
US 20190129621A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0129621 A1

Kushwah et al . (43) Pub . Date : May 2 , 2019

(54) INTELLIGENT SNAPSHOT TIERING
(71) Applicant : NetApp , Inc . , Sunnyvale , CA (US)
(72) Inventors : Ajay Pratap Singh Kushwah , San

Ramon , CA (US) ; Ling Zheng ,
Saratoga , CA (US) ; Sharad Jain ,
Sunnyvale , CA (US)

(52) U . S . CI .
CPC GO6F 3 / 0608 (2013 . 01) ; G06F 3 / 0647

(2013 . 01) ; G06F 2201 / 84 (2013 . 01) ; G06F
11 / 1451 (2013 . 01) ; G06F 3 / 067 (2013 . 01)

(57) ABSTRACT
Intelligent snapshot tiering facilitates efficient management
of snapshots and efficient restore of snapshots . For intelli
gent snapshot tiering , a storage appliance can limit cross - tier
migration to invalidated data blocks of a snapshot instead of
an entire snapshot . Based on a policy , a storage appliance
can identify a snapshot to be migrated to another storage tier
and then determine which data blocks are invalidated by an
immediately succeeding snapshot . This would limit network
bandwidth consumption to the invalidated data blocks and
maintain the valid data blocks at the faster access storage tier
since the more recent snapshots are more likely to be
restored .

(21) Appl . No . : 15 / 796 , 467

(22) Filed : Oct . 27 , 2017

Publication Classification

(51) Int . CI .
G06F 3 / 06
G06F 11 / 14

(2006 . 01)
(2006 . 01)

-

- STORAGE APPLIANCE
101 Tier 1 Snapshot v

Max = 3
102 -

1 / 5
STORAGE TIER 1

@ Snapshot 5
-

-

-

- @ Snapshot 4 -
113 -

-

SNAPSHOT 11 103 03 -

-

1

STORAGE TER 2
-

SNAPSHOT 1 .
SNAPSHOT2
SNAPSHOT3

KEY
1 : 97 : 0
1 : 97 : 256

LEN NAME
256
128

-

-

A B Z M
106

CM 17107
SNAPSHOT 21 · 105 -

-

-

-

- SNAPSHOT 31 VIN A 107

1 : 98 : 0
: 2 : 98 : 0
: 3 : 97 : 0
3 : 97 : 200

128
512
200
256

- 230 -

-

-

SNAPSHOT 4 - - 109 -

- - - -
-

-

4 : 100 : 0 256
4 : 100 : 256 200
5 : 100 : 256 200

-

SNAPSHOT 5 - 111 Jo
-

=

= -

- =

= -

- =

= -

@ Snapshot 3
NAME LOCATION

SP1 : 0
SP1 : 256

@ Snapshot 4
NAME LOCATION

SP1 : 0
SP1 : 256

= -

= -

- - - - =

@ Snapshot 5
NAME LOCATION

A SP1 : 0
G SP2 : 0

SP3 : 0
SP3 : 200
SP4 : 0
SP5 : 0

= -

- =

= -

- IN
= - 307 SP1 : 512

SP2 : 0
SP3 : 0
SP3 : 200

-

SP2 : 0
SP3 : 0
SP3 : 200
SP4 : 0

- =

-
=

N - =

-

115C - =

115A 115B -

-

STORAGE APPLIANCE
101 Tier 1 Snapshot

Max = 3

102

1 / 5
STORAGE TIER 1
@ Snapshot 5

ANARXA

Patent Application Publication

@ Snapshot 4 -

113

SNAPSHOT 161
A1
ALAMAN VUTA LLLLLLL

STORAGE TIER2

KEY 1 : 97 : 0 1 : 97 : 256

LEN NAME
256 128

SNAPSHOT 21 SNAPSHOT 2 SNAPSHOT 3

105

M N : 107

G

1 : 98 : 0 2 : 98 : 0 3 : 97 : 0 3 : 97 : 200

128 512 200 256

.

SNAPSHOT 4

.

4 : 100 : 0 256 4 : 100 : 256 200 5 : 100 : 256 200

May 2 , 2019 Sheet 1 of 5

P

SNAPSHOT 5

@ Snapshot 3 NAME LOCATION A SP1 : 0 B SP1 : 256

@ Snapshot 4 NAME LOCATION A SP1 : 0 B SP1 : 256

Sissi SKSiMiiiiiiiiiiiiiiiiiii

Sisi niisiisi siis

@ Snapshot 5 NAME LOCATION A SP1 : 0 G SP2 : 0 M SP3 : 0 N SP3 : 200
SP4 : 0
R SP5 : 0

G M N

SP1 : 512 SP2 : 0 SP3 : 0 SP3 : 200

SP2 : 0 SP3 : 0 SP3 : 200 SP4 : 0

N

P

US 2019 / 0129621 A1

115C

115A

FIG . 1 1758

Patent Application Publication May 2 , 2019 Sheet 2 of 5 US 2019 / 0129621 A1

CROSS - TIER INCREMENTAL SNAPSHOT
EXPIRATION

201 Y DETECT RECEIPT OF SNAPSHOT I IN TIER 1 IY

L -

203 UPDATE DATA SET METADATA BASED ON SNAPSHOT 1 , INCLUDING
UPDATE OF SNAPSHOT DATA BLOCK METADATA AND DATA MAP

2051
NUMBER

OF SNAPSHOTS UNEXPIRED IN
- TIER 1 > THRESHOLD ? - -

YES

207 IDENTIFY OLDEST SNAPSHOT
(SNAPSHOT m) RECEIVED IN TIER 1

-

IDENTIFY BLOCKS OF SNAPSHOT I INVALIDATED BY
SNAPSHOT m + 1

211

210 V
DETERMINE WHETHER ANY OF THE IDENTIFIED
BLOCKS ARE WITHIN ANY OF THE SNAPSHOTS
FROM SNAPSHOT I TO SNAPSHOT m + 2 AND

EXCLUDE FROM BEING IDENTIFIED AS INVALIDATED

212 1 MIGRATE INVALIDATED BLOCKS OF SNAPSHOT I TO TIER 2 E NA E

217 UPDATE DATA MAP BASED ON MIGRATION
OF INVALIDATED BLOCKS OF SNAPSHOT m

END

FIG . 2

Patent Application Publication May 2 , 2019 Sheet 3 of 5 US 2019 / 0129621 A1

CROSS - TIER INCREMENTAL SNAPSHOT
EXPIRATION

????????????????????????????????

301 U DETECT RECEIPT OF SNAPSHOT I IN TIER 1

303 UPDATE DATA SET METADATA BASED ON SNAPSHOT I , INCLUDING
UPDATE OF SNAPSHOT DATA BLOCK METADATA AND DATA MAP

I FOR EACH STORAGE TIER , BEGINNING AT Z 30421 TIER 1 , CONFIGURED FOR DATA SET ,
305

SNAPSHOT
p a MIGRATION CRITERION SATISFIED
YES - AT THE TIER ?

-

IDENTIFY SNAPSHOT OUTSIDE OF EXPIRATION
WINDOW FOR THE TIER (SNAPSHOT m) 307

APSHOT m)

308 2 FOR EACH SNAPSHOT (SNAPSHOT O) FROM
SNAPSHOT I TO BASELINE SNAPSHOT

IDENTIFY BLOCKS OF SNAPSHOT A
INVALIDATED BY SNAPSHOT M + 1 1310

YES DETERMINE WHETHER ANY OF THE IDENTIFIED BLOCKS ARE
311 V WITHIN ANY OF THE SNAPSHOTS FROM SNAPSHOT I TO SNAPSHOT

m + 2 AND EXCLUDE FROM BEING IDENTIFIED AS INVALIDATED

- - - - - - - - - - - - - - - - - - -

312 MIGRATE INVALIDATED BLOCKS OF SNAPSHOT N TO TIER
INDICATED BY POLICY FOR DATASET

_ _ _ _ _ _ _ _ _ _ _ _ _ _ LILILILILL - - - - - - -

317 UPDATE DATA MAP BASED ON MIGRATION
OF INVALIDATED BLOCKS

319 IS SNAPSHOT N THE BASELINE SNAPSHOT ?
YES

321 V ADDITIONAL STORAGE TIER FOR DATA SET ?

_ NO
FIG . 3 END

- - - - - - - - - - - - - - -

Patent Application Publication May 2 , 2019 Sheet 4 of 5 US 2019 / 0129621 A1

SNAPSHOT RESTORE IN STORAGE SYSTEM WITH
INTELLIGENT SNAPSHOT TIERING

401 DETECT RECEIPT OF REQUEST TO RESTORE SNAPSHOT I

403 DETERMINE VALID DATA RANGES AND IDENTIFY CORRESPONDING
DATA BLOCKS FROM SNAPSHOT I BACK TO BASELINE SNAPSHOT

405 FOR EACH VALID DATA RANGE

407

NO
HAS

CORRESPONDING DATA BLOCK
ALREADY BEEN COMMUNICATED

TO RESTORE TARGET ? 409

411
S

CORRESPONDING DATA
. . . BLOCK AVAILABLE FROM

TIER 1 ?

- - - NO

DETERMINE HIGHER STORAGE TIER
THAT HOSTS THE DATA BLOCK AND
OBTAIN FROM THE STORAGE TIER

YES

YES

-

COMMUNICATE TO RESTORE TARGET
VALID DATA RANGE , DATA BLOCK

NAME , AND DATA BLOCK

413
14

COMMUNICATE TO RESTORE
TARGET VALD DATA RANGE AND

DATA BLOCK NAME

417 ADDITIONAL VALID DATA RANGE ?

NO

END

FIG . 4

507

Patent Application Publication

???? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

Processor

Memory

?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

515
STORAGE ARRAY / BANK

???????????????????? ???? ??? ???? ??? ???? ?? ???? ???? ???? ???? ???? ???? ???? ???? ?? ??? ?? ??? ??? ??? ??? ?? ???? ???? ???? ???? ??? ???? ???? ?????? ?? ?? ??? ?? ?? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??????????????

FIG . 5

May 2 , 2019 Sheet 5 of 5

503

AL

-

505

Network
Interface

444444444444444

Snapshot Manager With
Intelligent Snapshot Tiering

US 2019 / 0129621 A1

511

US 2019 / 0129621 A1 May 2 , 2019

INTELLIGENT SNAPSHOT TIERING provider maintains equipment and software without burden
ing customers with the details . The cloud service provider
provides an application programming interface (API) to
customers . The API provides access to resources of the
cloud service provider without visibility of those resources .
Many data management / protection strategies use storage
provided by a cloud service provider (s) (“ cloud storage ”) to
implement tiered storage . SNIA defines tiered storage as
“ Storage that is physically partitioned into multiple distinct
classes based on price , performance or other attributes . Data
may be dynamically moved among classes in a tiered
storage implementation based on access activity or other
considerations . "

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] Embodiments of the disclosure may be better
understood by referencing the accompanying drawings .
[0008] FIG . 1 is a conceptual diagram of a storage appli
ance migrating invalidated blocks of snapshots across stor
age tiers based on a policy .
[0009] FIG . 2 is a flowchart of example operations for
incremental snapshot expiration from a first storage tier to a
second storage tier .
[0010) FIG . 3 is a flowchart of example operations for
cross - tier incremental snapshot expiration .
[0011] FIG . 4 is a flowchart of example operations for
restoring a snapshot in a storage system that implements
intelligent snapshot tiering .
[0012] FIG . 5 depicts an example computer system with
intelligent snapshot tiering .

BACKGROUND
[0001] The disclosure generally relates to the field of data
processing , and more particularly to multicomputer data
transferring .
[0002] An organization can specify a data management
strategy in a policy (ies) that involves data recovery and / or
data retention . For data recovery , an application or program
creates a backup and restores the backup when needed . The
Storage Networking Industry Association (SNIA) defines a
backup as a “ collection of data stored on (usually remov
able) non - volatile storage media for purposes of recovery in
case the original copy of data is lost or becomes inacces
sible ; also called a backup copy . ” For data retention , an
application or program creates an archive . SNIA defines an
archive as “ A collection of data objects , perhaps with
associated metadata , in a storage system whose primary
purpose is the long - term preservation and retention of that
data . ” Although creating an archive may involve additional
operations (e . g . , indexing to facilitate searching , compress
ing , encrypting , etc .) and a backup can be writable while an
archive may not be , the creation of both involves copying
data from a source to a destination .
[0003] This copying to create a backup or an archive can
be done differently . All of a defined set of data objects can
be copied , regardless of whether they have been modified
since the last backup to create a " full backup . ” Backups can
also be incremental . A system can limit copying to modified
objects to create incremental backups , either a cumulative
incremental backup or a differential incremental backup .
SNIA defines a differential incremental backup as “ a backup
in which data objects modified since the last full backup or
incremental backup are copied . ” SNIA defines a cumulative
incremental backup as a “ backup in which all data objects
modified since the last full backup are copied . ”
[0004] A data management / protection strategy can use
" snapshots , " which adds a point in time aspect to a backup .
A more specific definition of a snapshot is a “ fully usable
copy of a defined collection of data that contains an image
of the data as it appeared at a single instant in time . ” In other
words , a snapshot can be considered a backup at a particular
time instant . Thus , the different techniques for creating a
backup can include different techniques for creating a snap
shot . The SNIA definition further elaborates that a snapshot
is " considered to have logically occurred at that point in
time , but implementations may perform part or all of the
copy at other times (e . g . , via database log replay or rollback)
as long as the result is a consistent copy of the data as it
appeared at that point in time . Implementations may restrict
point in time copies to be read - only or may permit subse
quent writes to the copy . ”
[0005] An organization can use different backup strate
gies . A few backup strategies include a " periodic full ”
backup strategy and a “ forever incremental ” backup strat
egy . With the periodic full backup strategy , a backup appli
cation creates a full snapshot (“ baseline snapshot) periodi
cally and creates incremental snapshots between the
periodically created full snapshots . With the forever incre
mental backup strategy , a backup application creates an
initial snapshot that is a full snapshot and creates incremen
tal snapshots thereafter .
[0006] Data management protection strategies increas
ingly rely on cloud service providers . A cloud service

DESCRIPTION
[0013] The description that follows includes example sys
tems , methods , techniques , and program flows that embody
aspects of the disclosure . However , it is understood that this
disclosure may be practiced without these specific details .
For instance , this disclosure refers to data blocks in illus
trative examples . However , units of data can be shared
across files / objects at a different granularity or have different
monikers (e . g . , data segments , data extents , etc .) . In other
instances , well - known instruction instances , protocols ,
structures and techniques have not been shown in detail in
order not to obfuscate the description .
[0014] Introduction
[0015] A data strategy is carried out by a " solution ” that
includes one or more applications , which will be referred to
herein as a data management application . The data manage
ment application can run on a storage operating system (OS)
that is installed on a device (virtual or physical) that operates
as an intermediary between a data source (s) and cloud
storage . A data management application that uses snapshots
effectively has 2 phases : 1) creation of snapshots over time ,
and 2) restoring / activating a snapshot (s) .
[0016] The data management application creates a snap
shot by copying data from a data source , which may be a
primary or secondary storage (e . g . , backup servers) , to a
storage destination . This storage destination can be a storage
appliance between the data source and private or public
cloud storage (i . e . , storage hosted and / or managed by a
cloud service provider) . “ Storage appliance ” refers to a
computing machine , physical or virtual , that provides access
to data and / or manages data without requiring an application
context . Managing the data can include securing the data ,

US 2019 / 0129621 A1 May 2 , 2019

deduplicating data , managing snapshots , enforcing service
level agreements , etc . The storage appliance is the destina
tion for the snapshots from the perspective of the data
source , but operates as an initial storage point or cache for
snapshots to be ultimately stored in cloud storage . A snap
shot that has not been migrated from the storage appliance
can be expeditiously restored from the storage appliance
and / or storage devices managed directly by the storage
appliance . The storage appliance can also efficiently respond
to at least metadata related requests because the storage
appliance maintains metadata for snapshots , both cached
and migrated snapshots .
[0017] A data strategy can define rules and / or conditions
to migrate snapshots that expire in one storage tier to another
storage tier . Typically , a first storage tier will be imple
mented with a storage class that at least allows for the fastest
restore relative to the other storage tiers . For instance , a first
storage tier may be implemented with an on - premise storage
appliance . Each successive storage tier can be implemented
with cloud storage classes that have increasing durability
and increasing retrieval latency . In addition , the cost of
storage can decrease with each successive class of storage
while the cost of access increases . In this context , migration
of a baseline snapshot or snapshot that includes numerous
updates can be costly in multiple terms : network bandwidth
is consumed transferring the data blocks to the new storage
tier and many of those blocks may need to be retrieved to
restore a different snapshot .

Overview
[0018] Intelligent snapshot tiering facilitates efficient
management of snapshots and efficient restore of snapshots .
For intelligent snapshot tiering , a storage appliance can limit
cross - tier migration to invalidated data blocks of a snapshot
instead of an entire snapshot . Based on a policy , a storage
appliance can identify a snapshot to be migrated to another
storage tier and then determine which data blocks are
invalidated by an immediately succeeding snapshot . This
would limit network bandwidth consumption to the invali
dated data blocks and maintain the valid data blocks at the
faster access storage tier since the more recent snapshots are
more likely to be restored .

appliance 101 . Although different implementations can
organize the metadata differently , this example illustrates
metadata indicating valid data ranges across snapshots
arranged in a key - value store 113 . The key for each entry in
the store 113 is based on a snapshot identifier , an inode
number of a file that contains a data block represented by the
entry , a length of the data block represented by the entry , and
a name of the data block . The inode numbers are inode
numbers of a source file system and not inode numbers at the
storage appliance 101 .
[0021] Each data block name uniquely identifies a data
block within a defined dataset (e . g . , file system instance ,
volume , etc .) . A data management application or storage OS
names data blocks and communicates those names to the
storage appliance when backing up to or through the storage
appliance . The requestor (e . g . , data management application
or storage OS) that performs deduplication on the defined
dataset generates identifiers or names for data blocks that
can be shared across files and / or recur within a file . Naming
of these data blocks can conform to a scheme that incorpo
rates information in order for the generated names to at least
imply an order . For example , the requestor may generate
names based on a data block fingerprint (e . g . , hash value)
and time of data block creation and assign the combination
(e . g . , concatenation) of the fingerprint and creation time as
the name for the data block . As another example , the
requestor may generate a name with a monotonically
increasing identifier for each unique data block .
[0022] This example also illustrates data map metadata
(" data map ”) that indicates locations of named data blocks
on the storage appliance 101 . In FIG . 1 , a data map is
illustrated as it changes based on receipt of snapshots that
trigger a policy evaluation . FIG . 1 depicts these three
different data map instances as data map 115A correspond
ing to receipt of snapshot 3 , data map 115B corresponding
to receipt of snapshot 4 , and data map 115C corresponding
to snapshot 5 . The data maps 115A - 115C indicate locations
of named data blocks within files on the storage appliance
101 . Although embodiments can store and arrange the data
blocks differently , this example illustration presumes that
the storage appliance 101 writes data blocks of each snap
shot to a data file corresponding to the snapshot , unless a
data blocks is already in another data file of another snap
shot . Thus , SP1 : 0 and SP1 : 256 in the data map 115A
indicate , respectively , that data block A can be found at an
offset of 0 in a data file identified as SP1 on the storage
appliance 101 and that data block B can be found at an offset
256 in that data file SP1 . In this illustrated implementation ,
a data block name is removed from the data map when
migrated to a different storage tier . The absence of a data
block name causes the storage appliance 101 to query a
cloud storage service associated with the defined dataset
(e . g . , account information) to determine locations of named
data blocks . The storage appliance 101 can invoke a function
defined by a cloud storage provider (e . g . , application pro
gramming interface (API) function) to list the data blocks in
cloud storage or query on the data block name to determine
whether the data block name is in cloud storage . Although
other metadata can be maintained at the storage appliance
101 for snapshots , the valid data ranges metadata and the
data map are sufficient to describe an example of intelligent
snapshot tiering .
[0023] As previously stated , FIG . 1 depicts the storage
appliance 101 receiving a series of 5 snapshots : a snapshot

Example Illustrations
[0019] FIG . 1 is a conceptual diagram of a storage appli
ance migrating invalidated blocks of snapshots across stor
age tiers based on a policy . A data source (s) sends snapshots
of a dataset to a storage appliance 101 . The vertical dashed
lines in FIG . 1 mark conceptual boundaries for the storage
appliance 101 .
[0020] The storage appliance 101 receives a series of
snapshots of a dataset over time . For this illustration , the
storage appliance 101 identifies the snapshots according to
a simple , incrementing numerical scheme . FIG . 1 depicts the
storage appliance 101 receiving snapshots 1 - 5 for a dataset .
The storage appliance 101 maintains metadata of the snap
shots . This metadata at least includes metadata indicating
snapshots that have been received , the valid data ranges of
each snapshot , names of data blocks corresponding to the
valid data ranges , and source identifiers of the data (e . g . ,
inode numbers , file or directory names , offsets of data blocks
in a source system , etc .) . The names of the data blocks are
assigned prior to receipt of the data blocks at the storage

US 2019 / 0129621 A1 May 2 , 2019

103 (snapshot 1) , a snapshot 105 (snapshot 2) , a snapshot
107 (snapshot 3) , a snapshot 109 (snapshot 4) , and a
snapshot 111 (snapshot 5) . Each of the snapshots is repre -
sented by a rectangle within a rectangle . This rectangle
within a rectangle corresponds to a snapshot having both
metadata for a dataset and data of the dataset the outer
rectangle conceptually representing the dataset metadata and
the inner rectangle representing an aggregation of the data
blocks of the dataset . A policy 102 defines maximum or
threshold number of most recent snapshots to preserve in
storage tier 1 as 3 . Accordingly , the storage appliance 101
will limit storage tier 1 to 3 snapshots . Based on receipt of
the snapshot 103 , the storage appliance 101 updates the store
113 to indicate the content of snapshot 103 . The snapshot
103 at least includes named data blocks A , B , and F for files
identified by inode numbers 97 and 98 . The storage appli
ance 101 updates the key - value store 113 to indicate data
ranges for these files . The named data block A corresponds
to the first data range for the file (inode 97) at a source offset
0 and with a length of 256 bytes . The named data block B
corresponds to another data range for the file (inode 97) at
a source offset 256 and with a length of 128 bytes . The
named data block F corresponds to the first data range for the
file (inode 98) at a source offset 0 and with a length of 128
bytes . Based on receipt of the snapshot 105 (snapshot 2) , the
storage appliance 101 update the key - value store 113 with an
entry for a named data block G . The snapshot 105 indicates
a data range in inode 98 from source offset 0 with a length
of 512 bytes , which correspond to the data block G . This
data block Goverwrites / invalidates data block F for the time
corresponding to snapshot 2 . Based on receipt of the snap
shot 107 (snapshot 3) , the storage appliance 101 adds more
entries to the key - value store 113 for inode 97 . In snapshot
3 , a data block M overwrites part of data block A and a data
block N overwrites a remainder of data block A and data
block B . The data block M corresponds to inode 97 at source
offset 0 for a length of 200 bytes and the data block N is at
source offset 200 with a length of 256 bytes , for the same
inode . After receipt of snapshot 3 , the data map 115A
indicates the locations of data blocks of snapshots 1 - 3 . The
data block locations are : A is in a data file for snapshot 1
(“ SP1 ”) at offset 0 ; B is in SP1 at offset 256 ; F is in SP1 at
offset 512 ; G is in a data file for snapshot 2 (“ SP2 ' ') at offset
0 ; M is in a data file for snapshot 3 (" SP3 ”) at offset 0 ; and
N is in SP3 at offset 200 . Although this example refers to a
storage appliance organizing data blocks into data files for
each snapshot , embodiments are not so limited . An embodi
ments may organize named data blocks into one or more
files , write the named data blocks at various locations of
storage media corresponding to the type of storage media
with logical block addressing without out a filesystem
hierarchy , etc .
[0024] With the receipt of the snapshot 109 (snapshot 4) ,
the storage appliance 101 determines that the threshold of 3
snapshots defined by the policy 102 will be exceeded . To
comply with the policy 102 , the storage appliance 101
selects an oldest snapshot in storage tier 1 to evict or migrate
to a different storage tier . In this case , the oldest snapshot is
snapshot 1 . The storage appliance 101 migrates snapshot 1
to a storage tier 2 117 , which is implemented in cloud
storage . The storage appliance 101 can select storage tier 2
by default (e . g . , next higher tier with respect to tier 1) or the
policy 102 may specify tier 2 as the migration target .
Migration of snapshot 1 , however , does not require migra

tion of all constituent data blocks . The storage appliance 101
determines data blocks of the snapshot 1 that are invalidated
by snapshot 2 , which is the data block F . The storage
appliance 101 then migrates (i . e . , stores) the data block F to
the storage tier 2 117 . The storage appliance 101 removes the
entry for the data block F from the data map to generate the
data map 115B . This implicitly indicates that the data block
F has been migrated off of storage tier 1 .
[0025] With the receipt of the snapshot 111 (snapshot 5) ,
the storage appliance 101 determines that another snapshot
is to be migrated out of the storage tier 1 to comply with the
policy 102 . The storage appliance 101 identifies the snapshot
2 as the oldest snapshot in storage tier 1 . The snapshot 111
includes a data block R that invalidates a data block P of the
snapshot 109 (snapshot 4) , but this data blocks is for a
snapshot still within the snapshot preservation window for
tier 1 (i . e . , within the 3 most recent snapshots) . The storage
appliance 101 determines data blocks of the snapshots 1 and
2 that are invalidated by snapshot 3 . In this case , the data
block B of snapshot 1 is invalidated because the correspond
ing data range is overwritten with data block N in snapshot
3 . Although the data range in snapshot 1 corresponding to
data block A are overwritten in snapshot 3 with data block
M and part of data block N , data block A also occurs in
snapshot 4 . Therefore , the storage appliance 101 determines
that data block A is not invalidated . The storage appliance
101 then migrates the data block B to the storage tier 2 117 ,
and removes the corresponding entry for the data block B
from the data map to generate the data map 115C . This
implicitly indicates that the data blocks B has been migrated
off of storage tier 1 .
[0026] The reduction in bandwidth consumption from the
example illustration of intelligent snapshot tiering should be
evident from FIG . 1 . For instance , the valid blocks of
snapshot 1 expired from tier 1 (depicted with hashing) have
not been migrated off of storage tier 1 . This avoids consum
ing both network bandwidth for transmission of these valid
data blocks and the computing resources for handling the
communications . If a restore request is received by the
storage appliance 101 , the valid data blocks of snapshot 1
are still available in storage tier 1 , which provides faster
access than storage tier 2 . The restore would be more
efficient because the valid data blocks represented by the
hashing could be supplied more quickly from tier 1 than tier
2 and resources are not consumed to obtain those valid data
blocks from a different storage tier .
[0027] FIG . 2 is a flowchart of example operations for
incremental snapshot expiration from a first storage tier to a
second storage tier . A data management application (e . g . ,
one or more applications for cloud storage backup) deter
mines whether to migrate invalidated data blocks based on
receipt of a snapshot from a source . This at least includes
selecting the snapshot that is expiring from the first storage
tier , determining invalidated data blocks of the expiring
snapshot , and updating metadata .
10028] At block 201 , a data management application
detects receipt of a snapshot i in a storage tier 1 . The data
management application is likely hosted on a storage appli
ance that manages a storage array implementing the storage
tier 1 .
[0029] At block 203 , the data management application
updates dataset metadata based on the snapshot i . This
includes updating snapshot data block metadata that indi
cates the data ranges of the snapshot i . Updating the dataset

US 2019 / 0129621 A1 May 2 , 2019

[0034] At block 212 , the data management application
migrates invalidated data blocks of snapshot m to storage
tier 2 . The data management application invokes remote
procedure calls or API functions defined by the cloud
storage service to store the invalidated data blocks into the
storage tier 2 , assuming storage tier 2 is implemented with
a cloud storage service . The data management application
stores these invalidated data blocks into the storage tier 2
with object names that correspond with the data block
names . As examples , the data management application at
least partially encodes the data blocks names into the object
names or derives the object names from the data block
names . This allows the data management application to
query the storage tier 2 based on the data block names . The
data management application then removes the invalidated
data blocks from storage tier 1 (e . g . , frees the space , deletes
the blocks , or marks the blocks for deletion) .
[0035] At block 217 , the data management application
updates the data map based on the migration of invalidated
data blocks . The data management application can remove
entries from the data map that represent the migrated data
blocks as described with reference to FIG . 1 , or can maintain
other metadata to indicate locations of data blocks migrated
off of storage tier 1 . For example , the data management
application can maintain metadata that indicates the data
blocks residing in storage tier 2 instead of relying on the
implicit indication by absence of an entry in the data map .
The data management application can maintain a separate
structure for migrated data blocks or update data map entries
for migrated data blocks to identify the appropriate storage
tier .

metadata also includes updating a data map . The data
management application maintains a data map that indicates
locations of data blocks . The data management application
adds entries for data blocks of snapshot i not already
represented in the data map .
[0030] At block 205 , the data management application
determines whether a number of snapshots unexpired in tier
1 exceeds a defined threshold or falls outside of a snapshot
preservation window for tier 1 . Since valid data blocks of a
snapshot can remain in storage tier 1 despite a policy
indicating that the snapshot expires from tier 1 , referring to
this partial migration of a snapshot as expiring , evicting , or
migrating the snapshot may not be accurate unless all of the
data blocks are invalidated . Instead , the partial migration of
a snapshot can be referred to as “ incremental expiring " or
“ incremental migration ” of a snapshot from the tier . Since
snapshots can incrementally expire from a storage tier , the
data management application can maintain a counter for the
number of snapshots still resident in storage tier 1 or
unexpired . When a snapshot is received , then the data
management application increments the counter . When the
counter exceeds the defined threshold , the data management
application decrements the counter after identifying any
invalidated data blocks of the oldest snapshot . If the thresh
old is exceeded by receipt of snapshot i , then control flows
to block 207 . Otherwise , the flow ends .
[0031] At block 207 , the data management application
identifies the oldest snapshot that has not at least incremen
tally expired from tier 1 . This identified snapshot will be
referred to as snapshot m . If a threshold or a preservation
window size is defined as x , then m = i - x , assuming snapshot
identifiers that reflect order of the snapshots .
[0032] At block 211 , the data management application
identifies data blocks of snapshot m that are invalidated by
a succeeding snapshot (snapshot m + 1) . The data manage
ment application reads the snapshot metadata to determine
data ranges of snapshot m overwritten by data ranges in
snapshot m + l or deleted in snapshot m + 1 . Indications of
deletions per snapshot are also communicated to the data
management application . The data management application
then identifies the data blocks corresponding to the over
written or deleted data ranges and determines these to be
invalidated data blocks . In incremental expiration , a previ
ously valid data block of an incrementally expired snapshot
may later become invalidated . Therefore , the valid data
blocks of an incrementally expired snapshot can be consid
ered as rolled into the succeeding snapshot as if a synthetic
baseline is logically created . Thus , a data block of snapshot
m may have been part of a snapshot m - 1 , but is now
logically considered as rolled into snapshot m .
[0033] At block 210 , the data management application
determines whether any of the data blocks identified as
invalidated by snapshot m + 1 are within any of the snapshots
from snapshot i to snapshot m + 2 . If a data block is refer
enced again in a snapshot being maintained at the storage
appliance , then it should not be migrated . The data man
agement application can traverse the snapshot metadata for
the snapshots more recent than the snapshot m + 1 , and
compare against the list of data blocks identified as invali
dated . Each of the data blocks identified as invalidated by
snapshot m + 1 that is referenced by the more recent snap
shots is removed from the list of data blocks identified as
invalidated by snapshot m + 1 .

[0036] FIG . 3 is a flowchart of example operations for
cross - tier incremental snapshot expiration . This flowchart
has similar operations as FIG . 2 , but expands upon the
flowchart of FIG . 2 by encompassing more than 2 - tiered
storage for a dataset and scanning across multiple preceding
snapshots that may still partially reside on in tier 1 . The
description of FIG . 3 refers to a data management applica
tion performing the example operations for consistency with
FIG . 2 .
[0037] At block 301 , a data management application
detects receipt of a snapshot i in a storage tier 1 for a dataset .
The detection may be via messaging , detection of a storage
event , etc . The data management application is likely hosted
on a storage appliance that manages a storage array imple
menting the storage tier 1 .
[0038] At block 303 , the data management application
updates dataset metadata based on the snapshot i . This
includes updating snapshot data block metadata that indi
cates the data ranges of the snapshot i . Updating the dataset
metadata also includes updating a data map . The data
management application adds entries for data blocks of
snapshot i not already represented in the data map .
[0039] At block 304 , the data management application
begins operations for each storage tier configured for the
dataset , starting from storage tier 1 . As an example , a policy
can be defined for a dataset that specifies how data of the
dataset is migrated across 4 tiers of storage . The data
management application will evaluate each storage tier
against the rules / conditions of the policy since migration
from tier 1 to tier 2 can trigger additional downstream
migrations (e . g . , migration of data blocks from tier 2 to tier
3) . The description refers to the current tier being evaluated
as the selected tier .

US 2019 / 0129621 A1 May 2 , 2019

[0040] At block 305 , the data management application
determines whether a snapshot migration criterion for the
selected tier is satisfied . As previously , discussed this can be
a defined threshold evaluated against a counter maintained
for each tier by the data management application . The
criterion can be implemented as a preservation window . For
instance , a snapshot preservation window size of z may be
defined for each storage tier . If a snapshot i - z exists , then the
criterion is satisfied for a preservation window based crite
rion . If the criterion is satisfied for the selected storage tier ,
then control flows to block 307 . Otherwise , the flow con
tinues to blocks 321 .
[0041] At block 307 , the data management application
identifies the snapshot that is no longer within the preser
vation window for the selected storage tier . This identified
snapshot will be referred to as snapshot m = i - Z .
[0042] At block 308 , the data management application
begins operations for each snapshot (snapshot n) from
snapshot m to an actual baseline or synthetic baseline
snapshot . The data management application can maintain
additional metadata that identifies a synthetic baseline (s) . A
data management application that implements forever incre
mental snapshotting may default to an oldest snapshot as a
baseline snapshot . The data management application per
forms these operations to determine data blocks of the
snapshots outside of the preservation window are invali
dated by snapshot m + 1 . This can be considered as logically
rolling up valid data blocks of older snapshots into snapshot
m + 1 .
[0043] At block 310 , the data management application
determines whether any data blocks of snapshot n are
invalidated by the snapshot m + 1 . The data management
application reads the snapshot metadata to determine data
ranges of snapshot n overwritten by data ranges in snapshot
m + 1 or deleted in snapshot m + 1 . The data management
application then identifies the data blocks corresponding to
the overwritten or deleted data ranges and determines these
to be invalidated data blocks . A data management applica
tion can be configured to achieve different degrees of
incremental expiring .
[0044] At block 311 , the data management application
determines whether any of the data blocks identified as
invalidated by snapshot m + 1 are within any of the snapshots
from snapshot i to snapshot m + 2 . If a data block is refer
enced again in a snapshot being maintained at the storage
appliance , then it should not be migrated . The data man
agement application can traverse the snapshot metadata for
the snapshots more recent than the snapshot m + 1 , and
compare against the list of data blocks identified as invali
dated . Each of the data blocks identified as invalidated by
snapshot m + 1 that is referenced by the more recent snap
shots is removed from the list of data blocks identified as
invalidated by snapshot m + 1 .
[0045] At block 312 , the data management application
migrates invalidated data blocks of snapshot n to a storage
tier specified by a controlling policy . Most likely the data
management application migrates the invalidated data
blocks to the next level storage tier . However , policies can
be defined with other factors to influence which storage tier
is the destination .
[0046] At block 317 , the data management application
updates the data map based on the migration of invalidated
data blocks . The data management application can remove
entries from the data map that represent the migrated data

blocks as previously described , or can maintain other meta
data to indicate locations of data blocks migrated off of the
selected storage tier 1 .
[0047] At block 319 , the data management application
determines whether snapshot n is a baseline or synthetic
baseline snapshot . If it is , then control flows to block 321 . If
it is not , then control returns to block 308 .
[0048] At block 321 , the data management application
determines whether there is an additional storage tier for the
dataset . If another storage tier was configured for the dataset ,
then control flows to block 304 . Otherwise , the process ends .
(0049) FIG . 4 is a flowchart of example operations for
restoring a snapshot in a storage system that implements
intelligent snapshot tiering . With intelligent snapshot tiering
that incrementally expires snapshots , a data management
application can obtain data blocks at lower storage tiers for
snapshot restore than expected based on snapshot expiration
specified by a policy .
[0050] At block 401 , a data management application
detects receipt of a request to restore a snapshot i . The data
management application receives the request from an
instance of a storage OS or another data management
application (e . g . , backup application) running on another
machine (physical or virtual) than the data management
application . Although the requestor can be the target of the
restore , the restore request can indicate a restore target other
than the requestor , for example by network address or device
name .
[0051] At block 403 , the data management application
determines the valid data ranges for files based on snapshot
i . The data management application also determines named
data blocks corresponding to the valid data ranges . Since the
dataset is deduplicated , a data block can be shared across
files and repeat within a file . To determine the valid data
ranges , the data management application searches through
the snapshot metadata to determine which data ranges have
not been overwritten . The data management application
begins searching the snapshot metadata from snapshot i back
to a baseline snapshot (actual or synthetic) . As part of
determining validity , data ranges from older snapshots may
be disregarded , truncated , or split based on overlap with data
ranges of more current snapshots . The data management
application can generate a listing of the data block names
corresponding to the determined valid data ranges .
[0052] At block 405 , the data management application
begins operations for each valid data range that has been
determined . For each valid data range , the data management
application performs operations to obtain a named data
block and communicate the valid data range and data block ,
if not already communicated . The description refers to a
valid data range of a current iteration as a selected data
range .
[0053] At block 407 , the data management application
determines whether the data block corresponding to the
selected data range has already been communicated to the
restore target . The data management application can com
municate valid data ranges and identities of corresponding
data blocks at multiple points during the restore and at
different granularities . For instance , the data management
application can communicate mappings of valid data ranges
and data block names for each directory being restored , for
every n files , etc . In addition to the mappings , the data
management application sends or communicates the data
block itself to the restore target unless already sent . After the

US 2019 / 0129621 A1 May 2 , 2019

and the data block name at block 415 . As previously
mentioned , the data management application can forgo
redundantly sending the data block since the data block has
already been sent to the restore target . Control flows from
block 415 to 417 . For some data ranges , the valid portion of
the data range will be less than the entire named data block
referenced by the data range in the snapshot metadata . The
mapping will still be communicated to the restore target and
the restore target will determine the portion of the named
data block to use . This allows the restore target to use the
named data block across multiple valid data ranges and / or
files despite the different portion of the named data block
being valid for the different ranges / or files .

Variations

initial send , the restore target can use the data block avail -
able in local storage . The data management application
tracks the data blocks communicated to the restore target . If
the data block identified as corresponding to the valid data
range has already been communicated to the restore target ,
then control flows to block 415 . If it has not , then control
flows to block 409 .
10054] . At block 409 , the data management application
determines whether the identified data block corresponding
to the valid data range is available in storage tier 1 . Assum
ing storage tier 1 is the tier with lowest access latency , the
data management application determines whether the data
block can be obtained in this lowest access latency tier . If it
is available in tier 1 , then control flows to block 413 . If the
data block is not available in tier 1 and has migrated to a
different storage tier , then control flows to block 411 .
[0055] At block 411 , the data management application
determines which (higher level) storage tier hosts the iden
tified data block and obtains the identified data block from
that storage tier . The data management application can
determine an account associated with the dataset indicated in
the restore request . The account will identify the other
storage tiers configured for the account and / or identify a
policy (ies) that indicates the storage tiers configured for the
dataset . With the account information , the data management
application can query the storage services to determine
whether the identified data block is available . The data
management application can use an inexpensive function
call defined by the storage service to obtain a listing of data
block identifiers of the dataset within each storage tier or can
iterate over storage tiers until the identified data block is
found . The data management application can also use a
function call that requests metadata of an object with an
object identifier or object key in the storage tier imple
mented in the cloud storage service that corresponds to the
identified data block name . For instance , the data manage
ment application can communicate a request to a storage
service that specifies an object name " OBJECT _ A ” for a
data block named “ A . ” Instead of the object itself , the
storage service either returns the metadata for OBJECT _ A
or a code indicating the absence of such an object . If not
found , the data management application can send the same
request to the next storage tier , which may be identified with
a different container name . Embodiments may maintain
metadata identifying which storage tier hosts which data
blocks . In that case , the data management application can
perform a lookup on this metadata that maps data block
names to storage tiers and retrieve the data block accord
ingly . After obtaining the identified data block , control flows
to block 413 .
[0056] At block 413 , the data management application
communicates to the restore target the information for the
valid data range . The data management application commu
nicates the determined valid data range , the data block name ,
and the obtained data block . Embodiments can aggregate
communication of the valid data range information at vary
ing granularities (e . g . , communicate valid data ranges for all
files within a subdirectory instead of each valid data range) .
After communicating the valid data range information , the
data management application determines whether there is
another valid data range for the restore at block 417 .
[0057] If the identified data block had already been sent to
the restore target (407) , then the data management applica
tion communicates to the restore target the valid data range

[0058] The above example illustrations determine a data
block to be invalidated based on a corresponding data range
being overwritten . This preserves data blocks in lower
storage tiers for more efficient restore even when partially
overwritten . However , embodiments are not limited to
requiring complete overwrite of a data block to migrate the
data block . A data management application can be config
ured to characterize data blocks partially overwritten as
invalidated . Although treating partially overwritten data
blocks as overwritten likely leads to more data blocks being
migrated to higher tiers less efficiencies than limiting invali
dation to completely overwritten and deleted data blocks , it
still obtains efficiencies over migration of entire snapshots .
10059] The example illustrations suggest evaluating a
migration criterion based on receipt of each snapshot at a
storage appliance . However , embodiments are not so lim
ited . A data management application can be configured to
evaluate the migration criterion after a specified time period
or after receipt of a x snapshots . This can be utilized in a
system that has additional migration criteria . For instance ,
migration of data blocks of snapshots outside of a preser
vation window can be migrated when n snapshots have been
restored and available storage capacity of the storage appli
ance falls below a threshold . The storage appliance and / or
data management application will migrate data blocks
according to the policy (ies) defined for a dataset (s) . More
over , embodiments can trigger migration evaluation with
techniques other than a defined threshold and maintaining a
counter . Embodiments can determine whether determine
valid ranges from an oldest snapshot within an expiration
window across other snapshot indicated in snapshot meta
data of the storage appliance . Instead of maintaining a
counter , the storage appliance can select oldest snapshot
within the preservation window and then begin determining
valid data ranges based on the selected snapshot .
[0060] The examples often refer to a “ data management
application . ” The data management application is a moniker
used to refer to implementation of functionality for intelli
gent snapshot tiering . This moniker is utilized since numer
ous labels can be used for the program code (s) that performs
the described functionality . In addition , modularity of the
program code can vary based on platform , programming
language (s) , developer preferences , etc .
[0061] The flowcharts are provided to aid in understanding
the illustrations and are not to be used to limit scope of the
claims . The flowcharts depict example operations that can
vary within the scope of the claims . Additional operations
may be performed ; fewer operations may be performed ; the
operations may be performed in parallel ; and the operations

US 2019 / 0129621 A1 May 2 , 2019

may be performed in a different order . For example , embodi -
ments do not necessarily migrate invalidated data blocks as
each is identified (312 of FIG . 3) . Embodiments can track
invalidated data blocks in a structure and then migrate
multiple invalidated data blocks at a time , and update the
data map accordingly . Embodiments are also not required to
determine whether a potentially invalidated data block
recurs in a more recent snapshot (e . g . , block 210 of FIG . 2
and block 311 of FIG . 3) . Data blocks may not be shared if
deduplication is not performed on a data set , which then
removes the possibility of a data block across snapshots
having a same name . It will be understood that each block
of the flowchart illustrations and / or block diagrams , and
combinations of blocks in the flowchart illustrations and / or
block diagrams , can be implemented by program code . The
program code may be provided to a processor of a general
purpose computer , special purpose computer , or other pro
grammable machine or apparatus .
[0062] As will be appreciated , aspects of the disclosure
may be embodied as a system , method or program code /
instructions stored in one or more machine - readable media .
Accordingly , aspects may take the form of hardware , soft
ware (including firmware , resident software , micro - code ,
etc .) , or a combination of software and hardware aspects that
may all generally be referred to herein as a " circuit , ”
" module ” or “ system . ” The functionality presented as indi
vidual modules / units in the example illustrations can be
organized differently in accordance with any one of platform
(operating system and / or hardware) , application ecosystem ,
interfaces , programmer preferences , programming lan
guage , administrator preferences , etc .
[0063] Any combination of one or more machine readable
medium (s) may be utilized . The machine readable medium
may be a machine readable signal medium or a machine
readable storage medium . A machine readable storage
medium may be , for example , but not limited to , a system ,
apparatus , or device , that employs any one of or combina
tion of electronic , magnetic , optical , electromagnetic , infra
red , or semiconductor technology to store program code .
More specific examples (a non - exhaustive list) of the
machine readable storage medium would include the fol
lowing : a portable computer diskette , a hard disk , a random
access memory (RAM) , a read - only memory (ROM) , an
erasable programmable read - only memory (EPROM or
Flash memory) , a portable compact disc read - only memory
(CD - ROM) , an optical storage device , a magnetic storage
device , or any suitable combination of the foregoing . In the
context of this document , a machine readable storage
medium may be any tangible medium that can contain , or
store a program for use by or in connection with an instruc
tion execution system , apparatus , or device . A machine
readable storage medium is not a machine readable signal
medium .
100641 A machine readable signal medium may include a
propagated data signal with machine readable program code
embodied therein , for example , in baseband or as part of a
carrier wave . Such a propagated signal may take any of a
variety of forms , including , but not limited to , electro
magnetic , optical , or any suitable combination thereof . A
machine readable signal medium may be any machine
readable medium that is not a machine readable storage
medium and that can communicate , propagate , or transport
a program for use by or in connection with an instruction
execution system , apparatus , or device .

[0065] Program code embodied on a machine readable
medium may be transmitted using any appropriate medium ,
including but not limited to wireless , wireline , optical fiber
cable , RF , etc . , or any suitable combination of the foregoing .
[0066] Computer program code for carrying out opera
tions for aspects of the disclosure may be written in any
combination of one or more programming languages ,
including an object oriented programming language such as
the Java® programming language , C + + or the like ; a
dynamic programming language such as Python ; a scripting
language such as Perl programming language or PowerShell
script language , and conventional procedural programming
languages , such as the “ C ” programming language or similar
programming languages . The program code may execute
entirely on a stand - alone machine , may execute in a distrib
uted manner across multiple machines , and may execute on
one machine while providing results and or accepting input
on another machine .
[0067] The program code / instructions may also be stored
in a machine readable medium that can direct a machine to
function in a particular manner , such that the instructions
stored in the machine readable medium produce an article of
manufacture including instructions which implement the
function / act specified in the flowchart and / or block diagram
block or blocks .
[0068] FIG . 5 depicts an example computer system with
intelligent snapshot tiering . The computer system includes a
processor 501 (possibly including multiple processors , mul
tiple cores , multiple nodes , and / or implementing multi
threading , etc .) . The computer system includes memory 507 .
The memory 507 may be system memory (e . g . , one or more
of cache , SRAM , DRAM , zero capacitor RAM , Twin Tran
sistor RAM , eDRAM , EDO RAM , DDR RAM , EEPROM ,
NRAM , RRAM , SONOS , PRAM , etc .) or any one or more
of the above already described possible realizations of
machine - readable media . The computer system also
includes a bus 503 (e . g . , PCI , ISA , PCI - Express , Hyper
Transport® bus , InfiniBand® bus , NuBus , etc .) and a net
work interface 505 (e . g . , a Fiber Channel interface , an
Ethernet interface , an internet small computer system inter
face , SONET interface , wireless interface , etc .) . The system
also includes a snapshot manager 511 with intelligent snap
shot tiering . The snapshot manager 511 incrementally
migrates data blocks of snapshots that age out of an expi
ration window . The snapshot manager 511 incrementally
migrates snapshot by limiting migration to invalidated data
blocks . The snapshot manager 511 can initially storage
snapshots and later retrieve data blocks from a storage array
or storage bank 515 (e . g . , disk array , flash storage bank ,
hybrid storage , etc .) . Any one of the previously described
functionalities may be partially (or entirely) implemented in
hardware and / or on the processor 501 . For example , the
functionality may be implemented with an application spe
cific integrated circuit , in logic implemented in the processor
501 , in a co - processor on a peripheral device or card , etc .
Further , realizations may include fewer or additional com
ponents not illustrated in FIG . 5 (e . g . , video cards , audio
cards , additional network interfaces , peripheral devices ,
etc .) . The processor 501 and the network interface 505 are
coupled to the bus 503 . Although illustrated as being
coupled to the bus 503 , the memory 507 may be coupled to
the processor 501 .
[0069] While the aspects of the disclosure are described
with reference to various implementations and exploitations ,

US 2019 / 0129621 A1 May 2 , 2019

it will be understood that these aspects are illustrative and
that the scope of the claims is not limited to them . In general ,
techniques for intelligent snapshot tiering as described
herein may be implemented with facilities consistent with
any hardware system or hardware systems . Many variations ,
modifications , additions , and improvements are possible .
[0070] Plural instances may be provided for components ,
operations or structures described herein as a single instance .
Finally , boundaries between various components , operations
and data stores are somewhat arbitrary , and particular opera
tions are illustrated in the context of specific illustrative
configurations . Other allocations of functionality are envi
sioned and may fall within the scope of the disclosure . In
general , structures and functionality presented as separate
components in the example configurations may be imple
mented as a combined structure or component . Similarly ,
structures and functionality presented as a single component
may be implemented as separate components . These and
other variations , modifications , additions , and improve
ments may fall within the scope of the disclosure .
[0071] Use of the phrase " at least one of ” preceding a list
with the conjunction “ and ” should not be treated as an
exclusive list and should not be construed as a list of
categories with one item from each category , unless specifi
cally stated otherwise . A clause that recites at least one of
A , B , and C ” can be infringed with only one of the listed
items , multiple of the listed items , and one or more of the
items in the list and another item not listed .

1 . A method comprising :
identifying , by a computing device , a first set of a plurality
of data blocks of a first point - in - time copy of a dataset
invalidated by a second point - in - time copy of the
dataset , wherein a first storage tier stores the first and
second point - in - time copies and the first point - in - time
copy precedes in time the second point - in - time copy ;

migrating , by the computing device , the invalidated first
set of data blocks to a second storage tier ; and

updating , by the computing device , a data map to indicate
that the first set of data blocks are no longer stored in
the first storage tier .

2 . The method of claim 1 further comprising excluding ,
by the computing device , one or more of the first set of data
blocks that are within a third point - in - time copy of the
dataset from the migration , wherein the third point - in - time
copy is more recent than the second point - in - time copy .

3 . The method of claim 1 , further comprising identifying ,
by the computing device , the first set of data blocks upon
determining that n of point - in - time copies have been
received since a previous migration of invalidated data
blocks based on receipt of a third point - in - time copy ,
wherein the n point - in - time copies include the second and
third point - in - time copies .

4 . The method of claim 1 further comprising identifying ,
by the computing device and for each of one or more
point - in - time copies of the dataset from the first point - in
time copy to a preceding - in - time baseline point - in - time copy
of the dataset , a second set of data blocks invalidated by a
third set of data blocks of the second point - in - time copy .

5 . The method of claim 1 , further comprising identifying ,
by the computing device , a second set of data blocks that
map to a first set of data ranges of the first point - in - time copy
at least partially overwritten by a second set of data ranges
of the second point - in - time copy or deleted in the second
point - in - time copy .

6 - 7 . (canceled)
8 . A non - transitory machine - readable medium having

stored thereon instructions for intelligent snapshot tiering
comprising machine executable code which when executed
by at least one machine , causes the machine to :

identify a first set of data blocks of a first point - in - time
copy of a dataset invalidated by a second point - in - time
copy of the dataset , wherein a first storage tier stores
the first and second point - in - time copies and the first
point - in - time copy precedes in time the second point
in - time copy ;

migrate the invalidated first set of data blocks to a second
storage tier ; and

update a data map to indicate that the first set of data
blocks are no longer stored in the first storage tier .

9 . The machine - readable medium of claim 8 , wherein the
machine executable code when executed by the machine ,
further causes the machine to exclude one or more of the first
set of data blocks that are within a third point - in - time copy
of the dataset from the migration , wherein the third point
in - time copy is more recent than the second point - in - time
copy .

10 . The machine - readable medium of claim 8 , wherein
the machine executable code when executed by the machine ,
further causes the machine to identify the first set of data
blocks upon determining that n of point - in - time copies have
been received since a previous migration of invalidated data
blocks based on receipt of a third point - in - time copy ,
wherein the n point - in - time copies include the second and
third point - in - time copies .

11 . The machine - readable medium of claim 8 , wherein the
machine executable code when executed by the machine ,
further causes the machine to identify , for each of one or
more point - in - time copies of the dataset from the first
point - in - time copy to a preceding - in - time baseline point - in
time copy of the dataset , a second set of data blocks
invalidated by a third set of data blocks of the second
point - in - time copy .

12 . The machine - readable medium of claim 8 , wherein
the machine executable code when executed by the machine ,
further causes the machine to identify a second set of data
blocks that map to a first set of data ranges of the first
point - in - time copy at least partially overwritten by a second
set of data ranges of the second point - in - time copy or deleted
in the second point - in - time copy .

13 - 14 . (canceled)
15 . A computing device comprising :
a memory containing a machine readable medium com

prising machine executable code having stored thereon
instructions for intelligent snapshot tiering ; and

a processor , coupled to the memory , the processor con
figured to execute the machine executable code to
cause the processor to :
identify a first set of data blocks of a first point - in - time

copy of a dataset invalidated by a second point - in
time copy of the dataset , wherein a first storage tier
stores the first and second point - in - time copies and
the first point - in - time copy precedes in time the
second point - in - time copy ;

migrate the invalidated first set of data blocks to a
second storage tier ; and

update a data map to indicate that the first set of data
blocks are no longer stored in the first storage tier .

US 2019 / 0129621 A1 May 2 , 2019

16 . The computing device of claim 15 wherein the pro
cessor is further configured to execute the machine execut
able code to cause the processor to exclude one or more of
the first set of data blocks that are within a third point - in
time copy of the dataset from the migration , wherein the
third point - in - time copy is more recent than the second
point - in - time copy .

17 . The computing device of claim 16 , wherein the
processor is further configured to execute the machine
executable code to cause the processor to identify the first set
of data blocks upon determining that n of point - in - time
copies have been received since a previous migration of
invalidated data blocks based on receipt of a third point - in
time copy , wherein the n point - in - time copies include the
second and third point - in - time copies .

18 . The computing device of claim 15 , wherein the
processor is further configured to execute the machine
executable code to cause the processor to identify , for each
of one or more point - in - time copies of the dataset from the
first point - in - time copy to a preceding - in - time baseline
point - in - time copy of the dataset , a second set of data blocks
invalidated by a third set of data blocks of the second
point - in - time copy .

19 . The computing device of claim 15 , wherein the
processor is further configured to execute the machine
executable code to cause the processor to identify a second
set of data blocks that map to a first set of data ranges of the
first point - in - time copy at least partially overwritten by a
second set of data ranges of the second point - in - time copy
or deleted in the second point - in - time copy .

20 . (canceled)

