US006927776B2

a2z United States Patent (10) Patent No.: US 6,927,776 B2
Mino et al. 5) Date of Patent: Aug. 9, 2005
(59) DATA TRANSFER DEVICE AND METHOD 5,640,545 A 6/1997 Baden et al.
5,805,778 A 9/1998 Suzuki
(75) Inventors: Yoshiteru Mino, Osaka (JP), Masanori 5,838,955 A * 11/1998 Childers et al. 710/113
Henmi, Kyoto (JP); Kenji Matsushita 6,091,431 A * 7/2000 Saxena et al. 345/535
Osaka EJP) ’ ’ 6,550,014 B2 * 4/2003 Satoh et al. 713/501
6,677,950 Bl 1/2004 Ohba et al.
(73) Assignee: Matsushita Electric Industrial Co., FOREIGN PATENT DOCUMENTS
Ltd., Osaka (JP)
JpP 08-050573 2/1996
(*) Notice: Subject to any disclaimer, the term of this P 10-320345 4/1998
patent is extended or adjusted under 35 * cited by examiner

U.S.C. 154(b) by 204 days.
(b) by ays Primary Examiner—Matthew C. Bella

Assistant Examiner—Mackly Monestime

(21) Appl. No.: 10/146,892 (74) Attorney, Agent, or Firm—McDermott Will & Emery
(22) Filed: May 17, 2002 LLP
(65) Prior Publication Data G ABSTRACT

US 2003/0006992 Al Jan. 9, 2003 The data transfer device for transferring data between a

system bus and a local memory having a frame buffer region

(30) Foreign Application Priority Data and a general region includes an interface section and a data
May 17, 2001 (IP) woovoverrreeereesreeee e 2001-148277 processor. The interface section generates a transfer param-
TUL 9, 2000 (JP) oo 2001-207508 eter for accessing one of the frame buffer region and the

5 general region based on control data for controlling data

(51) Inte CL7 oo GOSF 13/00 o et cent from the system bus and outputs the generated
(52) US.CL o 345/538 transfer parameter, in addition to transferring data to/from
(58) Field of Searchc.cccocooveeiiene. 345/538, 530, the system bus. The data processor generates an address of

345/537, 541, 539, 540, 545, 546 data to be transferred in the local memory according to the
transfer parameter, and transfers data to/from the local

(56) References Cited memory using the generated address, in addition to trans-
U.S. PATENT DOCUMENTS ferring data to/from the interface section.
5301272 A 4/1994 Atkins 5 Claims, 27 Drawing Sheets

3 SYSTEM BUS

C : 210 20 LOCAL MEMORY
T e e e e - 9
HOST CPU ! 211 INTERFACE SECTION | r S
' i
i DATA GENERAL
| BUFFER REGION — +—21
MAIN MEMORY ! 212 214
: i I i N I
! ADDRESS ! DATA | J77
) : DECODER TRANSFER | | | PROCESSOR 1op
i 213 1 PARAMETER
i \ GENERATOR FRAME BUFFER
i REGISTER ;
|
i I 216
! ADDRESS L) i
I INFORMATION |
i ADDRESS i
| | 2157 REGISTER COMPARATOR | |
! i
i !

US 6,927,776 B2

Sheet 1 of 27

Aug. 9, 2005

U.S. Patent

i (

” YALS194Y i

NOIOTY | JOLVIANED o1~ 1041NOJ _

_ YA LANVEYd A i

HaddIl m ATASNYIL |

771 vl W ¥H40004a |

¥0SSHI04d | | SS94aay |

.............. V1Va Pl Jo T |

m o1 |

T | |

T oo | s ||

TYYANTD _ vIva __

— 1

| NoTIoAS AovawaInT LT = |

RIOWEH V00T 07~ o i NOLLOdS dowbEaN CC S
0T

T Old

SNd WHISAS §

N

AJOWHWN NIVW

1d3 1SOH

-/

US 6,927,776 B2

Sheet 2 of 27

Aug. 9, 2005

U.S. Patent

FIG. 2

ROW ADDRESS

L2

0

2

: \\
953 —
254 N
255

lll

—

0\¥

\\S

A

= =

2 3

h. = =

! —

!

| =

) jos}

) —

[=)

! &
]
]

o

et

=

<

3

253

254
255

U.S. Patent Aug. 9, 2005 Sheet 3 of 27 US 6,927,776 B2

FIG. 3A
1 bit N bits 8 bits
BANK ROW ADDRESS COLUMN ADDRESS
FIG. 3B
N bits \1/1 bit 8 bits

~|
| 7
ROW_ADDRESS BANK COLUMN ADDRESS

US 6,927,776 B2

Sheet 4 of 27

Aug. 9, 2005

U.S. Patent

pemoTTe 21Tda SNONUTIUO)
pBSYJI8A0 INOYITA PANSST &g UBD puewwod HLTYM

\\

H1TUM
8 SSHYAdy NWNI00
0 SSH¥Adv Mod
0 ANVY

CABR:I

0 SSHMAav NWAT0D

0 JNVd

JALLOV
0 SSTIAQAV Mod O SSHIAAY MOd
0 MNVd

1d

a

I e H Rt ek it

[S] et St

v1vd
SSEyaav
am

SVO

' ' ' 1 |
' 1 1 1 i
' 1 V 4)
' I ' '
' 1) '
i ' 1 y 1
) ' ') '
. | ' 1 1
I ! ' ' 0
! ' '] i
1 ! i 1 .
1 ' 1 1 |
' ' i 1 '
1 ' ' ' I
1 ' t [1
1 ' ' v '
' ' ') 1
. i " L 1
h [v I v
' ' ' ' (
v ' 1 ' |
' [1 ' '
1 ' 1 ' '
| ' 1 1 v
1 ' ' 1 1
' ' i I '
1 1 ' I '
‘ 1 ' ' 1
1 | ' ' 1
‘ ' ! i !
r T T T T
) 1 ') '
' ' ' ' '
1

'

'

'

[

i

7 DId

J N S S e Stk dadahel

@
i
_m

1
]
|
i
'
I
)
t
'
1
i
'
'
l
'
|
l
i
T
l
i
i
1
]
1
)
1
1
‘
'
T
'
'

'
'
\
1
1
'
|
'
i
'
'
1
1
]
i
i
1
|
l
1
i
'
|
t
'
1
1
'
'
'
1

sVd
100710

US 6,927,776 B2

Sheet 5 of 27

Aug. 9, 2005

U.S. Patent

SIN000 PEIYIBA(

N

ﬂll
HLIUM

g SSHMAaV NWNI00 dATLOV

T SSAYAav

T SSTAAV MOd HOY

HOVHOHId

41TUM

0 SSAIAAY NWA10D
0 SSHIAAV Mod

0 MZ«m

JALLOV

0 SSaYaav mod

0 INVE

G DId

)] ‘ ' 1] 1 ' + ' 1 |
) ' | ' ' i it) i ' ' I ' '
| ' |] 1 ' 1] | i] I] | '
| 1 ' 1 1] «]))
' ' ' ¢ | ' !]] |
I) ' ' ')] 1 ' ']) I] i
| ' (') '] I ' | ' 1 1] ‘
' ' ' ' 1 i 1 | ‘ I i) ' i i
+ ' 0 ' ' ' ' ‘ | ' y i
) ,m , ¢ ¢ ‘ I ! I ' ! 1)
) ‘ ' v ¢ l v ' ' | 1 '
) ' ' ' ' ‘ ' | i ' | '
1) ' ' ' I t ' | i ' v ' ' v
'] 1 ' ' v i 1 ' ‘ ' 1 ' 1 '
1 ' ' ' . ' i 1 ' ' 1 ' '
i '] ' ' ' ' | ' ' }) ' (]
v v 1 ' | | ' (V] 1 ' ' 1
" L 1 L It A L ' " ' i L i i
) [i] ' v) T v [' v . [v
I 1 ' i ‘ ¢ 1 ')) 1 v ' '
' : ' | 1 ‘ v 1 i t 1 1 v v 1
1 v ' 1 | 1 .]) v [l)] '
' '] ' ' l i 1]] ' 1 |] Il
'] 1 i ¢ ' t |] ' ‘]] i]
|] ' [1) ' 1 1 1 i : 1 1 1
] 1 ' ' ' I ' [l i I] 1 1 1
1 ' 1 | [V | 1 '] ' i
T ‘ T ' 1 1 ' 1 v | '] ' ['
i i b] ' | 1] | v |] ' i 1
] i ' 1 ' t) ' | 1 ! ! ') '
] i T i T T i T T T T T '
| i 1 t . . ! 1 1] 1 ' 1 ']
']] ' i ' |] i 1 ! 1 1 '
1 1 ' i 1 '
' 1 | [} ' 1 (i | ' i]] '
' [) l ' 1 1 i ' 1 ' ' 1 1

v1vd
SSHIAav

US 6,927,776 B2

Sheet 6 of 27

Aug. 9, 2005

U.S. Patent

SIND00 peayIaAd ON
paeaouod ade spuemmod FATLOV pue HO¥VHIAAd

\l|\:kx||||4
dLTyM dLTaM

8 SSAJYAdV NWN'I0D dALLOV 0 SSTYATY NWAT00

T SS3YAAV J9¥VHO
1 SSHIAAY mod KON “qd 0 SSAAAY KO

T MNVd T JNVE 1 ANVd 0 ANvd

'
' 1
'

HALLOV
0 SSFYAGY Mod

i [l
) '
) '
'
'

V
'

y1lvd

02X SE
o

| ssdyaav

SYO

|
]
v i
l]
1 1
1 [l
' i
] i
1 v
|)
b |
L
i '
1]
i 1
| [
< f
|
| '
| ‘
'
i [
] 1
|]
1
' !
T T
]
' |

]
'
]
+
)
i
'
|
i
|
'
1
I
'
1
l
|
il
]
|
]
'
[l
[l
T
1
l

T
T

Skl
¥0010

US 6,927,776 B2

Sheet 7 of 27

Aug. 9, 2005

U.S. Patent

NOIOJY ¥dd4nd m2<mm4

- ,
7
Zinoad zimou b LTMOW] TTHOM | OTHOYY OTHOY GAOY] 6MOM [SHO shod . LMO LAOU [9#0d
TNved odnve [TINVE] odNVE [THNVE] 0ANVE p TINVE 0NV [1NVE] OMNYE | THNYE] 0NNV ¥ 13NVE
/1

oRO¥ b GHOY] Smodp PHO¥q PAOE chou] crouf zmo¥] zmod| TmO¥] THOM T OMOY) 0M0Y
OMNVE b TANVE] 0NNV | THNVE] OUNVE Tv_zé oNnve ¥ DINVE] 0dNvE | DINVE] 0NNYE ¢ [INVE] 0NNV

| y yé s

) e
HIvd L

stextd ggxge JO BlEQ

L 91d

1 e D e [(A (A 2 B

]

¥l

[as]
—

L

w

TOHT
(s319 8) [ex1d 1 03 8ulpuodsallod Ele(]

k——

§11q 7%

U.S. Patent

FIG. 8

US 6,927,776 B2

Aug. 9, 2005 Sheet 8 of 27
=
&)
H
O
xa)
=
o
25
(r,
(.
o
o0
m
=
=
o
3
— —)
\ \
\ N \
Q —
LT A

A,

N

L1
N

U.S. Patent

Aug. 9, 2005 Sheet 9 of 27 US 6,927,776 B2
0 1 2 —>XB
| % | .
[O 1 2 3 4 5 6 7 8 9 10 11 =X
0 0 [Do,0[Dy01Dog2lPeg3|Dsc0P 1oL [P102D1031D500Pa0 L P2 a3
11 [p,,0g 1D, 2[D0,3[D;,0Py, LD, 2{D,,3[Dy, 0D, 1D, 2Py, 3
2 2 [D,0D0,1Pg;2P0g3[P10P [P 122D 13(D 0,0 Py Py2(Ds,3
Vo
YB Y
:PIXEL DATA
FIG. 9B
7
\ YB XB 040
\ D3 D,,2 D1 D,.0
D,,0 D1 D,,2 D,,3

U.S. Patent Aug. 9, 2005 Sheet 10 of 27 US 6,927,776 B2

FIG. 10A
0 1 2 —=XB
— I % —
0 1 2 3 4 5 =X
0 0 DOOO Dool DmO le D200 D,,l
l L Dy 011D110D111D210D21l """
2 2 D020D02] D120D121D220D221
Vo
YB Y
-PIXEL DATA
FIG. 10B
7,
YB XB 040
FIG. 10C
Dyl D,,0
FIG. 10D
ny() nyl

U.S. Patent Aug. 9, 2005 Sheet 11 of 27 US 6,927,776 B2

FIG. 11A

0 1 2 —=>XB
0 1 2 —=>X

0 0 DooODloODzoo

1 1 DmODuODmO ----

2 2 DozoDwODZ‘zO

Vo

YB Y :PIXEL DATA
FIG. 11B

YB XB 040
FIG. 11C
YL
¢Inva1/x$ nyo

U.S. Patent

Aug. 9, 2005 Sheet 12 of 27 US 6,927,776 B2
FIG. 12A
Horizontal Width of XB Width of YB
width of image | (including the lower bits “00”)
1~32pixels Sbits 27bits
33~64pixels 6bits 26bits
65~128pixels Thits 25bits
129~256pixels 8bits 24bits
257~512pixels 9bits 23bits
513~1024pixels 10bits 22bits
FIG. 12B
Horizontal Width of XB Width of YB
width of image | (including the lower bits “00”)
1~32pixels 6bits 26bits
33~64pixels Thits 25bits
65~128pixels 8bits 24bits
129~ 256pixels 9bits 23bits
257~512pixels 10bits 22bits
513~1024pixels 11bits 21bits
FIG. 12C
Horizontal Width of XB Width of YB
width of image | (including the lower bits "00”)
1~32pixels Thits 25bits
33~64pixels 8bits 24bits
65~128pixels Obits 23bits
129~256pixels 10bits 22bits
257~512pixels 11bits 21bits
513~1024pixels 12bits 20bits

U.S. Patent Aug. 9, 2005 Sheet 13 of 27 US 6,927,776 B2

FIG. 13

CONTROL REGISTER ADDRESS

0 DESTINATION HEAD ADDRESS

1 NUMBER OF WORDS TO BE TRANSFERRED
2 DMA START FLAG

3 FORMAT INFORMATION

FIG. 14

RASTER_ON
\

!
FRAME_NO X_WIDTH PI XEL_TYIE‘

U.S. Patent

Aug. 9, 2005 Sheet 14 of 27 US 6,927,776 B2
FIG. 15A
YB XB 040
YB XB X4
FIG. 15B
YB XB 040
YB XBX2
FIG. 15C
YB XB 070
97
YB } XB

US 6,927,776 B2

Sheet 15 of 27

Aug. 9, 2005

U.S. Patent

¥ X X=X W T=1V ‘ZdA=A ‘W M~ OTF

2 X 2dX=X ‘N ‘T=1V ‘ZgA=k ‘D4 (o~ A1V

29X=X Wd ‘1=1V ‘z9A=k ‘mi Ny~ dI¥

P 19X=X Wd ‘T=1V ‘T9A=A ‘8I M~ AT¥

ZX19X=X ‘Nd T=1Y ‘19A=4 ‘N 4~ OTF

19X=X ‘Wd ‘T=1V ‘TdA=A ‘8d N~ gT¥

¥O=X ‘0=1Y ‘Vi=A ‘#d M~ VI¥

HOLV'

¢l ™~ 1¢

4%
v\L b X 9fX=X ‘Wd ‘T=1V ‘9dA=A ‘W M~ ST¥
<
= f
M0SSTI0Ud = _
VAR - _
i —
S
-
N
T e .]
[SdRITIAXTA | | ONTENVA | !
o1 —~ 1| NoTuaIswy _“ ava] |
I — 1 .
| HIALNX | |
9T OI4d

Shd

€ SN9 WALSAS
WO,

U.S. Patent Aug. 9, 2005

Sheet 16 of 27 US 6,927,776 B2

AT=0
HostDmaStart
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RW Y
FIGl?A 1514131211109 8 7 6 54 3 2 1 0
2 7
AT /// X //
AT=0
HostDmalLength
1514131211109 8 7 6 5 4 3 2 1 0
7 7
FIG 17B Length /
AT=1
HostDmaStart

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RW

4

Y

FIG. 17C 1514 13 12 11

109 8 76 5 4 3 2 10

AT

M

X

AT=1

HostDmalength

1514131211109 8 7 6 54 3 2 1 0

F1G. 17D

/1

Length

U.S. Patent Aug. 9, 2005 Sheet 17 of 27 US 6,927,776 B2

FIG. 18

Field Name|Number of bits Function

AT 1 Attribute of a region in local memory
0 : General region

1 : Frame buffer region

EFM 4 Selection of frame memory

0000 : FMO

0001 : FM1

0010 : FM2

0011 : FM3

0100 : FM4

0101 : FM5b

0110 : FMS6

0111 : FM7

1000 . FMB8

1001 : FM9

1010 : FMI10

1011 : FM11

RW] Specify Read/write

0: Write

1 : Read

X 8/11 DMA start address

AT=0 : Lower bits of the address
AT=1 : X coordinate

Y 14/10 DMA start address

AT=0 : Upper bits of the address
AT=1 .Y coordinate

AT=0 : Number of words to be
DMA-transferred

Length 5/11

AT=1 : Number of pixels to be
DMA-transferred]

U.S. Patent Aug. 9, 2005 Sheet 18 of 27 US 6,927,776 B2

FIG. 19

FrameMemory0

31 20 29 28 27 26 25 24 23 22 21 20 19 18 17 16
FOXfm g7 7| Focolor

1514131211109 8 7 6 5 4 3 2 1 0

FOadd
FIG. 20
Field Name|Number of bits Function
F O0add 14 Base address of frame memory FMO.

Row address of the origin of the
coordinate system is designated.

F Ocolor 3 Number of bits per pixel
000 : 8bit/pixel
001 : 16bit/pixel
010 : 24bit/pixel

FOXfm 7 Size of frame memory in the X direction

In units of 32 pixels

0dd value is set

U.S. Patent Aug. 9, 2005 Sheet 19 of 27 US 6,927,776 B2

313029282726252423222120191817 16

I (4n, Y) l (4n+1,Y) |
FIG. 21A 1514131211109 8 7 6 5 4 3 2 1 0
[(4n+2,Y) | (4n+3,Y) }

n is an integer

640pixel
o - pXe-s > ROW ADDRESS
{32pixels | fm————
Cogepels)
- — :
%I 0p0q4LpLlg «--|9§9710N=21
o K104 11 fprig 12
o
n
2
FI1G.21B
Eg -
= | V) BANK=1
1470147148 1481 - .- |156[156/157 BANK=0
N,=15
Screen size Ny N, Number of bits
320 X 240 11 8 720,896
400 X 240 13 8 851,968
. 640 X 480 21 15 2,580,480
FIG. 21C 800 X 480 25 15 3,072,000
: 960 X 480 31 15 3,809,280
1280 < 960 41 30 10,076,160
1920 X 960 61 30 14,991,360
_ 1Y X
RowAddress= 5 (32 X Nx-i- 32>
(X X \o
FIG. 21D Bank-<32><Nx+ 32)42

ColumnAddress= (Y%32) X8+ (%) %8

U.S. Patent Aug. 9, 2005 Sheet 20 of 27 US 6,927,776 B2

3130292827 2625242322212019181716

[(2n, Y)]
FIG. 22A
1514131211109 8 7 6 5 4 3 2 1 0
| (2n+1,Y) |
n 1s an integer
720pixel
e — Pl > ROW ADDRESS
|32pixels .
= (——)i/ S |4V
“ o —
%I AV REA + o« |10 P104(11;|N=23
© pl1712 12413]
w
g
FIG. 22B
E@
BANK=1
| 3333341334 3551 ... |343[344]344 BANK=0
N,=30
Screen size Nx Ny Number of bits
160 X 120 5 8 327,680
FIG. 22C 176 X120 7 8 458,752
352 X 240 11 15 1,351,680
720 X 480 23 30 5,652,480
1/Y X
RowAddress= 7(16 X N + 32>
FIG. 22D Bank= (< Nt 25) %2

ColumnAddress= (Y%16) X 16+() %16

U.S. Patent Aug. 9, 2005 Sheet 21 of 27 US 6,927,776 B2

313029 28 27 26 25 24 23 22 21 20 19 1817 16

[l R(X,Y) |
FIG. 23A
1514131211109 8 7 6 5 4 3 2 1 0
[G(X, V) | B(X,Y) |
L 302pixels |
Sy ‘ ROW ADDRESS
|32pixels
|A
— < Ly
gi 0FK0q41 01 e |4 E4 (5 IN=11
o L5486 6417
FIG. 23B
54
N
BANK=1
| [159fied)ieofier] - -+ 163[164 164 BANK=0
N,=30
Screen size Nx Ny Number of bits
160 X 120 5 15 614,400
FIG. 23C 176 X 120 7 15 860,160
352 X 240 11 30 2,703,360
720 % 480 23 60 11,304,960
_ 17y X
RowAddress= 5 (8 X Nx+ 32>
G. 23 Y X
Fl 3D Bank—(?X NX+§> %2

ColumnAddress = (Y%8) X324+ X%32

US 6,927,776 B2

Sheet 22 of 27

Aug. 9, 2005

U.S. Patent

NOIOHY

ENNIRER
TO4INOD

JILSTI4Y

TOYINOD

J4LSTOHY
"TOYLNOD

NOT10dS ADVANAINT,

| JOLVYHNID
JHLIRVYV]

4444019

gnvd
e

\

JOSSA00dd
ylvd

12—t

JHASNYYL

d4d024d

SSgyaav

Pt | err”

NOIOdY

4944n4d vIvd

TVEIANED

]]
r 6~

0%
KIOWAN TVO0T

T

V¢ OId

_
|
_
_
i
_
_
_
i
_
m
_
_
_
_
_
|
_
i
m
_
_
_
_
_

SNd WA1SAS §

)

AHOWHR
NIVH

1d3 1SOH

1

JOLYYLIHYY
shd

-y

U.S. Patent Aug. 9, 2005 Sheet 23 of 27 US 6,927,776 B2
FIG. 25
231 232 2?3
APPLICATION APPLICATION APPLICATION

A

]

4

0S (Operating Svstem)

Jw 9254

DEVICE DRIVER
(for general
region)

DEVICE DRIVER
(for control
register)

257

DEVICE DRIVER
(for frame buffer
region)

DATA TRANSFER DEVICE

~— 261

4
Y
LOCAL MEMORY

~— 262

~— 260

U.S. Patent

Aug. 9, 2005 Sheet 24 of 27 US 6,927,776 B2
FIG. 26
2 ’S 1 2 ’g 2 2 3 3
MASTER DEVICE MASTER DEVICE MASTER DEVICE

NETWORK

*

274

DATA TRANS

FER DEVICE

~— 281

LOCAL MEMORY

~— 282

~— 280

US 6,927,776 B2

Sheet 25 of 27

Aug. 9, 2005

U.S. Patent

|
|
| MOIVEYdIOD m CI7
4IST99 -
|
i S544aay NOT LVIMOANT
i SSEIAQY
|
o1z 4
_ MILSTOTY
NOT9IY “ TOYINOD -

| yoLvdaNTD

|M@E:mmzﬁz | it T AW N

q0SSEO0Ud | | | SHdSNVAL JHA004a N

................ VIVa | SSTUAQY
_ . RAOWAN NIV
 F17- 212~

L NOIOEY i ¥A4404

TYYENEO _ v1vd
| J
|
N s A
AJOWIN Tv001 0T 01¢ ﬁ\x

SNd WHLSAS §

LG OTd

U.S. Patent Aug. 9, 2005 Sheet 26 of 27 US 6,927,776 B2

F1G. 28

BASE_ADDRESS MODE_SWITCH CP_SIZE

US 6,927,776 B2

Sheet 27 of 27

Aug. 9, 2005

U.S. Patent

T8~ yoLINOW

NOI93Y
yd44ng
anvad
A
e+
NOL9EI
TYHENED

AYOWAN "TvD0T ONL

GO~
40SSA004d AV1dSIa
14
ovauain | 76 . 2
YIS 40SSAD04d ONIAYAQ -
60 NIVH
e — 36
” 44Q004d SSHYAAY H HILYT “
96~ NOILDAS FOVANAINI 16 -~ . Ndo LSOH
06~ T

SNd WALSAS €

19V ¥0Ty¥d

6¢ OId

US 6,927,776 B2

1
DATA TRANSFER DEVICE AND METHOD

BACKGROUND OF THE INVENTION

The present invention relates to a data transfer device for
transferring data between a system bus and a local memory.

FIG. 29 is a block diagram of a conventional data transfer
device. The operation of the conventional data transfer
device of FIG. 29 is briefly described as follows. Note that
in the following description, it is assumed that the LSI
denoted by the reference numeral 90 is a graphics processor.
Alocal memory 20 includes a general region 21 and a frame
buffer region 22. A host central processing unit (CPU) 1
transfers drawing commands to the general region 21 via an
interface section 91. A drawing processor 94 reads drawing
commands from the general region 21, executes drawing,
and outputs the drawing results to the frame buffer region
22. A display processor 95 reads display data from the frame
buffer region 22 and outputs the read display data to a
monitor 81.

The host CPU 1 and the interface section 91 execute data
processing using byte addresses. The drawing processor 94
and the display processor 95 execute pixel processing using
X, Y coordinates. A SDRAM interface 96 has functions of
generating addresses for the general region 21 and addresses
for the frame buffer region 22. More specifically, the
SDRAM interface 96 generates addresses basically in the
order of byte addresses of the local memory 20 for the
general region 21, and generates addresses in the order of
raster scanning for the frame buffer region 22.

In the conventional data transfer device described above,
therefore, the host CPU 1 transfers drawing commands to
the general region 21 and leaves the entire drawing process-
ing to the drawing processor 94. With recent improvement
in the performance of the host CPU 1, however, it has
become possible for the host CPU 1 to perform drawing
processing in parallel with the drawing processing by the
drawing processor 94, to improve the drawing performance
and the drawing functions. In this parallel drawing, the host
CPU 1 executes a program, performs drawing processing by
defining an array corresponding to an X, Y coordinate
system, and transfers pixel data obtained as a result of the
processing to the frame buffer region 22.

During the data transfer to the frame buffer region 22, the
host CPU 1 temporarily retains the generated pixel data in a
first region of a main memory 2, and then transfers the data
to a second region thereof, before transferring the data to the
interface section 91. In the transfer of the data to the second
region of the main memory 2, the host CPU 1 must generate
an address for a position in the local memory 20 at which the
pixel data is to be stored from the coordinates of the pixel
data by executing a program or using a device driver and the
like.

In the conventional data transfer device, therefore, the
host CPU 1 must perform address conversion for data using
the main memory 2 when it intends to transfer the data to the
frame buffer region 22. This is a burden to the host CPU 1,
and thus significantly deteriorates the system performance if
the CPU performance has no room to spare. In addition, the
number of cycles required for the address generation, which
is performed between the host CPU 1 and the main memory
2 via a system bus, is several thousands of times as large as
the number of cycles required for data transfer between the
LSI 90 and the local memory 20 in some cases. This causes
a problem of reducing the transfer rate.

SUMMARY OF THE INVENTION

An object of the present invention is providing a data
transfer device capable of speeding up data transfer to/from

10

15

20

25

30

35

40

45

50

55

60

65

2

a local memory involving address generation and thus
improving the performance of the entire system.

The data transfer device of the present invention is a data
transfer device for transferring data between a local memory
and a system bus, the local memory having a frame buffer
region for storing pixels at addresses associated with coor-
dinates of the pixels and a general region occupying the
remaining area of the local memory, the data transfer device
including: an interface section for generating a transfer
parameter for accessing one of the frame buffer region and
the general region based on control data for controlling data
transfer sent from the system bus and outputting the gener-
ated transfer parameter, in addition to transferring data
to/from the system bus; and a data processor for generating
an address of data to be transferred in the local memory
according to the transfer parameter and transferring data
to/from the local memory using the generated address, in
addition to transferring data to/from the interface section.

With the above configuration, the CPU connected to the
system bus or the like is no more required to generate
transfer parameters by software. Therefore, high-speed data
transfer is attained between the system bus and the frame
buffer region of the local memory. In addition, the CPU or
the like can easily access the frame buffer region.

The interface section preferably includes: a data buffer for
storing data received from one of the system bus and the data
processor, and outputting the data to the other; a control
register for storing the control data; and a transfer parameter
generator for generating the transfer parameter based on the
control data stored in the control register and outputting the
generated transfer parameter, the transfer parameter genera-
tor also controlling the data buffer.

With the above configuration, both in access to the general
region and access to the frame buffer region, the transfer
parameter generator generates a transfer parameter to enable
DMA transfer of data between the system bus and the local
memory. This improves the data transfer efficiency.

Preferably, the interface section further includes: an
address information register for storing an address designat-
ing a position in the general region; and an address com-
parator for comparing the address stored in the address
information register with an address designating an access
destination sent from the system bus, and outputting the
comparison result, wherein the transfer parameter generator
generates a parameter for accessing the general region as the
transfer parameter when the comparison result indicates that
the address designating the access destination is an address
in the general region, and outputs the generated parameter.

With the above configuration, the way of generation of a
transfer parameter can be switched according to the address
of the access destination. Therefore, the consistency of the
format of data transferred can be maintained even when no
sequentiality is kept between the timing of data transfer
between the system bus and the general region and the
timing of data transfer between the system bus and the frame
buffer region.

Preferably, the address comparator compares a bit
sequence having a predetermined length from the most
significant bit of the address stored in the address informa-
tion register with a bit sequence having the same length from
the most significant bit of the address designating the access
destination, and the transfer parameter generator regards the
address designating the access destination as an address in
the general region when the comparison result from the
address comparator indicates that the compared two bit
sequences match with each other.

US 6,927,776 B2

3

With the above configuration, address comparison is
facilitated.

Preferably, the length of the bit sequence for comparison
is set in the address information register via the system bus,
and the address comparator performs the comparison
according to the length of the bit sequence set in the address
information register.

With the above configuration, the size of the region used
as the general region can be easily changed.

Preferably, the interface section comprises: a plurality of
system data buffers for storing data transferred to/from the
system bus; a plurality of system data buffer controllers
provided for the respective system data buffers for control-
ling data input/output into/from the corresponding system
data buffers; a plurality of control registers provided for the
respective system data buffers for storing the control data for
data stored in the corresponding system data buffers; a data
transfer monitoring controller for selecting one of the plu-
rality of system data buffers according to the states of the
system data buffers, instructing the system data buffer con-
troller for the selected system data buffer to use the system
data buffer for data transfer, and outputting data indicating
the selected system data buffer; a data buffer for receiving
data from one of the selected system data buffer and the data
processor, storing the received data, and outputting the
stored data to the other; and a transfer parameter generator
for generating the transfer parameter based on control data
stored in the control register corresponding to the selected
system data buffer and outputting the generated transfer
parameter, and also controlling the data buffer.

With the above configuration, data transfer using a plu-
rality of channels is possible, which can provide an effect
resembling that attained by using a plurality of data transfer
routes. In particular, since control information for data
transfer can be set for each channel, it is possible to transfer
data in different formats for different channels.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a data transfer device of
Embodiment 1 of the present invention.

FIG. 2 is a diagrammatic view of a general SDRAM
having two banks.

FIG. 3A is an illustration of the order of three types of
addresses generally allocated in an address pin of a
SDRAM. FIG. 3B is an illustration of a format of an address
generated by a data processor.

FIG. 4 is a timing chart of the operation of a SDRAM in
the case of access to the same bank and the same row address
as those in the preceding access.

FIG. 5 is a timing chart of the operation of a SDRAM in
the case of access to the same bank but a different row
address from that in the preceding access.

FIG. 6 is a timing chart of the operation of a SDRAM in
the case of access to a different bank from that in the
preceding access.

FIG. 7 is an illustration of address mapping in a frame
buffer region.

FIG. 8 is an illustration of overhead occurring during
drawing when a SDRAM is mapped as shown in FIG. 7.

FIG. 9A is an illustration of the relationship between
coordinates X, Y handled by a host CPU and word-unit
coordinates XB, YB for 8 bits/pixel data. FIG. 9B is an
illustration of a format of a byte address for 8 bits/pixel data.
FIGS. 9C and 9D are illustrations of positions of four pixels
stored in one word for 8 bits/pixel data.

10

20

30

35

40

45

50

55

60

65

4

FIG. 10A is an illustration of the relationship between
coordinates X, Y handled by the host CPU and word-unit
coordinates XB, YB for 16 bits/pixel data. FIG. 10B is an
illustration of a format of a byte address for 16 bits/pixel
data. FIGS. 10C and 10D are illustrations of positions of two
pixels stored in one word for 16 bits/pixel data.

FIG. 11A is an illustration of the relationship between
coordinates X, Y handled by the host CPU and word-unit
coordinates XB, YB for 24 bits/pixel data. FIG. 11B is an
illustration of a format of a byte address for 24 bits/pixel
data. FIG. 11C is an illustration of a position of one pixel
stored in one word for 24 bits/pixel data.

FIG. 12A is an illustration of the widths of fields XB and
YB of a byte address with respect to the width of an image
to be transferred for 8 bits/pixel data. FIG. 12B is an
illustration of the widths of fields XB and YB of a byte
address with respect to the width of an image to be trans-
ferred for 16 bits/pixel data. FIG. 12C is an illustration of the
widths of fields XB and YB of a byte address with respect
to the width of an image to be transferred for 24 bits/pixel
data.

FIG. 13 is an illustration of control data for data transfer
stored in a control register.

FIG. 14 is an illustration of format information stored in
the control register.

FIG. 15A is an illustration of change of a byte address to
coordinates in a transfer parameter generator for 8 bits/pixel
data. FIG. 15B is an illustration of change of a byte address
to coordinates in a transfer parameter generator for 16
bits/pixel data. FIG. 15C is an illustration of change of a byte
address to coordinates in a transfer parameter generator for
24 bits/pixel data.

FIG. 16 is an illustration of an example of the transfer
parameter generator in FIG.

FIG. 17A is an illustration of a 32-bit register for desig-
nating the destination head address for write into a general
region. FIG. 17B is an illustration of a 16-bit register for
designating the number of words to be transferred for write
into the general region. FIG. 17C is an illustration of a 32-bit
register for designating the destination head address for
write into a frame buffer region. FIG. 17D is an illustration
of a 16-bit register for designating the number of pixels to
be transferred for write into the frame buffer region.

FIG. 18 is an illustration of the number of bits and the
function for each field of the DMA transfer registers in
FIGS. 17A to 17D.

FIG. 19 is an illustration of a frame memory register of a
data processor.

FIG. 20 is an illustration of the number of bits and the
function for each field of the frame memory register in FIG.
19.

FIG. 21A s an illustration of pixels stored in one word for
8 bits/pixel data. FIG. 21B is an illustration of a screen
mapped to the frame buffer region together with row
addresses for 8 bits/pixel data. FIG. 21C is an illustration of
the numbers of pages in the horizontal and vertical direc-
tions and the number of bits in the frame buffer region
required for storing one screen for 8 bits/pixel data. FIG.
21D shows expressions for calculating an address from X, Y
coordinates on a screen in the case of data transfer to the
frame buffer region for 8 bit/pixel data.

FIG. 22A 1s an illustration of pixels stored in one word for
16 bits/pixel data. FIG. 22B is an illustration of a screen
mapped to the frame buffer region together with row
addresses for 16 bits/pixel data. FIG. 22C is an illustration

US 6,927,776 B2

5

of the numbers of pages in the horizontal and vertical
directions and the number of bits in the frame buffer region
required for storing one screen for 16 bits/pixel data. FIG.
22D shows expressions for calculating an address from X, Y
coordinates on a screen in the case of data transfer to the
frame buffer region for 16 bit/pixel data.

FIG. 23A is an illustration of a pixel stored in one word
for 24 bits/pixel data. FIG. 23B is an illustration of a screen
mapped to the frame buffer region together with row
addresses for 24 bits/pixel data. FIG. 23C is an illustration
of the numbers of pages in the horizontal and vertical
directions and the number of bits in the frame buffer region
required for storing one screen for 24 bits/pixel data. FIG.
23D shows expressions for calculating an address from X, Y
coordinates on a screen in the case of data transfer to the
frame buffer region for 24 bit/pixel data.

FIG. 24 is a block diagram of a data transfer device of
Embodiment 2 of the present invention.

FIG. 25 is an illustration of a system including a plurality
of applications operating on an OS.

FIG. 26 is an illustration of a system including a plurality
of master devices connected in one network.

FIG. 27 is a block diagram of a data transfer device of
Embodiment 3 of the present invention.

FIG. 28 is an illustration of address information stored in
an address information register.

FIG. 29 is a block diagram of a conventional data transfer
device.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Hereinafter, preferred embodiments of the present inven-
tion will be described with reference to the accompanying
drawings. Note that one word consists of 32 bits in the
following embodiments.

Embodiment 1

FIG. 1 is a block diagram of a data transfer device of
Embodiment 1 of the present invention. The data transfer
device of FIG. 1 includes an interface section 10 and a data
processor 9. The data transfer device transfers data between
a system bus 3 and a local memory 20. A host CPU 1 as a
system bus master controls the system bus 3. A main
memory 2 is connected to the system bus 3. The interface
section 10 includes a data buffer 11, an address decoder 12,
a control register 13 and a transfer parameter generator 14.

The local memory 20 may be a synchronous dynamic
random access memory (SDRAM), for example. If so, the
data processor 9 is a SDRAM interface. The local memory
20 includes a general region 21 and a frame buffer region 22,
which are allocated on an address map by the host CPU 1.
The general region 21, which corresponds to the area of the
local memory 20 other than the frame buffer region 22,
stores drawing commands and the like for the host CPU 1.
The frame buffer region 22 stores image data, and the
addressing thereof is different from that of the system bus 3.
To state more specifically, in the frame buffer region 22, the
two-dimensional coordinates representing a position of a
pixel and the address at which the pixel is stored are
associated with each other in a certain correspondence. For
example, when two pixels are positioned side by side in
succession on a two-dimensional coordinate system, the
addresses in the frame buffer region 22 associated with these
pixels are not necessarily positioned in succession.

Although not shown, the interface section 10 includes a
controller for performing handshake with the host CPU 1. In
response to a request for write or read access from the host

5

10

15

20

25

30

35

40

45

50

55

60

65

6

CPU 1, the controller outputs a wait signal and the like
according to whether or not data exists in the data buffer 11.

An example of data transfer between the host CPU 1 and
the general region 21 of the local memory 20 will be
described. During write access, or during data transfer to the
general region 21, the host CPU 1 first retains a generated
drawing command in the main memory 2 temporarily. The
host CPU 1 then establishes write access to an address
allocated in the general region 21 via the system bus 3 for
transfer of the drawing command temporarily retained in the
main memory 2.

The data buffer 11 receives the data from the main
memory 2 via the system bus 3 and stores the data therein.
The address decoder 12 receives the address sent from the
host CPU 1 via the system bus 3, and decodes the address.
The address decoder 12 determines whether the destination
of transfer of the data stored in the data buffer 11 is the
control register 13 or the local memory 20, and outputs the
determination result to the transfer parameter generator 14.

If the destination of the data transfer is the control register
13, the control register 13 stores the data from the data buffer
11 as control data for controlling data transfer. If the
destination of the data transfer is the local memory 20, the
transfer parameter generator 14 generates transfer param-
eters for access to the general region 21 based on the control
data from the control register 13, and outputs the transfer
parameters to the data processor 9. The transfer parameter
generator 14 also controls the data buffer 11 to output the
data stored in the data buffer 11 to the data processor 9. The
data processor 9 transfers the data from the data buffer 11 to
the general region 21 using the transfer parameters.

During read access, the address of data to be read output
from the host CPU 1 is sent to the address decoder 12 via the
system bus 3. The address decoder 12 decodes the address,
determines whether the source of the data transfer is the
control register 13 or the local memory 20, and outputs the
determination result to the transfer parameter generator 14.

In the case of data transfer from the local memory 20, the
transfer parameter generator 14 generates transfer param-
eters for access to the general region 21 and outputs the
transfer parameters to the data processor 9, based on control
data from the control register 13. The data processor 9 reads
the data from the general region 21 using the transfer
parameters and sends the data to the data buffer 11. The
transfer parameter generator 14 controls the data buffer 11 to
store the data sent from the data processor 9 and output the
data to the host CPU 1 via the system bus 3.

Next, data transfer between the host CPU 1 and the frame
buffer region 22 of the local memory 20 will be described.
The host CPU 1 executes processing for generating a
drawing object desired to be displayed on a screen of a
monitor (not shown) using the main memory 2. The drawing
object is represented as a group of pixel data having X, Y
coordinates. The host CPU 1 temporarily retains the gener-
ated pixel data in the main memory 2.

The host CPU 1 sets information indicating that the access
is to the frame buffer region 22 and information indicating
the frame number, the number of bits required for repre-
senting one pixel and the like, which are sent to the control
register 13 via the system bus 3 and stored therein as control
data. The transfer parameter generator 14 does not operate
when the access destination is the control register 13.

Thus, the information for accessing to the frame buffer
region 22 is preset in the control register 13. Thereafter, the
transfer parameter generator 14 generates transfer param-
eters for accessing to the frame buffer region 22 using the
control data stored in the control register 13, and outputs the
transfer parameters to the data processor 9.

US 6,927,776 B2

7

The host CPU 1 then starts data transfer from the main
memory 2 to the frame buffer region 22. For both write
access and read access, the data input/output between the
data buffer 11 and the data processor 9 and the control
sequence by the transfer parameter generator 14 are the
same as those for the transfer between the general region 21
and the main memory 2 described above, except that the
access 1s to the frame buffer region 22.

In any of the above cases, during data transfer between the
data processor 9 and the local memory 20, the data processor
9 determines the address to be accessed in the local memory
20 according to the transfer parameters.

As described above, the transfer parameter generator 14
generates the transfer parameters according to the informa-
tion stored in the control register 13, and in this way, the host
CPU 1 can transfer data to and from either of the general
region 21 and the frame buffer region 22.

How to store data in the general region 21 of the local
memory 20 will be described.

The data processor 9, which stores data in the general
region 21 in the order of addresses in the SDRAM, adopts
address mapping taking advantage of a feature of SDRAM
data accessing. In the following description, a region in one
bank accessible with a same row address is called a page.

FIG. 2 is a diagrammatic illustration of a general SDRAM
having two banks, bank “0” and bank “1”. The banks “0”
and “1” respectively have 2V pages to which row addresses
“0” to “2V-1” are allocated. Each page has a storage region
of 256 words to which column addresses “0” to “255” are
allocated. With this configuration, when a certain word is
designated, three types of addresses, the bank, the row
address, and the column address, must be specified. FIG. 3A
illustrates the order of the three types of addresses normally
allocated in an address pin of the SDRAM.

Overhead sometimes occurs when a certain word in the
SDRAM is accessed and subsequently another word is
accessed. FIG. 4 is a timing chart of the operation of the
SDRAM in the case that after access to a word, another word
in the same bank at the same row address is accessed.
Assume that the burst length is set at 8. To state specifically,
FIG. 4 illustrates the case that after access to a word in bank
“0” at row address “0” and column address “0”, a word at
column address “8” in the same bank at the same row
address is accessed. In this case, no overhead occurs, and
thus continuous access to other column addresses is pos-
sible.

FIG. § is a timing chart of the operation of the SDRAM
in the case that after access to a word, another word in the
same bank at a different row address is accessed. To state
specifically, FIG. 5 illustrates the case that after access to a
word in bank “0” at row address “0”, a word at row address
“1” in the same bank is accessed. In this case, a PRE-
CHARGE command and an ACTIVE command must be
inserted, and thus overhead occurs.

FIG. 6 is a timing chart of the operation of the SDRAM
in the case that after access to a word, another word in a
different bank is accessed. To state specifically, FIG. 6
illustrates the case that after access to a word in bank “0” at
row address “0”, a word in bank “1” at row address “1” is
accessed. In this case, also, a PRECHARGE command and
an ACTIVE command must be inserted. However, since the
precharge command and the ACTIVE command for bank
“1” can be executed during the access to bank “0”, the
insertion of the commands can be concealed. Therefore,
virtually, no overhead occurs.

FIG. 3B illustrates a format of an address generated by the
data processor 9. As discussed above with reference to FIG.

10

15

20

25

30

35

40

45

50

55

60

65

8

5, overhead occurs in the case that after access to a word,
another word in the same bank at a different row address is
accessed. This means that in transfer of many words in
succession, the transfer rate will be higher when the fre-
quency of change of the row address is lower. In view of this,
the data processor 9 outputs an address having a format as
shown in FIG. 3B to the local memory 20 when data is to be
stored in the general region 21.

In the format described above, the bit designating the
bank is less significant than the bits designating the row
address. Therefore, when the least significant bit of the
integrated address composed of the row address, the bank
and the column address is sequentially increased, the dif-
ferent banks are alternately accessed. This enables access in
the order of addresses in the SDRAM without occurrence of
overhead even if the number of words to be transferred is
enormous. Although the case of two banks was described,
substantially the same effect is obtained when the number of
banks is 4 or more.

Next, how to store data in the frame buffer region 22 of
the local memory 20 will be described. The host CPU 1
executes drawing and determines values representing pixels
of a graphics image and the X, Y coordinates of the values.

FIG. 7 is an illustration of address mapping for the frame
buffer region 22. Herein, assume that one word in the local
memory 20 consists of 32 bits and one pixel consists of 8
bits. Since 256 words are stored in one page and four pixels
are stored in one word, one page includes a rectangle of
32x32 pixels (1024 pixels).

The X, Y coordinates on the screen are mapped to
addresses in the frame buffer region 22 as shown in FIG. 7.
The width of the screen mapped to the frame buffer region
22 represented in units of 32 bits (Tw) is the number of pages
in the horizontal direction N, which is set to be an odd
number. In the example in FIG. 7, N .=13. In FIG. 7, the
hatched pages belong to bank “0” while non-hatched pages
belong to bank “1”. Thus, a rectangle in a certain page in one
bank is immediately adjacent to a rectangle in a page
belonging to a different bank. The number of pages in the
horizontal direction N, may be an even number.

For 16 bits/pixel data, a rectangle of 32 (horizontal)x16
(vertical) pixels is stored in one page. For 24 bits/pixel, a
rectangle of 32 (horizontal)x8 (vertical) pixels is stored in
one page.

FIG. 8 illustrates occurrence of overhead during drawing
with the SDRAM mapped as shown in FIG. 7. Referring to
FIG. 8, overhead occurs when access is made over a
plurality of pages continuously like drawing of lines .1 and
L2, but no overhead occurs when access is made within one
page like drawing of line L.3. Therefore, this mapping is very
effective particularly for drawing of a large number of short
lines such as line L3 at random positions. Thus, by mapping
as shown in FIG. 7, the probability of occurrence of over-
head during drawing of a line is small.

Any adjacent rectangles are stored in pages belonging to
different banks. Therefore, in drawing of polygon P1 in FIG.
8, for example, no overhead occurs even during accessing
for filling-in of the polygon by increasing the X coordinate.
In this way, a drawing processor (not shown) can transfer a
large number of words in succession without occurrence of
overhead by accessing the local memory 20 during execu-
tion of drawing of a line, filling-in of a polygon and the like.
This improves the drawing performance.

Hereinafter, data transfer from the host CPU 1 to the
frame buffer region 22 of the local memory 20 will be
described in a concretive manner. In the following
description, assume that the frame buffer region 22 can store

US 6,927,776 B2

9

data corresponding to 12 screens, and areas each storing data
corresponding to one screen are called frame memories FMO
to FM11.

FIGS. 9A to 9D illustrate addresses of data transferred to
the frame buffer region 22 by the host CPU 1 for 8 bits/pixel
data. The data is transferred from the host CPU 1 to the
frame buffer region 22 in units of one word (32 bits).
Therefore, for 8 bits/pixel data, four pixels are handled
together as one word, and the host CPU 1 allocates a byte
address to each word.

FIG. 9A illustrates the relationship between the coordi-
nates X and Y adopted by the host CPU 1 and the word-unit
coordinates XB and YB. For example, among pixels having
the same coordinate Y, those having a coordinate X of O to
3 are collectively handled as a word having a word-unit
coordinate XB of 0, and those having a coordinate X of 4 to
7 are collectively handled as a word having a word-unit
coordinate XB of 1. The word-unit coordinate YB is equal
to the coordinate Y.

FIG. 9B illustrates a format of a byte address for 8
bits/pixel data. The byte address includes field YB as more
significant bits and field XB as less significant bits combined
together. The field XB is made of the coordinate XB, and the
field YB is made of the coordinate YB.

FIGS. 9C and 9D illustrate the positions of four pixels
stored in one word for 8 bits/pixel data. The subscripts x and
y respectively denote the word-unit coordinates XB and YB.
This also applies to the representation of each pixel in FIG.
9A. For example, D, ,3 represents a pixel in a word having
word-unit coordinates (XB, YB)=(1, 0) in which the coor-
dinate X value is largest (that is, a pixel having a coordinate
X of 7). Four pixels in a word are stored as shown in FIG.
9C when the host CPU 1 supports little endian, or stored as
shown in FIG. 9D when the host CPU 1 supports big endian.

FIGS. 10A to 10D illustrate addresses of data transferred
to the frame buffer region 22 by the host CPU 1 for 16
bits/pixel data. In the case of 16 bits/pixel data, two pixels
are handled together as one word, and the host CPU 1
provides a byte address to each word. The other features are
substantially the same as those in the case of 8 bits/pixel
data.

Specifically, FIG. 10A illustrates the relationship between
the coordinates X and Y adopted by the host CPU 1 and the
word-unit coordinates XB and YB. FIG. 10B illustrates a
format of a byte address for 16 bits/pixel data. FIGS. 10C
and 10D illustrate the positions of two pixels stored in one
word for 16 bits/pixel data.

FIGS. 11A to 11C illustrate addresses of data transferred
to the frame buffer region 22 by the host CPU 1 for 24
bits/pixel data. In the case of 24 bits/pixel data, one pixel is
handled as one word, and the host CPU 1 provides a byte
address for each word. The other features are substantially
the same as those in the case of 8 bits/pixel data.

Specifically, FIG. 11A illustrates the relationship between
the coordinates X and Y adopted by the host CPU 1 and the
word-unit coordinates XB and YB. FIG. 11B illustrates a
format of a byte address for 24 bits/pixel data. FIG. 11C
illustrates the position of one pixel stored in one word for 24
bits/pixel data.

FIGS. 12A, 12B and 12C show the widths of fields XB
and YB of each byte address with respect to the width of an
image transferred in the cases of 8 bits/pixel data (see FIG.
9B), 16 bits/pixel data (see FIG. 10B) and 24 bits/pixel data
(see FIG. 11B), respectively.

When transferring an image to the frame buffer region 22,
the host CPU 1 sets a rectangular region including the
image, and determines the pixel at the upper-left corner of
the rectangular region as the pixel to be first transferred.

10

15

20

25

30

35

40

45

50

55

60

65

10

Assume that scanning is made for the rectangular region
with the pixel to be first transferred as the start point in the
following manner. That is, the coordinate X is sequentially
increased from the smallest coordinate X (from the leftmost
of the rectangular region) while the coordinate Y is fixed.
Once the scanning reaches the rightmost pixel of the rect-
angular region, the coordinate Y is increased by one, and the
above scanning of pixels is repeated from left to right. In this
scanning, the host CPU 1 calculates the number of words to
be transferred from the number of pixels required to be
scanned until scanning of all the pixels of the image to be
transferred is completed.

FIG. 13 illustrates control data for data transfer stored in
the control register 13. The control data is sent to the control
register 13 via the data buffer 11 and stored therein by the
host CPU 1. As shown in FIG. 13, the control register 13
stores

(a) a destination head address,
(b) the number of words to be transferred,
(c) a DMA start flag, and

(d) format information at its addresses “0” to “37,
respectively, as control data for direct memory access
(DMA) transfer.

As the destination head address (DMA start address), the
destination head address in the local memory 20 is stored in
the case of data transfer to the general region 21. In the case
of data transfer to the frame buffer region 22, the coordinates
of a pixel to be first transferred are stored in the form of the
byte address shown in FIG. 9B, 10B or 11B.

When the data destination is the general region 21, the
transfer parameter generator 14 outputs the destination head
address and the number of words to be transferred stored in
the control register 13 to the data processor 9 as transfer
parameters. When the data destination is the frame buffer
region 22, the transfer parameter generator 14 performs
address conversion for the destination head address and
calculates the number of words to be transferred by referring
to the format information, to prepare transfer parameters,
and outputs the transfer parameters to the data processor 9.

The DMA start flag is set for start of DMA transfer. Once
the host CPU 1 sets the DMA start flag, a controller (not
shown) of the interface section 10 starts DMA transfer
between the main memory 2 and the local memory 20.

FIG. 14 illustrates the format information stored in the
control register 13. As shown in FIG. 14, the format infor-
mation stored in the control register 13 includes fields
FRAME_NO, X WIDTH, RASTER ON and PIXEL _
TYPE.

The field FRAME_ NO indicates the frame number to be
accessed. The bit width of this field is 4 bits, for example,
and the value and the frame number have the following
relationship, for example.

0000: FM 0 0001: FM 1
0010: FM 2 0011: FM 3
0100: FM 4 0101: FM 5
0110: FM 6 0111: FM 7
1000: FM 8 1001: FM 9
1010: FM 10 1011: FM 11

The field X_ WIDTH indicates the width of the field XB
of the byte address used when the host CPU 1 accesses the
local memory 20. The bit width of this field is 4 bits, for

US 6,927,776 B2

11

example, and the value and the width of the field XB have
the following relationship, for example.

0000: 11 bits 0001: 10 bits
0010: 9 bits 0011: 8 bits
0100: 7 bits 0101: 6 bits
0110: 5 bits

The width of the field YB is obtained by reducing the
width of the field XB from 32 bits.

The field RASTER ON indicates which region of the
local memory 20 the host CPU 1 accesses, the general region
21 or the frame buffer region 22. The bit width of this field
is one bit, for example, and the value and the destination of
data has the following relationship, for example.

0: access to the general region 21

1: access to the frame buffer region 22

The field PIXEL__ TYPE indicates the number of bits per
pixel (pixel type). The bit width of this field is 2 bits, for
example, and the value and the number of bits per pixel has
the following relationship, for example.

00: 24 bits/pixel

01: 16 bits/pixel

10: 8 bits/pixel

FIGS. 15A, 15B and 15C illustrate conversion of a byte
address to coordinates by the transfer parameter generator
14 for 8 bits/pixel data, 16 bits/pixel data and 24 bits/pixel
data, respectively.

The transfer parameter generator 14 refers to the control
register 13, converts a byte address to coordinates when the
field RASTER __ON in FIG. 14 is “1” indicating that the host
CPU 1 accesses the frame buffer region 22, to prepare
transfer parameters, and outputs the prepared transfer
parameters to the data processor 9.

To state specifically, as shown in FIGS. 15A to 15C, the
transfer parameter generator 14 multiplies the value of the
bits of the field XB of the byte address by four for 8
bits/pixel data and by two for 16 bits/pixel data, to obtain the
coordinate X. For 24 bits/pixel data, the transfer parameter
generator 14 uses the value of the bits of the field XB of the
byte address as the coordinate X. In any of the above cases,
the field YB is not changed and used as the coordinate Y as
it is.

In addition, the transfer parameter generator 14 converts
the number of words to be transferred to the number of
pixels to be transferred. To state specifically, the transfer
parameter generator 14 determines the number of pixels to
be transferred for 8 bits/pixel data, 16 bits/pixel data and 24
bits/pixel data by multiplying the number of words to be
transferred by four, two and one, respectively. The transfer
parameter generator 14 outputs the coordinates X, Y and the
number of pixels to be transferred obtained as described
above to the data processor 9 as transfer parameters.

FIG. 16 illustrates an example of the transfer parameter
generator 14 in FIG. 1. Referring to FIG. 16, the address
decoder 12 includes a latch 31, and the transfer parameter
generator 14 includes a total of 19 registers 41A, 41B, 41C,
..., 41S, for example, and a selector 42.

A read/write signal RWS, indicating read or write to be
performed with the local memory 20, is input into the latch
31 from the host CPU 1 via the system bus 3. The latch 31
latches the signal to be output to the transfer parameter
generator 14.

When control data is set in the control register 13, the
transfer parameter generator 14 generates transfer param-
eters based on the value of the read/write signal RWS stored

10

15

20

25

30

35

40

45

50

55

60

65

12

in the address decoder 12 and the control data stored in the
control register 13, and stores the transfer parameters in the
registers 41A to 418S.

The register 41 A stores transfer parameters for the general
region 21. That is, the register 41A stores the value RW of
the read/write signal RWS, the row address RA of the
destination head address DAD (upper bits of the address
DAD), AT (=RASTER_ON)=0 indicating the general
region 21, and the column address CA of the destination
head address DAD (lower bits of the address DAD), as the
transfer parameters.

The registers 41B to 418 store transfer parameters for the
frame buffer region 22. For example, the register 41B stores
transfer parameters for an image to be transferred having a
horizontal width of 513 to 1024 pixels in the case of 24
bits/pixel. In other words, the register 41B stores the value
RW of the read/write signal RWS, the Y coordinate YB1 of
a pixel to be first transferred, AT=1 indicating the frame
buffer region 22, the frame memory number FM
(=FRAME_ NO), and the X coordinate XB1 of the pixel to
be first transferred, as the transfer parameters. The Y coor-
dinate YB1 and the X coordinate XB1 are obtained by
converting the destination head address DAD as discussed
with reference to FIGS. 15A to 15C.

The registers 41C and 41D store transfer parameters for
images to be transferred having a horizontal width of 513 to
1024 pixels in the cases of 16 bits/pixel and 8 bits/pixel,
respectively. In other words, the registers 41C and 41D store
XB1x2 and XB1x4, respectively, as the X coordinate. The
remaining parameters are the same as those in the register
41B.

Likewise, the registers 41E, 41F and 41G store transfer
parameters for images to be transferred having a horizontal
width of 257 to 512 pixels. In the example shown in FIGS.
12A to 12C, there are defined six different ranges of hori-
zontal widths of an image to be transferred for three different
numbers of bits per pixel. Therefore, 6x3 sets of transfer
parameters for access to the frame buffer region 22 are
respectively stored in the registers 41B to 41S.

The selector 42 selects one of the outputs of the registers
41Ato 41S according to the values of the fields X WIDTH,
RASTER__ON and PIXEL_TYPE of the format informa-
tion stored in the control register 13, and outputs the result
to the data processor 9. Although not shown in FIG. 16, the
transfer parameter generator 14 outputs the number of words
to be transferred to the data processor 9 when the field
RASTER _ON of the format information is “0”, and outputs
the number of pixels to be transferred when it is “17, as a
transfer parameter.

Thus, in the transfer parameter generator 14 shown in
FIG. 16, since the transfer parameters have been calculated
in advance, transfer parameters selected by the selector 42
can be promptly output to the data processor 9. Alternatively,
the transfer parameter generator 14 may calculate and output
only necessary transfer parameters.

FIGS. 17A to 17D illustrate DMA transfer registers in the
data processor 9. FIGS. 17A and 17B illustrate registers used
for write into the general region 21, where FIG. 17A
illustrates a 32-bit register for designating the destination
head address and FIG. 17B illustrates a 16-bit register for
designating the number of words to be transferred. FIGS.
17C and 17D illustrate registers used for write into the frame
buffer region 22, where FIG. 17C illustrates a 32-bit register
for designating the destination head address and FIG. 17D
illustrates a 16-bit register for designating the number of
pixels to be transferred. The transfer parameter generator 14
performs setting of fields of the DMA transfer registers of
FIGS. 17A to 17D.

US 6,927,776 B2

13

FIG. 18 shows the number of bits and the function for
each field of the DMA transfer registers of FIGS. 17A to
17D. Field AT stores the value of the field RASTER__ ON in
FIG. 14, indicating which is the designation of data, the
general region 21 or the frame buffer region 22. Field RW
indicates which DMA transfer, write or read, is to be
performed. For example, the value of the field RW is set at
“0” for write into the local memory 20, while it is set at “1”
for read from the local memory 20.

When the destination of data is the general region 21, the
column address and the row address of the destination head
address DAD are set in fields X and Y, respectively, as the
DMA start address, and field Length includes the number of
words to be DMA-transferred.

When the destination of data is the frame buffer region 22,
the value of the field FRAME NO in FIG. 14 is set in field
FM, to set the frame memory of the destination of data. In
fields X and Y, the coordinates of the pixel to be first
transferred, obtained from the destination head address in
the control register 13, are set as the DMA start address. In
field Length, the number of pixels to be DMA-transferred,
obtained from the number of words to be transferred in the
control register 13, is set.

The transfer parameters are desirably stored in the format
shown in FIG. 17A for the register 41A of the transfer
parameter generator 14 shown in FIG. 16, and in the format
shown in FIG. 17C for the registers 41B to 41S. By adopting
these formats, the data processor 9 can store the output of the
transfer parameter generator 14 in the DMA transfer register
as it is.

Alternatively, the transfer parameter generator 14 may not
be provided with the registers 41A to 41S, but may sort the
read/write signal RWS output from the address decoder 12
and signals indicating the control data stored in the control
register 13, or input these signals into a given logic circuit,
so that the bit sequence of the resultant signals represents the
transfer parameters. In this case, bit sequences correspond-
ing to the registers 41A to 41S must be prepared in the
format shown in FIG. 17A or 17C and be ready for simul-
taneous supply to the selector 42.

FIG. 19 illustrates a frame memory register in the data
processor 9. As an example, a frame memory register for the
frame memory FMO is shown in FIG. 19. The data processor
9 includes frame memory registers such as that shown in
FIG. 19 for the respective frame memories FMO0 to FM11.

FIG. 20 shows the number of bits and the function for
each field of the frame memory register shown in FIG. 19.
This also applies to the frame memory registers for the
respective frame memories FM1 to FM11.

Field FOadd includes the base address of the frame
memory FMO, which is a row address at which the pixel at
the origin of the coordinate system of the frame memory
FMO is stored. Field FOcolor includes the number of bits per
pixel. Field FOXfm includes the number of pages N, in the
horizontal direction discussed with reference to FIG. 7, as
the size of the screen in the horizontal direction stored in the
frame memory. This value is obtained by dividing the
number of pixels in the horizontal direction of the screen
actually displayed by 32, for example, rounding up the
resultant value to obtain an integer, and adding one to the
resultant integer if the integer is an even number, to obtain
an odd number.

The host CPU 1 presets values for the fields FOadd,
FOcolor and FOXfm of the frame memory register via a
system address bus (not shown).

FIGS. 21A to 21D illustrate storage of data in the frame
buffer region 22 for 8 bits/pixel data. FIG. 21A illustrates

10

15

20

25

30

35

40

45

50

55

60

65

14

pixels stored in one word for 8 bits/pixel data. In the
illustrated example, four pixels having a coordinate X of 4n
to 4n+3 (n is an integer) and the same coordinate Y are
stored as one word.

FIG. 21B illustrates a screen mapped to the frame buffer
region 22 with row addresses for 8 bits/pixel data. In the
illustrated example, the screen displayed has a size of 640
pixelsx480 lines. Assume that the local memory 20 has two
banks, and data in a rectangle of 32 pixelsx32 lines is stored
in one page (a memory region designated by a same row
address in a same bank). In FIG. 21B, the number in each
rectangle denotes the row address. To make up the screen
displayed having a horizontal width of 640 pixels, a total of
20 such rectangles may be placed in a line in the horizontal
direction. Note however that as discussed with reference to
FIG. 7, since the number of rectangles in the horizontal
direction should be odd to ensure that data in adjacent
rectangles are stored in different banks, the number of
rectangles is set at 21 (that is, the number of pages in the
horizontal direction Ny=21). In the vertical direction, a total
of 15 (480/32) rectangles are placed in a line (that is, the
number of pages in the vertical direction Ny=15).

FIG. 21C illustrates the numbers of pages in the horizon-
tal and vertical directions Ny and Ny, and the number of bits
in the frame buffer region 22 required for storing one screen
for 8 bits/pixel data. FIG. 21D shows expressions for
calculating the row address, the column address and the
bank from the X, Y coordinates on the screen in the case of
data transfer to the frame buffer region 22 for 8 bits/pixel
data. In the calculation, the fractional portion of a quotient
from division is discarded, and % denotes an operation of
calculating a remainder by division.

FIGS. 22A to 22D illustrate storage of data in the frame
buffer region 22 for 16 bits/pixel data. FIG. 22A illustrates
pixels stored in one word for 16 bits/pixel data. In the
illustrated example, two pixels having a coordinate X of 2n
and 2n+1 (n is an integer) and the same coordinate Y are
stored as one word. FIG. 22B illustrates a screen mapped to
the frame buffer region 22 with row addresses for 16
bits/pixel data. In the illustrated example, the local memory
20 stores data in a rectangle of 32 pixelsx16 lines in one
page.

FIG. 22C illustrates the numbers of pages in the horizon-
tal and vertical directions Ny and Ny, and the number of bits
in the frame buffer region 22 required for storing one screen
for 16 bits/pixel data. FIG. 22D shows expressions for
calculating the addresses from the X, Y coordinates on the
screen in the case of data transfer to the frame buffer region
22 for 16 bits/pixel data. The values in FIG. 22C and the
expressions in FIG. 22D are different from those in FIGS.
21C and 21D for 8 bits/pixel data.

FIGS. 23A to 23D illustrate storage of data in the frame
buffer region 22 for 24 bits/pixel data. FIG. 23A illustrates
a pixel stored in one word in the case of 24 bits/pixel data.
In the illustrated example, data of RGB colors of one pixel
are stored as one word. FIG. 23B illustrates a screen mapped
to the frame buffer region 22 with row addresses for 24
bits/pixel data. In the illustrated example, the local memory
20 stores data in a rectangle of 32 pixelsx8 lines in one page.

FIG. 23C illustrates the numbers of pages in the horizon-
tal and vertical directions Ny and Ny, and the number of bits
in the frame buffer region 22 required for storing one screen
for 24 bits/pixel data. FIG. 23D shows expressions for
calculating the addresses from the X, Y coordinates on the
screen in the case of data transfer to the frame buffer region
22 for 24 bits/pixel data. The values in FIG. 23C and the
expressions in FIG. 23D are different from those in FIGS.
21C and 21D for 8 bits/pixel data.

US 6,927,776 B2

15

The data processor 9 refers to the DMA transfer registers
in FIGS. 17C and 17D and the frame memory register (see
FIG. 19, for example) corresponding to the frame memory
designated in the field FM of the DMA transfer register in
FIG. 17C. The data processor 9 then calculates the bank, the
row address and the column address from the expressions in
any of FIGS. 21D, 22D and 23D, adds the base address (for
example, the value of the field FOadd) of the frame memory
register to the row address, to determine the address of the
data transfer destination.

The data processor 9 determines a rectangular region set
by the host CPU 1 to include an image to be transferred to
the frame buffer region 22, from the horizontal width of the
rectangular region and the coordinates of the pixel to be first
transferred. The data processor 9 transfers data of pixels in
the rectangular region to the frame buffer region 22 in units
of a word by increasing the coordinate X sequentially
starting from the coordinate X of the pixel to be first
transferred (from the left end of the rectangular region) with
the coordinate Y of the pixel being fixed. Once data of the
pixel at the right end of the rectangular region has been
transferred, the coordinate Y is increased by one, and the
sequential transfer of data of pixels from the left end to the
right end is repeated until the preset number of words has
been transferred.

Specific examples of parameters will be described.
Assume that the pixel type is 8 bits/pixel, the horizontal
width of a rectangular region preset to include an image to
be transferred to the frame buffer region 22 is 64 pixels, and
the host CPU 1 executes drawing at coordinates (X, Y)=(32,
1). Note that the suffix “b” to a value denotes that the value
is in binary representation.

Since the word-unit coordinates (XB, YB) of the above
transfer data are (8, 1), the host CPU 1 sets the fields of a
byte address as shown in FIG. 9B for this transfer data as
follows.

YB: 00 0000 0001b

XB: 1000b
Assume also that the data transfer destination is the frame
memory FMO0. The width of the field XB is 6 bits with
reference to FIG. 12A and the like. Since write into the
frame buffer region 22 is performed and the pixel type is 8
bits/pixel, the host CPU 1 sets the following for the fields of
the format information in FIG. 14.

FRAME__NO: 0000b

X_WIDTH: 0101b

RESTER_ON: 1b

PIXEL__TYPE: 10b

The transfer parameter generator 14 converts the byte
address to coordinates as described with reference to FIG.
15A, to generate

Y: 00 0000 0001b

X: 000 0010 0000b

Length: 0000 0000 0000 0100b
as transfer parameters and outputs the transfer parameters to
the data processor 9.

The data processor 9 sets

0000 0000 0000 0001 1000 0000 0010 0000b
for the 32-bit DMA transfer register (see FIG. 17C) for
designating the head address of the data destination. In this
setting, since data is written into the frame memory FMO of
the frame buffer region 22, RW=0, AT=1, and FM=0000.
Also, the data processor 9 sets

0000 0000 0000 0100b
for the 16-bit DMA transfer register (see FIG. 17D) for
designating the number of pixels to be transferred based on
the value of the field Length.

10

15

20

25

30

35

40

45

50

55

60

65

16

Based on the values in the above DMA transfer registers,
the data processor 9 calculates the row address, the column
address and the bank from the expressions in FIG. 21D. The
data processor 9 then adds the preset base address (0008, for
example) of the frame memory FMO to the calculated row
address, to determine the destination head address in the
local memory 20. That is, the following are determined.

Row address: 0008

Column address: 08

Bank: 1

Substantially the same procedure is followed when data of
a number of pixels is transferred, for example, when 20
words (80 pixels) are transferred with a pixel at coordinates
(X,Y)=(32, 1) as the pixel to be first transferred. In this case,
the transfer parameter generator 14 sets Length=101 0000b,
and the data processor 9 sets 0000 0000 0101 0000b for the
16-bit DMA transfer register.

The above description is also applicable to the pixel types
of 16 bits/pixel and 24 bits/pixel, although the description
for these types is omitted here.

The data transfer from the host CPU 1 to the frame buffer
region 22 of the local memory 20 was described. Reverse
data transfer from the frame buffer region 22 to the host CPU
1 is also possible in a manner similar to that described above.

As described above, in the data transfer device of FIG. 1,
the transfer parameter generator 14 generates transfer
parameters. Therefore, the data transfer rate is high com-
pared with implementation by software by the host CPU 1.
In addition, the host CPU 1 can write operation results into
the frame buffer region 22 and read data from the frame
buffer region 22.

A first-in, first-out (FIFO) buffer may be used as the data
buffer 11.

In the above description, 256 words (1024 pixels for 8
bits/pixel data) are stored in one page, and the page changes
every 32 pixels in the X direction. Alternatively, values other
than those described in this embodiment may be adopted for
the capacity of each page and the relationship between the
coordinates on a screen and the address in the local memory
20 at which a pixel at the coordinates is stored.
Embodiment 2

FIG. 24 is a block diagram of a data transfer device of
Embodiment 2 of the present invention. The data transfer
device of FIG. 24 includes an interface section 110 in place
of the interface section 10 of the data transfer device of FIG.
1. A bus arbitrator 4 manages a system bus 3. Thus, the data
transfer device of FIG. 24 can realize data transfer with a
plurality of channels.

The interface section 110 includes a data buffer 11, an
address decoder 112, control registers 13A, 13B and 13C, a
transfer parameter generator 114, system data buffers 15A,
15B and 15C, system data buffer controllers 16 A, 16B and
16C, and a data transfer monitoring controller 17.

Once being activated by the host CPU 1, the system data
buffer controller 16A works as a bus master for the system
bus 3 to control data transfer from a main memory 2 to the
system data buffer 15A via the system bus 3. Likewise, once
being activated by the host CPU 1, the system data buffer
controllers 16B and 16C work as a bus master for the system
bus 3 to control data transfer from the main memory 2 to the
system data buffers 15B and 15C, respectively, via the
system bus 3.

Thus, the system data buffers 15A, 15B and 15C respec-
tively correspond to the system data buffer controllers 16A,
16B and 16C. The control registers 13A, 13B and 13C,
which respectively correspond to the system data buffers
15A, 15B and 15C, store control data for data transfer

US 6,927,776 B2

17

involving the corresponding system data buffers. Since the
control data can be set for each channel, data in different
formats can be transferred for different channels.

The address decoder 112 decodes a received address,
determines which is the transfer destination of data stored in
the data buffer 11, any of the control registers 13A, 13B and
13C or the local memory 20, and outputs the determination
result to the transfer parameter generator 114. When the
destination is any of the control registers 13A, 13B and 13C,
the address decoder 112 transfers the data in the data buffer
11 to the control register in question according to the
determination result. The control registers 13A, 13B and
13C, which respectively correspond to the system data
buffers 15A, 15B and 15C, output information for access to
the local memory 20, set individually, to the transfer param-
eter generator 114.

The data transfer monitoring controller 17 makes contact
with the system data buffer controllers 16A, 16B and 16C,
to examine which one of the system data buffers 15A, 15B
and 15C currently stores data. The data transfer monitoring
controller 17 selects a system data buffer to be used for data
transfer among the system data buffers 15A, 15B and 15C,
and notifies the transfer parameter generator 114 of the
selection result. According to the notification from the data
transfer monitoring controller 17, the transfer parameter
generator 114 selects control data output from one of the
control registers 13A, 13B and 13C corresponding to the
selected system data buffer, generates transfer parameters,
and outputs the transfer parameters to a data processor
(SDRAM interface) 9.

The selected system data buffer 15A, 15B or 15C outputs
stored data to the data processor 9 via the data buffer 11. The
data processor 9 writes data into the local memory 20
according to the transfer parameters.

The data transfer monitoring controller 17 also monitors
whether or not data in any of the system data buffers 15A,
15B and 15C has been written into the local memory 20. In
addition, the data transfer monitoring controller 17 protects
the system data buffers 15A, 15B and 15C from having data
written therein from the host CPU 1 and the main memory
2 when pre-transferred data is stored in the system data
buffers.

Hereinafter, write of data into the local memory 20 via the
system data buffer 15A will be described. First, the host CPU
1 activates the system data buffer controller 16A. The
system data buffer controller 16 A requests the bus arbitrator
4 to permit use of the system bus 3, and upon receipt of
permission of bus access, transfers data from the main
memory 2 to the system data buffer 15A.

The system data buffer controller 16 A controls transfer of
the data from the system data buffer 15A to the data buffer
11. The data transfer monitoring controller 17 notifies the
transfer parameter generator 114 that control data stored in
the control register 13A should be referred to.

The subsequent operation is substantially the same as that
of the data transfer device of FIG. 1, and thus description
thereof is omitted. The above description also applies to the
system data buffers 15B and 15C. The host CPU 1 can
transfer data using any of the system data buffers 15A, 15B
and 15C which happens to be vacant. Thus, the host CPU 1
can start new data transfer with any of the system data
buffers 15A, 15B and 15C even during data transfer by the
data processor 9 and the like.

From the standpoint of the host CPU 1, the above opera-
tion is as if access to the local memory 20 is available via a
plurality of channels. The host CPU 1 can instruct both read

10

15

20

25

30

35

40

45

50

55

60

65

18

from and write into the local memory 20 in parallel. Thus,
the data transfer device of FIG. 24 can improve the effi-
ciency of data transfer without increasing the hardware scale
so greatly, providing an effect resembling the effect attained
by a device provided with 3-channel data transfer routes.

The data transfer from the host CPU 1 to the frame buffer
region 22 of the local memory 20 was described. Reverse
data transfer from the frame buffer region 22 to the host CPU
1 is also possible.

The data transfer device of this embodiment includes
three control registers, three system data buffers and three
system data buffer controllers to attain 3-channel data trans-
fer. However, the number of channels is not limited to three.

In the above embodiments, the local memory 20 is a
SDRAM. However, it may be a memory of any other type.
In the case of using a memory of another type, the data
processor 9 may be replaced with an interface suitable for
the memory used.

Embodiment 3

In the data transfer device described in Embodiment 1, the
host CPU 1 may set format information in the control
register 13 for data transfer between the system bus 3 and the
frame buffer region 22, and after this setting, the host CPU
1 may intend to transfer data between the system bus 3 and
the general region 21. In such a case, the host CPU 1 must
change the setting in the control register 13. In consideration
of this, it is necessary to keep sequentiality between the
timing of data transfer between the system bus 3 and the
general region 21 and the timing of data transfer between the
system bus 3 and the frame buffer region 22.

However, in a system permitting operation of a plurality
of applications on the operating system (OS) basis, the
above sequentiality is not necessarily ensured. Therefore, if
data transfer to the general region 21 is performed after
setting of format information in the control register 13 for
data transfer to the frame buffer region 22, for example, the
interface section 10 may deal with the data transfer to the
general region 21 as data transfer to the frame buffer region
22. This damages the consistency of the data format.

The above problem will be described in detail. FIG. 25
illustrates a system permitting operation of a plurality of
applications on an OS. In FIG. 25, a data transfer device 261
corresponds to a data transfer device including the data
processor 9 and the interface section 10 in FIG. 1, and a local
memory 262 corresponds to the local memory 20 in FIG. 1.
The data transfer device 261 and the local memory 262
constitute hardware 260. The data transfer device 261 oper-
ates as an interface between an OS 254 and the local
memory 262.

Applications 251, 252 and 253 operate in parallel with
one another on the OS 254. The OS 254 issues a request for
data transfer to one of device drivers 255, 256 and 257
selected based on which destination in the hardware 260
data transfer from any of the applications 251, 252 and 253
is directed to, the control register of the data transfer device
261, the general region of the local memory 262, or the
frame buffer region of the local memory 262. Upon receipt
of data transfer permission from the selected device driver,
the OS 254 issues data transfer permission to the relevant
application 251, 252 or 253.

In the system described above, it is not necessarily
guaranteed that the order of issuance of requests to the
device drivers 255, 256 and 257 matches with the order of
actual data transfer performed after receipt of use permis-
sions from the device drivers 255, 256 and 257.

US 6,927,776 B2

19

FIG. 26 illustrates a system including a plurality of master
devices connected on one network. In FIG. 26, a data
transfer device 281 corresponds to a data transfer device
including the data processor 9 and the interface section 10 in
FIG. 1, and a local memory 282 corresponds to the local
memory 20 in FIG. 1. The data transfer device 281 and the
local memory 282 constitute a slave device 280.

The master devices 271,272 and 273 individually transfer
data to the slave device 280. In this system, the order of data
transfer from the master devices 271, 272 and 273 to the
slave device 280 is not necessarily guaranteed.

In view of the above, this embodiment provides a data
transfer device capable of guaranteeing consistency of the
data format in systems as those in FIGS. 25 and 26, in which
no sequentiality is kept between the timing of setting for the
control register 13 in FIG. 1 and the timing of data transfer
to the general region 21 and the frame buffer region 22. To
state specifically, when the access destination output from
the host CPU 1 via the system bus 3, that is, the data transfer
destination or the data transfer source, is an address in a
predetermined region of the local memory 20, this access is
forcibly regarded as access to the general region 21
(hereinafter, referred to as forced general region access).

FIG. 27 is a block diagram of a data transfer device of
Embodiment 3 of the present invention. The data transfer
device of FIG. 27 includes an interface section 210 and a
data processor 9. The interface section 210 includes a data
buffer 211, an address decoder 212, a control register 213
and a transfer parameter generator 214, in place of the data
buffer 11, the address decoder 12, the control register 13 and
the transfer parameter generator 14 of the interface section
10. The interface section 210 further includes an address
information register 215 for storing information on setting of
a general region 21 and an address comparator 216.

The operations of the data buffer 211, the address decoder
212, the control register 213 and the transfer parameter
generator 214 are the same as those of the data buffer 11, the
address decoder 12, the control register 13 and the transfer
parameter generator 14 in FIG. 1, except for the following
point.

FIG. 28 illustrates address information stored in the
address information register 215. The address information
on the general region 21 is sent to the address information
register 215 via a system bus 3 and the data buffer 211 and
stored thereby by a host CPU 1. As shown in FIG. 28, the
address information includes fields BASE__ADDRESS,
MODE_SWITCH and CP_ SIZE.

In FIG. 28, the field BASE_ADDRESS indicates a
sequence of some bits from the most significant bit of a bit
sequence representing a certain address in the general region
21 (the lowest address of the region, for example), which is
set by the host CPU 1. The bit width of this field is 9 bits,
for example.

The field MODE SWITCH indicates whether or not
forced general region access is performed, that is, whether or
not a forced general region access mode is valid. The bit
width of this field is one bit, for example, and the value and
the forced general region access mode have the following
relationship, for example.

0: the forced general region access mode is invalid

1: the forced general region access mode is valid

The field CP_SIZE indicates how many bits from the
most significant bit inclusive are used for comparison
between the address sent from the host CPU 1 via the system
bus 3 and the address information set in the field BASE__
ADDRESS by the address comparator 216. The bit width of
this field is 3 bits, for example, and the value of this field and

10

15

20

25

30

35

40

45

50

55

60

65

20

the number of bits used for comparison have the following
relationship, for example.

000: 9 bits 001: 8 bits
010: 7 bits 011: 6 bits
100: 5 bits 101: 4 bits
110: 3 bits 111: 2 bits

The address comparator 216 compares the value set in the
field BASE__ADDRESS of the address information stored
in the address information register 215 with the address sent
via the system bus 3 based on the setting in the field
CP__SIZE, and outputs the comparison result to the transfer
parameter generator 214. Therefore, the position and size of
the predetermined region of the local memory 20 within
which the address comparator 216 judges the comparison as
matching are determined by the values of the fields BASE
ADDRESS and CP_SIZE.

The transfer parameter generator 214 regards the frame
buffer region 22 as the access destination in either of the
following cases (e1) or (e2), and regards the general region
21 as the access destination in the other cases. Therefore, the
general region 21 can be defined by the values of the fields
BASE__ADDRESS and CP_SIZE.

(el) The field RASTER__ON of the control register 213
is “1” and the field MODE__ SWITCH of the address infor-
mation register 215 is “0”.

(e2) The field RASTER__ON of the control register 213
is “17, the field MODE__ SWITCH of the address informa-
tion register 215 is “1”, and the comparison result by the
address comparator 216 is non-matching.

An example of the operation of the data transfer device of
FIG. 27 will be described. Assume that both data transfer
to/from the general region 21 and data transfer to/from the
frame buffer region 22 are available, and the field
RASTER _ON of the control register 213 is set at “1”. Also
assume that the field MODE_SWITCH of the address
information register 215 is set at “1” indicating that the
forced general region access mode is valid.

During write access, the data buffer 211 stores data
received via the system bus 3. The address decoder 212
decodes an address received via the system bus 3, deter-
mines whether the transfer destination of the data stored in
the data buffer 211 is the control register 213 or the local
memory 20, and outputs the determination result to the
transfer parameter generator 214.

When the data transfer destination is the control register
213, the control register 213 stores the data sent from the
data buffer 211 as control data. When the data transfer
destination is the local memory 20, the address comparator
216 compares the address output from the host CPU 1 with
the value set in the field BASE__ADDRESS of the address
information register 2185.

If the comparison result indicates matching between the
two values, the transfer parameter generator 214 regards the
general region 21 as the data transfer destination. In other
words, the general region 21 is forcefully accessed as the
data transfer destination. The transfer parameter generator
214 outputs only the destination head address and the
number of words to be transferred among the control data
shown in FIG. 13 stored in the control register 213, to the
data processor 9 as transfer parameters, without address
conversion.

If the comparison result indicates non-matching between
the two values, the transfer parameter generator 214 regards
the frame buffer region 22 as the data transfer destination. In

US 6,927,776 B2

21

this case, the transfer parameter generator 214 converts the
byte address to coordinates according to the format infor-
mation of the control data shown in FIG. 13 stored in the
control register 213, to generate transfer parameters, and
outputs the generated transfer parameters to the data pro-
cessor 9. In either of the above cases, the data processor 9
transfers the data sent from the data buffer 211 to the local
memory 20 according to the transfer parameters.

During read access, an address of data to be read is sent
to the address decoder 212 via the system bus 3. The address
decoder 212 decodes the address to determine which is the
data transfer source, the control register 213, the address
information register 215 or the local memory 20, and outputs
the determination result to the transfer parameter generator
214 and the address comparator 216.

When the data transfer source is the local memory 20, the
address comparator 216 compares the address sent from the
host CPU 1 via the system bus 3 with the address informa-
tion set in the address information register 215.

If the comparison result indicates matching between the
two values, the transfer parameter generator 214 regards the
general region 21 as the data transfer source. In other words,
the general region 21 is forcefully accessed as the data
transfer source. The transfer parameter generator 214 out-
puts the destination head address and the number of words
to be transferred among the control data shown in FIG. 13
stored in the control register 213 to the data processor 9 as
transfer parameters, without address conversion.

If the comparison result indicates non-matching between
the two values, the transfer parameter generator 214 regards
the frame buffer region 22 as the data transfer source. In this
case, the transfer parameter generator 214 converts the byte
address to coordinates according to the format information
of the control data shown in FIG. 13 stored in the control
register 213, to generate transfer parameters, and outputs the
generated transfer parameters to the data processor 9. In
either of the above cases, the data processor 9 reads data in
the local memory 20 according to the transfer parameters
and outputs the data to the data buffer 211. The transfer
parameter generator 214 controls the data buffer 211 to store
the data output from the data processor 9 and output the data
to the host CPU 1 via the system bus 3.

Thus, in this embodiment, the way of generation of
transfer parameters is switched according to the address of
the access destination. Therefore, it is possible to provide a
data transfer device capable of maintaining consistency of
the data format even when no sequentiality is kept between
the timing of data transfer between the system bus and the
general region and the timing of data transfer between the
system bus and the frame buffer region.

As described above, according to the present invention, it
is possible to provide a data transfer device capable of
speeding up data transfer to/from a local memory involving
address generation. Since the load of the CPU and the like
as a system bus master is reduced, speedup of the operation
of the entire system is possible.

While the present invention has been described in a
preferred embodiment, it will be apparent to those skilled in
the art that the disclosed invention may be modified in
numerous ways and may assume many embodiments other
than that specifically set out and described above.
Accordingly, it is intended by the appended claims to cover
all modifications of the invention which fall within the true
spirit and scope of the invention.

What is claimed is:

1. A data transfer device for transferring data between a
local memory and a system bus, the local memory having a

w

10

15

20

25

30

35

40

45

50

55

60

22

frame buffer region for storing pixels at addresses associated
with coordinates of the pixels and a general region occupy-
ing the remaining area of the local memory, the data transfer
device comprising:
an interface section for generating a transfer parameter for
accessing one of the frame buffer region and the general
region based on control data for controlling data trans-
fer sent from the system bus and outputting the gener-
ated transfer parameter, in addition to transferring data
to/from the system bus; and

a data processor for generating an address of data to be
transferred in the local memory according to the trans-
fer parameter and transferring data to/from the local
memory using the generated address, in addition to
transferring data to/from the interface section, wherein
the interface section further comprises:

a data buffer for storing data received from one of the
system bus and the data processor, and outputting the
data to the other of the system bus and the data
processor not providing said data;

a control register for storing the control data; and

a transfer parameter generator for generating the transfer
parameter based on the control data stored in the
control register and outputting the generated transfer
parameter, the transfer parameter generator also con-
trolling the data buffer,

an address information register for storing an address
designating the general region; and

an address comparator for comparing the address stored in
the address information register with an address des-
ignating an access destination sent from the system bus,
and outputting the comparison result,

wherein the transfer parameter generator generates a

parameter for accessing the general region as the trans-
fer parameter when the comparison result indicates that
the address designating the access destination is an
address in the general region, and outputs the generated
parameter.

2. The device of claim 1, wherein the address comparator
compares a bit sequence having a predetermined length from
the most significant bit of the address stored in the address
information register with a bit sequence having the same
length from the most significant bit of the address designat-
ing the access destination, and

the transfer parameter generator regards the address des-

ignating the access destination as an address in the
general region when the comparison result from the
address comparator indicates that the compared two bit
sequences match with each other.

3. The device of claim 2, wherein the length of the bit
sequence for comparison is set in the address information
register via the system bus, and

the address comparator performs the comparison accord-

ing to the length of the bit sequence set in the address
information register.

4. A data transfer device for transferring data between a
local memory and a system bus, the local memory having a
frame buffer region for storing pixels at addresses associated
with coordinates of the pixels and a general region occupy-
ing the remaining area of the local memory, the data transfer
device comprising:

an interface section for generating a transfer parameter for

accessing one of the frame buffer region and the general
region based on control data for controlling data trans-
fer sent from the system bus and outputting the gener-

US 6,927,776 B2

23

ated transfer parameter, in addition to transferring data
to/from the system bus; and

a data processor for generating an address of data to be
transferred in the local memory according to the trans-
fer parameter and transferring data to/from the local
memory using the generated address, in addition to
transferring data to/from the interface section, wherein
the interface section comprises:

a plurality of system data buffers for storing data trans-
ferred to/from the system bus;

a plurality of system data buffer controllers provided for
the respective system data buffers for controlling data
input/output into/from the corresponding system data
buffers;

a plurality of control registers provided for the respective
system data buffers for storing the control data for data
stored in the corresponding system data buffers;

a data transfer monitoring controller for selecting one of
the plurality of system data buffers according to the
states of the system data buffers, instructing the system
data buffer controller for the selected system data buffer
to use the system data buffer for data transfer, and
outputting data indicating the selected system data
buffer;

a data buffer for receiving data from one of the selected
system data buffer and the data processor, storing the
received data, and outputting the stored data to the
other; and

a transfer parameter generator for generating the transfer
parameter based on control data stored in the control

10

15

20

25

30

24

register corresponding to the selected system data
buffer and outputting the generated transfer parameter,
the transfer parameter generator also controlling the
data buffer.

5. A data transfer method for transferring data between a
local memory and a system bus, the local memory having a
frame buffer region for storing pixels at addresses associated
with coordinates of the pixels and a general region occupy-
ing the remaining area of the local memory, the data transfer
method comprising the steps of:

generating a transfer parameter for accessing one of the
frame buffer region and the general region based on
control data for controlling data transfer sent from the
system bus, in addition to transferring data to/from the
system bus;

generating an address of data to be transferred in the local
memory according to the transfer parameter and trans-
ferring data to/from the local memory using the gen-
erated address, and

comparing an address designating the general region with
an address designating an access destination sent from
the system bus,

wherein in the step of generating a transfer parameter, a
parameter for accessing the general region is generated
as the transfer parameter when the comparison result
indicates that the address designating the access desti-
nation is an address in the general region.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,927,776 B2 Page 1 of 1
DATED : August 9, 2005
INVENTOR(S) : Yoshiteru Mino et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Title page,
Item [56], References Cited, U.S. PATENT DOCUMENTS, add
-- 6,727,903 4/2004 Yamada et al. --.

FOREIGN PATENT DOCUMENTS, add
-JP 2000-293372 10/2000
JP 2000-285013 10/2000 --.

Signed and Sealed this

Twenty-fourth Day of January, 2006

o W D

JON W. DUDAS
Director of the United States Patent and Trademark Office

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,927,776 B2 Page 1 of 1
DATED : August 9, 2005
INVENTOR(S) : Yoshiteru Mino et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Title page,
Item [56], References Cited, U.S. PATENT DOCUMENTS, after 5,640,545 A”
insert -- 5,717,949 A * 2/1998 Ito710/4 --.

Signed and Sealed this

Twenty-fifth Day of April, 2006

o WD

JON W. DUDAS
Director of the United States Patent and Trademark Office

