Py]

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification S :
GOGF 15/16, 15/40 Al |

(11) International Publication Number:

WO 91/02313

International Publication Date: 21 February 1991 (21.02.91)

(21) International Application Number: PCT/GB89/00886

(22) International Filing Date: 3 August 1989 (03.08.89)

(71) Applicant (for all designated States except US): INTERNA-
TIONAL BUSINESS MACHINES CORPORATION
[US/US]; Armonk, NY 10504 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only) : VAUGHTON, Mat-
thew, Kelvin {GB/GB]; 1 Sydmanton Road, Romsey,
Hampshire SO51 8RL (GB). HALLIWELL, Harry [GB/
GBJ; 24 Burley Road, Winchester, Hampshire SO22 6LJ
(GB).

(74) Agent: BAILEY, Geoffrey, A.; Intellectual Property De-
partment, IBM United Kingdom Limited, Hursley Park,
Winchester, Hampshire SO21 2JN (GB).

(81) Designated States: AT (European patent), BE (European
patent), CH (European patent), DE (European patent)*,
FR (European patent), GB (European patent), IT (Euro-
pean patent), JP, LU (European patent), NL (European
patent), SE (European patent), US.

Published
With international search report.

(54) Title: DATA PROCESSING NETWORK

)

2nd PROCESSOR 18
FILE
| appL }~l43 |SYSTEM
CONTROL LOGIC ©
P EI Ptk T
ICURRENT ! |LATEST ! APPL. 20
IW/S FILES| HOST FILES| PKG. |
'e LEVELS | 18 LEVELSI FILE
L.._T___l L-T--J
33/ (3g
L6
32} (L39
{r c"u/R RENT | E'LKT'E ST | o
W/S FILES| | HOST FILES
18 LEVELS | '8 LEVELS | DATA L/
PV S LRVELS BASE
~L 1,
CONTROL LOGIC
M4 SRR | APPL (~d 1
FILE 8
1st PROCESSOR SYSTEM

,/

* See back of page

(57) Abstract

In 2 data processing network having a first processor (for example, a programmable workstation), a second processor (for
example a host computer) and a communication system linking said first processor and said second processor, confrol logic asso-
ciated with said first processor is operable to manage the flow of information between said first processor and said second pro-
cessor on behalf of one or more application programs running on said first processor. The control logic is responsive to calls issu-
ed by, or on behalf of, an appligation invoked by, a user at the first processor to determine if a file or, set of files, associated with
the calling application is the most up-fo-date version of the file, or set of files available. The most up-to-date versions are always
stored at the second processor (i.e.: the host). A comparison is made between the files and their levels currently available at the
first processor (work station) and the up-to-date files held at the second processor (host). A list of actions to be taken is then com-
piled and files downloaded to the first processor to replace out-of-date files, to add or create files in order to augment those al-
ready there, and to delete any obsolete files no longer required by the application.

DESIGNATIONS OF “DE”

v

Until further notice, any designation of “DE” in any international application
whose international filing date is prior to October 3, 1990, shall have effect in the
territory of the Federal Republic of Germany with the exception of the territory of the
former German Democratic Republic. E

FOR THE PURPOSES OF INFORMATION ONLY
Codes used to identify States party to the PCT on the front pages of pamphlets publishing international
applications under the PCT. '
AT Austria ES Spain MC Monaco .
AU Australia Fi Finland MG Madagascar
BB Barbados FR France ML Mali
BE Belgium GA Gabon MR Mauritania
BF Burkina Fasso GB United Kingdom MW Malawi
BG Bulgaria GR Greece NL Netherlands
BJ Benin HU Hungary NO Norway
BR Brazil T italy PL Poland
CA Canada JP Japan RO Romania
CF Central African Republic KP Democratic People’s Republic SD Sudan
CG Congo of Korea SE Sweden
CH Switzerland KR Republic of Korca SN Senegal
CM Cameroon LI Liechtenstein SU Soviet Union
DE Germany LK Sri Lanka T™D Chad
DK Denmark LU Luxcmbourg TG Togo
US United States of America

f X

WO 91/02313 PCT/GB89/00886

DATA PROCESSING NETWORK

The invention relates to the field of data processing networks.
More particularly, the invention relates to data processing networks in

which copies of files used by a first processor are stored on a second

processor.

The use of data processing networks comprising many programmable
workstations (such as Personal Computers) connected to one or more host
mainframe computers has increased over recent years. The programmable
workstations are able to carry out some data processing functions whilst
other data processing functions are better suited to being carried out
by the host mainframe computer. A more recent development has been the
increased use of systems in which one part of a data processing function
is carried out on the programmable workstation and another part of the
same data processing function is carried out by the mainframe computer.
This is so called distributed or co-operative processing. It is ‘
critical in such systems that both the host and workstation are at the

same level of update.

With the adoption of networks it has become possible for the host
mainframe computer to be used to install and maintain application
programs and data files for use in the programmable workstations. By
doing this it is possible for the network to ensure that the files held
at the programmable workstation are the most up to date version of those

files.

It has been proposed in EP 284924 to provide a data processing
network running a program on a programmable workstation wherein the

program includes a portion of code for maintaining that program. When

WO 91/02313 PCT/GB89/00886

the program is started it checks to see if more up-to-date versions of
its files are h;ld by the host mainframe computer and then downloads
them if necessary.

Another approach has been the provision of specific maintenance
programs running on either the host or workstation which have the
function of checking some or all of the files held by a workstation to
see if a new version of the file should be downloaded and if necessary
carrying this out. Such programs are typically either triggered to run
by a user or set automatically to run periodically.

The invention provides a data processing network having a first
processor, a second processor and a communication system linking said
first processor and said second processor, wherein control logic
associated with said processors is operable to manage the flow of
information between said first processor and said second processor on _
behalf of one or more application programs running on said first
processor, characterised in that said control logic is responsive to
calls issued by, or on behalf of, said application to determine if a
file or set of files, associated with the calling application and stored
by said first processor is/are the most up-to-date version(s) of the
file, or set of files, available for that application as stored at said
second processor and, if not, to replace and/or augment said file or set
of files at the first processor with the selected files downloaded from

said second processor accordingly.

The invention recognises the problems associated with the prior art
approaches to software maintenance and provides a solution to these
problemsf In the case of the system disclosed in EP 284924 the
maintenance facility is only available to the particular application
which has the maintenance code added to it. The benefits of that
maintenance code are not therefore available to other applications
running on the system. 1In the case of the specific stand alone
maintenance prdgtams, these lack flexibility since they must be

specifically invoked and must then either follow a predetermined

WO 91/02313

PCT/GB89/00886

updating sequence or require driving by user inputs. In addition, there
is no guarantee that the stand alone program will have been invoked

since a given update in host level has taken place.

The present invention provides an updating facility that is
available to all applications local or distributed running on the
systems and has the flexibility actually to be invoked by the

applications themselves as they require its services.

The manner in which this advantageous result is achieved is to
provide the updating service as a facility offered by the control logic
between the applications. Then in the same way that an application can
issue a call, for example, to the disk operating system to recover a
particular piece of data for it, so an application can issue a call to
the shared control logic to determine if a file needs updating and if
necessary, carry this out. It is the novel structure of providing the
update facility as part of the shared control logic which is central to

the present invention and which leads to the above mentioned ‘advantages.

In preferred embodiments of the invention, when an application is
started said application surrogate issues a call to said control logic
to establish a communication session between said first processor and .
said second processor for use by said application. A description of hoﬁ
a surrogate application is used to establish communication between a
local and a remote processor is described and claimed in our co-pending
application No.... Workstation and Data Processing Network Containing

Workstations (H Halliwell) IBM Docket No. UK9-89-020 of even date.

Thus, where an application resides wholly on the first processor
(eg, a programmable workstation) a communication $ession is established
between it and the second processor (eg, a host computer) in order to
check that appropriate files for the application are available at the
first processor and that they are at the most current level. 2As a
result of this check new files and updated files are downloaded to the

first processor to augment and/or replace existing files as required.

WO 91/02313 " PCT/GB89/00886

Where an application is distributed between a first processor (eg
programmable workstation) and a second processor {eg, a host computer),
as will often be the case, the act of calling the application by a user

at the workstation (say) will of itself cause the communication session -

-y

to be established between the workstation and the host. Before
execution proper of the application is commenced, the communication
session is used in response to a call from the application surrogate to
perform an update check to ensure that the correct files are available
at the workstation and that they are at a level corresponding to the
latest versians of the files held at the host. This is particularly
important in-the execution of distributed applications since exact
compatibility between the separated parts of the application must be

maintained to:ensure the’integrity of the system.

With distributed applications, the provision of this preferred
feature allows the systems to avoid unnecessary delays that might be
incurred in establishing an additional communication session and also
avoids problems that coﬁld be encountered due to the communication
system only being able fo support a single communication session at any
one time. Another advantage of this feature derives from the fact that
only the files for the applications knoﬁn to be started are checked and
not all applications some of which may never be used, so that the

processing overhead involved is kept to a minimum.

In particularly preferred embodiments of the invention said control
logic is responsive to-calls from the application issued at any point
during the execution of said one or more applications. With distributed
applications it is most useful to be able to issue calls during the
running of the application. For example, a user request for HELP will
cause the application to issue a call for the current version of the
HELP panel to beLdownloaded from the host to the workstation. The
provision of this feature allows an application a great deal more
flexibility in the way it can maintain the files it needs for its
execution. It will be seen that some files (static files) will be

needed on every occasion that an application is executed, whereas other

WO 91/02313 PCT/GB89/00886

files (dynamic files) may only be needed on some occasions.
Accordingly, the invention allows an application surrogate to issue

- calls (UPDATE APPL) to maintain the files its application needs every
time it is executed and subsequently the application to issue other
calls (PREPARE FILE) to maintain optional files as and when necessary
during the application's execution. It will thus be seen that the data
exchanged between the processors to carry out this update procedure for
optional files will be mixed with the normal data flow between the

processors resulting from execution of the application.

A preferred feature of the invention is that said first processor
is adapted to delete from its storage a file for a first application in
order to make room for a file being downloaded for a second application.
This feature allows the first processor to manage its storage so that
there is space for files being downloaded whilst the provision of the
updating facility means that when the file that was deleted is next
required it can be downloaded by the first application without any user
intervention. It will thus be seen that there is a strong synergy

between the invention and this preferred feature.

A further preferred feature of the invention is that said first
processor examines said file in order to determine if said file requirgs
updating. This feature of examining the parameters and attributes of
the actual file to determine what version it is has the advantage that
the invention is able to detect if the file has been altered either by

accident (corruption) or deliberately (eg, a computer virus).

A preferred embodiment of the invention will now be described, by
way of example only, with reference to the accompanying draWings in

which:

Figure 1 schematically illustrates a data processing network

embodying the invention;

WO 91/02313 PCT/GB89/00886

Figure 2 is a flow diagram illustrating the data processing steps
of an embodiment of the invention where a call is issued in the

workstation to update an application other than the current application;

Figure 3 is a flow diagram illustrating the data processing steps
of an embodiment of the invention where a call is issued in the

workstation to update the current application;

Figure 4 is a flow diagram illustrating the data processing steps
of an embodiment of the invention where a call is issued in the host to

update the current application; and

Figure 5 is a flow diagram illustrating the date processing steps
of an embodiment of the invention where a call is issued in the host to

update an application other than the current application.

Figure 1 shows a first processor 2 (in this embodiment a
programmable workstation) linked@ to a second processor 4 (in this
embodiment a host computer) by a communication system 6. Associated
with the first processor 2 is a file system 8 for storing the files held
by the first proceésor 2. A database 10 contains a list of all the
files previously downloaded to the first processor 2. An application i
surrogate 11 and application program 12 both run on the first processor
2 and make use of control logic 14 to manage its communication with the

second processor 4.

Associated with the second processor 4 is control logic 16 for
managing communication with the first processor 2. The second processor
4 also has a file system 18 storing the most up-to-date versions of all
the files including those that may be required by the first processor 2
in running its applications. An application package file 20 holds a
list of the files held by the second processor 4 together with
attributes associated with each file such as its 'date of creation' at
the host and whether it is required every time the application is run

("static file") or only sometimes the application is run ("dynamic

]

WO 91/02313 - PCT/GB89/00886

file"). Although shown as separate components, in practice the

application package file is incorporated as part of the file system.

Although in the embodiment illustrated in Figure 1, the application
12 is shown residing on the workstation, it may alternatively be on the
host as application 13, or distributed between the host and the
workstation as application 12 and 13 in combination. Thus, applications
which demand high interaction with the user tend to be resident on the
workstation, whereas applications which, for example, need to access
shared data tend to be resident on the host. The dividing line between
host and workstation for distributed applications is a matter for

application program design.

Thus whereas an update check procedure for a local application on
the workstation requires the workstation to establish a communication
session with the host that otherwise would not be necessary, clearly for
a remote or distributed application this step is not required because
the communication session will already exist as a consequence of the
user at the workstation invoking that application. 1In any event, once
the communication session is set-up, a common procedure subject of this
invention is followed regardless of whether the application to be

executed is local, remote or distributed.

Setting up the communication session during application start
processing involves standard data processing networking procedures and
will not be described herein. The actual sequence of events is that,
having established the communication session, the application starts
processing, logs onto the host, and starts the host control logic 16 in
conventional manner. In all the embodiments of the invention to be
described hereinafter, the files at a workstation associated with an
identified application are level checked by comparison with the latest

versions of the files maintained at the host.

WO 91/02313 PCT/GB89/00886

As part of thissprocess, information concerning the files already
downloaded to the workstation is compiled and held as a list 32 at the
workstation and information concerning the current most up-to-date
version of the files held at the host in compiled and held as another
list 38 at the host.

In more detail, control logic 14 at the workstation interrogates
the database 10 in order to determine which files associated with the
identified application have previously been downloaded from the host to
the workstation. The control logic 14 then interrogates the file system
8 to determine whether or not copies of the files are present and if so
to examine their attributes to establish the 'date of creation' (ie the
date assigned by the host when this file was held in the host as the
most current file). The control logic uses this information to generate
the list 32 of the current files believed to be associated with the
identified application and their respective levels ie, whether present,

and if so,; their date of creation.

Similarly control logic 16 at the host reads the application
package file 20 to determine what the latest host files are and their
associated attribute§; date of creation, static, dynamic etc. The
control logic compiles this information and holds it as list 38 at the
host.

The determination of whether files are at the most up-to-date
current level is achieved by direct comparison of these two lists as
will be seen in gdetail hereinafter. It is therefore useful to have

copies of both lists at the workstation and at the host at all times.

Accordingly, .at invocation of an application by a user the control
logic compiles the .two lists as described. Then, as the final part of
the application start processing, the workstation file 32 is copied and
sent to the host where it is held as list 33, and the host file 38 is
copied and sent to the workstation where it is held as list 39. The

situation at the end of this process is illustrated by the boxes in

e

WO 91/02313 PCT/GB89/00886

dotted outline in Figure 1 where the workstation file information is
held as lists 32 and 33 at workstation and file respectively at the host
file information is held as lists 38 and 39 at host and workstation

respectively.

There are six different situations that can occur, as follows:

1. a workstation call (UPDATE APPL) for the update of the current

application;

2. a workstation call (PREPARE FILE) for level checking of an optional

file required during the running of an application;

3. a host call (UPDATE APPL) for the update of the current

application;

4. a host call (PREPARE FILE) for level checking of an optional file

required during the running of an application;

5. a workstation call for update of an application other than the

current application; and

6. a host call for update of an application other than the current

application.

In order to provide a thorough understanding of the invention the
more complex situation (5 above) where a workstation call is for an
application other than the current application is made will be described
as the first main embodiment. Thereafter, the other situations will be

described making reference to this first example.

Figure 2 is a flow diagram illustrating the detailed sequence of
operations to perform an update check following a call issued in the

workstation to update an application other than the current application

WO 91/02313 PCT/GB89/00886

10

that was started. For example, an application manager application could
use the function in order to manage other applications under its
control. To the left of line 22 in Figure 2 are steps carried out by
the first processor 2, that is, at the workstation. To the right of
line 22 are steps carried out by the second processor 4, that is, at the

host.

At step 24 the application 12 issues a call (UPDATE APPL) to the
associated control logic 14 to check and update the files of another
application identified by a parameter (APPLID) included within the call.
Control is then éassed to the control logic 14. It should be
understood that such a call only occurs after the current application
has been started and thus its files checked and updated using the
previously compiled and stored files 32 and 39 at the workstation These
in-store lists 32 and 39 are no good for updating an application which
is not the current application, instead further lists conveying
information regarding the identified application must be compiled. The
control logic therefore repeats the steps described above in the
compilation of lists 32 and 38 this time in respect of the called
application. The original lists 32, 33, 38 and 39 belonging to the

current application are not destroyed by this action.

Thus, the control logic at step 26 compiles a list 28 from the
database 10 of the files previously downloaded for the identified
application. This list comprises four files in this example co-labelled
A, B, C and E each label identifying the location of the respective file

in the workstation in usual manner.

At step 30 the control logic 14 examines the files in the file
system 8 which are on its list 28. PFor each file the control logic 14
queries the existence of the file in the file system 8 and the
attributes of the file such as its original ‘'date of creation' at the
host. The control logic then adds the attributes found to the list 28
to form the new list 32. Thus the updated list shows that; file A has a
creation date of 03/05/89; file B is missing from the file system (this

WO 91/02313 PCT/GB89/00886

11

would be the situation if the space recovery procedure referred to
hereinbefore had been used); file C has a creation date of 21/04/88; and
file E has a creation date of 01/04/89. At step 34 the control logic 14
sends the location address information (PKGLOC) for the application file
package to the host control logic 16, and the list 32 of file
information host and then waits for a reply. The address information is
derived from the workstation database 10 using APPLID for the called

application.

At step 35 the control logic 16 of the second processor 4 receives
PKGLOC and stores the list 32 as duplicate list 33 at processor 4. At
step 36 the control logic 16 uses the package file location (PKGLOC)
to read the application package file 20 to find out what files processor
4 holds as current up-to-date files for the identified application

together with their attributes, and compiles a new list 38.

Four file are shown to be required. File A with a creation date of
04/05/89 is a static file, ie required every time the application is
run. File B with a creation date of 23/03/89 is also a static file.
File D with a creation date of 15/04/89 is a dynamic file, ie an
optional file only occasionally required when the application is run.

File E is another static file with a creation date of 01/04/89.

At step 40 the list 33 is compared with the list 38 to generate a
"delta list" 42 of update actions that are necessary. The possible
actions are REPLACE (if a more recent version of a file is held in the
second processor), DELETE (if a file in list 33 is not in list 38)
and CREATE (if a file is in list 38 but not list 33). 1In the case of an
update call only static files are updated. Associated with the actions
in the delta list 42 are the new attributes of the files. Thus, in the

example chosen the delta list 42 contains the following:

File A flagged as a REPLACE file since it is a more recent version
than that on list 32 at the workstation;

e
WO 91/02313) PCT/GB89/00886

12

File B flaggéd as a REPLACE file because it 1s missing from the

Workstation;

File C is not in the list 38 since it is an obsolete file no longer-
required by the application. Accordingly, File C is flagged as a DELETE
file in the delta list requiring the corresponding file at the

workstation to be deleted.

File D is not incluaed in the delta list since it is a dynamic

file only required on request by the application.

File E does not appear on the delta list because the file at the
workstation is at the same level as that at the host as evidenced by the
same creation daie;

The delta file 42 is sent to the first processor 2 at step 44,
followed, at step 46, by the file for each CREATE/REPLACE action taken
from the file system 18. ’

Other files, static or dynamic, required during running the
application are level checked and updated as necessary in response to a
PREPARE .FILE call issued by the application itself as previously

mentioned.

Back in the first processor 2, the delta list 42 is received at
step 48 followed, at step 50, by each of the current up-to-date
downloaded files as required. At step 52 the first processor 2 uses the
files sent to it-to carry out the actions specified in the delta list
42, that is replacing out of date files as well as deleting files that
are no longer needed. 'In the event that an update operation fails, for
whatever reason, eg: the file is already in use, subsequent update
operations are not attempted and the failure is remembered so that a
pass/fail return code can be passed back to the application as indicated

at 55.

WO 91/02313 PCT/GB89/00886

13

In order to assist in the successful achievement of file update,
the first processor 2 will additionally delete downloaded files of
previous applications not in use if this is necessary to make room for
the files being downloaded. It is implicit in writing a file to a file -
system that the system will signal back if there is not sufficient space
for its purpose. Accordingly, should this occur, the control logic
inspects the database 10 to see whether there are files associated with
previous applications that can be deleted to provide more storage space

and deletes them as required.

Finally, at step 54 the database 10 is updated with list of files
from the delta list 42 before control in processor 2 is passed back to
application 12 at step 55 with the pass/fail return code. 1In the event
of a fail return code it is left to the application to determine what

action it wishes to take. .

The second example describes with reference to Figure 3 the
detailed sequence of operations to perform an update check following a
call issued in the workstation to update the current application
(situation 1 above). In this more simple situation all the information
required is immediately available held in the initially compiled and
duplicated file level lists 32, 33, 38 and 39 held at each end of the)
link 6. This call is typically issued by a surrogate 11-to update its

application files 12 before the application proper receives control.

Most of the process steps correspond to the process steps shown in
Figure 2 and the corresponding boxes in the figure have been given the
same reference numbers. Only the modified and new process steps will be
described. '

Following the call for update, at step 100 (which is equivalent to
processor 2 step 40, Figure 2) control logic 14 in the workstation
compares the current workstation file list 32 with the host file list
copied and downloaded to the workstation as part of the application

start processing described hereinbefore with reference to Figure 1 and

wO091/02313 PCT/GB89/00886

14

stored in the workstation as list 39. At step 101, a delta list of
update actions requiréa’is generated and sent to the host. At step 102,
the control logic 16 of the host receives the delta list. Steps 46, 50,
52 and 54 are exactly as described with reference to Figure 2 and will
not be repeated here. At step 103, control logic 14 of the workstation
updates list 32 from the delta list and at step 104 sends the updated
1list 32 to the host and returns control to the application. At step 105
the host control logic receives the new version of the workstation list

32 and stores it as new list 33.

The third example describes the situation 2 above where a
workstation call;is issued to check the level of an optional file
required by the current application. In order to obtain such a file
(which may be stétic.or dynamic) the application issues a (PREPARE FILE)
call instead of the (UPDATE APPL) call in Figure 3. This call may be
issued at any stage dﬂ?ing execution of an application and would include
as a parameter the identifier (FILE ID) of the particular file for which
level check is réﬁgested instead of the (APPLID) in Figure 3. The
process is essentiélly an optimised version of that illustrated in
Figure 3 in which both dynamic and static files may be actioned and each
of the delta lists contains at most only one entry. The control logic
again has all the infermation it requires available to it in order to

respond to a PREPARE FILE call and to build its delta list.

Thus at step 24 the application issues the call (PREPARE FILE) to
the control logic 16. Included as a parameter within the call is the
variable (FILE ID) identifying the required file. Thus at step 40 the
host control logic compares the list 33 from the workstation with the
list 38 at the host and generates the single entry for delta list 42.
In this example the selected file is File D, a dynamic file with a date
of creation of /15/04/89. Since it was not to be found in list 32 it is
flagged as a CREATE file in the delta list together with its date of
creation 15/04/89. The delta list is sent to processor 2 at step 101.

At step 46 processor 2 sends the requested file to processor 1 where the

WO 91/02313 PCT/GB89/00886

15

actual file is obtained from the file system 18. The remaining process

steps are identical to that described with reference to Figure 3.

The fourth example describes the situation 3 above where a host
update call is issued for current application. In practice this is not
a useful call since the application will always be up-to-date by virtue
of the workstation UPDATE APPL call processed at start up. However, it
is included for completeness. BAgain many of the process steps set out
in Figure 4 are as described for the previous examples with reference to
Figures 2 and 3. Thus steps 40, 44, 46, 48, 50, 52 and 54 as described
with reference to Figure 2. Step 103, 104, 105 are as described in
Figure 3 At step 45 the APPLID is sent to processor 1 and at step 47
processor 1 receives the APPLID. At step 106 the workstation control
logic 14 sends a success/fail indicator to control logic 16. At step
107 the control logic 16 receives the success/fail indicator and passes
it on to the caller at 108.

The fifth example describes the situation 4 above where a host
issues a PREPARE FILE call for an operational file required by the
application. This is the same as for the UPDATE APPIL described with
reference to Figure 4 above with the following minor differences. A
PREPARE FILE call is issued instead of an UPDATE APPL and includes the
file parameter FILE ID instead of thé application parameter APPLID. The
other difference is that whilst building the single entry delta list a
check is made for the existence of both static and dynamic files
matching the FILE ID.

Situation 5 above has already been described in detail as example 1

with reference to Figure 2.

The sixth and final example describes with reference to Figure 5
the situation 6 above where a host issues an UPDATE APPL call for an
application other than the current application. As before, many of the
process steps involved are common to previous examples already described

and will not be described again here. The first step 109 is a new step

WO 91/02313 PCT/GB89/00886

16

following -the call UPDATE APPL in which the host control logic 16
requests the host package file location of the application idernitified by
APPLID to be sent from the workstation together with a copy of the
workstation file level. At step 110 the control logic 14 at the
workstation receives the request for the host package file location and
workstation file levels. Thereafter steps 26, 30, 34, 35 and 36 from
Figure 2 are follpwed. The processing steps starting at step 40 in
Figure 4 are followed to the end.

>

WO 91/02313 N PCT/GB89/00886

17

CLAIMS

1. A data processing network having a first processor, a second
processor and a communication system linking said first pProcessor and
said second processor, wherein control logic associated with the
processors is operable to manage the flow of information between said
first processor and said second processor on behalf of cne or more
application programs running on said first processor, characterised in
that said control logic is responsive to calls issued by, or on behalf
of a said application, to determine if a file or set of files
associated with the calling application and stored by said first
processor is/are the most up-to-date version(s) of the file, or set of
files, available for that application as stored at the second processor
and, if not, to replace and/or augment said file or set of files at the
first processor with selected files downloaded from said second

processor accordingly.

2. A data processing network as claimed in claim 1, in which said file

or set of files is that required by the calling application.

3. A data processing network as claimed in claim 1 and 2 in which said
file or set of files is that required by a further application
associated with the calling application and wherein the calling
application issues a call on behalf of said other application to perform

an update check on said file or set of files for that application.

4, A data processing network as claimed in claim 1, claim 2 or claim 3
in which the control logic is distributed between the first processor
and said second processor and in which update calls to check the level
of files at processor 1 can be initiated from the portion of the control

logic at processor 1 or the portion of the logic at processor 2.

5. A data processing network as claimed in any one of the preceding
claims, in which said control logic determines if a file stored by said

first processor requires replacing with an updated version of said file

WO 91/02313 ' PCT/GB89/00886

18

stored by said second processor and if necessary to download said first
updated version of said file from said second processor to replace said

file stored by said first processor.

6. A data processing network as claimed in any one of the preceding
claims, in which said control logic determines if a file in a set of
files stored by said first processor is an obsolete file and if
necessary to delete said obsolete file from said set of files stored by

said first processor.

7. A data procéssing network as claimed in any one of the preceding
claims, in which said control logic determines if said file or set of
files is/are the only file, set of files required by the calling
application and if not to augment the file or set of files by
downloading ene or more additional files stored at the said processor as

necessary.

8. A data processing network as claimed in any one of the preceding
claims, wherein when an application is started by a call issued to said
control légic thereby to establish a communication session between said
first processbr énd said second processor for use by said application,
said communication session is also used to determine if said file or set

of files requires replacing and/or augmenting as aforesaid.

9. A data processing network as claimed in any one of the preceding
claims wherein calls are issued by, or on behalf of, said one or more
applications when they are started.

10 A data processing network as claimed in any one of the preceding
claims wherein said control logic is further responsive to calls at any
point during the -execution of said one or more applications calling for

checking of a file required by said application during execution.

11. A data processing network as claimed in any one of the preceding

claims, wherein said first processor is adapted to delete from its

=

WO 91/02313

PCT/GB89/00886

19

storage a file retained for a first application in order to make room

for a file being downloaded for a second application.

12. A data processing network as claimed in any one of the preceding
claims, wherein said first processor examines said file in order to

determine if said file requires replacing and or deleting.

13. A data processing network as claimed in cliam 12, in which said
control logic at the first processor is operable to compile a list of
files, associated with an application under consideration, previously
downloaded from the second processor together with level information for
each file derived from inspection of any such files stored at the first
processor, and in which said control logic at the second processor is
operable to compile a list of current files, required by said
application under consideration and stored as most up to date versions
at said second processor, together with level information for each such
file, and further in which said control logic is operable to compare the
two lists to generate a delta list specifying actions requiréd in order
to update said files at said first processor, and preforming those

actions accordingly.

14. A data processing network as claimed in claim 13, in which a copy
of the list of files compiled at the first processor is transmitted and
stored at the second processor and a copy of the list of files compiled
at the second processor is transmitted to the stored at the first

processor.

WO 91/02313 PCT/GB89/00886

178
»
2nd PROCESSOR — 18
APPL ~J4—-13 w
CONTROL LogIC | |
CURRENT | [LaesT | AFPL |20
|W/S_FILES, IHOST FILES| PKG.
&LEVELSI & LEVELS] FILE
——— e o] —_—— ——
T 7
33/ (38
T~
\
-6
32, (¥
1 L. |
ICU/RRENT, | LATEST | - 0
W/S FILES| | HOST FILES
I&LEVELS B &LEVELSI ggé o
S it | N v
CONTROL LOGIC
11+ SURR APPL ~4_12
FILE 8
1st PROCESSOR SYSTEM

2/'

FIG. 1

WO 91/02313 -

APPL. CODE

PCT/GB89/00886

2/8

1st PROCESSOR

CALL UPDATE APPL
(... APPLID...)

CONTROL LOGIC IN
PROCESSOR 1

v

287

m{icof 1>

32)

03/05/89

NOT FOUND

21/04/88

Mo

01/04/89

FIG.2AFIG.28

FIG. 2

557

— 267

USING APPLID LOOK IN PROCESSOR 1
DATABASE AND BUILD LISTOF ALL

PREVIOUSLY DOWNLOAD FILES (LIST 28)

' 30)

A FILE SYSTEM FOR FILE EXISTENCE AND

FOR EACH FILE IN BUILT LIST QUERY

ATTRIBUTES, ADD RESULTS TO LIST 32

34y

SEND PKGLOC AND LIST 32 TO CONTROL
LOGIC IN PROCESSOR 2 :

48

'
.RECEIVE DELTA LIST

l %

RECEIVE EACH NEW FILE
) 52

FOR EACH DELTA LIST ENTRY

SELECT : DELETE: REMOVE OLD .
VERSION OF FILE |

CREATE : COPY NEW VERSION
T0 PROPER PLACE

REPLACE: COPY NEW VERSION
ON TOP OF OLD
VERSION

!

UPDATE PROCESSOR 1 DATABASE LIST

OF DOWNLOADED FILES FOR APPLID

| Y

FIG.2A

WO 91/02313 PCT/GB89/00886

3/8
2nd PROCESSOR

33
/
AJ03/05/89
B[NOT FOUND
C
E

22 35

e R

21/04/88

01/04/89
RECEIVE PKGLOC AND STORE LIST 32 38

AS DUPLICATE LIST 33

)

A104/05/89 {(STATIC)
B |23/03/89 |(STATIC)
0
E

15704 /89 |(DYNAMIC)
01/04/89|(STATIC)

36)

I

|

l

|

|

l .

| T'USING PKGLOC READ APPLICATION
‘ : PACKAGE FILE BUILD CURRENT LIST 38

|

l

I

|

I

l

COMPARE LIST 33 AND LIST 38 /LO

AND GENERATE DELTA LIST 42 OF

ACTIONS NECESSARY TO UPDATE
PROCESSOR 1. ONLY 'STATIC"FILES
CHECKED ON UPDATE

ATREPLACE] 04/05/89
| “+——{SEND DELTA LIST T0 PROCESSOR 1 | [B|REPLACE | Z3/03/89
l l Ly, CDELETE 5
!
.| | FOR EACH CREATE/REPLACE IN DELTA b2
<—T— LIST SEND NEW VERSION OF FILE 10
PROCESSOR 1 46

FIGC.2B

WO 91/02313

CALL UPDATE APPL
(...APPLID...)

L
210}

FG 3A|FIG 3B

-t

FIC. 3

"RETURN TO APPL

PCT/GB89/00886
L/8
CONTROL LOGIC
PROCESSOR 1
WIS
100 LIST 32
) /
COMPARE W/S LIST AND HOST
LIST AND BUILD DELTA LIST,
ONLY STATIC FILES CHECKED
l 1015 HOST
SEND DELTA LIST TO HOST LIST 39
|

l 20,
RECEIVE EACH NEW FILE

l °2) _'

FOR EACH DELTA LIST FILE
SELECT : DELETE: REMOVE OLD
- VERSION OF FILE

CREATE: COPY NEW VERSION
TO PROPER PLACE

REPLACE : COPY NEW VERSION
ON TOP OF OLD
VERSION '

v 54 -

UPDATE PROCESSOR 1 DATABASE ‘LISi’

OF DOWNLOAD FILES FOR APPLID

l , 103

UPDATE LIST 32 FROM DELTA LIST

l 10

SEND UPDATE W/S LIST 32 T0 HOST |—*,

55.)

FIG. 3A

W0 91/02313 - PCT/GB89/00886

5/8
PROCESSOR 2

102
3)
- RECEIVE DELTA LIST FROM WIS
L6
l y
FOR EACH CREATE/REPLACE IN DELTA

LIST SEND NEW VERSION OF
' FILE TO W/S '

l | /| NEW LIST 33

WAIT FOR NEW VERSION OF W/S
—» LIST 32 RECEIVE AND STORE
s

AS LIST 33

FIG. 3B

WO 91/02313 PCT/GB89/00886

6/8
FIG 4A|FIG 4B PROCESSOR 1
FIG. 4 "7\ {
RECEIVE APPLID
L8 :
) '
RECEIVE DELTA LIST |
! o0y
RECEIVE EACH NEW FILE [o——— | !
l °2)

FOR EACH DELTA LIST ENTRY
SELECT < DELETE : REMOVE OLD '
- VERSION OF FILE t

CREATE : COPY NEW VERSION
" TO PROPER PLACE

REPLACE : COPY NEW VERSION
- ONTOP OF OLD

VERSION .
UPDATE PROCESSOR41 DATABASE LIST
OF DOWNLOADED FILES FOR APPLID
l 54 / —
UPDATE LIST 32 FROM DELTA LIST |
l 103/ B
'SEND UPDATED WIS LIST 32 TO HOST o
$ 104
SEND SUCCESS/FAIL INDICATOR TO HOST
106

FIG.LA

WO 91/02313 PCT/GB89/00886

718
PROCESSOR 2
CALL UPDATE APPL
(...APPLID ., .
|
| wis
40y 1 LIST 33
COMPARE WIS LIST AND HOST
LIST AND BUILD DELTA LIST,
ONLY STATIC FILES CHECKED
HOST
| l LIST 38
SEND APPLID TO WIS
| — AR
<« SEND DELTA LIST 70 W/S }— b4
Y 46,
FOR EACH CREATE /REPLACE
«—{ IN DELTA LIST SEND NEW
VERSION OF FILE TO W/S
, —
WAIT FOR NEW VERSION OF
WIS LIST 32 RECEIVE AND
STORE AS LIST 33 [NEw
] LIST 33
WAIT FOR SUCCESS/FAIL] 107
"1 INDICATOR FROM WIS [
108) | RETURN success/
FAIL TO CALLER

FIG.4B

PCT/GB89/00886

WO 91/02313

8/8

S '91d

ON3 OL %914 SV
(oy ﬁ

8€ ISIT IN33¥N] 4Ng 314 39vMIvd
NOILYIITddVY QV3Y 10193d ONISn

mom

€€ 1S 31v111dna
SV Z€ IS17 3YOLS[¢—

NV 130719 J3
TSR NV J0719Md 3AI3 Nm
S/M : =13

0IlddV 404 S/M WOY¥4 S13AIT 3114 S/M ONV

. € ¥Y0SS3304d NI 11901
J0Y1NOJ QL Z€ 1SI7 ONV J019)d ON3S

(re t

¢E ISI1 QL S1INS3Y 0av S3LngiyLly

ONV JINILSIX3 3714 404 W3ILSAS 314
A43N0 1SIT 17109 NI 3714 HIV3 ¥o9

Coe '

(8Z 1SN) S3714 QVOINMOO ATSNOIAIYd
11V 40 1SI7 0UNg ONV 3Svaviva

L d0SS3)0dd NI 00T Qllddv ONIsn

(oz ﬂ .

ST3A37 374 S/M ONV NOILYIO0T 31

39VXIVd L1SOH Y04 IS3N03y 3AI3I3Y

Cotl

NOILV]O1 34 39VMIvd 1SOH 1S3nD3Y

[

("7 QNddv " ")
1ddV 31vadn 711V

*
mooF
¢ d0SS3304d

L ¥40SS3J04d

Al

w/

INTERNATIONAL SEARCH REPORT

International Application No PCT/GB 89/00886

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symoois apcly. ingicate aii) ¢

According to international Patent Classification (IPC) or to both National Classification ang IPC

IPC®: G 06 F 15/16, G 06 F 15/40

Il. FIELDS SEARCHED

Minimum Documentation Searched 7

Classificat:on System -

Classification Symoois

5

IPC G 06 F

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are included In the Fields Searched ¢

Ill. DOCUMENTS CONSIDERED TO BE RELEVANT ¢

Category * |

Citation of Document, 1 with indication, where aporooriate, of the reievant passages 12

| Reievant to Claim No. 13

j see abstract; column 9,

A [EP, A2, 0217351 (TOSHIBA) 8
see abstract .

I
l

!

i
|
i
!
|
1

A ;EP, A2, 0284924 (IBM) 5 October 1988, 1
; see column 2, lines 26-49; figure 1
!(cited in the application)

A

EP, A2, 0290828 (HITACHI) 17 November 1988, 1

lines 13-30
April 1987, 1

¢ Special catagories of cited documents: 10

“A" document defining the general state of the art which is not
considersd to be of particuiar relevance

“E™ eariier d but published on or after the internationat
filing date

“L" document which may throw doubts on priority claim(s) or
which 13 Cited to establish the publication date of another
citation or other special reason (as specified)

“0" document referring to an oral disciosure, use, exhibition or
other means

“P" document published prior to the internationai filing date but
Iater than the prionty date claimed

“T" Iater document published after the Internationai filing date
or prionty date and not in conflict with the application but
Cited to understand the principle or theory underiying the
invention

“X" document of particular relevance; the claimed invention
cannot be considersd novel or cannot be considered to
Invoive an inventive step

“Y" document of particular relevance; the claimed invention
cannot be considered to invoive an inventive step whan the
documant is combined with ane or more other such docu-
Imoml. such combination being obvious to & person sxilled
n the art.

“&" document membar of the same patent family

1V. CERTIFICATION

Date of the Actuai Compietion of the International Search

9th April 1990

Date of Mailing of this International Search Report

10. 05 90

internationai Searching Authority

EUROPEAN PATENT OFFICE

Slgnature of Authorized Officer

Mme N. KUIPER

- —_—

Form PCT/ISA/210 fsecond shest) (January 1985)

ANNEX TO THE INTERNATIONAL SEARCH REPORT
'ON INTERNATIONAL PATENT APPLICATION NO. B 8900886

SA 30439
This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on 04/05/90
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document Publication Patent family Publication
cited in search report date member(s) date

05-10-88 GB-A— 2203573 19-10-88

EP-A- 0284924
T ©—JP-A- 63262724 31-10-88

P - Vo o a

EP-A- 0290828 17-11-88 JP-A- 63266571 02-11-88

EP-A- 0217351 - 08-04-87 JP-A- 62076954 09-04-87
Us-A- 4788637 29-11-88

FEPO FORM PO479

> For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

F Y

PV

ay

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

