tags.

In some embodiments, some or all operations are not
explicitly tagged. In Such cases, a determination of relative
benefit to the system could be according to the address
and/or the content of data associated with the operation.
Garbage collection may involve read and write operations,
to move data out of an area so that a block can be reclaimed
in flash memory 206. The operations involved with garbage
collection could be given lower weighting than reads or
writes of user data requested by a client. This determination
could be based on tags as above, or could be based on
addresses. Increasing addresses, within a bounded address
space, may be assigned to newly arriving data write opera
tions. Thus, garbage collection read and write operations
would tend to have lower numbered addresses than newly
arriving data write operations. A lower benefit could be
accorded to the garbage collection read and write operations,
based on the addresses of the garbage collection read and
write operations. A higher benefit could be accorded to the

10

15

25

30

35

40

45

50

55

60

65

16
newly arriving data write operations, based on the addresses
of the newly arriving data write operations.
A list of policies which could be included in various

combinations in the scheduling policies 514 is provided.
This list is not exhaustive, in any particular precedence
order, and should not be considered limiting to the embodi
ments as further policies, expressions of the policies, and
formats for the policies are readily devised in accordance
with the teachings herein.

a) Writing user data per client request has higher benefit
than a data write resulting from garbage collection.

b) Reading user data per client request has higher benefit
than a data read resulting from garbage collection.

c) Reading user data has higher benefit than erasing.
d) Writing user data has higher benefit than erasing.
e) Erasing has highest benefit if the erasing prevents

having insufficient storage capacity for new writes.
f) Data writes having shorter latency have higher benefit

than data writes having longer latency.
g) Data reads having shorter latency have higher benefit

than data reads having longer latency.
h) Data reads or writes on an indicated client critical path

have higher benefit than data reads or writes not on an
indicated client critical path.

i) A data write operation that has been in a queue for a
longer time has greater benefit than a data write opera
tion that has been in a queue for a shorter time.

j) A data read operation that has been in a queue for a
longer time has greater benefit than a data read opera
tion that has been in a queue for a shorter time.

The embodiments described above may be applied across
queues as well as across queues of different devices. Thus,
the policies have a local component for the solid state device
associated with the queue and a global component associ
ated with different devices of the system or storage grid. In
Some embodiments, reads, writes or erases or any other
operations in general from different queues may be priori
tized based on a logical age of the operation or other
characteristics. The embodiments encompass intra-schedul
ing options within a device or storage unit and inter
scheduling options that extend across multiple devices or
storage units.

FIG. 7 is a flow diagram of a method for applying
scheduling policies, which can be practiced on or by various
storage clusters, storage nodes and/or non-volatile solid
state storage units in accordance with some embodiments.
The method is suitable for a controller coupled to flash
memory in some embodiments. The method initiates with
decision action 702, where it is determined if a new opera
tion (or operations) is arriving. The operation could include
a read operation, a write operation, or an erase operation,
directed to flash memory. The operation could be arriving as
a message from the storage node to a non-volatile solid-state
storage. If the answer is no, flow branches to the action 706.
If the answer is yes, flow proceeds to the action 704. In the
action 704, the operation is deposited into operation queues.
In an action 706, the operations in the operation queues are
evaluated according to scheduling policies. The evaluation
establishes relative benefits of the operations, in various
manners as described above. In an action 706, for each
channel, the next operation is selected from the operation
queues, for best benefit according to the evaluation. Selec
tion of the next operation is in accordance with results of the
evaluation. Action 706 could be implemented as an iterative
loop, a multithreaded operation, or a parallel processing

US 9,501,244 B2
17

operation, in various embodiments. Flow proceeds back to
the action 702, in order to determine if new operations are
arriving.

It should be appreciated that the methods described herein
may be performed with a digital processing system, such as
a conventional, general-purpose computer system. Special
purpose computers, which are designed or programmed to
perform only one function may be used in the alternative.
FIG. 8 is an illustration showing an exemplary computing
device which may implement the embodiments described
herein. The computing device of FIG. 8 may be used to
perform embodiments of the functionality for a storage node
or a non-volatile solid-state storage in accordance with some
embodiments. The computing device includes a central
processing unit (CPU) 801, which is coupled through a bus
805 to a memory 803, and mass storage device 807. Mass
storage device 807 represents a persistent data storage
device Such as a disc drive, which may be local or remote in
some embodiments. The mass storage device 807 could
implement a backup storage, in Some embodiments.
Memory 803 may include read only memory, random access
memory, etc. Applications resident on the computing device
may be stored on or accessed via a computer readable
medium such as memory 803 or mass storage device 807 in
Some embodiments. Applications may also be in the form of
modulated electronic signals modulated accessed via a net
work modem or other network interface of the computing
device. It should be appreciated that CPU 801 may be
embodied in a general-purpose processor, a special purpose
processor, or a specially programmed logic device in some
embodiments.

Display 811 is in communication with CPU 801, memory
803, and mass storage device 807, through bus 805. Display
811 is configured to display any visualization tools or reports
associated with the system described herein. Input/output
device 809 is coupled to bus 805 in order to communicate
information in command selections to CPU 801. It should be
appreciated that data to and from external devices may be
communicated through the input/output device 809. CPU
801 can be defined to execute the functionality described
herein to enable the functionality described with reference to
FIGS. 1-7. The code embodying this functionality may be
stored within memory 803 or mass storage device 807 for
execution by a processor such as CPU 801 in some embodi
ments. The operating system on the computing device may
be MS-WINDOWSTM, UNIXTM, LINUXTM, iOSTM, Cen
tOSTM, AndroidTM, Redhat LinuxTM, z/OSTM, or other known
operating systems. It should be appreciated that the embodi
ments described herein may be integrated with virtualized
computing system also.

Detailed illustrative embodiments are disclosed herein.
However, specific functional details disclosed herein are
merely representative for purposes of describing embodi
ments. Embodiments may, however, be embodied in many
alternate forms and should not be construed as limited to
only the embodiments set forth herein.

It should be understood that although the terms first,
second, etc. may be used herein to describe various steps or
calculations, these steps or calculations should not be lim
ited by these terms. These terms are only used to distinguish
one step or calculation from another. For example, a first
calculation could be termed a second calculation, and,
similarly, a second step could be termed a first step, without
departing from the scope of this disclosure. As used herein,
the term “and/or” and the “7” symbol includes any and all
combinations of one or more of the associated listed items.

10

15

25

30

35

40

45

50

55

60

65

As used herein, the singular forms “a”, “an and “the are
intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will be further under
stood that the terms “comprises”, “comprising”, “includes”,
and/or “including', when used herein, specify the presence
of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
Therefore, the terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting.

It should also be noted that in some alternative imple
mentations, the functions/acts noted may occur out of the
order noted in the figures. For example, two figures shown
in Succession may in fact be executed Substantially concur
rently or may sometimes be executed in the reverse order,
depending upon the functionality/acts involved.

With the above embodiments in mind, it should be under
stood that the embodiments might employ various com
puter-implemented operations involving data stored in com
puter systems. These operations are those requiring physical
manipulation of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com
bined, compared, and otherwise manipulated. Further, the
manipulations performed are often referred to in terms. Such
as producing, identifying, determining, or comparing. Any
of the operations described herein that form part of the
embodiments are useful machine operations. The embodi
ments also relate to a device or an apparatus for performing
these operations. The apparatus can be specially constructed
for the required purpose, or the apparatus can be a general
purpose computer selectively activated or configured by a
computer program stored in the computer. In particular,
various general-purpose machines can be used with com
puter programs written in accordance with the teachings
herein, or it may be more convenient to construct a more
specialized apparatus to perform the required operations.
A module, an application, a layer, an agent or other

method-operable entity could be implemented as hardware,
firmware, or a processor executing software, or combina
tions thereof. It should be appreciated that, where a soft
ware-based embodiment is disclosed herein, the software
can be embodied in a physical machine Such as a controller.
For example, a controller could include a first module and a
second module. A controller could be configured to perform
various actions, e.g., of a method, an application, a layer or
an agent.
The embodiments can also be embodied as computer

readable code on a non-transitory computer readable
medium. The computer readable medium is any data storage
device that can store data, which can be thereafter read by
a computer system. Examples of the computer readable
medium include hard drives, network attached storage
(NAS), read-only memory, random-access memory, CD
ROMs, CD-Rs, CD-RWs, magnetic tapes, and other optical
and non-optical data storage devices. The computer readable
medium can also be distributed over a network coupled
computer system so that the computer readable code is
stored and executed in a distributed fashion. Embodiments
described herein may be practiced with various computer
system configurations including hand-held devices, tablets,
microprocessor systems, microprocessor-based or program
mable consumer electronics, minicomputers, mainframe
computers and the like. The embodiments can also be
practiced in distributed computing environments where

US 9,501,244 B2
19

tasks are performed by remote processing devices that are
linked through a wire-based or wireless network.

Although the method operations were described in a
specific order, it should be understood that other operations
may be performed in between described operations,
described operations may be adjusted so that they occur at
slightly different times or the described operations may be
distributed in a system which allows the occurrence of the
processing operations at various intervals associated with
the processing.

In various embodiments, one or more portions of the
methods and mechanisms described herein may form part of
a cloud-computing environment. In such embodiments,
resources may be provided over the Internet as services
according to one or more various models. Such models may
include Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS). In IaaS.
computer infrastructure is delivered as a service. In Such a
case, the computing equipment is generally owned and
operated by the service provider. In the PaaS model, soft
ware tools and underlying equipment used by developers to
develop Software solutions may be provided as a service and
hosted by the service provider. SaaS typically includes a
service provider licensing Software as a service on demand.
The service provider may host the software, or may deploy
the software to a customer for a given period of time.
Numerous combinations of the above models are possible
and are contemplated.

Various units, circuits, or other components may be
described or claimed as “configured to perform a task or
tasks. In Such contexts, the phrase “configured to is used to
connote structure by indicating that the units/circuits/com
ponents include structure (e.g., circuitry) that performs the
task or tasks during operation. As such, the unit/circuit/
component can be said to be configured to perform the task
even when the specified unit/circuit/component is not cur
rently operational (e.g., is not on). The units/circuits/com
ponents used with the “configured to language include
hardware—for example, circuits, memory storing program
instructions executable to implement the operation, etc.
Reciting that a unit/circuit/component is “configured to
perform one or more tasks is expressly intended not to
invoke 35 U.S.C. 112, sixth paragraph, for that unit/circuit/
component. Additionally, "configured to can include
generic structure (e.g., generic circuitry) that is manipulated
by software and/or firmware (e.g., an FPGA or a general
purpose processor executing software) to operate in manner
that is capable of performing the task(s) at issue. “Config
ured to may also include adapting a manufacturing process
(e.g., a semiconductor fabrication facility) to fabricate
devices (e.g., integrated circuits) that are adapted to imple
ment or perform one or more tasks.
The foregoing description, for the purpose of explanation,

has been described with reference to specific embodiments.
However, the illustrative discussions above are not intended
to be exhaustive or to limit the invention to the precise forms
disclosed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
embodiments and its practical applications, to thereby
enable others skilled in the art to best utilize the embodi
ments and various modifications as may be Suited to the
particular use contemplated. Accordingly, the present
embodiments are to be considered as illustrative and not
restrictive, and the invention is not to be limited to the details
given herein, but may be modified within the scope and
equivalents of the appended claims.

10

15

25

30

35

40

45

50

55

60

65

20
What is claimed is:
1. A method of applying scheduling policies to a non

Volatile Solid-state storage, comprising:
receiving requests for operations into a plurality of opera

tion queues; and
evaluating each of the operations in the plurality of

operation queues as to benefit to the non-volatile Solid
state storage, with a benefit of at least one of the
operations based on addressing from an address trans
lation scheme applied to data of the at least one of the
operations, wherein newly arriving data write opera
tions have higher benefit than at least one other opera
tion, based on addresses of the newly arriving data
write operations in accordance with the address trans
lation scheme.

2. The method of claim 1, wherein the receiving and the
evaluating is for one of a plurality of storage nodes of a
storage cluster, wherein the operations include reading from
the non-volatile memory, writing to the non-volatile
memory, and erasing a portion of the non-volatile memory,
and wherein the method further comprises:

repeating the receiving for additional storage nodes of the
storage cluster, and

evaluating operations across the additional storage nodes
as to the benefit.

3. The method of claim 1, further comprising:
for each channel of a plurality of channels coupled to the

operation queues, iterating a selection and an execution
of a next operation from the plurality of operation
queues, with each next operation having a greater
benefit than at least a Subset of operations remaining in
the operation queues.

4. The method of claim 1, further comprising:
mapping the data of the at least one of the operations to

an address space with sequential nonrepeating
addresses in accordance with the address translation
Scheme.

5. The method of claim 1, wherein the addressing from the
address translation scheme applies increasing addresses to
the newly arriving data write operations.

6. The method of claim 1, wherein garbage collection read
and write operations have lower numbered addresses than
the newly arriving data write operations, in accordance with
the address translation scheme.

7. A storage cluster, comprising:
a plurality of storage nodes, each of the plurality of

storage nodes having nonvolatile solid-state memory,
the nonvolatile Solid-state memory comprising:
a plurality of operation queues;
a plurality of channel busses, each of the plurality of

channel busses having a channel; and
a processor, configured to perform repeating actions

including:
receiving requests for operations into the plurality of

operation queues; and
evaluating each of the operations in the plurality of

operation queues as to benefit to the non-volatile
solid-state storage, with a benefit of at least one of
the operations based on addressing from an
address translation scheme applied to data of the at
least one of the operations, wherein newly arriving
data write operations have higher benefit than at
least one other operation, based on addresses of
the newly arriving data write operations in accor
dance with the address translation scheme.

US 9,501,244 B2
21

8. The storage cluster of claim 7, wherein the operations
include reading from the non-volatile memory, writing to the
non-volatile memory, and erasing a portion of the non
Volatile memory.

9. The storage cluster of claim 7, wherein the repeating
actions further comprise:

for each channel of a plurality of channels coupled to the
operation queues, based on the each of the plurality of
channel busses having a channel, iterating a selection
and an execution of a next operation from the plurality
of operation queues, with each next operation having a
greater benefit than at least a Subset of operations
remaining in the operation queues.

10. The storage cluster of claim 7, wherein the processor
of the non-volatile solid-state memory or a processor of at
least one of the plurality of storage nodes is configured to
perform an action comprising:

mapping the data of the at least one of the operations to
an address space with sequential nonrepeating
addresses in accordance with the address translation
Scheme.

11. The storage cluster of claim 7, wherein the addressing
from the address translation scheme applies increasing
addresses to the newly arriving data write operations.

12. The storage cluster of claim 7, wherein garbage
collection read and write operations have lower numbered
addresses than the newly arriving data write operations, in
accordance with the address translation scheme.

13. A storage cluster comprising:
a plurality of storage nodes;

each of the plurality of storage nodes having nonvola
tile solid-state memory, the nonvolatile solid-state
memory comprising:
a non-volatile memory;
a controller, coupled to the non-volatile memory;
a plurality of operation queues, coupled to or

included in the controller, the plurality of opera
tion queues coupled to the non-volatile memory
by a plurality of channels, each of the plurality of
operation queues configured to hold a plurality of
operations relating to the non-volatile memory;
and

10

15

25

30

35

40

22
the controller configured to perform actions includ

ing:
receiving requests for operations into the plurality

of operation queues; and
evaluating each of the operations in the plurality

of operation queues as to benefit to the non
volatile solid-state storage, with a benefit of at
least one of the operations based on addressing
from an address translation scheme applied to
data of the at least one of the operations,
wherein newly arriving data write operations
have higher benefit than at least one other
operation, based on addresses of the newly
arriving data write operations in accordance
with the address translation scheme.

14. The storage cluster of claim 13, wherein the repeating
actions further comprise:

for each channel of the plurality of channels coupled to
the operation queues, iterating a selection and an
execution of a next operation from the plurality of
operation queues, with each next operation having a
greater benefit than at least a Subset of operations
remaining in the operation queues.

15. The storage cluster of claim 13, wherein the controller
of the non-volatile solid-state memory or a processor of at
least one of the plurality of storage nodes is configured to
perform an action comprising:
mapping the data of the at least one of the operations to

an address space with sequential nonrepeating
addresses in accordance with the address translation
Scheme.

16. The storage cluster of claim 13, wherein the address
ing from the address translation scheme applies increasing
addresses to the newly arriving data write operations.

17. The storage cluster of claim 13, wherein garbage
collection read and write operations have lower numbered
addresses than the newly arriving data write operations, in
accordance with the address translation scheme.

k k k k k

