«» UK Patent Application .,GB ,2526367

(13)A

(21) Application No: 1409227.4

(22) Date of Filing: 23.05.2014

(71) Applicant(s):
International Business Machines Corporation
New Orchard Road, Armonk 10504, New York,
United States of America

(72) Inventor(s):
Jan Leonhard Camenisch
Anja Lehmann
Gregory Neven

(74) Agent and/or Address for Service:
IBM United Kingdom Limited
Intellectual Property Law, Hursley Park,
WINCHESTER, Hampshire, SO21 2JN,
United Kingdom

(43)Date of A Publication 25.11.2015
(51) INT CL:
GO6F 21/30 (2013.01) HO04L 9/08 (2006.01)
HO04L 9/32 (2006.01)

(56) Documents Cited:
US 20030221102 A US 20030163737 A
(58) Field of Search:

INT CL GO6F, HO4L
Other: ONLINE: WPI, EPODOC, INSPEC

(54) Title of the Invention: Password-based authentication

Abstract Title: Password based authentication

(57) Apparatus and methods are provided for use in multi-server authentication of user passwords. A password
authentication system 1 includes an access control server 2 for communication with user computers 3 via a network
4. The access control server 2 controls access by the user computers 3 to a resource 5 in dependence on
authentication of user passwords associated with respective user IDs. The system 1 further includes a plurality n of
authentication servers 6, storing respective secret values, for communication with the access control server 2 via
the network 4. For each user ID, the access control server 2 stores a first ciphertext produced by encrypting the
user password associated with that ID using a predetermined algorithm dependent on the secret values of the
authentication servers 6. The access control server 2 and authentication servers 6 are adapted such that, in
response to receipt from a user computer 3 of a user ID and an input password, the access control server 2
communicates with a plurality k < n of the authentication servers 6 implement a password authentication protocol,
requiring use by the k authentication servers of their respective secret values, in which a second ciphertext is
produced by encrypting the input password using said predetermined algorithm and the access control server 2
uses the first and second ciphertexts to determine whether the input password equals the user password for the
received user ID. If so, the access control server 2 permits the user computer 3 access to the resource 5.

a

2

1
1
——t

e
"
’

Authentication server S,
.

comms I/F 7| memory _I

H| control logic
8

- Uid:CT1

Access Control Server

! S
Authentication server S, |]

comms I/F 11}

memory 13

- secret vy %6

auth” logic
12

o™
o

Figure 1

vV [9€9¢S¢ 99

|n

1/9

P ke
>4 -

User PC

User PC I

User PC s

[~

User PC "

comms I/F 7 memory 9

I

1

1

1

1

1

1

I

control logic ,
! - Uid:CT1
| 8

1

1

1

1

1

1

1

Access Control Server

input user 21

ID & user

!

password
(Uid, pwd)

store Uid:CT1
at AC server

24

y

AC server

N 22

|

instigates setup
protocol with
n auth® servers

n auth™ servers
store Uid

(~25

\
generate first

ciphertext CT1

encrypting pwd

23

Figure 2

>

recerve user |31

ID & input
password
(Uid , pwd’)

AC server 32

instigates auth”
protocol with
k auth” servers

y

k auth® servers 33

use secrets v;1in
auth” protocol

v

second 34

ciphertext CT2
generated

2/9

l

AC server uses 35
CT1 & CT2
to check if
pwd’ = pwd

AC server ‘2

(kAC)

permit S 37 deny
access access
Figure 3
Authentication
Servers
6
S, (k1 k2)F
i
;6
S, (kl,,k2,)

Figure 4

S; (k1,k2))

38

3/9

Authentication
Setup Protocol #1 Servers
6
S, k1, k2
AC server
¢ :
(a) Uid, pwd (kac) g 6
% . QI Ts, wryk2yf
User
. ————— 0
(b) L, = PRF(PRF(]CAC, Uid), pwd) S] (k]l, kZl) s
(d) t1,=12,@13, where:
t2;= PRF(kl, t,,)
13;= PRF(k2;, Uid)
Figure Sa
Setup Protocol #1 AutSheiréggstion
6
S, (k1,,k2)F
(e) send: Uid:b=0
AC server ‘2 t1, .
1
(kac) I 6
| t, S, (k1 k2,) [
Uzd:tpwd ‘t]\
1 Uid: b=0
e 6
(f) tpwd:tJIGt]]@“‘et]n S] (k]l,kZI);
Uid: b=0

Figure 5b

4/9

Password Authentication Authentication
Protocol #1 Servers
;6
S, k1, k2,)
Uid:b=0
AC server »
$ i
(a) Uid, pwd’ | (kxc) : 6
% > . (C) Ulda ttest SZ (k12, k22) ;
vid:t,,.,
User Uid:b=0
—————————————— ;6
(b) t,,,, = PRE(PRF(k -, Uid), pwd’) S (k1y,k2y)
Uid:b=0

Figure 6a

(d) throttling: b=1?

Password Authentication Authentication
Protocol #1 Servers
;6
S, (kI ,k2,)
(f) send: Uid:b=0
ACserver » s,
: !
(knc) ;6
. 15 S, (k1 23 kZz)
Uzd:tpwd \
31 Uid: b=0
—— ———— N}
(g) compute 7, S, (kl,, k2,) '3
(h) testifz,,, = 17,4 Uid: b=0

(e) compute ts; = t1; with
12,= PRF(kl , t,,,)

Figure 6b

Update Protocol #1

AC server 92

(k AC)
Uid:t,,,

(f) t’pwd:tpwde Lt] @... @un

AC server 92

(tpk)

5/9

Authentication
Servers

6
S, (k1,,k2’
Uid:b=0

®Oyuvid g, ki, k27,

Uid: b=0

— — P4
S, k1, k2’ F
Uid: b=0
(a) compute tu; = 13,
& u,=tu, + 13,
Figure 7
Authentication
Servers
6
S, @sk) [
1
!
6
S, Usky) [
—_—— .0
S, (tsky) d

Figure 8

6/9

Setup Protocol #2 Autsheiirrétégstion

6
s, ask) [
vid: C,,;. b
AC server 52 IP
1
@Udpvd | apk) | %) Uid, C,,g 0
: S, (tsk,)
User Uid: prd

Uid: C

pwd >

b

= e ()
(0) Gy = TEney(pwd) S, (tsky) g

vid: C,,;, b
Figure 9
. L. Authentication
Password Authentication Protocol #2 Servers
6
S, (tsk,) d
vid:C,, ., b
AC server 52 Ip
1
@ Uid. pwd | @pk) |4 vid, C,, 50
o S, (tsk,)
User Uid: prd
vid:C,,4, b

(b) C,,pr = TEnC, i (pwd")
(©) Crost = Cpya® Cpra

e ()
S, Usky) [

Uid:C

pwd >

b

Figure 10a

7/9

Password Authentication Protocol #2

Authentication
Servers

S, (tsk,)

ray

Uid: C

pwd

b

AC server 52

1
1

(tpk) (g) Uid, d,
vid:C,,,

S, (tsk,)

Uid: C

pwd * 6
S, (tsky) d
vid. C b

pwd

b

(h) TDec, (Cypypr d; -.d) = 17

(e) throttling: b=1?
(f) use tsk, to compute d,

Figure 10b

Authentication
AC server Server S, ... S,

(a) receive Uid, pwd’
(b) Cpy=Cpa © TEnc,, (1/pwd’)
(c) produce proof II

(d) send Uid, 1, C

(Uid,gn, Cog) o

Figure 11a

8/9

: Authentication
AC server Server S, ... S,
(e) receive Uid, 11, C,,,
) check if b= 0
(2) validate proof IT
(h) compute randomized
value C;
) < i send hash value
: h=H(C, Uid)
(j) forward hash hpyeooyifyy >
values
(k) < G send randomized
: value C,
(1) forward S ECHI >
randomized :
values C,

Figure 11b

Authentication
AC server : Server S, ... S,
... e AR AN RN EEEEEEEEEENEEEEEEEREEEREREEEEE
(m) receive C,,..., C,,,
(n) check if b= H(C, Uid)
(0) compute Cp, &
decrypt Cr— d,
d d .
(p) < send (l;S’) send (d;, s;)
(@) compute C, &
check if Cp decrypts
to unity
Figure 11c
Unblock Protocol
Authentication
AC server Server S, ... S,
(a) < send proof request

(b) send stored values (Uid, Cy, S,-,é dicq 4 1;
Uid, Cy, 5, dicy. 111 :

(©) verify s, = MAC(Uid, C,) &
: Tdectpk(CR, dieg 1)

(d) set b =0/1

Figure 12

10

15

20

25

30

PASSWORD-BASED AUTHENTICATION

This invention relates generally to password-based authentication in data processing
systems whereby access to a resource is controlled in dependence on authentication of user
passwords. Multi-server systems are provided for authenticating user passwords, together
with corresponding methods, component servers and computer programs for configuring
the servers.

Passwords are the most prevalent mechanism for user authentication in data
processing systems. For a long time, phishing attacks and keystroke-logging malware on
user computers were the preferred methods for hackers to capture large numbers of user
passwords. More recently, however, the main risk to password security seems to stem from
server compromise. In 2012 alone, tens of millions of passwords were reported lost in this
way, with major data breaches occurring at various popular websites.

In conventional password-based authentication systems, users connect to a server
which controls access to the protected resource and maintains a database of user IDs, e.g.
user names, with their associated user passwords stored in hashed form. On receipt of a
user ID and input password, the access control server hashes the input password and checks
whether the result equals the stored password-hash for that user. However, all password-
hashes can be stolen by hacking the access control server (or associated password-hash
database). Storing passwords in hashed form offers little protection due to the efficiency of
offline attacks using dictionaries or brute-forcing of the message space. The National
Institute of Standards and Technology has estimated that human-memorisable passwords of
even sixteen characters length have only 30 bits of entropy, corresponding to about one
billion possible combinations. With current graphical processors that can test more than
eight billion combinations per second, security should be considered lost as soon as an
offline attack can be mounted against the password data.

To reduce exposure to offline attack through server compromise, password-based
authentication can be performed by a plurality of servers. Authentication protocols in
which the password-based authentication data is split between multiple servers are known,
for example, as part of authenticated key-exchange or authenticated secret-sharing
protocols. Prior multi-server password-authentication systems require the user computer to
interact with all servers in the authentication protocol since information of all servers is
required for authentication. Two-server password-based authentication systems are also

known. “RSA Distributed Credential Protection”, RSA Security, Whitepaper 2012,

10

15

20

25

30

http://www.emc.com/collateral/software/white-papers/h11013-rsa-dcp-0812-wp.pdf,
describes an example of such a system. Here, the password-based authentication data is
split between two servers. The user sends her password, in randomized and split form, to
the two servers which then interact to verify the password, granting access if the password
is correct.

Improvements in multi-server password authentication systems would be highly
desirable.

An embodiment of a first aspect of the present invention provides a system
comprising:

an access control server for communication with user computers via a network and
controlling access by the user computers to a resource in dependence on authentication of
user passwords associated with respective user IDs; and

a plurality n of authentication servers, storing respective secret values, for
communication with the access control server via the network;

wherein the access control server stores, for each said user ID, a first ciphertext
produced by encrypting the user password associated with that ID using a predetermined
algorithm dependent on said secret values;

and wherein the access control server and authentication servers are adapted such
that, in response to receipt from a user computer of a said user ID and an input password,
the access control server communicates with a plurality k£ < n of the authentication servers
to implement a password authentication protocol, requiring use by the & authentication
servers of their respective secret values, in which a second ciphertext is produced by
encrypting the input password using said predetermined algorithm and the access control
server uses the first and second ciphertexts to determine whether the input password equals
the user password for the received user ID, if so permitting access to the resource by the
user computer.

In systems embodying this invention, the access control server provides both the
access point to the resource and also centralized control of a multi-server password-based
authentication protocol for connecting users. Implementation of this protocol requires
cooperation of k < n authentication servers with the access control server, and these
authentication servers must use their respective secret values in this process. However,
validity of an input password is determined centrally by the access control server based on
communications with the k servers. The protocol does not require the access control server

(or any other server) to reconstruct the user password. Authentication is based on use of the

10

15

20

25

30

first and second ciphertexts which are produced, respectively, from the authentic user
password and the input password attempt using the predetermined encryption algorithm
dependent on the secret values of the authentication servers. Systems embodying the
invention may provide secure and efficient password-based authentication. User computers
need only communicate with the access control server and are not otherwise involved in
implementation of the authentication protocol. Embodiments of the invention ay offer
security against offline attacks and also permit implementation of an efficient update
mechanism, whereby secret values can be updated to reinforce security, e.g. periodically or
in response to a known security breach. Additional advantages of systems embodying the
invention will be explained in connection with particular embodiments described below.

The secret values of the servers may comprise cryptographic keys, or key-shares, or
any other strong secrets known only to the respective servers in the system. The encryption
algorithm used to generate the ciphertexts may depend on these secret values, directly or
indirectly, in a variety of ways. For example, the secret values may be used in the
algorithm, or the algorithm may use a public key of a cryptographic key-pair and the secret
values may comprise respective key-shares of a secret key of the key-pair. The second
ciphertext may be produced by using the encryption algorithm to encrypt the input
password directly or after further processing of the input password to produce some
function thereof.

In a first preferred embodiment, the authentication protocol is implemented by the
access control server and k& = n authentication servers. The first ciphertext comprises
pseudorandom values derived from: the n secret values of the authentication servers; the
user password for a user ID; and preferably a further secret value stored by the access
control server. To implement the password verification protocol when a user logs in, the
access control server orchestrates production of the second ciphertext, in like manner to the
first ciphertext, from the secret values and the input password. The access control server
then simply compares the first and second ciphertexts to determine if the input password
equals the user password for the user ID.

In a second preferred embodiment, the first ciphertext is produced using a
homomorphic encryption algorithm for encrypting the user password under a public key of
a cryptographic key-pair. The secret values of the authentication servers comprise
respective key-shares of a secret key of the key-pair. To implement the password
authentication protocol at user log-in, the access control server produces the second

ciphertext from the input password using said homomorphic encryption algorithm. The

10

15

20

25

30

access control server then produces a test value by combining, via an operation O, the
second ciphertext and the first ciphertext for the received user ID, the operation © being
such that, due to the homomorphism of said encryption algorithm, the test value decrypts to
a predetermined value if the input password equals the user password. The test value is sent
to the k authentication servers which use their secret key-shares to produce respective
decryption share dependent on the test value. The access control server then determines
from the k decryption shares whether the test value decrypts to said predetermined value,
and hence the input password equals the user password. If the homomorphic encryption
algorithm is a threshold encryption algorithm requiring less than n decryption shares for
decryption, the password authentication protocol can be implemented using k < n
authentication servers.

For maximum security against offline attacks, the access control server sends the
received user ID to each authentication server in the password authentication protocol of
preferred embodiments, and each authentication server implements a throttling mechanism
for each user ID. Throttling mechanisms are well known in cryptography, providing
procedures for monitoring logins by system users and determining based on login behavior
if any particular user account should be blocked. Throttling mechanisms generally block
user accounts if the login behavior satisfies a predefined criterion indicative of potentially
malicious action, e.g. if more than a threshold number of login requests are made within a
given time and/or with an incorrect password. The first preferred embodiment detailed
below implements a throttling mechanism based on user login frequency. The second
preferred embodiment can implement throttling based on a combination of login frequency
and incorrect password entry.

In preferred embodiments, the access control server and authentication servers are
further adapted to implement a password setup protocol for user accounts. In particular, the
access control server and authentication servers can be adapted such that, in response to
initial input of a said user password and associated user ID in a setup operation, the access
control server communicates with the » authentication servers to implement a password
setup protocol, comprising generation of said first ciphertext for that user ID and storage of
the first ciphertext at the access control server, to permit subsequent implementation of said
verification protocol for that user ID. The preferred embodiments also provide an efficient
update operation allowing secret values to be updated as required.

An embodiment of a second aspect of the invention provides a server comprising

memory, a communications interface, and control logic adapted to configure the server to

10

15

20

25

30

implement an access control server of a system according to the first aspect of the
invention, wherein said memory stores said first ciphertext for each user ID in use.

An embodiment of a third aspect of the invention provides a server comprising
memory, a communications interface, and control logic adapted to configure the server to
implement an authentication server of a system according to the first aspect of the
invention, wherein said memory stores said secret value of the authentication server in use.

Further aspects of the invention provide computer programs comprising program
code means for causing a computer to implement, respectively, the control logic of a server
according to the second or third aspects of the invention. The term “computer” is used in
the most general sense and includes any device, component or system having a data
processing capability for implementing a computer program. Moreover, a computer
program embodying the invention may constitute an independent program or program set
or may be an element of a larger program or program set, and may be supplied, for
example, embodied in a computer-readable medium such as a disk or an electronic
transmission for loading in a computer. The program code means of the computer program
may comprise any expression, in any language, code or notation, of a set of instructions
intended to cause a computer to perform the method in question, either directly or after
either or both of (a) conversion to another language, code or notation, and (b) reproduction
in a different material form.

An embodiment of another aspect of the invention provides a method for
controlling access by user computers to a resource in dependence on authentication of user
passwords, associated with respective user IDs, at an access control server arranged for
communication via a network with the user computers and a plurality #n of authentication
servers. The method comprises:

storing respective secret values at the n authentication servers;

for each said user ID, storing at the access control server a first ciphertext produced
by encrypting the user password associated with that ID using a predetermined algorithm
dependent on said secret values;

at the access control server, in response to receipt from a user computer of a said
user ID and an input password, communicating with a plurality & < n of the authentication
servers to implement a password authentication protocol, requiring use by the &
authentication servers of their respective secret values, in which a second ciphertext is

produced by encrypting the input password using said predetermined algorithm and the

10

15

20

25

30

access control server uses the first and second ciphertexts to determine whether the input
password equals the user password for the received user ID; and

at the access control server, permitting access to the resource by the user computer
if the input password equals the user password.

Where features are described herein with reference to an embodiment of one aspect
of the invention, corresponding features may be provided in embodiments of another aspect
of the invention as appropriate.

Preferred embodiments of the invention will now be described, by way of example,
with reference to the accompanying drawings in which:

Figure 1 is a schematic illustration of a data processing system including a
password authentication system embodying the invention;

Figure 2 indicates features of a setup procedure in operation of the password
authentication system;

Figure 3 indicates features of a login procedure in operation of the password
authentication system;

Figure 4 illustrates configuration of a first embodiment of the password
authentication system for implementing a first password authentication protocol;

Figures 5a and 5b indicate steps of a setup protocol in the first embodiment;

Figures 6a and 6b indicate steps of the password authentication protocol in the first
embodiment;

Figure 7 indicates steps of an update protocol in the first embodiment;

Figure 8 illustrates configuration of a second embodiment of the password
authentication system for implementing a second password authentication protocol;

Figure 9 indicates steps of a setup protocol in the second embodiment;

Figures 10a and 10b indicate steps of a simple implementation of the password
authentication protocol in the second embodiment;

Figures 11a to 11c indicate steps of a more sophisticated implementation of the
password authentication protocol in the second embodiment; and

Figure 12 indicates steps of an unblock protocol in the second embodiment.

Figure 1 shows a simple example of a data processing system incorporating an
authentication system embodying the invention. The authentication system, indicated
generally at 1, includes an access control server 2 arranged for communication with a
plurality of user computers 3 via a network 4. The network 4 may in general comprise one

or more component networks or internetworks, including the Internet. The user computers

10

15

20

25

30

3 are general-purpose personal computers (PCs) in this example, but may equally be
implemented by other computer devices such as mobile phones, tablet computers, personal
music players, palmtop devices, etc. The access control server 2 controls access by the user
computers 3 to a resource, in this example a database 5. Access is permitted in dependence
on authentication of user passwords associated with respective user IDs, e.g. user names,
which are input by users via PCs 3 in operation.

The authentication system 1 also includes a plurality of authentication servers 6,
labelled Sy, S2, ..., Sy, arranged for communication with the access control server 2 via
network 4. The n authentication servers 6 are adapted to cooperate with the access control
server 2 to implement a multi-server password authentication protocol detailed below. The
number n of authentication servers can vary for different embodiments, but a typical
system may employ between two and ten authentication servers depending on the particular
password authentication protocol and required level of security. In general, the
authentication servers 6 may be located at the same location as access control server 2 or at
one or more different locations, and may be controlled by the same entity as the access
control server or by one or more different entities. Distribution and control of the servers 2,
6 can thus be selected according to particular security requirements for a given system.

Each of the access control and authentication servers 2, 6 may be embodied as a
general-purpose computer configured to implement the respective server functionality.
Access control server 2 is shown simply here as comprising a communications interface
(I/F) 7 for communications over network 4, control logic 8, and memory 9. The control
logic 8 controls operation of server 2 generally and provides functionality for implementing
steps of the password authentication and related protocols detailed below. Memory 9 stores
various data used by the control logic in operation. This includes a first ciphertext CT1 for
the user ID (Uid) of each authorized user of the system. Each authentication server 6 is
similarly shown as comprising a communications interface 11, authentication logic 12
providing functionality for use in the protocols detailed below, and memory 13 which
stores data used by logic 12 in operation. This includes a secret value v; known only to that
particular server S; in the system. In general, the control logic 8 and authentication logic 12
could be implemented in hardware or software or a combination thereof. In this example,
the logic 8, 12 is conveniently implemented by software running on the respective
computer 2, 6 for causing the computer to perform the functions described.

Figure 2 is a generalized block diagram indicating key features of a setup procedure

for setting up a user account in operation of the password authentication system 1. On

10

15

20

25

30

initiation of the setup operation as indicated at step 20, the user ID Uid and associated user
password pwd to be used for subsequent authentication of a user are input to access control
(AC) server 2 in step 21. In a typical application, the user ID and password are entered by
the user here via a user computer 3, and are sent via network 4 to AC server 2. The AC
server responds in step 22 by instigating a password setup protocol. This protocol is
implemented via communication of AC server 2 and the » authentication servers S; to S.
The setup protocol involves generation of the first ciphertext CT1 for the input user ID as
indicated at step 23. The ciphertext CT1 is produced by encrypting the user password pwd
using a predetermined algorithm which is dependent on the secret values v; to v, of the #
authentication servers. This is explained further below. The first ciphertext CT1 is stored
by the AC server 2 with the user ID Uid for the authorized user as indicated at step 24. The
n authentication servers 6 store the user ID Uid as indicated at step 25 (typically with one
or more other items such as an “account-blocked” flag controlled by a throttling
mechanism discussed further below). Note that the order of steps 24 and 25 may vary in
different implementations as illustrated below. The password setup protocol is then
complete and the user account is ready for use in a subsequent login procedure.

Figure 3 is a generalized block diagram giving an overview of the login procedure
in operation of the password authentication system 1. The login procedure begins at step 30
when a user operating a user computer 3 inputs a password pwd’ (i.e. an attempt at the user
password pwd) and user ID Uid. The inputs Uid, pwd’ are sent over network 4 and received
by the AC server 2 in step 31. The AC server responds in step 32 by instigating a
verification protocol for authenticating the input password pwd’. This password
authentication protocol is implemented via communication of AC server 2 with a plurality
k < n of the authentication servers S; to S», where the value of k£ depends on the particular
protocol implementation. Successful operation of the protocol requires the & the
authentication servers to use their respective secret values v; as indicated at block 33 in the
figure. The protocol involves generation of a second ciphertext CT2 as indicated at block
34. This ciphertext CT2 is produced in system 1 by encrypting the input password pwd’
using the algorithm used in the setup protocol to produce the first ciphertext CT1. The AC
server 2 then users the first and second ciphertexts CT1, CT2 to determine in step 35
whether the input password pwd’ equals the user password pwd for the user ID received in
step 31. If so (Y at decision block 36), the AC server 2 permits the user access to the
database 5 as indicated at step 37, and the login process in complete. If the input password

pwd’ is invalid, (“N” at decision block 36), the AC server 2 denies access at step 38 and

10

15

20

25

30

may notify the user accordingly. Note, again, that the order of steps indicated by blocks of
Figure 3 may vary in different implementations as illustrated by the examples below.

A first embodiment of authentication system 1, adapted for implementing a first
password authentication protocol, will now be described in detail with reference to Figures
4 to 7. The first password authentication protocol is based on symmetric cryptography
using a pseudorandom function and XOR (i.e. modulo-2 addition) operations. Figure 4
illustrates an initial configuration of the system servers in this embodiment. Each of the n
authentication servers S to S, stores two symmetric keys denoted by k/; and k2;. (The key
k2; here corresponds to the secret server value v; discussed above. The key k/; used here
could be replaced by any unique server ID as discussed further below.) In this embodiment,
the AC server stores a further secret value, here a further symmetric key denoted by kac.
The system operates with secure communications between the servers 2, 6, i.e. via
authenticated and confidential channels with forward-secrecy. These properties can be
achieved in known manner, e.g. using SSL (Secure Sockets Layer) or TLS (Transport

Layer Security) protocols.

Setup Protocol Embodiment #1

Figures 5a and 5b indicate successive stages of the setup protocol in this
embodiment. The operation begins, as indicated at (a) in Figure 5a, when a user supplies a
user ID Uid and user password pwd to the AC server 2 via a user PC 3. In step (b), the
control logic 8 of AC server 2 produces an initial pseudorandom value #;; which encrypts
the user password pwd via a pseudorandom function PRF. The initial pseudorandom value
tin also encrypts the secret key kac of the AC server and (to avoid collision if a different
user picks the same password) the user ID Uid. Specifically in this example, the initial
pseudorandom value #;, is computed as

tin <— PRE(PRF(kac, Uid), pwd).
In step (c), the AC server sends the user ID Uid and the initial pseudorandom value #, to
the n authentication servers Sy to S, via communications interface 7 and network 4. The
values (Uid, pwd) are received by the authentication logic 12 of each authentication server
6 via the communications interface 11.

In the next step indicated at (d) in Figure 5a, the authentication logic 12 of each
server S; uses the initial pseudorandom value 7, to produce a respective first pseudorandom
value #/;. This first pseudorandom value comprises a modulo-2 sum of second and third

pseudorandom values #2; and 73; respectively. The second pseudorandom value #2; encrypts

10

15

20

25

30

10

the initial pseudorandom value ¢, via the pseudorandom function PRF. The second
pseudorandom value #2; also encrypts, via the pseudorandom function PRF, a server ID for
the respective authentication server, where the server key k/; constitutes the server ID here.
The third pseudorandom value encrypts, via the pseudorandom function PRF, the secret
value v; = k2; of the authentication server S; and the received user ID Uid (which is
associated with the user password encrypted in the initial pseudorandom value 7).
Specifically:

tli—12; D 13

<« PRF(k/;, tin) @ PRE(k2;, Uid).

where @ represents the modulo-2 addition (XOR) operation. The second term #3;1in this
formula provides the basis for a proactive update procedure discussed further below.

In the next stage of the setup operation as indicated at (e) in Figure 5b, each
authentication server S; sends its respective first pseudorandom value #/; to the AC server 2.
The control logic 8 of AC server 2 then produces the first ciphertext CT1 from the # first
pseudorandom values #/;. The first ciphertext CT1, denoted by #,wq in this embodiment, is
given by:

towa =tl1 Dt tl;.. Dt
It will therefore be seen that the first ciphertext in this embodiment comprises a modulo-2
sum of the n first pseudorandom values #/;, each of which encrypts, via the pseudorandom
function, the secret value k2; of a respective authentication server and the initial
pseudorandom value #;; which, in turn, encrypts the user password pwd the secret value kac
of the AC server 2.

As indicated in Figure 5b, at the end of the setup protocol for this user, the AC
server 2 stores the first ciphertext 7w for the user ID Uid in its memory 9. Memory 13 of
each authentication server 6 stores Uid and an “account-blocked” bit b = {0, 1} which
indicates whether the user account is blocked (b = 1) or open (b = 0). Initially, this bit is set
to b = 0. The individual pseudorandom values t, /; are not stored by any of the servers 2,

6 and are deleted after use in setting up the user account.

Password Authentication Protocol Embodiment #1

In a subsequent login for the user account, the AC server 2 communicates with k =
n authentication servers 6 to implement the password authentication protocol. Figures 6a

and 6b indicate successive stages of the password authentication protocol in this

10

15

20

25

30

11

embodiment. Operation begins, as indicated at (a) in Figure 6a, when the user supplies the
user ID Uid and inputs a user password pwd’ via a user PC 3. On receipt of the values (Uid,
pwd’), the AC server 2 checks if a user record (Uid, tywa) exists in memory 9. If not, login
fails. If so, the subsequent operation corresponds generally to the setup protocol above but
uses the input password pwd’. Hence, in step (b) the AC server logic uses the input
password pwd’ to produce a test pseudorandom value #.;: which corresponds to the initial
pseudorandom value #;». The test pseudorandom value fzs is thus produced in like manner
to initial pseudorandom value #;; but uses the input password pwd’ instead of the user
password pwd. In step (c), the AC server sends the test pseudorandom value #.s to each
authentication server Sy to S, with the received user ID Uid. At this point, as indicated at
step (d), each authentication server 6 checks whether the user account has been blocked
(i.e. flag b for Uid is set to b=1) due to operation of a throttling mechanism. In particular,
the authentication logic 12 of each server 6 is adapted to implement a throttling mechanism
for each user ID Uid based on frequency of user login requests. Various such throttling
measures are known in the art and any convenient technique can be employed here. For
example, an account may be blocked if more than a threshold number of login requests are
received, or are received within a given time limit. Alternatively or additionally, for
example, a gradually-increasing time limit may be applied for servicing user requests if
suspicious login behaviour is identified, e.g. if a particular number or rate of requests is
exceeded. The throttling mechanism may therefore block a user account temporarily or
permanently, the latter requiring unblocking by an authorised party or renewal of a user
account, depending on the particular implementation. In any case, if the user account is
blocked at any authentication server 6, the login operation fails. If no server has blocked
the user account, then the login operation can proceed.

In the next stage of the authentication protocol as indicated at (¢) in Figure 6b, each
authentication server S; uses the test pseudorandom value #.s: to produce a respective server
pseudorandom value #s; which corresponds to the first pseudorandom value 7/; above. That
is, the server pseudorandom value ts; is produced in like manner to the first pseudorandom
value ¢/, but uses the test pseudorandom value #.s instead of the initial pseudorandom
value #;,. Hence:

tsi < PRE(kl;, tiesr) @ PRE(k2;, Uid).
In step (f), each authentication server S; sends its server pseudorandom value 7s; to the AC

server 2. In step (g), the AC server produces the second ciphertext CT2 from the n server

10

15

20

25

30

12

pseudorandom values ts;. The second ciphertext CT2, denoted by 7we’ in this embodiment,
is thus given by:
towa» =151 D ts2D ts3 ... ts,

To determine whether the input password is valid (pwd’ = pwd), the AC server logic simply
compares the first and second ciphertexts in step (h) to determine if #pwa’ = tpwa . If so, login
is successful and the AC server grants the user access to resource 5. If not, login fails and
access is denied.

The above password authentication protocol is executed between the AC server all
n authentication servers. A “smash-and-grab" attack, where an adversary can obtain full
control over a server for a short time and grab all information, including secret keys,
maintained by the corrupted server, will not breach security as secret keys of all servers are
required for the authentication process. Passwords are secure as along as at least one server
2, 6 remains honest. For example, as long as no more than n—1 authentication servers and
the AC server are corrupted by an adversary, the adversary cannot reconstruct passwords or
run offline attacks against the accumulated authentication data. The adversary would need
support from the remaining honest server to test all password combinations, and this will be
recognized and prevented by the honest server due to the throttling mechanism. Security is
achieved solely via symmetric cryptography in this embodiment, which is fast and simple
and offers considerable advantages in terms of implementation efficiency. Moreover, the
system does not require any dedicated client software at user computers 3, and the user
computers need only communicate with the AC server for operation of the system. The
system also permits implementation of an efficient proactive security mechanism for
updating server keys. This update mechanism does not require any interaction with users.

The update protocol will now be explained with reference to Figure 7.

Update Protocol Embodiment #1

The AC server 2 and each authentication server 6 are adapted to implement an
update protocol in which the authentication server updates its respective secret value v; =
k2;to anew secret value k2’; The protocol can be run periodically by the AC server with
all authentication servers to further enhance security against successive server compromise.
In addition, the protocol can be used to re-establish full security after a known breach. If
the AC server 2 is compromised the update protocol will include all servers. A security

breach on a single authentication server only requires implementation of the protocol by the

10

15

20

25

30

13

AC server and the affected authentication server. The following focusses on operation for a
single authentication server which can be extended to all n servers as required.

The AC server sends all Uid values for which the record should be updated to the
authentication server 6. The authentication server 6 updates its respective secret value v; =
k2;to anew secret value k2’; and uses the new secret value £2’; to produce an updated
pseudorandom value #u;, which corresponds to the third pseudorandom value #3; above, for
each user ID Uid. That is, as indicated at step (a) in Figure 7, the authentication server 6
chooses a new key £2’;, and then computes the updated pseudorandom value fu; as:

tu; < PRE(k2’;, Uid).

The authentication server then produces an update value u; which comprises a modulo-2
sum of the updated pseudorandom value fu; and the third pseudorandom value 73;:

u; < PRE(k2’;, Uid) © PRF(k2,, Uid)
In step (b), the authentication server sends the update value u; for each Uid to the AC server
2. In step (c), the AC server 2 updates the first ciphertext #,wa stored for each Uid by
producing a modulo-2 sum of the first ciphertext #,u« and the update value ;. The new first
ciphertext is thus given by:

' pwd = tpwa D ui.

(If all server keys are updated, the new first ciphertext will therefore be given by #’pywa = tpwa
@Du; Quz... O un). The new first ciphertext is then a modulo-2 sum of the values:

t’pwa <— PRE(k1;, tin) @ PRE(k2’;, Uid)
as required. The old randomness PRF(k2;, Uid) is cancelled out due to the modulo-2
addition, whereby the lost £2; becomes useless. The new first ciphertext is then stored by
the AC server for the user ID.

A second embodiment of authentication system 1, adapted for implementing a
second password authentication protocol, will now be described in detail with reference to
Figures 8 to 12. The second password authentication protocol is based on a homomorphic
threshold encryption scheme. Figure 8 illustrates an initial configuration of the system
servers in this embodiment. The AC server 2 stores a public key #pk of a cryptographic
(public/secret) key-pair. The secret values v; stored by the authentication servers S;
comprise respective key-shares zsk; of the secret key of this key-pair. The system operates

with secure communications between the servers 2, 6 as before.

10

15

20

25

30

14

Setup Protocol Embodiment #2

Figure 9 indicates steps of the setup protocol to create a user account in this
embodiment. The operation begins at step (a) with input of a user ID Uid and user
password pwd to the AC server 2. In step (b), the AC server produces a first ciphertext CT1
using a homomorphic threshold encryption algorithm TEnc, for encrypting the password
pwd under the public key #pk. The threshold encryption algorithm TEnc« requires p < n
decryption shares for decryption as explained in more detail below. The first ciphertext
CT1, denoted by Cpwa in this embodiment, is thus given by:

Cpwa = TEncyr (pwd).
The encryption algorithm TEnc is homomorphic, namely there exists an efficient operation
O® on ciphertexts C such that, if C; € TEncyr(ms) and C2 € TEnci(mz), then C; O C; €
TEnci(mi.mz). (We will also use exponents to denote the repeated application of O, e.g.
C? to denote C © C). The AC server stores the first ciphertext Cpya for the user ID Uid and,
in step (c), sends Cpwa With Uid to the n authentication severs S; to S,. Each authentication
server S; stores Uid, together with Cpwa 1n this example, and an account-blocked bit b

(initially set to b = 0) for a throttling mechanism as discussed above.

Password Authentication Protocol Embodiment #2

In a subsequent login for the user account, the AC server 2 communicates with k =
p authentication servers 6 to implement the password authentication protocol. A simple
implementation of this protocol will be described first with reference to Figures 10a and
10b. These indicate successive stages in operation of the password authentication protocol.
The procedure begins, as indicated at (a) in Figure 10a, on supply of the user ID Uid and
input password pwd’ to AC server 2. If a user record for Uid exists in memory 9, then in
step (b) the AC server produces the second ciphertext CT2 =Cpyq’ from the input password
using the homomorphic encryption algorithm. In this initial example, the second ciphertext,
denoted by Cpwa, 1s given by:

Cpwa’ = TEncyi (pwd’).
In step (c), the AC server then produces a test value Crss by combining, via the operation
©, the second ciphertext Cpwa’ and the first ciphertext Cpya stored for the received Uid. In
this initial example the operation O represents division, whereby:
Crest = Cpwd | Cpwa.

Due to the homomorphism of the encryption algorithm as explained above, the test value

decrypts to a predetermined value of unity if the input password pwd’ equals the user

10

15

20

25

30

15

password pwd associated with the received Uid. Next, in step (d) the AC server sends the
test value Crsr with Uid to k = p authentication servers 6. The p authentication servers can
be selected in any convenient manner here, e.g. as the first p servers to respond, or to
implement a load balancing scheme among the » authentication servers 6.

In the next stage of this authentication protocol as indicated at (e) in Figure 6b, each
authentication server S; checks whether the user account has been blocked (b = 1 for Uid)
by the throttling mechanism implemented by the server logic as discussed above. If the user
account is blocked at any authentication server 6, the login operation fails. If none of the p
servers has blocked the user account, then the login operation can proceed. In this case, as
indicated at step (f), each authentication server S; uses its respective key-share zsk; to
produce a decryption share d; dependent on the test value Cresr. In this simple example, the
server simply decrypts Cres using its key-share tsk; and sends the resulting decryption
share d; for Uid to the AC server in step (g). In step (h), the access control server
determines whether the input password equals the user password by determining from the &
decryption shares d; ... di whether the test value decrypts to unity, i.e. whether:

TDec(Crest, di1 ... di) = 1.
where TDec is the decryption algorithm for the threshold encryption scheme as discussed
further below. If so, access is permitted. If pwd’ # pwd then the decryption result will be a
random number and access will be denied.

A more detailed implementation of the second password authentication protocol
will now be described with reference to Figures 11a to 11c. This example incorporates
various improvements over the simple example above, and allows throttling to take account
of whether earlier user login attempts were successful. A brief description of the threshold

description scheme is given first to assist understanding of the protocol to follow.

Threshold Encryption: A threshold encryption scheme consist of four algorithms (EKGen;

TEnc; PDec; TDec). The key generation algorithm EKGen takes input (1’1, t, n), where ¢
denotes the maximum of tolerated malicious servers, and outputs a master public key pk
and n partial key (key-share) pairs (tpky, tski), ..., (tpkn, tsks). The encryption algorithm
TEnc, on input the public key #pk and a message m, outputs a ciphertext C. The partial
decryption algorithm PDec, on input of a secret key-share #sk;, a public key-share #pk;, and
a ciphertext C outputs a decryption share d;. The threshold decryption algorithm TDec, on

input of C, tpk and k > +1 decryption shares d; ... di, outputs a plaintext m or L (error).

10

15

20

25

30

16

Various such threshold encryption schemes are known, an exemplary construction being
described in Y. Desmedt, Y. Frankel. “Threshold Cryptosystems”, Desmedt & Y. Frankel,
CRYPTO 1989.

Prior to the setup protocol described above, the AC server 2 creates threshold keys
for all n authentication servers 6. That is, it creates keys

(tpk , (tpk1, tski), ..., (tpkn, tsky))«— EKGen(17%, 1, n).
The secret key-shares zsk; are sent encrypted to each server S;. The master public key tpk
and the public key-shares 7pk; are publicly known in the system. In addition, each
authentication server 6 also creates a key &; for a message authentication scheme (MAC)
which will be used in the unblock-test for a throttled account as discussed below.

The setup protocol for user accounts is as described with reference to Figure 9. In
the password authentication protocol, the AC server 2 communicates with p = +1
authentication servers 6 where 7 is as defined by the threshold encryption scheme above.
The password authentication protocol is indicated in Figures 11a to 11c in terms of
interaction between the AC server 2, whose operations are indicated on the left of the
figures, and each authentication server 6 whose operations are indicated on the right.

Operation begins at step (a) in Figure 11a when the user sends Uid and the input
password pwd’ to AC server 2. If a user record exists for Uid, the AC server continues by
computing the second ciphertext CT2 =Cpwa’ from the input password using the
homomorphic encryption algorithm. In this example, the second ciphertext Cpwa’ 18
produced by applying the homomorphic encryption algorithm to a function F of the input
password, where F(x) = 1/x. Hence:

Cpwa» = TEncyx (1/pwd’).
This ensures that a malicious AC server cannot simply use the first ciphertext Cpwa again as
the second ciphertext Cpwa in the authentication protocol. The test value Crs is then
produced by combining Cpye’ and Cpwa via the operation O, where in this case © represents
multiplication:
Crest = Cpwa © Cpwa» = Cpwa © TEncyk (1/pwd’).
Due to the homomorphism of the encryption algorithm as explained above, the test value

again decrypts to unity if pwd’ = pwd. Next, in step (c) the AC server 2 generates a
cryptographic proof IT for proving that the test value Crs; comprises the second ciphertext
Cpwa’ as well as the first ciphertext Cpya for the user ID:

< NIZK{(pwd’): Cresi= (Cpwa © TEncyk (1/pwd’)) }(Crest).

10

15

20

25

30

17

(Here “NIZK” means “non-interactive zero-knowledge”, where “zero-knowledge”
indicates that the prover reveals nothing more than is required to be proved, and “non-
interactive” means that verification of the proof does not require interaction between the
prover and verifier. Such proofs can be implemented in known manner and suitable

protocols for implementing the proof will be apparent to those skilled in the art). In
particular, the proof IT allows verification that the test value Crsr comprises the correct first

ciphertext Cpwa for Uid and a sccond ciphertext Cpwa that is correctly computed from the

function F of an input password. In step (d), the AC server then sends the user ID and proof

IT to the k=¢+1 authentication servers 6 with the test value Cresr.

Referring to Figure 11b, each authentication server S; receives (Uid, TI, Crs) in step
(e) and then checks in step (f) that the account for Uid is not blocked, i.e. that 5=0. In step
(g), the server S; validates the proof IT to check that (Uid, T1, Crs) is correct with respect to

its locally stored values (Uid, Cpwa). If either test step (f) or (g) fails then the user login fails
(subject to operation of the unblock protocol discussed below). Assuming both tests are
passed, then the server S; proceeds in step (h) to compute a randomized value C;,
comprising the test value raised to the power of a respective random exponent r;:
Ci=(Cres)"

for arandomly chosen r;. Each serves then stores C; and commits to this value in step (i) by
sending a hash value 4; to the AC server where:

hi <—H(C;, Uid)
and H denotes a cryptographic hash function. When the AC server has received all k=7+1
hash values, it forwards them as (4, hz, ..., k1) to all the servers S; to Sk in step (j). The k
servers now reveal their randomized values C; by sending them in step (k) to the AC server.
When the AC server has received all k=r+1 randomized values C;, it forwards them as (C;,
C2, ..., Ciyp) to all the servers S; to Sk in step (1).

Referring to Figure 11c, each authentication server S; receives (Cy, C2, ..., C+1) In
step (m) and checks, in step (n), if h; = H(C;, Uid). If so, in step (o) the server S; combines
the set of k= 1+ randomized values C;, via the operation © (here multiplication), to
produce a randomized ciphertext Cr and uses its respective key-share zsk; to produce a
decryption share d; from the randomized ciphertext Ckg:

Cr+ QOiz1, .11 Ci
di <— PDecui(tpki, Cr)

10

15

20

25

30

18

In step (p), the server S; sends (d;, s:) to the AC server 2, where s; = MACy; (Uid,Cr) using
its key k; for the message authentication scheme. When the AC server has received the
decryption shares and MACs (d,, s:) of all k=t+1 servers, it uses the threshold decryption
algorithm TDec to determine from the decryption shares whether the randomized ciphertext
Cr decrypts to unity, and hence pwd’ = pwd. This follows because a randomized value C; =
1 if the test value Crsr =1 whereby, due to the homomorphism, the randomized ciphertext
Cr decrypts to the same value as the test value, i.e. unity, if pwd’ = pwd. Hence, in step (q)
the AC server 2 computes:
Cr<+ Oi=1, .1+1 Ciand
x < TDecypi(Cr {di}i=1,..0+1)

If x =1 the passwords match and access is granted, otherwise login fails.

In the above process, the AC server keeps all decryption shares and MAC values
(d;, s:) for a certain period to permit subsequent proof to an authentication server that the
login was successful. In particular, steps (h) to (p) in the above protocol allow an
authentication server to check the correctness of an input password in the last login attempt
before blocking a user account. Prior to blocking an account due to the throttling
mechanism in a subsequent login for the Uid, an authentication server communicates with
the access control server to implement an “unblock protocol”. This unblock protocol will

now be described with reference to Figure 12.

Unblock Protocol

The operations performed by the AC server 2 and authentication server 6 in the
unblock protocol are indicated respectively on the left and right of Figure 12. If a server S;
has noted too many login attempts and is about to block the user account for Uid, the server
sends a proof request to the AC server requesting proof that the last login was successful,
i.e. that the randomized ciphertext Cr decrypted to unity. On sending of such a request in
step (a) of Figure 12, if the last login was successful the AC server retrieves the values
(Uid, Cr, si, {di}i=1, ...+1) and sends these values to the authentication server in step (b). If
the last login was unsuccessful the AC server sends values (Uid, fail) instead. In step (c),
the server S; verifies whether s; = MACy; (Uid, Cr) and TDecypi(Cr,{di}i=1, ...+1) = 1. Only if
both tests succeed does the server keep the account for Uid open. The account-blocked bit
b is thus set appropriately in step (d), and the protocol is complete.

It will be seen that the above system allows throttling to be based on a password

check as well as on login frequency. In addition, the » authentication servers of this

10

15

20

25

30

19

embodiment are further adapted to implement a share renewal protocol for updating the n
key-shares #sk;. This can be implemented in known manner using proactive secret sharing
techniques, an example of which is described in “Proactive Secret Sharing Or: How to
Cope With Perpetual Leakage”, Herzberg et al,. CRYPTO 1995. Using such techniques,
the servers 6 will run a share renewal protocol for their secret key-shares periodically
and/or whenever an adversary has potentially learned a secret key-share. The old shares are
deleted after each renewal. The proactive security thereby ensures that, on the one hand, the
new secret key-shares zsk; are still "compatible” with the main public key 7pk, while, on the
other hand, they are “incompatible” with the old secret shares which the adversary may
have acquired.

In the above embodiment, as long as at most 7 servers (and the DS) are corrupted,
an adversary controlling those servers cannot retrieve the passwords, e.g. by mounting
offline attacks against Cpya. This follows from the security of the threshold encryption
scheme which guarantees that Cpwg cannot be decrypted if the adversary holds at most ¢
shares of the threshold secret key. Security against DS-insider attacks is provided, since
during the login protocol the servers only decrypt a password quotient (of value unity) and
not the original password pwd or password attempt pwd’. Thus, a malicious DS cannot
simply trigger the decryption of the encrypted passwords but would have to run a full login
protocol for each password guess. Due to the throttling mechanism in honest servers, such
an attack will be recognized and blocked after a few attempts. This threshold-based scheme
even tolerates long-term corruptions of up to 7 servers, whereby the servers could be
outsourced to a different trust domain. Login is especially efficient since only 7+/ of the n
authentication servers are required for password authentication. As before, operation of the
system is completely transparent to users who need only communicate with AC server 2 in
all protocols.

While exemplary embodiments have been described, many alternatives and
modifications can be envisaged. For example, in other implementations of the first
embodiment above, the key &/; in the above formula for #2; could be replaced by PRF(k/,,
Uid). Also, since system security does not depend on this particular value, the key &k/; could
be replaced by any unique server ID and need not be a cryptographically strong secret.
Also, the threshold encryption scheme in the second embodiment could require t+1 = n
shares for decryption if desired, whereby all n servers 6 would be used for password

authentication.

10

15

20

25

30

20

It will be appreciated that the resource protected by access control server 2 may in
general comprise any resource to which user access is restricted, e.g. an application,
service, data, device, network or any other facility or combination of facilities. Also, the
functionality of servers in the above embodiments might in general be implemented in a
single machine or distributed over a plurality of machines. Embodiments might also be
envisaged in which the user account data generated by a setup protocol above is preloaded
in the various servers.

Many other changes and modifications can be made to the exemplary embodiments

described without departing from the scope of the invention.

The present invention may be a system, a method, and/or a computer program product. The
computer program product may include a computer readable storage medium (or media)
having computer readable program instructions thereon for causing a processor to carry out

aspects of the present invention.

The computer readable storage medium can be a tangible device that can retain and store
instructions for use by an instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an electronic storage device, a magnetic
storage device, an optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination of the foregoing. A non-
exhaustive list of more specific examples of the computer readable storage medium
includes the following: a portable computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory (SRAM), a portable compact
disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-cards or raised structures in a
groove having instructions recorded thereon, and any suitable combination of the
foregoing. A computer readable storage medium, as used herein, is not to be construed as
being transitory signals per se, such as radio waves or other {reely propagating
electromagnetic waves, electromagnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical

signals transmitted through a wire.

10

15

20

25

30

21

Computer readable program instructions described herein can be downloaded to respective
computing/processing devices from a computer readable storage medium or to an external
computer or external storage device via a network, for example, the Internet, a local area
network, a wide area network and/or a wireless network. The network may comprise
copper transmission cables, optical transmission fibers, wireless transmission, routers,
firewalls, switches, gateway computers and/or edge servers. A network adapter card or
network interface in each computing/processing device receives computer readable
program instructions from the network and forwards the computer readable program
instructions for storage in a computer readable storage medium within the respective

computing/processing device.

Computer readable program instructions for carrying out operations of the present
invention may be assembler instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions, microcode, firmware instructions,
state-setting data, or either source code or object code written in any combination of one or
more programming languages, including an object oriented programming language such as
Smalltalk, C++ or the like, and conventional procedural programming languages, such as
the "C" programming language or similar programming languages. The computer readable
program instructions may execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the user's computer and partly on a
remote computer or entirely on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer through any type of network,
including a local area network (LAN) or a wide area network (W AN), or the connection
may be made to an external computer (for example, through the Internet using an Internet
Service Provider). In some embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable
logic arrays (PLA) may execute the computer readable program instructions by utilizing
state information of the computer readable program instructions to personalize the

electronic circuitry, in order to perform aspects of the present invention.

Aspects of the present invention are described herein with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems), and computer program
products according to embodiments of the invention. It will be understood that each block

of the flowchart illustrations and/or block diagrams, and combinations of blocks in the

10

15

20

25

30

22

flowchart illustrations and/or block diagrams, can be implemented by computer readable

program instructions.

These computer readable program instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions, which execute via the processor
of the computer or other programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart and/or block diagram block or
blocks. These computer readable program instructions may also be stored in a computer
readable storage medium that can direct a computer, a programmable data processing
apparatus, and/or other devices to function in a particular manner, such that the computer
readable storage medium having instructions stored therein comprises an article of
manufacture including instructions which implement aspects of the function/act specified

in the flowchart and/or block diagram block or blocks.

The computer readable program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable apparatus or other device to
produce a computer implemented process, such that the instructions which execute on the
computer, other programmable apparatus, or other device implement the functions/acts

specified in the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate the architecture, functionality,
and operation of possible implementations of systems, methods, and computer program
products according to various embodiments of the present invention. In this regard, each
block in the flowchart or block diagrams may represent a module, segment, or portion of
instructions, which comprises one or more executable instructions for implementing the
specified logical function(s). In some alternative implementations, the functions noted in
the block may occur out of the order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be

implemented by special purpose hardware-based systems that perform the specified

23

functions or acts or carry out combinations of special purpose hardware and computer

instructions.

10

15

20

25

30

24

CLAIMS

1. A system comprising:

an access control server for communication with user computers via a network and
controlling access by the user computers to a resource in dependence on authentication of
user passwords associated with respective user IDs; and

a plurality n of authentication servers, storing respective secret values, for
communication with the access control server via the network;

wherein the access control server stores, for each said user ID, a first ciphertext
produced by encrypting the user password associated with that ID using a predetermined
algorithm dependent on said secret values;

and wherein the access control server and authentication servers are adapted such
that, in response to receipt from a user computer of a said user ID and an input password,
the access control server communicates with a plurality k£ < n of the authentication servers
to implement a password authentication protocol, requiring use by the & authentication
servers of their respective secret values, in which a second ciphertext is produced by
encrypting the input password using said predetermined algorithm and the access control
server uses the first and second ciphertexts to determine whether the input password equals
the user password for the received user ID, if so permitting access to the resource by the

user computer.

2. A system as claimed in claim 1 wherein the access control server and authentication
servers are further adapted such that, in response to initial input of a said user password and
associated user ID in a setup operation, the access control server communicates with the n
authentication servers to implement a password setup protocol, comprising generation of
said first ciphertext for that user ID and storage of the first ciphertext at the access control

server, to permit subsequent implementation of said verification protocol for that user ID.

3. A system as claimed in claim 1 or claim 2 wherein:

the first ciphertext comprises # first pseudorandom values, each of which encrypts,
via a pseudorandom function, the secret value of a respective authentication server and an
initial pseudorandom value:

the initial pseudorandom value encrypts, via said pseudorandom function, the user

password for a user ID; and

10

15

20

25

30

25

the access control server communicates with & = n authentication servers to

implement the password authentication protocol.

4. A system as claimed in claim 3 wherein the access control server stores a further
secret value and wherein said initial pseudorandom value also encrypts the further secret

value via the pseudorandom function.

5. A system as claimed in claim 3 or claim 4 wherein the initial pseudorandom value
also encrypts, via said pseudorandom function, the user ID associated with the user

password encrypted therein.

6. A system as claimed in any one of claims 3 to 5 wherein, to implement said
password authentication protocol:

the access control server uses the input password to produce a test pseudorandom
value, which corresponds to said initial pseudorandom value, and sends the test
pseudorandom value to each authentication server;

each authentication server uses the test pseudorandom value to produce a respective
server pseudorandom value, which corresponds to a said first pseudorandom value, and
sends the server pseudorandom value to the access control server; and

the access control server produces the second ciphertext from the » server
pseudorandom values, and compares the first and second ciphertexts to determine whether

the input password equals the user password for the received user ID.

7. A system as claimed in any one of claims 3 to 6 wherein, in the password
authentication protocol:

the access control server sends the received user ID to each authentication server;
and

each authentication server implements a throttling mechanism for each user ID.

8. A system as claimed in claim 2 and any one of claims claim 3 to 7, wherein, to
implement said password setup protocol in response to said initial input:
the access control server produces the initial pseudorandom value and sends the

initial pseudorandom value to each authentication server;

10

15

20

25

30

26

each authentication server uses the initial pseudorandom value to produce a
respective first pseudorandom value and sends the first pseudorandom value to the access
control server; and

the access control server produces the first ciphertext from the # first pseudorandom

values.

9. A system as claimed in any one of claims 3 to 8 wherein the first ciphertext

comprises a modulo-2 sum of the » first pseudorandom values.

10. A system as claimed in claim 9 wherein:

each first pseudorandom value comprises a modulo-2 sum of second and third
pseudorandom values;

the second pseudorandom value encrypts said initial pseudorandom value via said
pseudorandom function; and

the third pseudorandom value encrypts, via said pseudorandom function, said secret
value of the respective authentication server and the user ID associated with the user

password encrypted in said initial pseudorandom value.

11. A system as claimed in claim 10 wherein the second pseudorandom value also
encrypts, via said pseudorandom function, a server ID for said respective authentication

SErver.

12. A system as claimed in claim 10 or claim 11 wherein the access control server and
each authentication server are further adapted to implement an update protocol wherein:

the authentication server updates its respective secret value to a new secret value
and uses the new secret value to produce an updated pseudorandom value which
corresponds to said third pseudorandom value;

the authentication server produces an update value, comprising a modulo-2 sum of
the updated pseudorandom value and the third pseudorandom value, and sends the update
value to the access control server; and

the access control server updates the first ciphertext by producing a modulo-2 sum

of the first ciphertext and the update value.

10

15

20

25

30

27

13. A system as claimed in claim 1 or claim 2 wherein:

the first ciphertext is produced using a predetermined homomorphic encryption
algorithm for encrypting the user password under a public key of a cryptographic key-pair;
and

the secret values of the authentication servers comprise respective key-shares of a

secret key of said key-pair.

14. A system as claimed in claim 13 wherein, to implement the password authentication
protocol in response to receipt of a said user ID and input password:

the access control server produces the second ciphertext from the input password
using said homomorphic encryption algorithm;

the access control server produces a test value by combining, via an operation O,
the second ciphertext and the first ciphertext for the received user ID, said operation ©
being such that, due to the homomorphism of said encryption algorithm, the test value
decrypts to a predetermined value if the input password equals the user password
associated with that user ID;

the access control server sends the test value to the £ authentication servers;

each of the k authentication servers uses its respective key-share to produce a
decryption share dependent on the test value, and sends the decryption share to the access
control server; and

the access control server determines whether the input password equals the user
password by determining from the k& decryption shares whether the test value decrypts to

said predetermined value.

15. A system as claimed in claim 14 wherein:

said encryption algorithm comprises a threshold encryption algorithm which
requires p < n decryption shares for decryption; and

in the password authentication protocol, the access control server sends said test

value to k = p authentication servers.

16. A system as claimed in claim 14 or claim 15 wherein each authentication server
stores the first ciphertext for each said user ID and, in the password authentication protocol:
the access control server sends the received user ID to the authentication servers

with said test value; and

10

15

20

25

30

28

each authentication server implements a throttling mechanism for each user ID.

17. A system as claimed in any one of claims 14 to 16 wherein the access control server
produces the second ciphertext by applying said homomorphic encryption algorithm to a

function F of the input password.

18. A system as claimed in claim 17 wherein each authentication server stores the first
ciphertext for each said user ID, and in the password authentication protocol:

the access control server generates a cryptographic proof for proving that said test
value comprises the second ciphertext and the first ciphertext for the received user ID;

the access control server sends the received user ID and said proof to the &
authentication servers with said test value;

each of the k authentication servers validates said proof before producing said

decryption share.

19. A system as claimed in any one of claims 14 to 18 wherein said test value decrypts
to unity if the input password equals the user password associated with a said user ID and,
in the password authentication protocol:

each of the k authentication servers produces a randomized value C;, comprising the
test value raised to the power of a respective random exponent r;, and sends the randomized
value C; to the access control server;

the access control server forwards the randomized value C; received from each
authentication server to each of the (k — 1) other authentication servers;

each authentication server combines the set of £ randomized values C;, via said
operation O, to produce a randomized ciphertext Cr and uses its respective key-share to
produce said decryption share from the randomized ciphertext Cg; and

the access control server determines whether the input password equals the user
password by determining from the & decryption shares whether the randomized ciphertext

Cr decrypts to unity.

20. A system as claimed in claim 16 and claim 19 wherein:
the access control server stores the k decryption shares produced from said
randomized ciphertext Cr by respective authentication servers in the password

authentication protocol for a said user ID; and

10

15

20

25

30

29

prior to blocking the user ID due to said throttling mechanism in a subsequent
implementation of the password authentication protocol for that user ID, a said
authentication server communicates with the access control server to implement an unblock
protocol wherein the access control server sends said k decryption shares to that
authentication server, and the authentication server determines from the k decryption shares

whether said randomized ciphertext Cr decrypts to unity.

21. A system as claimed in claim 2 and any one of claims 13 to 20 wherein, to
implement said password setup protocol in response to said initial input, the access control
server produces the first ciphertext from the user password using said homomorphic

encryption algorithm.

22. A system as claimed in claim 21 wherein, in said password setup protocol, the
access control server sends the first ciphertext to the »n authentication servers with the user

ID associated with the user password.

23. A system as claimed in any one of claims 13 to 22 wherein the » authentication
servers are further adapted to implement a share renewal protocol for updating the n key-

shares of said secret key.

24. A system substantially as hereinbefore described with reference to Figures 4 to 7 or

to Figures 8 to 12 of the accompanying drawings.

25. A server comprising memory, a communications interface, and control logic
adapted to configure the server to implement an access control server of a system as
claimed in any preceding claim, wherein said memory stores said first ciphertext for each

user ID in use.

26. A server comprising memory, a communications interface, and control logic
adapted to configure the server to implement an authentication server of a system as
claimed in any one of claims 1 to 24, wherein said memory stores said secret value of the

authentication server in use.

10

15

20

25

30

30

27. A computer program comprising program code means for causing a computer to

implement the control logic of a server as claimed in claim 25 or claim 26.

28. A method for controlling access by user computers to a resource in dependence on
authentication of user passwords, associated with respective user IDs, at an access control
server arranged for communication via a network with the user computers and a plurality n
of authentication servers, the method comprising:

storing respective secret values at the n authentication servers;

for each said user ID, storing at the access control server a first ciphertext produced
by encrypting the user password associated with that ID using a predetermined algorithm
dependent on said secret values;

at the access control server, in response to receipt from a user computer of a said
user ID and an input password, communicating with a plurality k£ < n of the authentication
servers to implement a password authentication protocol, requiring use by the &
authentication servers of their respective secret values, in which a second ciphertext is
produced by encrypting the input password using said predetermined algorithm and the
access control server uses the first and second ciphertexts to determine whether the input
password equals the user password for the received user ID; and

at the access control server, permitting access to the resource by the user computer

if the input password equals the user password.

29. A method as claimed in claim 28 wherein

the first ciphertext comprises # first pseudorandom values, each of which encrypts,
via a pseudorandom function, the secret value of a respective authentication server and an
initial pseudorandom value,

the initial pseudorandom value encrypts, via said pseudorandom function, the user
password for a user ID, and

to implement said password verification protocol:

the access control server uses the input password to produce a test pseudorandom
value, which corresponds to said initial pseudorandom value, and sends the test
pseudorandom value to k = n authentication servers;

each authentication server uses the test pseudorandom value to produce a respective
server pseudorandom value, which corresponds to a said first pseudorandom value, and

sends the server pseudorandom value to the access control server; and

10

15

20

25

30

31

the access control server produces the second ciphertext from the n server
pseudorandom values, and compares the first and second ciphertexts to determine whether

the input password equals the user password for the received user ID.

30. A method as claimed in claim 28 wherein the first ciphertext is produced using a
predetermined homomorphic encryption algorithm for encrypting the user password under
a public key of a cryptographic key-pair, the secret values of the authentication servers
comprise respective key-shares of a secret key of said key-pair, and to implement the
password authentication protocol in response to receipt of a said user ID and input
password:

the access control server produces the second ciphertext from the input password
using said homomorphic encryption algorithm;

the access control server produces a test value by combining, via an operation O,
the second ciphertext and the first ciphertext for the received user ID, said operation ©
being such that, due to the homomorphism of said encryption algorithm, the test value
decrypts to a predetermined value if the input password equals the user password
associated with that user ID;

the access control server sends the test value to the k£ authentication servers;

each of the &k authentication servers uses its respective key-share to produce a
decryption share dependent on the test value, and sends the decryption share to the access
control server; and

the access control server determines whether the input password equals the user
password by determining from the k& decryption shares whether the test value decrypts to

said predetermined value.

31. A computer program product for controlling access by user computers to a resource in
dependence on authentication of user passwords, associated with respective user IDs, at an
access control server arranged for communication via a network with the user computers
and a plurality n of authentication servers, the computer program product comprising a
computer readable storage medium having program instructions embodied therewith, the
program instructions readable by an access control server, to cause the access control
server to:

- for each said user ID, storing a first ciphertext produced by encrypting the user password

associated with that ID using a predetermined algorithm dependent on said secret values;

10

32

- in response to receipt from a user computer of a said user ID and an input password,
communicating with a plurality k£ <z of the authentication servers to implement a password
authentication protocol, requiring use by the k authentication servers of their respective
secret values, in which a second ciphertext is produced by encrypting the input password
using said predetermined algorithm and the access control server uses the first and second
ciphertexts to determine whether the input password equals the user password for the
received user ID; and

- permitting access to the resource by the user computer if the input password equals the

user password.

Intellectual
Property
Office

Application No:

Claims searched:

33

GB1409227 .4 Examiner: Mr Robert Macdonald
all Date of search: 20 November 2014

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
A - US2003/163737 A
(AMERICA ONLINE) See whole document.
A - US2003/0221102 A
(JAKOBSSON et al) See whole document.
Categories:
X Document indicating lack of novelty or inventive =~ A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent tamily E Patent document published on or after, but with priority date
earlier than, the filing date of this application.
Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX :

Worldwide search of patent documents classified in the following areas of the IPC

| GOG6F; HO4L

The following online and other databases have been used in the preparation of this search report

[ONLINE: WPI, EPODOC, INSPEC |

International Classification:

Subclass

Subgroup Valid From

None

Intellectual Property Office is an operating name of the Patent Office www.ipo.gov.uk

	Front Page
	Drawings
	Description
	Claims
	Search Report

