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SYSTEM AND METHOD FOR GENE EXPRESSION AND TISSUE OF ORIGIN INFERENCE
FROM CELL-FREE DNA

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
[0001] This invention was made with Government support under contract CA188298

awarded by the National Institutes of Health. The Government has certain rights in the invention.

CROSS-REFERENCE TO RELATED APPLICATIONS
[0002] The present application claims the benefit of and priority to U.S. Provisional Patent
Application No. 63/023,728 filed May 12, 2020, the entire disclosure of which is hereby
incorporated by reference herein in its entireties for all purposes.

BACKGROUND OF THE INVENTION

[0003] Cell-free DNA (cfDNA) molecules that circulate in blood plasma largely arise from
chromatin fragmentation accompanying cell death during homeostasis of diverse tissues
throughout the body. Accordingly, cfDNA profiling has established clinical utility for detection of
tissue rejection after solid organ transplantation, noninvasive prenatal testing of fetal
aneusomies during pregnancy, and noninvasive tumor genotyping, as well as early evidence of
utility for detection of diverse cancer types. For each of these applications, current liquid biopsy
testing approaches have largely relied on germline or somatic genetic variations in the
sequence of cfDNA molecules as relevant for diagnosis of pathology in the tissue of interest.
Indeed such variations in genetic sequences can be highly informative for biopsy-free tumor
genotyping of circulating tumor DNA (ctDNA) and for monitoring of disease burden, with
potential utility for diagnosis and early cancer detection.

[0004] Despite the many applications of cfDNA profiling for the noninvasive detection of
mutations in the blood, even in cancers with a high tumor mutation burden and even in patients
with high disease burden, most cancer-derived fragments are generally unmutated.
Accordingly, the ability to interrogate these cfDNA fragments to inform the tissue of origin of
unmutated molecules using epigenetic features could have broad utility. For example, such
approaches could be useful for detection of tissue injury without associated genetic lesions, as
well as for classification of cancer entities and molecular subtypes. Since circulating cfDNA
molecules are primarily nucleosome-associated fragments, they reflect the distinctive chromatin
configuration of the nuclear genome of the cells from which they derived. Specifically, genomic
regions densely associated with nucleosomal complexes are generally protected against the
action of intracellular and extracellular endonucleases, while open chromatin regions are more

exposed to such degradation.
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[0005] Accordingly, several studies have recently identified specific chromatin fragmentation
features across the genome as potentially useful for classification of tissue of origin by ¢fDNA
profiling. These ‘fragmentomic’ features include a decrease in depth of sequencing coverage
and disruption of nucleosome positioning near transcription start sites (TSSs). Separately,
several studies have shown that the length of cfDNA fragments can also inform tissue of origin,
including tumor derivation, even when considered agnostic to genomic location or relation to
gene promoters. For example, tumor-derived molecules bearing somatic variants tend to be
shorter than their wild-type counterparts and can be useful for distinguishing somatic variants
that are tumor-derived from those arising from circulating leukocytes during clonal
hematopoiesis.

[0006] Despite these advances, current fragmentomic methods, including those relying on
relatively shallow whole genome sequencing (WGS) do not fully harness the contributions of
various tissues to the circulating DNA pool. Separately, current fragmentomic techniques do not
provide adequate genomic depth and breadth to enable gene-level resolution. Indeed, even
when considering groups of genes, such fragmentomic methods only perform reasonably well
for inferring gene expression at high circulating tumor DNA levels. Accordingly, fragmentomic
methods for inferring gene expression are largely limited to patients with very high tumor burden
generally observed in advanced disease.

SUMMARY OF THE INVENTION

[0007] Compositions and methods are provided for non-invasively determining the expression
of genes of interest by inference based on analysis of circulating cell-free DNA (cfDNA) in a
sample of interest. In some embodiments the sample of interest is a noninvasive blood draw from
a patient. In the methods, analysis of mRNA is not required for determining expression levels.
The expression profile is useful, for example, in methods of prognosis and diagnosis. Methods
of prognosis and diagnosis include, for example, determining whether an individual with cancer
will have a durable clinical benefit from treatment with an immune checkpoint inhibitor, methods
for determining whether an individual with non-small cell lung carcinoma (NSCLC) is classified
as adenocarcinomas (LUAD) or squamous cell carcinomas (LUSC), methods for guantifying
tumor burden in individuals living with diffuse large B cell lymphoma (DLBCL), methods for
determining the cell of origin in individuals living with DLBCL, etc. In an embodiment, the
methods further comprise selecting a treatment regimen for the individual based on the analysis.
In some embodiments, the prediction is based on samples shortly after a first ICl treatment.

[0008] In an embodiment, an integrated analytic method is provided, where a single biomarker
is derived from promoter fragment entropy (PFE) and analysis of nucleosome depleted regions
(NDR) depth, each of which is calculated by sequencing of ¢fDNA from a sample of interest,

e.g. a blood or blood-derived sample, at DNA regions flanking transcriptional start sites (TSS).
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A library is constructed from the cfDNA. The library is then contacted with oligonucleotide
probes (i.e. a selector) that hybridizes t0 a sequence defined by the user (i.e. a TSS). The
cfDNA can be enriched for TSS by hybrid-capture of these regions prior to sequencing. PFE is
calculated by analyzing the range of fragmentation patterns of cfDNA at transcription start sites.
NDR is calculated by analyzing the sequencing coverage from about -150bp to +50bp of the
TSS. PFE and NDR, are independently associated with gene expression. Features that are
associated with decreased gene expression are lower PFE; higher NDR, while decreased gene
expression is associated with higher PFE and lower NDR. which is determined from sequencing
cfDNA. NDR depth can be normalized to the specific DNA region being analyzed, which may
be referred to as normalized NDR depth, and the resulting value integrated with PFE to provide
a single predictive metric.

[0009] In some embodiments, a selector set may be used for the targeting of specific TSSs
within the genome during hybrid capture prior to sequencing. In some embodiments, the
selector set comprises selectors for one or more genes identified in Table 2. For instance, the
selector set may comprise at least 10 selectors from Table 2, 50 selectors, 100 selectors, 150
selectors, 200 selectors or the complete list of selectors in Table 2, or may be a group as
indicated in Table 2.

[0010] By integrating a measurement of PFE and NDR, i.e. normalized NDR depth, methods
are provided for an entirely noninvasive multi-analyte assay (EPIC-seq, Expression Inference
from Gell-free DNA Segquencing) that robustly predicts gene expression from a patient sample.
The analysis may be implemented in hardware or software, or a combination of both. In one
embodiment of the invention, a machine-readable storage medium is provided, the medium
comprising a data storage material encoded with machine readable data which, when using a
machine programmed with instructions for using said data, is capable of displaying a any of the
datasets and data comparisons of this invention.

[0011] In other embodiments, the method is excuted through the use of a computer based
software program wherein the PFE and NDR depth are inputed and the software program
outputs a score indicative of a particular classification as defined by the user. The software
programs employs machine learning to uncover relationships between input metrics in their
relation to target outputs through training algorithms.

[0012] An individual for assessment by the method of the invention may have cancer. In some
embodiments the individual has been previously diagnosed with the cancer. In some
embodiments the cancer is a carcinoma, including without limitation non-small cell lung
carcinoma, small cell lung carcinoma, adenocarcinoma, squamous cell carcinoma,
hepatocarcinoma, basal cell carcinoma, etc., which may be breast cancer, colorectal cancer,
bladder cancer, head and neck cancer, renal cell cancer, liver cancer, skin cancer, pancreatic

cancer, etc. In some embodiments the cancer is a lymphoma, e.g. Hodgkin lymphoma, non-
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hodgkin lymphoma, etc. In some embodiments the cancer is a melanoma. In certain
embodiments the individual has non-small cell lung cancer (NSCLC), which may be early stage,
or advanced stage.

[0013] In some embodiments a method is provided of using EPIC-seq to facilitate personalized
selection of treatment, including ICI if appropriate, for patients with a number of different
cancers. When EPIC-seq is used to determine if an individual will receive DCB from ICI
treatment, an individual with a low score that is predicted to benefit from ICI, can be selected,
and treated, with an ICl, usually in combination with additional therapeutic agents. An individual
with a high score that is not predicted to benefit from ICl can be selected, and treated, with non-
ICI therapy, e.g. chemotherapy, non-1Cl immunotherapy, radiation therapy, and the like. ICI of
interest include, without limitation, inhibitors of PD-1 and inhibitors of PD-L1.

[0014] In some embodiments a method is provided of using EPIC-seq to facilitate cancer
subtype classification for individuals with a cancer subtype of unknown origin i.e. an individual
with NSCLC where it is unclear if it is LUAD or LUSC or an individual with DLBCL where it is
unclear if it originated from the ABC or GBC. In one embodiment, when an individual is
determined to have one cancer subtype and not another, i.e. the individual is diagnosed as
LUAD and not LUSC, the individual may then by treated, as determined by a physician, for said
cancer subtype. For instance, if an individual's cancer subtype was determined to be LUAD
they may be treated with bevacizumab in combination with chemotherapy whereas if it was
determined that the individual's cancer subtype was LUSC they may be treated with nectitumab
in combination with cisplatin and gemcitabine.

[0015] In one embodiment, EPIC-seq facilitates personalized selection of therapy, which may
include ICI, for patients with advanced cancers, to improve outcomes while minimizing
toxicities. For example, patients with late stage disease can be treated with single-agent PD-
1 blockade for one cycle irrespective of PD-L1 expression and then use EPIC-seq to determine
the individual’s response to treatment. Patients with low EPIC-seq scores (expected durable
benefit) remain on single agent PD-1 blockade whereas patients with high EPIC-seq scores
(expected lack of benefit) would receive treatment escalation through the addition of
chemotherapy.

[0016] In other embodiments of the invention a device or kit is provided for the analysis of
patient samples. Such devices or kits will include reagents that specifically identify one or more
cells and signaling proteins indicative of the status of the patient, including without limitation
affinity reagents. The reagents can be provided in isolated form, or pre-mixed as a cocktail
suitable for the methods of the invention. A kit can include instructions for using the plurality of
reagents to determine data from the sample; and instuctions for statistically analyzing the data.
The kits may be provided in combination with a system for analysis, e.g. a system implemented
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on a computer. Such a system may include a software component configured for analysis of

data obtained by the methods of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The invention is best understood from the following detailed description when read in
conjunction with the accompanying drawings. The patent or application file contains at least one
drawing executed in color. Copies of this patent or patent application publication with color
drawing(s) will be provided by the Office upon request and payment of the necessary fee. It is
emphasized that, according to common practice, the various features of the drawings are not
to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or
reduced for clarity. Included in the drawings are the following figures.

[0018] Figure 1. Correlation of gene expression and cell-free DNA molecular features. (a)
Chromatin accessibility footprints can be traced back to the tissue of origin. Open chromatin is
subject to nuclease digestion resulting in decreased sequencing coverage depth, measured by
nucleosome depletion rate (NDR), and fragment length diversity, measured by promoter
fragmentation entropy (PFE). In this cartoon, lung epithelial cells exhibit very low expression of
MS4A1 (CD20) but high expression of NKX2-1 (TTF1). The cfDNA fragments of a lung cancer
patient consist of normal primarily hematopoietic cfDNA fragments mixed with fragments
derived from lung adenocarcinoma cells undergoing apoptosis. Because the lung epithelial cell
compartment has a lower coverage (NDR) and higher fragment length diversity (PFE) for NKX2-
1 fragments, the resulting mixture shows similar changes with the net effect dependent on the
total amount of circulating tumor-derived fragments. B-cells, on the other hand, highly express
MS4A1 (CD20) with a very low expression level of NKX2-1. Accordingly, the cfDNA fragments
of a B-cell lymphoma patient consist of normal cfDNA fragments admixed with B-cell derived
ctDNA with overrepresentation of MS4A71 resulting in lower coverage and higher diversity of
cfDNA fragment length values at the transcription start site (TSS). (b) A heatmap depicts ¢fDNA
fragment size densities at transcription start sites (TSS) across the genome in an exemplar
plasma sample profiled by high-depth whole-genome sequencing (~250x). The X-axis depicts
c¢fDNA fragment size, while the rows of the heatmap capture fragment density as ordered by
GEP in blood leukocytes assessed by RNA-Seq using transcripts per million (TPM, right). Each
row corresponds to one meta-gene encompassing the TSSs of 10 genes when ranked by a
reference PBMC expression vector. The data are normalized column-wise for each ¢fDNA
fragment size bin. Corresponding PFE, NDR, and TPM levels are depicted for each bin in dot
plots on the right. (c) A scatter plot depicts the relationship between plasma cfDNA PFE versus
leukocyte RNA expression levels (TPM), as in panel (b). (d) Pearson correlations between
individual cfDNA fragment features (PFE, NDR, OCF, WPS, and MDS) and leukocyte

geneexpression levels; OCF: orientation-aware cfDNA fragmentation; WPS: windowed
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protection score; MDS: motif diversity score. The error bars depict the 95% confidence intervals
resulted from bootstrap replicates (resampling with replacement of gene groups). (e) The
correlation between leukocyte gene expression and each of two leading cfDNA features (PFE
and NDR) as a function of distance to the TSS center. The orange curve shows the higher
average correlation for cfDNA PFE than NDR'’s correlation at all distances from the TSS center.
The dotted lines correspond to the concordance measure when evaluated on the shorn
leukocyte DNA from a matched blood PBMC sampile. (f) Effect of sequencing depth (X-axis) on
the correlation of cfDNA PFE and NDR with gene expression (Y-axis). For each down-sampled
depth, three replicates are generated, and the shaded area illustrates three standard deviation
above and below the mean. (g) A heatmap of ‘PFE’ reflected in exons of select genes in five
exemplar specimens (columns) from patients with advanced carcinomas of the lung and
prostate or healthy adults, as profiled by deep whole-exome cfDNA sequencing. Depicted genes
(rows) were selected based on expected expression patterns in small cell lung cancers (SCLC)
and castrate resistant prostate cancer (CRPC). The two SCLC samples are from pre-treatment
and progression time points of one patient (AF=23.4% and 37.8%, respectively), while the
CRPC meta-profiles were originally profiled by Adalsteinsson et al.103. As expected, AR
exhibits high PFE in the CRPC cases, while ASCL1, ISNM1 and SOX2 exhibit high PFE in the
SCLC cases relative to healthy adults.

[0019] Figure 2. EPIC-Seq design and workflow. (a) The schema depicts the general
workflow of EPIC-Seq, starting with ¢cfDNA extraction from plasma, library preparation and
capture of TSS of genes of interest, high-throughput sequencing of enriched regions, and finally,
cfDNA fragmentation analysis followed by machine learning models for prediction of expression
at each TSS and classification of the specimen. (b-¢) The volcano plots depict differentially
expressed genes, as informative for histological classification in non-small cell lung cancer
subtypes (lung adenocarcinoma [LUAD] vs lung squamous cell carcinoma [LUSC] from the
TCGA), and in cell of-origin classification of diffuse large B-cell ymphoma (ABC vs GCB from
Schmitz et al.). Genes highlighted in colors other than grey were selected for TSS capture in
EPIC-Seq, after censoring genes with high expression in blood leukocytes (see Methods). (d)
NKX2-1, encoding TTF1, known to be highly expressed in NSCLC-LUAD tumors, exhibits
significantly higher predicted expression in ¢cfDNA of patients with LUAD by EPIC-Seq. (e)
MS4A1, encoding CD20, known to be a marker of DLBCL tumors, exhibits significantly higher
predicted expression in ¢fDNA of patients with DLBCL by EPIC-Seq. Box-and-whisker plots
depict predicted expression levels in individual samples profiled by EPIC-Seq (dots), with boxes
spanning the inter-quartile range; the median is horizontally marked with a line in each box, and
whiskers span the 1.5 IQRs in each patient cohort.

[0020] Figure 3. Application of EPIC-Seq for lung cancer detection and histological
classification. (a) Receiver-Operator Curve (ROC) capturing performance of the EPIC-Lung
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classifier for distinguishing lung cancers from others in leave-one-batch-out analyses (AUC =
0.91). The 95% confidence interval of the AUC is calculated using 2000 bootstrap replicates.
(b) Relationship between EPIC-Lung scores and NSCLC disease Stage, with test for trend
measured by Jonckheere’'s test (P = 0.08). Box-and-whisker plots depict the EPIC-lung
classifier score in individual samples profiled by EPIC-Seq (dots), with boxes spanning the inter
quartile range; the median is horizontally marked with a line in each box, and whiskers span the
1.5 IQRs in each disease stage group. (¢) Sensitivity analysis of the EPIC-Lung classifier at
95% specificity. Patients are grouped based on bins of mean circulating tumor allele fraction
(<1%, 1-5% and >5%), estimated by CAPP-Seq on the same samples. Sensitivity improves as
ctDNA AF increases with ~33% of patients detectable when AF<1%. The error bars depict the
95% confidence interval of the sensitivity values resulted from 500 bootstrap replicates. (d)
ROC curve of the LUAD vs LUSC classifier when tested in a leave-one-out framework
(AUC=0.90, 95%-CI [0.83-0.97]). (e) Coefficients of the NSCLC histology classifier, with positive
and negative coefficients favoring LUAD and LUSC, respectively. The coefficients are
significantly associated with prior knowledge when comparing their magnitude and polarity by t
test (P=0.033). Box-and-whisker plots are defined as in (b) and are resulted from 67 coefficient
sets from classifiers trained in the leave-one-out cross-validation step. (f) Accuracy of the
histology classifier as a function of tumor ctDNA fraction as measured by CAPP-Seq. The
(optimal) threshold for classification is determined in the leave-one-out framework by minimizing
the average of class-conditional errors. The error bars are defined as in (a). (g) Application of
inferred gene expression values from EPIC-Seq in predicting response to immune-checkpoint
inhibitors within 4 weeks of treatment initiation. (h) The scatterplot depicts change in an EPIC
Seq lung dynamics score vs ¢tDNA response measured by CAPP-Seq; the latter calculated as
log-transformed fold change of on-treatment to pre-treatment ctDNA concentration. The two
orthogonal measures show a significant correlation (r=0.77, P=0.006). (i) ROC curve of the
EPIC-Seq lung dynamics score calculated in panel g distinguishes patients with durable clinical
benefit (DCB) vs those with no durable benefit (NDB) within the first 6 months (AUC=0.93, 95%
Cl [0.78-1]).

[0021] Figure 4. Application of EPIC-Seq for DLBCL detection. (a) Receiver-Operator Curve
(ROC) capturing performance of the EPIC- DLBCL classifier for distinguishing lymphomas from
others in leave-one-batch-out analyses (AUC = 0.92). (b) Relationship between EPIC-Seq
DLBCL classifier scores and clinical prognostic scores as measured by the Revised
International Prognostic Index (R-IPI; Jonckheere’s trend test P=4E-4). Box-and-whisker plots
depict the EPIC-DLBCL score in individual samples profiled by EPIC-Seq (dots), with boxes
spanning the inter-guartile range; the median is horizontally marked with a line in each box, and
whiskers span the 1.5 IQRs. (¢) Sensitivity analysis at 95% specificity for EPIC-DLBCL

classifier. Similar to the EPIC-Lung cancer classifier, sensitivity significantly improves from
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~40% in cases with AF<1% to >95% for cases with AF>5%. The error bars depict the 95%
confidence interval of the sensitivity values resulted from 500 bootstrap replicates. (d-e) Change
of ctDNA disease burden in response to treatment and during clinical progression in two DLBCL
patients with GCB (d) and ABC (e) cell-of-origin. Shown is the radiographic response as
measured by PET/CT MTV (first row y-axis), ctDNA mean AF measured by CAPP-Seq (second
row y-axis), and the EPIC seq lymphoma score (third row y-axis) over serial, pre- and post-
therapy time points (x-axis).

[0022] Figure 5. Application of EPIC-Seq for DLBCL cell-of-origin classification. (a)
Relationship between DLBCL cell-of-origin EPIC-Seq GCB scores and mutation-based GCB
scores as measured by CAPP-Seq (Spearman rho = 0.75, P=1e-5). Data were smoothed by 3-
patient bins after sorting by CAPP-Seq scores before correlation analysis. (b) Relationship
between EPIC Seq GCB scores from cfDNA and tumor tissue clinical classification by Hans
immunohistochemical algorithm (Wilcoxon P-value = 0.001). Box-and-whisker plots depict the
EPIC-Seq GCB score in individual samples profiled by EPIC-Seq (dots), with boxes spanning
the inter-quartile range; the median is horizontally marked with a line in each box, and whiskers
span the 1.5 IQRs. (c) Prognostic value of EPIC-Seq cell-of-origin scores in Kaplan-Meier
analysis of Event Free Survival in DLBCL (log-rank P-value = 0.013). Patients are stratified by
the median EPIC-COO score, with higher scores associated with GCB and lower levels with
ABC subtype. (d) Prognostic value of individual genes profiled by EPIC-Seq and Event-Free
Survival, as measured by Z-scores from univariate Cox proportional hazard models. For genes
with multiple TSS regions, Z-scores were combined using Stouffer's methodi{:d. After
correcting for multiple hypothesis testing, only LMOZ2 (red) remains significant significantly
associated with favorable DLBCL outcome. Dotted lines represent the significance threshold for
Bonferroni corrected P-values of 0.05. (e) Forest-plot depicts multivariable Cox proportional
hazard model results for event-free survival (EFS). After adjusting for IPl and ctDNA allele
fraction, only the distal TSS for LMO2 remains significantly prognostic for EFS (P=0.005).

[0023] Figure 6. Fragment length density at the transcription start sites varies with gene
expression. (a) A heatmap of fragment length densities across 1,748 groups of genes (similar
to Fig. 1a). Three regions R1 (100-150bps), R2 (151-210bps), and R3 (211-300bps) show
enrichment in either high or low expression gene groups. (b) The percent of fragments within
each region defined in panel (a) in the deep whole-genome sample across deciles of the
reference PBMC gene expression vector, i.e., 10 groups of genes when sorted by their
expression values in PBMC. Highly expressed genes include fewer monosome fragments,
indicating a wider distribution and thereby a higher PFE. (¢) Fraction of fragments within the
three regions, R1-R3, for exons vs introns vs TSS sites for the top (and bottom) 2000 genes as
ranked by expression. The fraction of monosomal fragments within TSS regions is substantially

lower than within intronic and exonic regions (63.5% at TSS vs ~71% at non-TSS). Pearson’s
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Chi-Squared goodness-of-fit tests resulted in the following test statistics (TSS vs Exon:
G=62,133 [P<2.2E-16]; TSS vs Intron: G=84,110 [P<2.2E-16]). (d) The contour plot of the
expression (depicted by heat) vs two features used in the gene inference model: PFE and NDR.

[0024] Figure 7. Ensemble model accurately predicts gene expression in validation samples.
(a) The scatterplot of the predicted vs a population-averaged gene expression across 1,748
groups of genes. The underlying sample is a merged meta-sample (27 healthy subject in silico
merged into one), achieving a correlation of 0.9 in validation. (b) The meta sample from panel
(a) is used to assess the model performance when considering TSS level expression values
without gene grouping, as well as scenarios with 2, 3, 5 and 10 genes per group. The Pearson
correlation between model predicted expression and the PBMC expression is shown in green
bars. This correlation substantially improves as number of genes per group increases. The
correlation values between NDR and expression are shown in blue bars. (c-d) The same
analysis as in panels (a-b) for a meta whole genome sample generated from healthy subjects
from Zviran et al. (e) The whole genome samples (depth ~20-40x) from Zviran et al. were used
with every ten genes grouped and the concordance between model-predicted expression and
PBMC expression are evaluated using Pearson correlation (i.e., each dot is one subject). The
non-cancer samples show a higher correlation with normal PBMC than lung cancer cases with
a Wilcoxon P-value of 0.018. (f) The ichorCNA tumor fraction estimates of the lung cancer cases
in panel f are used to compare with the correlations in panel f. As shown in a scatterplot, as
tumor fraction increases, the correlation decreases (r=-0.69, P=0.00052).

[0025] Figure 8. Cell-free DNA Samples profiled by EPIC-seq.

[0026] Figure 9. Concordance between EPIC-lung scores and clinical factors. (a) The
concordance between EPIC-lung score and metabolic tumor volume (MTV). The two factors
are evaluated using Spearman correlation. The correlation coefficient is 0 = 0.67 with P-value
of 0.04. (b) The concordance between EPIC-lung score and the ctDNA mean allele fractions is
evaluated using Spearman correlation. The correlation coefficientis O = 0.5 with P-value of 3E-
5.

[0027] Figure 10. Concordance between EPIC-DLBCL scores and clinical factors and. (a) The
boxplots illustrate the two groups of patients stratified by their metabolic tumor volumes (>220
vs <220 mL). This analysis shows that the EPIC-DLBCL score is significantly higher in the
‘MTV>220" group with a Wilcoxon P-value of 0.015. (b) The concordance between EPIC86
DLBCL scores and ctDNA mean allele fractions (from CAPP-Seq) is evaluated using Spearman
correlation. The correlation coefficient is 0.66 with a P-value P<2E-16. (¢) The EPIC-DLBCL
model is applied to the cfDNA profiles of 13 samples from twfo DLBCL patients (DLBCL002
[ABC] and DLBCL007 [GCB]). The concordance between the resulting scores and the ¢tDNA
mean allele fractions is evaluated by Spearman correlation. The correlation coefficient is 0.79
with a P-value of 0.004. (d) The Kaplan-Meier curves of EFS of the patients when labeled by
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the Hans algorithm. The non-GCB group contains both Non-GCB and Unknown. (e) The violin
plot shows the distributions of Cox Proportional Hazard model Z-scores when genes are

grouped according to their effects on outcome (measured as EFS) in three tumor studies.

DETAILED DESCRIPTION

[0028] These and other features of the present teachings will become more apparent from the
description herein. While the present teachings are described in conjunction with various
embodiments, it is not intended that the present teachings be limited to such embodiments. On
the contrary, the present teachings encompass various alternatives, modifications, and
equivalents, as will be appreciated by those of skill in the art.

[0029] Most of the words used in this specification have the meaning that would be attributed
to those words by one skilled in the art. Words specifically defined in the specification have the
meaning provided in the context of the present teachings as a whole, and as are typically
understood by those skilled in the art. In the event that a conflict arises between an art-
understood definition of a word or phrase and a definition of the word or phrase as specifically
taught in this specification, the specification shall control.

[0030] It must be noted that, as used in the specification and the appended claims, the singular
forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.

[0031] All publications, patents, and patent applications mentioned in this specification are
herein incorporated by reference to the same extent as if each individual publication, patent, or

patent application was specifically and individually indicated to be incorporated by reference.

[0032] The term “immune checkpoint inhibitor” refers to a molecule, compound, or composition
that binds to an immune checkpoint protein and blocks its activity and/or inhibits the function of
the immune regulatory cell expressing the immune checkpoint protein that it binds (e.g., Treg
cells, tumor-associated macrophages, etc.). Immune checkpoint proteins may include, but are
not limited to, CTLA4 (Cytotoxic T-Lymphocyte-Associated protein 4, CD152), PD1 (also known
as PD-1; Programmed Death 1 receptor), PD-L1, PD-L2, LAG-3 (Lymphocyte Activation Gene-
3), OX40, A2AR (Adenosine A2A receptor), B7-H3 (CD276), B7-H4 (VTCN1), BTLA(Band T
Lymphocyte Attenuator, CD272), IDO (Indoleamine 2,3-dioxygenase), KIR (Killer-cell
Immunoglobulin-like Receptor), TIM 3 (T-cell Immunoglobulin domain and Mucin domain 3),
VISTA (V-domain Ig suppressor of T cell activation), and IL-2R (interleukin-2 receptor).

[0033] Immune checkpoint inhibitors are well known in the art and are commercially or clinically
available. These include but are not limited to antibodies that inhibit immune checkpoint
proteins. lllustrative examples of checkpoint inhibitors, referenced by their target immune
checkpoint protein, are provided as follows. Immune checkpoint inhibitors comprising a CTLA-

4 inhibitor include, but are not limited to, tremelimumab, and ipilimumab (marketed as Yervoy).
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[0034] Immune checkpoint inhibitors comprising a PD-1 inhibitor include, but are not limited to,
nivolumab (Opdivo), pidilizumab (CureTech), AMP-514 (Medlmmune), pembrolizumab
(Keytruda), AUNP 12 (peptide, Aurigene and Pierre), Cemiplimab (Libtayo). Immune checkpoint
inhibitors comprising a PD-L1 inhibitor include, but are not limited to, BMS-936559/MDX-1105
(Bristol-Myers Squibb), MPDL3280A (Genentech), MED14736 (Medimmune), MSB0010718C
(EMD Sereno), Atezolizumab (Tecentriq), Avelumab (Bavencio), Durvalumab (Imfinzi).

[0035] Immune checkpoint inhibitors comprising a B7-H3 inhibitor include, but are not limited
to, MGA271 (Macrogenics). Immune checkpoint inhibitors comprising an LAG3 inhibitor include,
but are not limited to, IMP321 (Immuntep), BMS-986016 (Bristol-Myers Squibb). Immune
checkpoint inhibitors comprising a KIR inhibitor include, but are not limited to, IPH2101
(lirlumab, Bristol-Myers Squibb). Immune checkpoint inhibitors comprising an OX40 inhibitor
include, but are not limited to MEDI-6469 (Medlmmune). An immune checkpoint inhibitor
targeting IL-2R, for preferentially depleting Treg cells (e.g., FoxP-3+ CD4+ cells), comprises IL-
2-toxin fusion proteins, which include, but are not limited to, denileukin diftitox (Ontak; Eisai).

[0036] The types of cancer that can be treated using the subject methods of the present
invention include but are not limited to adrenal cortical cancer, anal cancer, aplastic anemia,
bile duct cancer, bladder cancer, bone cancer, bone metastasis, brain cancers, central nervous
system (CNS) cancers, peripheral nervous system (PNS) cancers, breast cancer, cervical
cancer, childhood Non-Hodgkin's lymphoma, colon and rectum cancer, endometrial cancer,
esophagus cancer, Ewing's family of tumors (e.g. Ewing's sarcoma), eye cancer, gallbladder
cancer, gastrointestinal carcinoid tumors, gastrointestinal stromal tumors, gestational
trophoblastic disease, hairy cell leukemia, Hodgkin's lymphoma, Kaposi's sarcoma, kidney
cancer, laryngeal and hypopharyngeal cancer, acute lymphocytic leukemia, acute myeloid
leukemia, children's leukemia, chronic lymphocytic leukemia, chronic myeloid leukemia, liver
cancer, lung cancer, lung carcinoid tumors, Non-Hodgkin's lymphoma, male breast cancer,
malignant mesothelioma, multiple myeloma, myelodysplastic syndrome, myeloproliferative
disorders, nasal cavity and paranasal cancer, nasopharyngeal cancer, neuroblastoma, oral
cavity and oropharyngeal cancer, osteosarcoma, ovarian cancer, pancreatic cancer, penile
cancer, pituitary tumor, prostate cancer, retinoblastoma, rhabdomyosarcoma, salivary gland
cancer, sarcomas, melanoma skin cancer, non-melanoma skin cancers, stomach cancer,
testicular cancer, thymus cancer, thyroid cancer, uterine cancer (e.g. uterine sarcoma),
transitional cell carcinoma, vaginal cancer, vulvar cancer, mesothelioma, squamous cell or
epidermoid carcinoma, bronchial adenoma, choriocarinoma, head and neck cancers,
teratocarcinoma, or Waldenstrom's macroglobulinemia.

[0037] Dosage and frequency may vary depending on the half-life of the agent in the patient. It

will be understood by one of skill in the art that such guidelines will be adjusted for the molecular
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weight of the active agent, the clearance from the blood, the mode of administration, and other
pharmacokinetic parameters. The dosage may also be varied for localized administration, e.g.

intranasal, inhalation, etc., or for systemic administration, e.g. i.m., i.p., i.v., oral, and the like.

[0038] The terms "subject,” "individual,” and "patient” are used interchangeably herein to refer
to a vertebrate, preferably a mammal, more preferably a human. Mammalian species that
provide samples for analysis include canines; felines; equines; bovines; ovines; efc. and
primates, particularly humans. Animal models, particularly small mammals, e.g. murine,
lagomorpha, etc. can be used for experimental investigations. The methods of the invention can

be applied for veterinary purposes.

[0039] As used herein, the term "theranosis" refers to the use of results obtained from a
diagnostic method to direct the selection of, maintenance of, or changes to a therapeutic
regimen, including but not limited to the choice of one or more therapeutic agents, changes in
dose level, changes in dose schedule, changes in mode of administration, and changes in
formulation. Diagnostic methods used to inform a theranosis can include any that provides

information on the state of a disease, condition, or symptom.

[0040] The terms "therapeutic agent”, "therapeutic capable agent" or "treatment agent" are
used interchangeably and refer to a molecule or compound that confers some beneficial effect
upon administration to a subject. The beneficial effect includes enablement of diagnostic
determinations; amelioration of a disease, symptom, disorder, or pathological condition;
reducing or preventing the onset of a disease, symptom, disorder or condition; and generally
counteracting a disease, symptom, disorder or pathological condition.

[0041] Non-ICl cancer therapy may include Abitrexate (Methotrexate Injection), Abraxane
(Paclitaxel Injection), Adcetris (Brentuximab Vedotin Injection), Adriamycin (Doxorubicin),
Adrucil Injection (5-FU (fluorouracil)), Afinitor (Everolimus) , Afinitor Disperz (Everolimus) ,
Alimta (PEMET EXED), Alkeran Injection (Melphalan Injection), Alkeran Tablets (Melphalan),
Aredia (Pamidronate), Arimidex (Anastrozole), Aromasin (Exemestane), Arranon (Nelarabine),
Arzerra (Ofatumumab Injection), Avastin (Bevacizumab), Bexxar (Tositumomab), BiCNU
(Carmustine), Blenoxane (Bleomycin), Bosulif (Bosutinib), Busulfex Injection (Busulfan
Injection), Campath (Alemtuzumab), Camptosar (Irinotecan), Caprelsa (Vandetanib), Casodex
(Bicalutamide), CeeNU (Lomustine), CeeNU Dose Pack (Lomustine), Cerubidine
(Daunorubicin), Clolar (Clofarabine Injection), Cometriq (Cabozantinib), Cosmegen
(Dactinomycin),  CytosarU  (Cytarabine), Cytoxan (Cytoxan), Cytoxan Injection
(Cyclophosphamide Injection), Dacogen (Decitabine), DaunoXome (Daunorubicin Lipid

Complex Injection), Decadron (Dexamethasone), DepoCyt (Cytarabine Lipid Complex
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Injection), Dexamethasone Intensol (Dexamethasone), Dexpak Taperpak (Dexamethasone),
Docefrez (Docetaxel), Doxil (Doxorubicin Lipid Complex Injection), Droxia (Hydroxyurea), DTIC
(Decarbazine), Eligard (Leuprolide), Ellence (Ellence (epirubicin)), Eloxatin (Eloxatin
(oxaliplatin)), Elspar (Asparaginase), Emcyt (Estramustine), Erbitux (Cetuximab), Erivedge
(Vismodegib), Erwinaze (Asparaginase Erwinia chrysanthemi), Ethyol (Amifostine), Etopophos
(Etoposide Injection), Eulexin (Flutamide), Fareston (Toremifene), Faslodex (Fulvestrant),
Femara (Letrozole), Firmagon (Degarelix Injection), Fludara (Fludarabine), Folex (Methotrexate
Injection), Folotyn (Pralatrexate Injection), FUDR (FUDR (floxuridine)), Gemzar (Gemcitabine),
Gilotrif (Afatinib), Gleevec (Imatinib Mesylate), Gliadel Wafer (Carmustine wafer), Halaven
(Eribulin Injection), Herceptin (Trastuzumab), Hexalen (Altretamine), Hycamtin (Topotecan),
Hycamtin (Topotecan), Hydrea (Hydroxyurea), Iclusig (Ponatinib), Idamycin PFS (ldarubicin),
Ifex (Ifosfamide), Inlyta (Axitinib), Intron A alfab (Interferon alfa-2a), Iressa (Gefitinib), Istodax
(Romidepsin Injection), Ixempra (Ixabepilone Injection), Jakafi (Ruxolitinib), Jevtana
(Cabazitaxel Injection), Kadcyla (Ado-trastuzumab Emtansine), Kyprolis (Carfilzomib),
Leukeran (Chlorambucil), Leukine (Sargramostim), Leustatin (Cladribine), Lupron (Leuprolide),
Lupron Depot (Leuprolide), Lupron DepotPED (Leuprolide), Lysodren (Mitotane), Margibo Kit
(Vincristine Lipid Complex Injection), Matulane (Procarbazine), Megace (Megestrol), Mekinist
(Trametinib), Mesnex (Mesna), Mesnex (Mesna Injection), Metastron (Strontium-89 Chloride),
Mexate (Methotrexate Injection), Mustargen (Mechlorethamine), Mutamycin (Mitomycin),
Myleran (Busulfan), Mylotarg (Gemtuzumab QOzogamicin), Navelbine (Vinorelbine), Neosar
Injection (Cyclophosphamide Injection), Neulasta (filgrastim), Neulasta (pedfilgrastim),
Neupogen (filgrastim), Nexavar (Sorafenib), Nilandron (Nilandron (nilutamide)), Nipent
(Pentostatin), Nolvadex (Tamoxifen), Novantrone (Mitoxantrone), Oncaspar (Pegaspargase),
Oncovin (Vincristine), Ontak (Denileukin Diftitox), Onxol (Paclitaxel Injection), Panretin
(Alitretinoin), Paraplatin (Carboplatin), Perjeta (Pertuzumab Injection), Platinol (Cisplatin),
Platinol (Cisplatin Injection), PlatinolAQ (Cisplatin), PlatinolAQ (Cisplatin Injection), Pomalyst
(Pomalidomide), Prednisone Intensol (Prednisone), Proleukin (Aldesleukin), Purinethol
(Mercaptopurine), R-CHOP (Rituximab, Cyclophosphamide, Doxorubicin Hydrochloride
{Hydroxydaunomycin}, Vincristine Sulfate {Onocvin} and Prednisone), Reclast (Zoledronic
acid), Revlimid (Lenalidomide), Rheumatrex (Methotrexate), Rituxan (Rituximab), RoferonA
alfaa (Interferon alfa-2a), Rubex (Doxorubicin), Sandostatin (Octreotide), Sandostatin LAR
Depot (Octreotide), Soltamox (Tamoxifen), Sprycel (Dasatinib), Sterapred (Prednisone),
Sterapred DS (Prednisone), Stivarga (Regorafenib), Supprelin LA (Histrelin Implant), Sutent
(Sunitinib), Sylatron (Peginterferon Alfa-2b Injection (Sylatron)), Synribo (Omacetaxine
Injection), Tabloid (Thioguanine), Taflinar (Dabrafenib), Tarceva (Erlotinib), Targretin Capsules
(Bexarotene), Tasigna (Decarbazine), Taxol (Paclitaxel Injection), Taxotere (Docetaxel),
Temodar (Temozolomide), Temodar (Temozolomide Injection), Tepadina (Thiotepa), Thalomid
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(Thalidomide), TheraCys BCG (BCG), Thioplex (Thiotepa), TICE BCG (BCG), Toposar
(Etoposide Injection), Torisel (Temsirolimus), Treanda (Bendamustine hydrochloride), Trelstar
(Triptorelin Injection), Trexall (Methotrexate), Trisenox (Arsenic trioxide), Tykerb (lapatinib),
Valstar (Valrubicin Intravesical), Vantas (Histrelin Implant), Vectibix (Panitumumab), Velban
(Vinblastine), Velcade (Bortezomib), Vepesid (Etoposide), Vepesid (Etoposide Injection),
Vesanoid (Tretinoin), Vidaza (Azacitidine), Vincasar PFS (Vincristine), Vincrex (Vincristine),
Votrient (Pazopanib), Vumon (Teniposide), Wellcovorin 1V (Leucovorin Injection), Xalkori
(Crizotinib), Xeloda (Capecitabine), Xtandi (Enzalutamide), Yervoy (Ipilimumab Injection),
Zaltrap (Ziv-aflibercept Injection), Zanosar (Streptozocin), Zelboraf (Vemurafenib), Zevalin
(Ibritumomab Tiuxetan), Zoladex (Goserelin), Zolinza (Vorinostat), Zometa (Zoledronic acid),
Zortress (Everolimus), Zytiga (Abiraterone).

[0042] Radiotherapy means the use of radiation, usually X-rays, to treat illness. X-rays were
discovered in 1895 and since then radiation has been used in medicine for diagnosis and
investigation (X-rays) and treatment (radiotherapy). Radiotherapy may be from outside the body
as external radiotherapy, using X-rays, cobalt irradiation, electrons, and more rarely other
particles such as protons. It may also be from within the body as internal radiotherapy, which

uses radioactive metals or liquids (isotopes) to treat cancer.

[0043] As used herein, "treatment" or "treating," or "palliating" or "ameliorating” are used
interchangeably. These terms refer to an approach for obtaining beneficial or desired results
including but not limited to a therapeutic benefit and/or a prophylactic benefit. By therapeutic
benefit is meant any therapeutically relevant improvement in or effect on one or more diseases,
conditions, or symptoms under treatment. For prophylactic benefit, the compositions may be
administered to a subject at risk of developing a particular disease, condition, or symptom, or
to a subject reporting one or more of the physiological symptoms of a disease, even though the

disease, condition, or symptom may not have yet been manifested.

[0044] The term "effective amount” or "therapeutically effective amount” refers to the amount
of an agent that is sufficient to effect beneficial or desired results. The therapeutically effective
amount will vary depending upon the subject and disease condition being treated, the weight
and age of the subject, the severity of the disease condition, the manner of administration and
the like, which can readily be determined by one of ordinary skill in the art. The term also applies
to a dose that will provide an image for detection by any one of the imaging methods described
herein. The specific dose will vary depending on the particular agent chosen, the dosing
regimen to be followed, whether it is administered in combination with other compounds, timing
of administration, the tissue to be imaged, and the physical delivery system in which it is carried.
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[0045] "Suitable conditions" shall have a meaning dependent on the context in which this term
is used. That is, when used in connection with an antibody, the term shall mean conditions that
permit an antibody to bind to its corresponding antigen. When used in connection with
contacting an agent to a cell, this term shall mean conditions that permit an agent capable of
doing so to enter a cell and perform its intended function. In one embodiment, the term "suitable

conditions” as used herein means physiological conditions.

[0046] The term "inflammatory” response is the development of a humoral (antibody mediated)
and/or a cellular response, which cellular response may be mediated by antigen-specific T cells
or their secretion products), and innate immune cells. An "immunogen” is capable of inducing
an immunological response against itself on administration to a mammal or due to autoimmune
disease.

” o«

[0047] The terms “biomarker,” “biomarkers,” “marker” or “markers” for the purposes of the
invention refer to, without limitation, proteins together with their related metabolites, mutations,
variants, polymorphisms, modifications, fragments, subunits, degradation products, elements,
and other analytes or sample-derived measures. Markers can include expression levels of an
intracellular protein or extracellular protein. Markers can also include combinations of any one
or more of the foregoing measurements, including temporal trends and differences. Broadly

used, a marker can also refer to an immune cell subset.

[0048] To “analyze” includes determining a set of values associated with a sample by
measurement of a marker (such as, e.g., presence or absence of a marker or constituent
expression levels) in the sample and comparing the measurement against measurement in a
sample or set of samples from the same subject or other control subject(s). The markers of the
present teachings can be analyzed by any of various conventional methods known in the art.
To “analyze” can include performing a statistical analysis, e.g. normalization of data,
determination of statistical significance, determination of statistical correlations, clustering

algorithms, and the like.

[0049] A “sample” in the context of the present teachings refers to any biological sample that is
isolated from a subject, generally a sample comprising cell free DNA. Samples for obtaining
circulating cell-free DNA may include any suitable sample, often blood or blood-derived
products, such as plasma, serum, etc. Alternative samples may include, for example, urine,

ascites, synovial fluid, cerebrospinal fluid, saliva, and the like.
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[0050] A “dataset” is a set of numerical values resulting from evaluation of a sample (or
population of samples) under a desired condition. The values of the dataset can be obtained,
for example, by experimentally obtaining measures from a sample and constructing a dataset
from these measurements; or alternatively, by obtaining a dataset from a service provider such
as a laboratory, or from a database or a server on which the dataset has been stored. Similarly,
the term “obtaining a dataset associated with a sample” encompasses obtaining a set of data
determined from at least one sample. Obtaining a dataset encompasses obtaining a sample,
and processing the sample to experimentally determine the data, e.g., via measuring antibody
binding, or other methods of quantitating a signaling response. The phrase also encompasses
receiving a set of data, e.g., from a third party that has processed the sample to experimentally
determine the dataset.

[0051] “Measuring” or “measurement” in the context of the present teachings refers to
determining the presence, absence, quantity, amount, or effective amount of a substance in a
clinical or subject-derived sample, including the presence, absence, or concentration levels of
such substances, and/or evaluating the values or categorization of a subject's clinical
parameters based on a control, e.g. baseline levels of the marker.

[0052] Classification can be made according to predictive modeling methods that set a
threshold for determining the probability that a sample belongs to a given class. The probability
preferably is at least 50%, or at least 60% or at least 70% or at least 80% or higher.
Classifications also can be made by determining whether a comparison between an obtained
dataset and a reference dataset yields a statistically significant difference. If so, then the sample
from which the dataset was obtained is classified as not belonging to the reference dataset
class. Conversely, if such a comparison is not statistically significantly different from the
reference dataset, then the sample from which the dataset was obtained is classified as
belonging to the reference dataset class.

[0053] The predictive ability of a model can be evaluated according to its ability to provide a
quality metric, e.g. AUC or accuracy, of a particular value, or range of values. In some
embodiments, a desired quality threshold is a predictive model that will classify a sample with
an accuracy of at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at
least about 0.9, at least about 0.95, or higher. As an alternative measure, a desired quality
threshold can refer to a predictive model that will classify a sample with an AUC (area under
the curve) of at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at
least about 0.9, or higher.

[0054] As is known in the art, the relative sensitivity and specificity of a predictive model can
be “tuned” to favor either the selectivity metric or the sensitivity metric, where the two metrics
have an inverse relationship. The limits in a model as described above can be adjusted to

provide a selected sensitivity or specificity level, depending on the particular requirements of
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the test being performed. One or both of sensitivity and specificity can be at least about at least
about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or

higher.

[0055] The term "antibody" includes full length antibodies and antibody fragments, and can
refer to a natural antibody from any organism, an engineered antibody, or an antibody generated
recombinantly for experimental, therapeutic, or other purposes as further defined below.
Examples of antibody fragments, as are known in the art, such as Fab, Fab', F(ab")2, Fv, scFv,
or other antigen-binding subsequences of antibodies, either produced by the modification of
whole antibodies or those synthesized de novo using recombinant DNA technologies. The term
"antibody” comprises monoclonal and polyclonal antibodies. Antibodies can be antagonists,
agonists, neutralizing, inhibitory, or stimulatory. They can be humanized, glycosylated, bound
to solid supports, and possess other variations.

[0056] The methods the invention may utilize affinity reagents comprising a label, labeling
element, or tag. By label or labeling element is meant a molecule that can be directly (i.e., a
primary label) or indirectly (i.e., a secondary label) detected; for example a label can be
visualized and/or measured or otherwise identified so that its presence or absence can be
known. Labels include optical labels such as fluorescent dyes or moieties. Fluorophores can be
either "small molecule" fluors, or proteinaceous fluors (e.g. green fluorescent proteins and all
variants thereof). In some embodiments, activation state-specific antibodies are labeled with
quantum dots as disclosed by Chattopadhyay et al. (2006) Nat. Med. 12, 972-977. Quantum
dot labeled antibodies can be used alone or they can be employed in conjunction with organic
fluorochrome— conjugated antibodies to increase the total number of labels available. As the
number of labeled antibodies increase so does the ability for subtyping known cell populations.

[0057] The detecting, sorting, or isolating step of the methods of the present invention can entail
fluorescence-activated cell sorting (FACS) technigues or flow cytometry, mass cytometry, etc.,
where FACS is used to select cells from the population containing a particular surface marker,
or the selection step can entail the use of magnetically responsive particles as retrievable
supports for target cell capture and/or background removal. A variety of FACS systems are
known in the art and can be used in the methods of the invention (see e.g., W099/54494, filed
Apr. 16, 1999; U.S. Ser. No. 20010006787, filed Jul. 5, 2001, each expressly incorporated
herein by reference).

[0058] Mass cytometry, or CyTOF (DVS Sciences), is a variation of flow cytometry in which
antibodies are labeled with heavy metal ion tags rather than fluorochromes. Readout is by time-
of-flight mass spectrometry. This allows for the combination of many more antibody specificities
in a single samples, without significant spillover between channels. For example, see
Bodenmiller at a. (2012) Nature Biotechnology 30:858-867.
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[0059] Affinity reagents such as antibodies also find use in, for example, immunohistochemistry
to determine expression of an immune checkpoint protein, such as CD274 (PD-L1), B7-1, B7-
2,4-1BB-L, GITRL, etc. Alternatively, expression can be determined by any convenient method
known in the art, e.g. mRNA hybridization, flow cytometry, mass cytometry, etc. A sample for

analysis may include, for example, a tumor biopsy sample, such as a needle biopsy sample.

[0060] The present invention incorporates information disclosed in other applications and texts.
The following patent and other publications are hereby incorporated by reference in their
entireties: Alberts et al., The Molecular Biology of the Cell, 4th Ed., Garland Science, 2002;
Vogelstein and Kinzler, The Genetic Basis of Human Cancer, 2d Ed., McGraw Hill, 2002;
Michael, Biochemical Pathways, John Wiley and Sons, 1999; Weinberg, The Biology of Cancer,
2007; Immunobiology, Janeway et al. 7th Ed., Garland, and Leroith and Bondy, Growth Factors
and Cytokines in Health and Disease, A Multi Volume Treatise, Volumes 1A and IB, Growth
Factors, 1996.

[0061] Unless otherwise apparent from the context, all elements, steps or features of the
invention can be used in any combination with other elements, steps or features.

[0062] General methods in molecular and cellular biochemistry can be found in such standard
textbooks as Molecular Cloning: A Laboratory Manual, 3rd Ed. (Sambrook et al., Harbor
Laboratory Press 2001); Short Protocols in Molecular Biology, 4th Ed. (Ausubel et al. eds., John
Wiley & Sons 1999); Protein Methods (Bollag et al., John Wiley & Sons 1996); Nonviral Vectors
for Gene Therapy (Wagner et al. eds., Academic Press 1999); Viral Vectors (Kaplift & Loewy
eds., Academic Press 1995); Immunology Methods Manual (I. Lefkovits ed., Academic Press
1997); and Cell and Tissue Culture: Laboratory Procedures in Biotechnology (Doyle & Griffiths,
John Wiley & Sons 1998). Reagents, cloning vectors, and kits for genetic manipulation referred
to in this disclosure are available from commercial vendors such as BioRad, Stratagene,
Invitrogen, Sigma-Aldrich, and ClonTech.

[0063] The invention has been described in terms of particular embodiments found or proposed
by the present inventor to comprise preferred modes for the practice of the invention. It will be
appreciated by those of skill in the art that, in light of the present disclosure, numerous
modifications and changes can be made in the particular embodiments exemplified without
departing from the intended scope of the invention. Due to biological functional equivalency
considerations, changes can be made in protein structure without affecting the biological action
in kind or amount. All such modifications are intended to be included within the scope of the
appended claims.

[0064] The subject methods are used for prognostic, diagnostic and therapeutic purposes. As
used herein, the term "treating” is used to refer to both prevention of relapses, and treatment of

18



WO 2021/231614 PCT/US2021/032046

pre-existing conditions. The treatment of ongoing cancer to achieve durable clinical benefit is of
particular interest.

[0065] The term “promoter fragmentation entropy” (PFE) as used herein refers to the relative
diversity in DNA fragments length at or near transcription start sites (TSS) following digestion.
Promoter fragment entropy is calculated using a modified Shannon’s entropy index as
PFE(TSS): = Ex[Yi1-5P (erss > (1 + k) X ¢;)] whereE,[.] denotes the expected value with
respect to the excess parameter k, and P** is the probability with respect to the Dirichlet
distribution Dir(a*). Here, we used a Gamma distribution for k~I'(s = 0.5, = 1), where I'is the
Gamma distribution with shape s and rate r.

[0066] The term “nucleosome depleted region” (NDR) is used herein refers to promoter regions
in DNA that are free from nucleosomes. The lack of nucleosomes is often indicative of genes
that are actively being expressed. NDR depth refers to the depth of sequencing occurring within
nucleosome depleted regions. To guard against variations in depth across the genome,
including from GGC-content variation or somatic copy number changes, depth was normalized
within each window flanking each TSS as defined by the user in counts per million (CPM) space.
This normalized measure was denoted as nucleosome depleted region score, NDR, for each
TSS.

[0067] The term "sequencing depth" or "depth” refers to a total number of sequence reads or
read segments at a given genomic location or loci from a test sample from an individual.

[0068] The term “selector” or “selector set” refers to an oligonucleotide or a set of
oligonucleotides which correspond to specific genomic regions wherein genomic regions may
comprise a TSS or a plurality of TSSs. A variety of selector and selector sets are known in the
art (see e.g., US 2014-0296081 A1, filed March. 13, 2014 which has been expressly
incorporated herein by reference).

Methods of the Invention

[0069] Methods are provided for non-invasively determining the expression of genes of interest.
The expression profile of these genes of interest are then used for numerous applications. These
methods include, without limitation, methods for determining whether an individual with cancer
will have a durable clinical benefit from treatment with an immune checkpoint inhibitor, methods
for determining whether an individual with non-small cell lung carcinoma (NSCLC) is classified
as adenocarcinomas (LUAD) or squamous cell carcinomas (LUSC), methods for quantifying
tumor burden in individuals living with diffuse large B cell lymphoma (DLBCL), methods for
determining the cell of origin in individuals living with DLBCL, etc. Provided is an integrated
analytic method, where a a single biomarker is derived from promoter fragment entropy (PFE)
and analysis of nucleosome depleted regions (NDR) depth, t0 generate a prognostic for patient

responsiveness to immune checkpoint inhibition (ICI), a determination of NSCLC subtype, a
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determination of DLBCL tumor burden, and/or a DLBCL cell of origin classification. In some
embodiments that use only noninvasive blood draws, the methods robustly identify which
patients will achieve durable clinical benefit from immune checkpoint inhibition, what the cancer
subtype classification is and/or what the tumor burden is. In an embodiment, the methods
further comprise selecting a treatment regimen for the individual based on the analysis. In some
embodiments, the prediction is based on samples shortly after a first ICI treatment.

[0070] A sample for cell free DNA profiling can be any suitable type that allows for the analysis
of one or more DNA sample, preferably a blood sample. Samples can be obtained once or
multiple times from an individual. Multiple samples can be obtained at different times from the
individual. In some embodiments a sample is obtained prior to ICl treatment. In some
embodiments a sample is obtain following a first ICI treatment, and within about 4 weeks, 3
weeks, 2 weeks, 1 week, of a first ICl treatment. In some embodiments a sample is obtained
both prior to and following ICl treatment.

[0071] Samples of cell free DNA can be isolated from body samples. The cell free DNA can be
separated from body samples by red cell lysis, centrifugation, elutriation, density gradient
separation, apheresis, affinity selection, panning, FACS, centrifugation with Hypaque, solid
supports (magnetic beads, beads in columns, or other surfaces) with attached antibodies, etc.
The samples are analyzed as described above for the specific metric of interest.

[0072] The use of cfDNA in the determination of gene expression through inference provides
advantages over RNA based methods of analyzing gene expression. The use of cfDNA
provides a noninvasive means for the determination of gene expression through inference
because obtaining cfDNA only requires a blood sample and does not require extensive tissue
processing like RNA based methods require. ¢cfDNA also provides the distinct advantage over
RNA by being much more stable and less prone to degradation.

[0073] The methods of the invention include optimized library preparation methods with a multi-
phase bioinformatics using a “selector” population of DNA oligonucleotides, which correspond
to TSS regions in the genes of interest. The selector population of DNA oligonucleotides, which
may be referred to as a selector set, comprises probes for a plurality of genomic regions.

[0074] In some embodiments of the invention, methods are provided for the identification of a
selector set appropriate for a specific tumor type. Also provided are oligonucleotide
compositions of selector sets, which may be provided adhered to a solid substrate, tagged for
affinity selection, etc.; and kits containing such selector sets. Included, without limitation, is a
selector set suitable for analysis of non-small cell lung carcinoma (NSCLC).

[0075] In other embodiments, methods are provided for the use of a selector set in the
diagnosis and monitoring of cancer in an individual patient. In such embodiments the selector
set is used to enrich, e.g. by hybrid selection, for cfDNA that corresponds to the TSS regions.

The “selected” cfDNA is then amplified and sequenced.
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[0076] Fully robotic or microfluidic systems include automated liquid-, particle-, cell- and
organism-handling including high throughput pipetting to perform all steps of screening
applications. This includes liquid, particle, cell, and organism manipulations such as aspiration,
dispensing, mixing, diluting, washing, accurate volumetric transfers; retrieving, and discarding
of pipet tips; and repetitive pipetting of identical volumes for multiple deliveries from a single
sample aspiration. These manipulations are cross-contamination- free liquid, particle, cell, and
organism transfers. This instrument performs automated replication of microplate samples to
filters, membranes, and/or daughter plates, high-density transfers, full-plate serial dilutions, and
high capacity operation.

[0077] In some embodiments, platforms for multi-well plates, multi-tubes, holders, cartridges,
minitubes, deep-well plates, microfuge tubes, cryovials, square well plates, filters, chips, optic
fibers, beads, and other solid-phase matrices or platform with various volumes are
accommodated on an upgradable modular platform for additional capacity. This modular
platform includes a variable speed orbital shaker, and multi-position work decks for source
samples, sample and reagent dilution, assay plates, sample and reagent reservoirs, pipette tips,
and an active wash station. In some embodiments, the methods of the invention include the use
of a plate reader.

[0078] In some embodiments, interchangeable pipet heads (single or multi-channel) with single
or multiple magnetic probes, affinity probes, or pipetters robotically manipulate the liquid,
particles, cells, and organisms. Multi-well or multi-tube magnetic separators or platforms
manipulate liquid, particles, cells, and organisms in single or multiple sample formats.

[0079] In some embodiments, the instrumentation will include a detector, which can be a wide
variety of different detectors, depending on the labels and assay. In some embodiments, useful
detectors include a microscope(s) with multiple channels of fluorescence; plate readers to
provide fluorescent, ultraviolet and visible spectrophotometric detection with single and dual
wavelength endpoint and kinetics capability, fluorescence resonance energy transfer (FRET),
luminescence, quenching, two-photon excitation, and intensity redistribution; CCD cameras to
capture and transform data and images into quantifiable formats; and a computer workstation.

[0080] In some embodiments, the robotic apparatus includes a central processing unit which
communicates with a memory and a set of input/output devices (e.g., keyboard, mouse, monitor,
printer, etc.) through a bus. Again, as outlined below, this can be in addition to or in place of the
CPU for the multiplexing devices of the invention. The general interaction between a central
processing unit, @ memory, input/output devices, and a bus is known in the art. Thus, a variety

of different procedures, depending on the experiments to be run, are stored in the CPU memory.
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Modeling and statistical methods

[0081] Mapping, deduplication and quality control of TSS sites and samples was preformed
using FASTQ files that were demultiplexed using a custom pipeline wherein read pairs were
considered only if both 8-bp sample barcodes and 6-bp UIDs matched expected sequences
after error-correction. After demultiplexing, barcodes were removed, and adaptor read-through
was trimmed from the 3' end of the reads using fastp to preserve short fragments. Fragments
were aligned to human genome (hg19) using BWA; importantly, the disabled the automated
distribution inference in BWA ALN was disabled to allow inclusion of shorter and longer cfDNA
fragments that would otherwise be anomalously flagged as improperly paired. PCR duplicates
were removed using a customized barcoding approach, which combines endogenous and
exogenous unique molecular identifiers (UMIDs), including cfDNA fragment start and end
positions, as well as pre-specified UMIDs within ligated adapters into account. To allow
coverage uniformity for comparisons, data was down-sampled to a desired depth using
‘samtools view -s". Desired depths include, without limitation, a depth of greater than 500x, a
depth from 500 to 600x, from 600 to 700x, from 700 to 800x, from 800 to 900x, from 900 to
1000x, from 1000 to 1100x, from 1100 to 1200x, from 1200 to 1300x, from 1300 to 1400x, from
1400 to 1500x, from 1500 to 1600x, from 1600 to 1700x, from 1700 to 1800x, from 1800 to
1900x, from 1900 to 2000x, 2000 to 2100x, from 2100 to 2200x, from 2200 to 2300x, from 2300
to 2400x, from 2400 to 2500x, from 2500 to 2600x, from 2600 to 2700x, from 2700 to 2800x,
from 2800 to 2900x, from 2900 to 3000x, or a sequencing depth of greater than 3000x. Samples
with a sequencing depth of less than 500x were considered and any samples not meeting this
depth threshold (median depth) were considered to fail quality control (QG). Any samples whose
cfDNA fragment length density mode was below 140 or above 185 were also removed, since
the expected fragment length density mode is 167 (corresponding to the chromatosomal DNA
length). To identify and censor noisy sites among the 236 TSS regions profiled by our EPIC-
Seq panel, 23 controls were profile, allowing the identification and removal stereotyped regions
with reproducibly low TSS coverage (i.e., any site with CPM less than one third of uniformly
distributed coverage across the TSSs in the selector, i.e., ;TOZ X % in more than 75% of controls).

[0082] To guarantee adequate quality of fragments entering analysis, mapping quality was
required (MAPQ, k) of >30 or >10in the WGS and EPIC-Seq data, respectively (using ‘samtools
view -q k -F3084’). The more lenient EPIC-seq MAPQ threshold was qualified by more stringent
mappability and unigueness requirements already imposed on the TSS regions selected during
EPIC-seq selector design. The analysis was limited to reads with the following BAM FLAG set:
81, 93, 97,99, 145, 147, 161, and 163. To ensure removal of non-unique fragments, reads with
duplicate names were ¢ensored.

[0083] Fragmentomic feature extraction & summarization were conducted using 5 c¢fDNA

fragmentomic features at TSS regions and then compared each of these features to gene
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expression, including Window Protection Score (WPS), Orientation-aware CfDNA
Fragmentation (OCF), Motif Diversity Score (MDS), Nucleosome depleted region score (NDR),
and Promoter Fragmentation Entropy (PFE). MDS, NDR, OCF, and WPS were each computed
as per the conventions of the originally describing studies with minor modifications, as detailed
below.

[0084] Motif diversity score (MDS) was determined as a performed end-motif sequence
analysis of individual cfDNA fragments to assess the distribution of nucleotides among the first
few positions for the reads of each read pair. This was performed by computationally extracting
the first four 5 nucleotides of the genomic reference sequence for each sequence read,
resulting in a 4-mer sequence motif. MDS was then computed as the Shannon index of the
distribution across 256 motifs (4-mers) at each TSS site, when considering fragments
overlapping the 2kb window flanking each TSS.

[0085] Nucleosome depleted region score (NDR) was calculated using the depth, normalized
within each window flanking each TSS in counts per million (CPM) space. This normalized
measure was denoted as the nucleosome depleted region score, NDR, for each TSS.

[0086] Promoter fragmentation entropy (PFE) was calculated using Shannon entropy to
summarize the diversity in cfDNA fragment size values in the vicinity of each TSS site as defined
by the user. 201 size-bins were defined [from b, = 100bps to b,,, = 300bps] and estimated the
density by the maximum-likelihood, i.e.,p = [py, ..., P201] With p, = % where n; and n denote the

number of fragments with length b; and total number of fragments at the TSS, respectively.
Shannon’s entropy was calculated as —Y.5, log, p, and then normalized as follows. To account
for variations in sequencing depth from sample to sample as well as other hidden factors
impacting overall cfDNA fragment length distributions that might confound PFE, we defined a
relative entropy using a Bayesian approach through a Dirichlet-multinomial model. In this model,
fragment size profiles in a given cfDNA sample are assumed to follow a multinomial distribution
(p) whose probability mass function is itself governed by a Dirichlet distribution, p~Dirichlet(ea),
where vector a represents the parameter vector of the Dirichlet distribution. Here, we first used
a set of genes to create a background fragment length density as a. For the background
distribution, two flanking regions were focused on, (a) -1Kbps (upstream) to -750bps (upstream)
and (b) from +750bps (downstream) to +1Kbps (downstream). The fragments that fell within
those regions were used for the background fragment length distributions. Five background
gene subsets were randomly selected and calculated their Shannon entropies, denoting these
by ey, e,,e3,e4, and es. For a given TSS, the posterior of the Dirichlet distribution was calculated,
i.e., Dir(a” = a+ [fiy, ..., iyp1]). The Shannon entropy of a given TSS was then compared with
the five randomly generated entropies to measure the excess in diversity in the fragment length
values at the TSS of interest. Formally, PFE was defined as PFE(TSS): = E;[Yi1-5P (epss >

(1+ k) x ¢;)] where Ey[.] denotes the expected value with respect to the excess parameter k,
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and P*is the probability with respect to the Dirichlet distribution Dir(a™). Here, we used a
Gamma distribution for k~T'(s = 0.5,r = 1), where I is the Gamma distribution with shape s and
rater.

[0087] Whole exome PFE analysis was performed using the raw Shannon entropy (as
described in ‘Fragment length diversity calculation using Shannon entropy’) at any given gene,
after transforming it into a z-score, using a cohort of 34 cfDNA WES profiles (each with 200-
400x depth). To account for differences in depth in the cohort for normalization, meta-profiles
of 5 samples were considered to achieve comparable depths as those initially used to relate
PFE and gene expression levels when relying on WGS.

[0088] Small cell lung cancer gene signature set was generated using an RNA-Seq data of 81
SCLC primary tumors. Differential gene expression analysis was performed by comparing the
RNA-seq data of these tumors with our reference PBMC RNA expression levels and identified
genes in the top 1500 of SCLC expression overlapping genes in the bottom 5000 of the PBMC
expression (‘high in SCLC’). Similarly, for ‘low in SCLC’ genes, we selected genes which are in
top 1500 of PBMG expression and bottom 5,000 of SCLC expression. The gene set was further
limited to those whose TSSs were covered in our whole exome panel to ensure sufficient
sequencing coverage for analysis.

[0089] To infer RNA expression levels from cfDNA fragmentation profiles at TSS regions of
genes across the transcriptome, a prediction model was built using two features, PFE and NDR.
Of note, among the 5 fragmentomic features considered, these indices demonstrate highest
individual correlations as well as complementarity. For training, one ¢cfDNA sample sequenced
to high coverage depth by WGS was employed. RNA-Seqg was performed on the PBMC of five
healthy subjects and used the average across three of these individuals as the ‘reference
expression vector'. Next, to achieve a higher resolution at the core promoters, every 10 genes
was grouped, based on their expression in our reference RNA-seq vector. After removing genes
used as background for calculating PFE, a total of 1,748 groups (of 10 genes each) remained.
All the fragments at the extended core promoters were pooled of the genes within each group
and extracted the two features: NDR and PFE. The two features were normalized by 95%

quantile over the background genes, where for PFE the normalization factor is PFE =

PFE

QUPFE},98)
PFEgg

min (1,
(

) and NDR = 2% where Q(.,k) denotes the k" quantile. By bootstrap
;0.5,1) NDRpg

resampling, we then built 600 ensemble models: 200 univariable PFE-alone-models
Mppg 1, MppE 20 - Mppg 200, 200 univariable NDR-alone-models mypg 1, Mypr 2, - Mapr 200 @Nd
200 NDR-PFE integrated models m ¢ 1, Mnt 2, - » Mine200-

[0090] To transfer this expression prediction model — which was originally derived from WGS -
to the targeted TSS space (EPIC-seq), each of the 600 models above were evaluated, by

measuring its root mean squared error (RMSE) on two held out healthy subjects. For each of
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these two healthy subjects, the cfDNA profile was compared by EPIC-seq to the corresponding
PBMC transcriptome profile by RNA-Seq from the same blood specimen and computed the
RMSE for each of the 600 ensemble models. The weight of each model was then propartionally
scaled by the inverse RMSE of that model, with the final score then calculated as the linear sum
of 600 models, weighted as described above.

[0091] Identification of cancer type-specific genes was conducted using the TCGA and DLBCL
gene expression data sets in the form of RNA-Seq FPKM-UQ for all individuals using the GDC
API. After removing samples from individuals with a history of more than one type of
malignancy, were divided into two separate cohorts for training and validation (70% and 30% of
each cancer type respectively). In the training set for each cancer type, median gene expression
(FPKM-UQ) was calculated and protein coding genes in the upper 15th quantile were
considered as highly expressed genes. To remove potentially confounding effects in cfDNA
from variation in blood cells, genes within the upper 5" quantile of expression in peripheral blood
were excluded, when considering whole-blood transcriptome profiles from GTEX.

[0092] Gene selection for EPIC-Seq targeted sequencing panel design was determined with
known molecular subtypes exhibiting distinct gene expression profiles. Cancer-specific genes
for LUAD, LUSC, and DLBCL were included. To find subtype-specific genes in NSCLC,
differential expression analysis was performed using the DESeq2 package in R Bioconductor
to distinguish LUAD and LUSC tumor transcriptomes from the TCGA. For the lymphoma
analysis, a list of genes previously shown as differentially expressed between ABC and GCB
subtypes according to RNA-Seq gene expression data was used. In addition to these DLBCL
and NSCLC specific genes, 50 genes from the LM22 gene set were included capturing variation
in peripheral blood leukocyte counts. Together these and other control genes contributed to a
total of 179 unique genes, with each gene contributing one or more TSS regions to EPIC-Seq
totaling 236 targeted TSS regions.

[0093] Distinguishing lung cancer (EPIC-Lung classifier) was trained to distinguish lung cancer
from non-cancer subjects. All the TSSs for immune cell type and NSCLC histology classification
were used in this classifier. For genes with multiple TSS regions, in each iteration of cross-
validation, TSS regions were first combined with intra-gene correlation exceeding 0.95 and
capturing the mean. For those with correlation less than 0.95, individual TSS regions were
preserved as independent reporters. This resulted in 139 features in the model and 143 samples
(67 lung cancer cases and 71 controls). An £, — £, —regularized logistic regression model was
trained (‘elastic net’ with @ = 0.9) and an optimal A obtained by cross-validation. The full model
was evaluated through a leave-one-batch out (LOBO) model. Here, every batch contained at
least one sample, and representing a set of samples that were either captured and/or

sequenced together in one NGS sequencing lane.
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[0094] A NSCLC histology subtype classifier was designed to distinguish the two major
subtypes of non-small cell lung cancer, i.e., lung adenocarcinoma (LUAD) and lung squamous
cell carcinoma (LUSC). Similar to the model in ‘EPIC-Lung classifier’, the classification model
employs elastic net with a = 0.9, with multiple TSS sites corresponding to one gene being
merged. The performance of this classifier was evaluated via leave-one-out (LOO) analysis.
The classifier was trained using 80 features with 67 samples (36 LUADs and 31 LUSCs). To
evaluate performance, classification accuracy with equal weights was calculated.

[0095] The significance of the model coefficients in the NSCLC histology classifier from plasma
cfDNA using EPIC-Seq was assessed and their concordance with prior design from tumor
transcriptomes using RNA-Seq. Specifically, nonzero coefficients were compared from the
elastic net model from cfDNA profiling, and then performed a ttest for the LUAD genes
coefficients vs LUSC genes coefficients.

[0096] To predict benefit from immune checkpoint inhibitors, the differentially expressed TSSs
in a discovery pre-treatment cohort was indentified (non-ICl; lung cancer vs normal). The
following TSS regions from genes with Bonferroni-corrected P<0.25 with a 1-sided t-test were
nominated: (FOLR1 TSS#3, ITGA3 TSS#1, LRRC31 TSS#1, MACC1 TSS#1, NKX2-1 TSS#2,
SCNN1A TSS#2, SFTPB TSS#1, WFDC2 TSS#1, CLDN1 TSS#1, FSCN1 TSS#1, GPC1
TSS#1, KRT17 TSS#1, PFN2 TSS#1, PKP1 TSS#1, S100A2 TSS#1, SFN TSS#1, SOX2

TSS#2, TP63 TSS#2). Denoting the expression levels of these genes by §; = (xf", o x,?’) and

&, = (1, .., x.") for ime point ¢, and ¢;, respectively, (fold-change) statistics were defined as

5(§e,06e,) = logg where (.) is used to denote averaging the vector elements. For each patient,

to
empirical derivation of a null distribution for the s statistics by randomly selecting k sites from
the EPIC-Seq selector. An empirical left-sided P-value was then calculated to measure
response to therapy. The EPIC-seq dynamics score was then defined as the logarithm (base
10) of these empirical P-values.

[0097] A classifier was trained to distinguish DLBCL from non-cancer subjects using elastic-
net, with regularization parameters being set as in ‘EPIC-Lung classifier’. The dataset used for
LOBO cross-validation comprised 129 features and 167 samples (91 DLBCL cases and 71
controls).

[0098] For the classification of DLBCL COO, a GCB score was defined as follows: (1) within a
leave-one-out cross-validation framework, each gene expression was standardized (i.e. the Z-

score) and converted the Z-scores into probabilities, and then (2) defined a COO score as

1/|GCB| m——
Jiecce pi

—log10 (
1/lABCl/l_lieABc pi

EPIC-Seq selector design for DLBCL classification. To evaluate performance, the concordance

). Gene sets for each subtype were defined as originally selected in the
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was measured between EPIC-Seq scores and (1) genetic COO classification scores obtained
from CAPP-Seq, as well as (2) labels from Hans immunohistochemical algorithm.

[0099] Associations between known and predicted variables were measured by Pearson
correlation (r) or Spearman correlation (p) depending on data type. When data were normally
distributed, group comparisons were determined using t-test with unequal variance or a paired
I-test, as appropriate; otherwise, a two-sided Wilcoxon test was applied. To test for trend in
continuous variables vs categorical groups, Jonckheere's trend test was used as implemented
in the clinfun R package. Correction for multiple hypothesis testing was performed using the
Bonferroni method. Results with two-sided P < 0.05 were considered significant. Statistical
analyses were performed with R 4.0.1. Confidence intervals (Cl) are calculated by re-sampling
with replacement (i.e., bootstrapping). Receiver operating characteristic (ROC) curve analyses
were performed using the R package pROC. Survival analyses were performed using R
package survival. When dichotomized, Kaplan-Meier estimates were used to plot the survival
curves and statistical significance was evaluated by log-rank test. Otherwise, Cox proportional-
hazards models were fitted to the data to determine the significance of each co-variate.

[00100] In some embodiments, the invention provides kits for the classification, diagnosis,
prognosis, theranosis, and/or prediction of an outcome. The kit may further comprise a software
package for data analysis of the cellular state and its physiological status, which may include
reference profiles for comparison with the test profile and comparisons to other analyses as
referred to above. The kit may also include instructions for use for any of the above applications.

[00101]  Kits provided by the invention may comprise one or more of the affinity reagents
described herein, reagents for isolation and sequencing analysis of cfDNA, etc. A kit may also
include other reagents that are useful in the invention, such as modulators, fixatives, containers,
plates, buffers, therapeutic agents, instructions, and the like.

[00102]  Kits provided by the invention can comprise one or more labeling elements. Non-limiting
examples of labeling elements include small molecule fluorophores, proteinaceous
fluorophores, radioisotopes, enzymes, antibodies, chemiluminescent molecules, biotin,
streptavidin, digoxigenin, chromogenic dyes, luminescent dyes, phosphorous dyes, luciferase,
magnetic particles, beta-galactosidase, amino groups, carboxy groups, maleimide groups, oxo
groups and thiol groups, gquantum dots , chelated or caged lanthanides, isotope tags,
radiodense tags, electron- dense tags, radioactive isotopes, paramagnetic particles, agarose
particles, mass tags, e-tags, nanoparticles, and vesicle tags.

[00103]  In some embodiments, the kits of the invention enable the detection of signaling proteins
by sensitive cellular assay methods, such as IHC and flow cytometry, which are suitable for the

clinical detection, classification, diagnosis, prognosis, theranosis, and outcome prediction.
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[00104]  Such kits may additionally comprise one or more therapeutic agents. The kit may further
comprise a software package for data analysis of the physiological status, which may include
reference profiles for comparison with the test profile.

[00105]  Such kits may also include information, such as scientific literature references, package
insert materials, clinical trial results, and/or summaries of these and the like, which indicate or
establish the activities and/or advantages of the composition, and/or which describe dosing,
administration, side effects, drug interactions, or other information useful to the health care
provider. Such information may be based on the results of various studies, for example, studies
using experimental animals involving in vivo models and studies based on human clinical trials.
Kits described herein can be provided, marketed and/or promoted to health providers, including
physicians, nurses, pharmacists, formulary officials, and the like. Kits may also, in some

embodiments, be marketed directly to the consumer.

Reports
[00106]  In some embodiments, providing an evaluation of a subject for a classification, diagnosis,

prognosis, theranosis, and/or prediction of an outcome includes generating a written report that
includes the artisan’s assessment of the subject’s state of health i.e. a “diagnosis assessment”,
of the subject’s prognosis, i.e. a “prognosis assessment”, and/or of possible treatment regimens,
i.e. a “treatment assessment”. Thus, a subject method may further include a step of generating
or outputting a report providing the results of a diagnosis assessment, a prognosis assessment,
or treatment assessment, which report can be provided in the form of an electronic medium (e.g.,
an electronic display on a computer monitor), or in the form of a tangible medium (e.g., a report
printed on paper or other tangible medium).

[00107] A “report,” as described herein, is an electronic or tangible document which includes
report elements that provide information of interest relating to a diagnosis assessment, a
prognosis assessment, and/or a treatment assessment and its results. A subject report can be
completely or partially electronically generated. A subject report includes at least a diagnosis
assessment, i.e. a diagnosis as to whether a subject will have a particular clinical response,
and/or a suggested course of treatment to be followed. A subject report can further include one
or more of: 1) information regarding the testing facility; 2) service provider information; 3) subject
data; 4) sample data; 5) an assessment report, which can include various information including:
a) test data, where test data can include an analysis of cellular signaling responses to activation,
b) reference values employed, if any.

[00108]  The report may include information about the testing facility, which information is relevant
to the hospital, clinic, or laboratory in which sample gathering and/or data generation was
conducted. This information can include one or more details relating to, for example, the name

and location of the testing facility, the identity of the lab technician who conducted the assay
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and/or who entered the input data, the date and time the assay was conducted and/or analyzed,
the location where the sample and/or result data is stored, the lot number of the reagents (e.g.,
kit, etc.) used in the assay, and the like. Report fields with this information can generally be
populated using information provided by the user.

[00109]  The report may include information about the service provider, which may be located
outside the healthcare facility at which the user is located, or within the healthcare facility.
Examples of such information can include the name and location of the service provider, the
name of the reviewer, and where necessary or desired the name of the individual who conducted
sample gathering and/or data generation. Report fields with this information can generally be
populated using data entered by the user, which can be selected from among pre-scripted
selections (e.g., using a drop-down menu). Other service provider information in the report can
include contact information for technical information about the result and/or about the interpretive
report.

[00110]  The report may include a subject data section, including subject medical history as well
as administrative subject data (that is, data that are not essential to the diagnosis, prognosis, or
treatment assessment) such as information to identify the subject (e.g., name, subject date of
birth (DOB), gender, mailing and/or residence address, medical record number (MRN), room
and/or bed number in a healthcare facility), insurance information, and the like), the name of the
subject's physician or other health professional who ordered the susceptibility prediction and, if
different from the ordering physician, the name of a staff physician who is responsible for the
subject's care (e.g., primary care physician).

[00111]  The report may include a sample data section, which may provide information about the
biological sample analyzed, such as the source of biological sample obtained from the subject
(e.g. blood, type of tissue, etc.), how the sample was handled (e.g. storage temperature,
preparatory protocols) and the date and time collected. Report fields with this information can
generally be populated using data entered by the user, some of which may be provided as pre-
scripted selections (e.g., using a drop-down menu).

[00112]  The report may include an assessment report section, which may include information
generated after processing of the data as described herein. The interpretive report can include
a prognosis of the likelihood that the patient will develop tumor benefit from immune checkpoint
inhibitors. The interpretive report can include, for example, results of the analysis, methods used
to calculate the analysis, and interpretation, i.e. prognosis. The assessment portion of the report
can optionally also include a Recommendation(s). For example, where the results indicate the
subject’s prognosis for propensity to develop tumor benefit from immune checkpoint inhibitors.

[00113] It will also be readily appreciated that the reports can include additional elements or
modified elements. For example, where electronic, the report can contain hyperlinks which point

to internal or external databases which provide more detailed information about selected

29



WO 2021/231614 PCT/US2021/032046

elements of the report. For example, the patient data element of the report can include a
hyperlink to an electronic patient record, or a site for accessing such a patient record, which
patient record is maintained in a confidential database. This latter embodiment may be of interest
in an in-hospital system or in-clinic setting. When in electronic format, the report is recorded on
a suitable physical medium, such as a computer readable medium, e.g., in a computer memory,
zip drive, CD, DVD, etc.

[00114] It will be readily appreciated that the report can include all or some of the elements above,
with the proviso that the report generally includes at least the elements sufficient to provide the
analysis requested by the user (e.g., a diagnosis, a prognosis, or a prediction of responsiveness

to a therapy).

Computer aspects

[00115] A computational system (e.g., a computer) may be used in the methods of the present
disclosure to integrate and to analyze data generated from promoter fragment entropy and
normalized NDR depth. A computational unit may include any suitable components to analyze
the measured images. Thus, the computational unit may include one or more of the following:
a processor; a non-transient, computer-readable memory, such as a computer-readable
medium; an input device, such as a keyboard, mouse, touchscreen, etc.; an output device, such
as a monitor, screen, speaker, etc.; a network interface, such as a wired or wireless network
interface; and the like.

[00116] The raw data from measurements, such as promoter fragment entropy normalized NDR
depth and the like, can be analyzed and stored on a computer-based system. As used herein,
“a computer-based system” refers to the hardware means, software means, and data storage
means used to analyze the information of the present invention. The minimum hardware of the
computer-based systems of the present invention comprises a central processing unit (CPU),
input means, output means, and data storage means. A skilled artisan can readily appreciate
that any one of the currently available computer-based system are suitable for use inthe present
invention. The data storage means may comprise any manufacture comprising a recording of
the present information as described above, or a memory access means that can access such
a manufacture.

[00117] The analysis may be implemented in hardware or software, or a combination of both. In
one embodiment of the invention, a machine-readable storage medium is provided, the medium
comprising a data storage material encoded with machine readable data which, when using a
machine programmed with instructions for using said data, is capable of displaying a any of the
datasets and data comparisons of this invention. Such data may be used for a variety of
purposes, such as diagnosis, disease treatment and the like. In some embodiments, the

invention is implemented in computer programs executing on programmable computers,
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comprising a processor, a data storage system (including volatile and non-volatile memory
and/or storage elements), at least one input device, and at least one output device. Program
code is applied to input data to perform the functions described above and generate output
information. The output information is applied to one or more output devices, in known fashion.
The computer may be, for example, a personal computer, microcomputer, or workstation of
conventional design.

[00118]  Each program is preferably implemented in a high level procedural or object oriented
programming language to communicate with a computer system. However, the programs can
be implemented in assembly or machine language, if desired. In any case, the language can
be a compiled or interpreted language. Each such computer program is preferably stored on a
storage media or device (e.g., ROM or magnetic diskette) readable by a general or special
purpose programmable computer, for configuring and operating the computer when the storage
media or device is read by the computer to perform the procedures described herein. The
system can also be considered to be implemented as a computer-readable storage medium,
configured with a computer program, where the storage medium so configured causes a
computer to operate in a specific and predefined manner to perform the functions described
herein.

[00119] A variety of structural formats for the input and output means can be used to input and
output the information in the computer-based systems of the present invention. One format for
an output means test datasets possessing varying degrees of similarity to a trusted profile. Such
presentation provides a skilled artisan with a ranking of similarities and identifies the degree of
similarity contained in the test pattern.

[00120]  The data and analysis thereof can be provided in a variety of media to facilitate their
use. “Media” refers to a manufacture that contains the signature pattern information of the
present invention. The databases of the present invention can be recorded on computer
readable media, e.g. any medium that can be read and accessed directly by a computer. Such
media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc
storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage
media such as RAM and ROM; and hybrids of these categories such as magnetic/optical
storage media. One of skill in the art can readily appreciate how any of the presently known
computer readable mediums can be used to create a manufacture comprising a recording of
the present database information. "Recorded” refers to a process for storing information on
computer readable medium, using any such methods as known in the art. Any convenient data
storage structure can be chosen, based on the means used to access the stored information. A
variety of data processor programs and formats can be used for storage, e.g. word processing

text file, database format, etc.
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[00121] A variety of structural formats for the input and output means can be used to input and
output the information in the computer-based systems. Such presentation provides a skilled
artisan with a ranking of similarities and identifies the degree of similarity contained in the test
data.

[00122] Further provided herein is a method of storing and/or transmitting, via computer,
sequence, and other, data collected by the methods disclosed herein. Any computer or
computer accessory including, but not limited to software and storage devices, can be utilized
to practice the present invention. Sequence or other data (e.g., immune repertoire analysis
results), can be input into a computer by a user either directly or indirectly. Additionally, any of
the devices which can be used to sequence DNA or analyze DNA or analyze immune repertoire
data can be linked to a computer, such that the data is transferred to a computer and/or
computer-compatible storage device. Data can be stored on a computer or suitable storage
device (e.g., CD). Data can also be sent from a computer to another computer or data collection
point via methods well known in the art (e.g., the internet, ground mail, air mail). Thus, data
collected by the methods described herein can be collected at any point or geographical location

and sent to any other geographical location.

EXPERIMENTAL
[00123]  The following examples are given for the purpose of illustrating various embodiments of
the invention and are not meant to limit the present invention in any fashion. The present
examples, along with the methods described herein are presently representative of preferred
embodiments, are exemplary, and are not intended as limitations on the scope of the invention.
Changes therein and other uses which are encompassed within the spirit of the invention as

defined by the scope of the claims will occur to those skilled in the art.

Example 1

[00124] In this study, we introduce EPIC-Seq, a novel approach that leverages cell-free DNA
fragmentation patterns to allow non-invasive inference of gene expression, which can be used
for a wide variety of clinically relevant applications including tumor detection, subtype
classification, response assessment, and analysis of genes with prognostic implications.
Compared to EPIC-Seq, the sensitivity of previously described cfDNA fragmentomic techniques
and features has been insufficient to resolve expression of individual genes with high fidelity.
The approach described here achieves substantially improved performance by leveraging the
use of a new entropy-based fragmentomic metric (PFE), as well as higher sequencing depth
achieved through targeted capture of promoter regions of genes of interest.

[00125]  To allow inference of RNA expression levels from cfDNA fragmentomic features by

EPIC-Seq, we focused our efforts on capturing features of cfDNA at transcription sites that
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reflect epigenetically encoded signals from nucleosomal accessibility and positioning, since
these are key factors for determining transcriptional output. These fragmentomic signals
appeared strongest at promoters of actively expressed genes when profiling cfDNA by whole
genome sequencing motivating our TSS capture approach. However, we also observed
significant signal at exonic regions of actively expressed genes in whole exome seguencing,
suggesting opportunities to more broadly extend EPIC-Seq to study expression of genes of
interest. In addition, tissue- and lineage-specificity are also provided by several other epigenetic
signals that can be measured noninvasively, including 5mCpG and 5hmCpG modifications and
specific histone posttranslational modifications.

[00126]  As demonstrated below, EPIC-Seq is useful for a wide variety of clinically relevant
cancer classification problems. Importantly, we demonstrate the utility of the inferred gene
expression levels from EPIC-Seq using multiple independent lines of evidence. Specifically, we
describe significant correlations of EPIC-Seq signals not only with expectations from tissue
transcriptomic profiling, but also with disease burden as measured by total metabolic tumor
volume and mutation-based ctDNA analysis. Furthermore, we observed significant correlation
of EPIC-Seq signals with therapeutic responses to immunotherapy and chemotherapy, as well
as its ability to assess expression of prognostically informative genes.

[00127]  We focused on the noninvasive histological classification of lung cancers and the
molecular classification of aggressive B-cell lymphomas, two common and representative
cancer types where such classification is clinically routine but at times fraught by diagnostic
challenges. The robust performance that we observed for the accurate classification of each of
these tumor subtypes demonstrates that this approach can be broadly extended to other cancer
types and other pathologies. For example, despite the many diagnostic tools already available
in the United States, carcinomas of unknown primary (CUP) continue to represent some 2-5%
of incident cancers. EPIC-Seq provides means for the classification of such carcinomas using
non-invasive methods. Separately, the methods we describe have applications beyond cancer
for the noninvasive detection of signals from cell types, tissues, and pathways and pathologies
of interest. These include noninvasive strategies to detect tissue injury and ischemia, as well as
pharmacodynamic effects on specific therapeutically targeted pathways and toxicity profiles for
diverse human tissues that are otherwise difficult to monitor noninvasively (e.g., the brain and

gastrointestinal tract), before symptomatic tissue damage occurs.

Results

[00128]  Cell-free DNA features correlated with gene expression. We hypothesized that
c¢fDNA fragments from active promoters (which are less protected by nucleosomes) will exhibit
more random cleavage patterns than fragments from inactive promoters (which are more

protected by nucleosomes). If correct, this allows inferences about the expression of individual
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genes from cfDNA (Fig. 1a). To explore this hypothesis, we profiled cfDNA by relatively deep
WGS (~250x) from a patient with carcinoma of unknown primary (CUP) but very low levels of
ctDNA as quantified by personalized CAPP-Seq (<0.05%; Methods). Since the vast majority of
cfDNA molecules were therefore of hematopoietic origin, we correlated specific cfDNA
fragmentomic features to expression levels of peripheral blood leukocytes determined by RNA-
Seqg. We then ranked genes by their expression levels and characterized the distribution of
cfDNA fragments at their promoters (Fig. 1b). In support of our hypothesis, cfDNA molecules
mapping to the ~2kb region flanking the TSSs of highly expressed genes exhibit substantially
more fragment length diversity than fragments mapping to TSSs of poorly expressed genes.
This phenomenon is especially prominent in subnucleosomal fragments (<150bp and 210-
300bp, Fig. 1b and Figs. 6a-b).

[00129]  We reasoned that nucleosome displacement or depletion at the TSS of active genes
could result in more diverse digested fragments, and that estimating this diversity could inform
the corresponding expression level at individual gene TSS regions. We therefore captured this
diversity in cfDNA fragment lengths as an entropy measure, calculating a modified Shannon’s
index for fragment lengths at each gene’s TSS, a normalized metric that we call promoter
fragmentation entropy (PFE; Methods). We observed remarkably high transcriptome-wide
correlation between PFE measured in cfDNA by WGS and expression levels measured by RNA-
Seq of peripheral blood mononuclear cells (PBMCs; R=0.89, P<1E-16; Fig 1b-c). While
sequencing depth at the nucleosome-depleted regions flanking the TSS (NDR depth) was also
significantly correlated with gene expression of corresponding genes, it showed substantially
lower correlation than did PFE (Fig. 1b; r=-0.78, P<1E-16). The significant correlations between
RNA expression levels and fragmentomic features were only observed in ¢fDNA and not in
acoustically shorn high-molecular-weight genomic DNA from matched leukocytes (PFE
r=0.003; NDR r=0.24). Accordingly, the expression inferences from cfDNA fragmentation
profiles appear to reflect functional nucleosomal associations of DNA in vivo and are not
predictable from the primary DNA sequence alone. Furthermore, TSS regions were
distinguished from exonic and intronic by having the highest representation of subnucleosomal
fragments (P<0.0001, Fig. 6¢).

[00130]  We next compared several other cfDNA fragmentation features for correlation with gene
expression levels of peripheral blood leukocytes (Fig. 1d). While prior cfDNA profiling studies
have reported lower depth of sequencing coverage at nucleosome depleted regions (NDR)
within promoters of actively expressed genes, the correlation between PFE and expression was
stronger than the correlation between normalized NDR depth and expression (Fig. 1b,d). Aside
from the advantages of PFE for expression inferences made from cfDNA profiles using NDR
depth at TSS regions, PFE also outperformed other previously defined fragmentomic metrics
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including windowed protection score (WPS), motif diversity score (MDS), and orientation-aware
cfDNA fragmentation (OCF).

[00131]  We next examined whether the distance from the TSS impacts correlations between
cfDNA fragmentomic features and gene expression. When considering the 20kb region flanking
each promoter, we observed the peak correlation between ¢fDNA PFE and gene expression to
be centered at the TSS. However, in comparison to NDR, correlation of PFE with gene
expression had broader dispersion and extended into regions flanking the TSS (Fig. 1e). We
also investigated the impact of sequencing depth on correlations between cfDNA fragmentomic
signals and transcriptome-wide RNA expression. Interestingly, correlations plateaued around
~500x sequencing depth (Fig. 1f). Overall, these results indicated that cfDNA fragmentation
features are strongly correlated with RNA expression, and that PFE best captures this
correlation compared to the other metrics studied.

[00132]  We further confirmed our observations from WGS profiling of cfDNA by considering
fragmentomic profiles within exonic regions, including fist exons adject to the TSS. Specifically,
we profiled 5 cfDNA specimens — 2 from a patient with small cell lung cancer (SCLC), 2 with
castration-resistant prostaie cancer (CRPC), and 1 from a healthy adult — by whole exome
sequencing (WES) to target substantially higher depth (median unigue coverage depth ~2000x).
Remarkably, individual genes known io be differentially expressed in these tumor types
demonstrated the expected patierns of tumor-specific variation in their T3S regions (Methods).
Indeed, SCLC- and CPRC-specific patlerns were evident in the corresponding plasma ¢fDNA
fragmentation profiles, including in AR and ASCLY, well-known genes for CRPC and SCLT,
respectively (Fig. 1g). Nevertheless, these gene-level fragmentomic signals were discernable
in the context of high tumor burdens (ctDNA >10%) of these patients, perhaps due to the partial

representation of TSS regions that is inherent in the capture of first exons within WES.

[00133] Inferring gene expression from cfDNA fragmentation profiles. We next attempted
to predict gene expression from cfDNA fragmentomic features derived by WGS. When
considering diverse fragmentomic metrics, we identified PFE and normalized NDR depth as
complementary features predicting RNA expression in an ensemble generalized linear model
(Methods). Specifically, while ¢fDNA fragmentomic features were loosely correlated to each
other, PFE demonstrated better dynamic range for lowly expressed genes, while highly
expressed genes appeared better captured by normalized NDR depth (Fig. 6d). We then
validated this ensemble model by applying it to a fragmentomic ‘meta-profile’ assembled by
WGS profiling of plasma cfDNA from 27 healthy adults (Methods). Here again we observed
high correlation between model-predicted expression levels and observed measurements by
RNA-Seq of PBMCs when considering groups of 10 genes (r=0.9, Fig. 7a). Consistent with our

prior observations (Fig. 1f), these correlations deteriorated at lower sequencing depth in a
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manner that hampered resolution at the level of single genes (r=0.9 for 10-gene bins versus
0.79 for 3-gene bins versus 0.64 for individual TSSs; Figs. 7a-b).

[00134]  To validate the performance of our model in healthy versus cancer patients, we next re-
analyzed genome-wide cfDNA profiling data from 40 healthy adults and 46 patients with early-
stage lung cancers that were previously profiled by WGS at ~20-40x coverage. We observed
similar performance for predicting leukocyte gene expression levels when considering the
average cfDNA meta-profile across the genome in the 40 healthy subjects (Figs. 7c-d). When
considering groups of 10 genes across the transcriptome, Pearson correlations between model
predicted expression and expected RNA expression levels from PBMCs remained ~0.85.

[00135]  However, gene expression levels inferred from plasma cfDNA fragmentomic profiles of
lung cancer patients were lower compared to PBMC transcriptomes (P=0.018; Fig. 7e).
Hypothesizing that the lower correlation in lung cancer may be driven by an increased
contribution of lung cancer-derived fragments, we used tumor fraction estimates by ichorCNA
and observed a significant negative correlation with inferred leukocyte expression levels (r=-
0.69, P= 0.0005, Fig. 7). This experiment demonstrates that tumor-derived cfDNA can
substantially reduce the contribution of the leukocyte compartment to the cell-free nucleic acid
pool, and this contribution can be measured by inferring tissue-specific gene expression from
cfDNA when tumor burden is high.

[00136]  Epigenetic inference of expression by targeted deep cfDNA sequencing (EPIC-
Seq). Based on our observation that PFE and NDR correlated better with gene expression at
higher WGS sequencing depths (Fig. 1f), we next set out to develop a method allowing
prediction of expression at the level of individual genes by deeper profiling of TSS regions. To
do so, we devised a new approach — EPigenetic expression Inference from Cell-free DNA
Sequencing (EPIC-Seq) — that combines hybrid capture-based targeted deep sequencing of
TSS regions in cfDNA with machine learning for predicting RNA expression (Fig. 2a). The TSS
regions targeted in an EPIC-Seq experiment are tailored to include genes expected to be
differentially expressed in the conditions of interest (e.g., cancer versus normal, histologic
subtype A vs subtype B, etc.)

[00137]  We tested this framework by applying EPIC-Seq to two cancer classification problems
using cfDNA: 1) noninvasively distinguishing histological subtypes of the most common solid
tumor (Non-Small Cell Lung Cancer [NSCLC]), and 2) resolving molecular subtypes of the most
common hematological malignancy (Diffuse Large B-Cell Lymphoma [DLBCL]). For each of
these malignancies, we first identified genes highly expressed in tumor tissues, but with
relatively low expression in whole blood (Methods). We then identified subtype-specific genes
by evaluating those differentially expressed in NSCLC adenocarcinoma (LUAD) versus

squamous cell carcinoma (LUSC) and DLBCL germinal center B- (GCB) versus activated B-cell
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(ABC) like subtypes. Specifically, we identified 69 differentially expressed genes (DEGs) when
stratifying 1,156 NSCLC tumors by histological subtype from The Cancer Genome Atlas (TCGA;
n=601 LUAD vs n=555 LUSC, Fig. 2b, Table 2). We separately identified 44 DEGs when
stratifying 381 DLBCL tumors by molecular cell-of-origin (COQ) subtype from prior publications
(n=138 GCB vs n=243 ABC, Fig. 2¢, Table 2). In addition to these 113 genes for classification
of lung cancers and lymphoma subtypes, we also included 50 genes that are differentially
expressed in leukocyte subsets as well as 16 genes as additional controls (Methods).

[00138] For each gene of interest, we designed probes to capture the ~2kb region flanking the
TSS, then profiled plasma cfDNA from by deep sequencing of the targeted regions to a median
~2,000x unigue depth of coverage as previously described. In cfDNA fragmentomic profiles
captured by WGS, we observed marginal gains in transcriptome wide correlations beyond
~500x nominal coverage depth (Fig. 1f). Nevertheless, for our EPIC-Seq experiments and our
modestly sized panel, we targeted ~2000x unique depth (~4-fold excess) for three reasons: (1)
to guarantee saturation of the correlation plateau, (2) to avoid any gene-to-gene variability in
accuracy of EPIC-Seq predictions of expression levels that might otherwise be attributable to
spurious differences in depth variability due to non-uniform hybrid capture of the TSS regions
of genes of interest, and (3) to address the lower partial concentration of ¢fDNA from non-
hematopoietic tissues in circulation.

[00139]  Using this workflow, we then profiled 307 plasma cfDNA samples, of which 263 were
used for testing EPIC-Seq in different applications (Fig. 8a). This final set comprises 233 adults
(Fig. 8a-b), including 67 patients with NSCLC (n=78 samples), 91 patients with DLBCL (n=100
samples), and 68 otherwise healthy subjects (n=71 samples). Using a custom EPIC-Seq
analytical pipeline (Methods), we computed ¢fDNA fragmentomic features for each gene of
interest, and then estimated its predicted RNA expression level (Fig. 2a). To explore the ability
of EPIC-Seq to infer the expression of individual genes, we next evaluated expression of NKX2-
1 (TTF1), a gene highly expressed in LUAD and useful in histopathological diagnosis, and
MS4A1 (CD20), a gene highly expressed in DLBCL and useful for immunophenotyping and
classification of lymphomas. Remarkably, the predicted expression level for NKX2-1 was
significantly higher in plasma from patients with NSCLC-LUAD (Wilcoxon test P=4.2E-6; Fig.
2d). Conversely, the predicted expression level for MS4A1 was significantly higher in plasma
from patients with DLBCL (Wilcoxon test P=4.2E-14; Fig. 2e). Collectively, these results
demonstrate that inference of expression is accomplished by targeted deep cfDNA sequencing
using EPIC-Seq, and that this framework can recover expected differences in tissue-derived

expression at single-gene resolution.

[00140]  EPIC-Seq for lung cancer detection. We next evaluated whether EPIC-Seq might

have utility for cancer classification problems, starting with lung cancer, the leading cause of
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cancer-related death in both men and women. We asked whether noninvasive classification of
NSCLC cases versus healthy controls was feasible from ¢cfDNA using EPIC-Seq. A classifier
trained on EPIC-Seq data to distinguish NSCLC patients (n=67, stage Il (n=7), stage Il (n=30)
and stage 1V (n=30)) from non-cancer controls (n=71) revealed robust performance (EPIC-Lung
AUC=0.91, 95% CI: 0.86-0.96 based on leave-one-out cross validation) when considering 141
TSS sites from 117 genes (Fig. 3a; Methods).

[00141]  Epigenetic signals in cfDNA captured by our EPIC-Seq lung cancer classifier were
significantly correlated with total metabolic tumor volumes (MTV), as measured by
'®Fluorodeoxyglucose (FDG) uptake in combined positron emission tomography and computed
tomography studies (PET/CT; p=0.67; P=0.04; Fig. 9a), consistent with higher ctDNA
concentrations in patients with larger tumor burdens. We also compared lung cancer epigenetic
signals from EPIC-Seq in ¢fDNA with corresponding lung tumor-derived mutation signals from
ctDNA separately measured by CAPP-Seq. Here again, EPIC-Seq lung signals in cfDNA
seemed to capture tumor burden, as we observed significant correlation with the mean allelic
fractions (AF) of tumor-derived somatic mutations measured by CAPP-Seq on the same
specimens (p=0.5, P=3E-5; Fig. 9b). While most of the patients we profiled had advanced
NSCLC, our classifier showed a statistical trend for stage lll-IV cases having higher scores
compared to stage Il cases (P=0.08; Fig. 3b). We also assessed the importance of ¢tDNA
concentration for the classifier's performance. When binning cases by ctDNA concentrations
determined using mutations (CAPP-Seq), the EPIC-Seq lung classifier achieved ~34%
sensitivity at 95% specificity when allelic levels were below 1% and ~86% sensitivity when
ctDNA concentration exceeded 5% mean AF (Fig. 3c). These results collectively demonstrate
that RNA expression from lung tumors inferred by EPIC-seq can distinguish lung cancer cases

from non-cancer individuals and correlate with tumor burden.

[00142]  Noninvasive classification of NSCLC subtypes. Adenocarcinomas (LUAD) and
squamous cell carcinomas (LUSC) represent the two most common histological subtypes of
NSCLC and differentiating between them is an important step in determining the optimal
treatment for patients. Currently the morphologic and immunophenotypic criteria used for this
classification are determined using tissue specimens, but invasive evaluation can be fraught by
diagnostic challenges and by procedural risks. Importantly, to the best of our knowledge,
currently available mutation-based liquid biopsy methods are unable to reliably distinguish
between LUAD and LUSC.

[00143]  We therefore asked whether such classification could be performed non-invasively using
EPIC-Seq. In a cohort of 67 NSCLC patients, a regression classifier for distinguishing
histological subtypes (LUAD n=36; LUSC n=31) was trained on EPIC-Seq data and
demonstrated robust performance in cross-validation studies (AUC=0.90, 95% CI: 0.83-0.97;
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Fig. 3d; Methods). The genes with largest coefficients and therefore strongest impact on the
classification included canonical markers for LUAD (SLC34A2, NKX2-1 [TTF1]) and LUSC
(SOX2), thus confirming biological use of the classifier (Methods, Fig. 3e).

[00144]  We evaluated the histology classifier's accuracy as a function of ctDNA levels as
determined by CAPP-Seq (Methods) and as expected observed performance to be correlated
with ctDNA concentration (Fig. 3f). Specifically, accuracy was highest at mean AFs above 5%
(87%), with slight deterioration at levels between 1-5% (81%), and below 1% (73%) (Fig. 3f).
These results demonstrate that inference of lung cancer expression differences by EPIC-seq
allows for the noninvasive histological classification of NSCLC and that this framework appears

robust across a range of ctDNA concentrations.

[00145]  Predicting response to PD-(L)1 immune-checkpoint inhibition. For patients with
advanced NSCLC, therapeutic blockade of programmed death 1 and programmed death-ligand
1 (PD-[L]1) signaling using monoclonal antibodies has shown remarkable promise. Trials
combining PD-(L)1 blockade with cytotoxic therapy or with other immune checkpoint inhibition
(ICI) strategies have demonstrated improved response rates at the risk of higher toxicity. Since
only a minority of NSCLC patients achieve durable benefit from ICI, there is a critical unmet
need for reliable biomarkers that can accurately identify these patients before or early during
ICI therapy.

[00146]  We therefore performed an exploratory analysis to test the biological plausibility of
tracking fragmentomic features as informative for therapeutic response monitoring. Specifically,
we tested whether early, non-invasive assessment of response to PD-(L)1 immune-checkpoint
inhibitors might be feasible using EPIC-Seq. To do so, we analyzed 22 longitudinal blood
specimens from 11 NSCLC patients treated with PD-(L)1 blockade using EPIC-Seq. Samples
were collected immediately before PD-(L)1 therapy and within the first four weeks of therapy
initiation (Fig. 3g). We developed a ‘lung dynamics index’ from EPIC-Seq predicted gene
expression as a function of therapeutic benefit from ICI (Methods). This index demonstrated
strong correlation to mutation-based response assessment using CAPP-Seq on the same
specimens (r=0.77, P=0.006, Fig. 3h). The EPIC-seq lung dynamics index was also able to
distinguish patients achieving durable clinical benefit (DCB; defined as no progression for at
least 6 months after start of therapy) from those with no durable clinical benefit (NDB) achieving
an AUC of 0.93, 95% ClI: 0.78-1 (Fig. 3i). Of note, within the limitations of this small cohort, we
also observed a significant and continuous association of EPIC-Seq classifier scores with
progression-free survival (Wald P=0.046).

[00147]  Noninvasive DLBCL quantitation using EPIC-Seq. Diffuse large B cell lymphoma
(DLBCL) is the most common Non-Hodgkin's lymphoma (NHL) and displays remarkable clinical
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and biological heterogeneity. While aspects of this heterogeneity can be captured by clinical
risk indices such as the International Prognostic Index, gene expression profiling, or genotyping
of primary tumor biopsies, it remains unclear whether such stratification is feasible using less
invasive approaches.

[00148]  We therefore analyzed pre-treatment blood samples from DLBGL patients using EPIC-
Seq and tested whether epigenetic signals in cfDNA allow noninvasive detection of DLBCL
cases, distinguishing cancer patients from healthy controls. Here again, a regression classifier
trained on EPIC-Seq data to distinguish DLBCL patients (n=91) from non-cancer controls (n=71)
revealed robust performance (EPIC-DLBCL AUC=0.92, 95% CI 0.88-0.97 from leave-one-out
cross validation; Fig. 4a; Methods). We observed a significant graded relationship between
scores from this epigenetic classifier and the Revised International Prognostic Index (R-IPI;
Jonckheere’s trend test P=0.004; Fig. 4b). Separately, for patients with available PET/CT
scans, we also observed a significant trend for scores from the epigenetic classifier in
distinguishing patients with high versus low tumor burden as measured by total MTV (Wilcoxon
P=0.015; Fig. 10a).

[00149]  To further evaluate how EPIC-Seq scores reflect tumor burden in cfDNA, we compared
them with the mean allele fractions (AFs) of mutations previously measured by CAPP-Seq on
the same blood specimens. Notably, DLBCL epigenetic scores determined by EPIC-Seq were
strongly correlated with the mean mutant AFs determined by CAPP-Seq (p=0.67, P<2E-16; Fig.
10b). We also evaluated the performance of our classifier at various ctDNA levels. Specifically,
when trying to distinguish lymphoma cases from non-lymphoma subjects as controls and
considering various mean AF thresholds determined by CAPP-Seq, we calculated the
sensitivity for DLBCL detection at 95% specificity. While EPIC-Seq’s sensitivity was strongly
related to mean AF and showed most robust performance at ctDNA levels above 1%, we
observed ~40% detection of DLBCL cases where mean AF was below 1% before therapy (Fig.
4c).

[00150]  To assess the relationship between epigenetic signals and somatic mutations during
DLBCL therapy and their stability over time, we next profiled serial blood samples from 2
patients shortly after induction therapy with curative intent using both EPIC-Seq and CAPP-Seq
(n=12; Fig. 4d-e). Again, we observed strong and significant correlations between DLBCL
EPIC-Seq scores and ctDNA concentrations over time in both patients (p=0.79, P=0.004, Fig.
10¢), despite the administration of combined chemoimmunotherapy and the substantial
attendant changes in leukocyte blood counts. Collectively, these results illustrate that
expression inferences by EPIC-seq can noninvasively detect tissue-derived DLBCL signals and

faithfully reflect disease burden before and after DLBGL therapy.
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[00151]  DLBCL cell-of-origin classification. Most DLBCL tumors can be classified into two
transcriptionally distinct molecular subtypes, each derived from a specific B cell differentiation
state (cell of origin [COQ]): germinal center B cell-like (GCB) and activated B cell-like (ABC).
These subtypes are prognostic with significantly better outcomes observed in patients with GCB
tumors, and may also predict sensitivity to emerging targeted therapies. While this classification
of DLBCL is among the strongest prognostic factors and a potential biomarker for future
personalized therapies, accurate subtyping remains challenging in clinical settings.

[00152]  We therefore used EPIC-Seq profiling to develop a noninvasive COO classifier from
pretreatment plasma. By considering differentially expressed genes in GCB or non-GCB (ABC)
DLBCL and targeted by our panel, we built a probabilistic COO classifier similar to the ones
described above (Methods). When we benchmarked this classifier's performance in our cohort
of 90 DLBCL patients, we observed epigenetic scores to be significantly correlated with
previously described mutation-based GCB scores (p=0.75, P=1E-5, Fig. 5a). When comparing
patients classified by the more commonly clinically used immunohistochemical Hans
classification algorithm, we observed a significantly higher COO score for GCB cases compared
with Non-GCB (n=66, Wilcox P=0.001, Fig. 5b). Comparing the expected prognostic power of
epigenetic and mutation-based COQ scores using univariate Cox regressions, we observed a
stronger association between EPIC-Seq GCB scores and favorable outcomes in the frontline
therapy cases (n=70, EPIC-Seq: HR=0.13, P=0.033 vs CAPP-Seq: HR=0.95, P=0.62). Indeed,
when stratified by the median GCB score in a Kaplan-Meier analysis, patients with higher GCB
scores had significantly better outcomes (log-rank P=0.013, Fig. 5¢). Among patients analyzed
by both immunohistochemistry and DNA genotyping, the Hans algorithm failed to stratify patient
clinical outcomes, demonstrating more accurate classification by our approach (Fig 10d).
Overall, these results show that EPIC-Seq has utility for noninvasive classification of DLBCL
cell-of-origin and can stratify patients better than both the genetic COO classifier and the Hans

algorithm.

[00153]  Determining prognostic power of individual genes with EPIC-Seq. Expression
profiling studies for a variety of tumor types have identified the prognostic power of individual
genes for both risk stratification and therapeutic management. In DLBCL, prior studies have
validated the prognostic utility of several key genes in relatively large patient populations that
were homogenously treated with modern combination immune-chemotherapy using R-CHOP.
These studies have relied on expression profiling from tumor biopsy specimens, which can be
hampered by limitations of RNA sample quality and quantity.

[00154]  Therefore, we wished to evaluate the utility of EPIC-Seq for noninvasively measuring
expression of genes with prognostic associations in DLBCL. Using univariate Cox proportional

hazard regression models, we tested the prognostic value of individual genes using pre-
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treatment blood plasma from 69 patients and used Z-scores to measure the relative strength of
these associations. We first assessed the prognostic concordance of our results in blood plasma
against primary tumor specimens by examining the correlation between our EPIC-Seq results
with those described in 3 recent tumor expression profiling studies that relied on surgical DLBCL
tissue specimens. When compatring the prognostic value of genes profiled in this manner, we
observed a significant correlation of Z-scores from our study using plasma cfDNA with prior
studies using tumor RNA (P=0.026; Fig. 10e).

[00155]  Within our cohort, only LMOZ2 emerged as significantly associated with progression-free
survival after correction for multiple hypothesis testing (nominal P=7.5E-6, corrected P=0.0055;
Fig. 5d). This is consistent with prior data on its robust prognostic effect in DLBCL. LMOZis an
oncogene consisting of six exons, of which three nearest the 3’ end are protein coding. Inclusion
of the three noncoding 5° LMOZ2 exons is governed by alternative proximal, intermediate, and
distal promoters. When comparing predicted expression from each of these alternative
promoters for prognostic strength in DLBCL using EPIC-Seq, only the distal TSS
(GRCh37/hg19-chr11:33,913,836) showed a significant association with outcome (Fig. 5e).
Higher predicted expression from the distal TSS of LMOZ2 remained prognostic of more
favorable outcomes in multivariable Cox regression after adjusting for IPl and ctDNA level (Fig.
5e). This result is consistent with the known importance of the distal LMOZ2 promoter in driving
expression of LMOZ in human tumors, as evidenced by retroviral insertional mutagenic events
observed in human gene therapy ftrials and chromosomal rearrangements mediating
lymphomagenesis. Collectively, these observations indicate that EPIC-Seq has utility for
noninvasively measuring the expression and prognostic value of individual genes and for

resolving their individual TSS regions.

[00156]  Materials and Methods

[00157]  Human subjects & Cohorts. Study overview. All samples analyzed in this study were
collected with informed consent from subjects enrolled on Institutional Review Board-approved
protocols complying with ethical regulations at their respective centers, as detailed below.
Fragmentomic features used for EPIC-Seq were established and initially tested by profiling
cfDNA through whole genome sequencing (WGS) and whole exome sequencing (WES), as
tabulated in Table 1. These WGS and WES cfDNA profiling data derived from 125 subjects that
were either generated for this study (n=30), or from publicly available datasets (n=95). For initial
model development and c¢fDNA fragmentomic feature selection, we profiled ¢fDNA from a
patient with carcinoma of unknown primary (CUP) by deep WGS at 2 time points (pre-treatment
and relapse), from one patient with advanced SCLC (deep WES), and analyzed 9 cases with
CRPC (WES). For initial validation analyses using WGS cfDNA fragmentomics, we reanalyzed

samples from 67 healthy controls and 47 cancer patients previously described 15. After
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identification and initial validation of the key cfDNA fragmentomic signals informative for
predicting gene expression in the 125 subjects described above by WGS/WES, EPIC-seq was
then applied to 249 blood samples from 158 cancer patients and 68 healthy adults, as detailed
below. To select genes for the EPIC-Seq capture panel, we analyzed publicly available gene
expression datasets for 1156 lung cancers from The Cancer Genome Atlas and for 381
lymphomas from Schmitz et al., as described below.

[00158] Healthy subjects & Non-Cancer controls: To identify and validate cfDNA fragmentomic

features informing gene expression prediction, WGS was performed in 27 healthy subjects.
These subjects were profiled at varying pre-specified coverage depths (~1-5x, n=24; ~18-25x,
n=3), thereby allowing construction of meta-profiles for expression inferences, as described
below (see ‘Gene expression inference model). We separately profiled 71 peripheral blood
samples from 68 subjects without cancer using EPIC-Seg. Among these subjects, 20 (29%)
qualified for lung cancer screening using low-dose CT (LDCT) due to a history of heavy smoking

(230 pack years) and age (55-80 years).

EPIC-seq Cancer cohorts

[00159] Lung Cancer Cohort: EPIC-Seq was applied to 78 blood samples from 67 patients
diagnosed with NSCLC. Among these patients, 31 (46%) had a histological diagnosis of LUSC,
while 36 (54%) patients had LUAD histology. Samples were collected at Stanford University,

The University of Texas MD Anderson Cancer Center, or Memorial Sloan Kettering Cancer
Centers, with patient characteristics outlined in Figure 8b. A subset of patients with advanced
NSCLC (n=11) was treated with PD-(L)1 blockade-based immune checkpoint inhibition and had
serial pre- and on-treatment samples available. These patients had stage |V disease and were
treated with PD-(L)1 blockade-based ICI.

[00160]  DLBCL Cohort: EPIC-Seq was also applied to 100 samples from 91 patients diagnosed
with large B-cell lymphoma. Samples were collected at Stanford Cancer Center, CA, USA; MD
Anderson Cancer Center, TX, USA; Dijon, France; Novara, Italy; and within the Phase IlI
multicenter PETAL trial, with baseline characteristics tabulated in Figure 8b.

[00161]  Patient with carcinoma of unknown primary (CUP): To assess with high resolution the

relationship between fragmentomic features and gene expression we compared deep whole
genome sequencing data and RNA-sequencing data of a patient with extremely low tumor
burden. Tumor fraction was estimated using a tumor-informed plasma variant detection
strategy. First, the patient’s tumor germline DNA were prepared for exome capture using the
lllumina Nextera Rapid Capture Exome Kit and sequenced on an lllumina Nextseq 500 machine
using paired-end sequencing and 75-bp read lengths. Single nucleotide variant (SNV) calling
was performed using Mutect and annotated by Annovar. A personalized targeted sequencing

panel was generated using 120-bp IDT oligos overlapping SNVs detected in the tumor and
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applied to the tumor and germline sample. The variant set selected for monitoring consisted of
36 SNVs that both passed tumor/germline quality control filters and were present in at least
10% allele frequency in the tumor. The patient’s plasma sample was sequenced on an lllumina
NovaSeq machine, achieving a de-duplicated depth of 4000x. The time point used in this study
had a monitoring mean allele frequency of 0.056% which is significantly lower than the lower

limit of detection of disease at 250x coverage.

[00162]  Clinical variables. Histopathology. Histological subtypes of each tumor type (NSCLC,
DLBCL) profiled in this study were established according to clinical guidelines using microscopy
and immunohistochemistry and served as ground truths for assessing classification
performance by trained pathologists. COO subtypes of DLBCL were assessed based on the
Hans classifier per WHO guidelines. For NSCLC and DLBCL subtypes profiled in prior studies
by RNA-Seq, we relied on subtype labels from the TCGA (for LUAD vs LUSC subtypes of
NSCLC) or from Schmitz el al. (for GCB vs ABC subtypes of DLBCL).

[00163]  Metabolic tumor volume (MTV) measurement. Pre-treatment tumor MTV was measured
from FDG PET/CT scans, using semiautomated software tools as previously described for
NSCLC via MIM by using PETedge and DLBCL, respectively. Regional volumes were
automatically identified by the software and confirmed by visual assessment of the expert to
confirm inclusion of only pathological lesions.

[00164] Clinical Qutcomes. Event-free survival (EFS) and overall survival (OS) were calculated
from time of treatment initiation. OS events were death from any cause; EFS events were
progression or relapse, unplanned retreatment of lymphoma and death resulting from any
cause. Patients with NSCLC receiving PD(L)1 directed therapy were labeled as NDB or DCB
for ‘experiencing progression or death’ and ‘durable clinical benefit' within six months,

respectively.

[00165]  Specimen collection & Molecular profiling. Plasma collection & processing.
Peripheral blood samples were collected in K;:EDTA or Streck Cell-Free DNA BCT tubes and
processed according to local standards to isolate plasma before freezing. Following
centrifugation, plasma was stored at -80°C until cfDNA isolation. Cell-free DNA was extracted
from 2 to 16 mL of plasma using the QlAamp Circulating Nucleic Acid Kit (Qiagen) according to
the manufacturer’s instructions. After isolation, cfDNA was guantified using the Qubit dsDNA
High Sensitivity Kit (Thermo Fisher Scientific) and High Sensitivity NGS Fragment Analyzer
(Agilent).

[00166]  c¢fDNA sequencing library preparation. A median of 32 ng was input into library
preparation. DNA input was scaled to control for high molecular weight DNA contamination. End

repair, A-tailing, and custom adapter ligation containing molecular barcodes were performed
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following the KAPA Hyper Prep Kit manufacturer’s instructions with ligation performed overnight
at 4°C as previously described. Shotgun c¢fDNA libraries were either subjected to whole genome
sequencing (WGS) and/or subjected to hybrid capture of regions of interest as described below.

[00167]  Hybrid capture & Sequencing. Exome capture: For Whole Exome Sequencing (WES),
shotgun genomic DNA libraries were captured with the xGen Exome Research Panel v2 (IDT)
per manufacturer's instructions with minor modifications. Hybridization was performed with
500ng of each library in a single-plex capture for 16 hours at 65°C. After streptavidin bead
washes and PCR amplification, post-capture PCR fragments were purified using the QlAquick
PCR Purification Kit per manufacturer's instructions. Eluates were then further purified using a
1.5X AMPure XP bead cleanup.

[00168]  Custom capture panels: We used CAPP-Seq to establish ctDNA levels, by genotyping

of somatic variants including single nucleotide mutations. We used entity-specific CAPP-Seq
capture panels for DLBCL or NSCLC (SeqCap EZ Choice, Roche NimbleGen), or personalized
CAPP-Seq selectors for CUP (IDT), as previously described. Similarly, for EPIC-Seq, we used
the SeqCap EZ Choice platform (Roche NimbleGen) to target TSS regions of genes of interest,
as described below. Enrichment for WES, CAPP-Seq, and EPIC-Seq was done according to
the manufacturers’ protocols. Hybridization captures were then pooled, and multiplexed
samples were sequenced on lllumina HiSeq4000 instruments as 2 x 150bp reads.

[00169]  ANA-Seq. The lllumina TruSeq RNA Exome kit was used for RNA-seq library
preparation starting from 20ng of input RNA, per manufacturer’s instructions. When using
peripheral blood as a source of leukocyte RNA, we used either plasma-depleted whole blood
(PDWB) with globin depletion, or enriched PBMCs without globin depletion. In brief, total RNA
was fragmented, and stranded cDNA libraries were created per the manufacturer’s protocol.
The RNA libraries were then enriched for the coding transcriptome by exon capture using
biotinylated oligonucleotide baits. Hybridization captures were then pooled, and samples were
sequenced on an lllumina HiSeq4000 as 2 x 150bp lanes of 16-20 multiplexed samples per
lane, yielding ~20 million paired end reads per case. After demultiplexing, the data were aligned
and expression levels summarized using Salmon to GENCODE version 27 transcript models.
We separately studied tumor RNA-Seq data to identify differentially expressed genes of interest
for EPIC-Seq panel design, as described in detail below.

[00170]  Data analysis methods. Mapping, deduplication and quality control of TSS sites and
sample. FASTQ files were demultiplexed using a custom pipeline wherein read pairs were
considered only if both 8-bp sample barcodes and 6-bp UIDs matched expected sequences
after error-correction. After demultiplexing, barcodes were removed, and adaptor read-through
was trimmed from the 3' end of the reads using fastp to preserve short fragments. Fragments

were aligned to human genome (hg19) using BWA; importantly, we disabled the automated
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distribution inference in BWA ALN to allow inclusion of shorter and longer cfDNA fragments that
would otherwise be anomalously flagged as improperly paired. We removed PCR duplicates
using a customized barcoding approach, which combines endogenous and exogenous unique
molecular identifiers (UMIDs), including cfDNA fragment start and end positions, as well as pre-
specified UMIDs within ligated adapters into account. To allow coverage uniformity for
comparisons, we down-sampled data to 2000x depth using ‘samtools view -s’. Since in-silico
simulations showed >500x sequencing depth to be required for achieving reasonable
correlations between entropy and expression, we considered any samples not meeting this
depth threshold (median depth) as failing quality control (QC). Any samples whose cfDNA
fragment length density mode was below 140 or above 185 were also removed, since the
expected fragment length density mode is 167 (corresponding to the chromatosomal DNA
length). Together, these two criteria removed 21 samples as not meeting QC. To identify and
censor noisy sites among the 236 TSS regions profiled by our EPIC-Seq panel, we profiled 23
controls (Table 2), allowing us to identify and remove stereotyped regions with reproducibly low

TSS coverage (i.e., any site with CPM less than one third of uniformly distributed coverage

across the TSSs in the selector, i.e., ;TOZ X % in more than 75% of controls). This removed two

TSS sites in FOXOT1 and SFTAZ2 as not meeting QC.

[00171]  To guarantee adequate quality of fragments entering analysis, we required mapping
quality (MAPQ, k) of >30 or >10 in the WGS and EPIC-Seq data, respectively (using ‘samtools
view -q k -F3084’). The more lenient EPIC-seq MAPQ threshold was gualified by more stringent
mappability and uniqueness requirements already imposed on the TSS regions selected during
EPIC-seq selector design. We also limited the analysis to reads with the following BAM FLAG
set: 81, 93, 97, 99, 145, 147, 161, and 163. To ensure removal of non-unigue fragments, reads
with duplicate names were censored.

[00172] Fragmentomic feature extraction & summarization. We considered 5 cfDNA
fragmentomic features at TSS regions and then compared each of these features to gene
expression, including Window Protection Score (WPS), Orientation-aware CfDNA
Fragmentation (OCF), Motif Diversity Score (MDS), Nucleosome depleted region score (NDR),
and Promoter Fragmentation Entropy (PFE, introduced here). MDS, NDR, OCF, and WPS were
each computed as per the conventions of the originally describing studies with minor
modifications, as detailed below.

[00173]  MMotif diversity score (MDS). We performed end-motif sequence analysis of individual

cfDNA fragments to assess the distribution of nucleotides among the first few positions for the
reads of each read pair, as previously described. This was performed by computationally
extracting the first four 5’ nucleotides of the genomic reference seguence for each sequence
read, resulting in a 4-mer sequence motif. MDS was then computed as the Shannon index of

the distribution across 256 motifs (4-mers) at each TSS site, when considering fragments
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overlapping the 2kb window flanking each TSS. Of note, the first four 3" nucleotides were not
used as these may be altered by end-repair during library preparation and may not reflect the
native genomic sequence.

[00174]  Nucleosome depleted region score (NDR). To guard against variations in depth across

the genome, including from GC-content variation or somatic copy number changes, depth was
normalized within each 2-kilobase window flanking each TSS (-1000 to +1000 bp) in counts per
million (CPM) space. We denote this normalized measure as nucleosome depleted region
score, NDR, for each TSS.

[00175] Promoter fragmentation eniropy (PFE)

[00176]  Shannon entropy was used to summarize the diversity in cfDNA fragment size values in
the vicinity of each TSS site (-1Kbps (upstream) to +1Kbps (downstream)). We defined 201
size-bins [from b, = 100bps to b,,; = 300bps] and estimated the density by the maximum-

likelihood, i.e., P = [pq, .., P201] With B, = %where n; and n denote the number of fragments with

length b; and total number of fragments at the TSS, respectively. Shannon’s entropy was
calculated as —Yp,log,p, and then normalized as follows. To account for variations in
sequencing depth from sample to sample as well as other hidden factors impacting overall
cfDNA fragment length distributions that might confound PFE, we defined a relative entropy
using a Bayesian approach through a Dirichlet-multinomial model. In this model, fragment size
profiles in a given cfDNA sample are assumed to follow a multinomial distribution (p) whose
probability mass function is itself governed by a Dirichlet distribution, p~Dirichlet(a), where
vector a represents the parameter vector of the Dirichlet distribution. Here, we first used a set
of genes to create a background fragment length density as a. For the background distribution,
we focused on two flanking regions, (a) -1Kbps (upstream) to -750bps (upstream) and (b) from
+750bps (downstream) to +1Kbps (downstream). The fragments that fell within those regions
were used for the background fragment length distributions. We then randomly selected five
background gene subsets and calculated their Shannon entropies, denoting these by
eq,€,, 63, €4, and e;. For a given TSS, we then calculated the posterior of the Dirichlet distribution,
i.e., Dir(a* = a + [fiy, ..., iyp1]). The Shannon entropy of a given TSS was then compared with
the five randomly generated entropies to measure the excess in diversity in the fragment length
values at the TSS of interest. Formally, we define PFE as PFE(TSS): = Ey[Yi1-5P (erss >
(1+ k) x ¢;)] where E[.] denotes the expected value with respect to the excess parameter k,
and P*is the probability with respect to the Dirichlet distribution Dir(a*). Here, we used a
Gamma distribution for k~T'(s = 0.5,r = 1), where I is the Gamma distribution with shape s and
rater.

[00177]  cfDNA fragmentomic analysis by WES profiling. Whole exome PFE analysis. For the

whole exome analysis (in Fig. 1g), we used the raw Shannon entropy (as described in

‘Fragment length diversity calculation using Shannon entropy) at any given gene, after
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transforming it into a z-score, using a cohort of 34 cfDNA WES profiles (each with 200-400x
depth). To account for differences in depth in the cohort for normalization, we considered meta-
profiles of 5 samples to achieve comparable depths as those initially used to relate PFE and
gene expression levels when relying on WGS (~2000x).

[00178] Small cell lung cancer gene signature set. The SCLC gene signature was generated

using an RNA-Seq data of 81 SCLC primary tumors. We performed differential gene expression
analysis by comparing the RNA-seq data of these tumors with our reference PBMC RNA
expression levels and identified genes in the top 1500 of SCLC expression overlapping genes
in the bottom 5000 of the PBMC expression (‘high in SCLC"). Similarly, for ‘low in SCLC’ genes,
we selected genes which are in top 1500 of PBMC expression and bottom 5,000 of SCLC
expression. We further limited the gene set to those whose TSSs were covered in our whole
exome panel to ensure sufficient sequencing coverage for analysis.

[00179] A gene expression model for predicting RNA output from TSS cfDNA fragmentomic
features. To infer RNA expression levels from cfDNA fragmentation profiles at TSS regions of
genes across the transcriptome, we built a prediction model using two features, PFE and NDR.
Of note, among the 5 fragmentomic features considered, these indices demonstrate highest
individual correlations as well as complementarity. For training, we employed one cfDNA
sample sequenced to high coverage depth by WGS. We performed RNA-Seq on the PBMC of
five healthy subjects and used the average across three of these individuals as the ‘reference
expression vector'. Next, to achieve a higher resolution at the core promoters, we grouped every
10 genes, based on their expression in our reference RNA-seq vector. After removing genes
used as background for calculating PFE, a total of 1,748 groups (of 10 genes each) remained.
We then pooled all the fragments at the extended core promoters (-1Kb/+1Kb around the
transcription start sites) of the genes within each group and extracted the two features; NDR

and PFE. We then normalized the two features by 95% quantile over the background genes,

) and NDR = —=%

where for PFE the normalization factor is PFE = min (1, ( e T
Bg

Q({PFE},95)
r W,O.S,l)

where Q(.,k) denotes the k' quantile. By bootstrap resampling, we then built 600 ensemble
models: 200 univariable PFE-alone-models mppg 1, Mppg 2, ..., Mppg 200, 200 univariable NDR-
alone-models  mypr1, Mypr2, - Myprzoo@nd 200  NDR-PFE  integrated  models
Mint, 1, Mint,2, - » Mnt,200-

[00180]  To transfer this expression prediction model — which was originally derived from WGS -
to the targeted TSS space (EPIC-seq), we evaluated each of the 600 models above, by
measuring its root mean squared error (RMSE) on two held out healthy subjects. For each of
these two healthy subjects, we compared the cfDNA profile by EPIC-seq to the corresponding
PBMC transcriptome profile by RNA-Seq from the same blood specimen and computed the

RMSE for each of the 600 ensemble models. The weight of each model was then propartionally
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scaled by the inverse RMSE of that model, with the final score then calculated as the linear sum

of 600 models, weighted as described above.

[00181]  EPIC-Seq panel design. Identification of cancer type-specific genes. We downloaded
TCGA and DLBCL gene expression data in the form of RNA-Seq FPKM-UQ for all individuals
using the GDC API. After removing samples from individuals with a history of more than one
type of malignancy, we divided the remaining samples into two separate cohorts for training and
validation (70% and 30% of each cancer type respectively). In the training set for each cancer
type, median gene expression (FPKM-UQ) was calculated and protein coding genes in the
upper 15th quantile were considered as highly expressed genes. To remove potentially
confounding effects in cfDNA from variation in blood cells, we excluded genes within the upper
5% quantile of expression in peripheral blood, when considering whole-blood transcriptome
profiles from GTEx.

[00182] Gene selection for EPIC-Seq targeted sequencing panel design. We considered NSCLC

and DLBCL, with known molecular subtypes exhibiting distinct gene expression profiles.
Cancer-specific genes for LUAD, LUSC, and DLBCL were included. To find subtype-specific
genes in NSCLGC, we performed differential expression analysis using the DESeq2 package in
R Bioconductor to distinguish LUAD and LUSC tumor transcriptomes from the TCGA. For the
lymphoma analysis, a list of genes previously shown as differentially expressed between ABC
and GCB subtypes according to RNA-Seq gene expression data was used. In addition to these
DLBCL and NSCLC specific genes, we included 50 genes from the LM22 gene set capturing
variation in peripheral blood leukocyte counts. Together these and other control genes
contributed to a total of 179 unique genes, with each gene contributing one or more TSS regions
to EPIC-Seq totaling 236 targeted TSS regions.

[00183]  EPIC-Seq classification analyses and Machine Learning. Distinquishing lung cancer

(EPIC-Lung classifier). The EPIC-Lung classifier was trained to distinguish lung cancer from

non-cancer subjects. All the TSSs for immune cell type and NSCLC histology classification were
used in this classifier. For genes with multiple TSS regions, in each iteration of cross-validation,
we first combined TSS regions with intra-gene correlation exceeding 0.95 and capturing the
mean. For those with correlation less than 0.95, we preserved individual TSS regions as
independent reporters. This resulted in 139 features in the model and 143 samples (67 lung
cancer cases and 71 controls). We then trained an £, — £, —regularized logistic regression
model (‘elastic net’ with a = 0.9) and an optimal 1 obtained by cross-validation. The full model
was evaluated through a leave-one-batch out (LOBO) model. Here, every batch contained at
least one sample, and representing a set of samples that were either captured and/or
sequenced together in one NGS sequencing lane.

[00184]  Subclassification of NSCLC (EPIC-NSCLC-Subtype). A NSCLC histology subtype

classifier was designed to distinguish the two major subtypes of non-small cell lung cancer, i.e.,
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lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Similar to the model
in ‘EPIC-Lung classifier’, the classification model employs elastic net with & = 0.9, with multiple
TSS sites corresponding to one gene being merged. The performance of this classifier was
evaluated via leave-one-out (LOO) analysis. The classifier was trained using 80 features with
67 samples (36 LUADs and 31 LUSCs). To evaluate performance, classification accuracy with
equal weights was calculated.

[00185] Biological plausibility of classifier coefficients. We assessed the significance of the

model coefficients in the NSCLC histology classifier from plasma c¢fDNA using EPIC-Seq and
their concordance with prior design from tumor transcriptomes using RNA-Seq. Specifically, we
compared nonzero coefficients from the elastic net model from cfDNA profiling, and then
performed a ttest for the LUAD genes coefficients vs LUSC genes coefficients.

[00186] EPIC-seq lung dynamics score for the ICI treated patients. To predict benefit from

immune checkpoint inhibitors, we first identified the differentially expressed TSSs in a discovery
pre-treatment cohort (non-ICl; lung cancer vs normal). We then nominated the following TSS
regions from genes with Bonferroni-corrected P<0.25 with a 1-sided t-test: (FOLR1 TSS#3,
ITGA3 TSS#1, LRRC31 TSS#1, MACC1 TSS#1, NKX2-1 TSS#2, SCNN1A TSS#2, SFTPB
TSS#1, WFDC2 TSS#1, CLDN1 TSS#1, FSCN1 TSS#1, GPC1 TSS#1, KRT17 TSS#1, PFN2
TSS#1, PKP1TSS#1, ST00A2TSS#1, SFNTSS#1, SOX2 TSS#2, TP63 TSS#2). Denoting the

expression levels of these genes by &, = (x°,..,x,%) and & = (x;",...,x;") for time point ¢,

and t,, respectively, we defined (fold-change) statistics s(¢;,,$;,) = logg_i where () is used to
to

denote averaging the vector elements. For each patient, we then empirically derived a null
distribution for the s statistics by randomly selecting k sites from the EPIC-Seq selector. An
empirical left-sided P-value was then calculated to measure response to therapy. The EPIC-
seq dynamics score was then defined as the logarithm (base 10) of these empirical P-values.
[00187] Distinguishing _lymphoma_(EPIC-DLBCL classifier). This classifier was trained to

distinguish DLBCL from non-cancer subjects using elastic-net, with regularization parameters
being set as in ‘EPIC-Lung classifier’. The dataset used for LOBO cross-validation comprised
129 features and 167 samples (91 DLBCL cases and 71 controls).

[00188]  Subclassification of DLBCL cell-of-origin (EPIC-DLBCL-CQQ). For the classification of
DLBCL COO, we defined a GCB score as follows: (1) within a leave-one-out cross-validation

framework, we first standardized each gene expression (i.e. the Z-score) and converted the Z-

1/|GCB| = -
scores into probabilities, and then (2) defined a COO score as —log10 (W W) Gene
ieABCDi

sets for each subtype were defined as originally selected in the EPIC-Seq selector design for
DLBCL classification. To evaluate performance, we measured the concordance between EPIC-
Seq scores and (1) genetic COO classification scores obtained from CAPP-Seq®, as well as

(2) labels from Hans immunohistochemical algorithm.
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[00189]  Statistical and patient survival analysis. Associations between known and predicted
variables were measured by Pearson correlation (r) or Spearman correlation (o) depending on
data type. When data were normally distributed, group comparisons were determined using t-
test with unequal variance or a paired t-test, as appropriate; otherwise, a two-sided Wilcoxon
test was applied. To test for trend in continuous variables vs categorical groups, Jonckheere's
trend test was used as implemented in the clinfun R package. Correction for multiple hypothesis
testing was performed using the Bonferroni method. Results with two-sided P < 0.05 were
considered significant. Statistical analyses were performed with R 4.0.1. Confidence intervals
(Cl) are calculated by re-sampling with replacement (i.e., bootstrapping). Receiver operating
characteristic (ROC) curve analyses were performed using the R package pROC. Survival
analyses were performed using R package survival. When dichotomized, Kaplan-Meier
estimates were used to plot the survival curves and statistical significance was evaluated by
log-rank test. Otherwise, Cox proportional-hazards models were fitted to the data to determine

the significance of each co-variate.

Table 1: Whole-genome (n=114) and whole-exome (n=11) sequencing of cell-free DNA
samples were used for the discovery of PFE, training the gene expression inference model and
its validation. The WGS data were either profiled in this study (n=28) or downloaded from Zviran
et al. (EGA accession number EGAS00001004406). The WES data were either profiled in this
study (n=3) or downloaded from Adalsteinsson et al. (dbGaP accession number
phs001417.v1.p1). Cell-free DNA from 226 subjects were profiled using EPIC-seq.

Cohort Sequencing | Subset | Purpose Subjects | Cancer | Non- Figures | Tables | Sources
platform (n) Cases | Cancer
Controls
Discovery WGS N/A Feature 114 47 67 1; This study
discovery/ SF1/2 (n=28);
selection Zviran et al
(n=86)
Discovery/ WES /A Feature 11 10 1 1 This study;
Validation discovery/ Adalsteinsson
validation etal (n=9)
Validation EPIC-Seq EPIC Disease 67 67 N/A 2;3 This study
Lung detection,
tumor
classification,
therapeutic
response
Validation EPIC-Seq EPIC Disease 91 91 N/A 2:4 This study
DLBCL | detection,
tumor
classification,
therapeutic
outcome
Validation EPIC-Seq EPIC Non-Cancer | 68 N/A 68 2;3;4,5 This study
Control | Controls
(Specificity)

Table 2: TSSs in the EPIC-seq selector. Each row corresponds to one TSS in the EPIC-seq
seguencing panel (‘selector’).

Hugo symbol Chromosome TSS [hg19] Gene Category TSSID
strand
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BPNTA chri 220263191 -1 GCB BPNT1_1
FAM46C chri 118148603 1 ABC FAM46C 1
ITPKB chri 226926876 -1 GCB ITPKB_1
KCNA3 chri 111217655 -1 ABC KCNA3 1
SLAMF1 chri 160617081 -1 GCB SLAMF1_1
CD1B chri 158301321 -1 Positive Control CD1B_1
CDi1C chri 158259562 1 Positive Control CDi1C_1
CD1E chri 158323485 1 Positive Control CD1E_1
CHI3L1 chri 203155922 -1 Positive Control CHI3L1 1
FCGR3B chri 161601252 -1 Positive Control FCGR3B_1
FCGR3B chri 161601753 -1 Positive Control FCGR3B_2
LCK chri 32716839 1 Positive Control LCK 1
LCK chri 32739711 1 Positive Control LCK 2
RGS13 chri 192605267 1 Positive Control RGS13 1
BCL2L15 chri 114430169 -1 LUAD BCL2L15 1
MUC1 chri 155162706 -1 LUAD MUC1_1
CLCA2 chri 86889768 1 LUSC CLCA2 1
IRF6 chri 209979520 -1 LUSC IRF6_1
PKP1 chri 201252579 1 LUSC PKP1_1
S100A2 chri 153538306 -1 LUSC S100A2 1
S100A7 chri 153433137 -1 LUSC S100A7_1
SFN chri 27189632 1 LUSC SFEN_1
APOBEC4 chri 183622448 -1 negativeControl APOBEC4_1
TNNT2 chri 201346805 -1 negativeControl TNNT2 1
ASB13 chr10 5708558 -1 GCB ASB13 1
BLNK chr10 98031273 -1 ABC BLNK 1
BLNK chr10 98031333 -1 ABC BLNK 2
ENTPDA chr10 97471535 1 ABC ENTPD1_1
ENTPD1 chr1d 97515408 1 ABC ENTPD1_2
ENTPD1 chr10 97515672 1 ABC ENTPD1_3
SFTPA1 chr10 81370694 1 LUAD SFTPA1_1
SFTPA2 chr1d 81320163 -1 LUAD SFTPA2 1
SFTPD chr10 81708861 -1 LUAD SFTPD_1
CALML3 chr10 5566923 1 LUSC CALML3 1
CYB5R2 chrid 7694821 -1 ABC CYB5R2_1
LMO2 chrid 33891371 -1 GCB LMO2_1
LMO2 chrid 33891509 -1 GCB LMO2_2
LMO2 chrid 33913836 -1 GCB LMO2_3
CXCR5 chrii 118764100 1 Positive Control CXCR5_1
MS4A1 chrii 60223281 1 Positive Control MS4A1 1
P2RY2 chrii 72929343 1 Positive Control P2RY2_1
P2RY2 chrii 72929501 1 Positive Control P2RY2_2
TYR chrit 88911039 1 Positive Control TYR_1
FOLR1 chrid 71900601 1 LUAD FOLR1_1
FOLR1 chrid 71900958 1 LUAD FOLR1_2
FOLRA1 chrid 71903172 1 LUAD FOLR1_3
MUC5B chrid 1244294 1 LUAD MUC5B_1
MUC6 chrid 1036706 -1 LUAD MUCB_1
TRIM29 chrid 120008863 -1 LUSC TRIM29 1
CCND2 chr12 4382901 1 ABC CCND2_1
ETV6 chri2 11802787 1 ABC ETV6_1
HSP90B1 chri2 104324188 1 ABC HSP90B1_1
LRMP chr12 25205180 1 GCB LRMP_1
PMCH chr12 102591614 -1 Positive Control PMCH_1
ST8SIA1 chri12 22487648 -1 Positive Control ST8SIA1_1
SCNN1A chri2 6484390 -1 LUAD SCNN1A_1
SCNN1A chr12 6484905 -1 LUAD SCNN1A_2
SCNN1A chri2 6486523 -1 LUAD SCNN1A_3
KRT5 chr12 52914243 -1 LUSC KRT5_1
KRTBA chr12 52887181 -1 LUSC KRTBA_1
NDUFA4L2 chri2 57634475 -1 LUSC NDUFA4L2 1
FOXO1 chri3 41240734 -1 DLBCLpath FOXQO1_1
BATF chri4 75988783 1 ABC BATF_1
DAAMA1 chri4 59655380 1 GCB DAAM1_1
DAAMA1 chri4 59730158 1 GCB DAAM1_2
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FUT8 chri4 65877309 1 ABC FUT8 1
FUT8 chri4 65879447 1 ABC FUT8 2
SERPINA9 chri4 94942670 -1 GCB SERPINA9 1
GZMB chri4 25103432 -1 Positive Control GZMB_1
GZMH chri4 25078864 -1 Positive Control GZMH_1
TCL1A chri4 96180533 -1 Positive Control TCL1A 1
NKX2-1 chri4 36988903 -1 LUAD NKX2-1_1
NKX2-1 chri4 36989430 -1 LUAD NKX2-1_2
RGS6 chri4 72398816 1 LUSC RGS6_1
RGS86 chri4 72399155 1 LUSC RGS6_2
RGS8 chri4 72399785 1 LUSC RGS6_3
BMF chris 40398287 -1 ABC BMF 1
BMF chrib 40398639 -1 ABC BMF 2
BMF chr1s 40401075 -1 ABC BMF_3
IL16 chrib 81517639 1 ABC IL16_1
AQP9 chrib 58430407 1 Positive Control AQP9 1
GCNT3 chr1s 59903981 1 LUAD GCNT3_1
ITPKA chris 41786055 1 LUAD ITPKA 1
IRF8 chr1b 85932773 1 DLBCLpath IRF8_1
TPSAB1 chr16 1290677 1 Positive Control TPSAB1_1
C160rf89 chr16 5116146 -1 LUAD C160rf89_1
MT1X chr1b 56716381 1 LUSC MT1X 1
IKZF3 chr17 38020441 -1 DLBCLpath IKZF3 1
ALOX15 chr17 4544960 -1 Positive Control ALOX15_1
ITGA3 chr17 48133339 1 LUAD ITGA3 1
KRT13 chr17 39661865 -1 LUSC KRT13 1
KRT15 chr17 39675270 -1 LUSC KRT15_1
KRT16 chr17 39769079 -1 LUSC KRT16_1
KRT17 chr17 39780882 -1 LUSC KRT17 1
ANKFN1 chr17 54230835 1 negativeControl ANKFNT1_1
MYL4 chr17 45286713 1 negativeControl MYL4_1
TCF4 chr18 52969852 -1 ABC TCF4 1
TCF4 chr18 52989090 -1 ABC TCF4_2
TCF4 chr18 53071226 -1 ABC TCF4_3
TCF4 chr18 53089723 -1 ABC TCF4_ 4
TCF4 chr18 53178000 -1 ABC TCF4_5
TCF4 chri8 53255860 -1 ABC TCF4_6
TCF4 chr18 53257045 -1 ABC TCF4_7
DSC3 chr18 28622781 -1 LUSC DSC3_1
DSG3 chri8 29027731 1 LUSC DSG3_1
SERPINB13 chr18 61254533 1 LUSC SERPINB13 1
ARID3A chr19 926036 1 ABC ARID3A_1
SPIB chr19 50922194 1 ABC SPIB_1
TCF3 chr19 1650286 -1 DLBCLpath TCF3_1
CLC chr19 40228669 -1 Positive Control CLC_1
FFAR2 chr19 35940616 1 Positive Control FFAR2_1
NKG7 chr19 51875960 -1 Positive Control NKG7_1
CXCL17 chr19 42947136 -1 LUAD CXCL17_1
ICAM1 chri19 10381516 1 LUAD ICAM1_1
NAPSA chr19 50868931 -1 LUAD NAPSA_1
SLC1A6 chr19 15083730 -1 LUSC SLC1A6_1
CCL20 chr2 228678557 1 Positive Control CCL20_1
CTLA4 chr2 204732510 1 Positive Control CTLA4 1
ICOS chr2 204801470 1 Positive Control ICOS_1
ZAP70 chr2 98330030 1 Positive Control ZAP70 _1
ZAP70 chr2 98350868 1 Positive Control ZAP70 2
EPASH chr2 46524540 1 LUAD EPAS1_1
SFTPB chr2 85895864 -1 LUAD SFTPB_1
TRPM8 chr2 234826042 1 LUAD TRPMS8_1
GPCH chr2 241375114 1 LUSC GPC1_1
ALPP chr2 233243347 1 negativeControl ALPP 1
WFDC2 chr20 44098393 1 LUAD WFDC2_1
IGLL3P chr22 25714223 1 Positive Control IGLL3P_1
ELFN2 chr22 37823505 -1 LUAD ELFN2_1
BCL6 chr3 187452695 -1 GCB BCL6_1
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BCL6 chr3 187454285 -1 GCB BCL6 2
BCL6 chr3 187463513 -1 GCB BCL6 3
LPP chr3 187871662 1 GCB LPP_1

LPP chr3 187930720 1 GCB LPP 2

LPP chr3 187943192 1 GCB LPP 3
MME chr3 154797435 1 GCB MME_1
MME chr3 154797704 1 GCB MME_2
MME chr3 154797952 1 GCB MME_3
MME chr3 154798078 1 GCB MME_4
SH3BP5 chr3 15374136 -1 ABC SH3BP5_1
SLC12A8 chr3 124930243 -1 GCB SLC12A8 1
SLC12A8 chr3 124931609 -1 GCB SLC12A8 2
VGLL4 chr3 11610398 -1 GCB VGLL4 1
VGLL4 chr3 11623836 -1 GCB VGLL4 2
VGLL4 chr3 11762220 -1 GCB VGLL4 3
FOXP1 chr3 71114074 -1 DLBCLpath FOXP1_1
FOXP1 chr3 71180092 -1 DLBCLpath FOXP1 2
FOXP1 chr3 71294316 -1 DLBCLpath FOXP1_3
FOXP1 chr3 71353911 -1 DLBCLpath FOXP1_4
FOXP1 chr3 71592708 -1 DLBCLpath FOXP1_ 5
FOXP1 chr3 71632904 -1 DLBCLpath FOXP1_6
FOXP1 chr3 71633140 -1 DLBCLpath FOXP1_7
CPA3 chr3 148583042 1 Positive Control CPA3 1
GPR171 chr3 150920988 -1 Positive Control GPR171_1
HESX1 chr3 57234280 -1 Positive Control HESX1_1
P2RY13 chr3 151047337 -1 Positive Control P2RY13 1
P2RY14 chr3 150966998 -1 Positive Control P2RY14 1
P2RY14 chr3 150996230 -1 Positive Control P2RY14 2
LRRC31 chr3 169587660 -1 LUAD LRRC31_1
CLDNA1 chr3 190040235 -1 LUSC CLDN1_1
PFN2 chr3 149688741 -1 LUSC PEN2_1
SOX2 chr3 181328150 1 LUSC SOX2_1
SOX2 chr3 181429711 1 LUSC S0X2 2
TP63 chr3 189349215 1 LUSC TP63_1
TP63 chr3 189507448 1 LUSC TP63_2
MAPK10 chr4 87028806 -1 GCB MAPK10_1
MAPK10 chr4 87281375 -1 GCB MAPK10_2
MAPK10 chr4 87374283 -1 GCB MAPK10_3
BANK1 chrd 102711763 1 Positive Control BANK1_1
BANK1 chr4 102734982 1 Positive Control BANK1_2
CXCL3 chr4 74904490 -1 Positive Control CXCL3 1
CXCL5 chrd 74864416 -1 Positive Control CXCL5_1
HPGDS chrd 95264027 -1 Positive Control HPGDS_1
LEF1 chr4 109087953 -1 Positive Control LEF1_1
LEF1 chrd 109090112 1 Positive Control LEF1_2
LEF1-AST1 chr4 109088680 1 Positive Control LEF1-AS1_1
LEF1-AS1 chr4 109093275 1 Positive Control LEF1-AS1_ 2
SLC34A2 chr4 25657434 1 LUAD SLC34A2 1
SLC34A2 chr4 25658085 1 LUAD SLC34A2_2
FGFBP1 chr4 15940363 -1 LUSC FGFBP1_1
SSBP2 chrb 81047072 -1 GCB SSBP2_1
GZMA chrb 54398473 1 Positive Control GZMA_1
GZMK chrb 54320106 1 Positive Control GZMK_1
IL3 chrb 131396346 1 Positive Control IL3_1

IL9 chrb 135231516 -1 Positive Control IL9 1

TCF7 chrb 133450401 1 Positive Control TCF7_1
TCF7 chrb 133451297 1 Positive Control TCF7_ 2
TCF7 chrb 133451349 1 Positive Control TCF7_3
SCGB3A2 chrb 147258273 1 LUAD SCGB3A2 1
ADTRP chré 11779280 -1 ABC ADTRP_1
CYP39A1 chrb 46620523 -1 GCB CYP39A1_1
MAN1A1 chré 119670931 -1 ABC MAN1A1 1
PIM1 chré 37137921 1 ABC PIM1 1
IRF4 chrb 391738 1 DLBCLpath IRF4 1
TREM2 chré 41130922 -1 Positive Control TREM2_1
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VNN2 chré 133084598 -1 Positive Control VNN2_1
ENPP3 chrg 131958441 1 LUAD ENPP3 1
LGSN chré 64029882 -1 LUAD LGSN i
SFTA2 chrg 30899952 -1 LUAD SFTA2 1
FABP7 chré 123100645 1 LUSC FABP7_1
PERP chré 138428660 -1 LUSC PERP_1
CDK14 chr7 90338711 1 GCB CDK14 1
CREB3L2 chr7 137686847 -1 ABC CREB3L2_1
EGFR chr7 55086724 1 amplificationControl EGFR_1
MET chr7 116312458 1 amplificationControl MET 1
MACCH chr7 20181538 1 LUAD MACC1 1
MACCH chr7 20257013 -1 LUAD MACC1_2
FSCN1 chr7 5632435 1 LUSC FSCN1_1
GPNMB chr7 23286315 1 LUSC GPNMB_1
HOXA1 chr7 27135625 -1 LUSC HOXA1 1
AGMO chr7 15601640 -1 negativeControl AGMO 1
MYL7 chr7 44180916 -1 negativeControl MYL7 1
DENND3 chr8 142138719 i GGCB DENND3 1
MYBLA1 chrg8 67525480 -1 GCB MYBL1_1
PLEKHF2 chr8 96145948 1 GCB PLEKHF2 1
PTK2 chr8 142011412 -1 GCB PTK2_1
SLA chr8 134072603 -1 ABC SLA 1
SLA chr8 134115310 -1 ABC SLA 2
MYC chr8 128748314 1 amplificationControl MYC_1
BLK chr8 11351520 1 Positive Control BLK 1
C8orf4 chr8 40010986 1 LUAD C8orfd_1
HEY1 chr8 80680098 -1 LUSC HEY1_1
TRPA1 chr8 72987819 -1 LUSC TRPA1_1
RECK chrg 36036909 1 GCB RECK 1
CCL19 chr9 34691274 -1 Positive Control CCL19_1
CD72 chr9 35618424 -1 Positive Control CcD72_1
FCN1 chr9 137809806 -1 Positive Control FCN1_1
AQP3 chr9 33447631 -1 LUAD AQP3_1
GOLM1 chrg 88714510 -1 LUAD GOLM{1_1
GOLM1 chrg 88715116 -1 LUAD GOLM1_2
PIM2 chrX 48776413 -1 ABC PIM2_1
CLIC2 chrX 154563986 -1 Positive Control CLIC2_1
HMGB3 chrX 150151762 1 LUAD HMGB3 1
PLS3 chrX 114795176 1 LUAD PLS3_1
PLS3 chrX 114827818 i LUAD PLS3 2
SLCEA8 chrX 152954965 1 LUSC SLCBA8_1
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WHAT IS CLAIMED IS:
1. A method for determining the expression of a gene of interest by inference, the
method comprising:
(i) obtaining a biological sample for analysis, comprising circulating cell free DNA;
(i) constructing a library from the cell free DNA;
(iiy hybridizing a selector to the library;
(iv) capturing the library components that the selector is hybridized to;
(v) sequencing the hybrid-selected library components;
(vi) calculating promoter fragment entropy for said sequences;
(vii) calculating nucleosome depleted region depth for said sequences;
(viii) integrating results of steps (v) and (vi) to generate a metric that indicates the
expression level of the gene;
wherein steps (vi) — (viii) are performed by a computer comprising software components

for data analysis as a program of instructions executable by the computer.

2. The method of claim 1, wherein the selector comprises a plurality of selector
sequences from Table 2.

3. The method of claim 2, wherein the selectors are chosen from the ABC, GCB, positive
control, negative control and DLBCLpath categories.

4. The method of claim 3, wherein the selectors are chosen from the LUAD, LUSC,

positive control and negative control categories.

5. The methods of claims 4 or 5, wherein the selectors chosen comprise all selectors
found within their respective categories in Table 2.

6. The method of claim 4, wherein the selector is FOLR1_3, ITGA3_1, LRRC31_1,
MACC1_1, NKX2-1_2, SCNN1A 2, SFTPB_2, WFDC2_1, CLDN1_1, FSCN1_1, GPC1_1,
KRT17_1, PFN2_1, PKP1_1, S100A2_1, SFN_1, SOX2_2, TP63_2.

7. The method any of claims 1-6, wherein the biological sample is obtained from an

individual with cancer.

8. The method of claim 7, wherein the cancer is non-small cell lung carcinoma, small
cell lung carcinoma, adenocarcinoma, squamous cell carcinoma, diffuse large B-cell lymphoma

hepatocarcinoma, basal cell carcinoma, lymphoma, or melanoma.
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9. The method of any of claims 1-8, wherein the circulating cell-free DNA sample is

obtained prior to immune checkpoint inhibitor treatment.

10. The method of any of claims 1-7, wherein the circulating cell-free DNA sample is
obtained within 4 weeks of a first immune checkpoint inhibitor treatment

11. The method of claim 7, wherein the individual with cancer is treated with an immune
checkpoint inhibitor if durable clinical benefit is predicted and treated with non-immune
checkpoint inhibitor therapy if DCB is not predicted.

12. The method of any of claims 9-11, wherein the immune checkpoint inhibitor is a PD-
1 or PD-L1 inhibitor.

13. The method of any claims 7-12, wherein if the individual is diagnosed as having a

specific cancer said individual is then treated for said cancer.

14. The method of any of claims 1-13, wherein the biological sample is a non-invasively
obtained blood sample.

15. The method of any of claims 1-14, wherein the sequencing is at a depth of 2000x or

greater.

16. The method of any of claims 1-15, wherein one or more steps are implemented on
a computer comprising a software component configured for analysis of data obtained by the
methods.

17. The method of any of claims 1-19, wherein promoter fragment entropy is calculated
using the equation PFE(TSS): = Eyx[Yi1-5 P (erss > (1 + k) X e;)].

18. A software product tangibly embodied in a machine-readable medium, the software

product comprising instructions operable to cause one or more data processing apparatus to

perform the method of any of the preceding claims.
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