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FIG.7

data set using an ensemble classification technique. Classifiers are iterat-
ively generated by applying machine learning techniques to a training data
set, and training class sets are generated by classitying the elements in the
training data set according to the classitiers. Objective values are computed
based on the training class sets, and objective values associated with differ-
ent classifiers are compared until a desired number of iterations is reached,
and a final training class set is output.
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SYSTEMS AND METHODS FOR GENERATING BIOMARKER SIGNATURES
WITH INTEGRATED DUAL ENSEMBLE AND GENERALIZED SIMULATED
ANNEALING TECHNIQUES

Background
In the biomedical field it is important to identify substances that are indicative of a specific

biological state, namely biomarkers. As new technologies of genomics and proteomics

emerge, biomarkers are becoming more and more important in biological discovery, drug
development and health care. Biomarkers are not only useful for diagnosis and prognosis of

many diseases, but also for understanding the basis for development of therapeutics. Successful and
effective identification of biomarkers can accelerate the new drug development process. With the
combination of therapeutics with diagnostics and prognosis, biomarker identification will also
enhance the quality of current medical treatments, thus play an important role in the use

of pharmacogenetics, pharmacogenomics and pharmacoproteomics.

Genomic and proteomic analysis, including high throughput screening, supplies a wealth of
information regarding the numbers and forms of proteins expressed in a cell and provides the potential
to identify for each cell, a profile of expressed proteins characteristic of a particular cell state. In certain
cases, this cell state may be characteristic of an abnormal physiological response
associated with a disease. Consequently, identifying and comparing a cell state from a patient
with a disease to that of a corresponding cell from a normal patient can provide opportunities to
diagnose and treat diseases.

These high throughput screening techniques provide large data sets of gene expression
information. Researchers have attempted to develop methods for organizing these data sets into
patterns that are reproducibly diagnostic for diverse populations of individuals. One approach
has been to pool data from multiple sources to form a combined data set and then to divide the

data set into a discovery/training set and a test/validation set. However, both transcription
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profiling data and protein expression profiling data are often characterized by a large number of
variables relative to the available number of samples.

Observed differences between expression profiles of specimens from groups of patients
or controls are typically overshadowed by several factors, including biological variability or
unknown sub-phenotypes within the disease or control populations, site-specific biases due to
difference in study protocols, specimens handling, biases due to differences in instrument
conditions (e.g., chip batches, etc), and variations due to measurement error. Some techniques
attempt to correct to for bias in the data samples (which may result from, for example, having
more of one class of sample represented in the data sct than another class).

Several computer-based methods have been developed to find a sct of features (markers)
that best explain the difference between the disease and control samples. Some early methods
included statistical tests such as LIMMA, the FDA approved mammaprint technique for
identifying biomarkers relating to breast cancer, logistical regression techniques and machine
learning methods such as support vector machines (SVM). Generally, from a machine learning
perspective, the selection of biomarkers is typically a feature selection problem for a
classification task. However, these early solutions faced several disadvantages. The signatures
generated by these techniques were often not reproducible because the inclusion and exclusion of
subjects can lead to different signatures. These early solutions also generated many false
positive signatures and were not robust because they operated on datasets having small sample
sizes and high dimensions.

Accordingly there is a need for improved techniques for identifying biomarkers for
clinical diagnosis and/or prognosis, and more generally, for identifying data markers that can be

used to classify elements in a data set into two or more classes.

Summary

Described herein are systems, computer program products and methods for identifying
data markers that can be used to classify elements in a data set into two or more classes. In
particular, Applicants have recognized that a combination of methods and gene set data can
provide better prediction of test data than an individual method alone. The computer systems
and computer program products described herein implement methods that include one or more

such techniques for classifying elements into two or more classes. In particular, biomarker
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signatures are generated using integrated dual ensemble and simulated annealing techniques.
The techniques involve resampling a data set and predicting phenotypes using a dual ensemble
method. In particular, the systems, computer program products, and methods described herein
include forming a random vector indicative of a set of classification methods and data samples. .
The random vector is iteratively perturbed, and different objective values are computed that
correspond to the different perturbations.

In certain aspects, the systems and methods described herein include means and methods
for classifying a data set into two or more classes executed by a processor. The methods may
comprise receiving a training data set. The training data sct may be determined by separating an
aggrcgate data sct into a discovery (training) sct and a validation (test) set. For example, the
aggregate data set may include data that is pooled together from multiple sources, and the
aggregate data set may be randomly split into training and test data sets. The methods may
further comprise generating a first classifier for the training data set by applying a first machine
learning technique to the training data set. For example, the machine learning technique may
correspond to support vector machines (SVM) or any suitable technique for feature selection. A
first training class set is generated by classifying the elements in the training data set according
to the first classifier. In particular, the first classifier may correspond to a classification rule that
assigns each sample in a data set to a physiological state (such as diseased or disease-free, for
example). The first classifier may combine multiple classification methods such as SVN,
network-based SVMs, neural network-based classifiers, logistic regression classifiers, decision
tree-based classifiers, classifiers using a linear discriminant analysis technique, a random-forst
analysis technique, any other suitable classification method, or any combination thereof.

A first objective value is computed based on the training class set. In particular, a binary
generalized simulated annealing method may be used to compute the objective value. A random
vector may include as its clements a sct of parameters that defing the classification technique to
be used. The technique defined by the random vector is used to compute the first objective
value. Then, for a plurality of iterations, a second machine learning technique is applied to the
training data set to generate a second classifier for the training data set, and a second training
class set is generated by classifying the elements in the training data set according to the second
classifier. In particular, the second classifier may be generated by randomly perturbing the

random vector used to define the first classifier, and using the random perturbation of the random
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vector to define the second classifier. Furthermore, a second objective value based on the second
training class set is computed, and the first and second objective values are compared. Based on
the comparison between the first and second objective values, the first training class set may be
replaced with the second training class set, and the first objective value may be replaced by the
second objective value, and the next iteration is begun. The iterations are repeated until a desired
number of iterations is reached, and the first training class set is output.

In certain embodiments of the methods described above, the steps of the method are
repeated for a plurality of training data sets, where each training data set in the plurality of
training data sets is generated by bootstrapping an aggregate training data set. The bootstrapping
may be performed with balanced samples or without balanced samples. Whether to bootstrap
with balanced samples or without balanced samples may be determined by a binary element in
the random vector, whose value may be updated when the random vector is perturbed. Other
bootstrap parameters may be included as elements in the random vector, such as whether to
sample a subset of samples from an aggregate set of samples with replacement or without
replacement or a number of bootstraps. In certain embodiments of the methods, a sample is
selected in a test data set, and the classifier corresponding to the output first training class set is
used to predict a value associated with the selected sample. In certain embodiments of the
methods, the second classifier is generated by applying a random vector to identify parameters
for a classification scheme associated with the second classifier, the random vector including at
least one binary value. In certain embodiments of the methods, the parameters of the random
vector include a flag variable indicating whether to perform balanced bootstrapping, a number of
bootstraps, a list of classification methods, a list of genes, or a combination thereof.

In certain embodiments of the methods, the step of computing the second objective value
is based on a Matthew correlation coefficient. In particular, the objective value may correspond
to a difference between 1 and the Matthew correlation coetficient of the results. The Matthew
correlation coefficient is a performance metric that may be used as a composite performance
score. In certain embodiments of the methods, the step of computing the second objective value
comprises implementing a binary generalized simulated annealing method. In certain
embodiments of the methods, the binary generalized simulated annealing method comprises
locally perturbing one or more values of the random vector to identify parameters for the

classification scheme. In certain embodiments of the methods, locally perturbing the one or
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more values of the random vector comprises randomly updating each element of the random
vector to obtain an updated random vector, computing an updated second objective value using
the updated random vector, and accepting the updated second objective value based on a
comparison between a probability value and a random number. In certain embodiments of the
methods, locally perturbing the one or more values of the random vector comprises changing
one element of the random vector for each iteration.

In certain embodiments of the methods, the step of replacing the first training class set
with the second training class set and replacing the first objective value with the second objective
valuge is based on a cooling formula. In particular, it may be desirable to decrease the objective
valuc in a binary gencralized simulated anncaling method by performing major perturbations on
the random vector. In simulated annealing, an artificial temperature value is gradually reduced
to simulate cooling. A visiting distribution is used in simulated annealing to simulate a trial
jump distance from one point (i.e., a first set of values for the random vector) to another point
(i.c., a second set of values for the random vector). The trial jump is accepted based on whether
the second objective value is less than the first objective value and on an acceptance probability.
The binary generalized simulated annealing method is used to identify a global minimum to
minimize the objective value. In certain embodiments of the methods, the second classifier is
selected from the group comprising linear discriminant analysis, support vector machine-based
methods, random forest methods, and k nearest neighbor methods.

The computer systems of the present invention comprise means for implementing the
various embodiments of the methods, as described above. For example, a computer program
product is described, the product comprising computer-readable instructions that, when executed
in a computerized system comprising at least one processor, cause the processor to carry out one
or more steps of any of the methods described above. In another example, a computerized
system is described, the system comprising a processor configured with non-transitory computer-
readable instructions that, when executed, cause the processor to carry out any of the methods
described above. The computer program product and the computerized methods described
herein may be implemented in a computerized system having one or more computing devices,
each including one or more processors. Generally, the computerized systems described herein
may comprise one or more engines, which include a processor or devices, such as a computer,

microprocessor, logic device or other device or processor that is configured with hardware,



10

15

20

25

30

CA 02877430 2014-12-19

WO 2013/190085 PCT/EP2013/062982

firmware, and software to carry out one or more of the computerized methods described herein.
Any one or more of these engines may be physically separable from any one or more other
engines, or may include multiple physically separable components, such as separate processors
on common or different circuit boards. The computer systems of the present invention
comprises means for implementing the methods and its various embodiments as described above.
The engines may be interconnected from time to time, and further connected from time to time to
one or more databases, including a perturbations database, a measurables database, an
experimental data database and a literature database. The computerized system described herein
may include a distributed computerized system having one or more processors and engines that
communicate through a network interface. Such an implementation may be appropriate for

distributed computing over multiple communication systems.

Brief Description of the Drawings

Further features of the disclosure, its nature and various advantages, will be apparent
upon consideration of the following detailed description, taken in conjunction with the
accompanying drawings, in which like reference characters refer to like parts throughout, and in
which:

FIG. I depicts an exemplary system for identifying one or more biomarker signatures;

FIG. 2 is a graph depicting the classification of data samples and the determination of a
classification rule;

FIG. 3 is a flow diagram of a dual ensemble method,;

FIG. 4 is a flow diagram of a method for building data sets;

FIG. 5 is a flow diagram of a method for generating a result vector and objective value;

FIG. 6 is a flow diagram of a method for initializing a binary generalized simulated
anncaling method;

FIG. 7 is a flow diagram of a method for decreasing an objective value in a binary
generalized simulated annealing method;

FIG. 8 is a flow diagram of a method for further decreasing an objective value in a binary
generalized simulated annealing method;

FIG. 9 is a block diagram of a computing device, such as any of the components of the

system of FIG. 1; and
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FIG. 10 is a heatmap of a gene signature in a training data set.

Detailed Description

To provide an overall understanding of the systems and methods described herein, certain
illustrative embodiments will now be described, including systems and methods for identifying
gene biomarker signatures. However, it will be understood by one of ordinary skill in the art that
the systems and methods described herein may be adapted and modified for other suitable
applications, such as any data classification application, and that such other additions and
modifications will not depart from the scope thercof. Generally, the computerized systems
described herein may comprise one or more engines, which include a processor or devices, such
as a computer, microprocessor, logic device or other device or processor that is configured with
hardware, firmware, and software to carry out one or more of the computerized methods
described herein.

The systems and methods described herein include techniques for generating biomarker
signatures with integrated dual ensemble and simulated annealing techniques. The techniques
involve resampling a data set and predicting phenotypes using a dual ensemble method. In
particular, the systems and methods described herein include forming a random vector indicative
of'a set of classification methods, data samples, and iteratively perturbing the random vector and
computing different objective values corresponding to the different perturbations.

FIG. I depicts an exemplary system 100 for identifying one or more biomarker
signatures, in which the classification techniques disclosed herein may be implemented. The
system 100 includes a biomarker generator 102 and a biomarker consolidator 104. The
system 100 farther includes a central control unit (CCU) 101 for controlling certain aspects of
the operation of the biomarker generator 102 and the biomarker consolidator 104. During
opcration, data such as genc cxpression data is received at the biomarker generator 102, The
biomarker generator 102 processes the data to generate a plurality of candidate biomarkers and
corresponding error rates. The biomarker consolidator 104 receives these candidate biomarkers
and error rates and selects a suitable biomarker having an optimal performance measure and size.

The biomarker generator 102 includes several components for processing data and
generating a set of candidate biomarkers and candidate error rates. In particular, the biomarker

generator 102 includes a data pre-processing engine 110 for splitting the data into a training data
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set and a test data set. The biomarker generator 102 includes a classifier 114 for receiving the
training data set and the test data set and classifying the test data set into one of two or more
classes (e.g., disease data and non-diseased, susceptible and immune, etc.). The biomarker
generator 102 includes a classifier performance monitoring engine 116 for determining the
performance of the classifier as applied to the test data selected by the data pre-processing
engine 110. The classifier performance monitoring engine 116 identifies candidate biomarkers
based on the classifier (e.g., the components of the elements of the data set that are most
important to the classification) and generates performance measures, which may include
candidate error rates, for one or more candidate biomarkers. The biomarker generator 102
further includes a biomarker store 118 for storing one or more candidate biomarkers and
candidate performance measures.

The biomarker generator may be controlled by the CCU 101, which in turn may be
automatically controlled or user-operated. In certain embodiments, the biomarker generator 102
may operate to generate a plurality of candidate biomarkers, each time splitting the data
randomly into training and test data sets. To generate such a plurality of candidate biomarkers,
the operation of the biomarker generator 102 may be iterated a plurality of times. CCU 101 may
receive one or more system iteration parameters including a desired number of candidate
biomarkers, which in turn may be used to determine the number of times the operation of the
biomarker generator 102 may be iterated. The CCU 101 may also receive other system
parameters including a desired biomarker size which may be representative of the number of
components in a biomarker (e.g., the number of genes in a biomarker gene signature). The
biomarker size information may be used by the classifier performance monitoring engine 116 for
generating candidate biomarkers from the training data. The operation of the biomarker
generator 102 and the classifier 114 in particular, are described in more detail with reference to
FIGS. 2-8.

The biomarker generator 102 generates one or more candidate biomarkers and candidate
error rates, which is used by the biomarker consolidator 104 for generating robust biomarkers.
The biomarker consolidator 104 includes a biomarker consensus engine 128 which receives a
plurality of candidate biomarkers and generates a new biomarker signature having the most
frequently occurring genes across the plurality of candidate biomarkers. The biomarker

consolidator 104 includes an error calculation engine 130 for determining an overall error rate
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across the plurality of candidate biomarkers. Similar to the biomarker generator 102, the
biomarker consolidator 104 may also be controlled by the CCU 101, which in turn may be
automatically controlled or user-operated. The CCU 101 may receive and/or determine a
suitable threshold values for the minimum biomarker size, and use this information to determine
the number of iterations to operate both the biomarker generator 102 and the biomarker
consolidator 104. In one embodiment, during each iteration, the CCU 101 decreases the
biomarker size by one and iterates both the biomarker generator 102 and the biomarker
consolidator 104 until the threshold is reached. In such an embodiment, the biomarker consensus
engine 128 outputs a new biomarker signature and a new overall error rate for cach iteration. The
biomarker consensus engine 128 thus outputs sct of new biomarker signatures cach having a
different size varying from the threshold value up to a maximum biomarker size. The biomarker
consolidator 104 further includes a biomarker selection engine 126 which reviews the
performance measure or error rate of each of these new biomarker signatures and selects the
optimal biomarker for output.

The data preprocessing engine 110 receives one or more datasets. Generally, the data
may represent expression values of a plurality of different genes in a sample, and/or a variety of
a phenotypic characteristics such as levels of any biologically significant analyte. In certain
embodiments, the data sets may include expression level data for a disease condition and for a
control condition. As used herein, the term “gene expression level” may refer to the amount of a
molecule encoded by the gene, ¢.g., an RNA or polypeptide, or the amount of a miRNA. The
expression level of an mRNA molecule may include the amount of mRNA (which is determined
by the transcriptional activity of the gene encoding the mRNA) and the stability of the mRNA
(which is determined by the half-life of the mRNA). The gene expression level may also include
the amount of a polypeptide corresponding to a given amino acid sequence encoded by a gene.
Accordingly, the expression level of a gene can correspond to the amount of mRNA transcribed
from the gene, the amount of polypeptide encoded by the gene, or both. Expression levels of a
gene may be further categorized by expression levels of different forms of gene products. For
example, RNA molecules encoded by a gene may include differentially expressed splice
variants, transcripts having different start or stop sites, and/or other differentially processed
forms. Polypeptides encoded by a gene may encompass cleaved and/or modified forms of

polypeptides. Polypeptides can be modified by phosphorylation, lipidation, prenylation,
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sulfation, hydroxylation, acetylation, ribosylation, farnesylation, addition of carbohydrates, and
the like. Further, multiple forms of a polypeptide having a given type of modification can exist.
For example, a polypeptide may be phosphorylated at multiple sites and express different levels
of differentially phosphorylated proteins. The levels of each of such modified polypeptides may
be separately determined and represented in the datasets.

The classifier 114 receives one or more sets of data from the data pre-processing
engine 110. In certain embodiments, the classifier 114 generates a classification rule to classify
the data. FIG. 2 depicts, graphically such a classification rule 200. The classifier 114 may apply
the classification rule to assign the data sets to cither one of two classes. For example, the
classifier 114 may apply the classification to assign data sets to cither discasc or control.

In certain embodiments, as 1s described in relation to FIGS. 3 — 8, the classifier 114 uses
a dual ensemble technique combined with a generalized simulated annealing method to generate
a classification rule. In particular, the classifier 114 may combine multiple classification
methods such as support vector machine (SVM), network based SVMs, neural network-based
classifiers, logistic regression classifier, decision tree-based classifier, classifiers employing a
linear discriminant analysis technique, and/or a random-forest analysis technique, or any other
suitable classification method. The ensemble classification strategy may use a voting process
across multiple diverse classification methods to identify an optimal classification. By
incorporating multiple classification methods, ensemble techniques reduce the potential for
overfitting to a small data set. In this way, small data sets may be used more efficiently by using
an ensemble technique compared to other techniques. Furthermore, using an ensemble of
multiple classification methods allows for enhanced classification compared to using a single
classification method, especially when the multiple classification methods in the ensemble are
diverse from one another.

In addition, the data received from the data pre-processing engine 110 may be perturbed
to further increase overall diversity while providing better classification accuracy. Examples of
perturbation of data are described in more detail in relation to FIGS. 4, 7, and &.

As described herein, the classifier 114 uses an ensemble technique and a generalized
simulating annealing method to generate a classification rule and are described in relation to

applications in bioinformatics. However, the systems and methods described herein may
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generally be applied to any large scale computational technique such as feature selection or
extraction.

The classifier performance monitoring engine 116 may analyze the performance of the
classifier 114 using a suitable performance metric. In particular, when analyzing the
performance of the classifier 114, the classifier performance monitoring engine 116 may be
analyzing the robustness or performance of one or more candidate biomarkers. In certain
embodiments, the performance metric may include an error rate. The performance metric may
also include the number of correct predictions divided by the total predictions attempted. The
performance metric may be any suitable measure without departing from the scope of the present
disclosurc. The candidate biomarker and the corresponding performance metric may be stored in
biomarker store 118.

In certain embodiments the gene expression level in a cell or tissue may be represented
by a gene expression profile. Gene expression profiles may refers to a characteristic
representation of a gene's expression level in a specimen such as a cell or tissue. The
determination of a gene expression profile in a specimen from an individual is representative of
the gene expression state of the individual. A gene expression profile reflects the expression of
messenger RNA or polypeptide or a form thereof encoded by one or more genes in a cell or
tissue. An expression profile may generally refer to a profile of biomolecules (nucleic acids,
proteins, carbohydrates) which shows different expression patterns among different cells or
tissue. A data sample representing a gene expression profile may be stored as a vector of
expression levels, with each entry in the vector corresponding to a particular biomolecule or
other biological entity.

In certain embodiments, the data sets may include elements representing gene expression
values of a plurality of different genes in a sample. In other embodiments, the data set may
include clements that represent peaks detected by mass spectrometry. Generally, cach data sct
may include data samples that each correspond to one of a plurality of biological state classes.
For example, a biological state class can include, but is not limited to: presence/absence of a
disease in the source of the sample (i.e., a patient from whom the sample is obtained); stage of a
disease; risk for a disease; likelihood of recurrence of disease; a shared genotype at one or more
genetic loci (e.g., a common HLA haplotype; a mutation in a gene; modification of a gene, such

as methylation, etc.); exposure to an agent (e.g., such as a toxic substance or a potentially toxic
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substance, an environmental pollutant, a candidate drug, etc.) or condition (temperature, pH, etc);
a demographic characteristic (age, gender, weight; family history; history of preexisting
conditions, etc.); resistance to agent, sensitivity to an agent (e.g., responsiveness to a drug) and
the like.

Data sets may be independent of each other to reduce collection bias in ultimate classifier
selection. For example, they can be collected from multiple sources and may be collected at
different times and from different locations using different exclusion or inclusion criteria, i.c.,
the data sets may be relatively heterogeneous when considering characteristics outside of the
characteristic defining the biological state class. Factors contributing to heterogeneity include,
but arc not limited to, biological variability due to scx, age, cthnicity; individual variability duc
to eating, exercise, sleeping behavior; and sample handling variability due to clinical protocols
for blood processing. However, a biological state class may comprise one or more common
characteristics (e.g., the sample sources may represent individuals having a disease and the same
gender or one or more other common demographic characteristics).

In certain embodiments, the data sets from multiple sources are generated by collection of
samples from the same population of patients at different times and/or under different conditions.

In certain embodiments, a plurality of data sets is obtained from a plurality of different
clinical trial sites and each data set comprises a plurality of patient samples obtained at each
individual trial site. Sample types include, but are not limited to, blood, serum, plasma, nipple
aspirate, urine, tears, saliva, spinal fluid, lymph, cell and/or tissue lysates, laser microdissected
tissue or cell samples, embedded cells or tissues (e.g., in paraffin blocks or frozen); fresh or
archival samples (e.g., from autopsies). A sample can be derived, for example, from cell or tissue
cultures in vitro. Alternatively, a sample can be derived from a living organism or from a
population of organisms, such as single-celled organisms.

In one example, when identifying biomarkers for a particular cancer, blood samples for
might be collected from subjects selected by independent groups at two different test sites,
thereby providing the samples from which the independent data sets will be developed.

In some implementations, the training and test sets are generated by the data pre-
processing engine 110, which receives bulk data and splits the bulk data into a training data set
and a test data set. In certain embodiments, the data pre-processing engine 110 randomly splits

the data into these two groups. Randomly splitting the data may be desirable for predicting
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classes and generating robust gene signature. In other embodiments, the data pre-processing
engine 110 splits the data into two or more groups based on the type or label of the data.
Generally, the data can be split into a training data set and a test data set in any suitable way as
desired without departing from the scope of the present disclosure. The training data set and the
test data set may have any suitable size and may be of the same or different sizes. In certain
embodiments, the data pre-processing engine 110 may discard one or more pieces of data prior to
splitting the data into the training and test data sets. In certain embodiments, the data pre-
processing engine 110 may discard one or more pieces of data from the training data set and/or
the test data sct prior to any further processing.

The classifier 114 may receive once or more candidate biomarkers and onc or more scts of
data from the data pre-processing engine 110. The classifier 114 may apply the classification
rule to assign data sets to either one of two classes. For example, the classifier 114 may apply
the classification to assign data sets to cither disease or control. In certain embodiments, the
classifier 114 may include a support vector machine (SVM) classifier, network based SVMs,
neural network-based classifiers, logistic regression classifier, decision tree-based classifier,
classifiers employing a linear discriminant analysis technique, and/or a random-forest analysis
technique. The operation of the classifier 114 and its respective engines are described in more
detail with reference to FIGS. 2-§.

The classifier performance monitoring engine 116 may analyze the performance of the
classifier 114 using a suitable performance metric. In particular, when analyzing the
performance of the classifier 114, the classifier performance monitoring engine 116 may be
analyzing the robustness or performance of one or more candidate biomarkers. In certain
embodiments, the performance metric may include an error rate. The performance metric may
also include the number of correct predictions divided by the total predictions attempted. The
performance metric may be any suitable measure without departing from the scope of the present
disclosure. The candidate biomarker and the corresponding performance metric may be stored in
biomarker store 118.

As noted carlier, the CCU 101 may also control the operation of the biomarker
consolidator 104 for generating a suitable and robust biomarker based on the candidate
biomarkers generated and stored in the biomarker generator 102. The biomarker

consolidator 104 includes a biomarker consensus engine 128, which receives one or more
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candidate biomarkers from the biomarker store 118. The biomarker consensus engine 128 may
select frequently occurring genes within the one or more candidate biomarkers for a new
biomarker signature. The new biomarker signature may include an N number of genes, where N
is a desired size of the biomarker, the maximum allowed size of the biomarker, a minimum
allowed size of the biomarker or a size between the maximum and minimum sizes. In certain
embodiments, the number N may be user-selectable and may be adjustable as desired.

FIG. 3 is a flow diagram of a method 300 used by the classifier 114 to predict, using a
voting method, a phenotype class. As shown, the method 300 includes the steps of building K
data scts (step 302), identifying M classification methods (step 306), and identifying G samplcs
in cach of the K data sets (step 312). The method 300 further includes three iteration loops,
including iterating over the K data sets, the M classification methods, and the G samples, where
G is the sample size of the test data set. In particular, in each iteration, a classification method j
is applied to a sample | in a dataset i to predict a phenotype (step 318), wherei=1,2,...K,j
=1,2,...M,and1=1,2,...G.

At step 302, the classifier 114 builds K data sets. The classifier may use the method
depicted in FIG. 4 to build K data sets. In particular, the classifier 114 may use boot strapping
aggregation methods to form multiple data sets of a complete data set. At step 304, a data set
iteration parameter i, representative of a label applied to a data set, is initialized to 1.

At step 306, the classifier 114 identifies M classification methods. The classifier 114
may receive the classification methods from an external source, or the classification methods
may be generated by the classifier 114 based on some input. As an example, the classifier 114
may identify the M classification methods based on a list of methods 308. Examples of methods
include linear discriminant analysis, support vector machine-based methods, random forest
methods (Breiman , Machine Learning, 45(1):5-32 (2001)), PAMR (Tibshirani et al., Proc Natl
Acad Sci USA, 99(10):6567-6572 (2002)) or k nearest ncighbor methods (Bishop, Neural
Networks for Pattern Recognition, ed. O.U. Press, 1995). Any number of classification methods
may be used and considered. At step 310, a method iteration parameter j, representative of a
label applied to a classification method, is initialized to 1. At step 316, a sample iteration
parameter 1, representative of a label applied to a data sample, is initialized to 1. Each data

sample may be representative of a person, a gene, or any other suitable data point.
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At step 312, the classifier 114 selects the 1™ samples in the test data set, and at step 318,
the classifier 114 applies a classification method j to a data set i to build a classifier and predict a
sample | in the test data. The prediction of sample 1 may correspond to the prediction of a
phenotype. In some embodiments, the phenotype may be a flag variable (i.e., 1 if it is predicted
that the person expresses the phenotype, and 0 otherwise). However, in general, the phenotype
may take on any number of values. In particular, the phenotype prediction may be stored as a
value in a three dimensional matrix P(i,j,1) 320.

At decision block 322, the classifier 114 determines whether the last data set has been
considered, or cquivalently, whether i=K. Ifi is Icss than K, the classifier 114 increments the
data sct iteration parameter i at step 324 and returns to step 318 to predict the phenotype for the
new data set.

After all K data sets have been considered, the classifier 114 proceeds to decision
block 326 to determine whether the last classification method has been applied, or equivalently,
whether j=M. Ifj is less than M, the classifier 114 increments the method iteration parameter j at
step 328 and returns to step 318 to predict the phenotype for the new classification method.

After all K data sets have been considered and all M classification methods have been
applied, the classifier 114 has KxM phenotype predictions for the current data sample 1. These
phenotype predictions may be thought of as votes, and any sort of vote counting method may be
used to arrive at a composite vote representative of the set of KxM phenotype predictions.

At decision block 332, the classifier determines whether all G data samples have been
considered, or equivalently, whether 1=G.

FIG. 4 is a flow diagram of a method 400 for building data sets, and may be used by the
classifier 114 at step 302 in FIG. 3. In general, the method 400 provides a way to generate
multiple data sets that are each subsets of a larger data set. A data subset may be formed by
bootstrap aggregating (“bagging”) methods, which involve randomly selecting a subset of
samples in a large data set. The subset of samples may be selected with or without replacement.
As shown, the method 400 includes the steps of receiving data (step 440) and determining
whether it is desirable to perform bootstrapping without replacement (decision block 454). If so,
a number W of samples may be randomly selected from each class (step 456) to form a data set.
Alternatively, a number H of samples may be randomly selected with replacement from training

data (steps 460 and 466) to form a data set. The value for H may correspond to a sample size of
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the training data set. The above steps are repeated until each data set i described in relation to
FIG. 3 has been considered.

At step 440, the classifier 114 receives data. The data may include samples sorted into
two classes (i.e., class 1 samples 442 and class 2 samples 444), bootstrap parameters 446, and a
ratio s 448, between the size of a resulting data set i (i.c., a data subset) and the size of a class
(i.e., class 1 or class 2). As an example, the bootstrap parameters 446 may include a variable
indicative of whether to bootstrap with or without replacement and the number of bootstrap data
sets (i.e., K). The data 442, 444, 446, and 448 may be used by the classifier 114 to build the K
data scts.

At step 452, a data sct iteration parameter i is initialized to 1. The iteration paramcter i is
representative of a label applied to a data set.

At decision block 454, the classifier 114 determines whether it is desirable to bootstrap
with balanced samples. In particular, the classifier 114 may use a variable such as a bootstrap
parameter 446 to determine whether bootstrapping with balanced samples is desirable. In
general, bootstrapping with balanced samples ensures that the total number of occurrences of
cach sample point across all K data sets is the same.

If balanced bootstrapping is desirable, the classifier 114 proceeds to step 450 to
determine a data set size W. In particular, the size W may be dependent on the ratio s 448, such
as W = min {size(class 1 samples), size(class 2 samples)} * s, for example. In particular, the
ratio s may be a value between 0 and 1. At step 456, W samples from the training data set are
randomly selected with balanced samples, forming a data set i 458. When the iteration
parameter i is greater than 1, the selection of W samples at step 456 may be dependent on
previously formed data sets, such that the bootstrapping is balanced.

Alternatively, if bootstrapping with balanced samples is not desirable, the classifier 114
proceeds to step 460 to randomly sclect H samples from the training data set with replacement.
The selected samples form the data set i 464.

As is depicted in FIG. 4, balanced bootstrapping results in data sets with size W, while
bootstrapping the data without balanced samples results in data sets with size H. However, in
general, any suitable combination of methods may be used, such as bootstrapping without
balanced samples for data sets with size W, or balanced bootstrapping for data sets with size H.

In addition, bootstrapping without replacement methods may also be used.
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After the current data set i has been formed, the classifier 114 proceeds to decision
block 470 to determine whether the last data set has been formed, or equivalently, whether i=K.
If not, at step 472, the data set iteration parameter i is incremented, and the classifier 114
proceeds to decision block 454 to begin forming the next data set.

FIG. 5 is a flow diagram of a method for generating a result vector and objective value.
In general, the method 500 provides a way to calculate an objective value corresponding to a
random vector X. As depicted in the method 500, the random vector X is a binary vector X and
includes information regarding whether to bootstrap with replacement (506), the number of
bootstraps (510), a list of the classification methods (514), and a list of data samples (518).
Based on these data, a prediction matrix is formed (step 520), and a major class is determined
(step 524). The classifier 114 iterates over the data samples until all data samples have been
considered, and an objective value is computed based on the determined major classes for the
data samples (step 532).

At step 502, the classifier 114 receives a binary random vector X. In an example, the
vector X may be a list of binary values. The binary values may be indicative of whether to
perform balanced bootstrapping, a number of bootstraps (i.e., K), a list of classification methods,
and/or a list of genes. In particular, the number of bootstraps may take on either a zero value or a
non-zero value (i.e., 60, for example). In this case, the binary value in the vector X
corresponding to the number of bootstraps may be indicative of whether the number of
bootstraps is zero or non-zero. The random values may be generated by a random value
generator or any other suitable method for generating random values. As is described herein, the
random vector X is a binary vector, meaning each value in the vector is one of two values (i.e., 0
or 1). However, in general, the values in the random vector X can be one of any number of
values. The classifier 114 identifies various parameters based on the random values in the vector
X. As cxamples, the classifier 114 identifics a value for a flag 506 indicative of whether to
sample with balanced samples at step 504, a number of bootstraps 510 at step 508, a list of
classification methods 514 at step 512, and a list of genes 518 at step 516.

Based on the identified various parameters, at step 520, the classifier 114 generates a
prediction matrix.

At step 522, a sample iteration parameter 1, representative of a label applied to a data

sample, is initialized to 1.
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At step 524, the classifier 114 determines the major class P( ., ., 1). In particular, the
classifier 114 may parse through the steps 302 — 330 in method 300 to identify KxM phenotype
predictions, and take a majority vote on the KxM predictions to determine the major class P( ., .,
1). In general, any other suitable method for generating a composite prediction based on the set
of KxM predictions may be used to determine the major class. The major class may be stored as
an entry in a result vector 526.

At decision block 528, the classifier 114 determines whether the sample iteration
parameter 1 is equal to the total number of data samples G. If not, the iteration parameter I is
incremented at step 530, and the major class is determined for the next data sample.

After the major class has been determined for cach sample in the set of G samples, the
classifier 114 proceeds to step 532 to calculate an objective value. The objective value may be
calculated based on the resultant set of entries in the result vector 526. In particular, a composite
performance score may be an average of the performance metrics. As depicted in the
method 500, the objective value 532 is calculated as the difference between 1 and the Matthew
correlation coefficient (MCC) of the results. The MCC is a performance metric that may be used
as a composite performance score. In particular, the MCC is a value between -1 and +1 and is
essentially a correlation coefficient between the observed and predicted binary classifications.
The MCC may be computed using the following equation:

TP*TN - FP*FN

MCC =
J(TP +FP)Y*(TP+ FN)*(IN + FP)*(IN +FN)

where TP: true positive; FP: false positive; TN: true negative; FN: false negative.
However, in general, any suitable technique for generating a composite performance metric
based on a set of performance metrics may be used to calculate the objective value.

FIGS. 6 — § are flow diagrams of methods for parsing through the steps of a binary
generalized simulated method. In general, the binary generalized simulated annealing method
may be used to identify an optimal value (i.e., a global minimum) for the objective value as
described in FIG. 5. As described herein, a binary generalized simulated annealing method is
used in conjunction with the dual ensemble method described in FIG. 3. In particular, a random
vector X as described in FIG. 5 is perturbed in various ways to identify an optimal objective
valuc. FIG. 6 is a flow diagram for initializing the binary generalized simulated anncaling

method. FIG. 7 is a flow diagram for randomly perturbing various components of the random
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vector X to decrease the objective value. FIG. 8 is a flow diagram for locally perturbing the
random vector X to further decrease the objective value. In other words, the method depicted in
FIG. 7 generates major perturbations of the random vector X, while the method depicted in
FIG. 8 generates minor perturbations of the random vector X.

FIG. 6 is a flow diagram of a method 600 for initializing a binary generalized simulated
annealing method. The method 600 initializes several parameters and generates a random binary
vector X(1). In particular, at steps 640, 642, and 644, the classifier 114 initializes parameters t,
y, and count to 1, respectively. The parameter t corresponds to a time interval, and is
incremented when a suitable objective value is determined, as is described in relation to FIGS. 7
and 8. The iteration parameter y corresponds to a number of major perturbations that are
performed, and is described in more detail in relation to FIG. 7. The parameter count
corresponds to a parameter for keeping track of whether a perturbed version of the current vector
X has been generated, and is described in more detail in relation to FIG. 7. At step 646, the
classifier 114 generates a random binary vector X.

At step 648, a parameter D is set. The parameter D corresponds to a number of
components in X that will be selected to be perturbed. In particular, at step 648, the parameter D
is set to 0.2 * C, where C corresponds to the length of binary vector X.

At step 650, the classifier 114 generates a result vector and an objective value. In
particular, the classifier 114 may use the method depicted in FIG. 5 to generate a result
vector 526 and an objective value 534. However, in general, any suitable method to determine
an objective value representative of a composite performance metric may be used. After
generating an objective value, the classifier 114 proceeds to steps in FIG. 7 to decrease the
objective value by perturbing the random vector X.

FIG. 7 is a flow diagram of a method for decreasing an objective value in a binary
generalized simulated anncaling method by performing major perturbations on a vector X. In the
simulating annealing method, an artificial temperature is introduced (T(t=1)) and gradually
reduced to simulate cooling. A visiting distribution is used in simulated annealing to simulate a
trial jump distance from one point to a second point (i.e., from one random vector X(1) to
another random vector X(2)). The trial jump is accepted based on whether the resulting
objective value corresponding to the random vector X(2) is smaller than the objective value

corresponding to the random vector X(1) and on an acceptance probability as is defined below.
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As is described herein, a binary generalized simulated annealing method is used to locate a
global minimum (i.e., to minimize the objective value). However, in general, any suitable
algorithm may be used, such as steepest descent, conjugate gradient, simplex, and Monte Carlo
methods.

After initializing the simulation using the method depicted in FIG. 6, the classifier 114
begins at step 760 to select D components of the vector X(1). The D components of the vector
X(1) may be selected randomly, or any other suitable method of selecting D components of the
vector X(1) may be performed. At step 762, the count variable is set to 2. At step 764, a second
random binary vector X(2), corresponding to the original random vector X(1) with the D
components changed, is generated.

At step 766, the classifier 114 generates a result vector 768 and an objective value 770
for the second vector X(2). In particular, the classifier 114 may use the method depicted in
FIG. 5 to generate a result vector and an objective value. However, in general, any suitable
method to determine an objective value representative of a composite performance metric may
be used.

After generating the second result vector and the second objective value, the classifier
determines that the count variable is equal to 2 at decision block 772 and proceeds to decision
block 776 to compare the first objective value (i.e., corresponding to the random vector X(1))
and the second objective value (i.e., corresponding to the random vector X(2)).

If the second objective value is not smaller than the first objective value, this means that
the first vector X(1) resulted in a better or equal correlation as the second vector X(2). In this
case, the classifier proceeds to step 778 to compute a probability P. In particular, the probability
P corresponds to a probability of accepting the second objective value, and is based on the

cquation:

L

P=min{L,[l - (1 -¢,)BOE]" *}

where COF = 0bj(2)—o0bj(1)
8=

1
Ty (83

da is a control parameter for accepting the probability P and

Tqv is a temperature value.
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As described herein, the probability P corresponds to a probability used in generalized
simulated annealing methods, but in general, any suitable probability value may be used. At
step 786, a random number r between 0 and 1, inclusive, is generated. The random number r
may be generated from a uniform distribution, or any other suitable distribution, and r is
compared to the probability P at decision block 788.

If P is greater than or equal to r, this means that the probability of accepting the second
objective value is high, even though the second objective value was not smaller than the first
objective value. In this case, the classifier 114 proceeds to step 790 and 792 to store the second
vector X(2) and the second objective value as the first vector X(1) and the first objective value,
respectively.

Alternatively, if at decision block 776, the classifier 114 determines that the second
objective value is smaller than the first objective value, this means that the vector X(2) resulted
in a better correlation, or better performance. Thus, the classifier proceeds directly to step 790 to
update the vector X(1) with the vector X(2), and to step 792 to update the first objective value
with the second objective value. At step 794, the classifier 114 sets the count variable to be
equal to 1.

Alternatively, if at decision block 788, the classifier 114 determines that r is greater than
P, this means that the probability of accepting the second objective value is low, such that the
steps 790 and 792 are bypassed, and the vector X(1) and first objective value are not overwritten
by the corresponding second values. In this case, the classifier 114 proceeds to step 794 and sets
the count variable to be equal to 1.

After re-setting the count variable to 1, the classifier 114 proceeds to decision block 796,
where the iteration parameter y is compared to a value L. The value L corresponds to a maximal
number of major perturbations to be performed before proceeding to the method depicted in
FIG. 8 to perform minor perturbations. If the iteration parameter y is not equal to L, the
classifier 114 proceeds to decision block 772 and step 774 to increment the iteration parameter y
and perform a major perturbation of the vector X at steps 760 — 764. The steps described above
are repeated until a desired number of major perturbations L have been performed. As depicted
in FIG. 7, the number of major perturbations to be performed is a fixed number L. However, the
value for L may be dependent on any number of factors. For example, the classifier 114 may

determine that the total number of major perturbations has been reached based on a convergence
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of the objective values. In another example, the total number of major perturbations may be
reached if no second objective values have been found to be less than the first objective value in
a fixed number of recent comparisons at decision block 776. In general, any suitable method
may be used to determine that the major perturbations are done, and that the classifier 114 may
proceed to FIG. 8 to perform minor perturbations.

FIG. 8 is a flow diagram of a method for further decreasing an objective value in a binary
generalized simulated annealing method by performing minor perturbations on the vector X. In
particular, the method 800 begins at step 802 and sets a variable C equal to the length of the
veetor X(1). At step 804, the classificr 114 initializes an itcration parameter ¢ to 1 and scts an
improve flag variable to falsc.

At step 806, the classifier 114 performs a minor perturbation on the vector X(1) by
flipping the ™ bit of X(1) to generate Xiemp. In particular, X(1) is a binary vector of length C,
and Xeemp 1S nearly identical to X(1) except for the ™ bit.

At step 808, the classifier 114 generates a result vector 810 and an objective value 812
for the temporary vector Xiemp. In particular, the classifier 114 may use the method depicted in
FIG. 5 to generate a temporary result vector and a temporary objective value. However, in
general, any suitable method to determing an objective value representative of a composite
performance metric may be used.

At decision block 814, the first objective value is compared to the temporary objective
value. If the temporary objective value is smaller than the first objective value, this means that
perturbed version Xiemp resulted in better performance than the original vector X(1). In this case,
the classifier 114 proceeds to step 816 to overwrite the vector X(1) with the perturbed version
Xiemp, to step 818 to overwrite the first objective value with the temporary objective value, and to
step 819 to set the improve flag variable to true.

At decision block 820, the classificr 114 determines whether cach bit in the vector X(1)
has been flipped at least once (i.e., at step 806), or equivalently, whether the iteration parameter ¢
is equal to the size of X(1) C. If not, the classifier 114 proceeds to step 822 to increment the
iteration parameter ¢ and to step 806 to flip the ¢™ bit.

Otherwise, if the classifier 114 determines that the iteration parameter ¢ is equal to the
length of the vector X(1) C at decision block 820, the classifier 114 proceeds to decision block

822 to determine whether further improvement is desired. In particular, the classifier 114 may
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identify the value of the improve flag variable to determine whether additional bit flipping is
desirable. For example, if the improve flag variable is true, the classifier 114 returns to step 8§04
to re-initialize the iteration parameter ¢ to 1 and the improve flag variable to false.

The depicted method in FIG. § uses the improve flag variable to determine when the
process of performing minor perturbations (i.e., bit flipping) is complete. However, in general,
any other suitable method may also be used to determine when the minor perturbations are
complete. For example, the classifier 114 may require that the objective value is below some
threshold, or that the difference between the objective value and the temporary objective value is
below some threshold. If these requirements are not satisficd, the classifier 114 may return to
step 806 to flip another bit of the vector X(1) to gencrate another temporary objective value.

After the classifier 114 has determined that the minimal objective value has been
identified, the classifier 114 proceeds to steps 824 and 826 to increment the parameter t and
decrement the parameter D, respectively.

At step 828, the classifier 114 computes a temperature T by the cooling formula
commonly used in generalized simulated annealing. However, any suitable formula may be
used.

247 -1

Tqv(t) < Tqv(l)m

where qv is a parameter defining the curvature of the distribution function.

At decision block 830, the classifier 114 determines whether Tqu(t) is less than Tr. The
value for Ty represents a threshold value, where if the value for Tq(t) is below Ty, the
method 800 ends, and the current random vector X(1) is used as the optimal classification.

Implementations of the present subject matter can include, but are not limited to, systems
methods and computer program products comprising one or more features as described herein as
well as articles that comprise a machine-readable medium operable to cause one or more
machines (e.g., computers, robots) to result in operations described herein. The methods
described herein can be implemented by one or more processors or engines residing in a single
computing system or multiple computing systems. Such multiple computing systems can be
connected and can exchange data and/or commands or other instructions or the like via one or

more connections, including but not limited to a connection over a network (e.g. the Internet, a
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wireless wide area network, a local area network, a wide area network, a wired network, or the
like), via a direct connection between one or more of the multiple computing systems.

FIG. 9 is a block diagram of a computing device, such as any of the components of
system 100 of FIG. 1 including circuitry for performing processes described with reference to
FIGS. 2 — 8. Each of the components of system 100 may be implemented on one or more
computing devices 900. In certain aspects, a plurality of the above-components and databases
may be included within one computing device 900. In certain implementations, a component
and a database may be implemented across several computing devices 900.

The computing device 900 compriscs at least onc communications interface unit, an
input/output controller 910, system memory, and one or more data storage devices. The system
memory includes at least one random access memory (RAM 902) and at least one read-only
memory (ROM 904). All of these elements are in communication with a central processing unit
(CPU 906) to facilitate the operation of the computing device 900. The computing device 900
may be configured in many different ways. For example, the computing device 900 may be a
conventional standalone computer or alternatively, the functions of computing device 900 may
be distributed across multiple computer systems and architectures. The computing device 900
may be configured to perform some or all of data-splitting, differentiating, classifying, scoring,
ranking and storing operations. In FIG. 9, the computing device 900 is linked, via network or
local network, to other servers or systems.

The computing device 900 may be configured in a distributed architecture, wherein
databases and processors are housed in separate units or locations. Some such units perform
primary processing functions and contain at a minimum a general controller or a processor and a
system memory. In such an aspect, each of these units is attached via the communications
interface unit 908 to a communications hub or port (not shown) that serves as a primary
communication link with other scrvers, client or user computers and other related devices. The
communications hub or port may have minimal processing capability itself, serving primarily as
a communications router. A variety of communications protocols may be part of the system,
including, but not limited to: Ethernet, SAP, SAS™, ATP, BLUETOOTH™, GSM and TCP/IP.

The CPU 906 comprises a processor, such as one or more conventional microprocessors
and on¢ or more supplementary co-processors such as math co-processors for offloading

workload from the CPU 906. The CPU 906 is in communication with the communications
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interface unit 1008 and the input/output controller 910, through which the CPU 906
communicates with other devices such as other servers, user terminals, or devices. The
communications interface unit 908 and the input/output controller 910 may include multiple
communication channels for simultaneous communication with, for example, other processors,
servers or client terminals. Devices in communication with each other need not be continually
transmitting to each other. On the contrary, such devices need only transmit to each other as
necessary, may actually refrain from exchanging data most of the time, and may require several
steps to be performed to establish a communication link between the devices.

The CPU 906 is also in communication with the data storage device. The data storage
device may comprise an appropriate combination of magnetic, optical or semiconductor
memory, and may include, for example, RAM 902, ROM 904, flash drive, an optical disc such as
a compact disc or a hard disk or drive. The CPU 906 and the data storage device each may be,
for example, located entirely within a single computer or other computing device; or connected
to each other by a communication medium, such as a USB port, serial port cable, a coaxial cable,
an Ethernet type cable, a telephone line, a radio frequency transceiver or other similar wireless or
wired medium or combination of the foregoing. For example, the CPU 906 may be connected to
the data storage device via the communications interface unit 908. The CPU 906 may be
configured to perform one or more particular processing functions.

The data storage device may store, for example, (i) an operating system 1012 for the
computing device 900; (ii) one or more applications 914 (e.g., computer program code or a
computer program product) adapted to direct the CPU 906 in accordance with the systems and
methods described here, and particularly in accordance with the processes described in detail
with regard to the CPU 906; or (iii) database(s) 916 adapted to store information that may be
utilized to store information required by the program. In some aspects, the database(s) includes a
databasc storing experimental data, and published literature models.

The operating system 912 and applications 914 may be stored, for example, in a
compressed, an uncompiled and an encrypted format, and may include computer program code.
The instructions of the program may be read into a main memory of the processor from a
computer-readable medium other than the data storage device, such as from the ROM 904 or
from the RAM 902. While execution of sequences of instructions in the program causes the

CPU 906 to perform the process steps described herein, hard-wired circuitry may be used in
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place of, or in combination with, software instructions for implementation of the processes of the
present invention. Thus, the systems and methods described are not limited to any specific
combination of hardware and software.

Suitable computer program code may be provided for performing one or more functions
in relation to performing classification methods as described herein. The program also may
include program eclements such as an operating system 912, a database management system and
"device drivers"” that allow the processor to interface with computer peripheral devices (e.g., a
video display, a keyboard, a computer mouse, etc.) via the input/output controller 910.

A computer program product comprising computer-readable instructions is also provided.
The computer-readable instructions, when loaded and executed on a computer system, cause the
computer system to operate according to the method, or one or more steps of the method
described above. The term "computer-readable medium" as used herein refers to any non-
transitory medium that provides or participates in providing instructions to the processor of the
computing device 900 (or any other processor of a device described herein) for execution. Such
a medium may take many forms, including but not limited to, non-volatile media and volatile
media. Non-volatile media include, for example, optical, magnetic, or opto-magnetic disks, or
integrated circuit memory, such as flash memory. Volatile media include dynamic random
access memory (DRAM), which typically constitutes the main memory. Common forms of
computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic
tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards,
paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM or
EEPROM (electronically erasable programmable read-only memory), a FLASH-EEPROM, any
other memory chip or cartridge, or any other non-transitory medium from which a computer can
read.

Various forms of computer readable media may be involved in carrying one or more
sequences of one or more instructions to the CPU 906 (or any other processor of a device
described herein) for execution. For example, the instructions may initially be borne on a
magnetic disk of a remote computer (not shown). The remote computer can load the instructions
into its dynamic memory and send the instructions over an Ethernet connection, cable line, or
even telephone line using a modem. A communications device local to a computing device 900

(e.g., a server) can receive the data on the respective communications line and place the data on a
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system bus for the processor. The system bus carries the data to main memory, from which the
processor retrieves and executes the instructions. The instructions received by main memory
may optionally be stored in memory either before or after execution by the processor. In
addition, instructions may be received via a communication port as electrical, electromagnetic or
optical signals, which are exemplary forms of wireless communications or data streams that
carry various types of information.

Example

The following public datasets are downloaded from the Gene Expression Omnibus
(GEO) (http://www.ncbi.nlm.nih.gov/geo/) repository:
GSE10106 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10106)

o =

GSE10135 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10135)
GSE11906 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11906)

SIS

GSE11952 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11952)
GSE13933 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13933)
GSE19407 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19407)
GSE19667 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19667)

= I )

GSE20257 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20257)

—

GSES5058 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5058)
j.  GSE7832 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc—=GSE7832)
k. GSE8545 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8545).

The training datasets are on the Affymetrix platform (HGU-133 + 2). Raw data files are
read by the ReadAfty function of the affy package (Gautier, 2004) belonging to Bioconductor
(Gentleman, 2004) in R (R Development Core Team, 2007), and the quality is controlled by:
generating RNA degradation plots (with the AffyRNAdeg function of the affy package), NUSE
and RLE plots (with the function affyPLM (Brettschneider, 2008)), and calculating the
MA(RLE) values; excluding arrays from the training datasets that fell below a set of thresholds
on the quality control checks or that are duplicated in the above datasets; and normalizing arrays
that pass quality control checks using the germa algorithm (Wu, 2004). Training set sample
classifications are obtained from the series matrix file of the GEO database for each dataset. The
output consists of a gene expression matrix with 54675 probesets for 233 samples (28 COPD

samples and 205 control sample). To make a balanced data set, the COPD samples were multiple
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time to obtain 224 COPD samples before the Duel Ensemble method as described in copending
United States provisional application 61/662812 is applied. With a combined data set which
contains 205 control and 224 COPD patients, a gene signature with 409 genes was built. 850
binary values were used in the random vectors. The classification methods used in the method
included the following R packages: 1da, svm, randomForest, knn, pls.lda and pamr. Maximum
iteration was set to be 5000. The Matthew's Correlation Coefficient (MCC) and accuracy in
cross validation process in training data set is 0.743 and 0.87 respectively. The heatmap of the
gene signature in training data set is shown in FIG. 10. In the heatmap of FIG. 10, the gene
cxpression value was centered by row. The colors of the heatmap may not be clearly shown in
grey scale, but the data of FIG. 10 show that control data arc shown on the left, and COPD data
are shown on the right. The test data set is an unpublished data set obtained from a commercial
supplier (Genelogic), which contains 16 control samples and 24 COPD samples. Without
applying the transformation invariant method of the invention, the gene signature generated by
Dual Ensemble correctly predicted 29 samples out of total 40 samples. The accuracy is 0.725,
and the MCC is 0.527. The gene signature correctly predicted 15 out of 16 control samples and
correctly predicted 14 out of 24 COPD samples.

While implementations of the invention have been particularly shown and described with
reference to specific examples, it should be understood by those skilled in the art that various
changes in form and detail may be made therein without departing from the spirit and scope of

the disclosure.



What is claimed is:

1. A computer-implemented method of classifying a data set into two or more classes
executed by a processor, comprising:

(a) receiving a training data set associated with the data set and having a set of known
labels;

(b) generating a first classifier for the training data set by applying a first machine
learning technique to the training data set, wherein the first machine learning technique identifies
a first set of classification methods, wherein each classification method votes on the training data
set;

(c) classifying elements in the training data set according to the first classifier to obtain a
first set of predicted labels for the training data set;

(d) computing a first objective value from the first set of predicted labels and the set of
known labels;

(e) for each of a plurality of iterations, performing the following steps (1)-(v):

(1) generating a second classifier for the training data set by applying a second
machine learning technique to the training data set, wherein the second machine learning
technique identifies a second set of classification methods that is different from the first set of
classification methods by at least one classification method, wherein each classification method
votes on the training data set;

(i1) classifying the elements in the training data set according to the second
classifier to obtain a second set of predicted labels for the training data set;

(1i1) computing a second objective value from the second set of predicted labels
and the set of known labels;

(iv) comparing the first objective value to the second objective value to determine
whether the second classifier outperforms the first classifier; and

(v) replacing the first set of predicted labels with the second set of predicted labels
and replacing the first objective value with the second objective value when the second classifier
outperforms the first classifier, and return to step (i); and

(f) when a desired number of iterations has been reached, outputting the first set of

predicted labels.
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2. The method of claim 1, wherein the training data set is formed by selecting a subset of
training data samples from an aggregate training data set, the method further comprising
bootstrapping the aggregate training data set to generate a plurality of additional training data

sets, and repeating the steps (a) through (f) for each additional training data set.

3. The method of claim 2, wherein the bootstrapping is performed with balanced samples or

without balanced samples.

4. The method of any one of claims 1-3, further comprising:

identifying the classifier that resulted in the outputted first set of labels;

selecting a sample in a test data set that is different from the training data set and does not
have a set of known labels; and

using the identified classifier to predict a label for the selected sample.

5. The method of any one of claims 1-4, wherein:

the first set of classification methods is obtained by using a first random vector to
select a subset of an aggregate set of classification methods;

the first random vector includes a set of binary values corresponding to the aggregate
set of classification methods;

each binary value indicates whether the corresponding classification method in the
aggregate set is included in the first set of classification methods; and

the second set of classification methods is obtained by using a second random vector

including a different set of binary values.

6. The method of claim 5, wherein the first random vector includes parameters including a
flag variable indicating whether to perform balanced bootstrapping, a number of bootstraps, a list

of classification methods, a list of genes, or a combination thereof.

7. The method of any one of claims 1-6, wherein the second objective value corresponds to
a Matthew correlation coefficient that is assessed from the second set of predicted labels and the

set of known labels.
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8. The method of any one of claims 1-7, wherein the step of computing the second objective

value comprises implementing a simulated annealing method.

9. The method of claim §, wherein the simulated annealing method comprises updating one

or more values of the first random vector to obtain the second random vector.

10.  The method of claim 9, wherein updating the one or more values of the first random
vector comprises randomly updating each element of the random vector to obtain the second

random vector.

11. The method of any one of claims 1-10, further comprising determining that the second
classifier outperforms the first classifier (1) when the second objective value is less than the first
objective value, and (2) if the second objective value is greater than the first objective value,
when a random value is less than a probability value that is computed from the first objective

value and the second objective value.

12. The method of claim 11, wherein the probability value is computed from a control
parameter q, the first objective value, the second objective value, and a temperature value that is

computed from a cooling formula.

13.  The method of any one of claims 1-12, wherein the second classifier is selected from the
group comprising linear discriminant analysis, support vector machine-based methods, random

forest methods, and k nearest neighbor methods.
14. A computer-readable memory having recorded thereon computer-readable instructions

that, when executed in a computerized system comprising at least one processor, cause the

processor to carry out one or more steps of the method of any one of claims 1-13.
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15. A computerized system comprising a processing device configured with non-transitory
computer-readable instructions that, when executed, cause the processing device to carry out the

method of any one of claims 1-13.

16. The method of claim 5, wherein:
the plurality of iterations includes a first set of iterations and a second set of iterations;
and each subsequent second random vector differs from a previous second random vector by an

amount that is larger for the first set of iterations than for the second set of iterations.

17. The method of claim 16, wherein for each iteration in the first set of iterations and in the

second set of iterations,

a first subset of the subsequent second random vector is selected to be the same as a
corresponding first subset of the previous second random vector,

a second subset of the subsequent second random vector is selected to be different from a
corresponding second subset of the previous second random vector,

a size of the first subset is smaller for the first set of iterations than for the second set of

iterations, and

a size of the second subset is larger for the first set of iterations than for the second set of

iterations.

18. The method of claim 17, wherein the size of the second subset for the first set of
iterations is approximately 20% of the length of the second random vector, and the size of the

second subset for the second set of iterations is one.

19.  The method of claim 1, wherein the elements in the training data set are classified using a
classification rule associated with the first classifier to obtain the first set of predicted labels for
the training data set, and the elements in the training data set are classified using a classification
rule associated with the second classifier to obtain the second set of predicted labels for the

training data set.
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20.  The method of claim 1, wherein the data set comprises gene set data, and each gene set
data corresponds to one of a plurality of biological state classes, and wherein the labels identify

the biological state classes of the gene set data.

21.  The method of claim 20, wherein the biological state classes indicate diseased or

diseased-free.
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