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A SORT-BASED TILED DEFERRED SHADING
ARCHITECTURE FOR DECOUPLED SAMPLING

Background

[0001 ] This relates generally to graphics processing.

[0002] Stochastic rendering of motion blur and depth of field is desirable to

increase realism and improve the image quality. However, high visibility sampling

rates are necessary to reduce the noise resulting from stochastic sampling to

acceptable levels. High sampling rates are also required for high-quality spatial

antialiasing, which is an important factor in increasing the visual fidelity of real-time

graphics.

[0003] With high visibility sampling rates, pixel shading can become a major

bottleneck. To keep the shading cost low, it is critical to decouple shading from

visibility and reuse shading over multiple visibility samples, which may be spread out

spatially over the image. It is also important to defer shading to be done as late as

possible in the pipeline, in order to avoid shading samples that will ultimately be

occluded. Deferred shading, often used in games, is optimal in this sense as only

the final visible samples are shaded. However, none of the known decoupling

mechanisms are specifically designed to work with deferred shading, which makes

shader reuse difficult. Additionally, the bandwidth to the G-buffer may be high in

traditional deferred shading.

Brief Description Of The Drawings

[0004] Some embodiments are described with respect to the following figures:

Figure 1 is an architectural overview of one embodiment;

Figure 2 is a flow chart for one embodiment showing rendering of primitives in

one tile; and

Figure 3 is a schematic depiction of one embodiment.



Detailed Description

[0005] We address the problem of efficient decoupling and reuse of shading in

real-time graphics pipelines. Our goal is to support high visibility sampling rates and

stochastic effects, while only shading a minimal set of visible samples. For this

purpose we defer shading until after rasterization, and sort the generated visibility

samples to extract coherence. To make this efficient, our architecture operates over

tiles to keep all data on chip, and each visibility sample only holds a compact

reference to a shading point.

[0006] Explicit sorting of the samples post-visibility has some unique benefits in

some embodiments. First, no shader caching mechanism is necessary, reducing

hardware complexity. Second, the deferred shading will still be done in triangle

order, which enables late shading of triangle attributes, and makes traditional per-

triangle interpolation setup possible. It also allows state changes during rendering,

making the application agnostic to the use of deferred shading, thus avoiding the

need for a single uber-shader. The drawback is in the on chip memory and

bandwidth required for sorting, but these costs are constant and independent of

scene complexity, so a good fit for hardware implementation.

[0007] We propose a novel tiled (sort-middle) hardware architecture that

combines the benefits of decoupled sampling with deferred shading. Our

architecture is designed for efficient deferred shading with high visibility rates and

samples stochastically distributed over the image, lens, and time, while minimizing

off-chip bandwidth usage. For each tile, the forward pass stores a shading point,

rather than a full G-buffer entry, with each visibility sample. The shading point

consists of a primitive identifier and a shading coordinate. In some embodiments,

the shading coordinate is encoded in Morton order. In the resolve pass, an on-chip

radix sort of the shading points in a tile generates a coherent list of groups of

shading points to be shaded. In some embodiments, these groups are quadrilaterals

so that derivatives may be approximated by finite differences. In some other

embodiments, groups are single shading points, such that the shading points are

shaded individually.Quadrilaterals will be used as anon-limiting example.These are

dispatched to the shader cores using existing mechanisms, for example, a reorder



buffer used in some graphics processors. The only modification is that the result

may be scattered out to an array of samples instead of just one pixel, before the

quadrilateral is retired.

[0008] In the forward pass, the shading coordinate may be computed using the

same mapping strategy as existing shader caching-based solutions, for example

[Ragan-Kelley et al., Decoupled Sampling for Graphics Pipelines, ACM Transactions

on Graphics, vol. 30(3), 201 1]. The input to our algorithm is a dense set of visibility

samples, out of which we find a representative set of shading points. This enables

reuse of shading across multiple samples, even if these are spread out spatially.

The generation of the input samples is orthogonal to our work, but we look at it from

the perspective of a future graphics hardware pipeline including an efficient

stochastic rasterizer.

[0009] Spatio-temporal occlusion culling is important to reduce the cost of

rasterization and the associated depth buffer bandwidth. However, it does not

reduce the number of shader executions. Our architecture is orthogonal to the use

of occlusion culling, as culling occurs before rasterization, and a real system would

likely integrate a variant of spatio-temporal occlusion in the pipeline.

[001 0] In the resolve pass, all shading points are sorted, e.g., using a radix sort.

Radix sort is a straightforward method for quickly sorting key-value pairs that is well

suited for hardware implementation. The algorithm looks at digits of a fixed size, and

performs a predetermined number of passes through the data. Other sorting

algorithms may also be used.

[001 1] Since no shader caching mechanisms are used, all data can be easily

streamed without stalls and complex synchronization. The sorting step ensures

quadrilaterals are shaded in the same order as in normal static rendering, which

ensures good texture cache locality. Additionally, since triangles are shaded in

order, vertex attribute shading and standard per-triangle interpolation setup can be

done in the deferred pass, reusing existing hardware for this. This is a key

difference to a shadercaching-based deferred shading solution. It also means that

state changes are possible, e.g., switching pixel shaders mid-stream, avoiding the



need for a single uber-shader and making the deferred shading largely transparent

to the user. The presented architecture is useful also for non-stochastic rendering,

as it essentially provides hardware-supported multi-sample anti-aliasing(MSAA) with

the benefits of deferred shading.

[001 2] In Figure 1, we are stochastically rendering triangles that move from left to

right. The square "S" represents a tile into which we have binned (block 10) two

triangles. These triangles are rasterized (block 12) to produce visibility samples

inside the tile. Each visibility sample is mapped to a shading point on the primitive it

hits. A shading point includes a triangle identifier and a coordinate for a shading

position, which may be a Morton-order coordinate (the number inside the boxes

labeled shading points). A Morton-order coordinate uses interleaved x and y bits.

One triangle identifier is indicated by shading lines from upper left to lower right, and

another by shading lines from lower left to upper right.

[001 3] The shading points of samples that survive the depth test (block 14) are

written to the output buffer. In the deferred shading pass, all shading points are

sorted (block 16), as shown on the right. Each shading point stores the sub-pixel

location in the tile (x, y) that its result should be written to. The list is sequentially

scanned, and shading quadrilaterals dispatched for pixel shading (block 18) as they

are found. The shading quadrilaterals will appear in the same order as in normal

forward rendering. Hence, each time a new triangle is encountered, vertex attribute

shading and triangle setup can be performed using existing hardware. When a

quadrilateral is completed, its shaded results are scattered to the list of sub-pixel

locations associated with its shading points.

[001 4] Figure 2 shows a flow-chart describing the operations performed when

processing a tile. Each tile represents a screen space region and holds a list of

primitives to be rendered to this region. The tiles are generated by binning all

primitives to the tiles they overlap. For generality, a tile may refer to the entire screen

space area if binning is not used.



[001 5] The first part (blocks 20, 14 , 24, and 26) of the algorithm performs

rasterization 12 of all primitives in the tile, writing out shading points to a local buffer.

In the second phase, all shading points are sorted and subsequently shaded.

[001 6] Compared to the traditional forward rasterization pipeline, the order of

operations is modified so that all rasterization 12 is performed prior to shading 18 . In

the rasterizer 12 , inside tests (block 20) are performed to compute visibility samples

for each primitive. A shading point is computed (block 24) for each visibility sample

using an arbitrary mapping function. The shading points are finally written to a buffer

(block 26). Rasterization is complete when no more samples are found at diamond

28 and no primitives are found at diamond 30.

[001 7] After rasterization completes, these shading points are sorted (block

16).Quadrilaterals (block 34) foundby scanning the list are then shaded (block 36).

The result of pixel shading is scattered to the list of sub-pixel locations (block 38)

associated with each quadrilateral, rather than written to a single pixel (or coherent

array of multi-samples with MSAA) in the traditional pipeline. The depth test 14 may

be performed before (as shown) or after computing the shading point, but it is always

performed before pixel shading. While this is usually desirable to avoid unnecessary

work, it prevents shaders from computing custom depth. This limitation can be

overcome by invoking a depth-computing shader in the rasterization loop, much like

the shader computing G-buffer entries in deferred rendering implementations on

forward rendering pipelines. The flow ends when no more shading points remain as

determined at diamond 40.

[001 8] To keep off-chip bandwidth at a minimum, our algorithm operates locally

over multiple tiles on screen in some embodiments. Otherwise sorting of the visibility

samples may require several round trips to global memory.

[001 9] The specific binning strategy used is orthogonal to the rest of our

algorithm. We propose binning just the bounding boxes of draw calls first. For each

tile, we then have a list of all potentially overlapping geometry, and we can compute

an upper bound on the memory footprint needed to store the binned triangles. Tiles

with a high depth complexity may also be speculatively subdivided. The individual



triangles are then binned to the screen space tiles. This requires the position-part of

the vertex shader to be executed, in order to compute the bounding boxes of the

moving/defocusedtriangles. We do not need to compute or store the remaining

vertex attributes. These may be computed later, if needed.

[0020] The tile size is chosen appropriately; larger tiles need more memory and

bandwidth, while smaller tiles increase the bin spread, i.e., the number of tiles each

triangle overlaps. At 64x32 pixel tiles, the bin spread with defocus and motion blur is

often limited to 2-3 on realistic scenes. As vertex shading and the associated

bandwidth is assumed to be a relatively small part of the total cost in a 5 D stochastic

rasterizer, this should not be a limiting factor. At 64x32 pixels, each tile holds 32k

visibility samples at 16 samples per pixel. This number will be used as anon-limiting

example.

[0021 ] For each tile, we stochastically rasterize all binned triangles. Any

stochastic rasterization algorithm may be used, such as an efficient hierarchical

traversal. The rasterizer works against a small local on-chip depth and output buffer

for the tile. These are assumed to be 4 bytes/sample each, for a total of 32k- 8 B =

256 kB with 64x32 pixel tiles.

[0022] For each generated visibility sample that survives the depth test, a

mapping function is evaluated to compute the corresponding shading point. A

general mapping can be expressed as a 3x3 matrix transform followed by

normalization. The mapping function may, for example, map the (x,y,u,v,t)

parameters of the sample to a screen-space pixel coordinate (x,y) on the static

triangle at u=v=t=0, at which the shading should be computed. Many visibility

samples usually map to the same shading coordinate.

[0023] We compactly encode the shading point and store it to the output buffer. A

simple example of an encoding may be a combination of a triangle identifier (e.g., 2 1

bits) and the screen-space pixel coordinate of the shading position relative to the tile

(e.g., 6+5 bits for x and y). The shading position is stored in Morton-order (x and y

bits interleaved) to maximize shading coherence. In practice, we may want to

increase the shading point precision to, e.g., allow for limited bilinear interpolation



between the shaded values. In the pathological case, when a tile holds more

triangles than the ID range can encode, the rasterization and shading phases can be

iterated. This results in a performance hit, that may be avoided by the application.

[0024] After rasterizing all triangles in a tile, we have a tile output buffer where

each sample holds a triangle identifier and a coordinate for the shading position,

which we jointly refer to as a shading point. This buffer is passed to the shading

stage. The depth buffer is not kept, unless needed for other purposes.

[0025] The shading phase starts by sequentially sorting all shading points in the

tile.This may be done using an on-chip radix sort or other sorting algorithm. The

sorting key is the shading point (e.g., 32 bits) and the value is the sub-pixel position

of the sample within the tile (e.g., 15 bits for 64x32 tiles at 16 samples/pixel).

Although sorting the samples sounds expensive, an estimate below shows that the

on-chip bandwidth should be manageable. The radix sort can be built as a small

fixed-function unit that operates against dedicated on-chip buffers.

[0026] After sorting we have a list of shading points, hopefully with many

duplicates. This list is sequentially scanned, and whenever a shading point not

included in the current quadrilateral is found, a new quadrilateral is started and the

previous is ready for dispatch to pixel shading. This is very similar to how the current

rasterizer operates, except that scan conversion is replaced by a sequential scan to

find shading quadrilaterals. No complex caching or reference counting is needed.

We can hopefully reuse the existing hardware buffers that hold quadrilaterals in

flight.

[0027] Note that with the proposed encoding of triangle identifier and Morton-

order shading coordinate, shading quadrilaterals will be generated in the same order

as in a traditional forward rasterizer. Hence, all quadrilaterals from one triangle will

be generated before quadrilaterals from the next. We can exploit this in at least two

ways. First, vertex attribute shading may be deferred. Whenever a new triangle is

encountered, we request its vertices from the existing hardware vertex cache. Cache

misses results in the vertex shading being executed, just like in the normal pipeline.

Hence, we do not need to compute or store vertex attributes in the initial binning



process, only positions. Hence, vertex attribute shading is only done for triangles that

are visible in the final image, which is an added benefit compared to existing

methods. Second, a traditional triangle interpolation setup can be performed when a

new triangle is encountered in the list of shading points. Hence, the pixel shader

operates just like in the normal forward pipeline, interpolating attributes using

gradients precomputed in the triangle setup.

[0028] When a quadrilateral completes shading, the result is written to all sub-

pixel locations that were assigned to the same quadrilateral. Due to the sorting,

these locations are found as a linear array of sub-pixel coordinates, i.e., each of the

shading points holds as value its unique sub-pixel location. The sub-pixel locations

can belong to different pixels. This differs from the normal pipeline, where each

result is only written to one pixel (or set of multi-samples inside a single pixel). Since

each sub-pixel coordinate occurs exactly once, the hardware does not have to worry

about conflicting writes. This means that no score-boarding or other synchronization

mechanism is needed to order the writes, which could simplify the hardware design.

As the writes may be scattered spatially within the tile, however, it may be useful to

include a write coalescing unit that operates against the local buffer, before the tile is

resolved and written out to main memory after all shading is complete.

[0029] The radix sort performs a fixed number of passes through the data, e.g.,

with 11 bit digits and 32 bit keys we will do three passes. Each pass will read the

elements twice and write once (i.e., first build a histogram, and then reorder the

elements). With this setup, the on-chip bandwidth for sorting a tile is 960 kB read and

576 kBwrite, ping-pong'ing between two local 192 kB buffers. For tiles that have

fewer triangles, we can possibly reduce the number of passes to one or two, saving

2/3 or 1/3 of the bandwidth, respectively. In total, for 1920x1 080 pixelsrendering at

60Hz, we would need up to 56 gigabytes per second (GB/s) read + 34 GB/s write

speed. This should be feasibly given the small size of the buffers and streaming

read/writes. For comparison, L1/L2/L3 caches commonly already have hundreds or

thousands of GB/s bandwidth, and they allow much more incoherent accesses.



[0030] We have designed our architecture to determine how decoupled sampling

can be combined with the benefits of deferred shading, and whether it is possible to

avoid a potentially complex shader caching mechanism. A motivation for some

embodiments comes from minimizing off-chip memory bandwidth, which is very

expensive in terms of power consumption. Second, we wanted to reuse as much as

possible of the existing fixed-function units. Some embodiments reach these goals

by working on smaller tiles, and deferring shading (both vertex and pixel) until last in

the pipeline. The triangle traversal is replaced by sequentially scanning a sorted list

of shading points.

[0031] In some aspects our architecture simplifies the pipeline. For example,

during rasterization, we do not have to worry about pixel shaderexecution, making a

streamlined implementation easier. In addition, we do not have to synchronize writes

to sub-pixel locations. The added hardware cost is, of course, the addition of a

stochastic rasterizer in the first place, and the introduction of a fixed-function sorting

unit and associated buffers. The limitations of our architecture are largely the same

as existing tiled deferred shading-based solutions (e.g., PowerVR and some game

engines) are facing. Namely, that output blending and transparency is more difficult

to support, and that there may be performance cliffs when too much geometry

overlaps a single tile.

[0032] The computer system 130, shown in Figure 3 , may include a hard drive

134 and a removable medium 136, coupled by a bus 104 to a chipset core logic 110 .

A keyboard and mouse 120, or other conventional components, may be coupled to

the chipset core logic via bus 108. The core logic may couple to the graphics

processor 112 , via a bus 105, and the main or host processor 100 in one

embodiment. The graphics processor 112 may also be coupled by a bus 106 to a

frame buffer 114 . The frame buffer 114 may be coupled by a bus 107 to a display

screen 118 . In one embodiment, a graphics processor 112 may be a multi-threaded,

multi-core parallel processor using single instruction multiple data (SIMD)

architecture.



[0033] In the case of a software implementation, the pertinent code may be

stored in any suitable semiconductor, magnetic, or optical memory, including the

main memory 132 or any available memory within the graphics processor. Thus, in

one embodiment, the code to perform the sequences of Figures 1 and 2 may be

stored in a non-transitory machine or computer readable medium, such as the

memory 132 or the graphics processor 112 , and may be executed by the processor

100 or the graphics processor 112 in one embodiment.

[0034] Figure 2 is a flow chart. In some embodiments, the sequences depicted

in this flow chart may be implemented in hardware, software, and/or firmware. In a

software embodiment, a non-transitory computer readable medium, such as a

semiconductor memory, a magnetic memory, or an optical memory may be used to

store instructions and may be executed by a processor to implement the sequences

shown in Figure 2 .

[0035] The graphics processing techniques described herein may be

implemented in various hardware architectures. For example, graphics functionality

may be integrated within a chipset. Alternatively, a discrete graphics processor may

be used. As still another embodiment, the graphics functions may be implemented

by a general purpose processor, including a multicore processor.

[0036] References throughout this specification to "one embodiment" or "an

embodiment" mean that a particular feature, structure, or characteristic described in

connection with the embodiment is included in at least one implementation

encompassed within the present invention. Thus, appearances of the phrase "one

embodiment" or "in an embodiment" are not necessarily referring to the same

embodiment. Furthermore, the particular features, structures, or characteristics may

be instituted in other suitable forms other than the particular embodiment illustrated

and all such forms may be encompassed within the claims of the present application.

[0037] While the present invention has been described with respect to a limited

number of embodiments, those skilled in the art will appreciate numerous

modifications and variations therefrom. It is intended that the appended claims cover



all such modifications and variations as fall within the true spirit and scope of this

present invention.



What is claimed is:

1. A method comprising:

rasterizing, in a graphics processor, graphics primitives to generate

visibility samples;

sorting visibility samples to extract coherence; and

after rasterizing and sorting, shading said primitives.

2 . The method of claim 1, including storing a reference to a shading point with

each visibility sample.

3 . The method of claim 2 , including storing a reference with a primitive identifier.

4 . The method of claim 3 , including storing a reference with a Morton-order

shading coordinate.

5 . The method of claim 2 , including sorting the references to develop a list of

unique shading points to be shaded.

6 . The method of claim 5 , including assembling groups of unique shading points;

and shading said groups of shading points.

7 . The method of claim 6 , including writing out shading results to each visibility

sample.

8 . The method of claim 1, including processing tiles representing a screen space

region.

9 . The method of claim 8 , including generating tiles by binning primitives to the

tiles they overlap, and rasterizing all primitives in a tile.

10 . The method of claim 1, including rasterizing stochastically.



11. A non-transitory computer readable medium storing instructions to enable a

processor to perform a method comprising:

rasterizing graphics primitives to generate visibility samples;

sorting visibility samples to extract coherence; and

after rasterizing and sorting, shading said primitives.

12 . The medium of claim 11, including storing a reference to a shading point with

each visibility sample.

13 . The medium of claim 12 , including storing a reference with a primitive

identifier.

14. The medium of claim 13 , including storing a reference with a Morton-order

shading coordinate.

15 . The medium of claim 12 , including sorting the references to develop a list of

unique shading points to be shaded.

16 . The medium of claim 15 , including assembling groups of unique shading

points; and shading said groups of shading points.

17 . The medium of claim 16 , including writing out shading results to each visibility

sample.

18 . The medium of claim 11, including processing tiles representing a screen

space region.

19 . The medium of claim 18 , including generating tiles by binning primitives to the

tiles they overlap, and rasterizing all primitives in a tile.

The medium of claim 11, including rasterizing stochastically.



2 1 . A apparatus comprising:

a graphics processor to rasterize graphics primitives to generate

visibility samples, sort visibility samples to extract coherence, and after rasterizing

and sorting, shade said primitives; and

a memory coupled to said processor.

22. The apparatus of claim 2 1 , said processor to store a reference to a shading

point with each visibility sample.

23. The apparatus of claim 22, said processor to store a reference with a primitive

identifier.

24. The apparatus of claim 23, said processor to store a reference with a Morton-

order shading coordinate.

25. The apparatus of claim 22, said processor to sort the references to develop a

list of unique shading points to be shaded.

26. The apparatus of claim 25, said processor to assemble groups of unique

shading points; and shading said groups of shading points.

27. The apparatus of claim 26, said processor to write out shading results to each

visibility sample.

28. The apparatus of claim 2 1 , said processor to process tiles representing a

screen space region.

29. The apparatus of claim 28, said processor to generate tiles by binning

primitives to the tiles they overlap, and rasterizing all primitives in a tile.

30. The apparatus of claim 2 1 , said processor to rasterize stochastically.
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