(12) 公開特許公報(A)

(11)特許出願公開番号

特開2009-258461

(P2009-258461A)

(43) 公開日 平成21年11月5日 (2009.11.5)

(51) Int.Cl.			FΙ			テーマコード(参考)
GO2B	17/00	(2006.01)	GO2B	17/00	А	2H087
HO1L	21/027	(2006.01)	H01L	21/30	531A	5 F O 4 6
GO3F	7/ 20	(2006.01)	HO1L	21/30	517	
			HO1L	21/30	515D	
			GO3F	7/20	521	
				審査請求	:未請求	請求項の数 11 OL (全 26 頁)
(21) 出願番号 (22) 出願日		特願2008-108474 平成20年4月18日	(P2008-108474) (2008-4-18)	(71) 出願人	、508120 渋谷	204 庫人
		н <i>уде</i> о 1/410 Ц		(71) 出願人 (71) 出願人	、 「 気 い な い 林 山 梨 県 、 508120 山 梨 県 、 508120 豊田 宮 切 泉	さいたま市大宮区上小町665-1 215 慶 5甲府市大里町3049-20 226 光紀 54山台市太白区鹿野3-23-5-2
				(71) 出願人	、000004 株式会 東京都	.112 .社ニコン .チル田区カの内2丁日2番2号
				(74)代理人	本示印 、100095 全理十	・11日 一参雄
					기 카프 그	最終頁に続く

(54) 【発明の名称】結像光学系、露光装置、およびデバイス製造方法

(57)【要約】

(19) 日本国特許庁(JP)

【課題】 例えばEUV光を用いる露光装置に適用可能 で、波面収差が良好に補正された高性能な結像光学系。 【解決手段】 第1面(4)において光軸(AX)から 離れた領域の像を第2面(7)において光軸から離れた 領域に形成する結像光学系は、光軸に関して回転対称な 複数の規定面(S1~S6)によってそれぞれ規定され る複数の光学面(M1~M6)を備えている。複数の規 定面のうちの少なくとも1つの特定規定面は、光軸の位 置において面の傾きの変化が不連続である。

【選択図】 図3

(2)

【特許請求の範囲】 【請求項1】

第 1 面 に お い て 光 軸 か ら 離 れ た 領 域 の 像 を 第 2 面 に お い て 前 記 光 軸 か ら 離 れ た 領 域 に 形 成 す る 結 像 光 学 系 に お い て 、

前 記 光 軸 に 関 し て 回 転 対 称 な 複 数 の 規 定 面 に よ っ て そ れ ぞ れ 規 定 さ れ る 複 数 の 光 学 面 を 備 え 、

前記複数の規定面のうちの少なくとも1つの特定規定面は、前記光軸の位置において面の傾きの変化が不連続であることを特徴とする結像光学系。

【請求項2】

前記特定規定面によって規定される光学面は、前記光軸から離れた位置に有効領域を有す 10 ることを特徴とする請求項1に記載の結像光学系。

【 請 求 項 3 】

前記有効領域は、反射面を有することを特徴とする請求項2に記載の結像光学系。

【請求項4】

- 前記特定規定面は、前記光軸に垂直な方向の高さを y とし、当該特定規定面と前記光軸と の交点を含み且つ前記光軸に垂直な面から高さ y における当該特定規定面上の位置までの 前記光軸に沿った距離(サグ量)を z とし、前記光軸における当該特定規定面の中心曲率 半径を r とし、円錐係数を とし、n (n は正の整数)次の非球面係数を C_nとし、 を n に関する総和記号としたとき、以下の式で表され、
- z = (y²/r)/{1+{1 (1 +)・y²/r²}+ C_n・yⁿ 20 1次の非球面係数C₁は0ではないことを特徴とする請求項1乃至3のいずれか1項に 記載の結像光学系。

【請求項5】

前記光軸として直線状に延びる単一の光軸を有することを特徴とする請求項1乃至4のい ずれか1項に記載の結像光学系。

【請求項6】

前記 複数の 光学 面 は 、 6 つ の 反 射 面 を 有 す る こ と を 特 徴 と す る 請 求 項 1 乃 至 5 の い ず れ か 1 項 に 記 載 の 結 像 光 学 系 。

【請求項7】

使用光の波長が20nm以下であることを特徴とする請求項1乃至6のいずれか1項に記 ³⁰ 載の結像光学系。

【請求項8】

前記 結 像 光 学 系 は 、 前 記 第 2 面 側 に ほ ぼ テ レ セ ン ト リ ッ ク な 光 学 系 で あ る 請 求 項 1 乃 至 7 の い ず れ か 1 項 に 記 載 の 結 像 光 学 系 。

【請求項9】

前記第1面に設置された所定のパターンを照明するための照明系と、前記所定のパターン を前記第2面に設置された感光性基板に投影するための請求項1乃至8のいずれか1項に 記載の結像光学系とを備えていることを特徴とする露光装置。

【請求項10】

前記照明系は、露光光としてEUV光を供給するための光源を有し、

40

50

前記結像光学系に対して前記所定のパターンおよび前記感光性基板を相対移動させて、 前記所定のパターンを前記感光性基板に投影露光することを特徴とする請求項9に記載の 露光装置。

【請求項11】

- 請 求 項 9 ま た は 1 0 に 記 載 の 露 光 装 置 を 用 い て 、 前 記 所 定 の パ タ ー ン を 前 記 感 光 性 基 板 に 露 光 す る 露 光 工 程 と 、
- 前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成する現像工程と、
- 前記マスク層を介して前記感光性基板の表面を加工する加工工程とを含むことを特徴とするデバイス製造方法。

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、結像光学系、露光装置、およびデバイス製造方法に関する。さらに詳細には 、本発明は、例えばEUV光を用いてミラープロジェクション方式によりマスク上の回路 パターンを感光性基板上に転写する露光装置に好適な反射型の結像光学系に関するもので ある。

【背景技術】

[0002]

従来、半導体素子などの製造に使用される露光装置として、5~50nm程度の波長を 10 有するEUV(Extreme UltraViolet:極紫外線)光を用いる露光装置が注目されている 。露光光としてEUV光を用いる場合、使用可能な透過光学材料および屈折光学材料がな いため、反射型のマスクを用いるとともに、投影光学系として反射型の結像光学系を用い ることになる。

【 0 0 0 3 】

従来、露光光としてEUV光を用いる露光装置に適用可能な結像光学系として、複数の 反射鏡からなる反射型の光学系が提案されている(例えば特許文献1を参照)。

[0004]

【特許文献1】特開2004-31808号公報

【発明の開示】

【発明が解決しようとする課題】

[0005]

露光装置では、微細なパターンを感光性基板に忠実に転写するために、波面収差ができ るだけ小さいこと、すなわち結像する波面が限りなく球面に近いことが要求される。特許 文献1に開示された結像光学系では、偶数次の非球面係数Cn(n=2,4,6,・・・)に加えて3次以上の奇数次の非球面係数Cn(n=3,5,7,・・・)を導入するこ とにより、波面収差が比較的良好に補正されている。しかしながら、例えばEUV光を用 いる露光装置では、波面収差をさらに小さく抑えた高性能な結像光学系が求められている

[0006]

本発明は、前述の課題に鑑みてなされたものであり、例えばEUV光を用いる露光装置 に適用可能で、波面収差が良好に補正された高性能な結像光学系を提供することを目的と する。また、本発明の結像光学系を露光装置に適用することにより、例えば露光光として EUV光を用いて大きな解像力を確保し、高解像度で投影露光を行うことのできる露光装 置を提供することを目的とする。

【課題を解決するための手段】

【 0 0 0 7 】

前記課題を解決するために、本発明の第1形態では、第1面において光軸から離れた領域の像を第2面において前記光軸から離れた領域に形成する結像光学系において、

前 記 光 軸 に 関 し て 回 転 対 称 な 複 数 の 規 定 面 に よ っ て そ れ ぞ れ 規 定 さ れ る 複 数 の 光 学 面 を 備 え 、

前記複数の規定面のうちの少なくとも1つの特定規定面は、前記光軸の位置において面の傾きの変化が不連続であることを特徴とする結像光学系を提供する。

本発明の第2形態では、前記第1面に設置された所定のパターンを照明するための照明 系と、前記所定のパターンを前記第2面に設置された感光性基板に投影するための第1形 態の結像光学系とを備えていることを特徴とする露光装置を提供する。

【 0 0 0 9 】

本発明の第3形態では、第2形態の露光装置を用いて、前記所定のパターンを前記感光 性基板に露光する露光工程と、 20

前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成する現像工程と、

(4)

前記マスク層を介して前記感光性基板の表面を加工する加工工程とを含むことを特徴と するデバイス製造方法を提供する。

【発明の効果】

[0010]

本発明では、例えばEUV光を用いる反射型の結像光学系において、少なくとも1つの 反射面、例えば光軸から離れた位置に有効領域を有する反射面を規定する規定面の光軸の 位置における傾きの変化を不連続に設定している。その結果、すべての反射面を規定する 回転対称面の傾きが光軸の位置において連続的に変化している従来技術に比して、収差補 正の自由度を高めることができ、ひいては波面収差を良好に補正することができる。すな わち、本発明では、例えばEUV光を用いる露光装置に適用可能で、波面収差が良好に補 正された高性能な結像光学系を実現することができる。

【0011】

また、本発明の結像光学系を露光装置に適用することにより、露光光として例えば20 nm以下の波長のEUV光を使用することができる。この場合、結像光学系に対して転写 すべき所定のパターンおよび感光性基板を相対移動させて、所定のパターンを感光性基板 上へ高解像度で投影露光することが可能になる。その結果、大きな解像力を有する走査型 の露光装置を用いて、良好な露光条件のもとで、高精度なデバイスを製造することができ る。

【発明を実施するための最良の形態】

【0012】

一般に、EUV光を用いる露光装置に適用可能な結像光学系は、光軸に関して回転対称 な面によってそれぞれ規定される複数の反射面を有し、物体面(第1面)において光軸か ら離れた領域の像を像面(第2面)において光軸から離れた領域に形成する。従来、この 種の結像光学系では、すべての反射面を規定する回転対称面(以下、「規定面」という) の傾きが光軸の位置において連続的に変化していた。

本発明者らは、例えばEUV光を用いる露光装置に適用可能な反射型の結像光学系では、少なくとも1つの反射面が光軸から離れた位置に有効領域(有効な結像光束が入射する 領域)を有することに着目し、例えば光軸から離れた位置に有効領域を有する反射面を規 定する規定面の光軸の位置における傾きの変化をあえて不連続に設定することにより、収 差補正の自由度を高めること、ひいては波面収差をさらに良好に補正することを試みた。 【0014】

本発明の実施形態を、添付図面に基づいて説明する。図1は、本発明の実施形態にかか る露光装置の構成を概略的に示す図である。また、図2は、ウェハ上に形成される円弧状 の有効結像領域と光軸との位置関係を示す図である。図1において、結像光学系6の光軸 AX方向すなわち感光性基板であるウェハWの露光面(転写面)の法線方向に沿ってZ軸 を、ウェハWの露光面内において図1の紙面に平行な方向にY軸を、ウェハWの露光面内 において図1の紙面に垂直な方向にX軸をそれぞれ設定している。

【0015】

図1の露光装置は、露光光を供給するための光源として、たとえばレーザプラズマX線 源1を備えている。なお、X線源として、放電プラズマ光源や他のX線源を用いることが 可能である。X線源1から射出された光は、波長選択フィルタ2を介して、照明光学系3 に入射する。波長選択フィルタ2は、X線源1が供給する光から、所定波長(例えば13 .5 nm)のEUV光だけを選択的に透過させ、他の波長光の透過を遮る特性を有する。 【0016】

波長選択フィルタ2を透過したEUV光は、複数の反射鏡から構成された照明光学系3 を介して、転写すべきパターンが形成された反射型のマスク4を照明する。なお、波長選 択フィルタ2の配置は必須ではなく、反射鏡に形成された波長選択膜を用いてもよいし、 10

他の形態の波長選択手段を用いてもよい。また、波長選択フィルタ 2 及び他の波長選択手 段そのものを配置しなくてもよい。

【 0 0 1 7 】

マスク4は、そのパターン面がXY平面に沿って延びるように、Y方向に沿って移動可 能なマスクステージ5によって保持されている。そして、マスクステージ5の移動は、図 示を省略したレーザー干渉計により計測されるように構成されている。マスク4上には、 Y軸に関して対称な円弧状の照明領域が形成される。照明されたマスク4からの光は、反 射型の結像光学系6を介して、感光性基板であるウェハ7上にマスクパターンの像を形成 する。

【0018】

すなわち、ウェハ7上には、図2に示すように、Y軸に関して対称な円弧状の有効結像 領域が形成される。図2を参照すると、光軸AXを中心とした半径Y0を有する円形状の 領域(イメージサークル)IF内において、このイメージサークルIFに接するようにX 方向の長さがLXでY方向の長さがLYの円弧状の有効結像領域ERが設定されている。 円弧状の有効結像領域ERは光軸AXを中心とする輪帯状の領域の一部であり、長さLY は円弧状の有効結像領域ERの中心と光軸とを結ぶ方向に沿った有効結像領域ERの幅寸 法である。

【0019】

ウェハ7は、その露光面がXY平面に沿って延びるように、X方向およびY方向に沿っ て二次元的に移動可能なウェハステージ8によって保持されている。なお、ウェハステー ジ8の移動は、マスクステージ5と同様に、図示を省略したレーザー干渉計により計測さ れるように構成されている。こうして、マスクステージ5およびウェハステージ8をY方 向に沿って移動させながら、すなわち投影光学系としての結像光学系6に対してマスク4 およびウェハ7をY方向に沿って相対移動させながらスキャン露光(走査露光)を行うこ とにより、ウェハ7の1つの露光領域にマスク4のパターンが転写される。 【0020】

このとき、結像光学系6の投影倍率(転写倍率)が1/4である場合、ウェハステージ 8の移動速度をマスクステージ5の移動速度の1/4に設定して同期走査を行う。また、 ウェハステージ8をX方向およびY方向に沿って二次元的に移動させながら走査露光を繰 り返すことにより、ウェハ7の各露光領域にマスク4のパターンが逐次転写される。以下 、比較例および第1乃至第6実施例を参照して、結像光学系の具体的な構成について説明 する。

【0021】

比較例および各実施例の結像光学系は、図3に示すように、直線状に延びる単一の光軸 AXに沿って、マスク4のパターン面と共役な位置にパターンの中間像を形成するための 第1反射光学系G1と、マスク4のパターンの最終縮小像(中間像の像)をウェハ7上に 形成するための第2反射光学系G2とにより構成されている。すなわち、マスク4のパタ ーン面と光学的に共役な面が、第1反射光学系G1と第2反射光学系G2との間の光路中 に形成される。

[0022]

第1反射光学系G1は、光の入射順に、凹面状の反射面を有する第1反射鏡M1と、凹面状の反射面を有する第2反射鏡M2と、凸面状の反射面を有する第3反射鏡M3と、凹面状の反射面を有する第4反射鏡M4とにより構成されている。第2反射光学系G2は、光の入射順に、凸面状の反射面を有する第5反射鏡M5と、凹面状の反射面を有する第6 反射鏡M6とにより構成されている。第2反射鏡M2の反射面の位置に、開口絞り(不図示)が設けられている。

【 0 0 2 3 】

比較例および各実施例では、マスク4のパターン面(第1面)において光軸AXから離れた領域(照明領域)からの光が、第1反射鏡M1の凹面状の反射面、第2反射鏡M2の 凹面状の反射面、第3反射鏡M3の凸面状の反射面、および第4反射鏡M4の凹面状の反 10

射面で順次反射された後、マスクパターンの中間像を形成する。第1反射光学系G1を介して形成された中間像からの光は、第5反射鏡M5の凸面状の反射面および第6反射鏡M 6の凹面状の反射面で順次反射された後、ウェハ7の表面(第2面)において光軸AXから離れた領域(有効結像領域ER)にマスクパターンの縮小像(二次像)を形成する。 【0024】

比較例および各実施例において、すべての反射鏡M1~M6の反射面は、光軸AXに関して回転対称な非球面状の規定面S1~S6によって規定されている。ここで、第3反射鏡M3、第4反射鏡M4、および第6反射鏡M6の反射面は、光軸AXから離れた位置に 有効領域を有する。第1反射鏡M1および第5反射鏡M5の反射面では、有効領域の周縁 付近において光軸AXと交差している。第2反射鏡M2の反射面では、有効領域の中央付 近において光軸AXと交差している。

【0025】

また、比較例および各実施例の結像光学系は、ウェハ側(像側)にほぼテレセントリックな光学系である。換言すれば、比較例および各実施例において、結像光学系の像面上の 各位置に達する主光線は像面に対してほぼ垂直である。この構成により、結像光学系の焦 点深度内でウェハに凹凸があっても良好な結像が可能になっている。

[0026]

比較例および各実施例において、反射鏡M1~M6の反射面を規定する規定面S1~S 6 は、光軸AXに垂直な方向の高さをyとし、当該規定面と光軸AXとの交点を含み且つ 光軸AXに垂直な面から高さyにおける当該規定面上の位置までの光軸AXに沿った距離 (サグ量)をzとし、光軸AXにおける当該規定面の中心曲率半径をrとし、円錐係数(コーニック定数)を とし、n(nは28以下の正の整数)次の非球面係数をC_nとし、 をnに関する総和記号としたとき、以下の式(a)で表される。ただし、比較例および 各実施例において、2次の非球面係数C₂、および3次以上の奇数次の非球面係数(C₃, C₅, C₇, ・・・, C₂₇)は、0である。

[0027]

 $z = (y^2/r) / \{1 + \{1 - (1 +) \cdot y^2 / r^2\}^{1/2}\} + C_n \cdot y^n$ (a) 【0028】 [比較例]

各実施例の効果を検証するための比較例として、特許文献1に開示された開口数NAが 0.25の結像光学系をNA=0.33に最適化した結像光学系を用いる。比較例の結像 光学系では、各反射鏡M1~M6の反射面を規定する規定面S1~S6が、4次以上の偶 数次の非球面係数(C₄,C₆,C₈,・・・,C₂₈)とコーニック定数 とを用いて非球 面式(a)により定義されている。換言すれば、比較例では、規定面S1~S6を表す非 球面式(a)において1次の非球面係数C₁が0であり、すべての反射面を規定する回転 対称面の傾きが光軸AXの位置において連続的に変化している。

【 0 0 2 9 】

次の表(1)に、比較例にかかる結像光学系の諸元の値を掲げる。表(1)の主要諸元の欄において、 は露光光の波長を、 は結像倍率を、NAは像側(ウェハ側)開口数を、Y0はウェハ7上でのイメージサークルIFの半径(最大像高)を、LXは有効結像領 域ERのX方向に沿った寸法を、LYは有効結像領域ERのY方向に沿った寸法(円弧状の有効結像領域ERの幅寸法)をそれぞれ表している。 【0030】

また、表(1)の光学部材諸元の欄において、面番号は物体面であるマスク面から像面 であるウェハ面への光線の進行する方向に沿ったマスク側からの反射面の順序を、rは各 反射面の中心曲率半径(mm)を、dは各反射面の軸上間隔すなわち次の反射面までの面 間隔(mm)をそれぞれ示している。なお、面間隔dは、反射される度にその符号を変え るものとする。そして、光線の入射方向にかかわらずマスク側に向かって凸面の曲率半径 を正とし、凹面の曲率半径を負としている。上述の表記は、以降の表(2)~(7)にお いても同様である。また、主要諸元の値は、比較例および各実施例に共通である。 10

20

30

(7)

[0031]表(1) (主要諸元) = 1 3 . 5 n m = 1 / 4 N A = 0 . 3 3Y 0 = 3 0 . 5 m m L X = 2.6 mmL Y = 2 m m(光学部材諸元) 面番号 光学部材 r d (マスク面) 557.6270 (第1反射鏡M1) -844.8251 -193.7591 1 2 1849.6608 324.4344 (第2反射鏡M2) 3 (第3反射鏡M3) 474.5683 -284.8868 4 572.0570 813.8823 (第4反射鏡M4) (第5反射鏡M5) 5 283.4708 -380.1421 6 456.1063 426.0113 (第6反射鏡M6) (ウェハ面) (非球面データ) 1面(規定面S1) = 0 . 0 3 3 5 $C_1 = 0$ $C_4 = 3 \cdot 2 \cdot 7 \cdot 5 \cdot x \cdot 1 \cdot 0^{-9}$ $C_6 = -7$. 1910 × 10⁻¹⁴ $C_8 = 1$. 4 7 4 7 × 1 0⁻¹⁸ $C_{12} = -1$. 2 4 0 1 × 1 0 - 25 $C_{10} = 3$. 2 1 5 1 × 1 0 - 2 2 $C_{16} = -2$. 8 4 7 2 × 1 0 - 3 3 $C_{14} = 2$. 4 3 7 8 × 1 0⁻²⁹ $C_{18} = 1$. 8 6 3 9 × 1 0 - 37 $C_{20} = -5$. 2 5 5 2 × 1 0 - 4 2 $C_{22} = -1$. 9 3 1 2 × 1 0 - 47 $C_{24} = 9$. 2 1 3 9 × 1 0 - 5 2 $C_{26} = 4$. 8 7 5 4 × 1 0 ⁻⁵⁶ $C_{28} = 4$. 5 0 6 6 × 1 0 ⁻⁶⁰ 2 面 (規 定 面 S 2) = - 0 . 9 9 6 0 $C_1 = 0$ $C_4 = -1$. 2 4 9 2 × 1 0 - 9 $C_6 = -1$. 4 3 7 6 x 1 0 $^{-13}$ $C_8 = 2$. 0 0 6 6 × 1 0 - 16 $C_{10} = -3$. 9 8 3 4 × 1 0 ⁻¹⁹ $C_{12} = 5$. 2 0 5 8 × 1 0 - 22 $C_{16} = 2$. 9 1 4 2 × 1 0 ⁻²⁸ $C_{14} = -4$. 7 3 0 6 × 1 0 ⁻²⁵ $C_{18} = -1$. 0 9 2 4 × 1 0 $^{-31}$ $C_{20} = 1$. 6 4 9 1 × 1 0 - 35 $C_{24} = 2$. 9 5 3 1 × 1 0 - 4 3 $C_{22} = 2 \cdot 1 \cdot 7 \cdot 2 \cdot 3 \times 1 \cdot 0^{-39}$ $C_{26} = -8$. 5 4 3 3 × 1 0 - 4 6 $C_{28} = 1$. 7 9 5 9 × 1 0 - 4 9 3 面 (規 定 面 S 3) = 0 . 0 0 8 3 $C_1 = 0$ $C_4 = -1$. 8 9 6 6 × 1 0 - 9 $C_6 = -1$. 4 3 6 9 x 1 0 $^{-14}$ $C_8 = 2$. 1 6 9 1 × 1 0 ⁻¹⁸ $C_{12} = -6$. 7 1 1 1 × 1 0 $^{-26}$ $C_{10} = 1$. 4 7 4 0 × 1 0 - 22 $C_{16} = -3$. 5 3 5 5 × 1 0 $^{-34}$ $C_{14} = 7$. 5 3 0 6 × 1 0 - 3 0 $C_{18} = 3$. 8 9 2 2 × 1 0 - 3 9 $C_{20} = 6$. 0 5 5 3 × 1 0 - 4 4

 $C_{24} = 7$. 7 8 6 7 × 1 0 - 5 2

 $C_{22} = -6$. 7 0 8 6 × 1 0 - 4 8

10

20

30

40

(8)

 $C_{28} = -7$. 9 3 2 2 × 1 0 $^{-60}$ $C_{26} = 1$. 0 4 0 8 × 1 0 - 5 5 4 面 (規定面 S 4) = 0 . 0 0 1 1 $C_1 = 0$ $C_4 = 9$. 1 4 8 0 × 1 0⁻¹² $C_6 = -1$. 1 3 3 2 × 1 0⁻¹⁵ $C_8 = 2$. 1 0 8 3 × 1 0 - 20 $C_{12} = -5$. 0 7 9 3 × 1 0 - 31 $C_{10} = -1$. 4 1 2 4 × 1 0 - 25 $C_{14} = -1$. 6 4 0 1 × 1 0 $^{-35}$ $C_{16} = 7$. 8 1 3 4 × 1 0 - 40 $C_{20} = 3$. 5 8 4 7 × 1 0 - 50 $C_{18} = -8$. 8 0 1 4 × 1 0 - 45 10 $C_{22} = -1$. 6 3 3 3 × 1 0 $^{-56}$ $C_{24} = -3$. 1 8 2 8 × 1 0 $^{-61}$ $C_{26} = 8$. 6 2 0 3 × 1 0 ⁻⁶⁷ $C_{28} = 1$. 7 9 0 9 × 1 0 ⁻⁷¹ 5 面 (規 定 面 S 5) = 0 . 0 0 2 7 $C_1 = 0$ $C_4 = 5 \cdot 4 \cdot 6 \cdot 7 \cdot 5 \cdot x \cdot 1 \cdot 0^{-10}$ $C_6 = 1$. 3 1 0 9 x 1 0 - 12 $C_8 = -8$. 5 4 8 8 × 1 0 - 18 $C_{10} = -1$. 0 9 8 1 × 1 0 - 1 9 $C_{12} = 1$. 4 0 4 9 × 1 0 - 2 2 $C_{16} = 4$. 8 1 8 3 × 1 0 ⁻²⁹ $C_{14} = -1$. 0 6 1 9 × 1 0 $^{-25}$ $C_{20} = 1$. 3 5 4 3 × 1 0 ⁻³⁶ $C_{18} = -1$. 2 2 1 9 × 1 0 $^{-32}$ $C_{24} = -3$. 2 3 3 9 x 1 0 - 45 $C_{22} = 3$. 9 1 6 6 × 1 0 - 4 2 20 $C_{26} = -4$. 6 6 9 5 × 1 0 - 4 9 $C_{28} = -8$. 7 6 8 2 × 1 0 $^{-53}$ 6 面 (規定面 S 6) = - 0 . 0 0 0 2 $C_1 = 0$ $C_4 = 7$. 4 6 8 4 × 1 0⁻¹¹ $C_6 = 4$. 4 7 8 9 × 1 0⁻¹⁶ $C_8 = 8$. 3 3 3 2 × 1 0 - 21 $C_{12} = 8$. 8 6 7 7 × 1 0 - 29 $C_{10} = -8$. 6 7 7 2 × 1 0 - 25 $C_{16} = 2$. 5 5 4 1 × 1 0 - 37 $C_{14} = -5$. 9 2 5 7 × 1 0 - 3 3 $C_{20} = 7$. 4 5 7 6 × 1 0 - 47 $C_{18} = -6$. 4 9 7 8 × 1 0 - 4 2 $C_{22} = 1$. 4 8 3 8 × 1 0 ⁻⁵² $C_{24} = -3$. 5 9 0 4 × 1 0 $^{-57}$ 30 $C_{28} = 2$. 5 1 5 6 × 1 0 - 6 6 $C_{26} = -2$. 0742 × 10⁻⁶¹ [0032] 「第1実施例] 第 1 実 施 例 の 結 像 光 学 系 は 、 比 較 例 に か か る 結 像 光 学 系 を 基 に 、 第 4 反 射 鏡 M 4 の 反 射 面を規定する規定面S4を表す非球面式(a)にのみ1次の非球面係数C₁を導入して最 適化したものである。すなわち、第1実施例では、規定面S4以外の各規定面の傾きは光 軸 A X の 位 置 に お い て 連 続 的 に 変 化 し て い る が 、 規 定 面 S 4 の 光 軸 A X の 位 置 に お け る 傾 きの変化は不連続である。 [0033]40 ちなみに、非球面式(a)において1次の非球面係数C₁のみにより定義される1次の 非球面は、光軸を回転対称の中心とする円錐体の側面の面形状(すなわち円錐面形状)を 有する。図4に示すように、物体面OPと像面IPとを共役に結ぶ屈折型の結像光学系を 構 成 す る 1 つ ま た は 複 数 の 光 学 面 R 1 に 1 次 の 非 球 面 を 適 用 す る と 、 光 学 面 R 1 の 光 軸 A Xの位置における傾きの変化は不連続であり、光学面R1の光軸AXを含む領域を光束が 通過する。その結果、光学面R1の傾きの変化が不連続な光軸AXの位置で波面の傾きが 不連続になり、光学面R1の傾きの変化の不連続性に起因して波面収差が発生する。 [0034]これ に 対 し 、 第 1 実 施 例 で は 、 光 軸 A X か ら 離 れ た 位 置 に 有 効 領 域 を 有 す る 第 4 反 射 鏡

M4の反射面を規定する規定面S4のみにおいて、光軸AXの位置における面の傾きの変 化を不連続にしている。したがって、第1実施例では、規定面S4の傾きの変化が不連続

(9)

な 光 軸 A X の 領 域 を 結 像 光 束 が 通 過 す る こ と は な い 。 次 の 表 (2) に 、 第 1 実 施 例 に か か る結像光学系の諸元の値を掲げる。 [0035]表(2) (主要諸元) = 1 3 . 5 n m = 1 / 4 N A = 0 . 3 3Y 0 = 30.5 mmL X = 2.6 mmL Y = 2 m m(光学部材諸元) r 面番号 光学部材 d (マスク面) 557.7447 (第1反射鏡M1) 1 -844.8306 -194.0636 2 1849.8189 324.4338 (第2反射鏡M2) 3 474.6183 -284.9001 (第3反射鏡M3) 4 572.0502 813.8840 (第4反射鏡M4) 5 (第5反射鏡M5) 283.4736 -380.1380 6 (第6反射鏡M6) 456.1078 426.0088 (ウェハ面) (非球面データ) 1 面 (規定面 S 1) = 0 . 0 3 3 5 $C_1 = 0$ $C_4 = 3 \cdot 2 \cdot 8 \cdot 7 \cdot 9 \times 1 \cdot 0^{-9}$ $C_6 = -7$. 1771 × 10⁻¹⁴ $C_8 = 1$. 4 2 8 4 × 1 0 ⁻¹⁸ $C_{10} = 3$. 2 5 7 9 × 1 0 - 22 $C_{12} = -1$. 2 3 8 2 × 1 0 - 25 $C_{14} = 2$. 4 3 4 9 × 1 0 - 29 $C_{16} = -2$. 8 5 0 0 × 1 0 $^{-33}$ $C_{20} = -5$. 2 2 7 4 × 1 0 - 4 2 $C_{18} = 1$. 8 6 4 4 × 1 0 - 37 $C_{24} = 8$. 2 3 7 3 × 1 0 - 5 2 $C_{22} = -1$. 7 3 9 8 × 1 0 - 47 $C_{26} = 2$. 2 8 8 6 × 1 0 ⁻⁵⁶ $C_{28} = 5$. 6 2 4 4 × 1 0 - 60 2 面 (規定面 S 2) = - 0 . 9 9 6 0 $C_1 = 0$ $C_4 = -1$. 2 4 4 1 × 1 0 - 9 $C_6 = -1$. 3 9 3 1 × 1 0 $^{-13}$ $C_8 = 1$. 9 4 4 9 × 1 0 - 16 $C_{10} = -3$. 9 6 0 3 × 1 0 - 19 $C_{12} = 5$. 2 1 1 1 × 1 0⁻²² $C_{16} = 2$. 9 1 2 9 × 1 0 ⁻²⁸ $C_{14} = -4$. 7 3 2 7 × 1 0 - 25 $C_{20} = 1$. 6 5 0 1 × 1 0 - 35 $C_{18} = -1$. 0 9 2 7 × 1 0 $^{-31}$ $C_{22} = 2$. 1 8 1 7 × 1 0⁻³⁹ $C_{24} = 2$. 9 9 4 1 × 1 0 - 4 3 $C_{26} = -8$. 5 3 8 3 × 1 0 - 4 6 $C_{28} = 1$. 7 8 3 8 × 1 0 - 49 3 面 (規定面 S 3) = 0 . 0 0 8 3 $C_1 = 0$ $C_4 = -1$. 9 0 4 2 × 1 0 - 9 $C_6 = -1$. 3 8 9 9 × 1 0 - 1 4 $C_8 = 2$. 1 3 4 5 × 1 0 ⁻¹⁸ $C_{12} = -6$. 6 9 3 1 × 1 0 $^{-26}$ $C_{10} = 1$. 4 6 4 3 × 1 0⁻²²

 $C_{16} = -3$. 5 3 9 6 × 1 0 - 3 4

 $C_{14} = 7$. 5 4 3 2 × 1 0 - 30

10

20

30

 $C_{20} = 5$. 7 3 4 4 × 1 0 - 4 4 $C_{18} = 3$. 7 5 3 3 × 1 0 - 39 $C_{22} = -6$. 4 8 5 7 × 1 0 - 4 8 $C_{24} = 8$. 4 8 9 1 × 1 0 - 5 2 $C_{28} = -8$. 2 6 6 9 × 1 0 $^{-60}$ $C_{26} = 1$. 0 5 7 0 × 1 0 - 5 5 4 面 (規定面 S 4) = 0 . 0 0 1 1 $C_1 = -3$. 9741 × 10⁻⁵ $C_4 = 9$. 1 7 1 4 × 1 0⁻¹² $C_6 = -1$. 1 5 2 9 × 1 0 - 15 $C_8 = 2$. 1 0 7 6 × 1 0 - 20 $C_{12} = -4$. 7 9 5 9 × 1 0 - 3 1 $C_{10} = -1$. 4 0 1 2 × 1 0 - 25 $C_{16} = 7$. 7 8 4 7 × 1 0 - 40 10 $C_{14} = -1$. 6 3 7 6 x 1 0 - 3 5 $C_{18} = -8$. 8 5 6 2 × 1 0 - 4 5 $C_{20} = 3$. 5 3 0 8 × 1 0 - 50 $C_{22} = -1$. 1 8 2 9 × 1 0 $^{-56}$ $C_{24} = -1$. 3 6 4 3 × 1 0 $^{-61}$ $C_{26} = 2$. 2 7 1 4 × 1 0 - 6 6 $C_{28} = -1$. 2 6 8 2 × 1 0 $^{-71}$ 5 面 (規 定 面 S 5) = 0 . 0 0 2 7 $C_4 = 4$. 6 8 3 6 × 1 0 - 10 $C_{1} = 0$ $C_6 = 1$. 3 1 3 6 × 1 0 ⁻¹² $C_8 = -1$. 2 7 2 4 × 1 0 $^{-17}$ $C_{10} = -1$. 0 7 0 2 × 1 0 ⁻¹⁹ $C_{12} = 1$. 4 0 2 1 × 1 0 - 22 $C_{14} = -1$. 0 6 5 4 × 1 0 - 25 $C_{16} = 4$. 8 1 7 2 × 1 0 ⁻²⁹ 20 $C_{18} = -1$. 2 1 8 6 × 1 0 $^{-32}$ $C_{20} = 1$. 3 7 2 4 × 1 0 - 36 $C_{22} = 3$. 9 1 6 6 × 1 0 - 4 2 $C_{24} = -5$. 9 2 8 0 × 1 0 - 45 $C_{28} = 2$. 4 9 1 2 × 1 0 - 5 2 $C_{26} = -1$. 2 6 0 9 × 1 0 $^{-48}$ 6 面 (規定面 S 6) = - 0 . 0 0 0 2 $C_1 = 0$ $C_4 = 7$. 4 6 2 2 × 1 0⁻¹¹ $C_6 = 4$. 5 0 4 7 × 1 0⁻¹⁶ $C_8 = 8$. 0 1 5 0 × 1 0 - 21 $C_{10} = -8$. 5 0 9 5 × 1 0 ⁻²⁵ $C_{12} = 8$. 8 6 0 7 × 1 0 - 29 30 $C_{14} = -5$. 9 4 0 1 × 1 0 - 3 3 $C_{16} = 2$. 5 5 2 6 × 1 0 - 37 $C_{18} = -6$. 4 8 7 2 × 1 0 ⁻⁴² $C_{20} = 7$. 5 0 3 8 × 1 0 - 47 $C_{22} = 1$. 5 1 3 7 × 1 0 ⁻⁵² $C_{24} = -4$. 0 5 7 1 × 1 0 $^{-57}$ $C_{28} = 3$. 0 8 7 8 × 1 0 - 6 6 $C_{26} = -2$. 2615 × 10⁻⁶¹ [0036] [第2実施例] 第2実施例の結像光学系は、比較例にかかる結像光学系を基に、第1反射鏡M1および 第 4 反 射 鏡 M 4 の 反 射 面 を 規 定 す る 規 定 面 S 1 お よ び S 4 を 表 す 非 球 面 式 (a) に の み 1 次の非球面係数 C₁を導入して最適化したものである。すなわち、第 2 実施例では、規定 面 S 2 、 S 3 、 S 5 および S 6 の 傾き は 光 軸 A X の 位 置 にお いて 連 続 的 に 変 化 し て い る が 40 、規定面S1およびS4の光軸AXの位置における傾きの変化は不連続である。 [0037] 第2 実施例では、周縁付近が光軸AXと交差する有効領域を有する第1反射鏡M1の反 射 面 を 規 定 す る 規 定 面 S 1 、 お よ び 光 軸 A X か ら 離 れ た 位 置 に 有 効 領 域 を 有 す る 第 4 反 射 鏡 M 4 の反射 面 を 規 定 す る 規 定 面 S 4 に お い て 、 光 軸 A X の 位 置 に お け る 面 の 傾 き の 変 化 を不連続にしている。したがって、第2実施例では、規定面S4の傾きの変化が不連続な 光軸AXの領域を結像光束が通過することはないが、規定面S1の傾きの変化が不連続な 光 軸 A X の 領 域 、 す な わ ち 第 1 反 射 鏡 M 1 の 有 効 反 射 領 域 の 周 縁 付 近 を 結 像 光 束 が 通 過 す る。次の表(3)に、第2実施例にかかる結像光学系の諸元の値を掲げる。

表(3)

[0038]

JP 2009-258461 A 2009.11.5

(主要諸元)		
= 1 3 . 5 n m		
= 1 / 4		
NA = 0.33		
1 - 2 - 2 - 5 - 2 - 5 - 5 - 5 - 5 - 5 - 5		
L = 2 mm		
(光学部材諸元)		
面番号 r d	光 学 部 材	10
(マスク面) 557.7603		
1 -844.8303 -194.0997	(第 1 反 射 鏡 M 1)	
2 1849.8328 324.4356	(第 2 反 射 鏡 M 2)	
3 474.6239 -284.9045	(第 3 反 射 鏡 M 3)	
4 572.0487 813.8849	(第 4 反 射 鏡 M 4)	
5 283.4741 -380.1372	(第5反射鏡M5)	
6 456.1080 426.0085	(第 6 反 射 鏡 M 6)	
(ウェ八面)		
(非球面データ)		20
(非55°) 1 面(担定面 S 1)		
$C_{4} = 9$, 6, 1, 6, 3, \times 1, 0 ⁻⁹	$C_{4} = 3 \cdot 2 \cdot 8 \cdot 8 \cdot 8 \times 1 \cdot 0^{-9}$	
$C_{e} = -7$. 1 8 3 1 × 1 0 ⁻¹⁴	$C_{\circ} = 1$. 4 4 0 2 × 1 0 ⁻¹⁸	
$C_{10} = 3$. 2 5 0 8 × 1 0 ⁻²²	$C_{12} = -1$. 2 3 8 7 × 1 0 $^{-25}$	
$C_{14} = 2$. 4 3 5 1 × 1 0 ⁻²⁹	$C_{16}^{+2} = -2$. 8 4 9 6 × 1 0 $^{-33}$	
$C_{18} = 1$. 8 6 4 7 × 1 0 - 37	$C_{20} = -5$. 2 2 7 4 × 1 0 - 4 2	
$C_{22} = -1$. 7 6 5 8 × 1 0 - 47	$C_{24} = 7$. 8 4 4 2 × 1 0 - 5 2	
$C_{26} = 2$. 0 6 6 9 × 1 0 - 5 6	$C_{28} = 6$. 1 0 6 1 × 1 0 ⁻⁶⁰	
		30
2 面(規定面 S 2)		
= - 0 . 9 9 6 0		
$C_1 = 0$ $C_4 = -1$. 2 4 3	6×10^{-3}	
$C_6 = -1.3913 \times 10^{+3}$	$C_8 = 1.9409 \times 10^{+3}$	
$C_{10} = -3$. 9588 × 10 · · ·	$C_{12} = 5 \cdot 2 1 \cdot 6 \times 1 \cdot 0 = -$	
$C_{14} = -4$. 7 3 2 9 x 1 0	$C_{16} = 2$, $9 = 27 \times 10^{-35}$	
$C_{18} = -1.0927 \times 10^{-39}$	$C_{20} = 1.0501 \times 10^{-43}$	
$C_{22} = 2 \cdot 1 \cdot 5 \cdot 2 \cdot 7 \times 1 \cdot 0$	C = 1 7 8 2 4 × 1 0 ⁻⁴⁹	
		40
3 面(規定面 S 3)		
= 0 . 0 0 8 3		
$C_1 = 0$ $C_4 = -1$. 9 0 5	$2 \times 1 0^{-9}$	
$C_6 = -1$. 3 8 2 3 × 1 0 $^{-14}$	$C_8 = 2$. 1 3 3 4 × 1 0 ⁻¹⁸	
$C_{10} = 1$. 4 6 3 0 × 1 0 ⁻²²	$C_{12} = -6$. 6 9 7 0 × 1 0 $^{-26}$	
$C_{14} = 7$. 5 4 5 7 × 1 0 ⁻³⁰	$C_{16} = -3$. 5 3 8 1 × 1 0 $^{-34}$	
$C_{18} = 3$. 7 7 1 4 × 1 0 ⁻³⁹	$C_{20} = 5$. 4 9 8 9 × 1 0 ⁻⁴⁴	
$C_{22} = -6$. 4 4 2 7 × 1 0 ⁻⁴⁸	$C_{24} = 8$. 4 3 4 0 × 1 0 ⁻⁵²	
$C_{26} = 1$. 0 4 8 6 × 1 0 - 5 5	$C_{28} = -8$. 1 6 8 3 × 1 0 - 60	
		50

(11)

4 面 (規 定 面 S 4) = 0 . 0 0 1 1 $C_1 = -4$. 6 8 6 8 × 1 0⁻⁵ $C_{4} = 9$. 2 9 2 5 x 1 0⁻¹² $C_6 = -1$. 1 5 5 5 × 1 0 $^{-15}$ $C_8 = 2$. 0 9 9 1 × 1 0⁻²⁰ $C_{10} = -1$. 3 8 5 8 × 1 0 - 2 5 $C_{12} = -4$. 8 4 7 8 × 1 0 - 31 $C_{16} = 7$. 7 6 6 0 × 1 0 - 40 $C_{14} = -1$. 6 2 0 2 × 1 0 - 3 5 $C_{18} = -8$. 8 9 1 1 × 1 0 - 4 5 $C_{20} = 3$. 5 2 0 5 × 1 0 - 5 0 $C_{22} = -2$. 8 9 5 4 × 1 0 $^{-57}$ $C_{24} = -1$. 3 4 2 5 × 1 0 $^{-61}$ $C_{26} = 1$. 8 7 0 2 × 1 0 - 6 6 $C_{28} = -1$. 4 1 3 8 × 1 0 $^{-71}$ 5 面 (規定面 S 5) = 0 . 0 0 2 7 $C_1 = 0$ $C_4 = 4$. 6 0 9 0 × 1 0⁻¹⁰ $C_6 = 1$. 3 1 4 2 × 1 0⁻¹² $C_8 = -1$. 3 4 2 0 × 1 0 $^{-17}$ $C_{10} = -1$. 0 6 9 0 × 1 0 ⁻¹⁹ $C_{12} = 1$. 4 0 3 6 x 1 0 - 2 2 $C_{14} = -1$. 0 6 5 9 × 1 0 - 2 5 $C_{16} = 4$. 8 1 5 0 × 1 0 - 29 $C_{20} = 1$. 3 7 0 6 × 1 0 - 3 6 $C_{18} = -1$. 2 1 7 3 × 1 0 $^{-32}$ $C_{24} = -5$. 7 3 8 8 × 1 0 - 4 5 $C_{22} = 3$. 9 1 6 6 × 1 0 - 4 2 $C_{28} = 2$. 5 4 9 2 × 1 0 - 5 2 $C_{26} = -1$. 3 3 1 9 × 1 0 $^{-48}$ 6 面 (規定面 S 6) = - 0 . 0 0 0 2 $C_4 = 7$. 4 6 1 8 × 1 0 - 1 1 $C_{1} = 0$ $C_6 = 4$. 5 0 8 0 × 1 0 - 16 $C_8 = 7$. 9 8 1 9 × 1 0⁻²¹ $C_{10} = -8$. 4 9 1 8 × 1 0 - 25 $C_{12} = 8$. 8 5 9 4 × 1 0 - 2 9 $C_{16} = 2$. 5 5 2 5 × 1 0 ⁻³⁷ $C_{14} = -5$. 9 4 1 6 × 1 0 - 3 3 $C_{18} = -6$. 4 8 5 9 × 1 0 ⁻⁴² $C_{20} = 7$. 5 0 8 2 × 1 0 ⁻⁴⁷ $C_{22} = 1$. 5 1 4 2 × 1 0 - 5 2 $C_{24} = -4$. 1 0 9 7 × 1 0 $^{-57}$ $C_{26} = -2$. 2 7 9 5 × 1 0 $^{-61}$ $C_{28} = 3$. 1 5 0 5 × 1 0 - 66 【0039】 [第3実施例]

第3実施例の結像光学系は、比較例にかかる結像光学系を基に、第4反射鏡M4および 第6反射鏡M6の反射面を規定する規定面S4およびS6を表す非球面式(a)にのみ1 次の非球面係数C₁を導入して最適化したものである。すなわち、第3実施例では、規定 面S1、S2、S3およびS5の傾きは光軸AXの位置において連続的に変化しているが 、規定面S4およびS6の光軸AXの位置における傾きの変化は不連続である。 【0040】

第3実施例では、光軸AXから離れた位置に有効領域を有する反射鏡M4およびM6の 反射面を規定する規定面S4およびS6において、光軸AXの位置における面の傾きの変 化を不連続にしている。したがって、第3実施例では、規定面S4の傾きの変化が不連続 な光軸AXの領域、および規定面S6の傾きの変化が不連続な光軸AXの領域を結像光束 が通過することはない。次の表(4)に、第3実施例にかかる結像光学系の諸元の値を掲 げる。

【0041】

表(4)

(主要諸元) = 1 3 . 5 n m = 1 / 4 N A = 0 . 3 3 Y 0 = 3 0 . 5 m m 30

10

20

L X = 26 mmL Y = 2 m m(光学部材諸元) 面番号 r 光学部材 d (マスク面) 557.6368 (第1反射鏡M1) 1 -844.8274 -193.8118 2 324.4322 (第2反射鏡M2) 1849.6919 3 474.5810 -284.8884 (第3反射鏡M3) 4 572.0556 813.8848 (第4反射鏡M4) (第5反射鏡M5) 5 283.4711 -380.1419 456.1065 426.0109 (第6反射鏡M6) 6 (ウェハ面) (非球面データ) 1 面 (規 定 面 S 1) = 0 . 0 3 3 5 $C_1 = 0$ $C_4 = 3 \cdot 2 \cdot 7 \cdot 9 \cdot 4 \cdot x \cdot 1 \cdot 0^{-9}$ $C_6 = -7$. 1 7 8 8 × 1 0 - 14 $C_8 = 1$. 4 6 0 0 × 1 0 ⁻¹⁸ $C_{10} = 3$. 2 2 4 3 × 1 0⁻²² $C_{12} = -1$. 2 3 9 3 × 1 0 $^{-25}$ $C_{16} = -2$. 8 4 8 0 × 1 0 $^{-33}$ $C_{14} = 2$. 4 3 7 4 × 1 0⁻²⁹ $C_{20} = -5$. 2 5 1 6 × 1 0 $^{-42}$ $C_{18} = 1$. 8 6 3 6 x 1 0 - 37 $C_{24} = 9$. 4 9 0 8 × 1 0 - 5 2 $C_{22} = -1$. 8 7 4 8 × 1 0 $^{-47}$ $C_{26} = 4$. 7 1 7 7 × 1 0 - 5 6 $C_{28} = 4$. 2 4 3 5 × 1 0 ⁻⁶⁰ 2 面 (規定面 S 2) = - 0 . 9 9 6 0 $C_1 = 0$ $C_4 = -1$. 2 5 0 6 × 1 0⁻⁹ $C_6 = -1$. 4 1 9 7 × 1 0 $^{-13}$ $C_8 = 1$. 9 8 1 3 × 1 0 ⁻¹⁶ $C_{12} = 5$. 2 0 8 7 × 1 0 - 22 $C_{10} = -3$. 9 7 5 8 × 1 0 - 19 $C_{16} = 2$. 9 1 3 6 × 1 0 ⁻²⁸ $C_{14} = -4$. 7 3 1 1 × 1 0 - 25 $C_{18} = -1$. 0 9 2 6 × 1 0 ⁻³¹ $C_{20} = 1$. 6 4 9 3 × 1 0 ⁻³⁵ $C_{22} = 2$. 1 7 6 9 × 1 0 - 3 9 $C_{24} = 2$. 9 7 8 5 × 1 0 - 4 3 $C_{26} = -8$. 5 3 9 2 × 1 0 - 4 6 $C_{28} = 1$. 7 8 9 2 × 1 0 - 4 9 3 面 (規 定 面 S 3) = 0 . 0 0 8 3 $C_1 = 0$ $C_4 = -1$. 8 9 9 0 × 1 0 - 9 $C_6 = -1$. 4 3 6 9 × 1 0 ⁻¹⁴ $C_8 = 2$. 1 6 5 0 × 1 0⁻¹⁸ $C_{10} = 1$. 4 7 4 0 × 1 0 - 22 $C_{12} = -6$. 7 0 5 2 × 1 0 $^{-26}$ $C_{14} = 7$. 5 3 3 7 × 1 0 ⁻³⁰ $C_{16} = -3$. 5 3 8 0 × 1 0 - 3 4 $C_{18} = 3$. 8 3 4 3 × 1 0 - 39 $C_{20} = 6$. 0 5 5 2 × 1 0 - 4 4 C $_{24}$ = 8 . 0 9 7 2 × 1 0 $^{-52}$ $C_{22} = -6$. 7 4 9 8 × 1 0 - 4 8 $C_{26} = 1$. 0 6 8 5 × 1 0 - 5 5 $C_{28} = -8$. 2 0 2 4 × 1 0 $^{-60}$ 4 面 (規 定 面 S 4) = 0 . 0 0 1 1 $C_1 = -6$. 7 1 8 5 × 1 0 $^{-6}$ $C_4 = 9$. 1 4 8 0 × 1 0⁻¹²

 $C_6 = -1$. 1 3 6 3 × 1 0 $^{-15}$

 $C_{10} = -1$. 4 1 0 0 × 1 0 $^{-25}$

 $C_8 = 2$. 1 0 8 3 × 1 0 - 20

 $C_{12} = -5$. 0 7 9 3 × 1 0 - 31

10

20

30

40

 $C_{16} = 7$. 8 1 3 4 × 1 0 - 40 $C_{14} = -1$. 6 4 0 1 × 1 0 $^{-35}$ $C_{20} = 3$. 5 8 1 6 × 1 0 - 50 $C_{18} = -8$. 8 0 1 4 × 1 0 - 4 5 $C_{22} = -1$. 6 3 3 4 × 1 0 $^{-56}$ $C_{24} = -3$. 1 8 2 9 × 1 0 $^{-61}$ $C_{26} = 8$. 6 1 9 5 × 1 0 ⁻⁶⁷ $C_{28} = 1$. 8 3 0 0 × 1 0 - 7 1 5 面 (規 定 面 S 5) = 0 . 0 0 2 7 $C_1 = 0$ $C_4 = 5$. 3 0 5 3 x 1 0⁻¹⁰ $C_6 = 1$. 3 0 8 1 × 1 0⁻¹² $C_8 = -8$. 1 2 2 4 × 1 0 - 18 $C_{10} = -1$. 0 9 6 1 × 1 0 - 1 9 $C_{12} = 1$. 4 0 3 2 × 1 0 - 2 2 $C_{14} = -1$. 0 6 2 3 × 1 0 - 25 $C_{16} = 4$. 8 2 0 5 × 1 0 ⁻²⁹ $C_{20} = 1$. 3 5 8 1 × 1 0 ⁻³⁶ $C_{18} = -1$. 2 2 1 9 × 1 0 $^{-32}$ $C_{22} = 3$. 9 1 6 6 × 1 0 - 4 2 $C_{24} = -4$. 0 6 0 7 × 1 0 - 45 $C_{26} = -4$. 6 6 9 5 × 1 0 - 4 9 $C_{28} = -4$. 7 4 1 6 × 1 0 $^{-53}$ 6 面 (規 定 面 S 6) = - 0 . 0 0 0 2 $C_1 = 5$. 2 1 6 0 × 1 0⁻⁹ $C_{4} = 7$. 4 6 9 6 × 1 0⁻¹¹ $C_6 = 4$. 4 6 1 3 × 1 0⁻¹⁶ $C_8 = 8$. 4 0 2 5 x 1 0 - 21 $C_{10} = -8$. 6 6 5 1 × 1 0 ⁻²⁵ $C_{12} = 8$. 8 6 0 6 × 1 0 - 29 $C_{16} = 2$. 5 5 4 2 × 1 0 - 37 $C_{14} = -5$. 9 2 8 0 × 1 0 - 3 3 $C_{18} = -6$. 4 9 4 9 × 1 0 - 4 2 $C_{20} = 7$. 4 6 5 9 × 1 0 - 47 $C_{24} = -3$. 7 0 9 9 × 1 0 $^{-57}$ $C_{22} = 1$. 4 8 0 3 × 1 0 - 5 2 $C_{28} = 2$. 6 5 7 8 × 1 0 - 6 6 $C_{26} = -2$. 1 1 2 2 × 1 0 $^{-61}$ [0042] [第4 実施例]

(14)

第4実施例の結像光学系は、比較例にかかる結像光学系を基に、第1反射鏡M1、第2 反射鏡M2および第5反射鏡M5の反射面を規定する規定面S1、S2およびS5を表す 非球面式(a)にのみ1次の非球面係数C₁を導入して最適化したものである。すなわち 、第4実施例では、規定面S3、S4およびS6の傾きは光軸AXの位置において連続的 に変化しているが、規定面S1、S2およびS5の光軸AXの位置における傾きの変化は 不連続である。

[0043]

第4実施例では、周縁付近が光軸AXと交差する有効領域を有する反射鏡M1およびM 5の反射面を規定する規定面S1およびS5、並びに中央付近が光軸AXと交差する有効 領域を有する第2反射鏡M2の反射面を規定する規定面S2において、光軸AXの位置に おける面の傾きの変化を不連続にしている。したがって、第4実施例では、規定面S1お よびS5の傾きの変化が不連続な光軸AXの領域、すなわち反射鏡M1およびM5の有効 反射領域の周縁付近を結像光束が通過する。また、規定面S2の傾きの変化が不連続な光 軸AXの領域、すなわち第2反射鏡M2の有効反射領域の中央付近を結像光束が通過する 。次の表(5)に、第4実施例にかかる結像光学系の諸元の値を掲げる。 【0044】

表(5)

40

10

20

30

(主要諸元) = 1 3 . 5 n m = 1 / 4 N A = 0 . 3 3 Y 0 = 3 0 . 5 m m L X = 2 6 m m L Y = 2 m m

(面

 (光学部材諸元) 面番号 r d (マスク面) 557.6275 1 -844.8251 -193.7600 2 1849.6609 324.4344 3 474.5684 -284.8869 4 572.0570 813.8823 5 283.4708 -380.1421 6 456.1063 426.0113 (ウェ八面) 	光学部材 (第1反射鏡M1) (第2反射鏡M2) (第3反射鏡M3) (第4反射鏡M4) (第5反射鏡M5) (第6反射鏡M6)
 (非球面データ) 1 面(規定面S1) = 0.0335 C₁ = 7.4748×10⁻⁹ C₆ = -7.1913×10⁻¹⁴ C₁₀ = 3.2154×10⁻²² C₁₄ = 2.4378×10⁻²⁹ C₁₈ = 1.8639×10⁻³⁷ C₂₂ = -1.9318×10⁻⁴⁷ C₂₆ = 4.8778×10⁻⁵⁶ 	$C_{4} = 3 \cdot 2 \cdot 7 \cdot 7 \cdot 6 \cdot 1 \cdot 0^{-9}$ $C_{8} = 1 \cdot 4 \cdot 7 \cdot 4 \cdot 8 \cdot 1 \cdot 0^{-18}$ $C_{12} = -1 \cdot 2 \cdot 4 \cdot 0 \cdot 1 \cdot 1 \cdot 0^{-25}$ $C_{16} = -2 \cdot 8 \cdot 4 \cdot 7 \cdot 2 \cdot 1 \cdot 0^{-33}$ $C_{20} = -5 \cdot 2 \cdot 5 \cdot 3 \cdot 1 \cdot 0^{-42}$ $C_{24} = 9 \cdot 2 \cdot 1 \cdot 2 \cdot 6 \cdot 1 \cdot 0^{-52}$ $C_{28} = 4 \cdot 5 \cdot 1 \cdot 1 \cdot 2 \cdot 1 \cdot 0^{-60}$
2 面 (規定面 S 2) = - 0 . 9 9 6 0 C $_{1}$ = 5 . 8 6 6 8 × 1 0 $^{-10}$ C $_{6}$ = - 1 . 4 3 7 3 × 1 0 $^{-13}$ C $_{10}$ = - 3 . 9 8 3 4 × 1 0 $^{-19}$ C $_{14}$ = - 4 . 7 3 0 6 × 1 0 $^{-25}$ C $_{18}$ = - 1 . 0 9 2 7 × 1 0 $^{-31}$ C $_{22}$ = 2 . 1 7 2 3 × 1 0 $^{-39}$ C $_{26}$ = - 8 . 5 4 3 3 × 1 0 $^{-46}$	$C_{4} = -1 \cdot 2 \cdot 4 \cdot 9 \cdot 2 \cdot 1 \cdot 0^{-9}$ $C_{8} = 2 \cdot 0 \cdot 0 \cdot 6 \cdot 5 \cdot 1 \cdot 0^{-16}$ $C_{12} = 5 \cdot 2 \cdot 0 \cdot 5 \cdot 8 \cdot 1 \cdot 0^{-22}$ $C_{16} = 2 \cdot 9 \cdot 1 \cdot 4 \cdot 2 \cdot 1 \cdot 0^{-28}$ $C_{20} = 1 \cdot 6 \cdot 4 \cdot 9 \cdot 1 \cdot 1 \cdot 0^{-35}$ $C_{24} = 2 \cdot 9 \cdot 5 \cdot 3 \cdot 2 \cdot 1 \cdot 0^{-43}$ $C_{28} = 1 \cdot 7 \cdot 9 \cdot 5 \cdot 9 \cdot 1 \cdot 0^{-49}$
3 面 (規定面 S 3) = 0 . 0 0 8 3 $C_1 = 0$ $C_4 = -1$. 8 9 6 7 $C_6 = -1$. 4 3 7 1 × 1 0 ⁻¹⁴ $C_{10} = 1$. 4 7 4 0 × 1 0 ⁻²² $C_{14} = 7$. 5 3 0 7 × 1 0 ⁻³⁰ $C_{18} = 3$. 8 9 2 0 × 1 0 ⁻³⁹ $C_{22} = -6$. 7 1 2 8 × 1 0 ⁻⁴⁸ $C_{26} = 1$. 0 4 1 0 × 1 0 ⁻⁵⁵	× 1 0 ⁻⁹ C ₈ = 2 . 1 6 9 0 × 1 0 ⁻¹⁸ C ₁₂ = -6 . 7 1 1 0 × 1 0 ⁻²⁶ C ₁₆ = -3 . 5 3 5 5 × 1 0 ⁻³⁴ C ₂₀ = 6 . 0 5 1 1 × 1 0 ⁻⁴⁴ C ₂₄ = 7 . 7 8 4 5 × 1 0 ⁻⁵² C ₂₈ = -7 . 9 2 6 1 × 1 0 ⁻⁶⁰
4 面(規定面 S 4) = 0 . 0 0 1 1 C ₁ = 0 C ₄ = 9 . 1 4 9 7 × C ₆ = - 1 . 1 3 3 2 × 1 0 ⁻¹⁵ C ₁₀ = - 1 . 4 1 2 4 × 1 0 ⁻²⁵ C ₁₄ = - 1 . 6 4 0 1 × 1 0 ⁻³⁵ C ₁₈ = - 8 . 8 0 1 4 × 1 0 ⁻⁴⁵	1 0 $^{-12}$ C $_8 = 2$. 1 0 8 2 × 1 0 $^{-20}$ C $_{12} = -5$. 0 7 9 2 × 1 0 $^{-31}$ C $_{16} = 7$. 8 1 3 4 × 1 0 $^{-40}$ C $_{20} = 3$. 5 8 4 7 × 1 0 $^{-50}$

10

20

30

40

 $C_{22} = -1$. 6 3 3 3 × 1 0 - 5 6 $C_{24} = -3$. 1 8 2 2 × 1 0 $^{-61}$ $C_{26} = 8$. 6 2 8 7 × 1 0 - 67 $C_{28} = 1$. 7 9 0 1 × 1 0 - 7 1 5 面 (規定面 S 5) = 0 . 0 0 2 7 $C_1 = 9$. 5 5 4 8 × 1 0⁻⁹ $C_{4} = 5$. 4 6 9 0 × 1 0⁻¹⁰ $C_8 = -8$. 5 5 4 4 × 1 0 ⁻¹⁸ $C_6 = 1$. 3 1 0 7 × 1 0 ⁻¹² $C_{10} = -1$. 0 9 8 1 × 1 0 - 1 9 $C_{12} = 1$. 4 0 4 9 x 1 0 - 22 $C_{16} = 4$. 8 1 8 3 × 1 0 - 29 $C_{14} = -1$. 0 6 1 9 × 1 0 - 25 $C_{18} = -1$. 2 2 1 9 × 1 0 $^{-32}$ $C_{20} = 1$. 3 5 4 3 × 1 0 ⁻³⁶ $C_{22} = 3$. 9 1 6 6 × 1 0 - 4 2 $C_{24} = -3$. 2 3 2 5 x 1 0 - 4 5 $C_{26} = -4$. 6 6 3 7 × 1 0 - 4 9 $C_{28} = -8$. 7 2 0 5 × 1 0 $^{-53}$ 6 面 (規 定 面 S 6) = - 0 . 0 0 0 2 $C_1 = 0$ $C_4 = 7$. 4 6 8 4 × 1 0⁻¹¹ $C_6 = 4$. 4 7 9 1 × 1 0 - 16 $C_8 = 8$. 3 3 3 0 × 1 0 - 21 $C_{10} = -8$. 6 7 7 2 × 1 0 ⁻²⁵ $C_{12} = 8$. 8 6 7 7 × 1 0 ⁻²⁹ $C_{16} = 2$. 5 5 4 1 × 1 0 ⁻³⁷ $C_{14} = -5$. 9 2 5 7 × 1 0 $^{-33}$ $C_{18} = -6$. 4 9 7 8 × 1 0 - 4 2 $C_{20} = 7$. 4 5 7 6 × 1 0 - 47 $C_{24} = -3$. 5 9 0 6 × 1 0 - 57 $C_{22} = 1$. 4 8 3 8 × 1 0⁻⁵² $C_{26} = -2$. 0 7 4 2 × 1 0 $^{-61}$ $C_{28} = 2$. 5 1 6 1 × 1 0 - 6 6 [0045] [第5 実施例] 第5 実施例の結像光学系は、比較例にかかる結像光学系を基に、第4 反射鏡 M 4 、第5 反射鏡 M 5 および第 6 反射鏡 M 6 の反射面を規定する規定面 S 4 、 S 5 および S 6 を表す 非球面式(a)にのみ1次の非球面係数Cィを導入して最適化したものである。すなわち 、 第 5 実 施 例 で は 、 規 定 面 S 1 、 S 2 お よ び S 3 の 傾 き は 光 軸 A X の 位 置 に お い て 連 続 的 に変化しているが、規定面S4、S5およびS6の光軸AXの位置における傾きの変化は 不連続である。 [0046] 第5 実施例では、光軸AXから離れた位置に有効領域を有する反射鏡M4およびM6の 反射面を規定する規定面S4およびS6、並びに周縁付近が光軸AXと交差する有効領域 を 有 す る 第 5 反 射 鏡 M 5 の 反 射 面 を 規 定 す る 規 定 面 S 5 に お い て 、 光 軸 A X の 位 置 に お け る面の傾きの変化を不連続にしている。したがって、第5実施例では、規定面S4の傾き の変化が不連続な光軸AXの領域、および規定面S6の傾きの変化が不連続な光軸AXの 領域を結像光束が通過することはないが、規定面 S 5 の傾きの変化が不連続な光軸 A X の 領域、すなわち第5反射鏡M5の有効反射領域の周縁付近を結像光束が通過する。次の表 (6)に、第5実施例にかかる結像光学系の諸元の値を掲げる。 [0047] 表(6) (主要諸元)

(16)

= 1 3 . 5 n m = 1 / 4 N A = 0 . 3 3 Y 0 = 3 0 . 5 m m L X = 2 6 m m L Y = 2 m m

(光学部材諸元)

50

30

40

10

面番号	r	d	光 学 部 材	
4	(マスク面)	557.7539		
1	-844.8305	-194.0938	(
2	1849.8244	324.4338	(弗 2 反 射 鏡 M 2)	
3	474.6277	-284.9009	(弗 3 反 射 鏡 M 3)	
4	572.0495	813.8835	(弗4反射鏡M4)	
5	283.4744	-380.1375	(弗 5 反 射 鏡 M 5)	
6	456.1080 (426.0086	(弗 6 反 射 鋧 M 6 <i>)</i>	
	(リェハ画)			10
(非球	面データ)			10
1 匪(規 正 囬 S l)			
= 0	. 0 3 3 5		4 0 - 9	
$C_1 = 0$	$C_4 = 1$	3.2888×		
C ₆ = -	7.1870	× 1 0 ' ⁻	$C_8 = 1$. 4 2 9 8 × 10 ⁻¹⁰	
$C_{10} =$	3.2648:	$\times 10^{-29}$	$C_{12} = -1$. 2385 × 10 ²³	
C ₁₄ =	2.4343:	$\times 10^{-37}$	$C_{16} = -2 \cdot 8 \cdot 5 \cdot 0 \cdot 1 \times 1 \cdot 0 \cdot 5^{-42}$	
C ₁₈ =	1.8648	$\times 10^{-57}$	$C_{20} = -5 \cdot 2 \cdot 2 \cdot 3 \cdot 1 \times 10^{-42}$	
C ₂₂ =	- 1 . / 2 9 (6×10^{-4}	$C_{24} = 7.9799 \times 10^{-52}$	20
$C_{26} =$	1.9604:	× 1 0 - 3 0	$C_{28} = 5$. 7 7 0 6 × 1 0 - 80	20
2面(=-	規 定 面 S 2) 0.9			
C ₁ = C	C ₄ =	- 1 . 2 4 2 9	× 1 0 ⁻⁹	
C ₆ = -	1.3787	× 1 0 ⁻¹³	$C_8 = 1$. 9 2 9 7 × 1 0 ⁻¹⁶	
C ₁₀ =	- 3 . 9 5 3 2	2 × 1 0 ^{- 1 9}	$C_{12} = 5$. 2 1 1 6 × 1 0 - 2 2	
C ₁₄ =	- 4 . 7 3 3	6 × 1 0 ^{- 2 5}	$C_{16} = 2$. 9 1 2 7 × 1 0 ⁻²⁸	
C ₁₈ =	- 1 . 0 9 2	6 × 1 0 ^{- 3 1}	$C_{20} = 1$. 6 5 0 6 × 1 0 ⁻³⁵	
C ₂₂ =	2.1823:	× 1 0 ^{- 3 9}	$C_{24} = 2$. 9 8 6 1 × 1 0 ⁻⁴³	
C ₂₆ =	- 8.5424	4 × 1 0 ^{- 4 6}	$C_{28} = 1$. 7 8 5 5 × 1 0 ⁻⁴⁹	30
3面(規定面 S 3)			
= 0	. 0 0 8 3			
$C_{1} = 0$	C 4 =	- 1 . 9 0 3 5	× 1 0 ⁻⁹	
C ₆ = -	1.3752	× 1 0 ⁻¹⁴	$C_8 = 2$. 1 2 6 1 × 1 0 ⁻¹⁸	
C ₁₀ =	1.4589:	× 1 0 ⁻²²	$C_{12} = -6$. 6 9 0 8 × 1 0 $^{-26}$	
C ₁₄ =	7.5487	× 1 0 ⁻³⁰	C ₁₆ = - 3 . 5 3 8 7 × 1 0 ^{- 3 4}	
C ₁₈ =	3.7404:	× 1 0 ⁻³⁹	$C_{20} = 5$. 4 4 0 1 × 1 0 ⁻⁴⁴	
C ₂₂ =	- 6 . 5 9 8	7 × 1 0 ^{- 4 8}	$C_{24} = 8$. 6 1 6 6 × 1 0 ⁻⁵²	
C ₂₆ =	1.0740:	× 1 0 ^{- 5 5}	$C_{28} = -8$. 3 5 5 4 × 1 0 $^{-60}$	40
4面(規 定 面 S 4)			
= 0	. 0 0 1 1			
C ₁ = -	4.4688	× 1 0 ^{- 5}	$C_4 = 9$. 1 7 7 7 × 1 0 ⁻¹²	
C ₆ = -	1.1551	× 1 0 ⁻¹⁵	$C_8 = 2$. 1 0 2 2 × 1 0 ⁻²⁰	
C ₁₀ =	- 1 . 3 8 2 9	9 × 1 0 ^{- 2 5}	$C_{12} = -4$. 8 9 8 2 × 1 0 ⁻³¹	
C ₁₄ =	- 1 . 6 3 0	5 × 1 0 ^{- 3 5}	$C_{16} = 7$. 7 4 0 2 × 1 0 ⁻⁴⁰	
C ₁₈ =	- 8 . 8 1 3	9 × 1 0 ^{- 4 5}	$C_{20} = 3$. 5 1 7 6 × 1 0 - 5 0	
C ₂₂ =	- 6 . 2 0 1	5 × 1 0 ^{- 5 7}	$C_{24} = -1$. 7 2 2 9 × 1 0 ⁻⁶¹	
C ₂₆ =	1.7184	× 1 0 ⁻⁶⁶	$C_{28} = -8$. 6 8 4 7 × 1 0 $^{-72}$	50

5 面 (規 定 面 S 5) = 0 . 0 0 2 7 $C_1 = 1$. 8 1 7 2 × 1 0⁻⁸ $C_4 = 4$. 6 8 3 6 × 1 0 - 10 $C_8 = -8$. 7 7 9 9 × 1 0 ⁻¹⁸ $C_6 = 1$. 3 1 0 5 x 1 0 ⁻¹² $C_{10} = -1$. 0 8 3 2 × 1 0 ⁻¹⁹ $C_{12} = 1$. 4 0 0 7 × 1 0⁻²² $C_{14} = -1$. 0 6 4 3 × 1 0 - 25 $C_{16} = 4$. 8 2 0 2 × 1 0 ⁻²⁹ $C_{18} = -1$. 2 1 9 1 × 1 0 $^{-32}$ $C_{20} = 1$. 3 6 9 0 × 1 0 ⁻³⁶ $C_{22} = 3$. 9 1 6 6 × 1 0 - 42 $C_{24} = -6$. 0 3 2 2 × 1 0 - 45 10 $C_{26} = -1$. 1776 × 10⁻⁴⁸ $C_{28} = 2$. 5 2 2 3 × 1 0⁻⁵² 6面(規定面S6) = - 0 . 0 0 0 2 $C_1 = 6$. 0 4 7 4 × 1 0⁻⁹ $C_4 = 7$. 4 6 5 3 × 1 0⁻¹¹ $C_6 = 4$. 4 6 6 9 × 1 0⁻¹⁶ $C_{8} = 8$. 2722 × 10⁻²¹ $C_{10} = -8$. 5 8 4 2 × 1 0 - 25 $C_{12} = 8$. 8 5 8 3 x 1 0⁻²⁹ $C_{16} = 2$. 5 5 3 1 × 1 0 ⁻³⁷ $C_{14} = -5$. 9 3 6 2 × 1 0 - 3 3 $C_{20} = 7$. 4 9 6 4 × 1 0 - 47 $C_{18} = -6$. 4 8 8 7 × 1 0 - 4 2 $C_{22} = 1$. 5 0 6 4 × 1 0 - 5 2 $C_{24} = -4$. 0 1 3 4 × 1 0 $^{-57}$ $C_{26} = -2$. 2 4 4 0 × 1 0 $^{-61}$ $C_{28} = 3$. 0 4 8 6 × 1 0 - 66 20 [0048]「第6実施例]

(18)

第6実施例の結像光学系は、比較例にかかる結像光学系を基に、第1反射鏡M1、第4 反射鏡M4、第5反射鏡M5および第6反射鏡M6の反射面を規定する規定面S1、S4 、S5およびS6を表す非球面式(a)にのみ1次の非球面係数C₁を導入して最適化し たものである。すなわち、第6実施例では、規定面S2およびS3の傾きは光軸AXの位 置において連続的に変化しているが、規定面S1、S4、S5およびS6の光軸AXの位 置における傾きの変化は不連続である。

【0049】

第6実施例では、周縁付近が光軸AXと交差する有効領域を有する第1反射鏡M1およ 30 びM5の反射面を規定する規定面S1およびS5、並びに光軸AXから離れた位置に有効 領域を有する反射鏡M4およびM6の反射面を規定する規定面S4およびS6において、 光軸AXの位置における面の傾きの変化を不連続にしている。したがって、第6実施例で は、規定面S4の傾きの変化が不連続な光軸AXの領域、および規定面S6の傾きの変化 が不連続な光軸AXの領域を結像光束が通過することはないが、規定面S1およびS5の 傾きの変化が不連続な光軸AXの領域、すなわち反射鏡M1およびM5の有効反射領域の 周縁付近を結像光束が通過する。次の表(7)に、第6実施例にかかる結像光学系の諸元 の値を掲げる。

【0050】

表(7)

40

(主要諸元) = 1 3 . 5 n m = 1 / 4 N A = 0 . 3 3 Y 0 = 3 0 . 5 m m L X = 2 6 m m L Y = 2 m m

(光学部材諸元) 面番号 r

光学部材

d

(マスク面) 557.7500	
1 - 844.8304 - 194.0811 (第1反射鏡M1)	
2 1849.8191 324.4342 (第 2 反 射 鏡 M 2)	
3 474 . 6238 - 284 . 9014 (第 3 反 射 鏡 M 3)	
4 572 . 0497 813 . 8841 (第 4 反 射 鏡 M 4)	
5 283 . 4740 - 380 . 1376 (第 5 反 射 鏡 M 5)	
6 456 . 1079 426 . 0087 (第 6 反 射 鏡 M 6)	
(ウェハ面)	
(非球面データ)	10
1 面(規定面 S 1)	
= 0 . 0 3 3 5	
$C_{1} = 1 \cdot 1 \cdot 1 \cdot 2 \cdot 0 \times 1 \cdot 0^{-8}$ $C_{4} = 3 \cdot 2 \cdot 8 \cdot 8 \cdot 0 \times 1 \cdot 0^{-9}$	
$C_{e} = -7.1881 \times 10^{-14}$ $C_{o} = 1.4466 \times 10^{-18}$	
$C_{10} = 3 \cdot 2 \cdot 4 \cdot 9 \cdot 1 \times 1 \cdot 0^{-22}$ $C_{10} = -1 \cdot 2 \cdot 3 \cdot 9 \cdot 1 \times 1 \cdot 0^{-25}$	
$C_{44} = 2$, 4352×10^{-29} $C_{46} = -2$, 8494×10^{-33}	
$C_{14} = 1 + 8 + 6 + 7 \times 10^{-37} \qquad C_{16} = -5 + 2 + 9 + 8 \times 10^{-42}$	
$C_{18} = 1 - 7 - 7 - 8 - 6 - 4 - 7 - 6 - 2 - 2 - 5 - 2 - 2 - 5 - 2 - 2 - 5 - 2 - 2$	
$C = 2 + 7.89 \times 10^{-56}$ $C = 5 + 6565 \times 10^{-60}$	
$C_{26} = 2 \cdot 4 7 \cdot 6 \cdot 5 \times 1 \cdot 6 \cdot 6 \cdot 6 \cdot 5 \cdot 6 \cdot 6$	20
2五(坦字五62)	20
0. $0 = 0$	
$C_1 = 0$ $C_4 = -1.2448 \times 10^{-1}$	
$C_6 = -1.3827 \times 10^{-10}$ $C_8 = 1.9314 \times 10^{-22}$	
$C_{10} = -3.9546 \times 10^{-10}$ $C_{12} = 5.2119 \times 10^{-21}$	
$C_{14} = -4$. 7334×10^{-20} $C_{16} = 2$. 9126×10^{-20}	
$C_{18} = -1.0926 \times 10^{-31}$ $C_{20} = 1.6505 \times 10^{-33}$	
$C_{22} = 2 \cdot 1 \cdot 8 \cdot 2 \cdot 8 \times 1 \cdot 0^{-33}$ $C_{24} = 2 \cdot 9 \cdot 9 \cdot 2 \cdot 2 \times 1 \cdot 0^{-43}$	
$C_{26} = -8.5408 \times 10^{-40}$ $C_{28} = 1.7842 \times 10^{-49}$	0.0
	30
3 面(規定面 S 3)	
= 0 . 0 0 8 3	
$C_1 = 0$ $C_4 = -1$ $0 0 4 3 \times 10^{-9}$	
$C_6 = -1$. 3 7 9 6 × 1 0 $^{-14}$ $C_8 = 2$. 1 3 1 6 × 1 0 $^{-18}$	
$C_{10} = 1 \cdot 4 \cdot 6 \cdot 0 \cdot 1 \cdot x \cdot 1 \cdot 0^{-22}$ $C_{12} = -6 \cdot 6 \cdot 9 \cdot 3 \cdot 7 \cdot x \cdot 1 \cdot 0^{-26}$	
$C_{14} = 7$. 5 4 6 6 × 1 0 ⁻³⁰ $C_{16} = -3$. 5 3 8 2 × 1 0 ⁻³⁴	
$C_{18} = 3$. 7 6 1 2 × 1 0 ⁻³⁹ $C_{20} = 5$. 5 4 1 2 × 1 0 ⁻⁴⁴	
$C_{22} = -6$. 5 8 5 8 × 1 0 ⁻⁴⁸ $C_{24} = 8$. 4 5 3 8 × 1 0 ⁻⁵²	
$C_{26} = 1$. 0 6 2 1 × 1 0 ⁻⁵⁵ $C_{28} = -8$. 2 2 4 6 × 1 0 ⁻⁶⁰	
	40
4 面(規定面 S 4)	
= 0 . 0 0 1 1	
$C_1 = -4$. 2 8 4 8 × 1 0 ⁻⁵ $C_4 = 9$. 2 2 7 0 × 1 0 ⁻¹²	
$C_6 = -1$. 1536 × 10 ⁻¹⁵ $C_8 = 2$. 1011 × 10 ⁻²⁰	
$C_{10} = -1$. 3 8 8 1 × 1 0 ⁻²⁵ $C_{12} = -4$. 8 7 8 2 × 1 0 ⁻³¹	
$C_{14} = -1$. 6 2 5 4 × 1 0 ⁻³⁵ $C_{16} = 7$. 7 7 2 8 × 1 0 ⁻⁴⁰	
$C_{18} = -8$. 8786 × 10 ⁻⁴⁵ $C_{20} = 3$. 5252 × 10 ⁻⁵⁰	
$C_{22} = -4$. 3676×10 ⁻⁵⁷ $C_{24} = -1$. 4962×10 ⁻⁶¹	
$C_{26} = 1 \cdot 7 \cdot 4 \cdot 7 \cdot 9 \times 1 \cdot 0^{-66}$ $C_{28} = -1 \cdot 1 \cdot 1 \cdot 1 \cdot 0 \cdot 1 \times 1 \cdot 0^{-71}$	
20 20	

5 面 (規 定 面 S 5) = 0 . 0 0 2 7 $C_1 = 1$. 9 4 0 1 × 1 0⁻⁸ $C_4 = 4$. 7 1 5 8 × 1 0 - 10 $C_6 = 1$. 3 0 9 0 × 1 0 - 12 $C_8 = -8$. 8 6 9 1 × 1 0 - 18 $C_{10} = -1$. 0 8 3 4 × 1 0 - 19 $C_{12} = 1$. 4 0 1 0 × 1 0 $^{-22}$ $C_{14} = -1$. 0 6 4 3 × 1 0 - 25 $C_{16} = 4$. 8 1 9 9 × 1 0 - 29 $C_{18} = -1$. 2 1 9 3 × 1 0 $^{-32}$ $C_{20} = 1$. 3 6 8 3 × 1 0 ⁻³⁶ $C_{22} = 3$. 9 1 6 6 × 1 0 - 4 2 $C_{24} = -5$. 8 3 5 8 × 1 0 - 4 5 $C_{26} = -1$. 1 2 9 9 × 1 0 $^{-48}$ $C_{28} = 2$. 2631 × 10⁻⁵² 6 面 (規定面 S 6) = - 0 . 0 0 0 2 $C_1 = 6$. 1 5 2 2 × 1 0 - 9 $C_4 = 7$. 4 6 5 8 × 1 0⁻¹¹ $C_6 = 4$. 4 6 7 0 × 1 0 - 1 6 $C_8 = 8$. 2 8 1 5 × 1 0⁻²¹ $C_{10} = -8$. 5 8 6 9 × 1 0 - 25 $C_{12} = 8$. 8 5 7 6 × 1 0 - 29 $C_{14} = -5$. 9 3 6 0 × 1 0 ⁻³³ $C_{16} = 2$. 5 5 3 3 × 1 0 - 37 $C_{18} = -6$. 4 8 8 7 × 1 0 - 4 2 $C_{20} = 7$. 4 9 5 2 × 1 0 - 47 $C_{24} = -4$. 0 0 9 6 × 1 0 $^{-57}$ $C_{22} = 1$. 5 0 2 8 × 1 0 - 5 2 $C_{26} = -2$. 2 3 8 7 × 1 0 $^{-61}$ $C_{28} = 3$. 0 4 0 9 × 1 0 - 6 6 [0051] 次に、比較例および各実施例にかかる結像光学系の波面収差について検証する。波面収 差のRMS(root mean square:自乗平均平方根あるいは平方自乗平均)の値であるWr msに換算可能なストレール強度ISが知られている。ストレール強度ISと波面収差の RMS値Wrmsとの間には、次の式(b)に示す近似的な関係が成立する。式(b)に は光の波長である。 おいて、 $I s = 1 - (2 \times W r m s /)^{2}$ (b) [0052]式(b)を参照すると、波面収差のRMS値Wrmsが0に近づくにしたがって、スト

レール強度 Isは1に近づくことがわかる。換言すれば、ストレール強度 Isが1に近い ほど、波面収差が小さい。ちなみに、光学系の古典的な評価基準では、ストレール強度 I sが0.8以上であれば、ほぼ無収差であると見なされる。また、DVDのピックアップ 光学系では、ストレール強度 Isが0.95以上であれば、所望の収差状態であると見な される。

【 0 0 5 3 】

図 5 は、A r F エキシマレーザ光を用いる露光装置に搭載された投影光学系の波面収差 の R M S 値 W r m s の向上を時系列に示す図である(例えばT.Matsuyama et al.:SPIE, Vol.5040(2003), p801-810を参照)。図 5 において、S 3 0 6 C は、波長 = 1 9 3 n m の A r F エキシマレーザ光を用いて開口数 N A = 0 . 7 8 を実現した露光装置を示してい る。また、S 3 0 6 D は、波長 = 1 9 3 n m の A r F エキシマレーザ光を用いて開口数 N A = 0 . 8 5 を実現した露光装置を示している。

【0054】

図 5 では、1 0 機の露光装置 S 3 0 6 C について号機毎に測定された波面収差の R M S 値W r m s、および S 3 0 6 C よりも年代の新しい 5 機の露光装置 S 3 0 6 D について号 機毎に測定された波面収差の R M S 値W r m s がプロットされている。ただし、露光装置 S 3 0 6 C に関する 1 0 個のプロットのうち、図中右側の 5 つのプロットに対応する露光 装置の方が、図中左側の 5 つのプロットに対応する露光装置よりも年代的に新しい。 【 0 0 5 5 】

使用光の波長 が193nmの場合、図5に示すように、ストレール強度Is=0.9 83と波面収差のRMS値Wrms=4.02nmとが対応し、ストレール強度Is=0 .986と波面収差のRMS値Wrms=3.65nmとが対応し、ストレール強度Is 10

20

40

= 0 . 9 8 9 と波面収差の R M S 値 W r m s = 3 . 2 3 n m とが対応している。図 5 を参 照すると、最先端の露光装置では 0 . 9 8 ~ 0 . 9 9 程度のストレール強度 I s が要求さ れていることがわかる。

(21)

【 0 0 5 6 】

次の表(8)に、比較例および各実施例にかかる結像光学系のストレール強度Isを掲 げる。表(8)では、比較例および各実施例について、有効結像領域ER内の像高Y=3 0.5mmの位置、像高Y=29.5mmの位置、および像高Y=28.5mmの位置で のストレール強度Isをそれぞれ示している。

【 0 0 5 7 】

		表(8)	
	Y = 30.5mm	Y = 2 9 . 5 m m	Y = 28.5mm
比 較 例	0.987	0.986	0.983
第 1 実 施 例	0.988	0.986	0.986
第 2 実 施 例	0.988	0.986	0.985
第 3 実 施 例	0.989	0.985	0.987
第 4 実 施 例	0.988	0.984	0.983
第 5 実 施 例	0.988	0.986	0.986
第6実施例	0.989	0.986	0.985
【 0 0 5 8 】			

第1実施例では、上述したように、規定面S4のみにおいて光軸AXの位置における面の傾きの変化が不連続になっているが、この規定面S4の傾きの変化が不連続な領域を結像光束が通過しない。第1実施例では、比較例において最も低いY=28.5mmでのストレール強度Isが0.986に向上し、比較例において最も高いY=3 0.5mmでのストレール強度Isが0.987から0.988に向上し、Y=29.5 mmでのストレール強度Isが0.986から変化していない。ここで、最も低いストレ ール強度Isが0.983から0.986に向上していることは重要であり、その差が半 導体露光装置の光学系において非常に意味のあるものであることは図5を参照して明らか である。すなわち、第1実施例では、比較例に比して大きな収差補正効果が得られている

【0059】

第2実施例では、上述したように、規定面S1およびS4のみにおいて光軸AXの位置 における面の傾きの変化が不連続になっており、規定面S4の傾きの変化が不連続な領域 を結像光束が通過しないが、規定面S1の傾きの変化が不連続な領域を結像光束が通過す る。第2実施例では、比較例において最も低いY=28.5mmでのストレール強度IS が0.983から0.985に向上し、比較例において最も高いY=30.5mmでのス トレール強度ISが0.987から0.988に向上し、Y=29.5mmでのストレー ル強度ISが0.986から変化していない。すなわち、第2実施例においても、第1実 施例に近い収差補正効果が得られている。

[0060]

第3実施例では、上述したように、規定面S4およびS6のみにおいて光軸AXの位置 における面の傾きの変化が不連続になっており、これらの規定面S4およびS6の傾きの 変化が不連続な領域を結像光束が通過しない。第3実施例では、比較例において最も低い Y=28.5mmでのストレール強度ISが0.987に向上し、比較例 において最も高いY=30.5mmでのストレール強度ISが0.987から0.989 に向上している。ただし、Y=29.5mmでのストレール強度ISが0.986から0 .985に低下している。すなわち、第3実施例においても、第1実施例に近い収差補正 効果が得られている。

【0061】

第 4 実施例では、上述したように、規定面 S 1 、 S 2 および S 5 において光軸 A X の位 置における面の傾きの変化が不連続になっており、これらの規定面 S 1 、 S 2 および S 5

10

30

の傾きの変化が不連続な領域を結像光束が通過する。その結果、第4実施例では、比較例 において最も高いY=30.5mmでのストレール強度Isが0.987から0.988 に向上しているが、比較例において最も低いY=28.5mmでのストレール強度Isが 0.983から変化することなく、Y=29.5mmでのストレール強度Isが0.98 6から0.984に低下している。すなわち、第4実施例では、第1実施例乃至第3実施 例とは異なり、比較例に比してあまり大きな収差補正効果が得られていない。 【0062】

(22)

第5実施例では、上述したように、規定面S4、S5およびS6において光軸AXの位置における面の傾きの変化が不連続になっており、規定面S4およびS6の傾きの変化が不連続な領域を結像光束が通過しないが、規定面S5の傾きの変化が不連続な領域を結像光束が通過する。第5実施例では、比較例において最も低いY=28.5mmでのストレール強度ISが0.986に向上し、比較例において最も高いY=30.5mmでのストレール強度ISが0.987から0.988に向上し、Y=29.5mmでのストレール強度ISが0.986から変化していない。すなわち、第5実施例では、第1実施例と同等の収差補正効果が得られている。

【 0 0 6 3 】

第6実施例では、上述したように、規定面S1、S4、S5およびS6において光軸A Xの位置における面の傾きの変化が不連続になっており、規定面S4およびS6の傾きの 変化が不連続な領域を結像光束が通過しないが、規定面S1およびS5の傾きの変化が不 連続な領域を結像光束が通過する。第6実施例では、比較例において最も低いY=28. 5mmでのストレール強度Isが0.983から0.985に向上し、比較例において最 も高いY=30.5mmでのストレール強度Isが0.987から0.989に向上し、 Y=29.5mmでのストレール強度Isが0.986から変化していない。すなわち、 第6実施例では、第1実施例に近い収差補正効果が得られている。 【0064】

このように、光軸AXから離れた位置に有効領域を有する反射鏡の反射面、特に第4反 射鏡M4の反射面を規定する規定面S4において、光軸AXの位置における面の傾きの変 化を不連続にすることが、収差補正にとって効果的であることがわかる。また、周縁付近 が光軸AXと交差する有効領域を有する反射鏡M1およびM5の反射面を規定する規定面 S1およびS5、並びに中央付近が光軸AXと交差する有効領域を有する第2反射鏡M2 の反射面を規定する規定面S2において、光軸AXの位置における面の傾きの変化を不連 続にしても、収差補正の効果があまり得られないことがわかる。

[0065]

また、規定面S4およびS6において光軸AXの位置における面の傾きの変化が不連続 になっている第3実施例と、規定面S4、S5およびS6において光軸AXの位置におけ る面の傾きの変化が不連続になっている第5実施例とを比較すると、周縁付近が光軸AX と交差する有効領域を有する第5反射鏡M5の反射面を規定する規定面S5にも1次の非 球面係数C1を導入することにより、有効結像領域ER内のストレール強度ISのバラン スが良好になることがわかる。

[0066]

以上のように、第4実施例を除く各実施例では、EUV光を用いる反射型の結像光学系において、例えば光軸AXから離れた位置に有効領域を有する反射面を規定する規定面の 光軸AXの位置における傾きの変化を不連続に設定しているので、すべての反射面を規定 する回転対称面の傾きが光軸AXの位置において連続的に変化している比較例に比して、 収差補正の自由度を高めることができ、ひいては波面収差を良好に補正することができる

[0067]

なお、光軸から離れた領域に像を形成する結像光学系では、光軸近傍での結像を用いないので、ペッツバール和を0にする必要はないが非点収差項は補正する必要がある。結像 光学系の瞳の位置(すなわち開口絞りの位置)から光路に沿って比較的大きな面間隔を隔 10

てて配置され且つ光軸から離れた位置に有効領域を有する反射面を規定する規定面に1次の非球面係数C₁を導入すれば、非点収差係数を厳密に0にしなくても、特定の像高位置においてMS像面をほぼ一致させることができ、ひいては収差補正を容易に行うことが可能になり、特に周辺の像面平坦性、非点収差の補正が可能になると考えられる。 【0068】

(23)

上述の各実施例では、波長が13.5 nmのEUV光に対して、良好な結像性能および 0.33という比較的大きな像側開口数を確保するとともに、ウェハ7上において諸収差 が良好に補正された26mm×2mmの円弧状の有効結像領域を確保することができる。 したがって、ウェハ7において、たとえば26mm×34mmまたは26mm×37mm の大きさを有する各露光領域に、マスク4のパターンを走査露光により0.1 μm以下の 高解像で転写することができる。

【0069】

なお、上述の各実施例では13.5nmの波長を有するEUV光を例示的に用いている が、これに限定されることなく、例えば5~50nm程度の波長を有するEUV光や、波 長193nmを用いた反射屈折液浸露光装置など、他の適当な波長の光を使用する結像光 学系に対しても同様に本発明を適用することができる。また、上述の各実施例では反射型 の結像光学系に本発明を適用しているが、これに限定されることなく、反射屈折型の結像 光学系に本発明を適用し、必要に応じて、例えば光軸から離れた位置に有効領域を有する 屈折面を規定する規定面の傾きの変化を光軸の位置において不連続に設定することもでき る。

[0070]

なお、上述の実施形態では、マスクの代わりに、所定の電子データに基づいて所定パタ ーンを形成する可変パターン形成装置を用いることができる。このような可変パターン形 成装置を用いれば、パターン面が縦置きでも同期精度に及ぼす影響を最低限にできる。な お、可変パターン形成装置としては、たとえば所定の電子データに基づいて駆動される複 数の反射素子を含むDMD(デジタル・マイクロミラー・デバイス)を用いることができ る。DMDを用いた露光装置は、例えば特開2004 - 304135号公報、国際特許公 開第2006/080285号パンフレットに開示されている。また、DMDのような非 発光型の反射型空間光変調器以外に、透過型空間光変調器を用いても良く、自発光型の画 像表示素子を用いても良い。なお、パターン面が横置きの場合であっても可変パターン形 成装置を用いても良い。

【0071】

上述の実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種 サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てる ことで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光 学系については光学的精度を達成するための調整、各種機械系については機械的精度を達 成するための調整、各種電気系については電気的精度を達成するための調整が行われる。 各種サブシステムから露光装置への組み立て工程は、各種サプシステム相互の、機械的接 続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サプシステムから 露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいう までもない。各種サプシステムの露光装置への組み立て工程が終了したら、総合調整が行 われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度および クリーン度等が管理されたクリーンルームで行うことが望ましい。 【0072】

次に、上述の実施形態にかかる露光装置を用いたデバイス製造方法について説明する。 図6は、半導体デバイスの製造工程を示すフローチャートである。図6に示すように、半 導体デバイスの製造工程では、半導体デバイスの基板となるウェハWに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する (ステップS42)。つづいて、上述の実施形態の露光装置を用い、マスク(レチクル) Mに形成されたパターンをウェハW上の各ショット領域に転写し(ステップS44:露光 20

10

工程)、この転写が終了したウェハWの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。その後、ステップS46によってウェハWの表面に生成されたレジストパターンをマスクとし、ウェハWの表面に対してエッチング等の加工を行う(ステップS48:加工工程)。

【0073】

ここで、レジストパターンとは、上述の実施形態の露光装置によって転写されたパター ンに対応する形状の凹凸が生成されたフォトレジスト層であって、その凹部がフォトレジ スト層を貫通しているものである。ステップS48では、このレジストパターンを介して ウェハWの表面の加工を行う。ステップS48で行われる加工には、例えばウェハWの表 面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS4 4では、上述の実施形態の露光装置は、フォトレジストが塗布されたウェハWを感光性基 板としてパターンの転写を行う。

【0074】

なお、上述の実施形態では、EUV光を供給するための光源としてレーザプラズマX線 源を用いているが、これに限定されることなく、EUV光としてたとえばシンクロトロン 放射(SOR)光を用いることもできる。

【0075】

また、上述の実施形態では、EUV光を供給するための光源を有する露光装置に本発明 を適用しているが、これに限定されることなく、EUV光以外の他の波長光を供給する光 源を有する露光装置に対しても本発明を適用することができる。

[0076]

また、上述の実施形態では、露光装置の投影光学系としての結像光学系に対して本発明 を適用しているが、これに限定されることなく、一般に物体面において光軸から離れた領 域の像を像面において光軸から離れた領域に形成する結像光学系に対しても同様に本発明 を適用することができる。

【図面の簡単な説明】

【図1】本発明の実施形態にかかる露光装置の構成を概略的に示す図である。

【図2】ウェハ上に形成される円弧状の有効結像領域と光軸との位置関係を示す図である

0

【図3】本実施形態の比較例および各実施例にかかる結像光学系の構成を示す図である。 【図4】屈折型の結像光学系を構成する光学面に1次の非球面を適用したときの波面収差 への影響を説明する図である。

【図 5】ArFエキシマレーザ光を用いる露光装置に搭載された投影光学系の波面収差の RMS値Wrmsの向上を時系列に示す図である。

【図 6】マイクロデバイスとしての半導体デバイスを得る際の手法の一例について、その フローチャートを示す図である。

【符号の説明】

- 【0078】
- 1 レーザプラズマ X 線源
- 2 波長選択フィルタ
- 3 照明光学系
- 4 マスク
- 5 マスクステージ
- 6 結像光学系
- 7 ウェハ

8 ウェハステージ

G 1 , G 2 反射光学系

M 1 ~ M 6 反射鏡

S1~S6 規定面

40

10

20

【図2】

AX-

Z ∧

 $\underset{X}{\oplus} \rightarrow Y$

【図3】

【図4】

フロントページの続き

- (72)発明者 渋谷 眞人埼玉県さいたま市大宮区上小町665-1
- (72)発明者 小林 慶 山梨県甲府市大里町3049-20
- (72)発明者 豊田 光紀
 - 宮城県仙台市太白区鹿野3-23-5-202
- (72)発明者 小松田 秀基東京都千代田区丸の内3丁目2番3号 株式会社ニコン内
- Fターム(参考) 2H087 KA21 TA02 TA06 5F046 BA05 CB03 CB12 CB25 DA12 GA03 GB01