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Detecting Debris on a Grid of a Storage System

Technical Field

The present disclosure generally relates to the field of a storage or fulfilment system in which
stacks of bins or containers are arranged within a grid framework structure, and more
specifically, to detecting debris on the grid framework structure.

Background

Online retail businesses selling multiple product lines, such as online grocers and
supermarkets, require systems that can store tens or hundreds of thousands of different
product lines. The use of single-product stacks in such cases can be impractical since a vast
floor area would be required to accommodate all of the stacks required. Furthermore, it can
be desirable to store small quantities of some items, such as perishables or infrequently
ordered goods, making single-product stacks an inefficient solution.

PCT Publication No. WO2015/185628A (Ocado) describes a further known storage and
fulfilment system in which stacks of containers are arranged within a grid framework structure.
The containers are accessed by one or more load handling devices, otherwise known as
robots or “bots”, operative on tracks located on the top of the grid framework structure. A
system of this type is illustrated schematically in Figures 1 to 3 of the accompanying drawings.

As shown in Figures 1 and 2, stackable containers 10, also known as “bins”, are stacked on
top of one another to form stacks 12. The stacks 12 are arranged in a grid framework structure
14, e.g. in a warehousing or manufacturing environment. The grid framework structure 14 is
made up of a plurality of storage columns or grid columns. Each grid in the grid framework
structure has at least one grid column to store a stack of containers. Figure 1 is a schematic
perspective view of the grid framework structure 14, and Figure 2 is a schematic top-down
view showing a stack 12 of bins 10 arranged within the framework structure 14. Each bin 10
typically holds a plurality of product items (not shown). The product items within a bin 10 may
be identical or different product types depending on the application.

The grid framework structure 14 comprises a plurality of upright members 16 that support
horizontal members 18, 20. A first set of parallel horizontal grid members 18 is arranged
perpendicularly to a second set of parallel horizontal members 20 in a grid pattern to form a
horizontal grid structure 15 supported by the upright members 16. The members 16, 18, 20
are typically manufactured from metal. The bins 10 are stacked between the members 16, 18,
20 of the grid framework structure 14, so that the grid framework structure 14 guards against
horizontal movement of the stacks 12 of bins 10 and guides the vertical movement of the bins
10.

The top level of the grid framework structure 14 comprises a grid or grid structure 15, including
rails 22 arranged in a grid pattern across the top of the stacks 12. Referring to Figure 3, the
rails or tracks 22 guide a plurality of load handling devices 30. A first set 22a of parallel tracks
or rails 22 guides movement of the robotic load handling devices 30 in a first direction (e.g. an
X-direction) across the top of the grid framework structure 14. A second set 22b of parallel



10

15

20

25

30

35

40

tracks or rails 22, arranged perpendicular to the first set 22a, guides movement of the load
handling devices 30 in a second direction (e.g. a Y-direction), perpendicular to the first
direction. In this way, the tracks or rails 22 allow the robotic load handling devices 30 to move
laterally in two dimensions in the horizontal X-Y plane. A load handling device 30 can be
moved into position above any of the stacks 12.

A known form of load handling device 30 — shown in Figures 4 and 5 — is described in PCT
Patent Publication No. W02015/019055 (Ocado), hereby incorporated by reference, where
each load handling device 30 covers a single grid space 17 of the grid framework structure
14. This arrangement allows a higher density of load handlers and thus a higher throughput
for a given sized storage system.

The example load handling device 30 comprises a vehicle 32, which is arranged to travel on
the rails 22 of the frame structure 14. A first set of wheels 34, consisting of a pair of wheels 34
at the front of the vehicle 32 and a pair of wheels 34 at the back of the vehicle 32, is arranged
to engage with two adjacent rails of the first set 22a of rails 22. Similarly, a second set of
wheels 36, consisting of a pair of wheels 36 at each side of the vehicle 32, is arranged to
engage with two adjacent rails of the second set 22b of rails 22. Each set of wheels 34, 36
can be lifted and lowered so that either the first set of wheels 34 or the second set of wheels
36 is engaged with the respective set of rails 22a, 22b at any one time during movement of
the load handling device 30. For example, when the first set of wheels 34 is engaged with the
first set of rails 22a and the second set of wheels 36 is lifted clear from the rails 22, the first
set of wheels 34 can be driven, by way of a drive mechanism (not shown) housed in the vehicle
32, to move the load handling device 30 in the X-direction. To achieve movement in the Y-
direction, the first set of wheels 34 is lifted clear of the rails 22, and the second set of wheels
36 is lowered into engagement with the second set 22b of rails 22. The drive mechanism can
then be used to drive the second set of wheels 36 to move the load handling device 30 in the
Y-direction.

The load handling device 30 is equipped with a lifting mechanism, e.g. a crane mechanism, to
lift a storage container from above. The lifting mechanism comprises a winch tether or cable
38 wound on a spool or reel (not shown) and a gripper device 39. The lifting mechanism shown
in Figures 4 and 5 comprises a set of four liting tethers 38 extending in a vertical direction.
The tethers 38 are connected at or near the respective four corners of the gripper device 39,
e.g. a lifting frame, for releasable connection to a storage container 10. For example, a
respective tether 38 is arranged at or near each of the four corners of the lifting frame 39. The
gripper device 39 is configured to releasably grip the top of a storage container 10 to lift it from
a stack of containers in a storage system 1 of the type shown in Figures 1 and 2. For example,
the lifting frame 39 may include pins (not shown) that mate with corresponding holes (not
shown) in the rim that forms the top surface of bin 10, and sliding clips (not shown) that are
engageable with the rim to grip the bin 10. The clips are driven to engage with the bin 10 by a
suitable drive mechanism housed within the lifting frame 39, powered and controlled by signals
carried through the cables 38 themselves or a separate control cable (not shown).

To remove a bin 10 from the top of a stack 12, the load handling device 30 is first moved in
the X- and Y-directions to position the gripper device 39 above the stack 12. The gripper device
39 is then lowered vertically in the Z-direction to engage with the bin 10 on the top of the stack
12, as shown in Figures 4 and 6B. The gripper device 39 grips the bin 10, and is then pulled
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upwards by the cables 38, with the bin 10 attached. At the top of its vertical travel, the bin 10
is held above the rails 22 accommodated within the vehicle body 32. In this way, the load
handling device 30 can be moved to a different position in the X-Y plane, carrying the bin 10
along with it, to transport the bin 10 to another location. On reaching the target location (e.g.
another stack 12, an access point in the storage system, or a conveyor belt) the bin or
container 10 can be lowered from the container receiving portion and released from the
grabber device 39. The cables 38 are long enough to allow the load handling device 30 to
retrieve and place bins from any level of a stack 12, e.g. including the floor level.

As shown in Figure 3, a plurality of load handling devices 30 is provided so that each load
handling device 30 can operate simultaneously to increase the system’s throughput. The
system illustrated in Figure 3 may include specific locations, known as ports, at which bins 10
can be transferred into or out of the system. An additional conveyor system (not shown) is
associated with each port so that bins 10 transported to a port by a load handling device 30
can be transferred to another location by the conveyor system, such as a picking station (not
shown). Similarly, bins 10 can be moved by the conveyor system to a port from an external
location, for example, to a bin-filling station (not shown), and transported to a stack 12 by the
load handling devices 30 to replenish the stock in the system.

Each load handling device 30 can lift and move one bin 10 at a time. The load handling device
30 has a container-receiving cavity or recess 40, in its lower part. The recess 40 is sized to
accommodate the container 10 when lifted by the lifting mechanism 38, 39, as shown in
Figures 6A and 6B. When in the recess, the container 10 is lifted clear of the rails 22 beneath,
so that the vehicle 32 can move laterally to a different grid location.

If it is necessary to retrieve a bin 10b (“target bin”) that is not located on the top of a stack 12,
then the overlying bins 10a (“non-target bins”) must first be moved to allow access to the target
bin 10b. This is achieved by an operation referred to hereafter as “digging”. Referring to Figure
3, during a digging operation, one of the load handling devices 30 lifts each non-target bin 10a
sequentially from the stack 12 containing the target bin 10b and places it in a vacant position
within another stack 12. The target bin 10b can then be accessed by the load handling device
30 and moved to a port for further transportation.

Each load handling device 30 is remotely operable under the control of a central computer,
e.g. a master controller. Each individual bin 10 in the system is also tracked so that the
appropriate bins 10 can be retrieved, transported and replaced as necessary. For example,
during a digging operation, each non-target bin location is logged so that the non-target bin
10a can be tracked.

Wireless communications and networks may be used to provide the communication
infrastructure from the master controller, e.g. via one or more base stations, to one or more
load handling devices 30 operative on the grid structure 15. In response to receiving
instructions from the master controller, a controller in the load handling device 30 is configured
to control various driving mechanisms to control the movement of the load handling device.
For example, the load handling device 30 may be instructed to retrieve a container from a
target storage column at a particular location on the grid structure 15. The instruction can
include various movements in the X-Y plane of the grid structure 15. As previously described,
once at the target storage column, the lifting mechanism 38, 39 can be operated to grip and
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lift the storage container 10. Once the container 10 is accommodated in the container-
receiving space 40 of the load handling device 30, it is subsequently transported to another
location on the grid structure 15, e.g. a “drop-off port”. At the drop-off port, the container 10 is
lowered to a suitable pick station to allow retrieval of any item in the storage container.
Movement of the load handling devices 30 on the grid structure 15 can also involve the load
handling devices 30 being instructed to move to a charging station, usually located at the
periphery of the grid structure 15.

To manoeuvre the load handling devices 30 on the grid structure 15, each of the load handling
devices 30 is equipped with motors for driving the wheels 34, 36. The wheels 34, 36 may be
driven via one or more belts connected to the wheels or driven individually by a motor
integrated into the wheels. For a single-cell load handling device (where the footprint of the
load handling device 30 occupies a single grid cell 17), and the motors for driving the wheels
can be integrated into the wheels due to the limited availability of space within the vehicle
body. For example, the wheels of a single-cell load handling device 30 are driven by respective
hub motors. Each hub motor comprises an outer rotor with a plurality of permanent magnets
arranged to rotate about a wheel hub comprising coils forming an inner stator.

The system described with reference to Figures 1 to 5 has many advantages and is suitable
for a wide range of storage and retrieval operations. In particular, it allows very dense storage
of products and provides a very economical way of storing a wide range of different items in
the bins 10 while also allowing reasonably economical access to all of the bins 10 when
required for picking.

With reference to Figure 6, the system may further comprise a robotic picking station 50
mounted on top of the storage and retrieval structure 1, e.g. alongside the load-handling
devices 30 (not shown). The robotic picking station 50 comprises a robotic manipulator 52
comprising a robotic arm 54 and an end effector 56 for releasably engaging a product to be
manipulated, together with several designated grid cells 60, 62. The end effector 56 may be a
suction device 64 connected to a vacuum source by a vacuum line 66. The robotic manipulator
52 is mounted on a plinth 58 above a single grid cell 60 and, depending on its location on the
structure 1, can be surrounded by up to eight other grid cells 62 as shown in Figure 6. In
general, the robotic manipulator 52 is configured to pick an item or product from any one of
the containers located in one of the designated grid cells 62 and place it in a container located
in another of the designated grid cells 62. The load-handling devices collect containers from,
and deliver them to, the designated grid cells 62 as necessary. In this way, the robotic picking
station 50 and the load-handling devices 30 work in conjunction to fulfil a customer order or
redistribute products throughout the storage and retrieval system 1.

Summary

There is provided a method of detecting debris in a workspace comprising a grid formed by a
first set of tracks extending in a first direction and a second set of tracks extending in a second
direction transverse to the first direction, the method comprising: obtaining image data
representative of an image of at least part of the workspace; processing the image data with
an object detection model trained to detect instances of debris on the grid; determining, based
on the processing, whether the image includes debris on the grid; and in response to
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determining that the image includes debris on the grid, outputting annotation data indicative
of the debris in the image.

Also provided is a data processing apparatus comprising a processor configured to perform
the method. Also provided is a computer program comprising instructions which, when the
program is executed by a computer, cause the computer to carry out the method. Similarly, a
computer-readable storage medium is provided which comprises instructions that, when
executed by a computer, cause the computer to carry out the method.

Further provided is a system to detect debris in a workspace comprising a grid formed by a
first set of tracks extending in a first direction and a second set of tracks extending in a second
direction transverse to the first direction, the detection system comprising: an image sensor to
capture an image of at least part of the workspace; and an object detection model trained to
detect instances of debris on the grid; wherein the detection system is configured to: obtain
image data representative of the image; process the image data with the object detection
model; determine, based on the processing, whether the image includes debris on the grid;
and output, in response to determining that the image includes debris on the grid, annotation
data indicating the debris in the image.

In general terms, this description introduces systems and methods to detect debris on the grid
structure of a grid-based storage system using a trained object detection model. This allows
the grid structure to be monitored for debris, for example, and locations of the detected debris
to be determined. Thus, the systems and methods allow for the position of debris on the grid
structure to be determined so that action can be taken, e.g. to limit the movement of transport
devices on the grid so as to avoid the detected debris and/or to clear up the debris so that the
storage system can return to full functionality.

Brief Description of the Drawings

Embodiments will now be described by way of example only with reference to the
accompanying drawings, in which like reference numbers designate the same or
corresponding parts, and in which:

Figure 1 shows a schematic depiction of an automated storage and retrieval structure;

Figure 2 shows a schematic depiction of a plan view of a section of track structure forming
part of the storage structure of Figure 1;

Figure 3 shows a schematic depiction of a plurality of load-handling devices moving on top of
the storage structure of Figure 1;

Figures 4 and 5 show a schematic depiction of a load-handling device interacting with a
container;

Figure 6 shows a schematic depiction of a known robotic picking station;

Figures 7A and 7B are schematic diagrams of a storage system with a camera positioned
above the grid framework structure as part of a detection system according to embodiments;
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Figure 8 is a schematic representation of an image captured by the camera positioned above
the grid framework structure according to a specific embodiment;

Figure 9 is a schematic diagram of a neural network;

Figures 10A and 10B are schematic diagrams of a generated model of the tracks of the grid
framework structure;

Figure 11 is a schematic diagram showing a flattening of a captured image of the grid
framework structure;

Figure 12 is a schematic diagram demonstrating the processing of a captured image of the
grid framework structure according to embodiments; and

Figure 13 shows a flowchart depicting a method of detecting debris on a grid forming part of
a grid-based storage system according to embodiments.

Detailed Description

Monitoring the grid structure 15 of a grid-based storage system to detect debris (e.g. one or
more discarded or scattered pieces of material) can reduce the likelihood of transport devices
encountering the debris. For example, debris on the grid may hinder a transport device,
potentially causing the transport device to come off the tracks or otherwise lose control if its
movement on the tracks. Liquid debris may cause the transport device to slip on the tracks,
for example. Alternatively, the debris may provide resistance to the movement of the transport
device on the tracks, potentially causing problems with the control of its movement (e.g. by a
master controller). Detection and localisation of debris on the grid 15 can therefore be used to
help in clearing the debris, e.g. manually or by a specialised robotic device, or at least prevent
transport devices coming into contact with the debris while it is present on the grid.

Figure 7A shows the grid structure (or simply “grid”) 15 of a storage system, as previously
described. The grid is formed by a first set of parallel tracks 22a extending in an X-direction
and a second set of parallel tracks 22b extending in a Y-direction, transverse to the first setin
a substantially horizontal plane. The grid 15 has a plurality of grid spaces 17. One or more
load handling devices, or “transport devices” 30, are arranged to selectively move in at least
one of the X-direction or Y-direction on the tracks 22, and to handle a container 10 stacked
beneath the tracks 22 within a footprint of a single grid space 17. In examples, the one or more
transport devices 30 each has a footprint that also occupies only a single grid space, such that
a given transport device occupying one grid space does not obstruct another transport device
occupying or traversing adjacent grid spaces.

Disposed above the grid 15 is a camera 71. In examples, the camera 71 is an ultra wide-angle
camera, i.e. comprises an ultra wide-angle lens (also referred to as a “super wide-angle” or
“fisheye” lens). The camera 71 includes an image sensor to receive incident light that is
focused through a lens, e.g. the fisheye lens. The camera 71 has a field of view 72 including
at least a section of the grid 15. Multiple cameras may be used to observe the entire grid 15,
e.g. with each camera 71 having a respective field of view 72 covering a section of the grid
15. The ultra wide-angle lens may be selected for its relatively large field of view 72, e.g. up
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to a 180-degree solid angle, compared to other lens types, meaning fewer cameras are
needed to cover the grid 15. Space may also be limited between the top of the grid 15 and a
surrounding structure, e.g. a warehouse roof, thus constraining the height of the camera 71
above the grid 15. An ultra wide-lens camera can provide a relatively large field of view at a
relatively low height above the grid 15 compared to other camera types.

The one or more cameras 71 can be used to monitor a workspace of the transport devices 30,
the workspace including the grid structure 15. For example, an image feed from the one or
more cameras 71 can be obtained for processing the image data to detect debris in the
workspace which may hinder the transport devices 30 when moving on the grid 15. The image
feed may simultaneously be displayed on one or more remote computer monitors for manual
surveillance of the grid 15, e.g. by an operator.

A monitoring or surveillance system for the grid 15 may incorporate calibration of the one or
more cameras 71 positioned above the grid 15, particularly in embodiments comprising wide-
angle or ultra wide-angle cameras. Accurate calibration of the (ultra) wide-angle cameras may
allow for interaction with the images captured thereby, which are distorted by the (ultra) wide-
angle lens, to be mapped correctly to the workspace. Thus, selected areas of pixels in the
distorted images can be mapped to corresponding areas of grid spaces, for example.

An example calibration process for an ultra wide-angle camera includes obtaining an image
of a section of the grid, i.e. a grid section, captured by the camera. Obtaining the image
includes obtaining, e.g. receiving, image data representative of the image, e.g. at a processor.
For example, the image data may be received via an interface, e.g. a camera serial interface
(CSI). An image signal processor (ISP) may perform initial processing of the image data, e.g.
saturation correction, renormalization, white balance adjustment and/or demosaicing, to
prepare the image data for display.

Initial values of a plurality of parameters corresponding to the ultra wide-angle camera are
also obtained. The parameters include a focal length of the ultra wide-angle camera, a
translational vector representative of a position of the ultra wide-angle camera above the grid
section, and a rotational vector representative of a tilt and rotation of the ultra wide-angle
camera. These parameters are usable in a mapping algorithm for mapping pixels in an image
distorted by the ultra wide-angle lens of the camera to a plane oriented with the orthogonal
grid 15 of the storage system. The mapping algorithm is described in more detail below.

The calibration process includes processing the image using a neural network trained to
detect/predict the tracks in images of grid sections captured by ultra wide-angle cameras.

83 S one .
Narrad NModuari
SVELNE IO

Figure 9 shows an example of a neural network architecture. The example neural network 90
is a convolutional neural network (CNN). An example of a CNN is the U-Net architecture
developed by the Computer Science Department of the University of Freiburg, although other
CNNs are usable e.g. the VGG-16 CNN. An input 91 to the CNN 90 comprises image data in
this example. The input image data 91 is a given number of pixels wide and a given number
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of pixels high and includes one or more colour channels (e.g. red, green and blue colour
channels).

Convolutional layers 92, 94 of the CNN 90 typically extract particular features from the input
data 91, to create feature maps, and may operate on small portions of an image. Fully
connected layers 96 use the feature maps to determine an output 97, e.g. classification data
specifying a class of objects predicted to be present in the input image 91.

In the example of Figure 9, the output of the first convolutional layer 92 undergoes pooling at
a pooling layer 93 before being input to the second convolutional layer 94. Pooling, for
example, allows values for a region of an image or a feature map to be aggregated or
combined, e.g. by taking the highest value within a region. For example, with 2x2 max pooling,
the highest value of the output of the first convolutional layer 92 within a 2x2 pixel patch of the
feature map output from the first convolutional layer 92 is used as the input to the second
convolutional layer 94, rather than transferring the entire output. Thus, pooling can reduce the
amount of computation for subsequent layers of the neural network 90. The effect of pooling
is shown schematically in Figure 9 as a reduction in size of the frames in the relevant layers.
Further pooling is performed between the second convolutional layer 94 and the fully
connected layer 96 at a second pooling layer 95. It is to be appreciated that the schematic
representation of the neural network 90 in Figure 9 has been greatly simplified for ease of
illustration; typical neural networks may be significantly more complex.

In general, neural networks such as the neural network 90 of Figure 9 may undergo what is
referred to as a “training phase”, in which the neural network is trained for a particular purpose.
A neural network typically includes layers of interconnected artificial neurons forming a
directed, weighted graph in which vertices (corresponding to neurons) or edges
(corresponding to connections) of the graph are associated with weights, respectively. The
weights may be adjusted throughout training, altering the output of individual neurons and
hence of the neural network as a whole. In a CNN, a fully connected layer 96 typically connects
every neuron in one layer to every neuron in another layer, and may therefore be used to
identify overall characteristics of an image, such as whether the image includes an object of a
particular class, or a particular instance belonging to the particular class.

In the present context, the neural network 90 is trained to perform object identification by
processing image data, e.g. to determine whether an object of a predetermined class of
objects is present in the image (although in other examples the neural network 90 may have
been trained to identify other image characteristics of the image instead). Training the neural
network 90 in this way for example generates weight data representative of weights to be
applied to image data (for example with different weights being associated with different
respective layers of a multi-layer neural network architecture). Each of these weights is
multiplied by a corresponding pixel value of an image patch, for example, to convolve a kernel
of weights with the image patch.

Specific to the context of ultra wide-angle camera calibration, the neural network 90 is trained
with a training set of input images of grid sections captured by ultra wide-angle cameras to
detect the tracks 22 of the grid 15 in a given image of a grid section. In examples, the training
set includes mask images, showing the extracted track features only, corresponding to the
input images. For example, the mask images are manually produced. The mask images can
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thus act as a desired result for the neural network 90 to train with using the training set of
images. Once trained, the neural network 90 can be used to detect the tracks 22 in images of
at least part of the grid structure 15 captured by an ultra wide-angle camera.

The calibration process 130 includes processing 133 the image of the grid section captured
by the ultra wide-angle camera 71 with the trained neural network 90 to detect the tracks 22
in the image. At least one processor (e.g. a neural network accelerator) may be used to do
the processing 133. The image processing 133 generates a model of the tracks, specifically
the first and second sets of parallel tracks, as captured in the image of the grid section. For
example, the model comprises a representation of a prediction of the tracks in the distorted
image of the grid section as determined by the neural network 90. The model of the tracks
corresponds to a mask or probability map in examples.

Selected pixels in the determined track model are then mapped 134 to corresponding points
on the grid 15 using a mapping, e.g. a mapping algorithm, which incorporates the plurality of
parameters corresponding to the ultra wide-angle camera. The obtained initial values are used
as inputs to the mapping algorithm.

An error function (or “loss function”) is determined 135 based on a discrepancy between the
mapped grid coordinates and “true”, e.g. known, grid coordinates of the points corresponding
to the selected pixels. For example, a selected pixel located at the centre of an X-direction
track 22a should correspond to a grid coordinate with a half-integer value in the Y-direction,
e.g. (x, y.5) where the x is an unknown number and y is an unknown integer. Similarly, a
selected pixel located at the centre of an Y-direction track 22b should correspond to a grid
coordinate with a half-integer value in the X-direction, e.g. (X.5, y’) where x’ is an unknown
integer and y’ is an unknown number. In examples, the width and length of the grid cells (or a
ratio thereof) is used in the loss function, e.g. to calculate the cell x, y coordinate for key points
and check whether they are on a track (e.g. a coordinate value of n.5 where n is an integer).

The initial values of the plurality of parameters corresponding to the ultra wide-angle camera
are then updated 136 to updated values based on the determined error function. For example,
a Broyden—Fletcher-Goldfarb—Shanno (BFGS) algorithm is applied using the error function
and initial parameter values as inputs. In examples, the updated values of the plurality of
parameters are iteratively determined, with the error function being recalculated with each
update. The iterations may continue until the error function is reduced by less than a
predetermined threshold, e.g. between successive iterations or compared to the initial error
function, or until an absolute value of the error function falls below a predetermined threshold.
Other iterative algorithms, e.g. sequential quadratic programming (SQP) or sequential least-
squares quadratic programming (SLSQP), can be used with the initial values to generate a
sequence of improving approximate solutions for the plurality of parameters, in which a given
approximation in the sequence is derived from the previous ones. In certain cases, the iterative
algorithm is used to optimise the values of the plurality of parameters. For example, the
updated values are optimised values of the plurality of parameters.

The updating 136 of the initial values of the plurality of parameters corresponding to the ultra
wide-angle camera involves applying one or more respective boundary values for the plurality
of parameters. For example, the boundary values for a rotation angle associated with the
rotation vector are substantially 0 degrees and substantially +5 degrees. Additionally or
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alternatively, the boundary values for a planar component of the translational vector are £ 0.6
of a length of a grid cell. Additionally or alternatively, the boundary values for a height
component of the translational vector are 1800 mm and 2100 mm, or 1950 mm and 2550 mm,
or 2000 mm and 2550 mm above the grid. For example, a lower bound for the camera height
is in the range 1800 to 2000 mm. For example, an upper bound for the camera height is in the
range 2100 to 2600 mm. Additionally or alternatively, the boundary values for the focal length
of the camera are 0.23 and 0.26 cm. Applying the one or more respective boundary values for
the plurality of parameters can mean that the updating, e.g. optimisation, process is performed
in a feasible region or solution space, i.e. a set of all possible values which satisfy the one or
more boundary conditions.

The updated values of the plurality of parameters are electronically stored 137 for future
mapping of pixels in grid section images captured by the ultra wide-angle camera 71 to
corresponding points on the grid 15 via the mapping algorithm. For example, the stored values
of the plurality of parameters are retrieved from data storage and used in the mapping
algorithm to compute the grid coordinates corresponding to a given pixel in a given image of
the grid section captured by the ultra wide-angle camera 71. In examples, the updated values
are stored at a storage location, e.g. in a database, associated with the ultra wide-angle
camera 71. For example, a lookup function or table may be used with the database to find the
stored parameter values associated with any given ultra wide-angle camera employed in the
storage system 1 above the grid 15.

Following calibration of a given camera 71 disposed above the grid 15, an image (e.g.
“snapshot”) of a grid section captured by the camera 71 can be flattened, i.e. undistorted, for
interaction by an operator. For example, using the image-to-grid mapping function as
described, the distorted image 81 of the grid section can be converted into a flattened image
111 of the grid section, as shown in the example of Figure 11. The flattening involves selecting
an area of grid cells to flatten in the distorted image 81, and inputting grid coordinates
corresponding to those cells into the mapping function which determines which respective
pixel values from the distorted image 81 should be copied into the flattened image 111 for the
respective grid coordinates. A target resolution, e.g. in pixels per grid cell, can be set for the
flattened image 111, which may have a ratio corresponding to the ratio of the grid cell
dimensions. Once all the pixel values needed in the flattened image (per the target resolution
and selected number of grid cells) are determined, the flattened image 111 can be generated.

The snapshots may be captured by the camera 71 at predetermined intervals, e.g. every ten
seconds, and converted into corresponding flattened images 111. The most recent flattened
image 111 is stored in storage for viewing on a display, for example, by an operator wishing
to view the grid section covered by the camera 71. The operator may instead choose to retake
a snapshot of the grid shot and have it flattened. The operator can thus select regions, e.g.
pixels, in the flattened image 111 and have those selected regions converted to grid
coordinates based on the image-to-grid mapping function as described herein. In some cases,
the flattened image 111 includes annotations of the grid coordinates for the grid spaces
viewable in the flattened image 111. The flattened images 111 corresponding to each camera
71 may be more user-friendly for monitoring the grid 15 compared to the distorted images 81,
82.
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Mapping real-world points on the grid 15 to pixels in an image captured by a camera is done
by a computational algorithm. The grid point is first projected onto a plane corresponding to
the ultra wide-angle camera 71. For example, at least one of a rotation using the rotation matrix
and a planar translation in the X- and Y-directions is applied to the point having x, y, and z
coordinates in the grid framework structure 14. The focal length f of the ultra wide-angle
camera may be used to project the point with three-dimensional coordinates relative to the
grid 15 onto a two-dimensional plane relative to the ultra wide-angle camera 71. For example,
the coordinates of the mapped point q in the plane of the ultra wide-angle camera 71 are
calculated as g = f - py) + ps, Where pi,,; and p, are the planar x-y coordinates and third

z coordinate of the point p relative to the grid 15, respectively.

The point g projected onto the ultra wide-angle camera plane may be aligned with a cartesian
coordinate system in the plane to determine first cartesian coordinates of the point. For
example, aligning the point with the cartesian coordinate system involves rotating the point, or
a position vector of the point in the plane (e.g. a vector from the origin to the point). The rotation
is thus to align with the typical grid orientation in the images captured by the camera, for
example, but may not be necessary if the X- and Y-directions of the grid are already aligned
with the captured images. The rotation is substantially 90 degrees in examples. As shown in
Figures 8A and 8B, the X- and Y-directions of the grid are offset by 90 degrees with respect
to the horizontal and vertical axes of the image; thus the rotation “corrects” this offset such
that the X- and Y- directions of the grid align with the horizontal and vertical axes of the
captured images.

The grid-to-image mapping algorithm continues with converting the first cartesian coordinates
into first polar coordinates using standard trigonometric methods. A distortion model is then
applied to the first polar coordinates of the point to generate second, e.g. “distorted”, polar
coordinates. In examples, the distortion model comprises a tangent model of distortion given
by v’ = f-arctan(r/f), where r and r' are the undistorted and distorted radial coordinates
of the point, respectively, and f is the focal length of the ultra wide-angle camera.

The second polar coordinates are then converted back into (second) cartesian coordinates
using the same standard trigonometric methods in reverse. The image coordinates of the pixel
in the image are then determined based on the second cartesian coordinates. In examples,
this determination includes at least one of de-centering or re-scaling the second cartesian
coordinates. Additionally or alternatively, the ordinate (y-coordinate) of the second cartesian
coordinates is inverted, e.g. mirrored in the x-axis.

Mapping pixels in an image captured by the camera 71 to real-world points on the grid 15 is
done by a different computational algorithm. For example, the image-to-grid mapping
algorithm is an inverse of the grid-to-image mapping algorithm described above, with each
mathematical operation being inverted.

For a given pixel in the image, (second) cartesian coordinates of the mapped point are
determined based on image coordinates of the pixel in the image. For example, this
determination involves initialising the pixel in the image, e.g. including at least one of centering
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or normalising the image coordinates. As before, the ordinate is inverted in some examples.
The second cartesian coordinates are converted into second polar coordinates using the
mentioned standard trigonometric methods. The use of the label “second” is used for
consistency with the conversions done in the described grid-to-image algorithm, but is
arbitrary.

An inverse distortion model is applied to the second polar coordinates to generate first, e.g.
“‘undistorted”, polar coordinates. In examples, the inverse distortion model is based on a
tangent model of distortion given by r = f - tan(r’/f), where again r’ is the distorted radial
coordinate of the point, r is the undistorted radial coordinate of the point, and f is the focal
length of the ultra wide-angle camera. Thus, in examples, the inverse distortion model used
in the image-to-grid mapping is an inverse function, or “anti-function”, of the distortion model
used in the grid-to-image mapping.

The image-to-grid mapping algorithm continues with converting the first polar coordinates into
first cartesian coordinates. The first cartesian coordinates may be de-aligned, or unaligned,
with a cartesian coordinate system in the plane corresponding to the ultra wide-angle camera.
For example, de-aligning the point with the cartesian coordinate system involves applying a
rotational transformation to the point, or a position vector of the point in the plane (e.g. a vector
from the origin to the point). The rotation is substantially 90 degrees in examples. This rotation
may thus “undo” any “correction” to an offset between the X- and Y- directions of the grid and
the horizontal and vertical axes of the captured images previously described in the grid-to-
image mapping.

Finally, the point is projected from the (second) plane corresponding to the camera 71 onto
the (first) plane corresponding to the grid 15 to determine grid coordinates of the point relative
to the grid.

In examples, projecting the point onto the plane corresponding to the grid 15 involves
computingp = B™1-(f-t — q-z),where B = q “Ra12) — [ Rp2101,2)- In these equations,
p comprises point coordinates in the grid plane, g comprises cartesian coordinates in the
camera plane, and f is the focal length of the ultra wide-angle camera as before. Furthermore,
t is a planar translation vector, z is a distance (e.g. height) between the ultra wide-angle
camera and the grid, and R is a three-dimensional rotation matrix related to a rotation vector.
The rotation vector comprises a direction representing the rotation axis of the rotation and a
magnitude representing the angle of rotation. The rotation matrix R corresponding to the angle-
axis rotation vector can be determined from the vector, e.g. using Rodrigues’ rotation formula.

A mathematical derivation of the function for projecting the undistorted 2D point g from the
camera plane is now provided for completeness. Beginning with the grid to image projection
from above: g = f - p1xy) + p',, Where p’ is the rotated and translated grid point p, i.e.p’ =R -

p+ (b by, z)T, we are aiming to derive p from q. Rearranging and substituting for p’ gives:

plz'qu'p’[x,y]
S R-p+ (ty Ly, Z)T)Z q=f -(R-p+ (s Ly, Z)T)[x,y]
S(R-p)+2)-q=f (R Dy +1)
SR-py-qtz-q=f R Py + -t
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SRPyq—f RPpy=ft—z-q

Since the desired distance of the point p on the grid from the camera is given by the height
parameter z, it can be assumed in the translation of the point that p, = 0. Thus, all p, terms
can be removed to leave:

(R31,2] " Pixy) "9~ f Ry  Pey1 =ft—2-q
S (@ R —f R) Py =f"t—2-¢

By defining a matrix B = (q - R3[12) — f - R), the expression can be further simplified to B -
Pixy] = f -t —z - q, which resolves as the equation above for computing the point p by using
the inverse matrix B~1.

Returning to the calibration process 130, in some cases grid cell coordinate data encoded in
grid cell markers positioned about the grid 15 can be used to calibrate the computed grid
coordinates corresponding to a pixel in a captured image. For example, the grid cell markers
are signboards, e.g. placed in predetermined grid cells 17, with corresponding cell coordinate
data marked on each signboard. The process 130 includes, for example, processing the
captured image to detect a grid cell marker in the image and then extracting the grid cell
coordinate data encoded in the grid cell marker to use in calibrating the mapped grid
coordinates. Each grid cell marker is located in a respective grid cell, for example located
below a respective camera 71 in the field of view 72 thereof.

The image processing may involve using an object detection model, e.g. a neural network,
trained to detect instances of grid cell markers in images of grid sections. A computer vision
platform, e.g. the Cloud Vision API (Application Programming Interface) by Google®, may be
used to implement the object detection model. The object detection model may be trained with
images of grid sections including grid cell markers. In examples where the object detection
model includes a neural network, e.g. a CNN, the description with reference to Figure 9 applies
accordingly.

The grid coordinates — generated by the mapping of pixels in the captured image to points on
the grid section represented in the image — can be calibrated to the entire grid based on the
extracted cell coordinate data. For example, the mapped grid point corresponding to a given
pixel comprises coordinates in units of grid cells, e.g. (x, ¥) with a number x of grid cells in the
X-direction and a number y of grid cells in the Y-direction. However, the grid cells captured by
the camera 71 are of a grid section, i.e. a section of the grid 15, and thus not necessarily the
entire grid 15. Thus the mapped grid coordinates (x, y) relative to the grid section captured in
the image may be calibrated to grid coordinates (x’, y’) relative to the entire grid based on the
relative location of the grid section with respect to the entire grid. The location of the grid
section relative to the entire grid can be determined by extracting the grid cell coordinate data
encoded in a grid cell marker captured in the image, as described.

Figure 10A shows an example model 101 of the tracks generated by processing an image 81
of a grid section, as captured by the ultra wide-angle camera 71, with the trained neural
network 90 to detect the tracks 22 in the image. The model 101 comprises a representation of
a prediction of the tracks 22a, 22b in the distorted image of the grid section as determined by
the neural network 90. Mapping pixels from the track model 101 to corresponding points on
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the grid 15 can be done to calibrate the camera 71 as described. For example, the calibration
involves updating, e.g. optimising, the plurality of parameters associated with the camera 71
that are used for mapping between pixels in the captured images 81, 82 and points on the grid
15.

In examples, the model 101 of the grid section can be refined to represent only centrelines of
the first 22a and second 22b sets of parallel tracks. Thus, the pixels to be mapped from the
track model 101 to corresponding points on the grid 15 are, for example, pixels lying on a
centreline of the first 22a or second 22b sets of parallel tracks in the generated model 101.
The refining involves, for example, filtering the model with horizontal and vertical line detection
kernels. The kernels allow the centrelines of the tracks to be identified in the model 101, e.g.
in the same way other kernels can be used to identify other features of an image such as
edges in edge detection. Each kernel is a given size, e.g. a 3x3 matrix, which can be convolved
with the image data in the model 101 with a given stride. For example, the horizontal line
detection kernel is representable as the matrix:

000
111
00 0

Similarly, the vertical line detection kernel is representable, for example, as the matrix:

010
010
0 1 0]

In examples, the filtering involves at least one of eroding and dilating pixel values of the model
101 using the horizontal and vertical line detection kernels. For example, at least one of an
erosion function and a dilation function is applied to the model 101 using the kernels. The
erosion function effectively “erodes” away the boundaries of a foreground object, in this case
the tracks 22a, 22b in the generated model 101, by convolving the kernel with the model.
During erosion, pixel values in the original model (either ‘1’ or ‘0’) are updated to a value of ‘1’
only if all the pixels convolved under the kernel are equal to ‘1°, otherwise it is eroded (updated
to a value of ‘0°). Effectively all the pixels near the boundary of the tracks 22a, 22b in the model
101 will be discarded, depending upon the size of kernel used in the erosion, such that the
thickness of each of the tracks 22a, 22b decreases to substantially the centreline thereof. The
dilation function is the opposite of the erosion function and can be applied after erosion to
effectively “dilate” or widen the centreline remaining after the erosion. This dilation can
stabilise the centrelines of the tracks 22a, 22b in the refined model 101. During dilation, pixel
values are updated to a value of '1' if at least one pixel convolved under the kernel is equal to
'"1'. The erosion and dilation functions are applied respectively to the original generated model
101, for example, with the resulting horizontal centreline and vertical centreline “skeletons”
being combined to produce the refined model.

In some cases, the generated model 101 may have missing sections of the tracks 22a, 22b,
for example where one or more regions of the grid section viewable by the camera 71 are
obscured. Objects on the grid 15 such as transport devices 30, pillars or other structures may
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obscure parts of the track in the captured image. Thus, the generated model 101 can have
the same missing regions of track. Similarly, false positive predictions of the tracks may be
present in the generated model 101.

To help with these problems, the tracks 22a, 22b present in the generated model (e.g. the
centrelines thereof) can be fitted to respective quadratic equations, e.g. to produce quadratic
trajectories for the tracks 22a, 22b. Figure 10B shows an example of a track of the first set of
tracks 22a in the model 101 being fitted to a first quadratic trajectory 102 and a track of the
second set of tracks 22b in the model 101 being fitted to a second quadratic trajectory 103.
Quadratic track centrelines can then be produced based on the quadratic trajectories, e.g. by
extrapolating pixel values along the quadratic trajectories to fill in any gaps or remove any
false positives in the model 101. For example, if a sub-line generated from a predicted grid
model 101 cannot be fitted to a given quadratic curve together with at least one other line,
then it is very unlikely to be part of the grid and should be excluded.

The quadratic equations, y = ax? + bx + ¢, used for fitting the tracks in the model 101 may
also have specified boundary conditions, for example: 500 < ;—2 < 2500; =99 x 107" <a<
99x107%; -5 < b < 5;and 0 < ¢ < 3200.

In examples, a predetermined number of pixels are extracted from the refined model 101 of
the tracks, e.g. to reduce the storage requirements to store the model. For example, a random
subset of pixels are extracted to give the final refined model 101 of the tracks.

Calibrating the ultra wide-angle cameras 71 using the systems and methods described herein
allows for images captured by the cameras 71 with a wide field of view of the grid 15 to be
used to detect and localise transport devices thereon, for example. This is despite the
relatively high distortion present in the images compared to those of other camera types.

The automatic calibration process outlined above can also reduce the time taken to calibrate
each camera 71 installed above the grid 15 of the storage system compared to manual
methods of tuning the parameters associated with the respective cameras 71. For example,
combining the neural network model, e.g. U-Net, with the customised optimisation function to
implement the calibration pipeline as described can remove more than 80% of errors
compared to standard calibration methods. Furthermore, the calibration systems and methods
described herein have proved to be versatile and consistent enough to calibrate the cameras
in multiple warehouse storage systems, e.g. with differing dimensions, scale, and layout.

Furthermore, the output flattened calibrated image 111 of the grid allows for easier interaction
with the image 111, both by humans and machines, for monitoring the grid 15 and the transport
devices 30 moving thereon. It can therefore be more efficient for instances of
unresponsiveness of a given transport device on the grid to be detected and/or acted on to
resolve operation of the fleet of transport devices 30.
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Provided herein are methods and systems for processing images, e.g. distorted images 81,
captured by the one or more cameras 71 to detect debris on the grid 15 of a grid-based storage
system 1. For example, a location of the detected debris relative to the grid 15 can be
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outputted. Examples of debris include items being stored in the containers, spillages of such
items, and parts of a transport device. For example, an item being stored in a container may
be dropped by the robotic manipulator at a picking station, or fall from a container during
transportation of the container in the storage system. Iltems comprising liquids (e.g. a carton
of milk) may cause spillages on the tracks with or without the vessel itself falling onto the
tracks. For example, a leaking carton or bottle in a container could cause the contents to spill
onto the tracks. In other examples, a transport device 30 may lose a part that falls onto the
tracks, e.g. following a crash with another transport device or fixture on the grid such as a
picking station.

Figure 13 shows a computer-implemented method 130 of detecting debris on the grid 15. The
method 130 involves obtaining 131 and processing 132 image data, representative of an
image of at least part of the grid 15, with an object detection model trained to detect instances
of debris on the grid. For example, the image is captured by a camera 71 with a field of view
72 covering at least part of the grid 15 and the image data is transferred to the computer for
implementing the detection method 130. The image data is received at an interface, e.g. a
CSl, of the computer, for example.

The object detection model may be a neural network, e.g. a convolutional neural network,
trained to perform object detection of debris on the grid 15 of the workspace. The description
of neural networks with respect to Figure 9 therefore applies in these specific examples. In the
present context, the object detection model, e.g. CNN 90, is trained to perform object
identification by processing the obtained image data to determine whether an object of a
predetermined class of objects (i.e. debris) is present in the image. Training the neural network
90, for example, involves providing training images of workspace sections with picking stations
present to the neural network 90. Weight data is generated for the respective (convolutional)
layers 92, 94 of a multi-layer neural network architecture and stored for use in implementing
the trained neural network. In examples, the object detection model comprises a “You Only
Look Once” (YOLO) object detection model, e.g. YOLOv4 or Scaled-YOLOv4, which has a
CNN-based architecture. Other example object detection models include neural-based
approaches such as RetinatNet or R-CNN (Regions with CNN features) and non-neural
approaches such as a support vector machine (SVM) to do the object classification based on
determined features, e.g. Haar-like features or histogram of oriented gradients (HOG)
features.

The method 130 involves determining 133, based on the processing 132, whether the image
includes debris on the grid. For example, the object detection model is configured, e.g. trained
or learnt, to detect whether one or more pieces of debris is present in a captured image of the
grid 15. In examples, the object detection model makes the determination 133 with a level of
confidence, e.g. a probability score, corresponding to a likelihood that the image includes
debris on the grid. A positive determination may thus correspond to a confidence level above
a predetermined threshold, e.g. 90% or 95%. In response to determining 133 that the image
includes the debris, annotation data (e.g. prediction data or inference data) indicative of the
predicted debris in the image is output 134. An updated version of the image, including the
annotation data, may be output as part of the method 130, for example.

In examples, the annotation data outputted as part of the detection method comprises
bounding box data. Figure 12 shows an example of an updated version 83 of an image,
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captured by the camera 71, annotated with a bounding box 120 based on bounding box data.
The bounding box 120 corresponds to debris 122 detected by the object detection model. A
given bounding box comprises a rectangle that surrounds the detected object, for example,
and may specify one or more of an image position, identified object class (e.g. debris) and a
confidence score (e.g. how likely the object is to be present within the box). Bounding box data
defining the given bounding box may include coordinates of two corners of the box or a centre
coordinate with width and height parameters for the box in the image 83. In examples, the
detection method 130 involves generating the annotation data, e.g. representable as a
bounding box 120, for outputting.

In some cases, the object detection model is further trained to classify the debris into one of a
plurality of classes of debris. For example, debris may be classified as a storage item (e.g. a
stock keeping unit or “SKU”), a spillage, or a bot part. Each class may have further subclasses,
for example a storage item may be classified as a genus of storage items such as cartons,
bags, tins, etc. The detection method may therefore involve, in response to determining that
the image includes debris on the grid, processing the image data with one or more object
classification models, trained to classify debris, to determine classification data representative
of a class of debris to which the detected debris belongs.

In examples, the detection system causes different responses to the determination that debris
is present on the grid depending on the class of debris detected. For example, in response to
the classification data being indicative of the detected debris belonging to a first class of debris
(e.g. a storage item), the detection system causes deployment of a service device arranged
to move on the tracks and comprising a cleaning mechanism with means for removing debris
present on the grid. Alternatively, in response to the classification data being indicative of the
detected debris belonging to a second class of debris (e.g. a bot part), the detection system
causes any transport devices on the grid to be shut down, for example by the master controller.
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Additionally, or alternatively, to the deployment of a service device for removing the detected
debris on the grid (described further below), the detection system may cause an exclusion
zone to be set in the workspace. The exclusion zone can be implemented by the master
controller of the transport devices 30, for example, and functions to prohibit the transport
devices 30 operating in the workspace from entering the exclusion zone. For example, the
exclusion zone could be determined around the detected debris, so that the debris can be
attended to, e.g. cleaned up or retrieved from the workspace, at a later time. This allows the
workspace to remain operational while lowering the risk of other transport devices coming into
contact with the debris. In some cases, the determined exclusion zone can be proposed, e.g.
to an operator, before implementation, which can help ensure that the determined exclusion
zone will cover the actual position of the debris in the workspace.

In examples, the detection method involves determining a target image portion of the captured
image based on the annotation data corresponding to the debris detected on the grid. The
target image portion is mapped to a target location in the workspace. Based on the mapping,
an exclusion zone in the workspace is determined into which one or more transport devices
are to be prohibited from entering. The exclusion zone includes the target location mapped
from the target image portion. Exclusion zone data, representative of the exclusion zone, is
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output to a control system, e.g. the master controller of the transport devices, for implementing
the exclusion zone in the workspace.

In examples, the target image portion includes at least part of a debris object in the workspace.
For example, the target image portion is a subset of one or more pixels selected from the
image of the workspace captured by the image sensors. The one or more pixels correspond
to at least part of a debris object present in the captured image ofthe workspace. For example,
the target image portion includes a whole debris object present in the image. In other
examples, the target image portion is only a single pixel corresponding to a part of the debris
object present in the image.

The target image portion is obtained from the object detection system configured to detect
debris present on the grid from images of the workspace. For example, the process involves
the object detection system obtaining the image of the workspace captured by the camera and
determining, using an object classification model, that debris on the grid is present in the image
data. The object classification model, e.g. object classifier, comprises a neural network in
examples, as described in general with reference to Figure 9, which is taken to apply
accordingly. For example, the object classifier is trained with a training set of images of debris
in the workspace to classify images subsequently captured by the image sensors as
containing debris in the workspace or not.

For positive classifications by the trained object classifier, the object detection system can
then output the target image portion. For example, the object detection system may indicate
the target image portion in the original image captured by the camera, e.g. using annotation
data such as a bounding box. Alternatively, the object detection system outputs the target
image portion as a cropped version of the original input image received from the image
sensors, the cropped version including the identified debris in the workspace.

In examples, the object detection system comprises a neural network trained to detect debris
and its location in the image data. For example, the object detection system determines a
region of the input image in which debris is present. The region can then be output as the
target image portion, for example. In such cases, the training of the neural network involves
using annotated images of the workspace indicative of debris in the workspace. The neural
network is thus trained to both classify an object in the workspace as debris, and to detect
where the debris is in the image, i.e. to localise the debris relative to the image of the
workspace.

As described herein, the target image portion output by the object detection system may
include at least part of a debris object in the workspace. For example, the target image portion
is a subset of one or more pixels selected by the object detection system, e.g. on the basis of
a positive localisation of the debris object, from the image captured by the camera.

In examples, the determined exclusion zone comprises a discrete number of grid spaces, e.g.
a plurality of grid cells adjacent to the debris detected on the grid. For example, where the
debris is detected at a junction of the transverse tracks, the determined exclusion zone may
comprise the four grid cells adjoining the junction. Alternatively, where the debris is detected
along a single portion of track, the determined exclusion zone may comprise the two grid cells
either side of the track portion. In both cases, transport devices operating on the grid are
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prohibited from entering the exclusion zone, when implemented, and thus can avoid contacting
the debris on the part of the tracks required to access the excluded grid cells.

In some examples, the exclusion zone may be increased to include a buffer area around the
affected grid cells where the debris is located. In such cases, the buffer area can improve the
effectiveness of the exclusion zone versus only excluding the directly adjacent grid cells to the
mapped location of the debris on the grid. The size of the buffer area may be predetermined,
e.g. as a set area of grid cells to be applied once the immediate grid cells for exclusion are
determined. Additionally or alternatively, the size of the buffer area is a selectable parameter
when implementing the exclusion zone at the control system.

The control system, e.g. master controller, which remotely controls movement of the transport
devices operating in the workspace can implement the exclusion zone based on the exclusion
zone data output as part of the method. For example, each of the one or more transport
devices 30 is remotely operable under the control of the master control system, e.g. central
computer. Instructions can be sent from the master control system to the one or more transport
devices 30 via a wireless communications network, e.g. implementing one or more base
stations, to control movement of the one or more transport devices 30 on the grid 15.

A controller in each transport device 30 is configured to control various driving mechanisms of
the transport device, e.g. vehicle 32, to control its movement. For example, the instruction
includes various movements in the X-Y plane of the grid structure 15, which may be
encapsulated in a defined trajectory for the given transport device. The exclusion zone can
thus be implemented by the central control system, e.g. master controller, so that the defined
trajectories avoid the exclusion zone represented by the exclusion zone data. For example,
when the exclusion zone is implemented, one or more respective trajectories corresponding
to one or more transport devices 30 on the grid are updated to avoid the exclusion zone.

In examples, mapping the target image portion (e.g. one or more pixels in the image) to the
target location (e.g. a point on the grid structure) involves inversing a distortion of the image
of the workspace. For example, where the camera comprises a wide-angle or ultra wide-angle
lens, the lens distorts the view of the workspace. Thus, the distortion is inversed, for example,
as part of the mapping between the image pixels and grid points. An inverse distortion model
may be applied to the target image portion for this purpose. The discussion of an image-to-
grid mapping algorithm in earlier examples applies here accordingly. For example, mapping
the target image portion to the target grid location involves applying the image-to-grid mapping
algorithm described herein.

In some examples, a check is made as to whether the debris has been cleared from the grid
so that the exclusion zone can be lifted, e.g. cancelled, such that the transport devices are
free to enter the corresponding grid cells. For example, further image data, representative of
a further image of at least part of the workspace, is obtained and processed with the object
detection model trained to detect instances of debris on the grid. It is determined, based on
the processing, whether the further image includes debris on the grid. In response to
determining that the further image does not include debris on the grid, the exclusion zone is
caused to be lifted, e.g. by a signal sent to the master controller.

An assistance system may be implemented for assisting the control system to control transport
device movement in the workspace. The object detection system configured to detect debris
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in the workspace is part of the assistance system, for example. An interface of the assistance
system may obtain the target image portion from the object detection system, as described in
examples. The assistance system is configured, for example, to perform the mapping of the
target image portion to the target location in the workspace, determining the exclusion zone,
and outputting the exclusion zone data. For example, the assistance system outputs the
exclusion zone data for the control system, e.g. master controller, to receive as input and
implement in the workspace. The exclusion zone data may be transferred directly between
the assistance system and the control system or may be stored by the assistance system in
storage accessible by the control system.

In embodiments employing the assistance system, the assistance system may be
incorporated into the storage system 1, e.g. the example shown in Figure 7A, which includes
the workspace and control system for controlling transport device movement in the workspace.
As described in examples with reference to Figure 7A, the workspace includes a grid 15
formed by a first set 22a of parallel tracks extending in an X-direction, and a second set 22b
of parallel tracks extending in a Y-direction transverse to the first set in a substantially
horizontal plane. The grid 15 includes multiple grid spaces 17 and the one or more transport
devices 30 are arranged to selectively move around on the tracks to handle a container 10
stacked beneath the tracks 22 within a footprint of a single grid space 17. Each transport
device 30 may have a footprint that occupies only a single grid space 17 so that a given
transport device occupying one grid space does not obstruct another transport device
occupying or traversing adjacent grid spaces.

In some cases, e.g. instead of implementing an exclusion zone around the detected debris, a
signal is sent to the master controller, in response to determining that the image includes
debris on the grid, to cause the master controller to shut down the one or more transport
devices. As described in earlier examples, the shutdown option may be taken based on
detecting a particular class of debris on the grid, e.g. where further classification of the debris
is performed.

Y N 3
HERCREN N G

As described in some examples, a robotic service device may be deployed for removing the
detected debris from the grid. For example, the detection method involves determining a target
image portion of the image based on the annotation data and mapping the target image portion
to a target location in the workspace (as described in other examples). A signal is output for
deploying a service device to the target location in the workspace, e.g. on the grid. The service
device is arranged to selectively move in at least one of the first or second directions on the
tracks. For example, the service device comprises, similarly to the transport devices, a body
mounted on two sets of wheels: a first set of wheels being arranged to engage with at least
two tracks ofthe first set of tracks, and a second set of wheels being arranged to engage with
at least two tracks of the second set of tracks. The first set of wheels are independently
moveable and driveable with respect to the second set of wheels such that only one set of
wheels is engaged with the grid at any one time, thereby enabling movement of the service
device along the tracks to any point on the grid by driving only the set of wheels engaged with
the rails. The robotic service device is provided with features additional to those of the robotic
transport devices, namely the service device comprises a cleaning mechanism comprising
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means for removing debris present on the grid. For example, the cleaning mechanism
comprises at least one of a vacuum cleaning system (e.g. mounted adjacent to each set of
wheels), a brush mechanism (e.g. comprising one or more brushes), and a spray device
capable of discharging suitable detergent adapted to deal with contaminants on the grid.

As described with reference to Figure 8, the system may further comprise one or more robotic
picking stations 50 mounted on top of the grid-based storage system 1.

Figure 7B shows a schematic depiction of the detection system in this context. The grid-based
storage system 1 is of the type previously described, e.g. an automated storage and retrieval
system (or “ASRS”). In this embodiment, there are multiple robotic picking stations 50 mounted
on top of the grid-based storage system 1, e.g. mounted on the grid structure (or simply “grid”)
15 as previously described with reference to Figure 6. Each picking station 50 comprises a
robotic manipulator 52 to transfer items between containers received in designated grid cells
adjacent to the respective picking station 50. For example, the robotic manipulator 52 includes
an end effector for releasably engaging the items to be manipulated and transferred between
containers. The end effector may be a suction device connected to a vacuum source, as per
the embodiment shown in Figure 7B, or another type of end effector such as a jaw gripper or
a finger gripper.

In the embodiment shown in Figure 7B, each robotic manipulator 52 is mounted on a plinth
above a single grid cell and is surrounded by eight grid cells. In other embodiments, a given
robotic manipulator 52 may be surrounded by fewer grid cells or on fewer sides, depending
on the location on the storage system 1. Similarly, Figure 7B shows the robotic picking stations
50 arranged along both of the orthogonal directions of the grid 15, however, in other
embodiments the picking stations 50 may be arranged along only one axis of the grid 15, e.g.
in a row or line. In some cases, there may be clusters of robotic picking stations 50 arranged
at selected locations on the grid 15 of the storage system 1. Disposed above the grid 15 is the
camera 71 forming part of the detection system as described in the other examples.

In this context, the detection systems and methods may determine whether debris detected
on the grid is located on a portion of the tracks adjacent to one or more designated grid cells
of a robotic picking station 50 mounted on the grid 15. For example, a target image portion of
the image is determined, based on the annotation data output from the initial detection, and
mapped to a target location in the workspace as described in other examples. Based on the
mapping, e.g. the determined location of the debris relative to the grid, it is determined whether
the debris is located on a portion of the tracks adjacent to one or more grid cells associated
with a given picking station 50. In response to a positive determination, a signal is outputted
to cause the robotic manipulator 52 of the given picking station 50 to remove the debris from
the tracks.

The previously described detection system may be configured to perform any of the detection
methods described herein. For example, the detection system includes an image sensor to
capture the images of at least part of the grid and an interface to obtain the image data. The
detection system includes the trained object detection model, e.g. implemented on a graphics
processing unit (GPU) or a specialised neural processing unit (NPU), to carry out the

21



10

15

20

25

30

35

40

processing and determining steps of the computer-implemented method 130 of detecting
debris 122 on the grid 15.

The above examples are to be understood as illustrative examples. Further examples are
envisaged. For example, the cameras 71 disposed above the grid 15 have been described as
ultra wide-angle cameras in many examples. However, the cameras 71 may be wide-angle
cameras, which include a wide-angle lens having a relatively longer focal length than an ultra
wide-angle lens, but still introduces distortion compared with a normal lens that reproduces a
field of view which appears "natural" to a human observer.

Similarly, the described examples include obtaining and processing “images” or “image data”.
Such images may be video frames in some cases, e.g. selected from a video comprising a
sequence of frames. The video may be captured by the camera positioned above the grid as
described herein. Thus, the obtaining and processing of images should be interpreted to
include obtaining and processing video, e.g. frames from a video stream. For example, the
described neural networks may be trained to detect instances of objects (e.g. debris) in a video
stream comprising a plurality of images.

In examples employing storage to store data, the storage may be a random-access memory
(RAM) such as DDR-SDRAM (double data rate synchronous dynamic random-access
memory). In other examples, the storage 330 may include non-volatile memory such as Read-
Only Memory (ROM) or a solid-state drive (SSD) such as Flash memory. The storage in some
cases includes other storage media, e.g. magnetic, optical or tape media, a compact disc
(CD), a digital versatile disc (DVD) or other data storage media. The storage may be
removable or non-removable from the relevant system.

In examples employing data processing, a processor can be employed as part of the relevant
system. The processor can be a general-purpose processor such as a central processing unit
(CPU), a microprocessor, a graphics processing unit (GPU), a digital signal processor (DSP),
an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or
another programmable logic device, a discrete gate or transistor logic, discrete hardware
components, or any suitable combination thereof designed to perform the data processing
functions described herein.

In examples involving a neural network, a specialised processor may be employed as part of
the relevant system. The specialised processor may be an NPU, a neural network accelerator
(NNA) or other version of a hardware accelerator specialised for neural network functions.
Additionally or alternatively, the neural network processing workload may be at least partly
shared by one or more standard processors, e.g. CPU or GPU.

Although the term “annotation data” has been used throughout the description, the term is
envisaged to correspond with prediction data or inference data in alternative nomenclature.
For example, the object detection model (e.g. comprising a neural network) may be trained
using annotated images, e.g. images with annotations such as bounding boxes, which serve
as a ground truth for the model, e.g. a prediction or inference with a confidence of 100% or 1
when normalised. These annotations may be made by a human for the purposes of training
the model, for example. Thus, the object detection of the present disclosure can be taken to
involve outputting prediction data or inference data (e.g. instead of “annotation data”) to
indicate a prediction or inference of the debiris in the image. The prediction data or inference
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data may be represented as an annotation applied to the image, e.g. a bounding box and/or
a label. The prediction data or inference data includes a confidence associated with the
prediction or inference of the debris in the image, for example. The annotation can be applied
to the image based on the generated prediction data or inference data, for example. For
instance, the image may be updated to include a bounding box surrounding the predicted
debris with a label indicating the confidence level of the prediction, e.g. as a percentage value
or a normalised value between 0 and 1.

It is also to be understood that any feature described in relation to any one example may be
used alone, or in combination with other features described, and may also be used in
combination with one or more features of any other of the examples, or any combination of
any other of the examples. Furthermore, equivalents and modifications not described above
may also be employed without departing from the scope of the accompanying claims.
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Claims

1. A computer-implemented method of detecting debris in a workspace
comprising a grid formed by a first set of tracks extending in a first direction and a second set
of tracks extending in a second direction transverse to the first direction,

the method comprising:

obtaining image data representative of an image of at least part of the workspace;

processing the image data with an object detection model trained to detect instances
of debris on the grid;

determining, based on the processing, whether the image includes debris on the grid;
and

in response to determining that the image includes debris on the grid, outputting

annotation data indicative of the debris in the image.

2. A method according to claim 1, wherein the method comprises generating the
annotation data.

3. A method according to claim 1 or 2, wherein the method comprises outputting

an updated version of the image including the annotation data.

4, A method according to any preceding claim, wherein the annotation data

comprises a bounding box.

5. A method according to any preceding claim, wherein the object detection model

comprises a convolutional neural network.

6. A method according to any preceding claim, wherein one or more transport
devices are arranged to selectively move in at least one of the first or second direction on the
tracks, and to handle a container stacked beneath the tracks within a footprint of a single grid
cell,

the method comprising:

determining a target image portion of the image based on the annotation data;

mapping the target image portion to a target location in the workspace,;

determining, based on the mapping, an exclusion zone in the workspace, comprising
the target location, in which the one or more transport devices are to be prohibited from

entering; and
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outputting, to a control system, exclusion zone data representative of the exclusion

zone for implementing the exclusion zone in the workspace.

7. A method according to claim 6, wherein the exclusion zone comprises a

plurality of grid cells adjacent to the debris detected on the grid.

8. A method according to claim 6 or 7, comprising:

obtaining further image data representative of a further image of the at least part of the
workspace;

processing the further image data with the object detection model;

determining, based on the processing, whether the further image includes debris on
the grid; and

causing, in response to determining that the further image does not include debris on

the grid, the exclusion zone to be lifted.

9. A method according to any one of claims 1 to 5, wherein one or more transport
devices are arranged to selectively move in at least one of the first or second direction on the
tracks, and to handle a container stacked beneath the tracks within a footprint of a single grid
cell,

the method comprising:

outputting, in response to determining that the image includes debris on the grid, a
signal to a master controller of the one or more transport devices to cause the master controller

to shut down the one or more transport devices.

10. A method according to any preceding claim, comprising:

determining a target image portion of the image based on the annotation data;

mapping the target image portion to a target location in the workspace; and

outputting a signal for deploying a service device to the target location, the service
device being arranged to selectively move in at least one of the first or second direction on the
tracks and comprising a cleaning mechanism with means for removing debris present on the

grid.

1. A method according to any preceding claim, wherein the workspace comprises
one or more picking stations mounted on the grid, each picking station comprising a robotic
manipulator to transfer items between containers received in respective grid cells adjacent the
picking station,

the method comprising:
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determining a target image portion of the image based on the annotation data;

mapping the target image portion to a target location in the workspace,;

determining, based on the mapping, whether the debris detected on the grid is located
on a portion of the tracks adjacent to one or more grid cells associated with at least one of the
one or more picking stations; and

outputting a signal, in response to determining that the debris is located on a portion
of the tracks adjacent to one or more grid cells associated with a given picking station of the
one or more picking stations, to cause the robotic manipulator of the given picking station to

remove the debris from the tracks.

12. A method according to any one of claims 1 to 5, wherein the method comprises:

processing, in response to determining that the image includes debris on the grid, the
image data with one or more object classification models trained to classify debris; and

determining classification data, representative of a class of debris to which the

detected debris belongs, based on the processing.

13. A method according to claim 12, comprising:

deploying, in response to the classification data being indicative of the detected debris
belonging to a first class of debris, a service device arranged to move on the tracks and
comprising a cleaning mechanism with means for removing debris present on the grid; or

shutting down, in response to the classification data being indicative of the detected
debris belonging to a second class of debris, any transport devices on the grid, the transport
devices being arranged to move on the tracks to transport containers, stacked beneath the

tracks, between grid cells.

14. A data processing apparatus comprising means for carrying out the method of

any preceding claim.
15. A computer program comprising instructions which, when the program is
executed by a computer, cause the computer to carry out the method of any one of claims 1

to 13.

16. A computer-readable data carrier having stored thereon the computer program
of claim 15.
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17. A detection system to detect debris in a workspace comprising a grid formed
by a first set of tracks extending in a first direction and a second set of tracks extending in a
second direction transverse to the first direction,
the detection system comprising:
an image sensor to capture an image of at least part of the workspace; and
an object detection model trained to detect instances of debris on the grid;
wherein the detection system is configured to:
obtain image data representative of the image;
process the image data with the object detection model;
determine, based on the processing, whether the image includes debris on the
grid; and
output, in response to determining that the image includes debris on the grid,
annotation data indicative of the debris in the image.

18. A detection system according to claim 17, wherein the detection system

includes a wide-angle or ultra wide-angle camera comprising the image sensor.

19. A detection system according to claim 17 or 18, wherein the object detection

model comprises a convolutional neural network.
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