

US007989429B2

(12) United States Patent

Worm

(10) Patent No.: US 7,989,429 B2

(45) **Date of Patent:** Aug. 2, 2011

(54) LNA ANTAGONISTS TARGETING THE ANDROGEN RECEPTOR

- (75) Inventor: Jesper Worm, Copenhagen (DK)
- (73) Assignees: Enzon Pharmaceuticals, Inc., Bridgewater, NJ (US); Santaris Pharma A/S, Hoersholm (DK)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 12/726,554
- (22) Filed: Mar. 18, 2010

(65) Prior Publication Data

US 2010/0234451 A1 Sep. 16, 2010

Related U.S. Application Data

- (63) Continuation of application No. 12/324,033, filed on Nov. 26, 2008, now Pat. No. 7,737,125.
- (60) Provisional application No. 60/990,125, filed on Nov. 26, 2007.
- (51) Int. Cl.

A61K 48/00	(2006.01)
C07H 21/04	(2006.01)

- (52) **U.S. Cl.** ... **514/44**; 536/23.1; 536/24.31; 536/24.33; 536/24.5
- (58) **Field of Classification Search** None See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

4,914,210	Α	4/1990	Levenson et al.
4,962,029	Α	10/1990	Levenson et al.
6,733,776	B1	5/2004	Li et al.
7,067,256	B2	6/2006	Roy et al.
7,087,229	B2	8/2006	Zhao et al.
2004/0235773	A1	11/2004	Zhao et al.
2005/0159376	A1	7/2005	McSwiggen et al.
2005/0164970	A1	7/2005	Li
2005/0101970		112005	DI

FOREIGN PATENT DOCUMENTS

EP	0692972	10/1994
WO	97/11170	3/1997
WO	WO97/11170	3/1997
WO	01/83740	11/2001
WO	WO01/83740	11/2001
WO	2004/046160	6/2004
WO	WO2004/046160	6/2004
WO	2004/063331	A2 7/2004
WO	WO 2004/063331 A	A2 7/2004
WO	2005/027833	3/2005
WO	WO2005/027833	3/2005
WO	2007/031081	3/2007
WO	2007/031091	3/2007
WO	WO2007/031081	3/2007
WO	WO2007/031091	3/2007
WO	2007/146511	A2 12/2007
WO	WO2007/146511 A	A2 12/2007
WO	2008/034122	3/2008
WO	2008/034123	3/2008
WO	WO2008/034122	3/2008

WO2008/034123	3/2008	
2008053314	5/2008	
WO2008/053314	5/2008	

WO WO

WO

OTHER PUBLICATIONS

Kurreck et al., Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Research, vol. 30, pp. 1911-1918, 2002.

Eder et al., Inhibition of LNCaP prostate cancer cells by means of androgen receptor antisense oligonucleotides. Cancer Gene Therapy, vol. 7, pp. 997-1007, 2000.

Beane et al., Inhibiting gene expression with locked nucleic acids (LNAs) that target chromosomal DNA. Biochemistry vol. 46, oo. 7572-7580, 2007.

International Search Report issued in PCT/DK2008/000417 and dated Jun. 16, 2009.

Akinc, et al., "A combinatorial library of lipid-like materials for delivery of RNAi therapeutics," Nature Biotechnology, vol. 26, pp. 561-569, 2008.

Freier & Altmann; "The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DAN:RNA duplexes", Nucl. Acid Research, vol. 25, pp. 4429-4443, 1997.

Manoharan, et al., "Novel Functionalization of the Sugar Moiety of Nucleic Acids for Multiple Labeling in the Minor Groove", Tetrahedron Letters, vol. 32, pp. 7171-7174, 1991.

Monks, et al., "Overexpression of wild-type androgen receptor in muscle recapitulates polyglutamine disease", PNAS, vol. 104, pp. 18259-18264, Nov. 13, 2007.

Uhlmann, Eugen, "Recent advances in the medicinal chemistry of antisense oligonucleotides", Curr. Opinion in Drug Development, vol. 3, pp. 203-213, 2000.

Zhao et al., "A New Platform for Oligonucleotide Delivery Utilizing the PEG Prodrug Approach", Bioconjugate Chemistry, vol. 16, pp. 758-766, 2005.

Zhao et al., "Delivery of G3139 using releasable PEG-linkers: Impact on pharmacokinetic profile and anti-tumor efficacy", J. of Controlled Release, vol. 119, pp. 143-152, 2007.

Beane et al., Inhibiting gene expression with locked nucleic acids (LNAs) that target chromosomal DNA. Biochemistry vol. 46, pp. 7572-7580, 2007.

Akinc, et al., "A combinatorial library of lipid-like materials for delivery of RNAi therapeutics," Nature Biotechnology, vol. 26, No. 5, pp. 561-569, 2008.

Freier & Altmann; "The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DAN:RNA duplexes," *Nucl. Acid Research*, vol. 25, No. 22, pp. 4429-4443, 1997.

Manoharan, et al., "Novel Funictionalization of the Sugar Moiety of Nucleic Acids for Multiple Labeling in the Minor Groove," *Tetrahedron Letters*, vol. 32, No. 49, pp. 7171-7174, 1991.

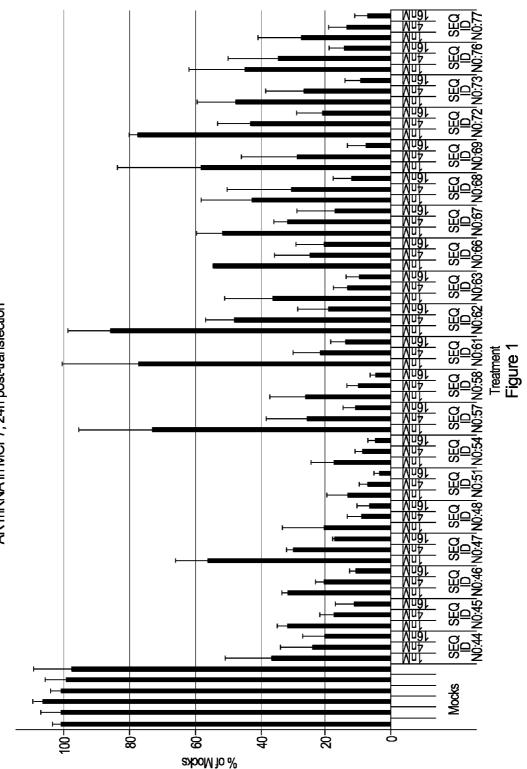
(Continued)

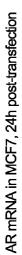
Primary Examiner — Amy Bowman

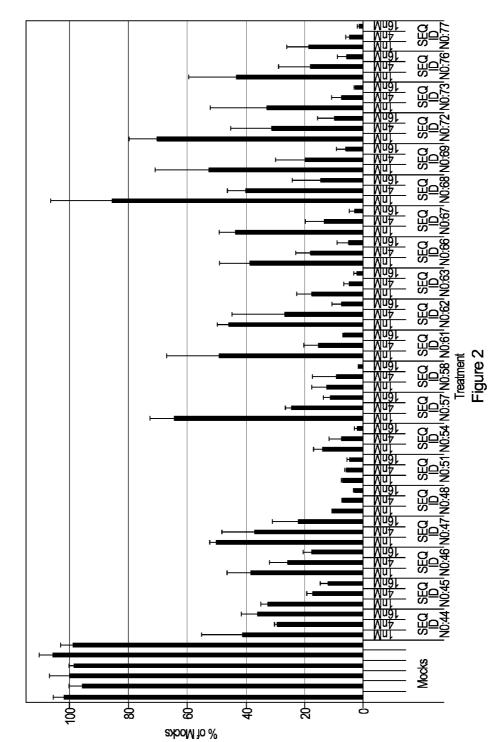
(74) Attorney, Agent, or Firm - Lucas & Mercanti, LLP

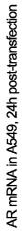
(57) ABSTRACT

The invention relates to oligonucleotide compounds (oligomers), which target androgen receptor mRNA in a cell, leading to reduced expression of the androgen receptor. Reduction of the androgen receptor expression is beneficial for the treatment of certain disorders, such as a hyperproliferative disorders (e.g., cancer). The invention provides therapeutic compositions comprising oligomers and methods for modulating the expression of androgen receptor using said oligomers, including methods of treatment.


10 Claims, 22 Drawing Sheets


OTHER PUBLICATIONS


Monks, et al., "Overexpression of wild-type androgen receptor in muscle recapitulates polyglutamine disease," PNAS, vol. 104, No. 46, pp. 18259-18264, Nov. 13, 2007. Uhlmann, Eugen, "Recent advances in the medicinal chemistry of antisense oligonucleotides," Curr. *Opinion in Drug Development*, Vo. 3, No. 2, pp. 203-213, 2000.


Zhao, et al., "A New Platform for Oligonucleotide Delivery Utilizing the PEG Prodrug Approach," Bioconjudate Chemistry, vol. 16, No. 4, pp. 758-766, 2005.

Zhao, et al.,"Delivery of G3139 using releasable PEG-linkers: Impact on pharmacokinetic profile and anti-tumor efficacy," J. of Controlled Release, vol. 119, pp. 143-152, 2007.

Figure 3			
Alignment 1	numan	and mouse AR mRNA 1 5(0
NM_013476 NM_000044	(1) (1)	15(CGAGATCCCGGGGAGCCAGCTTGCTGGGAGAGCGGGACGGTCCGGAGCA	łΑ
Consensus	(1)	51 100	
№_013476 №_000044	(1) (51)	GCCCAGAGGCAGAGGGGGCGACAGAGGGGAAAAGGGGCCGAGCTAGCCG	ĴT
Consensus	(51)	10115	
NM_013476 NM_000044	(1) (101)	CCAGTGCTGTACAGGAGCCGAAGGGACGCACCACGCCAGCCCCAGCCCC	
Consensus NM 013476	(101)	151 20 CTCCAGCGACAGCCAACGCCTCTTGCAGCGCGGCGGCTTCGAAGCCGC	0
NM_000044	(151)		
Consensus NM_013476	(151) (1)	20125	
NM_000044 Consensus	(201) (201)	CCCGGAGCTGCCCTTTCCTCTTCGGTGAAGTTTTTAAAAGCTGCTAAA	
NM_013476	(1)	25130	
NM_000044 Consensus	(251) (251)	CTCGGAGGAAGCAAGGAAAGTGCCTGGTAGGACTGACGGCTGCCTTTG	ГC
NM_013476	(1)	301 CTCCTCCTCCCACCCCGCCTCCCCCACCCTGCCTTCCCCCCCC	0
NM_000044 Consensus	(301) (301)		
NM_013476	(1)	201 201	
NM_000044 Consensus	(351) (351)		
NM_013476	(1)		-
NM_000044 Consensus	(401)	451 50	
NM_013476 NM_000044	(1) (451)		
Consensus	(451)	55	
№_013476 №_000044	(1) (501)		CG
Consensus	(501)	<u>55160</u>	0_
№_013476 №_000044	(1) (551)	GCTTCAGCACTGCAGCCACGACCCGCCTGGTTAGGCTGCACGCGGAGA	.GA
Consensus NM 013476	(551)		
NM_000044	(601)	ACCCTCTGTTTTCCCCCACTCTCTCCACCTCCTCCTGCCTTCCCCA	'CC
Consensus NM 013476	(601) (1		
NM 000044	(651)) CCGAGTGCGGAGCCAGAGATCAAAAGATGAAAAGGCAGTCAGGTCTTC	
Coñsensus NM_013476	(651)		
NM_000044	(701) (701)) ТАСССААААААСААААСААААСАААААААСССССАААТААААСАА	
Consensus NM_013476	(701)	1 (15) DU DU)0_

NM_000044 Consensus	(751) (751)	AGATAATAACTCAGTTCTTATTTGCACCTACTTCAGTGGACACTGAATTT 801 850
NM_013476 NM_000044 Consensus	(1) (801) (801)	GGAAGGTGGAGGATTTTGTTTTTTTTTTTTTTTTTTTGAGATCTGGGCATCTTTTGA
NM_013476 NM_000044	(801)	851 900 ATCTACCCTTCAAGTATTAAGAGACAGACTGTGAGCCTAGCAGGGCAGAT
Consensus NM_013476	(801)	901 950
NM_000044 Consensus	(901) (901)	CTTGTCCACCGTGTGTCTTCTTCTGCACGAGACTTTGAGGCTGTCAGAGC 951 1000
NM_013476 NM_000044 Consensus	(1) (951) (951)	GCTTTTTGCGTGGTTGCTCCCGCAAGTTTCCTTCTCTGGAGCTTCCCGCA
NM_013476 NM_000044	(1) (1001)	1001 1050 GGTGGGCAGCTAGCTGCAGCGACTACCGCATCATCACAGCCTGTTGAACT
Consensus NM_013476	(1001) (1)	1001 1051
NM_000044 Consensus	(1051) (1051)	CTTCTGAGCAAGAGAAGGGGGGGGGGGGGGGGGGGGGGG
NM_013476 NM_000044 Consensus	(18) (1101) (1101)	CAGACAAGCTCAAGGATGGAGGTGCAGTTAGGGCTGGGAAGGGTCTACCC CAGCCAAGCTCAAGGATGGAAGTGCAGTTAGGGCTGGGAAGGGTCTACCC
NM_013476 NM_000044 Consensus	(68) (1151) (1151)	ACGCCQCCATCCAAGACCTATCCAGGAGCQTTCCAGAATCTGTTCCAGA TCGGCCQCCGTCCAAGACCTACCGAGGAGCUTTCCAGAATCTGTTCCAGA CGGCC CC TCCAAGACCTA CGAGGAGC TTCCAGAATCTGTTCCAGA
NM_013476 NM_000044 Consensus	(118) (1201) (1201)	CCGTGCGCGAAGQGATCCAGAACCCGGGCCCCAGGCACCQTGAGGCCGQT GCGTGCGCGAAGTGATCCAGAACCCGGGCCCCCAGGCACCQAGAGGCCGQG
№_013476 №_000044 Consensus	(168) (1251) (1251)	AACATA <u>GCGCCTCCCGGCGCCTGTTTAC</u> AGCGCA <u>GCGCCTCCCGGCGCCAGTTTGC</u> TGCTGCTGCAGCAGCAGCAGCA A C AGCGCCTCCCGGCGCC GTTT C
NM_013476 NM_000044 Consensus	(196) (1301) (1301)	HUUH GCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG
NM_013476 NM_000044 Consensus	(202) (1351) (1351)	GCACGACACTAGCCCCCCGCGCGCGCGCGCCGCAGCACACTGAGGAT AGCAAGAGACTAGCCCCAGGGAGCAGCAGCAGCAGCAGCAGCAGGGTGAGGAT
NM_013476 NM_000044 Consensus	(1398)	GGTTCTCCTCAAGCCCACATCAGAGGCCCCCACAGGCTACCTGGCCCTGGA GGTTCTCCCCAAGCCCATCGTAGAGGCCCCCACAGGCTACCTGGTCCTGGA GGTTCTCC CAAGCCCA AGAGGCCCCCACAGGCTACCTGG CCTGGA
NM_013476 NM_000044 Consensus	(302) (1448) (1451)	TGAGGAACAGCAIACCTTCACAGCICGCAGTCGGCCCCCGGAGTGCCACCCCG

		1501 1550
NM_013476 NM_000044 Consensus	(352) (1498) (1501)	1501 1550 AGAGCAGOTGGOTCCOCGAGCCTGGGGGGGGGGGCGACCGOTCOTGGCAAGGGG AGAGCGTGGCGCCACCAGGAGGGGGGGGGGGGGGGGGGG
NM_013476 NM_000044 Consensus	(402) (1548) (1551)	CTGCCGCAGCAGCACCAGCTCCTCCAGAICAGGATGACTCAGCTGCCCC CTGCCGCAGCAGCTGCCAGCACCTCCGGACGAGGATGACTCAGCTGCCCC CTGCCGCAGCAGCTCCAGCACCTCCGGACGACGATGACTCAGCTGCCCC CTGCCGCAGCAGC CCAGC CTGCCGCAGCAGC CCAGC CCCGCAGCAGCC CCAGC CTGCCGCAGCAGC CCAGC CCAGC CCAGC CCAGC CTGCCGCAGCAGC CCAGC CTGCCGCAGCAGC CCAGC CTGCCGCAGCAGC CCAGC CTGCCGCAGCAGC CCAGC CTGCCGCAGCAGC CTGCCGCAGCAGC CTGCCGCAGCAGC CTGCCGCAGCAGC CTGCCGCAGCAGC CTGCCGCAGCAGC CTGCCGCAGCAGC CTGCCGCAGCAGC
NM_013476 NM_000044 Consensus	(452) (1598) (1601)	ATCCACGTTGTCCCTGCTGGGCCCCACTTTCCCAGGCTTAAGCAGCTGCT ATCCACGTTGTCCCTGCTGGGCCCCACTTTCCCCGGCCTTAAGCAGCTGCT ATCCACGTTGTCCCTGCTGGGCCCCACTTTCCC GGCTTAAGCAGCTGCT 1651 1700
NM_013476 NM_000044 Consensus	(502) (1648) (1651)	CCGCCGAGATTAAAGACATTTTGAACGAGGCCGGCACCATGCAACTTCTT CCGCTGAGATTAAAGACATCCTGAGCGAGGCCAGGCACCATGCAACTCCTT CCGC GAC TTAAAGACAT TGA CGAGGCC GCACCATGCAACT CTT 1701 1750
№_013476 №_000044 Consensus	(552) (1698) (1701)	CÁGCAGCAGCAACAACAGCAGCAGCAGCACCAACAGCAGCACCAACAGCACAGCA CAGCA ACA CAGCAGCAGCAGCA CAGCA ACA CAGCAG A 1751 1800
NM_013476 NM_000044 Consensus	(602) (1716) (1751)	ACACCAGCAGCAGCAAGCAACCCAAGAGCAAGCAAGAGCAAGCGAAGAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAA
NM_013476 NM_000044 Consensus	(652) (1756) (1801)	COACGGGGGCTCCCTCTTCCTCCAAGGATAGTTACCTAGGGGGGCAATTCA CCTCGGGGGCTCCCACTTCCTCCAAGGACAATTACTTAGGGGGGCACTTCG CC CGGGGGCTCCC CTTCCTCCAAGGA A TTAC TAGGGGGCA TTC 1851 1900
№ 013476 № 000044 Consensus	(702) (1806) (1851)	ACCATIAITCTGACAGTGCCAAGGAGTTGTGTGTAAAGCAGTGTCTGTGTCCAT ACCATITITCTGACAACGCCAAGGAGTTGTGTAAGGCAGTGTCGGTGTCCAT ACCAT TCTGACA GCCAAGGAGTTGTGTAA GCAGTGTC GTGTCCAT 1901 1950
№ 013476 № 000044 Consensus	(752) (1856) (1901)	GGGATTGGGTGTGGAAGOATTGGAACATCTGAGTCCAGGGGAACAGCTTC GGGCCTGGGTGTGGAGGGCTTGGACCATCTGAGTCCAGGGGAACAGCTTC GGG TGGGTGTGGA GC TTGGA CATCTGAGTCCAGGGGAACAGCTTC 1951 2000
№ 013476 № 000044 Consensus	(802) (1906) (1951)	GGGGAGAGAGTGCATGTACGCGGTGCCTCCTGGGAGGTCCACCCGGGTGCGTGGGGCGAINTGCATGTACGCCCCCCCTTTTTGGGGAGTTCCACCCGGTGTGCGTGGGG GA TGCATGTACGC C CT TGGGAG TCCACCCGC GTGCGT20012050
№ 013476 № 000044 Consensus	(2001)	CCCACTCCTTGTGGGCGGCTGCCCGAATGCAAAGGTCTTCCCCTGGACGA CCCACTCCTTGTGGCCGATTGCCCGAATGCAAAGGTTCTCTGCTAGACGA CCCACTCCTTGTGC CC TG CCGAATGCAAAGGT TC CT GACGA 2051 2100
№ 013476 № 000044 Consensus	(2006) (2051)	AGGCCCAGGCAAAAGCACTGAAGAAACTGCTGAGTATTCCTCTTTCAAGG CGCCCCAGGCAAGAGCACTGAAGATACTGCTGAGTATTCCCCTTTCAAGG GC CAGGCAA AGCACTGAAGA ACTGCTGAGTATTCC CTTTCAAGG 2101 2150
NM_013476 NM_000044 Consensus	(2056)	CĂĞĞTTAQCCCAAAGGATIIGGAAGGTGAGAGCIIIGGGGTGCTCTGGCĂĞŎ GAGGTTAQACCAAAGGGCIIAGAAGCCGAGAGCCIIAGGCIGCTCTGGCAGO GAGGTTAC CCAAAGG T GAAGG GAGAGC T GG TGCTCTGGCAGC

		0151 0000
NM_013476 NM_000044	(1002) (2106)	GCIGCAGCAGGGAGCTCCGGGACACTTGAACIIGCCGTCTACCCTGTCTCT
Consensus	(2151)	TG AGCAGG AGCTC GGGACACTTGA T CCGTC C CTGTCTCT 2201 2250
NM_013476 NM_000044 Consensus	(1052) (2156) (2201)	GTATIAAAITOTGGAGCACTIAGACGAGGCAGGAGGATACCAGAAITCGCGACT OTATIAAAITOTGGAGCACTIGGACGAGGCAGOTGOGTACCAGAGITCGCGACT
NM_013476 NM_000044 Consensus	(1102) (2206) (2251)	ACTACAACTTTCCGCTGGCTCTGTCCGGGCCGCCGCACCCCCCCC
№_013476 №_000044 Consensus	(1152) (2256) (2301)	ACCCATCOACACGOCOGTATCAAGCTGGAGAACCOATTGGACTACGGCAG CCCATCOCACGCTCGCATCAAGCTGGAGAACCOGCTGGACTACGGCAG
NM_013476 NM_000044 Consensus	(1202) (2306) (2351)	CCCCTGGGQTGQGGCGGQAGCGCAATGCCGCTATGGGGAQTTGGGTAGTQ CGCCTGGGQGGGCGGGGGGGCGCAGTGCCGCTATGGGGAQCTGGCGAGQQ
NM_013476 NM_000044 Consensus	(1252) (2356) (2401)	TIACATGGACGGAGTGTAGCCGGGCCCAGCACTGGATGCCCCCCAGCCACC TIGCATGGCGCGCGCGCGGACCCGGTTCTGGGTGACCCTCAGCCGCC T CATGG G G GTG AGC GG CCC G CTGG TC CCC CAGCC CC 2451 2500
NM_013476 NM_000044 Consensus	(1302) (2406) (2451)	ACOTOTTCCTGGCATACTCTCTCACAGOTGAAGAAGGCCAATTĂĂĂ GCHTCOTCATCCTGGCACACTCTCTTCACAGOCGAAGAAGGCCAGTTGTA C TC TC TCCTGGCA ACTCTCTTCACAGC GAAGAAGGCCA TT TA 2501 2550
NM_013476 NM_000044 Consensus	(1352) (2456) (2501)	TGGACCA
NM_013476 NM_000044 Consensus	(1360) (2506) (2551)	GAGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
№ 013476 № 000044 Consensus	(1410) (2556) (2601)	TAI GCTACACTCGGCCCCCTCAGGGGCTGACAAGCCAGGAGAGIGACTA TACGGCTACACTCGGCCCCCTCAGGGGCTGCGCGCCCAGGAAGCGACTT
NM_013476 NM_000044 Consensus	(1460) (2606) (2651)	OTOTECCTOCGAAGTGTGGTATCCTGGTGGAGTTGTGAACAGAGTACCCT CACOGCACCCGATGTGTGGTACCCTGGCGGCAUGGTGAGCAGAGTGCCCT
NM_013476 NM_000044 Consensus	(1510 (2666 (2701) ATCCCAGTCCCAALTGTGTCAAAAGIGAAATGGGACCTIGGATGGAGAAA) ATCCCAGTCCCACITGTGTGTCAAAAGCGAAATGGGCCCCTGGATGGAIIAGC
NM_013476 NM_000044 Consensus	(1560 (2706 (2751) ITACTCCGGACCTTATGGGGACATGCGTTTGGACAGITACCAGGGACCATGT) ITACTCCGGACCTTACGGGGACATGCGTTTGGAGACITGCCAGGGACCATGT

		4004 DDDD
NM_013476 NM_000044 Consensus	(1610) (2756) (2801)	2801 2850 TTTIACCCATICGACTATTACTTTCCACCCCAGAAGACCTGCCTGATCTGTG TTTGCCCATICGACTATTACTTTCCACCCCAGAAGACCTGCCTGATCTGTG TTT CCCAT GACTATTACTTTCCACCCCAGAAGACCTGCCTGATCTGTG 2851 2900
NM_013476 NM_000044 Consensus	(1660) (2806) (2851)	GAGATGAAGCTTCTGGCTGTCACTACGGAGCTCTCACTTGTGGCAGCTGC GAGATGAAGCTTCTGGCTGTCACTATGGAGCTCTCACATGTGCAAGCTGC GAGATGAAGCTTCTGG TGTCACTA GGAGCTCTCAC TGTGG AGCTGC 2901 2950
№_013476 №_000044 Consensus	(1710) (2856) (2901)	AAGGTCTTCTTCAAAAGAGCCGCTGAAGGGAAACAGAAGTAICTAIGIGC AAGGTCTTCTTCAAAAGAGCCGCTGAAGGGAAACAGAAGTACCTGIGOGC AAGGTCTTCTTCAAAAGAGCCGCTGAAGGGAAACAGAAGTA CT TG GC
NM_013476 NM_000044 Consensus	(1760) (2906) (2951)	
№ 013476 № 000044 Consensus	(1810) (2956) (3001)	ČŤŤĠTCGTCTQCGGAAATGTTATGAAGCAGGGATGACTCTGGGAGCICGTCTTGTCGTCTTCGGAAATGTTATGAAGCAGGGATGACTCTGGGAGCCCGGCTTGTCGTCTCGGAAATGTTATGAAGCAGGGATGACTCTGGGAGC30513100
№_013476 №_000044 Consensus	(1860) (3006) (3051)	AAGCTGAAGAAACTTGGAAATCTAAAACTACAGGAGGAAGGA
NM_013476 NM_000044 Consensus	(1910) (3056) (3101)	CAATEOIGGCAGCCCCACTGAGGACCCATCCCAGAAGAIGAOIGTAIICAC CAGCAOCACCAGCCCCACTGAGGAGACAACCCAGAAGCIGACAGTGICAC CA C CAGCCCCACTGAGGA CA CCCAGAAG IGAC GI TCAC
NM_013476 NM_000044 Consensus	(1960) (3106) (3151)	3151 3200 ACATTGAAGGCTATGAATGTCAGCCTATCTTTCTHAACGTCCTGGAAGCC ACATTGAAGGCTATGAATGTCAGCCCATCTTTCTGAATGTCCTGGAAGCC ACATTGAAGGCTATGAATGTCAGCC ATCTTTCT AA GTCCTGGAAGCC 3201 3250
№ 013476 № 000044 Consensus	(2010) (3156) (3201)	IATTGAGCCAGGAGTGTGTGTGTGGGGGACAITGACAACAACCAACCAGGAITČ IATTGAGCCAGGTGTIAGTGTGTGGTGGGGACACGACAACAACCAGCCGGAGTC ATTGAGCCAGG GT GTGTGTGC GGACA GACAACAACCA CC GA TC 3251 3300
NM_013476 NM_000044 Consensus	(2060) (3206) (3251)	CTTTGCIGCCTTGCIDATCTAGCCTCAATGAGCTIGGAGAGAGGCCAGCTTG CTTTGCAGCCTTGCICCTCAGCCTCAATGAACTGGGAGAGAGAGACAGCTTG CTTTGC GCCTTG T TCTAGCCTCAATGA CT GGAGAGAG CAGCTTG 3301 3350
NM_013476 NM_000044 Consensus	A feat and a lot of f	TICCAITGTGGTCAAGTGGGCCAAGGCCTTGCCTGGCTTCCGCAACTTICCAI TIACACGTGGTCAAGTGGGCCAAGGCCTTGCCTGGCTTCCGCAACTTIACAC T CA GTGGTCAAGTGGGCCAAGGCCTTGCCTGGCTTCCGCAACTT CA 3351 3400
NM_013476 NM_000044 Consensus		GTGGATGACCAGATGGCGGTCATTCAGTATTCCTGGATGGGACTGATGGT GTGGACGACCAGATGGCTGTCATTCAGTACTCCTGGATGGOGCTCATGGT GTGGA GACCAGATGGC GTCATTCAGTA TCCTGGATGGG CT ATGGT
NM_013476 NM_000044 Consensus	(2210) (3356) (3401)	3401 3450 ATTTCCCATGGGTTGGCGCTCCTTCACTAATGTCAACTCCAGGATGCTCT GTTTGCCATGGGOTGGCGATCCTTCACCAATGTCAACTCCAGGATGCTCT TTTGCCATGGG TGGCG TCCTTCAC AATGTCAACTCCAGGATGCTCT

		2451
NM 013476	(2260)	3451 3500 ACTTNIGGACCTGACITGGTTTTCAATGAGTACCGCATGCACAAGTCICGG
NM_000044	(3406)	
Consensus	(3451)	ACTT GC CCTGA TGGTTTTCAATGAGTACCGCATGCACAAGTC CGG
1 A A A A A A A A A A A A A A A A A A A	100101	3501 3550 ATGTACAGCCAGTGTGTGAGGATGAGGCACCTGTCTCAAGAGTTTGGATG
NM_013476 NM_000044	(2310) (3456)	
Consensus	(3450) (3501)	
	(5001)	3551 3600
NM_013476	(2360)	
NM_000044	(3506)	
Consensus	(3551)	GCTCCAAAT ACCCCCCAGGAATTCCTGTGCATGAAAGCACTGCT CTCT 3601 3650
NM 013476	(2410)	TCAGCATTATTCCAGTGGATGGGCTGAAAAATCAAAAATTCTTTGATGAA
NM_000044	(3556)	TCAGCATTATTCCAGTGGATGGGCTGAAAAATCAAAAATTCTTTGATGAA
Consensus	(3601)	TCAGCATTATTCCAGTGGATGGGCTGAAAAATCAAAAATTCTTTGATGAA
NM 013476	(2460)	3651 3700 CTTCGAATGAACTACATCAAGGAACTCGATCGCATCATTGCATGCA
NM 000044	(3606)	
Consensus	(3651)	CTTCGAATGAACTACATCAAGGAACTCGATCG ATCATTGCATGCAAAAG
	10510	3701 3750
NM_013476	(2510) (3656)	
NM_000044 Consensus	(3030) (3701)	
	(0/01)	3751 3800
NM_013476	(2560)	TGGAILTOICTGCAGCCTATTGCAAGAGAGCTGCATCAGTTCACTTTTGAC
NM_000044	(3706)	
Consensus	(3751)	TGGA TC GTGCAGCCTATTGC AGAGAGCTGCATCAGTTCACTTTTGAC 3801 3850
NM 013476	(2610)	
NM 000044	(3756)	CTGCTAATCAAGTOACAOATGGTGAGCGTGGACTTTCOGGAAATGATGGO
Consensus	(3801)	CTGCTAATCAAGTC CA ATGGTGAGCGTGGACTTTCC GAAATGATGGC
NM 013476	(2660)	3851 3900 IAGAGATCATCTCTGTGCAAGTGCCCAAGATCCTTTCTGGGAAAGTCAAGC
NM_013478 NM_000044	(3806)	
Consensus	(3851)	AGAGATCATCTCTGTGCAAGTGCCCAAGATCCTTTCTGGGAAAGTCAAGC
	, ,	3901 3950
NM_013476	(2710)	
NM_000044 Consensus	(3856) (3901)	
	(0001)	3951 4000
№_013476	(2760)	
NM_000044	(3906)	CCACTCATCCCCCCCTTTCAGATGTCTTCTGCCTGTTAT- AACTCTGCA CCA CT T CCC TT CAGATGTCTTCTGCCTGTTAT AACTCTGCA
Consensus	(3321)	CCA CT T CCC TT CAGATGTCTTCTGCCTGTTAT AACTCTGCA 4001 4050
NM 013476	(2809)	CTACTICTCTGCAGTGCCTTGGGGGAAATTCCTCTACTGATGTACAGTCT
NM_000044	(3953)	CTACTCCTCTGCAGTGCCTTGGGG-AATTTCCTCTAIITGATGTACAGTCT
Consensus	(4001)	CTACT CTCTGCAGTGCCTTGGGG AA TTCCTCTA TGATGTACAGTCT
NIN (112476	120501	
NM_013476 NM_000044	(4002)	ĠŤŎĠŢĠĂĂĊĂĠĠŢŢĊĊŢĊĂĠŢŢĊŢĂŢŢŢĊĊŢĠĠĠĊŢŢ ĠŢŎĂŢĠĂĂĊĂĨĠŢŢĊĊŢĠĂŎŢŢĊŢĂŢŢŢĠĊŢĠĠĠĊŢŢŢŢŢŢŢŢŎŢŢŢ
Consensus	(4051)	GTC TGAACA GTTCCT A TTCTATTT CTGGGCTT CTC TT
	, ,	

NM_013476 NM_000044 Consensus	(2902) (4052) (4101)	4101 4150 CTTTTTTTTTTTTTTTTCTTCCCCCCCTCTTTTCACCCCCCATGGCACA CTCTCCTTTCTTTTTTTTTT
№_013476 №_000044 Consensus	(2947) (4102) (4151)	TTTTIGAAIIOTGCTIGOGTATTGTGGCTCCTGCCTTTGTTTTGATIITCTGTTI TTCAGACIIIITGCTTOCCATTGTGGCTCCTATCTGTGTTTTGAAIIGGTGTT TT GA T TGCT C ATTGTGGCTCCT CT TGTTTTGA T TGTT
NM_013476 NM_000044 Consensus	(2997) (4152) (4201)	4201 4250 GTA GTA GTA 4251 4250 4250 4250 4250 4250 4250 4250 4250
NM_013476 NM_000044 Consensus	(3000) (4202) (4251)	GCTTGTTTACAGCACTACTCTGTGCCAGCCACACAAACGTTTACTTATCT
NM_013476 NM_000044 Consensus	(3000) (4252) (4301)	4301 4350 TATGCCACGGGAAGTTTAGAGAGCTAAGATTATCTGGGGAAATCAAAACA
NM_013476 NM_000044 Consensus	(3000) (4302) (4351)	4351 4363 AAAACAAGCAAAC

NM_000044

ORIGIN						
		gggagocago				
		acagagggaa				
		ceacgeeage				
1.81	addoddarfa	dwadoodqood	cocddadcrd	ccetttectc	ttcggtgaag	ttttaaaag
241	ctgotaaaya	ctoggaggaa	dceaddeaedd	tgeotggtag	gactgacgge	tgeetttgtc
301	ctectcotet	ccacccogee	trococoace	otgocttoco	ococtcoccc	gicitetete
361	ocycagotyc	ctosgtoggo	tactorcage	caaccocccu	caccacect	ctcccccccc
421	geeeeeege	ccccgtcggc	ccagegetge	cagocogagt	ttgcagagag	gtaactcoct
481	ttgggtgoga	gegggegage	tagetgeaca	ttgcaaagaa	ggatattagg	agceaggega
541	stääääaaca	getteagese	tgeagecaeg	scccgcctgg	ttaggotgoa	ogoggagaga
691	accotctgtt	ttococcact	otototocac	otacteatge	otteccoace	ccdadtdcâd
561	agccagagat	caaasgatga	aaaggcagto	agguetteag	tagcoaaaaa	acaaaacaaa
721	08888880888	saagoogsaa	taaaagaaaa	agataataac	toagttetta	tttgcaceta
783	cttcagtgga	cactgaattt	ggaaggtgga	ggattttgtt	tutttottt	sagatotggg
841	catctttga	atotaccett	caaytattaa	gagacagact	gtgagectag	cagggcagat
		gtgtgtctte				
		cgcasgtttc				
		teateacage				
		gtggaagatt				
		reddeedeed				
		agtgatccag				
1251	eredeadae	cagtttgetg	ctactacase	adcadcadca	acsacaacsa	caccageage
		gcagcagcag				
			NO:44	a good a goog a co		SEQ ID
NO:45						
	висаковкож	tgaggatggt	teteconaad	cocatostas	aggenerada	agotacotog
		ggaacagcaa				
		cocagagoot				
		tooggaogag				
		cggcttaagc				
		actcettcag				
		ggaggcotog				
2001	Chicogacoac	ttotgacaac		D NO:46	añ cô coâd câ	conacygyco
:063	tasatataas	aacattaasa			acttonenes	asttarstat
2003	rädärdrääa	ggcgttggag	Checcoad re			
1091		and the second second second			EQ ID NO:4	
		tttgggagtt				
		ttototgota				
		caagggaggt				
		agcagggagc				
2181	agrocggage	actggacgag	geagetgegt	accagagtog	ogaetaetae	aactiteese
2223. 2022	rggerergge	oggacogoog	sccectozge	cgcctececa	cocccacget	egeateaaye
		getggaetac				
2341	âââscorăâc	gagootgoat			eggttetggg	reacestoag
2401	energentie	ctcatectgg) NO:48 teacagecua	33333330084	tintatgeac
		tygtgggggt				
121.123		cggcgaggcg				
		ccaggaaagc		BEQ ID NO:5		89-89404588
	22002223333					
2581		accetatore				coctasataa
2581 2641	tgagcagagt	gocotatoco	agtoccaott	gtgtcaaaag	cgasatgggc	
2581 2641	tgagcagagt	gcoctatoco oggacottac	agtoccaott	gtgtcaaaag	cgasatgggc	
2581 2641 2701	tgagcagagt		agtoccaott	gtgtcaaaag	cgasatgggc	catgttttgc
2581 2641 2701 1D NO:54	tgagcagagt atagotacto	cggacottac	ag <u>tessaett</u> ggggasatge	gtgtcaaa ag gtttggagae	cgasatgggc tgccagggac	catgttttgc SEQ
2581 2641 2701 ID NO:54 2761	tgagcagagt stagotacto coattgacta	cggacottac ttactttoca	ag <u>toccaett</u> ggggasatge ccccagaaga	gtgtcaaaag gtttggagao cotgcotgat	cyasatgggc tyccagggac ctgtggagat	catgttttgc SEQ ga <u>agettetg</u>
2581 2641 2701 1D NO:54 2761 2821	tgagcagagt atagotacto coattgacta ggtgtcacta	cggacottac	ag <u>toscaett</u> ggggacatge ccccagaaga acatgiggaa	gtgtcsasaag gtttggagae cotgcotgat gotgcaaggt	cgaaatgggc tgccagggac ctgtggagat cttcttcsaa cactattgat	catgttftgc SEO ga <u>agettetg</u> agageegetg aaatteegaa
2581 2641 2701 1D NO:54 2761 2021 2081	tgagcagagt atagotacto coattgacta <u>gotgtcac</u> ta aaygyaaaca	eggacettae ttacttteea tggagetete	ag <u>toscactt</u> ggggacatgo ccccsgsaga acatgtggaa tgogccagca	gtytosas ag gttoggagae cotgootgat gotgosaggt gaaatgattg	ogasatşışıd tgooagişgad otgogişgagat ottotoosaa osorattışat SBQ ID MO:!!	catgltftgc SEQ ga <u>agottotg</u> agagocyctg aaattoogaa 57

3001 cocygaagot gaagaaactt ggtaatotga aactacagga ggaaggagag getteeagca 3061 coaccageoe cactgaggag acaacceaga agetgacagt gteacacatt gaaggetatg SEG ID NO:80 3121 aatgtcage catctttets aatgteetgs aageeattga seeasgigta stytstyets 3181 gacacgacaa caaccagcoo gactoottty cagoottgot ototagooto aargaactgg SEQ ID WO:61 3241 gagagagada gottgtacae gtggtomagt gggcommggd dttgdolege ttorgeaact 3301 tacacytyge cgaocagaty gotyteatte agtacteety gatygygete atgytytty SEQ ID NO:62 3361 coatgggotg gegateerte acc**aatgtes acteraggs**t getetaette gecontgate SEQ ID NO:53 3421 togtitteas toagtacege atgeacaagt eceoggatgta cagecagigt gteegaatga SEQ ID MO:66 SEO ID NO:57 3481 ggcacetete teaagagtit ggatggetee asateseese coaggastic sigigeatga SEQ 30 NO:68 3541 aaggaalgot actottoago attattocag tggatgggot gaaaaatoaa aaattattig SEQ ID NO:69 3601 atgaecttog eatgaacted atcaeggead togetogtat certigoatgo asasgaaasa 3661 accorate etgeteaaga egettetaee ageteaceaa geteetggae teegtgeage 3721 stattgogag agagetgest cagtteastt tigassiget aatesagtea casatggiga SEQ ID NO:72 3781 gegiggaett reeggaasig siggesgaga teatetetet geasgigeee sagaleettt SEQ ID NO:73 3841 cresgammagt camageocate tattteeaca cceagigaag cariggaaac estatteec SEQ ID NO:76 3901 caccocaget catgececct ticagatgic tictgecigt tataactety cactacteer SEQ ID NO:77 3961 ofgeagigen thegegaatt tectetatty atgracagie tyteatgaac sigtleetga 4021 attotattig otgggottit itiltotett toteteoilt ottittotto trocctooct 4081 atotaacoot occatggoac ottoagaott tgottoocat tgtggotoot atotgtgttt 4141 tgeatggtgt tgtatgcort taearctgtg atgatcolca tatggcocag tgtcaagttg 4201 tgottgttta cagoactact cigtgccago cacacaaaog tttacttato ttatgccacg 4261 ggaagtttag agagotaaga ttatotgggg aaatcaaaac aasaaceego eeso

			A. 1 A			
٤.	cgagatocog	åðåsgocado	ttgotyggag	sacaadacaa	rccygagcaa	goccagagyc
61	agaggaggcy	acagagggaa	aaagggooga	gerageoger	ccagigorgi	acadoageed
3.53	aagggaegca	ocaogocage	cccagcocgg	ococagogac	agecaaogec	rerrgeageg
181	eggeggette	gaageegeeg	cccggagctg	ecettecte	ttoggtgaag	tttttaaaag
241	otgoraaaga	ctoggaggaa	gcaaggaaag	tgootggtag	gactgacgge	igocitiqic
301	ctoctott	coacecegee	tecceccace	atgesttess	cocctococe	gtertetete
361	cogesgetge	otcagtogge	tactctcage	caaccocct	easeaccett	0506000400
421	gaoaccaege	cocogtegge	coagegetge	cagecegagt.	ttgcagagag	glaactocot
		gegggegage		ttgcaaagaa	ggetettagg	agocaggega
		getteageac		acocycobyg	ttaggetgea	ogoggagaga
		troceceaet				
661	agcososast	caaaagatga	asaggeagte	aggtetteag	tagocaaaaa	8685888688
721	CABABACABA	asagcogasa	taaaauaaaa	agataataac	teagttotta	titgcaccta
		cactgaattt				
		atotaccott				
		gtgtgtcttc				
961	taatteetee	cgeaagttte	ettetetaaa	deftreeses	antegacage	tagetucage
	and needed	teatescage	ctottoaset	etteresare	9090390000 9949390000	agacagagta
1021	saaassatsa	gtggaagatt	ranaraarot	raamuatonta	actocastia	nanctanass
		foååcodece.				
		agtgatccag				
		cagtttgctg				
1221	agcagcagca	gcagcagcag	pagcagcago	ลฐออลฐลยูลต	ragenerage	Cagcagcagc
1381	adcadcaddd	tgaggatggt	totococaag	cocatograg	aggececaea	gécraocrág
		ggaacagcaa				
		occagageet				
		rocggacgag				
1623	coactttccc	cggcttaago	agetgeteeg	otgacettaa	agacatootg	agegaggees
		actectteag				
		ggaggeeteg				
1801	ottogacoat	ttctgacaac	gccaaggagt	tgtgtaaggc	agigteggig	treatgggee
1861	tgggtgtgga	ggcgttggag	catergagte	caggggaaca	getteggggg	gattgeatgt
1921	acgococact	tttgggagtt	ocaccogetg	tgegteceae	teertgtgee	ecattggeog
1981	aatgcasagg	ttototgota	gacgacageg	caggcaagag	cactgaagat	actgotgagt
2041	attoccttt	caagggaggt	tacaccaaag	ggetagaagg	egagageeta	ggetgetetg
		ageagggage				
		actggacgag				
		cggaecyceg				
		gotggaotac				
		gagcotgoat				
		etcatectgg				
		tggtgggggt				
		cggcgaggog				
		ccaggaaagc				
		geoctatoco				
		oggacottac				
2761	ceatioacta	ttactttcca	200009089869	- setecebuat	cistegagat	aaaactteta
2821	untricacta	tggagotete	acatatacaa	actocasegt	cttcttcaaa	agagececte
2881	99090000000	gaagtacetg	tacaccesee	daastestig	cactation	aaattoceaa
2001	azəsəsətta	tecatettet	outriteees	astattatas	-sacanahata	actetasgaa
20041	ggaaasaaceg	- coaceety -	- 0900000390 - 0900000390	aactacacaa		gettecagea
3001		cactgaggag	ggasaccasa		dicacacatt.	gazowstato
2002	Coaccagooo	caccyngydy	acabacocaya	ayuuyauayu	gecacecee	gaaggeeeeg
3121	aargreagee	catctttctg	aargeecegg	aageeatega	gouaygugida	Statesteres Statesteres
3181	gacacgacaa	caaccageec	gactected	Cageoregee		saugsacugy
3241	gagagagaca	gettgtacac	grggtesagt	4880009888600	orråderidge	CLOUGE88CC
3.301	racacgroga	egaccagaty	gergreatto	agracteetg	garggggere	acggrgtetg
3351	ccatgggetg	gegateette	accaatgtca	actocaggat	gereraette	Sceeeedare
3421	tggttttcaa	tgagtacogo	atgeacaagt	cooggatgta	cagecagige	groogaatga
3481	ggcaectete	tcaagagttt	ggatggotec	aaatoaccoc	ccaggaatto	ctgtgcatga
3541	aagcactgct	actetteage	attattecag	rggatgggot	gaaaaatcaa	aaattetttg
3601	atgaacttog	aatgaactac	atcaaggaac	tegategtat	cattgeatge	аагадагага
		ctgctcaaga				
		agagetgeat				

3781 gegiggaett teeggaastg atggesgaga teateteigt geaagigeee aagateettt 3841 ctgggaaagt caageocate tatttocaca cocagtgaag cattggaaac octatttoco 3901 cacconaget catgeocost thragatote thetgeotyt tataactety cactacteet 3961 crocagigee tragggaatt tectoraring argiacagic tgreatgaac afgiteeiga 4021 attenantig etgggetttt tittetett teleteett eftittette tieseteett 4081 atotsaecol cocatgycae ottcagaett tgeiteecai tgtggeteet atotgtgttt Alal upsatigityt tyratigeett taastetyty atgateetea tatygeeeay tyteaagtty 4201 tgetigttta cageactact etgtgecage cacaeaaacg tttacttate thatgecasg 4261 ggaagtttag agagetaaga ttatetgggg saateasaac aasaacsage aaac 11

SEO ID NO: 81 LOCHS NM 013476 2999 bp mRNA linear DEFINITION Mus musculus androgen receptor (Ar), mRNA. ACCESSION NM 013476 NM 013476.3 GI:118129906 VERSION Mus musculus (house mouse) SOURCE ORIGIN 1 gaatteggty gaagetacag acaageteaa ggatggaggt geagttaggg etgggaaggg 61 totaccoacy geococated asgacetate gaggagegtt coagaaterg treeagageg 121 tgegegaage gatecagaac eegggeeeea ggeaceetga ggeegetaac atageacete 181 coggegeetg tilacageag aggeaggaga ctageneeeg geggeggegg eggeageage 241 acastgagga tggtteteet caageccaca teagaggees cacaggetas etggeeetgg 301 aggaggaaca gcagoottea cagcagoagg cagooteega gggceaccot gagageaget 361 geotococga geotggggggg geoacogoto otggcaaggg gotgeogoag cagooacoag 421 etectocaga traggatqac tragctgccc catcracgtt gtccctgctg ggccccactt 481 toccaygett aageagetye teegeegaca ttaaagacat tttgaacgag geoggeacea 541 tycaacttot teagcageag caacaacage ageageacea acageageae caacageaee 601 aacaqeaqea qqaqqtaate teegaaqqea geaqegeaaq ageeaygyag geeacygygg 661 etocolotto otocaaggat agttacotag ggggcaatto aaccatatot gadagtgoda 721 aggagttgtg taaagcagtg totgtgtoca tgggattggg tgtggaagca ttggaacate 781 tgagtecagg ggaacagett eggggagaet geatgtaege gtegeteetg ggaggteeae 841 cogeggtgeg toccastest tgtgegeege tgecegaatg caaaggtett coestggaeg 901 aaggeeeagg caasageact gaagagaetg etgagtatte etettteaag ggaggttaeg 961 ccaaaggatt ggaaggtgag agettggggt getetggeag cagtgaagea ggtagetetg 1021 ggacactiga gatecegree tetetgtete tgtataaate tggageaeta gaegaggeag 1081 caqcatacca gaategegae tactacaact tteegetgge tetgteeggg cegeegeace 1141 eccegecece tacceateca caegeeegta teaagetgga gaaceeattg gactaeggea 1201 gegeetgege tgeggeggea gegeaatgee getatgggga ettgggtagt stacatggag 1261 ggagtgtage egggeeeage aetggatege eeeeageeae eacetettet teetggeata 1321 ctctcttcac agotqaagaa ggocaattat atgggccagg aggoggggg ggcagcagca 1381 geochagega tgeogggeet gtageeceet atggetaeae teggeeceet eaggggetga 1441 caagecagga gagtgactae tetgeeteeg aagtgtggta teetggtgga gttgtgaaca 1501 gagtaccota toccagtoco aattgtgtca aaagtgaaat gggacottgg atggagaact 1561 actooggaee thatggggae atgogtttgg acagtaeeag ggaeeatgtt tracecateg 1621 actattactt tecaceccag aagaeetgee tgatetgigg agatgaaget tetggetgte 1681 actacgyage teteacttgt ggeagetgea aggtettett caaaagagee getgaaggga 1741 aacagaagta totatgtgoo agcagaaacg attgtaccat tgataaattt oggaggaaaa 1801 attgeceate tigtegtete eggaaatgit atgaageagg gatgactetg ggagetegta 1851 agetgaagaa actiggaaat etaaaactac aggaggaagg agaaaactee aatgetggea 1921 geoccactga ggacceatec cagaagatga etgtateaca cattgaagge tatgaatgte 1981 agoctatott tottaaogto otggaagoea ttgagocagg agtggtgtgt googgacatg 2041 acaacaacca accagattee tttgetgeet tgttatetag ceteaatgag ettggagaga 2101 gocagettgt gcatgtggte aagtgggeea aggeettgee tggetteege aaettgeatg 2161 tggatgacca gatggeggte atteagtatt cetggatgyg actgatggta tttgccatgg 2221 gttggcggte etteactast gtosaeteca ggatgetets ettigeaeet gaettggttt 2281 teaatgagta eegeatgead aagtetegga tgtacageea gtgtgtgagy atgaggeace 2341 tytercaaya gittggatgg etecaaataa eeeeeeagga atteelyige atgaaageae 2401 tgctgctctt cagcattatt ccagtggatg ggctgaaaaa tcaaaaattc tttgatgaac 2461 ttogaatgaa otacatcaag gaactogato goatcattgo atgoaaaaga aagaatooca 2521 catectgete aaggegette taceagetea ceaageteet ggstietgig cageetattg 2581 caagagaget geatcagtte acttttgace tgetaateaa gteecatatg gtgagegtgg 2641 actitectga aatgatggea gagateatet etgtgeaagt geecaagate etttetggga 2701 aagtcaagec catctattto cacacacagt gaagatttgg aaaccotaat accoasasco 2761 caecttytte ecttteeaga tytettetge etyttatata actetyeact acttetetge 2821 agtgeettgg gggaaattee tetactgatg tacagtetgt egtgaacayg ticcteagti 2881 statttestg ggettetest tetttttt tetteltess tesetettts assetseat 2941 ggcacatttt gaatctgotg ogtattgtgg otootgoott tgttttgatt totgttgta 11

SEQ ID N	O: 82					
LOCUS	NM 001032	2911	3175 br	o mRNA		
DEFINITION		ilatta andro			ίà.	
ACCESSION	NM 001032					
VERSION		911.1 G1:3	74136372			
SOURCE	Macaca m	latta (rhes	sus monkey)			
			-			
ORIGIN						
		aaaaacaaac				
		gttcttattt				
		tttetttaa				
		agectageag				
		teagageget				
301	tecegeaggt	gggeagetag	ctgcagcgac	racegearea	tcacageetg	tigaactott
301	ctgagcaaga	gaaggggagg gcagttaggg	cggggtaagg	gaagtaggtg	gaagatucag	ecaagercaa
		ccagaatctg				
		ddacdadada				
		aactagcccc				
		togtagaggo				
		gtcagecccg				
		cgccggcaag				
		cccatccacg				
		cottaaagac				
		ageagtatee				
		ctocaaggac				
		taaggcagtg				
		ggaacagott				
		trocacters				
		caagagcact				
		agaaggegag				
1381	ggacacttga	actgccgtcc	acconducto	totacaagto	cggageactg	gacgaggcag
		gagtcgcgac				
		tocccatece				
		ddcrdcddcd				
		gggacccggc				
		agcogaagaa				
		cadcadcadc				
		ggggctggcg				
		ggtgagcaga ggatagctac				
		gecaattgac				
		tgggtgtcac				
		tgaagggaaa				
		aaggaaaaat				
2221	tgactctggg	ageceggaag	ctgaagaaac	trograatet	gaaactacad	qaqqaaqqaq
		caccaccage				
		tyaatgtcag				
		tygacatyac				
		addadadada				
		cttacacgtg				
		tgccatgggc				
		trugguttur				
		gaggeacete				
		gaaagcgctg				
		tgatgaactt				
		aaatcocaca				
		geetattgeg				
		gagegtggae				
		ttctgggaaa				
	alcoclatif	cetcacecca	gereatgeee	ectreagat	geocectyde	cgrea
11						

LOCUS	NP_000035 920 aa
DEFINITION	androgen receptor isoform 1 [Homo sapiens].
ACCESSION	NP 000035
VERSION	NP_000035.2 GI:21322252
DBSOURCE	REFSEQ: accession NM 000044.2
SOURCE	Homo sapiens (human)

GIN						
1	mevqlglgrv	yprppsktyr	gafqnlfqsv	reviqnpgpr	hpeaasaapp	gasllliqqq
61	ddddddddd	ddddddddd	etsprqqqqq	qgedgspqah	rrgptgylvl	deeqqpsqpq
121	salechperg	cvpepgaava	askglpddjb	appdeddsaa	pstisligpt	fpglsscsad
181	lkdilseast	mdjjddda	avsegsssgr	areasgapts	skdnylggts	tisdnakeld
241	kavsvsmglg	vealehlspg	eqlrgdcmya	pllgvppavr	ptpcaplaec	kgsllddsag
301	kstedtaeys	pfkggytkgl	egeslgcsgs	aaagssgtle	lpstlslyks	galdeaaayq
	srdyynfpla					
421	gpgsgspsaa	assswhtlft	aeegqlygpc	<u>aaaaaaaaaa</u>	88888888888	gggeagavap
481	ygytrppggl	aggesdftap	dvwypggmvs	rvpypsptcv	ksemgpwmds	ysgpygdmrl
541	etardhvlpi	dyyfppqktc	licgdeasgc	hygaltegse	kvffkraaeg	kqkylcasrn
601	detidkfrrk	nepserlrkc	yeagmtlgar	klkklgnikl	geegeasstt	spteettgkl
661	tvshiegyec	gpiflnvlea	iepgvvcagh	dnnqpdsfaa	llsslnelge	rqlvhvvkwa
	kalpgfrnlh					
781	mysqcvrmrh	lsgefgwlqi	tpqeflcmka	lllfsiipvð	glknqkffde	lrmnyikeld
841	riiackrknp	tscsrrfyql	tkildsvqpi	arelhqftfd	llikshmvsv	dfpemmaeii
901	svqvpkilsg	kvkpiyfhtq				

11

Figure 9

SEQ ID NO	:84
LOCUS	NP_038504 899 aa
DEFINITION	androgen receptor [Mus musculus].
ACCESSION	NP_038504
VERSION	NP_038504.1 GI:7304901
DBSQURÇE	REFSEQ: accession NM_013476.3
SOURCE	Mus musculus (house mouse)

ORIGIN						
1	mevglglgrv	yprppsktyr	gafqnlfqsv	reaignpgpr	hpesaniapp	gaclqqrqet
61	spirrrqqh	tedgspyahi	rgptgylale	eeqqpsqqqa	aseghpessc	lpepgaatap
121	gkglpqqppa	ppdqddsaap	stlsllgptf	pglsscsadi	kdi1neagtm	djjdddddd
181	dydddyddyd	gqqevisegs	sarareatga	pssskdsylg	gnstisdsak	eickavsvsm
241	glgvealehl	spgeqlrgdc	myasllggpp	avrptpcapl	peckglplde	gpgksteeta
301	eyssfkggya	kglegesigc	sgsseagssg	tleipssisi	yksgaldeaa	aygnrdyyni
361	plaisgpphp	pppthphari	klenpláygs	awaaaaaqcr	ygdlgslhgg	svagpstgsp
421	pattssswht	lftaeegqly	gpgggggsss	psdagpvapy	gytrppgglt	sqesdysase
481	vwypggvvnr	vpypspncvk	semgpwmeny	sgpygdmrld	strdhvlpid	yyfppgktcl
541	icgdeasgch	ygaltcgsck	vffkraaegk	qkylcasrnd	otidk£rrkn	opscriptcy
601	eagmtlgark	1kk1gn1k1q	eegensnags	ptedpsqkmt	vshiegyecq	piflnvleai
661	epgvvcaghd	nnqpdsfaal	lssinelger	qlvhvvkwak	alpgfrnlhv	ddqmaviqys
721	wmglmvfamg	wrsftnvnsr	mlyfapdlvf	neyrmhksrm	ysqcvrmrhl	sgefgwlgit
781	pgeflcmkal	llfsiipvdg	lkngkffdel	rmnyikeldr	illackrknpt	scsrrfyqlt
841	klldsvqpia	relhqftfdl	likshmvsvd	fpermaeiis	vqvpkilsgk	vkpiyfhtq

11

,

SEQ ID N LOCUS DEFINITION ACCESSION VERSION DBSOURCE SOURCE	NF_001028 Mandrogen NF_001028 NF_001028 REFSEQ: 4	receptor []	74136373 4_001032911.	tta].		
ORIGIN						
	mevalalarv	yprppsktyr	gafgnlfgsv	revignpgor	hpeaasaapp	gasiqqqqqq
		qqqqqgedgsp				
121	avaagkglpq	glpappdedd	saapstlsll	gptfpglssc	sadl%dilse	astmqllqqq
		sgrareasga				
241	spgeqlrgdc	myapvigvpp	avrptpcapl	aeckgslldd	sagkstedta	eyspfkggyt
301	kglegeslgc	sgsaaagssg	tlelpstlsl	yksgaldeaa	ayqsrdyynf	plalagpppp
361	pppphphari	klenpldygs	awaaaaaqor	ygdlaslhga	gaagpgagap	saaassswht
421	lftaeegqly	abcaaaaaaa	gggggggagea	gavapygytr	ppqglagqeg	dftapdvwyp
481	ggmvsrvpyp	sptcvksemg	pwmdsysgpy	gdmrletard	hvlpidyyfp	pqktclicgd
		tcgsckvffk				
		gnlklqeege				
		dsfaallssl				
	~	tovnsrmlyf			-	• • • •
		lipvdglknq				
	svqpiarelh	qftfdlliks	hmvsvdfpem	maeiisvqvp	kilsgkvkpi	yfhtg
11						

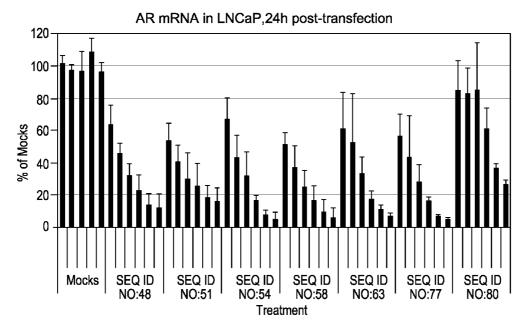
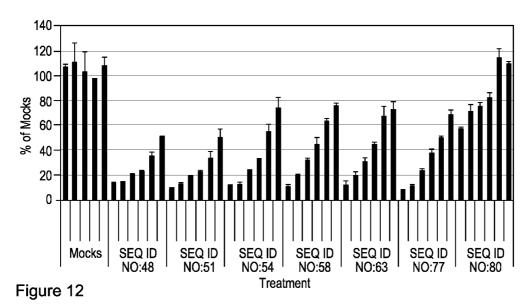



Figure 11

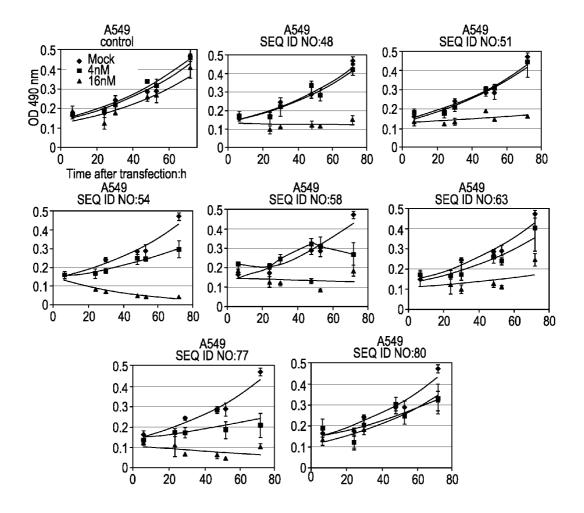


Figure 13

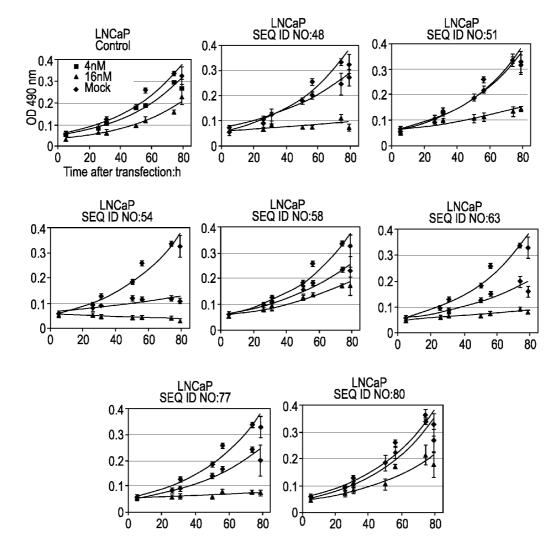
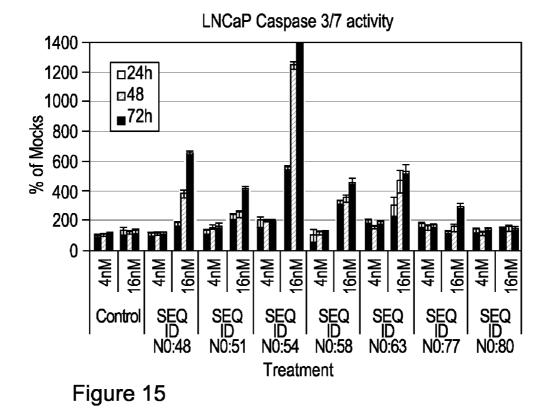
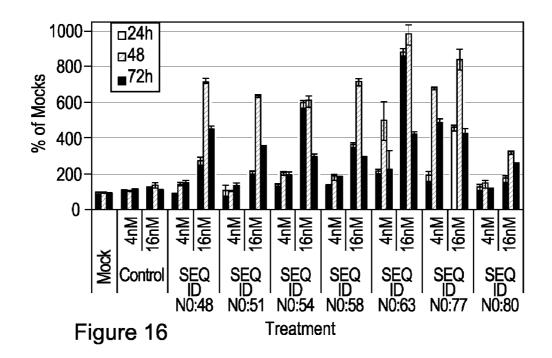




Figure 14

A549 Caspase 3/7 activity

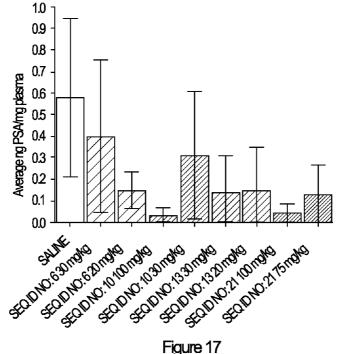


Figure 17

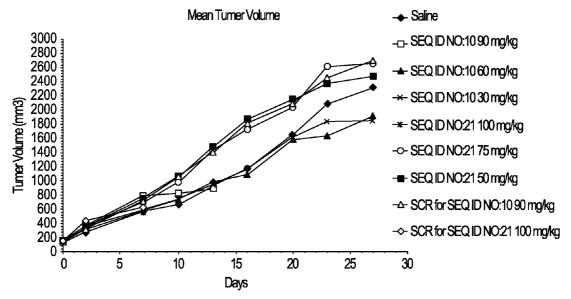


Figure 18

20

LNA ANTAGONISTS TARGETING THE ANDROGEN RECEPTOR

This application is a continuation application of U.S. application Ser. No. 12/322,033 filed on Nov. 26, 2008, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 60/990,125 filed Nov. 26, 2007, the disclosure of each of which is incorporated herein by reference in its entirety.

FIELD OF INVENTION

The invention provides compounds, compositions and methods for modulating the expression of the androgen receptor. In particular, this invention relates to oligomeric compounds (oligomers), which target the androgen receptor mRNA in a cell, leading to reduced expression of the androgen receptor. Reduction of androgen receptor expression is beneficial for a range of medical disorders, such as cancer, particularly prostate cancer or breast cancer.

BACKGROUND

The androgen receptor ("AR") is a type of nuclear receptor which is activated by binding of either of the androgenic 25 hormones testosterone or dihydrotestosterone. The main function of the androgen receptor is as a DNA binding transcription factor which regulates gene expression. However the androgen receptor also has additional functions independent of DNA binding. The androgen receptor is most closely 30 related to the progesterone receptor, and progestins in higher dosages can block the androgen receptor.

Whilst in humans the AR gene is single copy and found on the X chromosome at position Xq11-12, the receptor itself exists in two iso-forms (A and B). AR-A is an 87 kDa protein 35 which lacks the first 187 amino acids (N-terminal truncation). Isoform AR-B is the full length 110 kDa version.

The binding of an androgen to the androgen receptor induces a conformational change in the receptor, resulting in a dissociation of heat shock proteins, dimerization and trans- 40 port from the cytosol to the cell nucleus where the androgen receptor dimer binds to specific DNA sequences—referred to as hormone response elements. Depending on the interaction with other nuclear proteins, the AR controls gene expression, either increasing or decreasing transcription of specific 45 genes, such as insulin-like growth factor I (IGF-1).

Androgen receptors can also have cytoplasmic activities through interaction with signal transduction proteins in the cytoplasm. Androgen binding to cytoplasmic androgen receptors can cause rapid changes in cell function indepen-50 dent of gene transcription, for example ion transport, as well as indirect influence of gene transcription, for example via mediating other signal transduction pathways, thereby influencing the activity of other transcription factors.

The over-expression of androgen receptor, or expression of 55 mutated androgen receptor genes, has been indicated in several diseases, such as cancer, including prostate cancer and breast cancer, as well as other disorders such as polyglutamate disease (Monks et al., PNAS Nov. 2, 2007, published on line) alopecia, benign prostatic hyperplasia, spinal 60 and muscular atrophy and Kennedy disease.

WO97/11170 describes a method of treating a patient diagnosed as having benign prostatic hyperplasia or a prostate cancer comprising administering an antisense oligonucleotide which selectively hybridises to the androgen receptor 65 mRNA. Three antisense oligonucleotide sequences of between 27-29 nucleotides are disclosed.

U.S. Pat. No. 6,733,776 and EP 0 692 972 describe a method for treating androgenic alopecia by applying liposomes comprising an antisense nucleic acid that hybridises to an androgen receptor gene. No antisense molecules having specific sequences and targeting the androgen receptor are provided.

US 2005/0164970 describes a method of treating prostate cancer using siRNA complexes targeting the androgen receptor mRNA.

WO 2005/027833 describes a method of treating prostate cancer comprising administering to a patient an oligonucleotide comprising between 12-40 morpholino sub-units.

WO 2001/083740 describes an antisense compound having an uncharged morpholino backbone of between 18 to 20 contiguous units which targets the human androgen receptor.

Morpholino antisense compounds work via binding to the nucleic acid target to block access to the mRNA by other molecules, such as molecules involved in mRNA splicing or translation initiation.

U.S. Pat. No. 7,067,256 describes a ribozyme which apparently mediates inactivation of the androgen receptor. A 19-nucleotide RNA antisense molecule targeted to a region of the androgen receptor mRNA is provided.

However, despite the application of siRNA, morpholinocontaining antisense oligonucleotides and ribozymes, none of the above androgen receptor inhibitors have been successful in efficiently down-regulating the androgen-receptor in vivo and at pharmacologically acceptable dosages.

The invention provides a new class of androgen receptor antagonists which contain locked nucleic acid ("LNA") monomers, and are targeted to particularly effective target sites on the androgen receptor mRNA.

SUMMARY OF INVENTION

The invention provides an oligomer of from 10-50 monomers, such as 10-30 monomers which comprises a first region of 10-50 monomers, such as 10-30 monomers, wherein the sequence of the first region is at least 80% (e.g., 85%, 90%, 95%, 98%, or 99%) identical to the reverse complement of a target region of a nucleic acid which encodes a mammalian androgen receptor, such as a mammalian androgen receptor gene or mRNA, such as a nucleic acid having the sequence set forth in SEQ ID NO: 1, or naturally occurring variants thereof. Thus, for example, the oligomer hybridizes to a region of a single-stranded nucleic acid molecule having the sequence shown in SEQ NO: 1.

The invention provides for a conjugate comprising the oligomer according to the invention, and at least one non-nucleotide or non-polynucleotide moiety covalently attached to the oligomer.

The invention provides for a pharmaceutical composition comprising the oligomer or the conjugate according to the invention, and a pharmaceutically acceptable diluent, carrier, salt or adjuvant.

The invention provides for the oligomer or the conjugate according to the invention, for use as a medicament, such as for the treatment of a disease or a medical disorder as disclosed herein, such as a hyperproliferative disorder, such as cancer or other hyperproliferative disorder. The invention provides for the use of an oligomer or the conjugate according to the invention, for the manufacture of a medicament for the treatment of a disease or disorder as disclosed herein, such as a hyperproliferative disorder, such as cancer.

The invention provides for a method of treating a disease or disorder as disclosed herein, such as a hyperproliferative disorder, such as cancer, the method comprising administering an oligomer, a conjugate or a pharmaceutical composition according to the invention to a patient suffering from or susceptible to the disease or disorder.

The invention provides for a method for the inhibition of androgen receptor in a cell which is expressing androgen 5 receptor, the method comprising administering an oligomer, or a conjugate according to the invention to the cell so as to effect the inhibition of androgen receptor expression in said cell.

The invention provides an oligomer of from 10-50 monomers, which comprises a first region of 10-50 contiguous monomers, wherein the base sequence is at least 80% identical to the reverse complement of a target region of a nucleic acid which encodes a mammalian androgen receptor.

The invention further provides a conjugate comprising the 15 oligomer according to the invention, which comprises at least one non-nucleotide or non-polynucleotide moiety ("conjugated moiety") covalently attached to the oligomer of the invention.

The invention provides for pharmaceutical compositions 20 comprising an oligomer or conjugate of the invention, and a pharmaceutically acceptable diluent, carrier, salt or adjuvant.

The invention further provides for an oligomer according to the invention, for use in medicine.

The invention further provides for the use of the oligomer 25 of the invention for the manufacture of a medicament for the treatment of one or more of the diseases referred to herein, such as a disease selected from the group consisting of cancer, such as breast cancer or prostate cancer, alopecia, benign prostatic hyperplasia, spinal and muscular atrophy, Kennedy 30 disease and polyglutamate disease.

The invention further provides for an oligomer according to the invention, for use for the treatment of one or more of the diseases referred to herein, such as a disease selected from the group consisting of cancer, such as breast cancer or prostate 35 cancer, alopecia, benign prostatic hyperplasia, spinal and muscular atrophy, Kennedy disease and polyglutamate disease.

Pharmaceutical and other compositions comprising an oligomer of the invention are also provided. Further provided 40 are methods of down-regulating the expression of AR in cells or tissues comprising contacting said cells or tissues, in vitro or in vivo, with one or more of the oligomers, conjugates or compositions of the invention.

Also disclosed are methods of treating a non-human ani- 45 mal or a human suspected of having, or susceptible to, a disease or condition, associated with expression, or overexpression of AR by administering to the animal or human a therapeutically or prophylactically effective amount of one or more of the oligomers, conjugates or pharmaceutical compositions of the invention. Further, methods of using oligomers for the inhibition of expression of AR, and for treatment of diseases associated with activity of AR are provided.

The invention provides for a method for treating a disease selected from the group consisting of: cancer, such as breast 55 cancer or prostate cancer, alopecia, benign prostatic hyperplasia, spinal and muscular atrophy, Kennedy disease and polyglutamate disease, the method comprising administering an effective amount of one or more oligomers, conjugates, or pharmaceutical compositions thereof to a patient in need 60 thereof.

The invention provides for methods of inhibiting (e.g., by down-regulating) the expression of AR in a cell or a tissue, the method comprising the step of contacting the cell or tissue with an effective amount of one or more oligomers, conju-55 gates, or pharmaceutical compositions thereof, to effect down-regulation of expression of AR.

BRIEF DESCRIPTION OF FIGURES

FIG. 1. Oligonucleotides presented in Table 3 were evaluated for their potential to knockdown the androgen receptor mRNA at concentrations of 1, 4 and 16 nM in MCF7 cells 24 hours after transfection using Real-time PCR. All results were normalised to GAPDH and inhibition of AR mRNA is shown as percent of untreated control. Results shown are an average of three independent experiments.

FIG. 2. Oligonucleotides presented in Table 3 were evaluated for their potential to knockdown the androgen receptor mRNA at concentrations of 1, 4 and 16 nM in A549 cells 24 hours after transfection using Real-time PCR. All results were normalised to GAPDH and inhibition of AR mRNA is shown as percent of untreated control. Results shown are an average of three independent experiments.

FIG. **3**. Sequence alignment of the human Androgen receptor mRNA sequence (GenBank Accession No.: NM_0000044) and the mouse Androgen receptor mRNA sequence (GenBank Accession No.: NM_013476).

FIG. 4. Location of presently preferred target regions of the human AR mRNA (cDNA) targeted by oligomers according to the invention. Although 16mer target sites have been shown, in some embodiments these target regions comprise an additional 4 monomers 5' or 3' to the target regions shown—i.e. are target regions comprising up to 24 contiguous monomers.

FIG. 5. SEQ ID NO: 1 *Homo sapiens* androgen receptor (dihydrotestosterone receptor; testicular feminization; spinal and bulbar muscular atrophy; Kennedy disease) (AR), transcript variant 1, mRNA. (GenBank Accession number: NM_000044).

FIG. 6. SEQ ID NO 81: Mouse androgen receptor mRNA sequence.

FIG. 7. SEQ ID NO 82: Rhesus monkey androgen receptor mRNA sequence.

FIG. 8. SEQ ID NO 83: *Homo sapiens* androgen receptor protein amino acid sequence.

FIG. 9. SEQ ID NO 84: Mouse androgen receptor protein amino acid sequence.

FIG. **10**. SEQ ID NO 85: Rhesus monkey androgen receptor protein amino acid sequence.

FIG. 11: AR mRNA in LNCaP, 24 h post-transfection

FIG. 12: AR mRNA in A549, 24 h post-transfection

FIG. 13: Cell proliferation assay—A549, time course posttransfection

FIG. 14: Cell proliferation assay—time course post-transfection

FIG. **15**: Caspase 3/7 activity in LNCaP cells, 24, 48 or 72 hours post-transfection.

FIG. **16**: Caspase 3/7 activity in A549 cells, 24, 48 or 72 hours post-transfection.

FIG. 17: Average PSA in plasma after in vivo oligomer treatment.

FIG. 18: In vivo inhibition of tumor growth

DETAILED DESCRIPTION OF INVENTION

The Oligomer

The invention employs oligomeric compounds (referred herein as oligomers), for use in modulating the function of nucleic acid molecules encoding mammalian androgen receptor, such as the androgen receptor nucleic acid shown in SEQ ID NO: 1, and naturally occurring variants of such nucleic acid molecules encoding mammalian androgen receptor. The term "oligomer" in the context of the invention, refers to a molecule formed by covalent linkage of two or more monomers (i.e. an oligonucleotide). In some embodiments, the oligomer comprises or consists of from 10-30 covalently linked monomers.

The term "monomer" includes both nucleosides and deoxynucleosides (collectively, "nucleosides") that occur 5 naturally in nucleic acids and that do not contain either modified sugars or modified nucleobases, i.e., compounds in which a ribose sugar or deoxyribose sugar is covalently bonded to a naturally-occurring, unmodified nucleobase (base) moiety (i.e., the purine and pyrimidine heterocycles 10 adenine, guanine, cytosine, thymine or uracil) and "nucleoside analogues," which are nucleosides that either do occur naturally in nucleic acids or do not occur naturally in nucleic acids, wherein either the sugar moiety is other than a ribose or a deoxyribose sugar (such as bicyclic sugars or 2' modified 15 sugars, such as 2' substituted sugars), or the base moiety is modified (e.g., 5-methylcytosine), or both.

An "RNA monomer" is a nucleoside containing a ribose sugar and an unmodified nucleobase.

bose sugar and an unmodified nucleobase.

A "Locked Nucleic Acid monomer," "locked monomer," or "LNA monomer" is a nucleoside analogue having a bicyclic sugar, as further described herein below.

The terms "corresponding nucleoside analogue" and "cor- 25 responding nucleoside" indicate that the base moiety in the nucleoside analogue and the base moiety in the nucleoside are identical. For example, when the "nucleoside" contains a 2-deoxyribose sugar linked to an adenine, the "corresponding nucleoside analogue" contains, for example, a modified sugar 30 linked to an adenine base moiety.

The terms "oligomer," "oligomeric compound," and "oligonucleotide" are used interchangeably in the context of the invention, and refer to a molecule formed by covalent linkage of two or more contiguous monomers by, for example, a 35 phosphate group (forming a phosphodiester linkage between nucleosides) or a phosphorothioate group (forming a phosphorothioate linkage between nucleosides). The oligomer consists of, or comprises, 10-50 monomers, such as 10-30 monomers. 40

In some embodiments, an oligomer comprises nucleosides, or nucleoside analogues, or mixtures thereof as referred to herein. An "LNA oligomer" or "LNA oligonucleotide" refers to an oligonucleotide containing one or more LNA monomers.

Nucleoside analogues that are optionally included within oligomers may function similarly to corresponding nucleosides, or may have specific improved functions. Oligomers wherein some or all of the monomers are nucleoside analogues are often preferred over native forms because of sev- 50 eral desirable properties of such oligomers, such as the ability to penetrate a cell membrane, good resistance to extra- and/or intracellular nucleases and high affinity and specificity for the nucleic acid target. LNA monomers are particularly preferred, for example, for conferring several of the above-men- 55 tioned properties.

In various embodiments, one or more nucleoside analogues present within the oligomer are "silent" or "equivalent" in function to the corresponding natural nucleoside, i.e., have no functional effect on the way the oligomer functions to 60 inhibit target gene expression. Such "equivalent" nucleoside analogues are nevertheless useful if, for example, they are easier or cheaper to manufacture, or are more stable under storage or manufacturing conditions, or can incorporate a tag or label. Typically, however, the analogues will have a func- 65 tional effect on the way in which the oligomer functions to inhibit expression; for example, by producing increased bind-

ing affinity to the target region of the target nucleic acid and/or increased resistance to intracellular nucleases and/or increased ease of transport into the cell.

Thus, in various embodiments, oligomers according to the invention comprise nucleoside monomers and at least one nucleoside analogue monomer, such as an LNA monomer, or other nucleoside analogue monomers.

The term "at least one" comprises the integers larger than or equal to 1, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 and so forth. In various embodiments, such as when referring to the nucleic acid or protein targets of the compounds of the invention, the term "at least one" includes the terms "at least two" and "at least three" and "at least four." Likewise, in some embodiments, the term "at least two" comprises the terms "at least three" and "at least four."

In some embodiments, the oligomer comprises or consists of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 contiguous monomers.

In some embodiments, the oligomer comprises or consists A "DNA monomer" is a nucleoside containing a deoxyri- 20 of 10-22 contiguous monomers, such as 12-18 contiguous monomers, such as 13-17 or 12-16 contiguous monomers, such as 13, 14, 15, 16 contiguous monomers.

In certain embodiments, the oligomer comprises or consists of 10, 11, 12, 13, or 14 contiguous monomers.

In various embodiments, the oligomer according to the invention consists of no more than 22 monomers, such as no more than 20 monomers, such as no more than 18 monomers, such as 15, 16 or 17 monomers. In some embodiments, the oligomer of the invention comprises less than 20 monomers.

In various embodiments, the compounds of the invention do not comprise RNA monomers.

In various embodiments, the compounds according to the invention are linear molecules or are linear as synthesised. The oligomer, in such embodiments, is a single stranded molecule, and typically does not comprise short regions of, for example, at least 3, 4 or 5 contiguous monomers, which are complementary to another region within the same oligomer such that the oligomer forms an internal duplex. In some embodiments, the oligomer is essentially not double stranded, i.e., is not a siRNA.

In some embodiments, the oligomer of the invention consists of a contiguous stretch of monomers, the sequence of which is identified by a SEQ ID NO disclosed herein (see, e.g., Tables 1-3). In other embodiments, the oligomer comprises a first region, the region consisting of a contiguous stretch of monomers, and one or more additional regions which consist of at least one additional monomer. In some embodiments, the sequence of the first region is identified by a SEQ ID NO disclosed herein.

Gapmer Design

Typically, the oligomer of the invention is a gapmer.

A "gapmer" is an oligomer which comprises a contiguous stretch of monomers capable of recruiting an RNAse (e.g., such as RNAseH) as further described herein below, such as a region of at least 6 or 7 DNA monomers, referred to herein as region B, wherein region B is flanked both on its 5' and 3' ends by regions respectively referred to as regions A and C, each of regions A and C comprising or consisting of nucleoside analogues, such as affinity-enhancing nucleoside analogues, such as 1-6 nucleoside analogues.

Typically, the gapmer comprises regions, from 5' to 3', A-B-C, or optionally A-B-C-D or D-A-B-C, wherein: region A consists of or comprises at least one nucleoside analogue, such as at least one LNA monomer, such as 1-6 nucleoside analogues, such as LNA monomers, and region B consists of or comprises at least five contiguous monomers which are capable of recruiting RNAse (when formed in a duplex with

a complementary target region of the target RNA molecule, such as the mRNA target), such as DNA monomers; region C consists of or comprises at least one nucleoside analogue, such as at least one LNA monomer, such as 1-6 nucleoside analogues, such as LNA monomers; and region D, when 5 present, consists of or comprises 1, 2 or 3 monomers, such as DNA monomers.

In various embodiments, region A consists of 1, 2, 3, 4, 5 or 6 nucleoside analogues, such as LNA monomers, such as 2-5 nucleoside analogues, such as 2-5 LNA monomers, such as 3 10 or 4 nucleoside analogues, such as 3 or 4 LNA monomers; and/or region C consists of 1, 2, 3, 4, 5 or 6 nucleoside analogues, such as LNA monomers, such as 2-5 nucleoside analogues, such as 2-5 LNA monomers, such as 3 or 4 nucleoside analogues, such as 3 or 4 LNA monomers.

In certain embodiments, region B consists of or comprises 5, 6, 7, 8, 9, 10, 11 or 12 contiguous monomers which are capable of recruiting RNAse, or 6-10, or 7-9, such as 8 contiguous monomers which are capable of recruiting RNAse. In certain embodiments, region B consists of or comprises at 20 least one DNA monomer, such as 1-12 DNA monomers, preferably 4-12 DNA monomers, more preferably 6-10 DNA monomers, such as 7-10 DNA monomers, most preferably 8, 9 or 10 DNA monomers.

In various embodiments, region A consists of 3 or 4 nucleo- 25 side analogues, such as LNA monomers, region B consists of 7, 8, 9 or 10 DNA monomers, and region C consists of 3 or 4 nucleoside analogues, such as LNA monomers. Such designs include (A-B-C) 3-10-3, 3-10-4, 4-10-3, 3-9-3, 3-9-4, 4-9-3, 3-8-3, 3-8-4, 4-8-3, 3-7-3, 3-7-4, 4-7-3, and may further 30 include region D, which may have one or 2 monomers, such as DNA monomers.

Further gapmer designs are disclosed in WO2004/046160, which is hereby incorporated by reference.

US provisional application, 60/977,409, hereby incorpo- 35 rated by reference, refers to 'shortmer' gapmer oligomers. In some embodiments, oligomers presented here may be such shortmer gapmers.

In certain embodiments, the oligomer consists of 10, 11, 12, 13 or 14 contiguous monomers, wherein the regions of the 40 oligomer have the pattern (5'-3'), A-B-C, or optionally A-B-C-D or D-A-B-C, wherein: region A consists of 1, 2 or 3 nucleoside analogue monomers, such as LNA monomers; region B consists of 7, 8 or 9 contiguous monomers which are capable of recruiting RNAse when formed in a duplex with a 45 complementary RNA molecule (such as a mRNA target); and region C consists of 1, 2 or 3 nucleoside analogue monomers, such as LNA monomers. When present, region D consists of a single DNA monomer.

In certain embodiments, region A consists of 1 LNA mono- 50 mer. In certain embodiments, region A consists of 2 LNA monomers. In certain embodiments, region A consists of 3 LNA monomers. In certain embodiments, region C consists of 1 LNA monomer. In certain embodiments, region C consists of 2 LNA monomers. In certain embodiments, region C 55 consists of 3 LNA monomers. In certain embodiments, region B consists of 7 nucleoside monomers, In certain embodiments, region B consists of 8 nucleoside monomers. In certain embodiments, region B consists of 9 nucleoside monomers. In certain embodiments, region B comprises 1-9 DNA mono- 60 mers, such as 2, 3, 4, 5, 6, 7 or 8 DNA monomers. In certain embodiments, region B consists of DNA monomers. In certain embodiments, region B comprises at least one LNA monomer which is in the alpha-L configuration, such as 2, 3, 4, 5, 6, 7, 8 or 9 LNA monomers in the alpha-L-configuration. 65 In certain embodiments, region B comprises at least one alpha-L-oxy LNA monomer. In certain embodiments, all the

8

LNA monomers in region B that are in the alpha-L-configuration are alpha-L-oxy LNA units. In certain embodiments, the number of monomers present in the A-B-C regions are selected from the group consisting of (nucleoside analogue monomers-region B-nucleoside analogue monomers): 1-8-1, 1-8-2, 2-8-1, 2-8-2, 3-8-3, 2-8-3, 3-8-2, 4-8-1, 4-8-2, 1-8-4, 2-8-4, or; 1-9-1, 1-9-2, 2-9-1, 2-9-2, 2-9-3, 3-9-2, 1-9-3, 3-9-1, 4-9-1, 1-9-4, or; 1-10-1, 1-10-2, 2-10-1, 2-10-2, 1-10-3, 3-10-1. In certain embodiments, the number of monomers present in the A-B-C regions of the oligomer of the invention is selected from the group consisting of: 2-7-1, 1-7-2, 2-7-2, 3-7-3, 2-7-3, 3-7-2, 3-7-4, and 4-7-3. In certain embodiments, each of regions A and C consists of two LNA monomers, and region B consists of 8 or 9 nucleoside monomers, preferably DNA monomers.

In various embodiments, other gapmer designs include those where regions A and/or C consists of 3, 4, 5 or 6 nucleoside analogue, such as monomers containing a 2'-Omethoxyethyl-ribose sugar (2'-MOE) or monomers containing a 2'-fluoro-deoxyribose sugar, and region B consists of 8, 9, 10, 11 or 12 nucleosides, such as DNA monomers, where regions A-B-C have 5-10-5 or 4-12-4 monomers. Further gapmer designs are disclosed in WO 2007/146511A2, hereby incorporated by reference.

Internucleoside Linkages

The monomers of the oligomers described herein are coupled together via linkage groups. Suitably, each monomer is linked to the 3' adjacent monomer via a linkage group.

The terms "linkage group" or "internucleoside linkage" means a group capable of covalently coupling together two contiguous monomers. Specific and preferred examples include phosphate groups (forming a phosphodiester between adjacent nucleoside monomers) and phosphorothioate groups (forming a phosphorothioate linkage between adjacent nucleoside monomers).

Suitable linkage groups include those listed in PCT/ DK2006/000512, for example in the first paragraph of page 34 of PCT/DK2006/000512 (hereby incorporated by reference).

It is, in various embodiments, preferred to modify the linkage group from its normal phosphodiester to one that is more resistant to nuclease attack, such as phosphorothioate or boranophosphate-these two being cleavable by RNase H, thereby permitting RNase-mediated antisense inhibition of expression of the target gene.

In some embodiments, suitable sulphur (S) containing linkage groups as provided herein are preferred. In various embodiments, phosphorothioate linkage groups are preferred, particularly for the gap region (B) of gapmers. In certain embodiments, phosphorothioate linkages are used to link together monomers in the flanking regions (A and C). In various embodiments, phosphorothioate linkages are used for linking regions A or C to region D, and for linking together monomers within region D.

In various embodiments, regions A, B and C, comprise linkage groups other than phosphorothioate, such as phosphodiester linkages, particularly, for instance when the use of nucleoside analogues protects the linkage groups within regions A and C from endo-nuclease degradation-such as when regions A and C comprise LNA monomers.

In various embodiments, adjacent monomers of the oligomer are linked to each other by means of phosphorothioate groups.

It is recognised that the inclusion of phosphodiester linkages, such as one or two linkages, into an oligomer with a phosphorothioate backbone, particularly with phosphorothioate linkage groups between or adjacent to nucleoside

50

55

analogue monomers (typically in region A and/or C), can modify the bioavailability and/or bio-distribution of an oligomer—see WO2008/053314, hereby incorporated by reference.

In some embodiments, such as the embodiments referred to ⁵ above, where suitable and not specifically indicated, all remaining linkage groups are either phosphodiester or phosphorothioate, or a mixture thereof.

In some embodiments all the internucleoside linkage groups are phosphorothioate.

When referring to specific gapmer oligonucleotide sequences, such us those provided herein, it will be understood that, in various embodiments, when the linkages are phosphorothioate linkages, alternative linkages, such as those disclosed herein may be used, for example phosphate (phosphodiester) linkages may be used, particularly for linkages between nucleoside analogues, such as LNA monomers. Likewise, in various embodiments, when referring to specific gapmer oligonucleotide sequences, such as those provided herein, when one or more monomers in region C comprises a ²⁰ 5-methylcytosine base, other monomers in that region may contain unmodified cytosine bases.

Target Nucleic Acid

The terms "nucleic acid" and "polynucleotide" are used interchangeably herein, and are defined as a molecule formed ²⁵ by covalent linkage of two or more monomers, as abovedescribed. Including 2 or more monomers, "nucleic acids" may be of any length, and the term is generic to "oligomers", which have the lengths described herein. The terms "nucleic acid" and "polynucleotide" include single-stranded, doublestranded, partially double-stranded, and circular molecules.

The term "target nucleic acid", as used herein, refers to DNA or RNA (e.g., mRNA or pre-mRNA) encoding a mammalian androgen receptor polypeptide, such as human androgen receptor, such as the nucleic acid having the sequence ³⁵ shown in SEQ ID NO: 1, and naturally occurring allelic variants of such nucleic acids. In certain embodiments, the mammalian androgen receptor is a mouse androgen receptor. In some embodiments, for example when used in research or diagnostics, the "target nucleic acid" is a cDNA or a synthetic ⁴⁰ oligonucleotide derived from the above DNA or RNA nucleic acid targets. The oligomers according to the invention are typically capable of hybridising to the target nucleic acid.

Exemplary target nucleic acids include mammalian androgen receptor-encoding nucleic acids having the GenBank⁴⁵ Accession numbers shown in the table below, along with their corresponding protein sequences:

	GenBank Accession Number Nucleic acid (mRNA/cDNA sequence)	GenBank Accession Number Polypeptide (deduced)
Human	NM_000044	NP_000035
Mouse	NM_013476	NP_038504
Rhesus monkey	NM_001032911	NP_001028083

It is recognised that the above-disclosed GenBank Accession numbers for nucleic acids refer to cDNA sequences and not to mRNA sequences per se. The sequence of a mature 60 mRNA can be derived directly from the corresponding cDNA sequence with thymine bases (T) being replaced by uracil bases (U).

The term "naturally occurring variant thereof" refers to variants of the androgen receptor polypeptide or nucleic acid 65 sequence which exist naturally within the defined taxonomic group, such as mammalian, such as mouse, monkey, and

preferably human AR. Typically, when referring to "naturally occurring variants" of a polynucleotide the term also encompasses any allelic variant of the androgen receptor encoding genomic DNA which is found at the Chromosome X: 66.68-66.87 Mb by chromosomal translocation or duplication, and the RNA, such as mRNA derived therefrom. "Naturally occurring variants" may also include variants derived from alternative splicing of the androgen receptor mRNA. When referenced to a specific polypeptide sequence, e.g., the term also includes naturally occurring forms of the protein which may therefore be processed, e.g. by co- or post-translational modifications, such as signal peptide cleavage, proteolytic cleavage, glycosylation, etc.

It is recognised that the human androgen receptor gene exhibits allelic variations that are associated with disease phenotypes (Mooney et al, NAR 15; 31(8) 2003). For example, a (CAG)_n repeat expansion is associated with polyglutamine expansion disorder. Other characterised allelic variants include a (GGC)_n trinucleotide repeat and single nucleotide polymorphisms R726L, T887A and L710H, of which the latter two single nucleotide polymorphisms have been shown to be correlated to enhanced promiscuity of the AR receptor for other steroid ligands. In one embodiment "n" ranges from 5-31. CAG repeats of less than 22 have been associated with an enhanced risk of prostate cancer in African American males.

In various embodiments, the target nucleic acid is an AR allelic variant which comprises a $(CAG)_n$ trinucleotide repeat, or $(GGC)_n$ trinucleotide repeat. In other embodiments, the target nucleic acid is an AR allelic variant which comprises one or more single nucleotide polymorphisms, including R726L, T887A and L710H.

In certain embodiments, oligomers described herein bind to a region of the target nucleic acid (the "target region") by either Watson-Crick base pairing, Hoogsteen hydrogen bonding, or reversed Hoogsteen hydrogen bonding, between the monomers of the oligomer and monomers of the target nucleic acid. Such binding is also referred to as "hybridisation." Unless otherwise indicated, binding is by Watson-Crick pairing of complementary bases (i.e., adenine with thymine (DNA) or uracil (RNA), and guanine with cytosine), and the oligomer binds to the target region because the sequence of the oligomer is identical to, or partially-identical to, the sequence of the reverse complement of the target region; for purposes herein, the oligomer is said to be "complementary" or "partially complementary" to the target region, and the percentage of "complementarity" of the oligomer sequence to that of the target region is the percentage "identity" to the reverse complement of the sequence of the target region.

Unless otherwise made clear by context, the "target region" herein will be the region of the target nucleic acid having the sequence that best aligns with the reverse complement of the sequence of the specified oligomer (or region thereof), using the alignment program and parameters described herein below.

In determining the degree of "complementarity" between oligomers of the invention (or regions thereof) and the target region of the nucleic acid which encodes mammalian androgen receptor, such as those disclosed herein, the degree of "complementarity" (also, "homology") is expressed as the percentage identity between the sequence of the oligomer (or region thereof) and the reverse complement of the sequence of the target region that best aligns therewith. The percentage is calculated by counting the number of aligned bases that are identical as between the 2 sequences, dividing by the total number of contiguous monomers in the oligomer, and multiplying by 100. In such a comparison, if gaps exist, it is

preferable that such gaps are merely mismatches rather than areas where the number of monomers within the gap differs between the oligomer of the invention and the target region.

Amino acid and polynucleotide alignments, percentage sequence identity, and degree of complementarity may be determined for purposes of the invention using the ClustalW algorithm using standard settings: see http://www.ebi.ac.uk/emboss/align/index.html, Method: EMBOSS::water (local): Gap Open=10.0, Gap extend=0.5, using Blosum 62 (protein), or DNAfull for nucleotide/nucleobase sequences.

As will be understood, depending on context, "mismatch" refers to a non-identity in sequence (as, for example, between the nucleobase sequence of an oligomer and the reverse complement of the target region to which it binds; as for example, between the base sequence of two aligned AR 15 encoding nucleic acids), or to noncomplementarity in sequence (as, for example, between an oligomer and the target region to which it binds).

The androgen receptor is known to regulate the expression of several genes, such as a gene selected from the group 20 consisting of Protein kinase C delta (PRKCD), Glutathione S— transferase theta 2 (GSTT2), transient receptor potential cation channel subfamily V member 3 (TRPV3), Pyrroline-5-carboxylate reductase 1 (PYCR1) and ornithine aminotransferase (OAT). Such genes regulated by AR are 25 referred to herein as "androgen receptor (AR) target genes". In various embodiments, the oligomers according to the invention are capable of inhibiting (such as, by down-regulating) the expression of one or more AR target genes in a cell which is expression, or is capable of expressing (i.e. by alle-30 viating AR repression of the AR target gene in a cell) an AR target gene.

The oligomers which target the androgen receptor mRNA, may hybridize to any site along the target mRNA nucleic acid, such as the 5' untranslated leader, exons, introns and 3' 35 untranslated tail. However, it is preferred that the oligomers which target the androgen receptor mRNA hybridise to the mature mRNA form of the target nucleic acid.

Suitably, the oligomer of the invention or conjugate thereof is capable of down-regulating expression of the androgen 40 receptor gene. In various embodiments, the oligomer (or conjugate) of the invention can effect the inhibition of androgen receptor, typically in a mammalian cell, such as a human cell. In certain embodiments, the oligomers of the invention, or conjugates thereof, bind to the target nucleic acid and effect 45 inhibition of AR mRNA expression of at least 10% or 20% compared to the expression level immediately prior to dosing of the oligomer, more preferably of at least 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95% as compared to the AR expression level immediately prior to dosing of the oligomer. In 50 some embodiments, such inhibition is seen when using from about 0.04 nM to about 25 nM, such as from about 0.8 nM to about 20 nM of the oligomer or conjugate.

In various embodiments, the inhibition of mRNA expression is less than 100% (i.e., less than complete inhibition of 55 expression), such as less than 98% inhibition, less than 95% inhibition, less than 90% inhibition, less than 80% inhibition, such as less than 70% inhibition. In various embodiments, modulation of gene expression can be determined by measuring protein levels, e.g. by the methods such as SDS-PAGE 60 followed by western blotting using suitable antibodies raised against the target protein. Alternatively, modulation of expression levels can be determined by measuring levels of mRNA, e.g. by northern blotting or quantitative RT-PCR. When measuring via mRNA levels, the level of down-regulation when using an appropriate dosage, such as from about 0.04 nM to about 25 nM, such as from about 0.8 nM to about

20 nM, is, in various embodiments, typically to a level of 10-20% of the normal levels in the absence of the compound or conjugate of the invention.

The invention therefore provides a method of down-regulating or inhibiting the expression of the androgen receptor protein and/or mRNA in a cell which is expressing the androgen receptor protein and/or mRNA, the method comprising contacting the cell with an effective amount of the oligomer or conjugate according to the invention to down-regulate or inhibit the expression of the androgen receptor protein and/or mRNA in the cell. Suitably the cell is a mammalian cell, such as a human cell. The contacting may occur, in some embodiments, in vitro. The contacting may occur, in some embodiments, in vivo.

Oligomer Sequences

In some embodiments, the oligomers of the invention have sequences that are identical to a sequence selected from the group consisting of SEQ ID NOS: 2-22. Target regions in human AR mRNA (cDNA) that bind to the oligomers having sequences as set forth in SEQ ID NOS: 2-22 are shown in FIG. 4 (bold and underlined, with the corresponding oligomer SEQ ID NOs indicated above).

Further provided are target nucleic acids (e.g., DNA or mRNA encoding AR) that contain target regions that are complementary or partially-complementary to one or more of the oligomers of the invention. In certain embodiments, the oligomers bind to variants of AR target regions, such as allelic variants (such as an AR gene present at gene locus Xq11-12). In some embodiments, a variant of an AR target region has at least 60%, more preferably at least 70%, more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 91%, at least 92%, at least 93%, at least 94%, at least 95% sequence identity to the target region in wild-type AR. Thus, in other embodiments, the oligomers of the invention have sequences that differ in 1, 2 or 3 bases when compared to a sequence selected from the group consisting of SEQ ID NOs: 2-22. Typically, an oligomer of the invention that binds to a variant of an AR target region is capable of inhibiting (e.g., by down-regulating) AR.

In other embodiments, oligomers of the invention are LNA oligomers, for example, those oligomers having the sequences shown in SEQ ID NOs: 44-80. In various embodiments, the oligomers of the invention are potent inhibitors of androgen receptor mRNA and protein expression. In various embodiments, oligomers of the invention are LNA oligomers having the sequences of SEQ ID NO: 58 or SEQ ID NO: 77.

In various embodiments, the oligomer comprises or consists of a region having a base sequence which is identical or partially identical to the sequence of the reverse complement of a target region in SEQ ID NO: 1. In various embodiments, the oligomer comprises or consists of a region having a sequence selected from the group consisting of SEQ ID NOS: 2-22 and 86-106.

In certain embodiments, the oligomer comprises or consists of a region having a base sequence which is fully complementary (perfectly complementary) to a target region of a nucleic acid which encodes a mammalian androgen receptor.

However, in some embodiments, the oligomer includes 1, 2, 3, or 4 (or more) mismatches as compared to the bestaligned target region of an AR target nucleic acid, and still sufficiently binds to the target region to effect inhibition of AR mRNA or protein expression. The destabilizing effect of mismatches on Watson-Crick hydrogen-bonded duplex may, for example, be compensated by increased length of the oligomer and/or an increased number of nucleoside analogues, such as LNA monomers, present within the oligomer. In various embodiments, the oligomer base sequence comprises no more than 3, such as no more than 2 mismatches compared to the base sequence of the best-aligned target region of, for example, a target nucleic acid which encodes a mammalian androgen receptor.

In some embodiments, the oligomer base sequence comprises no more than a single mismatch when compared to the base sequence of the best-aligned target region of a nucleic acid which encodes a mammalian androgen receptor.

In various embodiments, the base sequence of the oligomer 10 of the invention, or of a first region thereof, is preferably at least 80% identical to a base sequence selected from the group consisting of SEQ ID NOS: 2-22 and 86-106, such as at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96% identical, such as 100% 15 identical.

In certain embodiments, the base sequence of the oligomer of the invention or of a first region thereof is at least 80% identical to the base sequence of the reverse complement of a target region present in SEQ ID NO: 1, such as at least 85%, 20 at least 90%, at least 91%, at least 92% at least 93%, at least 94%, at least 95%, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, such as 100% identical.

In various embodiments, the base sequence of the oligomer 25 of the invention, or of a first region thereof, is preferably at least 80% complementary to a target region of SEQ ID NO: 1, such as at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96% complementary, at least 97% complementary, at least 98% complementary, at least 99% complementary, such as 100% complementary (perfectly complementary).

In some embodiments the oligomer (or a first region thereof) has a base sequence selected from the group consisting of SEQ ID NOS: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 35 16, 17, 18, 19, 20, 21, and 22, or is selected from the group consisting of at least 10 contiguous monomers of SEQ ID NOS: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, and 22. In other embodiments, the sequence of the oligomer of the invention or a first region thereof comprises 40 one, two, or three base moieties that differ from those in oligomers having sequences of SEQ ID NOS: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22, or the sequences of at least 10 contiguous monomers thereof, when optimally aligned with the selected sequence or region 45 thereof.

In some embodiments the oligomer (or a first region thereof) has a base sequence selected from the group consisting of SEQ ID NOS: 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105 and 106, or the 50 sequences of at least 10 contiguous monomers thereof. In other embodiments, the sequence of the oligomer (or a first region thereof) comprises one, two, or three base moieties that differ from those in oligomers having sequences of SEQ ID NOS: 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 55 100, 101, 102, 103, 104, 105 or 106, or the sequences of at least 10 contiguous monomers thereof, when optimally aligned with the selected sequence or region thereof.

In various embodiments, the oligomers comprise a region of 12, 13, 14, 15 or 16 contiguous monomers having a base 60 sequence identically present in a sequence selected from the group consisting of SEQ ID No 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, and 22. In other embodiments, the oligomers include a region which comprises one, two, or three base moieties that differ from those in oligomers 65 having sequences of SEQ ID NOs: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22.

In some embodiments the region consists of 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, or 29 contiguous monomers, such as 12-22, such as 12-18 monomers. Suitably, in some embodiments, the region is of the same length as the oligomer of the invention.

In some embodiments the oligomer comprises additional monomers at the 5' or 3' ends, such as, independently, 1, 2, 3, 4 or 5 additional monomers at the 5' end and/or the 3' end of the oligomer, which are non-complementary to the target region. In various embodiments, the oligomer of the invention comprises a region that is complementary to the target, which is flanked 5' and/or 3' by additional monomers. In some embodiments the additional 5' or 3' monomers are nucleosides, such as DNA or RNA monomers. In various embodiments, the 5' or 3' monomers represent region D as referred to in the context of gapmer oligomers herein.

In certain embodiments, the oligomer according to the invention consists of OT comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO:2, such as SEQ ID NO: 44, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID No: 3, such as SEQ ID NO: 45, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO: 4, such as SEQ ID NO: 46, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO: 5, such as SEQ ID NO: 47, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO: 6, such as SEQ ID NOs: 48, 49 or 50, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO: 7, such as SEQ ID NOS: 51, 52, or 53, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO: 8, such as SEQ ID NOs: 54, 55 or 56, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO: 9, such as SEQ ID NO: 57, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO: 10, such as SEQ ID NOs: 58, 59, or 60, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers 5 having a nucleobase sequence according to SEQ ID NO: 11, such as SEQ ID NO: 61, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the 10 invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO: 12, such as SEQ ID NO: 62, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof. 15

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO: 13, such as SEQ ID NOs: 63, 64 or 65, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 20 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO: 14, such as SEQ ID NO: 66, or according to a region of at least 10 25 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO: 15, 30 such as SEQ ID NO: 67, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers 35 having a nucleobase sequence according to SEQ ID NO: 16, such as SEQ ID NO: 68, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the 40 invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO: 17, such as SEQ ID NOs: 69, 70 or 71, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO: 18, such as SEQ ID NO: 72, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 50 contiguous monomers thereof.

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO: 19, such as SEQ ID NOs: 73, 74 or 75, or according to a region of 55 at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

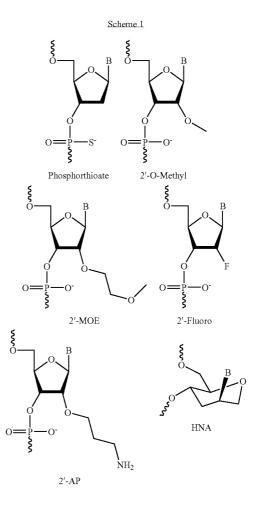
In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO: 20, 60 such as SEQ ID NO: 76, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers 6 having a nucleobase sequence according to SEQ ID NO: 21, such as SEQ ID NOs: 77, 78 or 79, or according to a region of

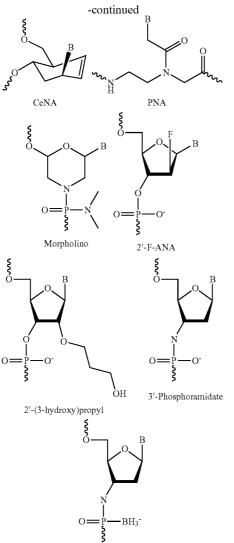
at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

In certain embodiments, the oligomer according to the invention consists of or comprises contiguous monomers having a nucleobase sequence according to SEQ ID NO: 22, such as SEQ ID NO: 80, or according to a region of at least 10 contiguous monomers thereof, such as 11, 12, 13, 14, 15 or 16 contiguous monomers thereof.

Nucleosides and Nucleoside Analogues


In various embodiments, at least one of the monomers present in the oligomer is a nucleoside analogue that contains a modified base, such as a base selected from 5-methylcytosine, isocytosine, pseudoisocytosine, 5-bromouracil, 5-propynyluracil, 6-aminopurine, 2-aminopurine, inosine, diaminopurine, 2-chloro-6-aminopurine, xanthine and hypoxanthine.

In various embodiments, at least one of the monomers present in the oligomer is a nucleoside analogue that contains a modified sugar.


In some embodiments, the linkage between at least 2 contiguous monomers of the oligomer is other than a phosphodiester linkage.

In certain embodiments, the oligomer includes at least one monomer that has a modified base, at least one monomer (which may be the same monomer) that has a modified sugar, and at least one inter-monomer linkage that is non-naturally occurring.

Specific examples of nucleoside analogues are described by e.g. Freier & Altmann; *Nucl. Acid Res.*, 1997, 25, 4429-4443 and Uhlmann; *Curr. Opinion in Drug Development*, 2000, 3(2), 293-213, and in Scheme 1 (in which some nucleoside analogues are shown as nucleotides):

Boranophosphates

The oligomer may thus comprise or consist of a simple 45 sequence of naturally occurring nucleosides-preferably DNA monomers, but also possibly RNA monomers, or a combination of nucleosides and one or more nucleoside analogues. In some embodiments, such nucleoside analogues suitably enhance the affinity of the oligomer for the target 50 region of the target nucleic acid.

Examples of suitable and preferred nucleoside analogues are described in PCT/DK2006/000512, or are referenced therein.

In some embodiments, the nucleoside analogue comprises 55 a sugar moiety modified to provide a 2'-substituent group, such as 2'-O-alkyl-ribose sugars, 2'-amino-deoxyribose sugars, and 2'-fluoro-deoxyribose sugars.

In some embodiments, the nucleoside analogue comprises a sugar in which a bridged structure, creating a bicyclic sugar 60 (LNA), which enhances binding affinity and may also provide some increased nuclease resistance. In various embodiments, the LNA monomer is selected from oxy-LNA (such as beta-D-oxy-LNA, and alpha-L-oxy-LNA), and/or amino-LNA (such as beta-D-amino-LNA and alpha-L-amino-LNA) and/ 65 or thio-LNA (such us beta-D-thio-LNA and alpha-L-thio-LNA) and/or ENA (such as beta-D-ENA and alpha-L-ENA).

In certain embodiments, the LNA monomers are beta-D-oxy-LNA. LNA monomers are further described below.

In various embodiments, incorporation of affinity-enhancing nucleoside analogues in the oligomer, such as LNA monomers or monomers containing 2'-substituted sugars, or incorporation of modified linkage groups provides increased nuclease resistance. In various embodiments, incorporation of affinity-enhancing nucleoside analogues allows the size of the oligomer to be reduced, and also reduces the size of the 10 oligomer that binds specifically to a target region of a target sequence.

In some embodiments, the oligomer comprises at least 2 nucleoside analogues. In some embodiments, the oligomer comprises from 3-8 nucleoside analogues, e.g. 6 or 7 nucleoside analogues. In various embodiments, at least one of the nucleoside analogues is a locked nucleic acid (LNA) monomer; for example at least 3 or at least 4, or at least 5, or at least 6, or at least 7, or 8, nucleoside analogues are LNA monomers. In some embodiments, all the nucleoside analogues are 20 LNA monomers.

It will be recognised that when referring to a preferred oligomer base sequence, in certain embodiments, the oligomers comprise a corresponding nucleoside analogue, such as a corresponding LNA monomer or other corresponding 25 nucleoside analogue, which raise the duplex stability (T_m) of the oligomer/target region duplex (i.e. affinity enhancing nucleoside analogues).

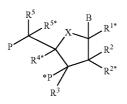
In various embodiments, any mismatches (i.e., noncomplementarities) between the base sequence of the oligo-30 mer and the base sequence of the target region, if present, are preferably located other than in the regions of the oligomer that contain affinity-enhancing nucleoside analogues (e.g., regions A or C), such as within region 13 as referred to herein, and/or within region D as referred to herein, and/or in regions 35 consisting of DNA monomers, and/or in regions which are 5' or 3' to the region of the oligomer that is complementary to the target region.

In some embodiments the nucleoside analogues present within the oligomer of the invention (such as in regions A and 40 C mentioned herein) are independently selected from, for example: monomers containing 2'-O-alkyl-ribose sugars, monomers containing 2'-amino-deoxyribose sugars, monomers containing 2'-fluoro-deoxyribose sugars, LNA monomers, monomers containing arabinose sugars ("ANA monomers"), monomers containing 2'-fluoro-arabinose sugars, monomers containing d-arabino-hexitol sugars ("HNA monomers"), intercalating monomers as defined in Christensen (2002) Nucl. Acids. Res. 30: 4918-4925, hereby incorporated by reference, and 2'-O-methoxyethyl-ribose (2'MOE) sugars. In some embodiments, there is only one of the above types of nucleoside analogues present in the oligomer of the invention, or region thereof.

In certain embodiments, the nucleoside analogues contain 2'MOE sugars, 2% fluoro-deoxyribose sugars, or LNA sugars, and as such the oligonucleotide of the invention may comprise nucleoside analogues which are independently selected from these three types. In certain oligomer embodiments containing nucleoside analogues, at least one of said nucleoside analogues contains a 2'-MOE-ribose sugar, such as 2, 3, 4, 5, 6, 7, 8, 9 or 10 nucleoside analogues containing 2'-MOE-ribose sugars. In some embodiments, at least one nucleoside analogue contains a 2'-fluoro-deoxyribose sugar, such as 2, 3, 4, 5, 6, 7, 8, 9 or 10 nucleoside analogues containing 2'-fluoro-DNA nucleotide sugars.

In various embodiments, the oligomer according to the invention comprises at least one Locked Nucleic Acid (LNA) monomer, such as 1, 2, 3, 4, 5, 6, 7, or 8 LNA monomers, such -5

35


40

as 3-7 or 4 to 8 LNA monomers, or 3, 4, 5, 6 or 7 LNA monomers. In various embodiments, all the nucleoside analogues are LNA monomers. In certain embodiments, the oligomer comprises both beta-D-oxy-LNA monomers, and one or more of the following LNA monomers: thio-LNA monomers, amino-LNA monomers, oxy-LNA monomers, and/or ENA monomers in either the beta-D or alpha-L configurations, or combinations thereof. In certain embodiments, the cytosine base moieties of all LNA monomers in the oligomer are 5-methylcytosines. In certain embodiments of the invention, the oligomer comprises both LNA and DNA monomers. Typically, the combined total of LNA and DNA monomers is 10-25, preferably 10-20, even more preferably 12-16. In some embodiments of the invention, the oligomer or region thereof consists of at least one LNA monomer, and the remaining monomers are DNA monomers. In certain embodiments, the oligomer comprises only LNA monomers and nucleosides (such as RNA or DNA monomers, most preferably DNA monomers) optionally with modified link- 20 age groups such as phosphorothioate.

In various embodiments, at least one of the nucleoside analogues present in the oligomer has a modified base selected from the group consisting of 5-methylcytosine, isocytosine, pseudoisocytosine, 5-bromouracil, 5-propynylu- 25 racil, 6-aminopurine, 2-aminopurine, inosine, diaminopurine, and 2-chloro-6-aminopurine. LNA

The term "LNA monomer" refers to a nucleoside analogue containing a bicyclic sugar (an "LNA sugar"). The terms 30 "LNA oligonucleotide" and "LNA oligomer" refer to an oligomer containing one or more LNA monomers.

The LNA used in the oligonucleotide compounds of the invention preferably has the structure of the general formula I:

wherein X is selected from -O-, -S-, $-N(R^{N_{*}}).$ $-C(R^{6}R^{6}*)$ -:

B is selected from hydrogen, optionally substituted C₁₋₄alkoxy, optionally substituted C1-4-alkyl, optionally substituted C1-4-acyloxy, nucleobases, DNA intercalators, photo- 50 chemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands;

P designates the radical position for an internucleoside linkage to a succeeding monomer, or a 5'-terminal group, such internucleoside linkage or 5'-terminal group optionally 55 including the substituent R⁵ or equally applicable the substituent R⁵*;

P* designates an internucleoside linkage to a preceding monomer, or a 3'-terminal group;

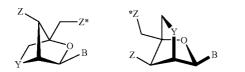
R⁴* and R²* together designate a biradical consisting of 60 1-4 groups/atoms selected from $-C(R^aR^b)$, $-C(R^a)=C(R^b)$, $-C(R^a)=N$, -O, $-Si(R^a)_2$, -N(R), and >C=Z.

wherein Z is selected from $-O_{-}$, $-S_{-}$, and $-N(R^{a})_{-}$, and R^a and R^b each is independently selected from hydrogen, 65 optionally substituted C_{1-12} -alkyl, optionally substituted C₂₋₁₂-alkenyl, optionally substituted C₁₋₁₂-alkynyl, hydroxy,

C2-12-alkoxyalkyl, C2-12-alkenyloxy, carboxy, C1-12-alkoxycarbonyl, C1-12-alkylcarbonyl, formyl, aryl, aryloxy-carbonyl, aryloxy, arylcarbonyl, heteroaryl, heteroaryloxy-carbonyl, heteroaryloxy, heteroarylcarbonyl, amino, mono- and $di(C_{1-6}-alkyl)amino, carbamoyl, mono- and <math>di(C_{1-4}-alkyl)$ amino-carbonyl, amino-C1-6-alkyl-aminocarbonyl, monoand di(C₁₋₆-alkyl)amino-C₁₋₆-alkyl-aminocarbonyl, C₁₋₆alkyl-carbonylamino, carbamido, C1-6-alkanoyloxy, sul $phono, C_{1\text{-}6}\text{-}alkyl sulphonyloxy, nitro, azido, sulphanyl, halo$ gen, DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands, where aryl and heteroaryl may be optionally substituted and where two geminal substituents R^a and \mathbf{R}^{b} together may designate optionally substituted methylene $(=CH_2)$, and

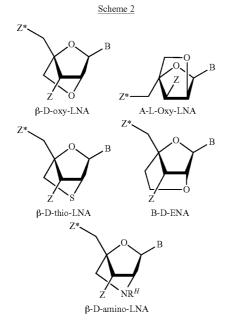
each of the substituents R¹*, R², R³, R⁵, R⁵*, R⁶ and R⁶*, which are present is independently selected from hydrogen, optionally substituted C1-12-alkyl, optionally substituted C_{2-12} -alkenyl, optionally substituted C_{2-12} -alkynyl, hydroxy, C₁₋₁₂-alkoxy, C₂₋₁₂-alkoxyalkyl, C₂₋₁₂-alkenyloxy, carboxy, C1-12-alkoxycarbonyl, C1-12-alkylcarbonyl, formyl, aryl, aryloxy-carbonyl, aryloxy, arylcarbonyl, heteroaryl, heteroaryloxy-carbonyl, heteroaryloxy, heteroarylcarbonyl, amino, mono- and di(C1-6-alkyl)amino, carbamoyl, mono- and di(C₁₋₆-alkyl)-amino-carbonyl, amino-C₁₋₆-alkyl-aminocarbonyl, mono- and di(C1-6-alkyl)amino-C1-6-alkyl-aminocarbonyl, C₁₋₆-alkyl-carbonylamino, carbamido, alkanoyloxy, sulphono, C1-6-alkylsulphonyloxy, nitro, azido, sulphanyl, C1-6-alkylthio, halogen, DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands, where aryl and heteroaryl may be optionally substituted, and where two geminal substituents together may designate oxo, thioxo, imino, or optionally substituted methylene, or together may form a spiro biradical consisting of a 1-5 carbon atom(s) alkylene chain which is optionally interrupted and/or terminated by one or more heteroatoms/groups selected from -O-, -S, and $-(NR^N)$ where R^N is selected from hydrogen and C1-4-alkyl, and where two adjacent (non-geminal) substituents may designate an additional bond resulting in a double bond; and \mathbb{R}^{N_*} , when present and not involved in a biradical, is selected from hydrogen and C₁₋₄-alkyl; and basic salts and acid addition salts thereof;

In some embodiments, R^{5*} is selected from H, --CH₃, -CH₂--CH₃, --CH₂--O--CH₃, and --CH=-CH₂.


In various embodiments, R4* and R2* together designate a biradical selected from -C(R^aR^b)-O-, -C(R^aR^b)-C $(\mathbb{R}^{c}\mathbb{R}^{d})$ —O—, $-C(R^aR^b)-C(R^cR^d)-C(R^eR^f)-O-,$ $-C(R^{a}R^{b}) - O - C(R^{c}R^{d}) - , - C(R^{a}R^{b}) - O - C(R^{c}R^{d}) - O - C(R$ $O-, -C(R^{a}R^{b})-C(R^{c}R^{d})-, -C(R^{a}R^{b})-C(R^{c}R^{d})-C(R^{c$ $(\mathbb{R}^{e}\mathbb{R}^{f})$, $-C(\mathbb{R}^{a})$, $C(\mathbb{R}^{c}\mathbb{R}^{d})$, $-C(\mathbb{R}^{a}\mathbb{R}^{b})$, -N $(\mathbf{R}^{c}, -\mathbf{C}(\mathbf{R}^{a}\mathbf{R}^{b})-\mathbf{C}(\mathbf{R}^{c}\mathbf{R}^{d})-\mathbf{N}(\mathbf{R}^{c}), -\mathbf{C}(\mathbf{R}^{a}\mathbf{R}^{b})-\mathbf{N}$ (\mathbf{R}^{c}) —O—, and —C $(\mathbf{R}^{a}\mathbf{R}^{b})$ —S—, —C $(\mathbf{R}^{a}\mathbf{R}^{b})$ —C $(\mathbf{R}^{c}\mathbf{R}^{d})$ — S—, wherein \mathbf{R}^{a} , \mathbf{R}^{b} , \mathbf{R}^{c} , \mathbf{R}^{d} , \mathbf{R}^{e} , and \mathbf{R}^{f} each is independently selected from hydrogen, optionally substituted C₁₋₁₂-alkyl, optionally substituted $\mathrm{C}_{2\text{-}12}\text{-}alkenyl,$ optionally substituted C_{2-12} -alkynyl, hydroxy, C_{1-12} -alkoxyalkyl, C_{2-12} -alkenyloxy, carboxy, C₁₋₁₂-alkoxycarbonyl, C₁₋₁₂-alkylcarbonyl, formyl, aryl, aryloxy-carbonyl, aryloxy, arylcarbonyl, heteroaryl, heteroaryloxy-carbonyl, heteroaryloxy, heteroarylcarbonyl, amino, mono- and di
($\rm C_{1-6}$ -alkyl)amino, carbamoyl, mono- and di(C₁₋₆-alkyl)-amino-carbonyl, amino-C₁₋₆alkyl-aminocarbonyl, mono- and di(C1-6-alkyl)amino-C1-6 $alkyl-aminocarbonyl, C_{1-6}-alkyl-carbonylamino, carbamido,\\$ C1-6-alkanoyloxy, sulphono, C1-6-alkylsulphonyloxy, nitro, azido, sulphanyl, C1-6-alkylthio, halogen, DNA intercalators, photochemically active groups, thermochemically active

65

groups, chelating groups, reporter groups, and ligands, where aryl and heteroaryl may be optionally substituted and where two geminal substituents R^a and R^b together may designate optionally substituted methylene ($=CH_2$),


For all chiral centers, asymmetric groups may be found in $_{15}$ either R or S orientation.

Preferably, the LNA monomer used in the oligomer of the invention comprises at least one LNA monomer according to any of the formulas

wherein Y is -0-, -0-CH2-, -S-, -NH-, or N(RH); Z and Z* are independently selected among an internucleotide linkage, a terminal group or a protecting group; B₃₀ constitutes a natural or non-natural nucleotide base moiety, and R^{*H*} is selected from hydrogen and C₁₋₄-alkyl.

Specifically preferred LNA monomers are shown in Scheme 2:

The term "thio-LNA" refers to an LNA monomer in which Y in the general formula above is selected from S or $-CH_2$ —S—. Thio-LNA can be in either the beta-D or alpha-L-configuration.

The term "amino-LNA" refers to an LNA monomer in which Y in the general formula above is selected from

—N(H)—, N(R)—, CH₂—N(H)—, and —CH₂—N(R) where R is selected from hydrogen and C_{1-4} -alkyl. Amino-LNA can be hi either the beta-D or alpha-L-configuration.

The term "oxy-LNA" refers to an LNA monomer in which Y in the general formula above represents -O- or $-CH_2-$ O-... Oxy-LNA can be in either the beta-D or alpha-L-con-figuration.

The term "ENA" refers to an LNA monomer in which Y in the general formula above is $-CH_2-O-$ (where the oxygen atom of $-CH_2-O-$ is attached to the 2'-position relative to the base B).

In various embodiments, the LNA monomer is selected from a beta-D-oxy-LNA monomer, and alpha-L-oxy-LNA monomer, a beta-D-amino-LNA monomer, and beta-D-thio-LNA monomer, in particular a beta-D-oxy-LNA monomer.

In the present context, the term "C₁₋₄alkyl" means a linear or branched saturated hydrocarbon chain wherein the chain has from one to four carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-bu-20 tyl.

RNAse H Recruitment

In some embodiments, an oligomer functions via non-RNase-mediated degradation of a target mRNA, such as by steric hindrance of translation, or other mechanisms; how-25 ever, in various embodiments, oligomers of the invention are capable of recruiting an endo-ribonuclease (RNase), such as RNase H.

Typically, the oligomer, comprises a region of at least 6, such as at least 7 contiguous monomers, such as at least 8 or at least 9 contiguous monomers, including 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 contiguous monomers, which, when forming a duplex with the target region of the target RNA, is capable of recruiting RNAse. The region of the oligomer which is capable of recruiting RNAse may be region B, as referred to in the context of a gapmer as described herein. In some embodiments, the region of the oligomer which is capable of recruiting RNAse, such as region B, consists of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 monomers.

EP 1 222 309 provides in vitro methods for determining RNaseH activity, which may be used to determine the ability of the oligomers of the invention to recruit RNaseH. An oligomer is deemed capable of recruiting RNaseH if, when contacted with the complementary region of the RNA target, it has an initial rate, as measured in pmol/l/min, of at least 1%, such as at least 5%, such as at least 10% or less than 20% of an oligonucleotide having the same base sequence but containing only DNA monomers, with no 2' substitutions, with phosphorothioate linkage groups between all monomers in the oligonucleotide, using the methodology provided by 50 Examples 91-95 of EP 1 222 309, incorporated herein by reference.

In some embodiments, an oligomer is deemed essentially incapable of recruiting RNaseH if, when contacted with the complementary target region of the RNA target, and RNaseH, 55 the RNaseH initial rate, as measured in pmol/l/min, is less than 1%, such as less than 5%, such as less than 10% or less than 20% of the initial rate determined using an oligonucleotide having the same base sequence, but containing only DNA monomers, with no 2' substitutions, with phospho-60 rothioate linkage groups between all monomers in the oligonucleotide, using the methodology provided by Examples 91-95 of EP 1 222 309.

In other embodiments, an oligomer is deemed capable of recruiting RNaseH if, when contacted with the complementary target region of the RNA target, and RNaseH, the RNaseH initial rate, as measured in pmol/l/min, is at least 20%, such as at least 40%, such as at least 60%, such as at

least 80% of the initial rate determined using an oligonucleotide having the same base sequence, but containing only DNA monomers, with no 2' substitutions, with phosphorothioate linkage groups between all monomers in the oligonucleotide, using the methodology provided by Examples 5 91-95 of EP 1 222 309.

Typically, the region of the oligomer which forms the duplex with the complementary target region of the target RNA and is capable of recruiting RNase contains DNA monomers and LNA monomers and forms a DNA/RNA-like 10 duplex with the target region. The LNA monomers are preferably in the alpha-L configuration, particularly preferred being alpha-L-oxy LNA.

In various embodiments, the oligomer of the invention comprises both nucleosides and nucleoside analogues, and is 15 in the form of a gapmer, a headmer or a mixmer.

A "headmer" is defined as an oligomer that comprises a first region and a second region that is contiguous thereto, with the 5'-most monomer of the second region linked to the 3'-most monomer of the first region. The first region com- 20 prises a contiguous stretch of non-RNase recruiting nucleoside analogues and the second region comprises a contiguous stretch (such as at least 7 contiguous monomers) of DNA monomers or nucleoside analogue monomers recognizable and cleavable by the RNase

A "tailmer" is defined as an oligomer that comprises a first region and a second region that is contiguous thereto, with the 5'-most monomer of the second region linked to the 3'-most monomer of the first region. The first region comprises a contiguous stretch (such as at least 7 contiguous monomers) 30 of DNA monomers or nucleoside analogue monomers recognizable and cleavable by the RNase, and the second region comprises a contiguous stretch of non-RNase recruiting nucleoside analogues.

Other "chimeric" oligomers, called "mixmers", consist of 35 an alternating composition of (i) DNA monomers or nucleoside analogue monomers recognizable and cleavable by RNase, and (ii) non-RNase recruiting nucleoside analogue monomers.

In some embodiments, in addition to enhancing affinity of 40 the oligomer for the target region, some nucleoside analogues also mediate RNase (e.g., RNaseH) binding and cleavage. Since -L-LNA monomers recruit RNaseH activity to a certain extent, in some embodiments, gap regions (e.g., region B 45 as referred to herein) of oligomers containing -L-LNA monomers consist of fewer monomers recognizable and cleavable by the RNaseH, and more flexibility in the mixmer construction is introduced.

Conjugates

In the context of this disclosure, the term "conjugate" indicates a compound formed by the covalent attachment ("conjugation") of an oligomer as described herein, to one or more moieties that are not themselves nucleic acids or monomers ("conjugated moieties"). Examples of such conjugated moieties include macromolecular compounds such as proteins, fatty acid chains, sugar residues, glycoproteins, polymers, or combinations thereof. Typically proteins may be antibodies for a target protein. Typical polymers may be polyethylene glycol.

Accordingly, provided herein are conjugates comprising an oligomer as herein described, and at least one conjugated moiety that is not a nucleic acid or monomer, covalently attached to said oligomer. Therefore, in certain embodiments where the oligomer of the invention consists of contiguous monomers having a specified sequence of bases, as herein disclosed, the conjugate may also comprise at least one conjugated moiety that is covalently attached to the oligomer.

In various embodiments of the invention, the oligomer is conjugated to a moiety that increases the cellular uptake of oligomeric compounds. WO2007/031091 provides suitable ligands and conjugates, which are hereby incorporated by reference.

In various embodiments, conjugation (to a conjugated moiety) may enhance the activity, cellular distribution or cellular uptake of the oligomer of the invention. Such moieties include, but are not limited to, antibodies, polypeptides, lipid moieties such as a cholesterol moiety, cholic acid, a thioether, e.g. Hexyl-s-tritylthiol, a thiocholesterol, an aliphatic chain, e.g., dodecandiol or undecyl residues, a phospholipids, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-ohexadecyl-rac-glycero-3-h-phosphonate, a polyamine or a polyethylene glycol chain, an adamantane acetic acid, a palmityl moiety, an octadecylamine or hexylamino-carbonyloxycholesterol moiety.

In certain embodiments, the oligomers of the invention are conjugated to active drug substances, for example, aspirin, ibuprofen, a sulfa drug, an antidiabetic, an antibacterial or an antibiotic.

In certain embodiments the conjugated moiety is a sterol, such as cholesterol.

In various embodiments, the conjugated moiety comprises or consists of a positively charged polymer, such as a positively charged peptides of, for example 1-50, such as 2-20 such as 3-10 amino acid residues in length, and/or polyalkylene oxide such as polyethylene glycol (PEG) or polypropylene glycol—see WO 2008/034123, hereby incorporated by reference. Suitably the positively charged polymer, such as a polyalkylene oxide may be attached to the oligomer of the invention via a linker such as the releasable linker described in WO 2008/034123.

By way of example, the following moieties may be used in the conjugates of the invention:

50

25

Activated Oligomers

The term "activated oligomer," as used herein, refers to an oligomer of the invention that is covalently linked (i.e., functionalized) to at least one functional moiety that permits covalent linkage of the oligomer to one or more conjugated moi- 5 eties, i.e., moieties that are not themselves nucleic acids or monomers, to form the conjugates herein described. Typically, a functional moiety will comprise a chemical group that is capable of covalently bonding to the oligomer via, e.g., a 3'-hydroxyl group or the exocyclic NH₂ group of the adenine 10 base, a spacer that is preferably hydrophilic and a terminal group that is capable of binding to a conjugated moiety (e.g., an amino, sulfhydryl or hydroxyl group). In some embodiments, this terminal group is not protected, e.g., is an NH, group. In other embodiments, the terminal group is protected, 15 for example, by any suitable protecting group such as those described in "Protective Groups in Organic Synthesis" by Theodora W. Greene and Peter G. M. Wuts, 3rd edition (John Wiley & Sons, 1999). Examples of suitable hydroxyl protecting groups include esters such as acetate ester, aralkyl groups 20 such as benzyl, diphenylmethyl, or triphenylmethyl, and tetrahydropyranyl. Examples of suitable amino protecting groups include benzyl, alpha-methylbenzyl, diphenylmethyl, triphenylmethyl, benzyloxycarbonyl, tert-butoxycarbonyl, and acyl groups such as trichloroacetyl or trifluoroacetyl.

In some embodiments, the functional moiety is self-cleaving. In other embodiments, the functional moiety is biodegradable. See e.g., U.S. Pat. No. 7,087,229, which is incorporated by reference herein in its entirety.

In some embodiments, oligomers of the invention are func- 30 tionalized at the 5' end in order to allow covalent attachment of the conjugated moiety to the 5' end of the oligomer. In other embodiments, oligomers of the invention can be functionalized at the 3' end. In still other embodiments, oligomers of the invention can be functionalized along the backbone or on the 35 heterocyclic base moiety. In yet other embodiments, oligomers of the invention can be functionalized at more than one position independently selected from the 5' end, the 3' end, the backbone and the base.

In some embodiments, activated oligomers of the invention 40 are synthesized by incorporating during the synthesis one or more monomers that is covalently attached to a functional moiety. In other embodiments, activated oligomers of the invention are synthesized with monomers that have not been functionalized, and the oligomer is functionalized upon 45 completion of synthesis.

In some embodiments, the oligomers are functionalized with a hindered ester containing an aminoalkyl linker, wherein the alkyl portion has the formula $(CH_2)_w$, wherein w is an integer ranging from 1 to 10, preferably about 6, wherein 50 the alkyl portion of the alkylamino group can be straight chain or branched chain, and wherein the functional group is attached to the oligomer via an ester group (-O-C(O)- $(CH_2)_w NH$).

In other embodiments, the oligomers are functionalized 55 with a hindered ester containing a $(CH_2)_w$ -sulfhydryl (SH) linker, wherein w is an integer ranging from 1 to 10, preferably about 6, wherein the alkyl portion of the alkylamino group can be straight chain or branched chain, and wherein the functional group attached to the oligomer via an ester 60 group (-O-C(O)-(CH₂)_wSH) In some embodiments, sulfhydryl-activated oligonucleotides are conjugated with polymer moieties such as polyethylene glycol or peptides (via formation of a disulfide bond).

Activated oligomers containing hindered esters as 65 described above can be synthesized by any method known in the art, and in particular, by methods disclosed in PCT Pub-

lication No. WO 2008/034122 and the examples therein, which is incorporated herein by reference in its entirety.

Activated oligomers covalently linked to at least one functional moiety can be synthesized by any method known in the art, and in particular, by methods disclosed in U.S. Patent Publication No. 2004/0235773, which is incorporated herein by reference in its entirety, and in Zhao et al. (2007) J. Controlled Release 119:143-152; and Zhao et al. (2005) Bioconjugate Chem. 16:758-766.

In still other embodiments, the oligomers of the invention are functionalized by introducing sulfhydryl, amino or hydroxyl groups into the oligomer by means of a functionalizing reagent substantially as described in U.S. Pat. Nos. 4,962,029 and 4,914,210, i.e., a substantially linear reagent having a phosphoramidite at one end linked through a hydrophilic spacer chain to the opposing end which comprises a protected or unprotected sulfhydryl, amino or hydroxyl group. Such reagents primarily react with hydroxyl groups of the oligomer. In some embodiments, such activated oligomers have a functionalizing reagent coupled to a 5'-hydroxyl group of the oligomer. In other embodiments, the activated oligomers have a functionalizing reagent coupled to a 3'-hydroxyl group. In still other embodiments, the activated oligomers of the invention have a functionalizing reagent coupled to a hydroxyl group on the backbone of the oligomer. In yet further embodiments, the oligomer of the invention is functionalized with more than one of the functionalizing reagents as described in U.S. Pat. Nos. 4,962,029 and 4,914,210, incorporated herein by reference in their entirety. Methods of synthesizing such functionalizing reagents and incorporating them into monomers or oligomers are disclosed in U.S. Pat. Nos. 4,962,029 and 4,914,210.

In some embodiments, the 5'-terminus of a solid-phase bound oligomer is functionalized with a dienyl phosphoramidite derivative, followed by conjugation of the deprotected oligomer with, e.g., an amino acid or peptide via a Diels-Alder cycloaddition reaction.

In various embodiments, the incorporation of monomers containing 2'-sugar modifications, such as a 2'-carbamate substituted sugar or a 2'-(O-pentyl-N-phthalimido)-deoxyribose sugar into the oligomer facilitates covalent attachment of conjugated moieties to the sugars of the oligomer. In other embodiments, an oligomer with an amino-containing linker at the 2'-position of one or more monomers is prepared using a reagent such as, for example, 5'-dimethoxytrityl-2'-O-(ephthalimidylaminopentyl)-2'-deoxyadenosine-3'-N,N-diisopropyl-cyanoethoxy phosphoramidite. See, e.g., Manoharan, et al., Tetrahedron Letters, 1991, 34, 7171.

In still further embodiments, the oligomers of the invention have amine-containing functional moieties on the nucleobase, including on the N6 purine amino groups, on the exocyclic N2 of guanine, or on the N4 or 5 positions of cytosine. In various embodiments, such functionalization may be achieved by using a commercial reagent that is already functionalized in the oligomer synthesis.

Some functional moieties are commercially available, for example, heterobifunctional and homobifunctional linking moieties are available from the Pierce Co. (Rockford, Ill.). Other commercially available linking groups are 5'-Amino-Modifier C6 and 3'-Amino-Modifier reagents, both available from Glen Research Corporation (Sterling, Va.). 5'-Amino-Modifier C6 is also available from ABI (Applied Biosystems Inc., Foster City, Calif.) as Aminolink-2, and 3'-Amino-Modifier is also available from Clontech Laboratories Inc. (Palo Alto, Calif.).

Compositions

In various embodiments, the oligomer of the invention is used in pharmaceutical formulations and compositions. Suitably, such compositions comprise a pharmaceutically acceptable diluent, carrier, salt or adjuvant. PCT/DK2006/000512 provides suitable and preferred pharmaceutically acceptable diluents, carriers and adjuvants-which are hereby incorporated by reference. Suitable dosages, formulations, administration routes, compositions, dosage forms, combinations with other therapeutic agents, pro-drug formulations are also provided in PCT/DK2006/000512-which are also hereby incorporated by reference. Details on techniques for formulation and administration also may be found in the latest edition of "REMINGTON'S PHARMACEUTICAL SCI- 15 ENCES" (Maack Publishing Co, Easton Pa.).

27

In some embodiments, an oligomer of the invention is covalently linked to a conjugated moiety to aid in delivery of the oligomer across cell membranes. An example of a conjugated moiety that aids in delivery of the oligomer across cell 20 membranes is a lipophilic moiety, such as cholesterol. In various embodiments, an oligomer of the invention is formulated with lipid formulations that form liposomes, such as Lipofectamine 2000 or Lipofectamine RNAiMAX, both of which are commercially available from Invitrogen. In some 25 embodiments, the oligomers of the invention are formulated with a mixture of one or more lipid-like non-naturally occurring small molecules ("lipidoids"). Libraries of lipidoids can be synthesized by conventional synthetic chemistry methods and various amounts and combinations of lipidoids can be 30 assayed in order to develop a vehicle for effective delivery of an oligomer of a particular size to the targeted tissue by the chosen route of administration. Suitable lipidoid libraries and compositions can be found, for example in Akinc et al. (2008) Nature Biotechnol., available at http://www.nature.corn/nbt/ 35 journal/vaop/ncurrent/abs/nbt1402.html, which is incorporated by reference herein.

As used herein, the term "pharmaceutically acceptable salts" refers to salts that retain the desired biological activity of the herein identified compounds and exhibit acceptable 40 levels of undesired toxic effects. Non-limiting examples of such salts can be formed with organic amino acid and base addition salts formed with metal cations such as zinc, calcium, bismuth, barium, magnesium, aluminum, copper, cobalt, nickel, cadmium, sodium, potassium, and the like, or 45 with a cation formed from ammonia, N,N'-dibenzylethylenediamine, D-glucosamine, tetraethylammonium, or ethylenediamine; or (c) combinations of (a) and (b); e.g., a zinc tannate salt or the like.

In certain embodiments, the pharmaceutical compositions 50 according to the invention comprise other active ingredients in addition to an oligomer or conjugate of the invention, including active agents useful for the treatment of cancer, such as prostate cancer or breast cancer, particularly agents used in conventional antiandrogen therapy.

In some embodiments, additional active agents are nonsteroidal antiandrogens (NSAAs), which block the binding of androgens at the receptor site, or luteinizing hormone-releasing hormone analogues (LHRH-As) that suppress testicular production of androgens to castrate levels.

NSAAs such as CASODEX, when used with an LHRH-A as part of Combined Androgen Blockade therapy, help to inhibit the growth of prostate cancer cells. In one embodiment, the invention provides for a combined androgen blockade therapy, characterised in that the therapy comprises administering the pharmaceutical composition according to the invention, and an NSAA and/or LHRH-A agent, which in

certain embodiments are administered prior to, during or subsequent to the administration of the pharmaceutical compositions of the invention.

The invention also provides a kit of parts wherein a first part comprises at least one oligomer, conjugate and/or the pharmaceutical composition according to the invention and a further part comprises a non-steroidal antiandrogen and/or a luteinizing hormone-releasing hormone analogue. It is therefore envisaged that the kit of parts may be used in a method of treatment, as referred to herein, where the method comprises administering both the first part and the further part, either simultaneously or one after the other.

Applications

The term "treatment" as used herein refers to both treatment of an existing disease (e.g., a disease or disorder as referred to herein below), or prevention of a disease, i.e., prophylaxis. It will therefore be recognised that, in certain embodiments, "treatment" includes prophylaxis.

In various embodiments, the oligomers of the invention may be utilized as research reagents for, for example, diagnostics, therapeutics and prophylaxis.

In some embodiments, such oligomers may be used for research purposes to specifically inhibit the expression of androgen receptor protein (typically by degrading or inhibiting the AR mRNA and thereby preventing protein formation) in cells and experimental animals, thereby facilitating functional analysis of the target or an appraisal of its usefulness as a target for therapeutic intervention.

In certain embodiments, the oligomers may be used in diagnostics to detect and quantitate androgen receptor expression in cells and tissues by Northern blotting, in-situ hybridisation or similar techniques.

In various therapeutic embodiments, a non-human animal or a human suspected of having a disease or disorder which can be treated by modulating the expression of androgen receptor is treated by administering an effective amount of an oligomer in accordance with this invention. Further provided are methods of treating a mammal, such as treating a human, suspected of having or being prone to a disease or condition, associated with expression of androgen receptor by administering a therapeutically or prophylactically effective amount of one or more of the oligomers, conjugates or compositions of the invention.

In certain embodiments, the invention also provides for the use of the compounds or conjugates of the invention as described for the manufacture of a medicament for the treatment of a disorder as referred to herein, or for a method of the treatment of a disorder as referred to herein.

In various embodiments, the invention also provides for a method for treating a disorder as referred to herein, said method comprising administering a compound according to the invention as herein described, and/or a conjugate according to the invention, and/or a pharmaceutical composition according to the invention to a patient in need thereof. Medical Indications

In certain therapeutic embodiments, the disorder to be treated is cancer, such as prostate cancer or breast cancer. In various embodiments, the treatment of such a disease or condition according to the invention may be combined with one 60 or more other anti-cancer treatments, such as radiotherapy, chemotherapy or immunotherapy.

In certain other embodiments, the disorder to be treated is selected from alopecia, benign prostatic hyperplasia, spinal and muscular atrophy and Kennedy disease and polyglutamate disease.

In various embodiments, the disease or disorder is associated with a mutation of the AR gene or a gene whose protein

65

product is associated with or interacts with AR. Therefore, in various embodiments, the target snRNA is a mutated form of the AR sequence, for example, it comprises one or more single point mutations or triplet repeats.

In other embodiments, the disease or disorder is associated 5 with abnormal levels of a mutated form of androgen receptor. In various embodiments, the disease or disorder is associated with abnormal levels of a wild-type form of AR.

In various embodiments, the invention relates to methods of modulating the expression of the gene product of an andro- 10 gen receptor target gene, i.e., a gene that is regulated by AR. Such AR receptor target gene products are selected form the group consisting of Protein kinase C delta (PRKCD), Glutathione S-transferase theta 2 (GSTT2), transient receptor potential cation channel subfamily V member 3 (TRPV3), 15 Pyrroline-5-carboxylate reductase 1 (PYCR1) and ornithine aminotransferase (OAT). In some embodiments, modulation of an AR target gene results in increased expression or activity of the target gene. In other embodiments, modulation of an AR target gene results in decreased expression or activity of 20 the target gene.

The invention further provides use of a compound of the invention in the manufacture of a medicament for the treatment of any and all conditions disclosed herein.

In various embodiments, the invention is directed to a 25 method of treating a mammal suffering from or susceptible to a condition associated with abnormal levels of androgen receptor mRNA or protein, comprising administering to the mammal a therapeutically effective amount of an oligomer of the invention, or a conjugate thereof, that comprises one or 30 more LNA monomers.

An interesting aspect of the invention is directed to the use of an oligomer (compound) as defined herein or a conjugate as defined herein for the preparation of a medicament for the treatment of a condition as disclosed herein above.

In various embodiments, the invention encompasses a method of preventing or treating a disease comprising administering a therapeutically effective amount of an oligomer according to the invention, or a conjugate thereof, to a human in need of such therapy.

In certain embodiments, the LNA oligomers of the invention, or conjugates thereof, are administered for a short period time rather than continuously.

In certain embodiments of the invention, the oligomer (compound) is linked to a conjugated moiety, for example, in 45 order to increase the cellular uptake of the oligomer. In one embodiment the conjugated moiety is a sterol, such as cholesterol.

In various embodiments, the invention is directed to a method for treating abnormal levels of androgen receptor, the 50 method comprising administering an oligomer of the invention, or a conjugate or a pharmaceutical composition thereof, to a patient in need of such treatment, and further comprising the administration of a further chemotherapeutic agent. In some embodiments, the chemotherapeutic agent is conju-55 gated to the oligomer, is present in the pharmaceutical composition, or is administered in a separate formulation.

The invention also relates to an oligomer, a composition or a conjugate as defined herein for use as a medicament.

The invention further relates to use of a compound, com- 60 position, or a conjugate as defined herein for the manufacture of a medicament for the treatment of abnormal levels of androgen receptor or expression of mutant forms of AR (such as allelic variants, such as those associated with one of the diseases referred to herein).

Moreover, in various embodiments, the invention relates to a method of treating a subject suffering from a disease or

condition selected from cancer, such as breast cancer or prostate cancer, alopecia, benign prostatic hyperplasia, spinal and muscular atrophy, Kennedy disease and polyglutamate disease, the method comprising the step of administering a pharmaceutical composition as defined herein to the subject in need thereof.

Suitable dosages, formulations, administration routes, compositions, dosage forms, combinations with other therapeutic agents, pro-drug formulations are also provided in PCT/DK2006/000512—which is hereby incorporated by reference.

The invention also provides for a pharmaceutical composition comprising a compound or a conjugate as herein described or a conjugate, and a pharmaceutically acceptable diluent, carrier or adjuvant. PCT/DK2006/000512 provides suitable and preferred pharmaceutically acceptable diluents, carriers and adjuvants-which are hereby incorporated by reference.

EMBODIMENTS

The following embodiments of the invention may be used in combination with the other embodiments described herein.

1. An oligomer of between 10-50 nucleobases in length which comprises a contiguous nucleobase sequence of a total of between 10-50 nucleobases, wherein said contiguous nucleobase sequence is at least 80% homologous to a corresponding region of a nucleic acid which encodes a mammalian androgen receptor.

2. The oligomer according to embodiment 1, wherein said oligomer comprises at least one LNA unit.

3. The oligomer according to embodiment 1 or 2, wherein the contiguous nucleobase sequence comprises no more than 3, such as no more than 2 mismatches to the corresponding 35 region of a nucleic acid which encodes a mammalian androgen receptor.

4. The oligomer according to embodiment 3, wherein said contiguous nucleobase sequence comprises no more than a single mismatch to the corresponding region of a nucleic acid which encodes a mammalian androgen receptor.

5. The oligomer according to embodiment 4, wherein said contiguous nucleobase sequence comprises no mismatches, (i.e. is complementary to) the corresponding region of a nucleic acid which encodes a mammalian androgen receptor.

6. The oligomer according to any one of embodiments 1-5, wherein the nucleobase sequence of the oligomer consists of the contiguous nucleobase sequence.

7. The oligomer according to any one of embodiments 1-6, wherein the nucleic acid which encodes a mammalian androgen receptor is the human androgen receptor nucleotide sequence such as SEQ ID No 1, or a naturally occurring allelic variant thereof.

8. The oligomer according to any one of embodiments 1-7, wherein the contiguous nucleobase sequence is complementary to a corresponding region of both the human androgen receptor nucleic acid sequence and a non-human mammalian androgen receptor nucleic acid sequence, such as the mouse androgen receptor nucleic acid sequence.

9. The oligomer according to any one of embodiments 1 to 8, wherein the contiguous nucleobase sequence comprises a contiguous subsequence of at least 7, nucleobase residues which, when formed in a duplex with the complementary androgen receptor target RNA is capable of recruiting RNaseH.

10. The oligomer according to embodiment 9, wherein the contiguous nucleobase sequence comprises of a contiguous subsequence of at least 8, at least 9 or at least 10 nucleobase residues which, when formed in a duplex with the complementary androgen receptor target RNA is capable of recruiting RNaseH.

11. The oligomer according to any one of embodiments 9 or 10 wherein said contiguous subsequence is at least 9 or at 5 least 10 nucleobases in length, such as at least 12 nucleobases or at least 14 nucleobases in length, such as 14, 15 or 16 nucleobases residues which, when formed in a duplex with the complementary androgen receptor target RNA is capable of recruiting RNaseH.

12. The oligomer according to embodiment any one of embodiments 1-11 wherein said oligomer is conjugated with one or more non-nucleobase compounds.

13. The oligomer according to any one of embodiments 1-12, wherein said oligomer has a length of between 10-22 nucleobases

14. The oligomer according to any one of embodiments 1-13, wherein said oligomer has a length of between 12-18 nucleobases.

15. The oligomer according to any One of embodiments 1-14, wherein said oligomer has a length of 14, 15 or 16 nucleobases.

16. The oligomer according to any one of embodiments 1-15, wherein said continuous nucleobase sequence corre- 25 sponds to a contiguous nucleotide sequence present in a nucleic acid sequence selected from the group consisting of SEQ ID NO 86-106.

17. The oligomer according to any one of embodiments 1-16, wherein the oligomer or contiguous nucleobase 30 sequence comprises, or is selected from a corresponding nucleobase sequence present in a nucleotide sequence selected from the group consisting of SEQ ID NO 2-22.

18. The oligomer according to any one of embodiments 1-17, wherein said contiguous nucleobase sequence com- 35 the contiguous nucleobase sequence consists of 10, 11, 12, 13 prises at least one affinity enhancing nucleotide analogue.

19. The oligomer according to embodiment 18, wherein said contiguous nucleobase sequence comprises a total of 2, 3, 4, 5, 6, 7, 8, 9 or 10 affinity enhancing nucleotide analogues, such as between 5 and 8 affinity enhancing nucleotide 40 analogues.

20. The oligomer according to any one of embodiments 1-19 which comprises at least one affinity enhancing nucleotide analogue, wherein the remaining nucleobases are selected from the group consisting of DNA nucleotides and 45 21-27, wherein B comprises at least one LNA nucleobase RNA nucleotides, preferably DNA nucleotides.

21. The oligomer according to any one of embodiments 1-20, wherein the oligomer comprises of a sequence of nucleobases of formula, in 5' to 3' direction, A-B-C, and optionally of formula A-B-C-D, wherein:

- (a) consists or comprises of at least one nucleotide analogue, such as 1, 2, 3, 4, 5 or 6 nucleotide analogues, preferably between 2-5 nucleotide analogues, preferably 2, 3 or 4 nucleotide analogues, most preferably 2, 3 or 4 consecutive nucleotide analogues and;
- (b) consists or comprises at least five consecutive nucleobases which are capable of recruiting RNAseH (when formed in a duplex with a complementary RNA molecule, such as the AR mRNA target), such as DNA nucleobases, such as 5, 6, 7, 8, 9, 10, 11 or 12 consecu- 60 tive nucleobases which are capable of recruiting RNAseH, or between 6-10, or between 7-9, such as 8 consecutive nucleobases which are capable of recruiting RNAseH, and;
- (c) consists or comprises of at least one nucleotide ana- 65 logue, such as 1, 2, 3, 4, 5, or 6 nucleotide analogues, preferably between 2-5 nucleotide analogues, such as 2,

3 or 4 nucleotide analogues, most preferably 2, 3 or 4 consecutive nucleotide analogues, and;

(d) when present, consists or comprises, preferably consists, of one or more DNA nucleotide, such as between 1-3 or 1-2 DNA nucleotides.

22. The oligomer according to embodiment 21, wherein region A consists or comprises of 2, 3 or 4 consecutive nucleotide analogues.

23. The oligomer according to any one of embodiments 21-22, wherein region B consists or comprises of 7, 8, 9 or 10 consecutive DNA nucleotides or equivalent nucleobases which are capable of recruiting RNAseH when formed in a duplex with a complementary RNA, such as the androgen receptor mRNA target.

24. The oligomer according to any one of embodiments 21-23, wherein region C consists or comprises of 2, 3 or 4 consecutive nucleotide analogues.

25. The oligomer according to any one of embodiments 21-24, wherein region D consists, where present, of one or 20 two DNA nucleotides.

- 26. The oligomer according to any one of embodiments 21-25, wherein:
- (a) Consists or comprises of 3 contiguous nucleotide analogues;
- (b) Consists or comprises of 7, 8, 9 or 10 contiguous DNA nucleotides or equivalent nucleobases which are capable of recruiting RNAseH when formed in a duplex with a complementary RNA, such as the androgen receptor mRNA target;
- (c) Consists or comprises of 3 contiguous nucleotide analogues;
- (d) Consists, where present, of one or two DNA nucleotides

27. The oligomer according to embodiment 26, wherein or 14 nucleobases, and wherein;

- (a) Consists of 1, 2 or 3 contiguous nucleotide analogues;
- (b) Consists of 7, 8, or 9 consecutive DNA nucleotides or equivalent nucleobases which are capable of recruiting RNAseH when formed in a duplex with a complementary RNA, such as the androgen receptor mRNA target;
- (c) Consists of 1, 2 or 3 contiguous nucleotide analogues;
- (d) Consists, where present, of one DNA nucleotide.

28. The oligomer according to anyone of embodiments which is in the alpha-L configuration, such as alpha-L-oxy LNA

29. The oligomer according to any one of embodiments 1-28, wherein the nucleotide analogue(s) are independently or collectively selected from the group consisting of: Locked Nucleic Acid (LNA) units; 2'-O-alkyl-RNA units, 2'-OMe-RNA units, 2'-amino-DNA units, 2'-fluoro-DNA units, PNA units, HNA units, and INA units.

30. The oligomer according to embodiment 29 wherein all 55 the nucleotide analogues(s) are LNA units.

31. The oligomer according to any one of embodiments 1-30, which comprises 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 LNA units such as between 2 and 8 nucleotide LNA units.

32. The oligomer according to any one of the embodiments 29-31, wherein the LNAs are independently selected from oxy-LNA, thio-LNA, and amino-LNA, in either of the beta-D and alpha-L configurations or combinations thereof.

33. The oligomer according to embodiment 32, wherein the LNAs are all beta-D-oxy-LNA.

34. The oligomer according to any one of embodiments 21-33, wherein the nucleotide analogues or nucleobases of regions A and C are beta-D-oxy-LNA.

35. The oligomer according to any one of embodiments 1-34, wherein at least one of the nucleobases present in the oligomer is a modified nucleobase selected from the group consisting of 5-methylcytosine, isocytosine, pseudoisocytosine, 5-bromouracil, 5-propynyluracil, 6-aminopurine, 5 2-aminopurine, inosine, diaminopurine, and 2-chloro-6-aminopurine.

36. The oligomer according to any one of embodiments 1-35, wherein said oligomer hybridises with a corresponding mammalian and rogen receptor mRNA with a T_m of at least 10 50° C.

37. The oligomer according to any one of embodiments 1-36, wherein said oligomer hybridises with a corresponding mammalian and rogen receptor mRNA with a T_m , of no greater than 80° C.

38. The oligomer according to any one of embodiments 1-37, wherein the internucleoside linkages are independently selected from the group consisting of: phosphodiester, phosphorothioate and boranophosphate.

39. The oligomer according to embodiment 38, wherein 20 the oligomer comprises at least one phosphorothioate internucleoside linkage.

40. The oligomer according to embodiment 39, wherein the internucleoside linkages adjacent to or between DNA or RNA units, or within region B are phosphorothioate linkages. 25

41. The oligomer according to embodiment 39 or 40, wherein the linkages between at least one pair of consecutive nucleotide analogues is a phosphodiester linkage.

42. The oligomer according to embodiment 39 or 40, wherein all the linkages between consecutive nucleotide ana- 30 logues are phosphodiester linkages.

43. The oligomer according to embodiment 42 wherein all the internucleoside linkages are phosphorothioate linkages.

44. A conjugate comprising the oligomer according to any one of the embodiments 1-43 and at least one non-nucleotide 35 or non-polynucleotide moiety covalently attached to said compound.

45. A pharmaceutical composition comprising an oligomer as defined in any of embodiments 1-43 or a conjugate as defined in embodiment 44, and a pharmaceutically accept- 40 able diluent, carrier, salt or adjuvant.

46. A pharmaceutical composition according to 45, wherein the oligomer is constituted as a pro-drug.

47. A pharmaceutical composition according to embodiment 45 or 46, which further comprises a further therapeutic 45 agent selected from the group consisting of Non-steroidal Antiandrogens and Luteinizing hormone-releasing hormone analogues.

48. Use of an oligomer as defined in any one of the embodiments 1-43, or a conjugate as defined in embodiment 44, for 50 the manufacture of a medicament for the treatment of a disease or disorder selected from the group consisting of: Cancer such as breast cancer or prostate cancer, alopecia, benign prostatic hyperplasia, spinal and muscular atrophy, Kennedy disease and polyglutamate disease.

49. An oligomer as defined in any one of the embodiments 1-43, or a conjugate as defined in embodiment 44, for use in the treatment of a disease or disorder selected from the group consisting of: Cancer such as breast cancer or prostate cancer, alopecia, benign prostatic hyperplasia, spinal and muscular 60 atrophy, Kennedy disease and polyglutamate disease.

50. A method for treating a disease or disorder selected from the group consisting of: Cancer such as breast cancer or prostate cancer, alopecia, benign prostatic hyperplasia, spinal and muscular atrophy, Kennedy disease and polyglutamate 65 disease, said method comprising administering an oligomer as defined in one of the embodiments 1-43, or a conjugate as

34

defined in embodiment 44, or a pharmaceutical composition as defined in any one of the embodiments 45-47, to a patient in need thereof.

51. A method for treating an cancer such as prostate cancer or breast cancer, said method comprising administering an oligomer as defined in one of the embodiments 1-43, or a conjugate as defined in embodiment 44, or a pharmaceutical composition as defined in any one of the embodiments 45-47, to a patient in need thereof.

52. A method of reducing or inhibiting the expression of androgen receptor in a cell or a tissue, the method comprising the step of contacting said cell or tissue with a compound as defined in one of the embodiments 1-43, or a conjugate as defined in embodiment 44, or a pharmaceutical composition as defined in any one of the embodiments 45-47, so that expression of androgen receptor is reduce or inhibited.

A method for modulating the expression of a gene which is regulated by the androgen receptor (i.e. an androgen receptor target) in a cell which is expressing said gene, said method comprising the step of contacting said cell or tissue with a compound as defined in one of the embodiments 1-43, or a conjugate as defined in embodiment 44, or a pharmaceutical composition as defined in any one of the embodiments 45-47, so that expression of androgen receptor target is modulated.

EXAMPLES

Example 1

Monomer Synthesis

The LNA monomer building blocks and derivatives were prepared following published procedures and references cited therein-see WO07/031,081 and the references cited therein.

Example 2

Oligonucleotide Synthesis

Oligonucleotides were synthesized according to the method described in WO07/031,081. Table 1 shows examples of sequences of antisense oligonucleotides of the invention. Tables 2 and 3 show examples of antisense oligonucleotides (oligomers) of the invention.

Example 3

Design of the Oligonucleotides

In accordance with the invention, a series of oligomers were designed to target different regions of human androgen receptor mRNA (GenBank Accession number NM_000044; SEQ ID NO: 1).

SEQ ID NOS: 2-22, shown in Table 1, below, are sequences of oligomers designed to target human androgen receptor mRNA. The target region of the target nucleic acid is indicated, in the table.

TABLE 1	
---------	--

Antisense Oligonucleotide Sequences							
SEQ	ID	NO		Sequence (5'-3')	Length (bases)	Target sit NM_000044	
SEQ	ID	NO :	2	GAGAACCATCCTCACC	16	1389-1404	
SEQ	ID	NO :	3	GGACCAGGTAGCCTGT	16	1428-1443	
SEQ	ID	NO:	4	CCCCTGGACTCAGATG	16	1881-1896	
SEQ	ID	NO:	5	GCACAAGGAGTGGGAC	16	1954-1969	
SEQ	ID	NO:	6	GCTGTGAAGAGAGTGT	16	2422-2437	
SEQ	ID	NO:	7	TTTGACACAAGTGGGA	16	2663-2678	
SEQ	ID	NO:	8	GTGACACCCAGAAGCT	16	2813-2828	
SEQ	ID	NO:	9	CATCCCTGCTTCATAA	16	2975-2990	
SEQ	ID	NO:	10	ACCAAGTTTCTTCAGC	16	3008-3023	
SEQ	ID	NO:	11	CTTGGCCCACTTGACC	16	3263-3278	
SEQ	ID	NO:	12	TCCTGGAGTTGACATT	16	3384-3399	
SEQ	ID	NO:	13	CACTGGCTGTACATCC	16	3454-3469	
EQ	ID	NO :	14	CATCCAAACTCTTGAG	16	3490-3505	
EQ	ID	NO :	15	GCTTTCATGCACAGGA	16	3529-3544	
EQ	ID	NO :	16	GAAGTTCATCAAAGAA	16	3594-3609	
EQ	ID	NO :	17	AGTTCCTTGATGTAGT	16	3616-3631	
EQ	ID	NO :	18	TTGCACAGAGATGATC	16	3809-3824	
SEQ	ID	NO :	19	GATGGGCTTGACTTTC	16	3845-3860	
EQ	ID	NO:	20	CAGGCAGAAGACATCT	16	3924-3939	
SEQ	ID	NO:	21	CCCAAGGCACTGCAGA	16	3960-3975	
SEQ	ID	NO:	22	GCTGACATTCATAGCC	16	3114-3129	
SEQ	ID	NO:	86	TGGGGAGAACCATCCTCACCCTGC	24	1385-1408	
SEQ	ID	NO:	87	TCCAGGACCAGGTAGCCTGTGGGG	24	1424-1447	
SEQ	ID	NO:	88	TGTTCCCCTGGACTCAGATGCTCC	24	1877-1990	
EQ	ID	NO:	89	TGGGGCACAAGGAGTGGGACGCAC	24	1950-1973	
EQ	ID	NO :	90	TTCGGCTGTGAAGAGAGTGTGCCA	24	2418-2441	
EQ	ID	NO:	91	CGCTTTTGACACAAGTGGGACTGG	24	2659-2682	
SEQ	ID	NO:	92	CATAGTGACACCCAGAAGCTTCAT	24	2809-2832	
EQ	ID	NO:	93	GAGTCATCCCTGCTTCATAACATT	24	2971-2994	
EQ	ID	NO :	94	GATTACCAAGTTTCTTCAGCTTCC	24	3004-3027	
SEQ	ID	NO:	95	AGGCCTTGGCCCACTTGACCACGT	24	3259-3282	
EQ	ID	NO:	96	AGCATCCTGGAGTTGACATTGGTG	24	3380-3403	
SEQ	ID	NO:	97	GACACACTGGCTGTACATCCGGGA	24	3450-3473	
SEQ	ID	NO :	98	GAGCCATCCAAACTCTTGAGAGAG	24	3486-3509	
SEQ	ID	NO:	99	CAGTGCTTTCATGCACAGGAATTC	24	35254548	
SEQ	ID	NO:	100	ATTCGAAGTTCATCAAAGAATTTT	24	3590-3613	

35

60

TABLE 1-continued

	Antisense Oligonucleotide Sequences								
SEQ	ID	NO		Sequence (5'-3')	Length (bases)	Target site NM_000044			
SEQ	ID	NO :	102	GCACTTGCACAGAGATGATCTCTG	24	3805-3828			
SEQ	ID	NO:	103	AATAGATGGGCTTGACTTTCCCAG	24	3841-3864			
SEQ	ID	NO :	104	ATAACAGGCAGAAGACATCTGAAA	24	3920-3943			
SEQ	ID	NO:	105	ATTCCCCAAGGCACTGCAGAGGAG	24	3956-3979			
SEQ	ID	NO:	106	ATGGGCTGACATTCATAGCCTTCA	24	3110-3133			

In SEQ ID NOs: 23-43, shown below in Table 2, upper case, boldface letters indicate nucleoside analogue monomers (e.g., •-D-oxy LNA monomers) and subscript "s" represents phosphorothiote linkage groups between the monomers. The absence of a subscript "s" (if any) indicates a phosphodiester linkage group. Lower case letters represent DNA monomers.

TABLE 2

IADLE 2					
Oligonucleotide designs					
SEQ ID NO	Sequence (5'-3')				
SEQ ID NO: 23	5'- G₈A₉G₈a 5a5c5c5a5c5c5c5c5c5 a5 c5				
SEQ ID NO: 24	5'- G_{\$}G_{\$}A_{\$} c _{\$} c _{\$} a _{\$} g _{\$} g _{\$} c _{\$} c _{\$} c _{\$} T_{\$}G₅T -3'				
SEQ ID NO: 25	5'- C₃C₅C₅C ₅c₅t₅g₅g₅a₅c₅t₅c₅a₅g₅ A₅T₅ G-3'				
SEQ ID NO: 26	5'- G₃C₉A₃c sasasgsgsgsasgstsgsgs G₈A₃c -3'				
SEQ ID NO: 27	5'- G_{\$}C₅T_{\$}G \$t _{\$} G\$a\$a\$g\$a\$g\$a\$g\$ a \$g \$7 <i>\$</i> G \$T -3'				
SEQ ID NO: 28	5'- T_sT_sT_sg _s a _s c _s a _s c _s a _s a _s g _s t _s g _s g _s g _s g _s A-3'				
SEQ ID NO: 29	5'- G₅T₅G₅ a₅c₅a₅c₅c₅c₅c₅c₅a₅g₅a₅a₅ G₅C₅T -3'				
SEQ ID NO: 30	5'- C_sA_sT_s C _s C _s C _s C _s t _s G _s C _s t _s t _s C _s a _s T _s A _s A-3'				
SEQ ID NO: 31	5'- A_sC_sC_sa _s a _s g _s t _s c _s A _s G _s C-3'				
SEQ ID NO: 32	5'- C₅T₅T₅G 5G5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C				
SEQ ID NO: 33	5'- T_sC_sC_st _S g _S g _S q _S q _S t _S t _S g _S a _S c _S A _s T _s T -3'				
SEQ ID NO: 34	5'- C_sA_sC_st _S g _S g _S g _S c _s t _S g _S t _S a _S c _S a _S T _s C _s C-3'				
SEQ ID NO: 35	5'- C₅À₅T ; ₆ C ₅ C ₅ a ₅ a ₅ a ₅ c ₅ t ₅ C ₅ t ₅ C ₅ G ; Å ; G -3'				
SEQ ID NO: 36	5'- G₈C;T ;t;t;c;a;t;g;c;a;c;a; G;G;A -3'				
SEQ ID NO: 37	5'- G_bA_bA jgstitscsastscsasas G_bA jA-3'				
SEQ ID NO: 38	5'- A_bG_bT _b t _b c _b c _b t _b t _b g _b a _b t _b G _b T-3'				

T	ABLE	2-	c	on	tir	nued	

		Oligonucleotide designs				
20	SEQ ID NO	Sequence (5'-3')				
	SEQ ID NO: 39	5′- T₈T₈G₈C 5a5C5a5G5a5G5a5t5G5 A5T5C -3′				
25	SEQ ID NO: 40	$5' - \mathbf{G_s} \mathbf{A_s} \mathbf{T_s} \mathbf{G_s} \mathbf{G_s} \mathbf{G_s} \mathbf{C_s} \mathbf{t_s} \mathbf{T_s} \mathbf{G_s} \mathbf{A_s} \mathbf{C_s} \mathbf{t_s} \mathbf{T_s} \mathbf{T_s} \mathbf{C} - 3'$				
	SEQ ID NO: 41	5'- C_bA_bG_bG _b G _b C ₅ a ₅ G ₅ a ₅ G ₅ a ₅ G ₅ C ₅ a ₅ T _b C _b T -3'				
30	SEQ ID NO: 42	5'- C₃C₃C₃a sasgsgscsascstsgscs A3G ,-3'				
	SEQ ID NO: 43	$5' - \mathbf{G}_{g}\mathbf{C}_{g}\mathbf{T}_{g}\mathbf{G}_{s}\mathbf{a}_{s}\mathbf{c}_{s}\mathbf{a}_{s}\mathbf{t}_{s}\mathbf{t}_{s}\mathbf{c}_{s}\mathbf{a}_{s}\mathbf{t}_{s}\mathbf{a}_{s}\mathbf{G}_{g}\mathbf{C}_{g}\mathbf{C}$ - 3'				

Example 4

In Vitro Model: Cell Culture

The effect of antisense oligonucleotides on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. The target can be expressed endogenously or by transient or stable transfection of a nucleic acid encoding said target. The expression level of target nucleic acid can be 45 routinely determined using, for example, Northern blot analysis, Real-Time PCR, Ribonuclease protection assays. The following cell types are provided for illustrative purposes, but other cell types can be routinely used, provided that the target is expressed in the cell type chosen.

50 Cells were cultured in the appropriate medium as described below and maintained at 37° C. at 95-98% humidity and 5% CO₂. Cells were routinely passaged 2-3 times weekly.

A549 The human lung cancer cell line A5439 was cultured in DMEM (Sigma)+10% fetal bovine serum (FBS)+2 mM
⁵⁵ Glutamax I+gentamicin (25 μg/ml).

MCF7 The human breast cancer cell line MCF7 was cultured in EagleMEM (Sigma)+10% fetal bovine serum (PBS)+2 mM Glutamax I+1×NEAA+gentamicin (25 µg/ml).

Example 5

In Vitro Model: Treatment with Antisense Oligonucleotide

65 The cell lines listed in Example 4 were treated with an oligomer using the cationic liposome formulation LipofectAMINE 2000 (Gibco) as transfection vehicle. Cells were

40

50

seeded in 6-well cell culture plates (NUNC) and treated when 80-90% confluent. Oligomer concentrations used ranged from 1 nM to 16 nM final concentration. Formulation of oligomer-lipid complexes were carried out essentially as described by the manufacturer using serum-free OptiMEM (Gibco) and a final lipid concentration of 5 μ g/mL Lipo-fectAMINE 2000. Cells were incubated at 37° C. for 4 hours and treatment was stopped by removal of oligomer-containing culture medium. Cells were washed and serum-containing media was added. After oligomer treatment, cells were allowed to recover for 20 hours before they were harvested for RNA analysis.

Example 6

In Vitro Model: Extraction of RNA and cDNA Synthesis

Total RNA Isolation and First Strand Synthesis

Total RNA was extracted from cells transfected as described above and using the Qiagen RNeasy kit (Qiagen cat. no. 74104) according to the manufacturer's instructions. First strand synthesis was performed using Reverse Transcriptase reagents from Ambion according to the manufac- 25 turer's instructions.

For each sample, the volume of 0.5 •g total RNA was adjusted to 10.8 •l with RNase free H_2O and mixed with 2 •l random decamers (50 •M) and 4 •l dNTP mix (2.5 mM each dNTP) and heated to 70° C. for 3 min, after which the samples ³⁰ were rapidly cooled on ice. After cooling the samples on ice, 2 •l 10× Buffer RT, 1 •l MMLV Reverse Transcriptase (100 U/•l) and 0.25 •l RNase inhibitor (10 U/•l) were added to each sample, followed by incubation at 42° C. for 60 min, heat inactivation of the enzyme at 95° C. for 10 min and then ³⁵ cooling of the sample to 4° C.

Example 7

In Vitro Model: Analysis of Oligonucleotide Inhibition of Androgen Receptor Expression by Real-Time PCR

Antisense modulation of androgen receptor expression can be assayed in a variety of ways known in the art. For example, androgen receptor mRNA levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR. Real-time quantitative PCR is presently preferred. RNA analysis can be performed on total cellular RNA or mRNA.

Methods of RNA isolation and RNA analysis such as Northern blot analysis are routine in the art and are taught in, for example, Current Protocols in Molecular Biology, John Wiley and Sons. Real-time quantitative (PCR) can be conveniently accomplished using the commercially available Multi-Color Real Time PCR Detection System, available from Applied Biosystems.

Real-Time Quantitative PCR Analysis of Androgen Receptor mRNA Levels

The amount of human androgen receptor mRNA in the samples was quantified using the human androgen receptor ABI Prism Pre-Developed TaqMan Assay Reagents (Applied Biosystems cat. no. Hs00171172_m1) according to the manufacturer's instructions.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA quantity was used as an endogenous control for normalizing any variance in sample preparation.

The amount of human GAPDH mRNA in the samples was quantified using the human GAPDH ABI Prism Pre-Developed TaqMan Assay Reagent (Applied Biosystems cat. no. 4310884E) according to the manufacturer's instructions.

Real-time Quantitative PCR is a technique well known in the art and is taught in for example Heid et al. Real time quantitative PCR, Genome Research (1996), 6: 986-994. Real Time PCR

The cDNA from the first strand synthesis performed as described in Example 6 was diluted 2-20 times, and analyzed by real time quantitative PCR using Taqman 7500 FAST or 7900 FAST from Applied Biosystems. The primers and probe were mixed with 2× Taqman Fast Universal PCR master mix $(2\times)$ (Applied Biosystems Cat. #4364103) and added to 4 μ l cDNA to a final volume of 10 µl. Each sample was analysed in duplicate. Standard curves were generated by assaying 2-fold dilutions of a cDNA that had been prepared on material purified from a cell line expressing the RNA of interest. Sterile H₂O was used instead of cDNA for the no-template control. PCR program: 95° C. for 30 seconds, followed by 40 cycles of 95° C., 3 seconds, 60° C., 20-30 seconds. Relative quantities of target mRNA were determined from the calculated Threshold cycle using the Applied Biosystems Fast System SDS Software Version 1.3.1.21. or SDS Software Version 2.3.

Example 8

In Vitro Analysis: Antisense Inhibition of Human Androgen Receptor mRNA Expression by Oligonucleotide Compounds

Oligonucleotides presented in Table 3 were evaluated for their potential to knock down androgen receptor mRNA expression at concentrations of 1, 4 and 16 nM (see FIGS. 1 and 2).

The data in Table 3 are presented as percentage downregulation relative to mock transfected cells at 16 nM. Lower case letters represent DNA monomers, bold, upper case letters represent β -D-oxy-LNA monomers. All cytosine bases in the LNA monomers are 5-methylcytosines. Subscript "s" represents a phosphorothioate linkage.

TABLE 3

Inhibition of human androgen receptor mRNA expression by oligonucleotides							
Test substance	Sequence (5'-3')	Percent inhibition of Androgen recpetor MCF7	Percent inhibition of Androgen receptor A549				
SEQ ID NO: 44	5'- G_iA_iG iasascscsastscscstsc AiC :C-3'	80.1	63.8				
SEQ ID NO: 45	5'- GġGġAġ CġCġaġgġgġtġaġgġcġcġ tġGġT -3'	89.0	88.2				

TABLE 3-continued

Test substance	Sequence (5'-3')	Percent inhibition of Androgen recpetor MCF7	Percent inhibition of Androgen receptor A549
SEQ ID NO: 46	5'- C;C;C;c; t;g;g;a;c;t;c;a;g; A;T;G -3'	89.4	82.8
SEQ ID NO: 47	5'- G₈C₈A₈C 8a8a8g8g8a8g8t8g8 5 g8 g86 8 8 C-3'	83.1	77.7
SEQ ID NO: 48	5'- G_sC_sT _s g _s t _s g _s a _s g _s a _s g _s a _s g _s T _s G _s T-3'	93.8	96.7
SEQ ID NO: 49	5'- C_sT₂G_st 2g2a2g2a2g2a2g2 g 3 g 3 g -3'	n.d.	n.d.
SEQ ID NO: 50	$5' - \mathbf{T}_{\mathbf{s}} \mathbf{G}_{\mathbf{s}} \mathbf{t}_{\mathbf{s}} \mathbf{g}_{\mathbf{s}} \mathbf{a}_{\mathbf{s}} \mathbf{g}_{\mathbf{s}} \mathbf{a}_{\mathbf{s}} \mathbf{g}_{\mathbf{s}} \mathbf{a}_{\mathbf{s}} \mathbf{G}_{\mathbf{s}} \mathbf{T}_{\mathbf{s}} - 3'$	n.d.	n.d.
SEQ ID NO: 51	5'- T_sT_sT_sT sg;sascsascsasasgstsgs GsGsA- 3'	96.9	95.5
SEQ ID NO: 52	5'- T_sT_sG sa _s c _s a _s c _s a _s a _s a _s g _s t _s g _s G _s G-3'	n.d.	n.d.
SEQ ID NO: 53	5'- T _s G _s a _s c _s a _s c _s a _s c _s a _s c _s G -3'	n.d.	n.d.
SEQ ID NO: 54	5′- G₅T₅G₅ a ₅ c ₅ a ₅ c ₅ c ₅ a ₅ g ₅ a ₅ a ₅ G₅C₅T -3′	95.4	98.3
SEQ ID NO: 55	5'- T;gg,à; gc;sa;gc;c;ga;gg,a,d ;gc- 3'	n.d.	n.d.
SEQ ID NO: 56	5'- G_sA_sc _s a _s c _s c _s c _s c _s a _s g _s a _s A _s G-3'	n.d.	n.d.
SEQ ID NO: 57	5'- C_sA_sT_s C _s C _s C _s C _s t _s g _s C _s t _s t _s C _s a _s T_sA_sA -3'	89.5	88.9
SEQ ID NO: 58	5'- A_sC_sC_sa _s a _s a _s g _s t _s t _s t _s c _s t _s c _s A_sG_sC -3'	95.6	98.9
SEQ ID NO: 59	5′- C₅C₅À₅ a;sg;tstststststststs t sts	n.d.	n.d.
SEQ ID NO: 60	$5'-\mathbf{C}_{s}\mathbf{A}_{s}\mathbf{a}_{s}\mathbf{g}_{s}\mathbf{t}_{s}\mathbf{t}_{s}\mathbf{t}_{s}\mathbf{c}_{s}\mathbf{t}_{s}\mathbf{t}_{s}\mathbf{C}_{s}\mathbf{A}-3'$	n.d.	n.d.
SEQ ID NO: 61	5'- C_sT_sT_sg_sg_sg_sg_sg_sg_sg_sg_sg_sg	86.7	93.3
SEQ ID NO: 62	5'- T_sC_sC_st _s g _s g _s g _s a _s g _s t _s t _s g _s a _s c _s A_sT_sT -3'	81.3	93.0
SEQ ID NO: 63	5'- C_sA_sC_st ' _s g _s g _s g _s c _s t _s g _s t _s a _s c _s a _s T_sC_sC -3'	90.9	98.4
	5′- A_sC_sT_sg_sg_sc_st_sg_st_sa_sc_sa_sT_sC-3′	n.d.	n.d.
	5'- C_sT_sg _s g _s c _s t _s g _s t _s a _s c _s k_sT -3'	n.d.	n.d.
	5'- C₃A₆T₈C 5C5a5a5a5c5t5C5t5 c5 t5 G3A3G -3'	79.8	95.3
SEQ ID NO: 67	5′- G_sC_sT ststscsastsgscsascsas G_sG_sA -3′	83.5	97.0
	5'- G_sA_sA sgststscsastscsasasas G_sAs A-3'	88.2	85.6
	5′- A_sG_sT stscscststsgsastsgsts A_sGsT -3′	92.7	94.0

TABLE 3-continued

Test substance	Sequence (5'-3')	Percent inhibition of Androgen recpetor MCF7	Percent inhibition of Androgen receptor A549
SEQ ID NO: 70	$5' - \mathbf{G}_{s} \mathbf{T}_{s} \mathbf{T}_{s} \mathbf{c}_{s} \mathbf{c}_{s} \mathbf{t}_{s} \mathbf{t}_{s} \mathbf{g}_{s} \mathbf{a}_{s} \mathbf{t}_{s} \mathbf{g}_{s} \mathbf{T}_{s} \mathbf{A}_{s} \mathbf{G} - 3'$	n.d.	n.d.
SEQ ID NO: 71	5'- T_sT_sc_sc_st_st_sg_sa_st_sg_sT_sA-3'	n.d.	n.d.
SEQ ID NO: 72	5'- T_sT₃G₈C ₈ a ₈ C ₅ a ₅ g ₅ a ₅ g ₅ a ₅ t ₅ g ₅ A₅T₃C- 3'	79.2	90.4
SEQ ID NO: 73	5'- G₈A₃T₈g 5g5g5g5c5t5t5g5a5c5t5 T5T5 C-3'	91.1	97.3
SEQ ID NO: 74	5'- A_sT_sg sgsgsgsgstststsgsasgsts T_sT -3'	n.d.	n.d.
SEQ ID NO: 75	5'- T_sG_sg sgscststsgsasc sTsT -3'	n.d.	n.d.
SEQ ID NO: 76	5'- C₉A₃G₈ G ₈ C ₅ a ₅ G ₅ a ₅ G ₅ a ₅ G ₅ a ₅ C ₃ T -3'	85.9	94.3
SEQ ID NO: 77	5'- C_sC_sC_sa sasgsgscsascstsgsc sA_sG sA-3'	93.0	98.5
SEQ ID NO: 78	5'- C_sC_sA ;asgsgscsascstsgscs A ;G-3'	n.d.	n.d.
SEQ ID NO: 79	5'- C₉A₃a 5g5g5c5a5c5t5g5 C9A- 3'	n.d.	n.d.
SEQ ID NO: 80	5′- G_sC_sT_sg sascsaststscsastsas G_sC -3′	n.d.	n.d.

As shown in Table 3, oligonucleotides having the sequences set forth in SEQ ID NOs: 48, 51, 54, 58, 63, 69, 73 ³⁵ and 77 at 16 nM demonstrated greater than 90% inhibition of androgen receptor mRNA expression in A549 and MCF7 cells in these experiments.

In certain embodiments, oligomers based on the tested antisense oligomer sequences and designs, but having, for example, different lengths (shorter or longer) and/or monomer content (e.g. the type and/or number of nucleoside analogues) than those shown, e.g., in Table 3, could also provide suitable inhibition of androgen receptor expression.

Example 9

In Vivo Analysis: Antisense Inhibition of Mouse Androgen Receptor mRNA Liver Expression by Oligonucleotide Compounds

Nude mice were dosed i.v. q3dx4 with 100 mg/kg oligonucleotide (group size of 5 mice). The antisense oligonucle-55 otides (SEQ ID:48, SEQ ID:51, SEQ ID:58, SEQ ID:63, SEQ ID:77) were dissolved in phosphate buffered saline. Animals were sacrificed 24 h after last dosing and liver tissue was sampled and stored in RNA later until RNA extraction and QPCR analysis. Total RNA was extracted and AR mRNA 60 expression in liver samples was measured by QPCR as described, in Example 7 using a mouse AR QPCR assay (cat. Mm01238475_m1, Applied Biosystems). Results were normalised to mouse GAPDH (cat. no. 4352339E, Applied Biosystems) and knock-down was quantitated relative to saline treated controls. The data in Table 4 are presented as percentage down-regulation relative to saline treated animals. TABLE 4

In vivo knock-down of AR mRNA expression						
Compound	Liver (% KD)					
Saline SEQ ID: 51 100 mg/kg SEQ ID: 58 100 mg/kg SEQ ID: 77 100 mg/kg	0 65.0 +/- 12.6 95.2 +/- 1.0 91.9 +/- 3.9					

As shown in Table 4, oligonucleotides of SEQ ID NOs: 58 45 and 77 at 100 mg/kg demonstrated greater than 90% inhibition of androgen receptor mRNA expression in mouse liver cells in these experiments.

Example 10

In Vitro Analysis: Antisense Inhibition of Human Androgen Receptor mRNA

Measurement of Proliferating Viable Cells (MTS Assay) LNCaP prostate cancer and A549 lung cancer cells were seeded to a density of 150,000 cells per well in a 6-well plate the day prior to transfection. A549 cells were cultured in DMEM (Sigma)+10% fetal bovine serum (FBS)+2 mM Glutamax I+gentamicin (25 μ g/ml) whereas LNCaP cells were cultured in RPMI 1640 Medium (Sigma)+10% fetal bovine serum (FBS)+2 mM Glutamax I+gentamicin (25 μ g/ml). On the following day, medium was removed followed by addition of 1.2 ml OptiMEM containing 5 μ g/ml Lipofectamine-2000 (Invitrogen). Cells were incubated for 7 min before adding 0.3 ml oligonucleotides diluted in OptiMEM. The final oligonucleotide concentrations were 4 nM and 16 nM. After 4 hours of treatment, media was removed and cells

20

were trypsinized and seeded to a density of 5000 cells per well in a clear 96 well plate (Scientific Orange no. 1472030100) in 100 μ l media. Viable cells were measured at the times indicated by adding 10 μ l the tetrazolium compound [3-(4,5dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine ethosulfate; PES) (CellTiter 96® AQueous One Solution Cell Proliferation Assay, Promega). Viable cells were measured at 490 nm in a Powerwave (Biotek Instruments). The OD490 nm measurements were plotted against time/h. (See FIG. 13 and FIG. 14). As shown in FIG. 13 and FIG. 14, oligonucleotides of SEQ ID NOs: 58 and 77 inhibit growth of both LNCaP prostate and A549 lung cancer cells.

Example 11

In Vitro Analysis: Caspase 3/7 Activity by Antisense Inhibition of Hunan Androgen Receptor mRNA

LNCaP prostate cancer cells and A549 lung cancer cells were seeded to a density of 150,000 cells per well in a 6-well plate the day prior to transfection. A549 cells were cultured in DMEM (Sigma)+10% fetal bovine serum (FBS)+2 mM Glutamax I+gentamicin (25 µg/ml) whereas LNCaP cells were cultured in RPMI 1640 Medium (Sigma)+10% fetal bovine serum (PBS)+2 mM Glutamax I+gentamicin (25 µg/ml). The next day medium was removed followed by addition of 1.2 ml OptiMEM containing 5 µg/ml Lipo- 30 fectamine2000 (Invitrogen). Cells were incubated for 7 min before adding 0.3 ml oligonucleotides diluted in OptiMEM. The final oligonucleotide concentrations were 4 nM and 16 nM. After 4 hours of treatment, media was removed and cells were trypsinized and seeded to a density of 5000 cells per well 35 in a white 96 well plate (Nunc) in 100 µl media. Caspase 3/7 activity was measured at the times indicated by adding 100 µl Caspase-Glo 3/7 assay (Promega). Caspase 3/7 activity was measured using a luminometer. The caspase 3/7 activities were measured at three different time points 14 h, 48 h and 72 $_{40}$ h (See FIG. 15 and FIG. 16). As shown in FIG. 15 and FIG. 16, oligonucleotides of SEQ ID NOs: 58 and 77 induce caspase 3/7 activity in both LNCaP prostate and A549 lung cancer cells.

Example 12

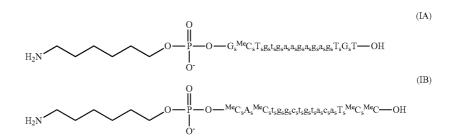
In Vitro Analysis: Antisense Inhibition of Human Androgen Receptor mRNA Expression by Oligonucleotide Compounds in Prostate Cancer Cell Line LNCaP and Lung Cancer Cell Line A549

Oligonucleotides were evaluated for their potential to knock down androgen receptor mRNA expression at concentrations of 0.5, 1, 2, 4, 8 and 16 nM (see FIG. 11). LNCaP 55 prostate cancer cells and A549 lung cancer cells were seeded to a density of 150,000 cells per well in a 6-well plate the day prior to transfection. A549 cells were cultured in DMEM (Sigma)+10% fetal bovine serum (FBS)+2 mM Glutamax I+gentamicin (25 μ g/ml). LNCaP cells were cultured in RPMI 1640 Medium (Sigma)+10% fetal bovine serum (FBS)+2 mM Glutamax I+gentamicin (25 μ g/ml). On the following day, medium was removed followed by addition of 1.2 ml OptiMEM containing 5 μ g/ml Lipofectamine2000 65 (Invitrogen). Cells were incubated for 7 min before adding 0.3 ml oligonucleotides diluted in OptiMEM. The final oli46

gonucleotide concentrations were 0.5, 1, 2, 4, 8 and 16 nM. Cells were washed and serum-containing media was added. After oligomer treatment cells were allowed to recover for 20 hours before they were harvested for RNA analysis. The procedure for RNA isolation, cDNA synthesis and qPCR were as described in Examples 5, 6 and 7. As shown in FIGS. **11** and **12** oligonucleotides of SEQ ID NOs: 58 and 77 were potent in knocking down AR mRNA expression in both the lung cancer cell line A549 and in the androgen receptor-dependent LNCaP prostate cancer cell line.

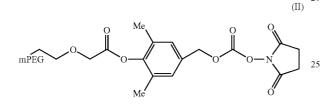
Example 13

In Vivo Analysis: Effect of Antisense Oligonucleotides on PSA Levels and Androgen-Dependent Prostate Tumor Growth in Mice

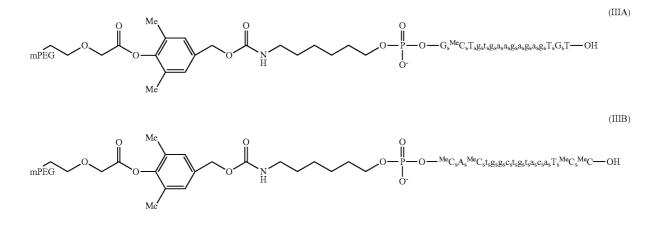

Six to seven week old male athymic nu/nu mice (Harlan Sprague Dawley) weighing an average of 27.3±2.4 g were used in the study. Ten million cells of 22RV1 (androgenindependent prostate cancer line) were suspended in PBS (Gibco#14190) and Matrigel (BD#356234) with a ratio of 1:1 were injected subcutaneously into each mouse. When tumors reached an average volume of 150-200 mm³, the mice were divided into nine experimental groups. Two hundred µl of oligomer were injected intravenously when the average tumor size reached 152.66±27.97 mm³. Oligomers were given every 3 days for a total of 5 dosings. The control vehicles were given using the same dosing regimen as the oligomers. On day 16, mice were sacrificed and blood collected in EDTA laced tubes and spun for 5 min. 50 µl of the supernatants were then subjected to PSA assay using the ELISA kit from ALPCO Diagnostics in Salem (PSAHU-L01). Results of the experiment are shown in FIG. 17.

Six to seven week old male athymic nu/nu mice (Harlan Sprague Dawley) weighing an average of 27.3±2.4 g were used in the study. Ten million cells of 22RV1 (androgenindependent prostate cancer line) were suspended in PBS (Gibco#14190) and Matrigel (BD#356234) with a ratio of 1:1 were injected subcutaneously into each mouse. When tumors reached an average volume of 150-200 mm³, the mice were 45 divided into nine experimental groups. Two hundred µl of oligomer was injected intravenously when the average tumor size reached 152.66±27.97 mm³. Oligomers were given every 3 days for a total of 5 dosings. The control vehicles were given using the same dosing regimen as the oligomers. The tumor 50 volumes for each mouse were determined by measuring two dimensions with calipers and calculated using the formula: tumor volume=(length×width²)/2). Results of the experiment are shown in FIG. 18.

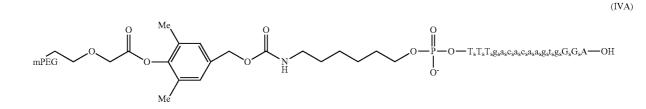
Example 14


Preparation of Conjugates of Oligomers with Polyethylene Glycol

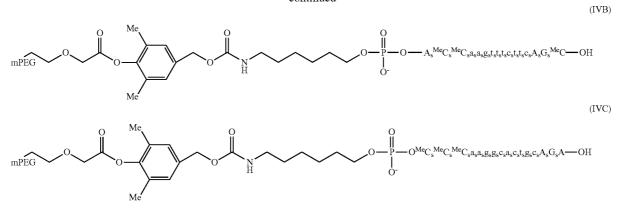
The oligomers having sequences shown as SEQ ID NO: 48 or SEQ ID NO: 63 are functionalized on the 5' terminus by attaching an aminoalkyl group, such as hexan-1-amine blocked with a blocking group such as Fmoc to the 5' phosphate groups of the oligomers using routine phosphoramidite chemistry, oxidizing the resultant compounds, deprotecting them and purifying them to achieve the functionalized oligomers, respectively, having the formulas (IA) and (IB):


wherein the bold uppercase letters represent nucleoside analogue monomers, lowercase letters represent DNA mono- 15 mers, the subscript "s" represents a phosphorothioate linkage, and Me C represents 5-methylcytosine.

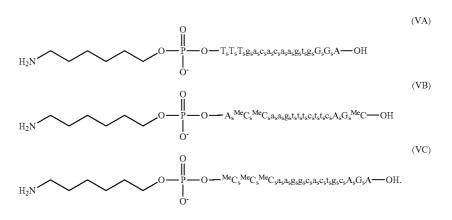
A solution of activated PEG, such as the one shown in formula (II):


wherein the PEG moiety has an average molecular weight of
¹⁵ 12,000, and each of the compounds of formulas (IA) and (IB) in PBS buffer are stirred in separate vessels at room temperature for 12 hours. The reaction solutions are extracted three times with methylene chloride and the combined organic
layers are dried over magnesium sulphate and filtered and the solvent is evaporated under reduced pressure. The resulting residues are dissolved in double distilled water and loaded onto an anion exchange column. Unreacted PEG linker is
eluted with water and the products are eluted with NH₄HCO₃ solution. Fractions containing pure products are pooled and lypophilized to yield the conjugates SEQ ID NOS: 48 and 63, respectively as show in formulas (IIIA) and (IIIB):

48


⁵⁰ wherein each of the oligomers of SEQ ID NOs: 48 and 63 is attached to a PEG polymer having average molecular weight of 12,000 via a releasable linker.

Chemical structures of PEG polymer conjugates that can be made with oligomers having sequences shown in SEQ NOs: 51, 58 and 77 using the process described above are respectively shown in formulas (IVA), (IVB) and (IVC):


50

20

wherein bold uppercase letters represent beta-D-oxy-LNA monomers, lowercase letters represent DNA monomers, the subscript "s" represents a phosphorothioate linkage and ^{Me}C represent 5-methylcytosine.

Activated oligomers that can be used in this process to respectively make the conjugates shown in formulas (NA), (IVB) and (IVC) have the chemical structures shown in formulas (VA), (VB) and (VC):

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 106 <210> SEQ ID NO 1 <211> LENGTH: 4314 <212> TYPE: DNA <213> ORGANISM: homo sapiens <400> SEQUENCE: 1 cgagatcccg gggagccagc ttgctgggag agcgggacgg tccggagcaa gcccagaggc 60 agaggaggcg acagagggaa aaagggccga gctagccgct ccagtgctgt acaggagccg 120 aagggacgca ccacgccagc cccagcccgg ctccagcgac agccaacgcc tcttgcagcg 180 cggcggcttc gaagccgccg cccggagctg ccctttcctc ttcggtgaag tttttaaaag 240 ctgctaaaga ctcggaggaa gcaaggaaag tgcctggtag gactgacggc tgcctttgtc 300 cteeteetet ceaeceegee teeceecaee etgeetteee ecceteecee gtettetete 360 ccgcagetge etcagtegge tacteteage caaceceet caceaceet etceceacee 420 480 gcccccccgc ccccgtcggc ccagcgctgc cagcccgagt ttgcagagag gtaactccct ttggctgcga gcgggcgagc tagctgcaca ttgcaaagaa ggctcttagg agccaggcga 540

-continued

ctggggagcg	gcttcagcac	tgcagccacg	acccgcctgg	ttaggctgca	cgcggagaga	600
accctctgtt	ttcccccact	ctctctccac	ctcctcctgc	cttccccacc	ccgagtgcgg	660
agccagagat	caaaagatga	aaaggcagtc	aggtcttcag	tagccaaaaa	acaaaacaaa	720
caaaaacaaa	aaagccgaaa	taaaagaaaa	agataataac	tcagttctta	tttgcaccta	780
cttcagtgga	cactgaattt	ggaaggtgga	ggattttgtt	ttttcttt	aagatctggg	840
catcttttga	atctaccctt	caagtattaa	gagacagact	gtgagcctag	cagggcagat	900
cttgtccacc	gtgtgtcttc	ttctgcacga	gactttgagg	ctgtcagagc	gctttttgcg	960
tggttgctcc	cgcaagtttc	cttctctgga	gcttcccgca	ggtgggcagc	tagctgcagc	1020
gactaccgca	tcatcacagc	ctgttgaact	cttctgagca	agagaagggg	aggcggggta	1080
agggaagtag	gtggaagatt	cagccaagct	caaggatgga	agtgcagtta	gggctgggaa	1140
gggtctaccc	tcggccgccg	tccaagacct	accgaggagc	tttccagaat	ctgttccaga	1200
gcgtgcgcga	agtgatccag	aacccgggcc	ccaggcaccc	agaggccgcg	agcgcagcac	1260
ctcccggcgc	cagtttgctg	ctgctgcagc	agcagcagca	gcagcagcag	cagcagcagc	1320
agcagcagca	gcagcagcag	cagcagcagc	agcaagagac	tagccccagg	cagcagcagc	1380
agcagcaggg	tgaggatggt	tctccccaag	cccatcgtag	aggccccaca	ggctacctgg	1440
tcctggatga	ggaacagcaa	ccttcacagc	cgcagtcggc	cctggagtgc	caccccgaga	1500
gaggttgcgt	cccagagcct	ggagccgccg	tggccgccag	caagggggctg	ccgcagcagc	1560
tgccagcacc	tccggacgag	gatgactcag	ctgccccatc	cacgttgtcc	ctgctgggcc	1620
ccactttccc	cggcttaagc	agctgctccg	ctgaccttaa	agacatcctg	agcgaggcca	1680
gcaccatgca	actccttcag	caacagcagc	aggaagcagt	atccgaaggc	agcagcagcg	1740
ggagagcgag	ggaggcctcg	ggggctccca	cttcctccaa	ggacaattac	ttaggggggca	1800
cttcgaccat	ttctgacaac	gccaaggagt	tgtgtaaggc	agtgtcggtg	tccatgggcc	1860
tgggtgtgga	ggcgttggag	catctgagtc	caggggaaca	gcttcggggg	gattgcatgt	1920
acgccccact	tttgggagtt	ccacccgctg	tgcgtcccac	tccttgtgcc	ccattggccg	1980
aatgcaaagg	ttetetgeta	gacgacagcg	caggcaagag	cactgaagat	actgctgagt	2040
atteccettt	caagggaggt	tacaccaaag	ggctagaagg	cgagagccta	ggctgctctg	2100
gcagegetge	agcagggagc	tccgggacac	ttgaactgcc	gtctaccctg	tctctctaca	2160
agteeggage	actggacgag	gcagctgcgt	accagagtcg	cgactactac	aactttccac	2220
tggctctggc	cggaccgccg	ccccctccgc	cgcctcccca	tccccacgct	cgcatcaagc	2280
tggagaaccc	gctggactac	ggcagcgcct	gggcggctgc	ggcggcgcag	tgccgctatg	2340
gggacctggc	gagcctgcat	ggcgcggggtg	cagcgggacc	cggttctggg	tcaccctcag	2400
ccgccgcttc	ctcatcctgg	cacactctct	tcacagccga	agaaggccag	ttgtatggac	2460
cgtgtggtgg	tggtgggggt	ggtggcggcg	gcggcggcgg	cggcggcggc	aacaacaaca	2520
gcggcggcgg	cggcgaggcg	ggagctgtag	ccccctacgg	ctacactcgg	ccccctcagg	2580
ggctggcggg	ccaggaaagc	gacttcaccg	cacctgatgt	gtggtaccct	ggcggcatgg	2640
tgagcagagt	gccctatccc	agtcccactt	gtgtcaaaag	cgaaatgggc	ccctggatgg	2700
atagctactc	cggaccttac	ggggacatgc	gtttggagac	tgccagggac	catgttttgc	2760
ccattgacta	ttactttcca	ccccagaaga	cctgcctgat	ctgtggagat	gaagcttctg	2820
ggtgtcacta	tggagctctc	acatgtggaa	gctgcaaggt	cttcttcaaa	agagccgctg	2880
aagggaaaca	gaagtacctg	tgcgccagca	gaaatgattg	cactattgat	aaattccgaa	2940

-continued

-concinued								
ggaaaaattg tccatcttgt cgtcttcgga aatgttatga agcagggatg actctgggag 3000								
cccggaagct gaagaaactt ggtaatctga aactacagga ggaaggagag gcttccagca 3060								
ccaccageee caetgaggag acaaeeeaga agetgaeagt gteaeaeatt gaaggetatg 3120								
aatgtcagcc catctttctg aatgtcctgg aagccattga gccaggtgta gtgtgtgctg 3180								
gacacgacaa caaccageee gacteettg cageettget etetageete aatgaaetgg 3240								
gagagagaca gcttgtacac gtggtcaagt gggccaaggc cttgcctggc ttccgcaact 3300								
tacacgtgga cgaccagatg gctgtcattc agtactcctg gatgggggctc atggtgtttg 3360								
ccatgggctg gcgatccttc accaatgtca actccaggat gctctacttc gcccctgatc 3420								
tggttttcaa tgagtaccgc atgcacaagt cccggatgta cagccagtgt gtccgaatga 3480								
ggcacctctc tcaagagttt ggatggctcc aaatcacccc ccaggaattc ctgtgcatga 3540								
aagcactgct actcttcagc attattccag tggatgggct gaaaaatcaa aaattctttg 3600								
atgaacttcg aatgaactac atcaaggaac tcgatcgtat cattgcatgc aaaagaaaaa 3660								
atcccacatc ctgctcaaga cgcttctacc agctcaccaa gctcctggac tccgtgcagc 3720								
ctattgcgag agagetgeat cagtteactt ttgaeetget aateaagtea caeatggtga 3780								
gcgtggactt tccggaaatg atggcagaga tcatctctgt gcaagtgccc aagatccttt 3840								
ctgggaaagt caageecate tattteeaca eeeagtgaag cattggaaae eetattteee 3900								
caccccagct catgccccct ttcagatgtc ttctgcctgt tataactctg cactactcct 3960								
ctgcagtgcc ttggggaatt tcctctattg atgtacagtc tgtcatgaac atgttcctga 4020								
attetattig etgggettit tittetett teteteett ettittette treeeteett 4080								
atctaaccct cccatggcac cttcagactt tgcttcccat tgtggctcct atctgtgttt 4140								
tgaatggtgt tgtatgcctt taaatctgtg atgatcctca tatggcccag tgtcaagttg 4200								
tgcttgttta cagcactact ctgtgccagc cacacaaacg tttacttatc ttatgccacg 4260								
ggaagtttag agagctaaga ttatctgggg aaatcaaaac aaaaacaagc aaac 4314								
<210> SEQ ID NO 2 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate								
<400> SEQUENCE: 2								
gagaaccatc ctcacc 16								
<pre><210> SEQ ID NO 3 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate</pre>								
<400> SEQUENCE: 3								
ggaccaggta gcctgt 16								

<210> SEQ ID NO 4 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 4 cccctggact cagatg 16 <210> SEQ ID NO 5 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)...(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 5 gcacaaggag tgggac 16 <210> SEQ ID NO 6 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 6 gctgtgaaga gagtgt 16 <210> SEQ ID NO 7 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 7 tttgacacaa gtggga 16 <210> SEQ ID NO 8 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally

<220> FEATURE:

-continued	
phosphorothioate	
<400> SEQUENCE: 8	
gtgacaccca gaagct 16	
<pre><210> SEQ ID NO 9 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate</pre>	
<400> SEQUENCE: 9	
catccctgct tcataa 16	
<pre><210> SEQ ID NO 10 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <222> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate</pre>	
<400> SEQUENCE: 10	
accaagtttc ttcagc 16	
<210> SEQ ID NO 11 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate	
<400> SEQUENCE: 11	
cttggcccac ttgacc 16	
<pre><210> SEQ ID NO 12 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate</pre>	
<400> SEQUENCE: 12	
tcctggagtt gacatt 16	
<210> SEQ ID NO 13 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE:	

<221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 13 16 cactggctgt acatcc <210> SEQ ID NO 14 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 14 catccaaact cttgag 16 <210> SEQ ID NO 15 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 15 gctttcatgc acagga 16 <210> SEQ ID NO 16 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 16 gaagttcatc aaagaa 16 <210> SEQ ID NO 17 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1) .. (16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEOUENCE: 17 agttccttga tgtagt 16 <210> SEQ ID NO 18 <211> LENGTH: 16

<212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <400> SEQUENCE: 18 16 ttgcacagag atgatc <210> SEQ ID NO 19 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 19 gatgggcttg actttc 16 <210> SEQ ID NO 20 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <400> SEQUENCE: 20 caggcagaag acatct 16 <210> SEQ ID NO 21 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 21 cccaaggcac tgcaga 16 <210> SEQ ID NO 22 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 22 gctgacattc atagcc 16 <210> SEQ ID NO 23 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE:

<221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEQUENCE: 23 gagaaccatc ctcacc 16 <210> SEQ ID NO 24 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEOUENCE: 24 16 ggaccaggta gcctgt <210> SEQ ID NO 25 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEQUENCE: 25 cccctggact cagatg 16 <210> SEQ ID NO 26 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEQUENCE: 26 gcacaaggag tgggac 16 <210> SEQ ID NO 27 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEOUENCE: 27 gctgtgaaga gagtgt 16 <210> SEQ ID NO 28 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif

<220> FEATURE:

<220> FEATURE:

<221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEQUENCE: 28 tttgacacaa gtggga 16 <210> SEQ ID NO 29 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEOUENCE: 29 gtgacaccca gaagct 16 <210> SEQ ID NO 30 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEQUENCE: 30 catccctgct tcataa 16 <210> SEQ ID NO 31 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEQUENCE: 31 accaagtttc ttcage 16 <210> SEQ ID NO 32 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEOUENCE: 32 cttggcccac ttgacc 16 <210> SEQ ID NO 33 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif

<221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEQUENCE: 33 tcctggagtt gacatt 16 <210> SEQ ID NO 34 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEOUENCE: 34 cactggctgt acatcc 16 <210> SEQ ID NO 35 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEQUENCE: 35 catccaaact cttgag 16 <210> SEQ ID NO 36 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEQUENCE: 36 gettteatge acagga 16 <210> SEQ ID NO 37 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEOUENCE: 37 gaagttcatc aaagaa 16 <210> SEQ ID NO 38 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif

<220> FEATURE:

<221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEQUENCE: 38 agttccttga tgtagt 16 <210> SEQ ID NO 39 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEOUENCE: 39 ttgcacagag atgatc 16 <210> SEQ ID NO 40 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEQUENCE: 40 gatgggettg acttte 16 <210> SEQ ID NO 41 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEQUENCE: 41 caggcagaag acatct 16 <210> SEQ ID NO 42 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEOUENCE: 42 cccaaggcac tgcaga 16 <210> SEQ ID NO 43 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif

<223> OTHER INFO <220> FEATURE:

<220> FEATURE:

<221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 Gapmer - optionally phosphorothioate <400> SEQUENCE: 43 gctgacattc atagcc 16 <210> SEQ ID NO 44 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEOUENCE: 44 gagaaccatc ctcacc 16 <210> SEQ ID NO 45 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 45 ggaccaggta gcctgt 16 <210> SEQ ID NO 46 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 46 cccctggact cagatg 16 <210> SEQ ID NO 47 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 47 gcacaaggag tgggac 16 <210> SEQ ID NO 48 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif

<221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 48 gctgtgaaga gagtgt 16 <210> SEQ ID NO 49 <211> LENGTH: 14 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(14) <223> OTHER INFORMATION: 3-9-2 LNA Gapmer - fully phosphorothioate <400> SEOUENCE: 49 ctgtgaagag agtg 14 <210> SEQ ID NO 50 <211> LENGTH: 12 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(12) <223> OTHER INFORMATION: 2-8-2 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 50 tgtgaagaga gt 12 <210> SEQ ID NO 51 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 51 tttgacacaa gtggga 16 <210> SEQ ID NO 52 <211> LENGTH: 14 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(14) <223> OTHER INFORMATION: 3-9-2 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 52 ttgacacaag tggg 14 <210> SEQ ID NO 53 <211> LENGTH: 12 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif

<220> FEATURE:

<221> NAME/KEY: misc_feature <222> LOCATION: (1)..(12) <223> OTHER INFORMATION: 2-8-2 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 53 tgacacaagt gg 12 <210> SEQ ID NO 54 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEOUENCE: 54 gtgacaccca gaagct 16 <210> SEQ ID NO 55 <211> LENGTH: 14 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(14) <223> OTHER INFORMATION: 3-9-2 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 55 tgacacccag aagc 14 <210> SEQ ID NO 56 <211> LENGTH: 12 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(12) <223> OTHER INFORMATION: 2-8-2 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 56 gacacccaga ag 12 <210> SEQ ID NO 57 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 57 catccctgct tcataa 16 <210> SEQ ID NO 58 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE:

<220> FEATURE:

<221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 58 accaagtttc ttcagc 16 <210> SEQ ID NO 59 <211> LENGTH: 14 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(14) <223> OTHER INFORMATION: 3-9-2 LNA Gapmer - fully phosphorothioate <400> SEOUENCE: 59 ccaaqtttct tcaq 14 <210> SEQ ID NO 60 <211> LENGTH: 12 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(12) <223> OTHER INFORMATION: 2-8-2 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 60 caagtttctt ca 12 <210> SEQ ID NO 61 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 61 cttggcccac ttgacc 16 <210> SEQ ID NO 62 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 62 tcctggagtt gacatt 16 <210> SEQ ID NO 63 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif

<221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 63 cactggctgt acatcc 16 <210> SEQ ID NO 64 <211> LENGTH: 14 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(14) <223> OTHER INFORMATION: 3-9-2 LNA Gapmer - fully phosphorothioate <400> SEOUENCE: 64 actggctgta catc 14 <210> SEQ ID NO 65 <211> LENGTH: 12 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(12) <223> OTHER INFORMATION: 2-8-2 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 65 ctggctgtac at 12 <210> SEQ ID NO 66 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 66 catccaaact cttgag 16 <210> SEQ ID NO 67 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 67 gctttcatgc acagga 16 <210> SEQ ID NO 68 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE:

<col><223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif

<212> TYPE: DNA

82

<221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 68 gaagttcatc aaagaa 16 <210> SEQ ID NO 69 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEOUENCE: 69 agttccttga tgtagt 16 <210> SEQ ID NO 70 <211> LENGTH: 14 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(14) <223> OTHER INFORMATION: 3-9-2 LNA Gapmer - fully phosphorothioate <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(14) <223> OTHER INFORMATION: 3-9-2 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 70 gttccttgat gtag 14 <210> SEQ ID NO 71 <211> LENGTH: 12 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(12) <223> OTHER INFORMATION: 2-8-2 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 71 12 ttccttgatg ta <210> SEQ ID NO 72 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 72 ttgcacagag atgatc 16 <210> SEQ ID NO 73 <211> LENGTH: 16

<213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 73 gatgggcttg actttc 16 <210> SEQ ID NO 74 <211> LENGTH: 14 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature
<222> LOCATION: (1)...(14) <223> OTHER INFORMATION: 3-9-2 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 74 atgggcttga cttt 14 <210> SEO ID NO 75 <211> LENGTH: 12 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(12) <223> OTHER INFORMATION: 2-8-2 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 75 tgggcttgac tt 12 <210> SEQ ID NO 76 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 76 caggcagaag acatct 16 <210> SEQ ID NO 77 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEOUENCE: 77 cccaaggcac tgcaga 16 <210> SEQ ID NO 78 <211> LENGTH: 14 <212> TYPE: DNA

<213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(14) <223> OTHER INFORMATION: 3-9-2 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 78 ccaaggcact gcag 14 <210> SEQ ID NO 79 <211> LENGTH: 12 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(12) <223> OTHER INFORMATION: 2-8-2 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 79 12 caaggcactg ca <210> SEO ID NO 80 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(16) <223> OTHER INFORMATION: 3-10-3 LNA Gapmer - fully phosphorothioate <400> SEQUENCE: 80 gctgacattc atagcc 16 <210> SEQ ID NO 81 <211> LENGTH: 2999 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 81 gaattcggtg gaagctacag acaagctcaa ggatggaggt gcagttaggg ctgggaaggg 60 tetacecacg geocecated aagacetate gaggagegtt deagaatetg ttecagageg 120 tgcgcgaagc gatccagaac ccgggcccca ggcaccctga ggccgctaac atagcacctc 180 ccggcgcctg tttacagcag aggcaggaga ctagcccccg gcggcggcgg cggcagcagc 240 acactgagga tggttctcct caagcccaca tcagaggccc cacaggctac ctggccctgg 300 aggaggaaca gcagcettca cagcagcagg cagcetecga gggccaceet gagagcaget 360 gcctccccga gcctgggggcg gccaccgctc ctggcaaggg gctgccgcag cagccaccag 420 ctcctccaga tcaggatgac tcagctgccc catccacgtt gtccctgctg ggccccactt 480 tcccaggctt aagcagctgc tccgccgaca ttaaagacat tttgaacgag gccggcacca 540 tgcaacttct tcagcagcag caacaacagc agcagcacca acagcagcac caacagcacc 600 aacagcagca ggaggtaatc tccgaaggca gcagcgcaag agccagggag gccacggggg 660 ctccctcttc ctccaaggat agttacctag ggggcaattc aaccatatct gacagtgcca 720 aggagttgtg taaagcagtg tctgtgtcca tgggattggg tgtggaagca ttggaacatc 780 tgagtccagg ggaacagett eggggagaet geatgtaege gtegeteetg ggaggteeae 840

continued

				-contir	nued		
ccgcggtgcg	tcccactcct	tgtgcgccgc	tgcccgaatg	caaaggtctt	cccctggacg	900	
aaggcccagg	caaaagcact	gaagagactg	ctgagtattc	ctctttcaag	ggaggttacg	960	
ccaaaggatt	ggaaggtgag	agcttggggt	gctctggcag	cagtgaagca	ggtagctctg	1020	
ggacacttga	gatecegtee	tctctgtctc	tgtataaatc	tggagcacta	gacgaggcag	1080	
cagcatacca	gaatcgcgac	tactacaact	ttccgctggc	tctgtccggg	ccgccgcacc	1140	
ccccgccccc	tacccatcca	cacgcccgta	tcaagctgga	gaacccattg	gactacggca	1200	
gcgcctgggc	tgcggcggca	gcgcaatgcc	gctatgggga	cttgggtagt	ctacatggag	1260	
ggagtgtagc	cgggcccagc	actggatcgc	ccccagccac	cacctcttct	tcctggcata	1320	
ctctcttcac	agctgaagaa	ggccaattat	atgggccagg	aggcggggggc	ggcagcagca	1380	
gcccaagcga	tgccgggcct	gtagccccct	atggctacac	tcggccccct	caggggctga	1440	
caagccagga	gagtgactac	tctgcctccg	aagtgtggta	tcctggtgga	gttgtgaaca	1500	
gagtacccta	tcccagtccc	aattgtgtca	aaagtgaaat	gggaccttgg	atggagaact	1560	
actccggacc	ttatggggac	atgcgtttgg	acagtaccag	ggaccatgtt	ttacccatcg	1620	
actattactt	tccaccccag	aagacctgcc	tgatctgtgg	agatgaagct	tctggctgtc	1680	
actacggagc	tctcacttgt	ggcagctgca	aggtettett	caaaagagcc	gctgaaggga	1740	
aacagaagta	tctatgtgcc	agcagaaacg	attgtaccat	tgataaattt	cggaggaaaa	1800	
attgcccatc	ttgtcgtctc	cggaaatgtt	atgaagcagg	gatgactctg	ggagctcgta	1860	
agctgaagaa	acttggaaat	ctaaaactac	aggaggaagg	agaaaactcc	aatgctggca	1920	
gccccactga	ggacccatcc	cagaagatga	ctgtatcaca	cattgaaggc	tatgaatgtc	1980	
agcctatctt	tcttaacgtc	ctggaagcca	ttgagccagg	agtggtgtgt	gccggacatg	2040	
acaacaacca	accagattcc	tttgctgcct	tgttatctag	cctcaatgag	cttggagaga	2100	
ggcagcttgt	gcatgtggtc	aagtgggcca	aggccttgcc	tggcttccgc	aacttgcatg	2160	
tggatgacca	gatggcggtc	attcagtatt	cctggatggg	actgatggta	tttgccatgg	2220	
gttggcggtc	cttcactaat	gtcaactcca	ggatgctcta	ctttgcacct	gacttggttt	2280	
tcaatgagta	ccgcatgcac	aagtctcgga	tgtacagcca	gtgtgtgagg	atgaggcacc	2340	
tgtctcaaga	gtttggatgg	ctccaaataa	ccccccagga	attcctgtgc	atgaaagcac	2400	
tgctgctctt	cagcattatt	ccagtggatg	ggctgaaaaa	tcaaaaattc	tttgatgaac	2460	
ttcgaatgaa	ctacatcaag	gaactcgatc	gcatcattgc	atgcaaaaga	aagaatccca	2520	
catcctgctc	aaggegette	taccagctca	ccaageteet	ggattctgtg	cagcctattg	2580	
caagagagct	gcatcagttc	acttttgacc	tgctaatcaa	gtcccatatg	gtgagcgtgg	2640	
actttcctga	aatgatggca	gagatcatct	ctgtgcaagt	gcccaagatc	ctttctggga	2700	
aagtcaagcc	catctatttc	cacacacagt	gaagatttgg	aaaccctaat	acccaaaacc	2760	
caccttgttc	cctttccaga	tgtcttctgc	ctgttatata	actctgcact	acttctctgc	2820	
agtgccttgg	gggaaattcc	tctactgatg	tacagtctgt	cgtgaacagg	ttcctcagtt	2880	
ctatttcctg	ggetteteet	tcttttttt	tettetteee	tccctctttc	accctcccat	2940	
ggcacatttt	gaatctgctg	cgtattgtgg	ctcctgcctt	tgttttgatt	tctgttgta	2999	
<210> SEO]	ID NO 82						

<210> SEQ ID NO 82 <211> LENGTH: 3175 <212> TYPE: DNA <213> ORGANISM: Macaca mulatta

<400> SEQUENCE: 82

US 7,989,429 B2

89

-continued

90

				-contir	nued		
cccaaaaaat	aaaaacaaac	aaaaacaaaa	caaaacaaaa	aaaacgaata	aagaaaaagg	60	
taataactca	gttcttattt	gcacctactt	ccagtggaca	ctgaatttgg	aaggtggagg	120	
attcttgttt	tttctttaa	gatcgggcat	cttttgaatc	tacccctcaa	gtgttaagag	180	
acagactgtg	agcctagcag	ggcagatctt	gtccaccgtg	tgtcttcttt	tgcaggagac	240	
tttgaggctg	tcagagcgct	ttttgcgtgg	ttgctcccgc	aagtttcctt	ctctggagct	300	
tcccgcaggt	gggcagctag	ctgcagcgac	taccgcatca	tcacagcctg	ttgaactctt	360	
ctgagcaaga	gaaggggagg	cggggtaagg	gaagtaggtg	gaagattcag	ccaagctcaa	420	
ggatggaggt	gcagttaggg	ctggggaggg	tctaccctcg	gccgccgtcc	aagacctacc	480	
gaggagcttt	ccagaatctg	ttccagagcg	tgcgcgaagt	gatccagaac	ccgggcccca	540	
ggcacccaga	ggccgcgagc	gcagcacctc	ccggcgccag	tttgcagcag	cagcagcagc	600	
agcagcaaga	aactagcccc	cggcaacagc	agcagcagca	gcagggtgag	gatggttctc	660	
cccaagccca	tcgtagaggc	cccacaggct	acctggtcct	ggatgaggaa	cagcagcctt	720	
cacageetea	gtcagccccg	gagtgccacc	ccgagagagg	ttgcgtccca	gagcctggag	780	
ccgccgtggc	cgccggcaag	gggetgeege	agcagctgcc	agcacctccg	gacgaggatg	840	
actcagctgc	cccatccacg	ttgtctctgc	tgggccccac	tttccccggc	ttaagcagct	900	
gctccgccga	ccttaaagac	atcctgagcg	aggccagcac	catgcaactc	cttcagcaac	960	
agcagcagga	agcagtatcc	gaaggcagca	gcagcgggag	agcgagggag	gcctcggggg	1020	
ctcccacttc	ctccaaggac	aattacttag	agggcacttc	gaccatttct	gacagcgcca	1080	
aggagctgtg	taaggcagtg	tcggtgtcca	tgggcttggg	tgtggaggcg	ttggagcatc	1140	
tgagtccagg	ggaacagctt	cgggggggatt	gcatgtacgc	cccagttttg	ggagttccac	1200	
ccgctgtgcg	tcccactccg	tgtgccccat	tggccgaatg	caaaggttct	ctgctagacg	1260	
acagcgcagg	caagagcact	gaagatactg	ctgagtattc	ccctttcaag	ggaggttaca	1320	
ccaaagggct	agaaggcgag	agcctaggct	gctctggcag	cgctgcagca	gggagctccg	1380	
ggacacttga	actgccgtcc	accctgtctc	tctacaagtc	cggagcactg	gacgaggcag	1440	
ctgcgtacca	gagtcgcgac	tactacaact	ttccactggc	tctggccggg	ccgccgcccc	1500	
ctccaccgcc	tccccatccc	cacgctcgca	tcaagctgga	gaacccgctg	gactatggca	1560	
gcgcctgggc	ggctgcggcg	gcgcagtgcc	gctatgggga	cctggcgagc	ctgcatggcg	1620	
cgggtgcagc	gggacccggc	tctgggtcac	cctcagcggc	cgcttcctca	tcctggcaca	1680	
ctctcttcac	agccgaagaa	ggccagttgt	atggaccgtg	tggtggtggg	ggcggcggcg	1740	
gtggcggcgg	cggcggcggc	gcaggcgagg	cgggagctgt	agccccctac	ggctacactc	1800	
ggccacctca	ggggctggcg	ggccaggaag	gcgacttcac	cgcacctgat	gtgtggtacc	1860	
ctggcggcat	ggtgagcaga	gtgccctatc	ccagtcccac	ttgtgtcaaa	agcgagatgg	1920	
gcccctggat	ggatagctac	tccggacctt	acggggacat	gcgtttggag	actgccaggg	1980	
accatgtttt	gccaattgac	tattactttc	caccccagaa	gacctgcctg	atctgtggag	2040	
atgaagcttc	tgggtgtcac	tatggagete	tcacatgtgg	aagctgcaag	gtcttcttca	2100	
aaagagccgc	tgaagggaaa	cagaagtacc	tgtgtgccag	cagaaatgat	tgcactattg	2160	
ataaattccg	aaggaaaaat	tgtccatctt	gccgtcttcg	gaaatgttat	gaagcaggga	2220	
tgactctggg	agcccggaag	ctgaagaaac	ttggtaatct	gaaactacag	gaggaaggag	2280	
aggetteeag	caccaccagc	cccactgagg	agacagccca	gaagctgaca	gtgtcacaca	2340	
ttgaaggcta	tgaatgtcag	cccatctttc	tgaatgtcct	ggaggccatt	gagccaggtg	2400	

US 7,989,429 B2

91

-continued

										_	COIL	CIII	ueu					
tggtgtg	gtgc i	tggad	catga	ac aa	acaad	ccago	c ccé	gacto	cctt	cgca	agcet	tg (ctcto	ctagee	2460		 	
tcaatga	act o	gggag	gagag	ga ca	agctt	gtad	ato	gtggt	caa	gtg	ggcca	aag o	gcctt	geetg	2520			
gcttccg	jcaa (cttad	cacgt	eg ga	acgad	ccaga	a tgo	gctgt	cat	tcaç	gtaci	cee t	zggat	ggggc	2580			
tcatggt	gtt	tgcca	atggg	gc tạ	ggcga	atcct	t t ca	accaa	atgt	саа	ctcca	agg a	atgct	cctact	2640			
ttgcccc	tga 1	tctg	gtttt	c aa	atgag	gtaco	c gca	atgca	acaa	atco	ccgga	atg 1	cacaç	gccagt	2700			
gtgtccc	jaat 🤉	gaggo	cacct	c to	ctcaa	agagt	t t t ç	ggato	ggct	ccaa	aatca	acc (cccca	aggaat	2760			
tcctgtg	gcat g	gaaaq	geget	cg ct	tacto	cttca	a gca	attat	tcc	agto	ggato	ggg (ctgaa	aaaatc	2820			
aaaaatt	ctt	tgato	gaact	t c	gaato	gaact	aca	atcaa	agga	acto	gato	gt a	atcat	tgcat	2880			
gcaaaag	jaaa i	aaato	cccad	ca to	cctgo	ctcaa	a ggo	gtt	ccta	ccaç	getea	acc a	aagct	cctgg	2940			
actccgt	gca	gccta	attgo	cg aq	gagag	getge	ato	cagt	ccac	ttti	cgaco	ctg (ctaat	caagt	3000			
cacacat	ggt (gageo	gtgga	ac ti	ttccc	ggaaa	a tga	atggo	caga	gato	catci	cct (gtgca	aagtgc	3060			
ccaagat	cct i	ttctç	gggaa	aa gt	tcaag	geeea	a tct	atti	ccca	caco	ccagt	cga a	agcat	tggaa	3120			
atcccta	attt (ectea	accco	ca go	ctcat	geed	c cct	ttca	agat	gtci	tct	gaa t	gtta	a	3175			
<210> S <211> I <212> T <213> C	ENGT	H: 92 PRT ISM:	20 Homo	s saj	piens	3												
<400> S	-			_		_		_										
Met Glu 1	ı Val	Gln	Leu 5	Gly	Leu	Gly	Arg	Val 10	Tyr	Pro	Arg	Pro	Pro 15	Ser				
Lys Thr	Tyr	Arg 20	Gly	Ala	Phe	Gln	Asn 25	Leu	Phe	Gln	Ser	Val 30	Arg	Glu				
Val Ile	e Gln 35	Asn	Pro	Gly	Pro	Arg 40	His	Pro	Glu	Ala	Ala 45	Ser	Ala	Ala				
Pro Pro 50	Gly	Ala	Ser	Leu	Leu 55	Leu	Leu	Gln	Gln	Gln 60	Gln	Gln	Gln	Gln				
Gln Glr 65	ı Gln	Gln	Gln	Gln 70	Gln	Gln	Gln	Gln	Gln 75	Gln	Gln	Gln	Gln	Gln 80				
Glu Thr	: Ser	Pro	Arg 85	Gln	Gln	Gln	Gln	Gln 90	Gln	Gly	Glu	Asp	Gly 95	Ser				
Pro Glr	n Ala	His 100	Arg	Arg	Gly	Pro	Thr 105	Gly	Tyr	Leu	Val	Leu 110	Asp	Glu				
Glu Glr	n Gln 115	Pro	Ser	Gln	Pro	Gln 120	Ser	Ala	Leu	Glu	Cys 125	His	Pro	Glu				
Arg Gly 130	-	Val	Pro	Glu	Pro 135	Gly	Ala	Ala	Val	Ala 140	Ala	Ser	Lys	Gly				
Leu Pro 145	Gln	Gln	Leu	Pro 150	Ala	Pro	Pro	Asp	Glu 155	Asp	Asp	Ser	Ala	Ala 160				
Pro Ser	Thr	Leu	Ser 165	Leu	Leu	Gly	Pro	Thr 170	Phe	Pro	Gly	Leu	Ser 175	Ser				
Cys Ser	: Ala	Asp 180	Leu	Lys	Asp	Ile	Leu 185	Ser	Glu	Ala	Ser	Thr 190	Met	Gln				
Leu Leu	ı Gln 195	Gln	Gln	Gln	Gln	Glu 200	Ala	Val	Ser	Glu	Gly 205	Ser	Ser	Ser				
Gly Arg 210		Arg	Glu	Ala	Ser 215	Gly	Ala	Pro	Thr	Ser 220	Ser	Lys	Asp	Asn				
Tyr Leu 225	ı Gly	Gly	Thr	Ser 230	Thr	Ile	Ser	Asp	Asn 235	Ala	Lys	Glu	Leu	Cys 240				
Lys Ala	a Val	Ser	Val	Ser	Met	Gly	Leu	Gly	Val	Glu	Ala	Leu	Glu	His				

				-	contin	led	
	245		250			255	
Leu Ser Pro	Gly Glu Glr 260	Leu Arg	Gly Asp 265	Cys Met	Tyr Ala 270	Pro Leu	
Leu Gly Val 275	Pro Pro Ala	Val Arg 280		Pro Cys	Ala Pro 285	Leu Ala	
Glu Cys Lys 290	Gly Ser Leu	Leu Asp 295	Asp Ser	Ala Gly 300		Thr Glu	
Asp Thr Ala 305	Glu Tyr Ser 310		Lys Gly	Gly Tyr 315	Thr Lys	Gly Leu 320	
Glu Gly Glu	Ser Leu Gly 325	Cys Ser	Gly Ser 330		Ala Gly	Ser Ser 335	
Gly Thr Leu	Glu Leu Pro 340	Ser Thr	Leu Ser 345	Leu Tyr	Lys Ser 350	Gly Ala	
Leu Asp Glu 355	Ala Ala Ala	Tyr Gln 360		Asp Tyr	Tyr Asn 365	Phe Pro	
Leu Ala Leu 370	Ala Gly Pro	Pro Pro 375	Pro Pro	Pro Pro 380	Pro His	Pro His	
Ala Arg Ile 385	Lys Leu Glu 390		Leu Asp	Tyr Gly 395	Ser Ala	Trp Ala 400	
Ala Ala Ala	Ala Gln Cys 405	Arg Tyr	Gly Asp 410		Ser Leu	His Gly 415	
Ala Gly Ala	Ala Gly Pro 420	Gly Ser	Gly Ser 425	Pro Ser	Ala Ala 430	Ala Ser	
Ser Ser Trp 435	His Thr Leu	Phe Thr 440		Glu Gly	Gln Leu 445	Tyr Gly	
Pro Cys Gly 450	Gly Gly Gly	Gly Gly 455	Gly Gly	Gly Gly 460	Gly Gly	Gly Gly	
Gly Gly Gly 465	Gly Gly Gly 470		Gly Glu	Ala Gly 475	Ala Val	Ala Pro 480	
Tyr Gly Tyr	Thr Arg Pro 485	Pro Gln	Gly Leu 490		Gln Glu	Ser Asp 495	
Phe Thr Ala	Pro Asp Val 500	Trp Tyr	Pro Gly 505	Gly Met	Val Ser 510	Arg Val	
515		520	-		525	-	
530		535		540			
545	Leu Pro Ile 550			555		560	
Leu Ile Cys	Gly Asp Glu 565	Ala Ser	Gly Cys 570		Gly Ala	Leu Thr 575	
	Cys Lys Val 580		585		590	-	
595	Cys Ala Ser	600			605	-	
610	Cys Pro Ser	615	-	620	-	-	
625	Gly Ala Arg 630	-		635		640	
	Gly Glu Ala 645		650			655	
Thr Gln Lys	Leu Thr Val 660	Ser His	Ile Glu 665	Gly Tyr	Glu Cys 670	Gln Pro	

											-	con	tin	ued				
Ile	Phe	Leu 675	Asn	Val	Leu	Glu	Ala 680	Ile	Glu	Pro	Gly	Val 685	Val	Суз	Ala			
Gly	His 690	Asp	Asn	Asn	Gln	Pro 695	Asp	Ser	Phe	Ala	Ala 700	Leu	Leu	Ser	Ser			
Leu 705	Asn	Glu	Leu	Gly	Glu 710	Arg	Gln	Leu	Val	His 715	Val	Val	Lys	Trp	Ala 720			
Lys	Ala	Leu	Pro	Gly 725	Phe	Arg	Asn	Leu	His 730	Val	Asp	Asp	Gln	Met 735	Ala			
Val	Ile	Gln	Tyr 740	Ser	Trp	Met	Gly	Leu 745	Met	Val	Phe	Ala	Met 750	Gly	Trp			
Arg	Ser	Phe 755	Thr	Asn	Val	Asn	Ser 760	Arg	Met	Leu	Tyr	Phe 765	Ala	Pro	Asp			
Leu	Val 770	Phe	Asn	Glu	Tyr	Arg 775	Met	His	ГЛа	Ser	Arg 780	Met	Tyr	Ser	Gln			
Cys 785	Val	Arg	Met	Arg	His 790	Leu	Ser	Gln	Glu	Phe 795	Gly	Trp	Leu	Gln	Ile 800			
Thr	Pro	Gln	Glu	Phe 805	Leu	Суз	Met	ГЛа	Ala 810	Leu	Leu	Leu	Phe	Ser 815	Ile			
Ile	Pro	Val	Asp 820	Gly	Leu	Lys	Asn	Gln 825	Lys	Phe	Phe	Asp	Glu 830	Leu	Arg			
Met	Asn	Tyr 835	Ile	Lys	Glu	Leu	Asp 840	Arg	Ile	Ile	Ala	Сув 845	Гла	Arg	Lys			
Asn	Pro 850	Thr	Ser	Суа	Ser	Arg 855	~	Phe	Tyr	Gln	Leu 860	Thr	Гла	Leu	Leu			
Asp 865	Ser	Val	Gln	Pro	Ile 870	Ala	Arg	Glu	Leu	His 875	Gln	Phe	Thr	Phe	Asp 880			
Leu	Leu	Ile	Lys	Ser 885	His	Met	Val	Ser	Val 890	Asp	Phe	Pro	Glu	Met 895	Met			
Ala	Glu	Ile	Ile 900	Ser	Val	Gln	Val	Pro 905	Lys	Ile	Leu	Ser	Gly 910	Lys	Val			
Lys	Pro	Ile 915	Tyr	Phe	His	Thr	Gln 920											
<21 <21	0> SH L> LH 2> TY 3> OF	ENGTH PE :	I: 89 PRT	99	mus	culu	8											
<40)> SH	EQUEI	ICE :	84														
Met 1	Glu	Val	Gln	Leu 5	Gly	Leu	Gly	Arg	Val 10	Tyr	Pro	Arg	Pro	Pro 15	Ser			
ГÀа	Thr	Tyr	Arg 20	Gly	Ala	Phe	Gln	Asn 25	Leu	Phe	Gln	Ser	Val 30	Arg	Glu			
Ala	Ile	Gln 35	Asn	Pro	Gly	Pro	Arg 40	His	Pro	Glu	Ala	Ala 45	Asn	Ile	Ala			
Pro	Pro 50	Gly	Ala	Суз	Leu	Gln 55	Gln	Arg	Gln	Glu	Thr 60	Ser	Pro	Arg	Arg			
Arg 65	Arg	Arg	Gln	Gln	His 70	Thr	Glu	Asp	Gly	Ser 75	Pro	Gln	Ala	His	Ile 80			
												a1	a 1	-	Com			
Arg	Gly	Pro	Thr	Gly 85	Tyr	Leu	Ala	Leu	Glu 90	Glu	Glu	GIN	GIN	Pro 95	ser			
-	-			85	-				90									
Gln	Gln	Gln	Ala 100	85 Ala	Ser	Glu	Gly	His 105	90 Pro	Glu	Ser	Ser	Cys 110	95	Pro			

Pro	Ala 130	Pro	Pro	Asp	Gln	Asp 135	Asp	Ser	Ala	Ala	Pro 140	Ser	Thr	Leu	Ser	r	
Leu 145	Leu	Gly	Pro	Thr	Phe 150	Pro	Gly	Leu	Ser	Ser 155	Суз	Ser	Ala	Asp	Ile 160		
Lys	Asp	Ile	Leu	Asn 165	Glu	Ala	Gly	Thr	Met 170	Gln	Leu	Leu	Gln	Gln 175	Gln	n	
Gln	Gln	Gln	Gln 180	Gln	His	Gln	Gln	Gln 185	His	Gln	Gln	His	Gln 190	Gln	Gln	n	
Gln	Glu	Val 195	Ile	Ser	Glu	Gly	Ser 200	Ser	Ala	Arg	Ala	Arg 205	Glu	Ala	Thr	r	
Gly	Ala 210	Pro	Ser	Ser	Ser	Lys 215	Asp	Ser	Tyr	Leu	Gly 220	Gly	Asn	Ser	Thr	r	
Ile 225	Ser	Asp	Ser	Ala	Lys 230	Glu	Leu	Суз	Гла	Ala 235	Val	Ser	Val	Ser	Met 240		
Gly	Leu	Gly	Val	Glu 245	Ala	Leu	Glu	His	Leu 250	Ser	Pro	Gly	Glu	Gln 255	Leu	u	
Arg	Gly	Asp	Cys 260	Met	Tyr	Ala	Ser	Leu 265	Leu	Gly	Gly	Pro	Pro 270	Ala	Val	1	
Arg	Pro	Thr 275	Pro	Суз	Ala	Pro	Leu 280	Pro	Glu	Сүз	Lys	Gly 285	Leu	Pro	Leu	u	
Asp	Glu 290	Gly	Pro	Gly	Lys	Ser 295	Thr	Glu	Glu	Thr	Ala 300	Glu	Tyr	Ser	Ser	r	
Phe 305	Lys	Gly	Gly	Tyr	Ala 310	Гла	Gly	Leu	Glu	Gly 315	Glu	Ser	Leu	Gly	Сув 320		
Ser	Gly	Ser	Ser	Glu 325	Ala	Gly	Ser	Ser	Gly 330	Thr	Leu	Glu	Ile	Pro 335	Ser	r	
Ser	Leu	Ser	Leu 340	Tyr	Lys	Ser	Gly	Ala 345	Leu	Aap	Glu	Ala	Ala 350	Ala	Tyr	r	
Gln	Asn	Arg 355	Asp	Tyr	Tyr	Asn	Phe 360	Pro	Leu	Ala	Leu	Ser 365	Gly	Pro	Pro	0	
His	Pro 370	Pro	Pro	Pro	Thr	His 375	Pro	His	Ala	Arg	Ile 380	Lys	Leu	Glu	Asn	n	
Pro 385	Leu	Asp	Tyr	Gly	Ser 390	Ala	Trp	Ala	Ala	Ala 395	Ala	Ala	Gln	Суз	Arg 400	-	
	Gly	Asp	Leu	Gly 405	Ser	Leu	His	Gly	Gly 410	Ser	Val	Ala	Gly	Pro 415	Ser	r	
Thr	Gly	Ser	Pro 420	Pro	Ala	Thr	Thr	Ser 425	Ser	Ser	Trp	His	Thr 430	Leu	Phe	e	
Thr	Ala	Glu 435		Gly	Gln	Leu	Tyr 440		Pro	Gly	Gly	Gly 445		Gly	Ser	r	
Ser	Ser 450		Ser	Asp	Ala	Gly 455		Val	Ala	Pro	Tyr 460		Tyr	Thr	Arg	g	
Pro 465		Gln	Gly	Leu	Thr 470		Gln	Glu	Ser	Asp 475		Ser	Ala	Ser	Glu 480		
	Trp	Tyr	Pro	Gly 485	Gly	Val	Val	Asn	Arg 490		Pro	Tyr	Pro	Ser 495			
Asn	Сув	Val	Lys 500		Glu	Met	Gly	Pro 505		Met	Glu	Asn	Tyr 510		Gly	У	
Pro	Tyr	Gly 515		Met	Arg	Leu	Asp 520		Thr	Arg	Asp	His 525		Leu	Pro	0	
Ile	Asp 530		Tyr	Phe	Pro	Pro 535		Lys	Thr	Суз	Leu 540		Суз	Gly	Asp	р	
		Ser	Gly	Сүз	His		Gly	Ala	Leu			Gly	Ser	Сүз	-		
545					550					555					560	v	

Val Phe Phe Lys Arg Ala Ala Glu Gly Lys Gln Lys Tyr Leu Cys Ala

-continued

Ser Arg Asn Asp Cys Thr Ile Asp Lys Phe Arg Arg Lys Asn Cys Pro Ser Cys Arg Leu Arg Lys Cys Tyr Glu Ala Gly Met Thr Leu Gly Ala Arg Lys Leu Lys Lys Leu Gly Asn Leu Lys Leu Gln Glu Glu Gly Glu Asn Ser Asn Ala Gly Ser Pro Thr Glu Asp Pro Ser Gln Lys Met Thr Val Ser His Ile Glu Gly Tyr Glu Cys Gln Pro Ile Phe Leu Asn Val Leu Glu Ala Ile Glu Pro Gly Val Val Cys Ala Gly His Asp Asn Asn Gln Pro Asp Ser Phe Ala Ala Leu Leu Ser Ser Leu Asn Glu Leu Gly Glu Arg Gln Leu Val His Val Val Lys Trp Ala Lys Ala Leu Pro Gly Phe Arg Asn Leu His Val Asp Asp Gln Met Ala Val Ile Gln Tyr Ser Trp Met Gly Leu Met Val Phe Ala Met Gly Trp Arg Ser Phe Thr Asn Val Asn Ser Arg Met Leu Tyr Phe Ala Pro Asp Leu Val Phe Asn Glu Tyr Arg Met His Lys Ser Arg Met Tyr Ser Gln Cys Val Arg Met Arg His Leu Ser Gln Glu Phe Gly Trp Leu Gln Ile Thr Pro Gln Glu Phe Leu Cys Met Lys Ala Leu Leu Leu Phe Ser Ile Ile Pro Val Asp Gly Leu Lys Asn Gln Lys Phe Phe Asp Glu Leu Arg Met Asn Tyr Ile Lys Glu Leu Asp Arg Ile Ile Ala Cys Lys Arg Lys Asn Pro Thr Ser Cys Ser Arg Arg Phe Tyr Gln Leu Thr Lys Leu Leu Asp Ser Val Gln Pro 835 840 845 Ile Ala Arg Glu Leu His Gln Phe Thr Phe Asp Leu Leu Ile Lys Ser His Met Val Ser Val Asp Phe Pro Glu Met Met Ala Glu Ile Ile Ser Val Gln Val Pro Lys Ile Leu Ser Gly Lys Val Lys Pro Ile Tyr Phe His Thr Gln <210> SEQ ID NO 85 <211> LENGTH: 895 <212> TYPE: PRT <213> ORGANISM: Macaca mulatta <400> SEQUENCE: 85 Met Glu Val Gln Leu Gly Leu Gly Arg Val Tyr Pro Arg Pro Pro Ser Lys Thr Tyr Arg Gly Ala Phe Gl
n Asn Leu Phe Gl
n Ser Val Arg Glu $% \left({{\left({{{\left({{{\left({{{}}} \right)} \right)}} \right)}} \right)} \right)$

											-	con	tin	ued	
Val	Ile	Gln 35	Asn	Pro	Gly	Pro	Arg 40	His	Pro	Glu	Ala	Ala 45	Ser	Ala	Ala
Pro	Pro 50	Gly	Ala	Ser	Leu	Gln 55	Gln	Gln	Gln	Gln	Gln 60	Gln	Gln	Glu	Thr
Ser 65	Pro	Arg	Gln	Gln	Gln 70	Gln	Gln	Gln	Gln	Gly 75	Glu	Asp	Gly	Ser	Pro 80
Gln	Ala	His	Arg	Arg 85	Gly	Pro	Thr	Gly	Tyr 90	Leu	Val	Leu	Asp	Glu 95	Glu
Gln	Gln	Pro	Ser 100	Gln	Pro	Gln	Ser	Ala 105	Pro	Glu	Cys	His	Pro 110	Glu	Arg
Gly	Суз	Val 115	Pro	Glu	Pro	Gly	Ala 120	Ala	Val	Ala	Ala	Gly 125	Lys	Gly	Leu
Pro	Gln 130	Gln	Leu	Pro	Ala	Pro 135	Pro	Asp	Glu	Asp	Asp 140	Ser	Ala	Ala	Pro
Ser 145		Leu	Ser	Leu	Leu 150		Pro	Thr	Phe	Pro 155		Leu	Ser	Ser	Cys 160
	Ala	Asp	Leu	Lys 165		Ile	Leu	Ser	Glu 170		Ser	Thr	Met	Gln 175	
Leu	Gln	Gln	Gln 180		Gln	Glu	Ala	Val 185		Glu	Gly	Ser	Ser 190		Gly
Arg	Ala	Arg 195		Ala	Ser	Gly	Ala 200	Pro	Thr	Ser	Ser	Lys 205		Asn	Tyr
Leu	Glu 210		Thr	Ser	Thr	Ile 215		Asp	Ser	Ala	Lys 220		Leu	Суз	Lys
Ala 225		Ser	Val	Ser	Met 230		Leu	Gly	Val	Glu 235		Leu	Glu	His	Leu 240
	Pro	Gly	Glu			Arg	Gly	Asp			Tyr	Ala	Pro		
Gly	Val	Pro		245 Ala	Val	Arg	Pro	Thr	250 Pro	Cys	Ala	Pro		255 Ala	Glu
Суз	Lys	-	260 Ser	Leu	Leu	Asp	_	265 Ser	Ala	Gly	Lys		270 Thr	Glu	Asp
Thr		275 Glu	Tyr	Ser	Pro		280 Lys	Gly	Gly	Tyr		285 Lys	Gly	Leu	Glu
Gly	290 Glu	Ser	Leu	Gly	Суз	295 Ser	Gly	Ser	Ala	Ala	300 Ala	Gly	Ser	Ser	Gly
305 Thr	Leu	Glu	Leu	Pro	310 Ser	Thr	Leu	Ser	Leu	315 Tyr	Lys	Ser	Gly	Ala	320 Leu
Asp	Glu	Ala	Ala	325 Ala	Tyr	Gln	Ser	Arg	330 Asp	Tyr	Tyr	Asn	Phe	335 Pro	Leu
Ala	Leu	Ala	340 Gly	Pro	Pro	Pro	Pro	345 Pro	Pro	Pro	Pro	His	350 Pro	His	Ala
Arq	Ile	355 Lys	Leu	Glu	Asn	Pro	360 Leu	Asp	Tyr	Gly	Ser	365 Ala	Trp	Ala	Ala
-	370	-				375		Asp	-	-	380		-		
385				-	390	-	-	Ser		395				-	400
-				405			-	Glu	410					415	
	-		420					425		-			430	-	
-	-	435	-	-	-	-	440		-	-	-	445	-		-
Glu	Ala 450	Gly	Ala	Val	Ala	Pro 455	Tyr	Gly	Tyr	Thr	Arg 460	Pro	Pro	Gln	Gly

Leu	Ala	Gly	Gln	Glu	Gly	Asp	Phe	Thr	Ala	Pro	Asp	Val	Trp	Tyr	Pro
465 Glv	Gly	Mat	Val	Cor	470 Arg	Vəl	Pro	Tur	Pro	475 Ser	Pro	Thr	Cive	Vəl	480 Lave
Gry	Gry	het	Var	485	лıу	Var	110	тут	490	Der	110	1111	сур	495	цур
Ser	Glu	Met	Gly 500	Pro	Trp	Met	Asp	Ser 505	Tyr	Ser	Gly	Pro	Tyr 510	Gly	Asp
Met	Arg	Leu 515	Glu	Thr	Ala	Arg	Asp 520	His	Val	Leu	Pro	Ile 525	Asp	Tyr	Tyr
Phe	Pro 530	Pro	Gln	Lys	Thr	Cys 535	Leu	Ile	Cys	Gly	Asp 540	Glu	Ala	Ser	Gly
Cys 545	His	Tyr	Gly	Ala	Leu 550	Thr	Суз	Gly	Ser	Cys 555	Lys	Val	Phe	Phe	Lys 560
Arg	Ala	Ala	Glu	Gly 565	Lys	Gln	Lys	Tyr	Leu 570	Cya	Ala	Ser	Arg	Asn 575	Asp
СЛа	Thr	Ile	Asp 580	Lys	Phe	Arg	Arg	Lys 585	Asn	Cya	Pro	Ser	Cys 590	Arg	Leu
Arg	Lys	Суз 595	Tyr	Glu	Ala	Gly	Met 600	Thr	Leu	Gly	Ala	Arg 605	Lys	Leu	Lys
LYa	Leu 610	Gly	Asn	Leu	Lys	Leu 615	Gln	Glu	Glu	Gly	Glu 620	Ala	Ser	Ser	Thr
Thr 625	Ser	Pro	Thr	Glu	Glu 630	Thr	Ala	Gln	Lys	Leu 635	Thr	Val	Ser	His	Ile 640
Glu	Gly	Tyr	Glu	Cys 645	Gln	Pro	Ile	Phe	Leu 650	Asn	Val	Leu	Glu	Ala 655	Ile
Glu	Pro	Gly	Val 660	Val	Cys	Ala	Gly	His 665	Asb	Asn	Asn	Gln	Pro 670	Asp	Ser
Phe	Ala	Ala 675	Leu	Leu	Ser	Ser	Leu 680	Asn	Glu	Leu	Gly	Glu 685	Arg	Gln	Leu
Val	His 690	Val	Val	Lys	Trp	Ala 695	Lys	Ala	Leu	Pro	Gly 700	Phe	Arg	Asn	Leu
His 705	Val	Asp	Asp	Gln	Met 710	Ala	Val	Ile	Gln	Tyr 715	Ser	Trp	Met	Gly	Leu 720
Met	Val	Phe	Ala	Met 725	Gly	Trp	Arg	Ser	Phe 730	Thr	Asn	Val	Asn	Ser 735	Arg
Met	Leu	Tyr	Phe 740	Ala	Pro	Asp	Leu	Val 745	Phe	Asn	Glu	Tyr	Arg 750	Met	His
ГЛа	Ser	Arg 755	Met	Tyr	Ser	Gln	Cys 760	Val	Arg	Met	Arg	His 765	Leu	Ser	Gln
Glu	Phe 770	Gly	Trp	Leu	Gln	Ile 775	Thr	Pro	Gln	Glu	Phe 780	Leu	Суз	Met	Lys
Ala 785	Leu	Leu	Leu	Phe	Ser 790	Ile	Ile	Pro	Val	Asp 795	Gly	Leu	Lys	Asn	Gln 800
ГЛа	Phe	Phe	Asp	Glu 805	Leu	Arg	Met	Asn	Tyr 810	Ile	Lys	Glu	Leu	Asp 815	Arg
Ile	Ile	Ala	Суз 820	ГÀа	Arg	Lys	Asn	Pro 825	Thr	Ser	СЛа	Ser	Arg 830	Arg	Phe
Tyr	Gln	Leu 835	Thr	ГÀа	Leu	Leu	Asp 840	Ser	Val	Gln	Pro	Ile 845	Ala	Arg	Glu
Leu	His 850	Gln	Phe	Thr	Phe	Asp 855	Leu	Leu	Ile	Lys	Ser 860	His	Met	Val	Ser
Val 865	Asp	Phe	Pro	Glu	Met 870	Met	Ala	Glu	Ile	Ile 875	Ser	Val	Gln	Val	Pro 880
ГЛа	Ile	Leu	Ser	Gly	Lys	Val	Lys	Pro	Ile	Tyr	Phe	His	Thr	Gln	

US 7,989,429 B2

106

-continued 885 890 895 <210> SEQ ID NO 86 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(24) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 86 24 tggggagaac catcetcace etge <210> SEQ ID NO 87 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(24) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEOUENCE: 87 tccaggacca ggtagcctgt gggg 24 <210> SEQ ID NO 88 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(24) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 88 24 tgttcccctg gactcagatg ctcc <210> SEQ ID NO 89 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(24) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 89 24 tggggcacaa ggagtgggac gcac <210> SEQ ID NO 90 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature

<222> LOCATION: (1)..(24)

10/	108
-continued	
-222. OTHER INFORMATION, much optide or much optide analogues optional	
<223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionall phosphorothioate	·У
<400> SEQUENCE: 90	
ttcggctgtg aagagagtgt gcca 2	4
<210> SEQ ID NO 91	
<211> LENGTH: 24	
(212> TYPE: DNA	
<pre><213> ORGANISM: artificial <220> FEATURE:</pre>	
223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif	
<220> FEATURE:	
221> NAME/KEY: misc_feature	
222> LOCATION: (1)(24)	
223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionall phosphorothioate	-Y
<400> SEQUENCE: 91	
zgettttgae acaagtggga etgg 2	34
- <u></u>	
210> SEQ ID NO 92 211> LENGTH: 24	
2211> LENGTH: 24 2212> TYPE: DNA	
213> ORGANISM: artificial	
220> FEATURE:	
223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif	
220> FEATURE:	
221> NAME/KEY: misc_feature 222> LOCATION: (1)(24)	
222> DOCHION: (1)247 223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionall	.v
phosphorothioate	-
<400> SEQUENCE: 92	
(400) SEQUENCE: 92	
catagtgaca cccagaagct tcat 2	: 4
<210> SEQ ID NO 93	
<211> LENGTH: 24	
212> TYPE: DNA	
:213> ORGANISM: artificial :220> FEATURE:	
220> FEALORE: 223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif	
220> FEATURE:	
221> NAME/KEY: misc_feature	
222> LOCATION: (1)(24)	
:223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionall phosphorothioate	·У
phosphorochioace	
400> SEQUENCE: 93	
agtcatccc tgcttcataa catt 2	24
210> SEQ ID NO 94	
2103 SEQ 1D NO 94 211> LENGTH: 24	
212> TYPE: DNA	
213> ORGANISM: artificial	
220> FEATURE:	
223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif	
220> FEATURE: 221> NAME/KEY: misc_feature	
222> LOCATION: (1)(24)	
223> OTHER INFORMATION: nucleotide or nucleotide analogues - optional	·У
phosphorothioate	
400> SEQUENCE: 94	
	2 A
jattaccaag titetteage tiee 2	24
210> SEQ ID NO 95	
2105 SEQ 1D NO 95 211> LENGTH: 24	
212> TYPE: DNA	

<212> TYPE: DNA <213> ORGANISM: artificial

US 7,989,429 B2	US	7.989.	429	B 2
-----------------	----	--------	-----	------------

cagtgettte atgeacagga atte

-continued

<220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(24) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 95 aggeettgge ceaettgaee aegt 24 <210> SEQ ID NO 96 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(24) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 96 agcateetgg agttgacatt ggtg 24 <210> SEQ ID NO 97 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(24) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 97 gacacactgg ctgtacatcc ggga 24 <210> SEQ ID NO 98 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(24) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 98 24 gagccatcca aactcttgag agag <210> SEQ ID NO 99 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(24) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 99

<210> SEQ ID NO 100 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(24) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 100 attcgaagtt catcaaagaa tttt 24 <210> SEQ ID NO 101 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(24) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 101 atcgagttcc ttgatgtagt tcat 24 <210> SEQ ID NO 102 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(24) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 102 gcacttgcac agagatgatc tctg 24 <210> SEQ ID NO 103 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(24) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate <400> SEQUENCE: 103 aatagatggg cttgactttc ccag 24 <210> SEQ ID NO 104 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: LNA oligomer Sequence/oligomer Sequence motif <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(24) <223> OTHER INFORMATION: nucleotide or nucleotide analogues - optionally phosphorothioate

<400>	SEQUENCE: 104		
ataaca	uggca gaagacatct gaaa	24	
<210>	SEQ ID NO 105		
<211>	LENGTH: 24		
<212>	TYPE: DNA		
	ORGANISM: artificial		
	FEATURE:		
	OTHER INFORMATION: LNA oligomer Sequence	/oligomer Sequence motif	
	FEATURE:		
	NAME/KEY: misc_feature		
	LOCATION: (1)(24) OTHER INFORMATION: nucleotide or nucleot	ide enclosues entionelly	
<223>	phosphorothioate	ide analogues - optionally	
	phosphorochroace		
<400>	SEQUENCE: 105		
attccc	caag gcactgcaga ggag	24	
<210>	SEQ ID NO 106		
	LENGTH: 24		
<212>	TYPE: DNA		
<213>	ORGANISM: artificial		
<220>	FEATURE:		
	OTHER INFORMATION: LNA oligomer Sequence	/oligomer Sequence motif	
	FEATURE:		
	NAME/KEY: misc_feature		
	LOCATION: (1)(24)		
<223>	OTHER INFORMATION: nucleotide or nucleot	ide analogues - optionally	
	phosphorothioate		
<400>	SEQUENCE: 106		
	tqac attcataqcc ttca	24	

We claim:

а

a

1. An oligomer consisting of the formula:

 $5'^{Me}C_s^{Me}C_s^{Me}C_sa_sa_sg_sg_sc_sa_sc_st_sg_sc_sA_sG_sA-3' \qquad (SEQ ID NO: 77),$

wherein uppercase letters denote beta-D-oxy-LNA monomers and lowercase letters denote DNA monomers, the subscript "s" denotes a phosphorothioate linkage, and ^{Me}C denotes a beta-D-oxy-LNA monomer containing a 5-methylcytosine base.

2. A conjugate comprising the oligomer of claim **1**, covalently attached to at least one moiety that is not a nucleic 45 acid or a monomer.

3. A pharmaceutical composition comprising:

- the oligomer of claim 1 or a conjugate comprising said oligomer covalently attached to at least one moiety that is not a nucleic acid or a monomer; and
- a pharmaceutically acceptable diluent, carrier, salt or adjuvant.

4. A method of inhibiting the expression of androgen receptor in a cell, comprising:

contacting said cell with an effective amount of the oligo-⁵⁵ mer of claim 1.

5. A method of inhibiting the expression of androgen receptor in a cell, comprising:

contacting said cell with an effective amount of a conjugate according to claim 2.

6. A method of inhibiting the expression of androgen receptor in a tissue of a mammal, comprising:

- contacting said tissue with an effective amount of the oligomer of claim **1**.
- 7. A method of inhibiting the expression of androgen receptor in a tissue of a mammal comprising:
 - contacting said tissue with an effective amount of a conjugate according to claim **2**.

8. A method of inhibiting the expression of an androgen receptor target gene in a cell or tissue of a mammal, comprising:

contacting said cell or tissue with an effective amount of the oligomer of claim **1**.

9. A method of treating a cancer in a mammal comprising administering to said mammal an effective amount of the oligomer of claim **1**, wherein the cancer is selected from the group consisting of breast cancer and prostate cancer.

10. An activated oligomer comprising:

the oligomer of claim 1; and

at least one functional group covalently attached thereto at one or more positions independently selected from the 5'-end, the 3' end, the 2'-OH of a ribose sugar, and the base.

* * * * *