a2 United States Patent

Tsimelzon et al.

US007818313B1

US 7,818,313 B1
Oct. 19, 2010

(10) Patent No.:
(45) Date of Patent:

(54) METHOD FOR DISTRIBUTING PROCESSING
OF QUERIES OVER A CLUSTER OF
SERVERS IN A CONTINUOUS PROCESSING
SYSTEM

(75) Inventors: Mark Tsimelzon, Sunnyvale, CA (US);
Aleksey Sanin, Sunnyvale, CA (US);
Robert B. Hagmann, Palo Alto, CA
(US)

(73) Assignee: Sybase, Inc., Dublin, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 297 days.

(21) Appl. No.: 11/486,902

(22) Filed: Jul. 14,2006

Related U.S. Application Data

(60) Provisional application No. 60/700,139, filed on Jul.
18, 2005.

(51) Imt.ClL
GO6F 7/00 (2006.01)
GO6F 17/30 (2006.01)
(52) US.CL .o 707/718; 707/966
(58) Field of Classification Search None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,412,285 A * 10/1983 Nechesetal. 709/252
6,092,062 A * 7/2000 Lohman etal. .
6,470,331 B1* 10/2002 Chenetal.
6,985,904 B1* 1/2006 Kaluskar et al.

OTHER PUBLICATIONS

Load Balancing, http://en.wikipedia.org/wiki/Load_ balancing
(computer), HTML, Accessed on May 30, 2008.*

............ 707/101

Jim Melton, (ISO-ANSI Working Draft) Foundation (SQL/Founda-
tion), Aug. 2003, International Organization for Standardization/
American National Standards Institute, pp. 60-63.*

Chen et al, NiagaraCQ: a scalable continuous query system for
Internet databases, Jun. 2002, ACM, ACM SIGMOD Record vol. 29
Issue 2, 379-390.*

Deutsch et al, XML-QL: A Query Language for XML, Aug. 1998,
W3C, Available: http://www.w3.0rg/TR/NOTE-xml-ql/ (Accessed:
Apr. 14, 2009).*

Babcock et al, Models and issues in data stream systems, 2002, ACM,
Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, 1-16.*

“Coral8 Complex Event Processing Technology Overview,” 2007,
pp. 1-2, www.coral8.com.

“Aleri, Coral8 Technology Overview”, copyright 2004-2009, pp. 1-2,
www.coral8.com.

* cited by examiner

Primary Examiner—Pierre M Vital

Assistant Examiner—Jason Liao

(74) Attorney, Agent, or Firm—Sterne, Kessler, Goldstein &
Fox PLLC

(57) ABSTRACT

A method, in a continuous computation system, for process-
ing a set of registered queries over a cluster of servers includes
creating an execution plan for processing a set of queries over
a cluster of servers, where the continuous computation sys-
tem creates the execution plan by analyzing the semantics and
requirements of the queries to determine how to distribute
processing across the cluster. Analysis of a query can include
determining whether input messages for the query can be
processed independent of each other, whether input messages
for the query can be partitioned into groups that can be pro-
cessed independent of each other, whether the query includes
an aggregator function, and whether the query includes a
subquery.

42 Claims, 7 Drawing Sheets

Query Partial output
@
é% Server x
o
& v
&
Distribute Merge Output data
Inout d messages Part. ! stream
:tFr,euam?g (round-robin, load- |Me®529€S Query | oot | partial outputs
based, random, 320
etc.) Servery
310
A
%
3,
% Query
O
E)
Serverz |partial output

US 7,818,313 B1

Sheet 1 of 7

Oct. 19, 2010

U.S. Patent

/
\

/
\

\‘ln”
-~ ~

’ oGl N
weansg
aeg w0’

-
- RN

’ 061 \
weais

\ejeq nding./

| 2inbi4

001 waysAg Buissesoid Jendwo)

0g¢ 1 auibug Buissaooid snonupuo)

!

jt

\

-

ocl
Jepdwion

oLt
aoepau| Butwwelbold

!
\

’ oviL \

-_—-

el ~

weans)

\ EBleg mduy 7

—_ T~
- ~

4 orl \
weans
~ Bleg induy_

P

v

US 7,818,313 B1

Sheet 2 of 7

Oct. 19, 2010

U.S. Patent

Z 2inbi4

PoLe
¢Aanbgns e apnjoul Asanb sy} ssoq

HO/ANY

pli] ¥
¢Jojebaibbe

ue apnjoul Auanb ay; ssog

qole
¢494jo yoea jo Juspuadaput
passaooud aq ues jey} sdnoif ojui
pauonped aq sabessaw jndul uen

e0LZ
¢49410 yoes jo yuspuadapul
ssaooud aq sabessaw indul ue)

0¢e
ue|d uoinoaxa aul Yyum

20UBpIODOR Ul SIBAISS JO 18)SN|2 8Y)
Jano salianb §o jas ay) Buissaooid

1] 74
SIBAJISS JO IB)SNO 8y} SSOI0E

19s 8y} Jo Buissaooud apnquysip
0} MOY 3UIWIB)ap 0] 18S 3y} Ul
sauanb ayj jo yoes jo sjuswalinbai
pue solUBLISS By} SazAleUR WalsAs
ay} ‘uejd uonnaaxa ay} Bunealo ul
‘alaym ‘sauanb jo 19s e Buissaooid
Joy ue|d uonnoaxa ue Buneasn

US 7,818,313 B1

Sheet 3 of 7

Oct. 19, 2010

U.S. Patent

A

wealls
ejep ndino

¢ ainbi4
indino enred| 7z jonieg
)
Aanp owzw
)
D
<
y
A Janis
0ce < S
syndyno |eiued indino 5
obIop g Aanp sabessawl
y om%
)
<
X JaMeg 2D
Indino [erped Aianp

oLe
(00
‘wopuel ‘paseq
-peoj ‘uigoJ-punol)
sabessaw
anqusig

S E—
(s)weans

ejep ndy|

US 7,818,313 B1

Sheet 4 of 7

Oct. 19, 2010

U.S. Patent

¥ 2inbi4

A||
weans

ejep Jndino

g dnoJs) 1o} Indino jeiped
 dnoJy Joy indino jelueq | € 49NBS
Aanp
A
WETVETS
ocy »
sindno jeiped zdio fisnp
uoiun Indino
‘Hed
y
X Janeg
g dnoig oy Indyno jerued
¢ dnoug 104 Indjno jeited Aisnp
| dnoig) Joy Indjno |eney

oLy
(1ayjab0} passaoo.d aq 0} paau

dnoib yoeas uiyym sabessaw
a1aym ‘sdnoub yuspuadapul
ojul pauoniped sabessow)
sabessaw ajnqusI|g

[—
weays ejep jnduj

US 7,818,313 B1

Sheet S of 7

Oct. 19, 2010

U.S. Patent

A|'|

weal)s
ejep

Indino

G ainbi4

e e - — — — oy

Indjno |eiped

Y
|||||||||||| g
- »

0¢s
syndjno |eiped
auIquon

|
[
“ LWETNETS
“
|

sobessaw

0ls
(AemAue ui painquisip
aq ueo sabessaw)
sabessaw ajnqulsig

;ndino (ened

US 7,818,313 B1

Sheet 6 of 7

Oct. 19, 2010

U.S. Patent

g ainbig

0¢9
XVNeed

-

weals
ejep indinQ

0€9
XVIWpauiquo)

029
XvNeed

029
XVIN[eibed

NN

0¢9
XvWNieled

e eal)s ejep induy

US 7,818,313 B1

Sheet 7 of 7

Oct. 19, 2010

U.S. Patent

0LZ Aanp jlewbuo

r——- - -

_ 0€L _A

weals ejleg meN _
_
L— — — |

/ aInbi4

anbgng
/

ovs Aenp moN

US 7,818,313 Bl

1

METHOD FOR DISTRIBUTING PROCESSING
OF QUERIES OVER A CLUSTER OF
SERVERS IN A CONTINUOUS PROCESSING
SYSTEM

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 60/700,139 filed on Jul. 18, 2005 with first-
named inventor Mark Tsimelzon, and titled “Clustering
Options for a Continuous-Processing System,” the contents
of which are incorporated by reference as if fully disclosed
herein.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to continuous processing
systems that process streaming data, and, more specifically, to
distributing query processing in such systems over a cluster of
servers.

2. Description of the Background Art

A continuous processing system processes streaming data.
It includes queries which operate continuously on input data
streams and which publish output data streams. As processing
the queries can be quite complex, it is desirable to distribute
processing over a cluster of servers. While clustering for
performance is known for processing static data (i.e., not
streaming data), different methods are required to process
streaming data. Consequently, there is a need for specific
methods for distributing processing of queries that operate
continuously on streaming data.

SUMMARY

The present invention provides a method for processing a
set of registered queries over a cluster of servers in a continu-
ous computation system. Prior to processing the queries, the
continuous computation system creates an execution plan for
processing the queries over a cluster of servers. In creating the
execution plan, the continuous computation system analyzes
the semantics and requirements of the queries to determine
how to distribute processing across the cluster. In one
embodiment, if a system administrator or developer has
inputted instructions or manual “hints” as to how to distribute
processing, the system will also factor in such instructions/
hints.

The semantics and requirements of each query may be
analyzed to determine whether input messages for the query
can be processed independent of each other, whether input
messages for the query can be partitioned into groups that can
be processed independent of each other, whether the query
includes an aggregator function, and/or whether the query
includes a subquery.

Ifinput messages for a query can be processed independent
of each other, then logic for processing the query can be
duplicated on two or more servers and the input messages can
be divided up in a number of ways, such as a round-robin
fashion, randomly, to balance the load, etc. If input messages
for a query can be partitioned into groups that can be pro-
cessed independent of each other (where messages within a
group need to be processed on the same server), then logic for
processing the query can be duplicated on two or more serv-
ers, and input messages can be distributed to the servers in
accordance with the group in which the messages belong.

If'the query includes an aggregator function, then logic for
processing the query can be duplicated on two or more servers

20

25

30

35

40

45

50

55

60

65

2

and input messages can be distributed in any manner to such
servers. Partial outputs for the aggregator are generated on
each server and combined to create the final output.

If a query includes a subquery, the subquery can be pro-
cessed on a different server then the query by replacing the
subquery in the original query with a new input data stream
and creating a new query based on the subquery which pub-
lished to such new data stream.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a continuous processing sys-
tem.

FIG. 2 is a diagram that illustrates a method, in a continu-
ous processing system, for processing a set of registered
queries over a cluster of servers.

FIG. 3 is a block diagram that illustrates an example of
distributed query processing when input messages for a query
can be processed independently of each other.

FIG. 4 is a diagram that illustrates an example of distrib-
uted query processing when input messages for a query can be
partitioned into groups that can be processed independent of
each other.

FIG. 5 is a block diagram that illustrates an example of
distributed query processing when the query includes an
aggregator function.

FIG. 6 is a block diagram that illustrated an example of
distributed processing of a continuous query that includes the
MAX function.

FIG. 7 is a block diagram that illustrated how a query with
a subquery can be broken up into two queries that can be
processed on different servers.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 1 illustrates an example of a continuous processing
system that processes streaming data. The system 100
includes a programming interface 110, a compiler 120, and a
continuous processing engine 130, where the engine may be
distributed over a cluster of servers. The programming inter-
face 110 enables programmers to write queries, which are
then complied by the compiler 120 and provided to the con-
tinuous processing engine 130. The queries 160 subscribe to
input data steams 140 and publish to output data streams 150.
Through the engine 130, the queries 160 operate on input data
stream continuously.

Coral8, Inc.’s “In-Motion Processing System” is an
example of a continuous processing system. Also, one
embodiment of a continuous processing system is described
in U.S. patent application Ser. No. 11/015,963, filed on Dec.
17, 2004 with Mark Tsimelzon as the first-named inventor,
and titled “Publish and Subscribe Capable Continuous Query
Processor for Real-time data streams,” the contents of which
are incorporated by reference as if fully disclosed herein.

Queries may be written in a continuous-processing soft-
ware language (CPL), which is sometimes also referred to as
a continuous correlation language (CCL). An example of
such a language described in the U.S. patent application Ser.
No. 11/346,119, filed on Feb. 2, 2006, and titled “Continuous
Processing Language for Real-time Data Streams,” the con-
tents of which are incorporated by reference as if fully dis-
closed herein.

FIG. 2 illustrates a method, in a continuous processing
system, for processing a set of registered queries over a clus-
ter of servers, where each query subscribes to at least one
input data stream and publishes to an output data stream. The
method comprises creating an execution plan for processing

US 7,818,313 Bl

3

the set of queries over the cluster of servers, where, in creating
the execution plan, the system analyzes the semantics and
requirements of each of the queries in the set to determine
how to distribute processing of the set across the cluster of
servers (step 210). In one embodiment, the system also fac-
tors in any manual hints or instructions inputted by a system
administrator or developer for distributing processing.

The method also comprises processing the set of queries
over the cluster of servers in accordance with the execution
plan (step 220). Such processing may include generating
partial outputs for at least one query in the set and using such
partial outputs to generate an output data stream for such
query. The term “server”, as used herein, means any process-
ing entity. One machine can have one server or multiple
servers.

In creating the execution plan, the compiler 120 parses a
query, extracts the semantics, and analyzes what is required.
Analysis of a query can include determining if, during query
processing, input messages can be processed independently
of'each other (step 210a) or partitioned into groups that can be
processed independently of each other (step 2105). In the
latter case, each group consists of input messages that need to
be processed together on the same server. Furthermore,
analysis of a query can include determining whether the
query includes an aggregator function (step 210¢) or a sub-
query (step 2104d).

Ifinput messages for a query can be processed independent
of'eachother (i.e., processing of one message does not depend
on another message), then processing of such query can be
distributed over a server cluster by: (1) installing identical
logic for processing the query on two or more servers in the
cluster and (2) dividing the input messages among such serv-
ers, where the input messages can be divided up in any way.
In one embodiment, the continuous processing system deter-
mines if messages can be processed independent of each
other by performing data flow and semantic analysis that
indicates whether or not messages need to interact with each
other during query processing.

FIG. 3 illustrates an example of distributed query process-
ing when input messages for a query can be processed inde-
pendent of each other. The query-processing logic is dupli-
cated on servers x, y, and z. Messages from the input message
stream are divided up and distributed to servers X, y, and z
(310). Since the messages can be processed independent of
each other, they can be divided up in any way. For instance,
they can be divided up in a round-robin manner, a random
manner, and in a manner that balances the load among the
servers having the query processing logic.

Each of servers x, y, and z generates a partial output for the
query. The output is “partial” because each server only pro-
cesses a portion of the input messages. The partial outputs are
then merged to create the output data stream (320). In some
cases, the partial outputs and final output may be generated in
the context of time- or row-based windows (windows are
described in U.S. patent application Ser. No. 11/346,119,
which is referenced above). For example, to generate a partial
output, a query may operate on input messages received
within a 5 second window, or it may operate on the last 5 rows
it received.

Anexample of a query in which messages can be processed
independent of each other is a filter operation, which may be
expressed as follows:

Insert into Stream2
Select *
From Stream1

Where cost>10.0
The above query, as well as the other example queries
disclosed herein, is written in Coral8’s CCL language, which

20

25

30

40

45

60

65

4

described in U.S. patent application Ser. No. 11/346,119 (ret-
erenced above). In a filter operation, messages do not need to
interact with each other. Instead, they can be filtered indepen-
dently, and those input message satisfying the filter expres-
sion can be merged into the output data stream.

Ifinput messages for a query can be partitioned into groups
that can be processed independent of each other (where each
groups consists of messages that need to be processed
together), then processing of the query can be distributed over
a server cluster by (1) installing identical logic for processing
the query on two or more servers in the cluster and (2) divid-
ing the input message among such servers by such groups,
where a single group is processed on the same server (i.e., the
group is not divided up among servers).

FIG. 4 illustrates an example of distributed query process-
ing when input messages for a query can be partitioned into
groups that can be processed independent of each other. In
this example, the messages can be partitioned into six groups
(Groups 1-6). The query-processing logic is duplicated on
servers X, y, and z. Messages from the input message stream
are divided up and distributed to servers X, y, and z by groups
(410). Server x receives messages in Groups 1, 3 and 5, server
y receives messages in Group 2, and server z receives mes-
sages in Groups 4 and 6.

Each of servers x, y, and z generates a partial output for the
query, where each partial output corresponds to one of the
groups. The output data stream is then a union of these partial
outputs (420). In some cases, the partial outputs, as well as the
final output, may be generated in the context of time-based or
row-based windows.

Groups can be based on clauses in the query that define
groupings. The “Group By” clause in the below query is an
example:

Insert into AvgPrices
Select AVG(Trades.Price)
From Trades KEEP 10 minutes

Group By Trades.Symbol

This query calculates a 10 minute moving average of stock
prices. In this query, the input data steam is “Trades,” where
the query specifies that data in the “price” column of the
“Trades” stream should be averaged over a moving 10 minute
period and the averages should be outputted to the output data
stream “AvgPrices.” The “Group By” clause specifies that, in
calculating the averages and generating the output data
stream, the messages should be grouped by stock symbol.
Consequently, all messages for the same symbol should go to
the same server as they are processed in the context of each
other, but messages for different symbols do not interact with
each other and thus can be processed on different servers. In
determining how to distribute query processing over a cluster,
the continuous processing system may examine the queries
for clauses like the “Group By” clauses.

If a query includes an aggregator function (such as MAX,
MIN, SUM, etc.), then processing of such query can be dis-
tributed over a server cluster by (1) installing the aggregator
functionality on two or more servers in the cluster and (2)
dividing the input messages among such servers, where the
input messages are divided up in any way.

FIG. 5 illustrates an example of distributed query process-
ing when the query includes an aggregator function. The
aggregator logic is duplicated on servers X, y, and z. Messages
from the input data stream are divided up and distributed to
servers X, y, and z in any manner (round robin, load-based,
randomly, etc.) (510).

US 7,818,313 Bl

5

Each of servers x, y, and z generates a partial output for the
query. The output is “partial” because each server only pro-
cesses a portion of the input messages. The partial outputs are
then combined to create the output data stream (520). In some
cases, the partial outputs, as well as the final output, may be
generated in the context of time-based or row-based win-
dows.

An example of a query that includes an aggregator is as
follows:

Insert into MaxPrices
Select Max(Trades.Price)

From Trades KEEP 10 minutes

This query calculates a 10 minute moving maximum trade
price. The input data stream is “Trades” and the output data
stream is “Max Prices.” The aggregator function is the
“MAX” function, which calculates the maximum value
within a data set. As illustrated in FIG. 6, “MAX”, as well as
most other aggregators, can be computed as followings:

1) Split the input date stream into an arbitrary number of
“buckets” by duplicating the “MAX"” logic on a number
of servers (610). Note: Since the query above specifies
“KEEP 10 minutes,” all incoming messages should go
into the same 10 minute window (i.e., each bucket
should correspond to the same 10 minute time period).

2) Compute a “MAX” for each bucket, resulting in partial
“MAX” outputs (“PartialMAX”) (620)

3) Compute the “MAX” of the partial outputs to generate
the output data stream (630).

In this case, this technique allows one to scale both CPU
and memory usage of computing “MAX” across a number of
servers. The same technique can apply to MIN (i.e., a function
that calculates a minimum), COUNT (i.e., a function that
calculates a count), AVERAGE (i.e., a function that calculates
averages), SUM (i.e., a summation function), STD DEVIA-
TION (i.e., a function that calculates a standard deviation),
and many other aggregators (e.g., EVERY, ANY, SOME).
Note that in some cases intermediate servers need to send
extra information to the merging server. For example, when
computing AVERAGE, not only Partial AVER AGEs, but also
Partial COUNTSs must be communicated to enable the com-
putation of Combined AVERAGE.

If a query includes a subquery, then processing of such
query can be distributed over a server cluster by: (1) replacing
the subquery with a new input data stream, (2) creating a new
query based on the subquery that generates the new data
stream, and (3) processing the query (with the new data
stream) and the new query on separate servers. FIG. 7 illus-
trates an example of this. Query 710 includes subquery 720.
To distribute processing of query 710, the subquery 720 is
replaced with new input data stream 730 (i.e., Query 710
subscribes to input data stream 730). A new query 740 per-
forms the same functionality as the subquery 720 and gener-
ates, as its output, new data stream 730. Processing is distrib-
uted by processing query 710 and new query 740 on different
servers.

As will be understood by those familiar with the art, the
invention may be embodied in other specific forms without
departing from the spirit or essential characteristics thereof.
Accordingly, the above disclosure of the present invention is
intended to be illustrative and not limiting of the invention.

The invention claimed is:

1. In a continuous computation system, an automated
method for processing a set of registered queries over a cluster
of'servers, wherein each query subscribes to at least one input
data stream, the method comprising:

20

25

30

40

50

60

65

6

creating an execution plan for processing the set of queries
over the cluster of servers, where, in creating the execu-
tion plan, the system analyzes the semantics and require-
ments of each of the queries in the set to determine how
to distribute processing of the set across the cluster of
servers;

installing query logic on the cluster of servers in accor-

dance with the execution plan, wherein such logic is
installed prior to receiving input messages and wherein
logic for an individual query is distributed over a plural-
ity of the servers in the cluster; and

continuously running the set of queries over the cluster of

servers in accordance with the execution plan;
receiving, at the continuous computation system, stream-
ing input messages on one or more input data streams,
wherein input messages can arrive continuously;
distributing the streaming input messages over the cluster
of servers while the set of queries are running; and
generating partial outputs for at least one query in the set
over two or more servers and using such partial out-
puts to generate an output data for such query.

2. The method of claim 1, where, in creating the execution
plan, analysis of a query includes determining whether input
messages for the query can be processed independent of each
other.

3. The method of claim 2, where the system determines if
input messages can be processed independent of each other
by performing data flow and semantic analysis.

4. The method of claim 1, wherein, when input messages
for a query can be processed independent of each other, the
installing step includes installing identical logic for process-
ing such query on two or more servers in the cluster, and the
input messages are divided up among the servers having the
logic.

5. The method of claim 4, where the input messages are
divided up in a round-robin manner.

6. The method of claim 4, where the input messages are
divided up randomly.

7. The method of claim 4, where the input messages are
divided up in a manner that balances the load on the servers
having the logic.

8. The method of claim 4, wherein processing the query
further comprises generating partial outputs for the query on
the servers having the logic and merging such partial outputs
to generate output data for the query.

9. The method of claim 1, where, in creating the execution
plan, analysis of a query includes determining whether input
messages for the query can be partitioned into groups that can
be processed independent of each other.

10. The method of claim 9, wherein, when input messages
for a query can be partitioned into groups that can be pro-
cessed independent of each other, the installing step includes
installing identical logic for processing such query on two or
more servers in the cluster, and input messages are distributed
among the servers having the logic by such groups.

11. The method of claim 10, wherein each group consists of
messages that need to be processed on the same server.

12. The method of claim 10, wherein the groups are based
on language in the query that defines groups.

13. The method of claim 12, wherein such language is a
GROUP BY clause.

14. The method of claim 10, wherein processing the query
further comprises generating partial outputs for the query on
the servers having the logic and combining such partial out-
puts to generate an output data for the query.

US 7,818,313 Bl

7

15. The method of claim 1, wherein in creating the execu-
tion plan, analysis of a query includes determining whether
the query includes an aggregator function.

16. The method of claim 15, wherein, when a query
includes an aggregator function, the installing step includes
installing identical logic for processing the aggregator func-
tion on two or more servers in the cluster, and running the
query includes generating a partial output for aggregator
function on each of such servers and then combining such
partial outputs.

17. The method of claim 15, where the aggregator function
determines a minimum value from a data set.

18. The method of claim 15, where the aggregator function
determines a maximum value from a data set.

19. The method of claim 15, where the aggregator function
sums values in a data set.

20. The method of claim 15, where the aggregator function
is a count function.

21. The method of claim 15, where the aggregator function
is a standard deviation function.

22. The method of claim 1, further comprising, in creating
the execution plan, analyzing of a query includes determining
if the query includes a subquery.

23. The method of claim 22, wherein if a query includes a
subquery, creating the execution plan includes replacing the
subquery in the query with a new data stream and creating a
new query based on the subquery that generates messages
into the new data stream.

24. The method of claim 23, wherein the query with the
new data stream and the new query are processed on separate
servers in the cluster.

25. In a continuous computation system, a method for
distributing processing of a query over a cluster of servers,
where the query subscribes to at least one input data stream,
the method comprising:

determining whether input messages for the query can be

processed independent of each other by analyzing the
semantics of the query; and

in response to determining that input messages for the

query can be processed independent of each other:

installing identical logic for processing the query on two
or more servers in the cluster, wherein such logic is
installed prior to receiving input messages;

continuously running the query logic on such servers;

receiving, at the continuous computation system,
streaming input messages on one or more input data
streams, wherein input messages can arrive continu-
ously;

distributing the input messages among such servers in a
round-robin manner;
wherein the input messages are distributed while the

query is running;

generating partial outputs for the query on such servers;
and

merging the partial outputs to generate output data.

26. The method of claim 25, where, in generating the
partial outputs, the query operates on the input messages in
accordance with a time-based window.

27. The method of claim 25, where, in generating the
partial outputs, the query operates on the input messages in
accordance with a row-based window.

28. In a continuous computation system, a method for
distributing processing of a query over a cluster of servers,
where the query subscribes to at least one input data stream,
the method comprising:

w

20

25

30

35

40

45

50

55

60

65

8

determining whether input messages for the query can be
partitioned into groups that can be processed indepen-
dent of each other by analyzing the semantics of the
query; and

in response to determining that input messages for the

query can be partitioned into groups that can be pro-

cessed independent of each other:

installing identical logic for processing the query on two
of more servers in the cluster, wherein such logic is
installed prior to processing input messages;

continuously running the query logic on such servers;

receiving, at the continuous computation system,
streaming input messages on one or more data
streams, wherein input messages can arrive continu-
ously;

distributing the input messages among such servers by
such groups, wherein messages are distributed while
the query is running;

generating partial outputs for the query on such servers;
and

combining such partial outputs to generate output data
for the query.

29. The method of claim 28, wherein each of the groups
consists of messages that need to be processed together.

30. The method of claim 28, wherein the groups are based
on language in the query that defines groups.

31. The method of claim 28, wherein such language is a
GROUP BY clause.

32. The method of claim 28, where, in generating the
partial outputs, the query operates on the input messages in
accordance with a time-based window.

33. The method of claim 28, where, in generating the
partial outputs, the query operates on the input messages in
accordance with a row-based window.

34. In a continuous computation system, a method for
distributing processing of a query over a cluster of servers,
where the query subscribes to at least one input data stream,
the method comprising:

determining whether the query includes an aggregator

function by analyzing the semantics of the query; and

in response to determining that the query includes an

aggregator function:

installing identical logic for processing the query on two
of more servers in the cluster, wherein such logic is
installed prior to processing input messages;

continuously running the query logic on such servers;

receiving, at the continuous computation system,
streaming input messages on one or more input data
streams, wherein input messages can arrive continu-
ously;

distributing the input messages among such servers,
wherein input messages are distributed while the
query is running;

and

generating partial outputs for the aggregator function on
such servers; and

combining such partial outputs.

35. The method of claim 34, where the aggregator function
determines a minimum value from a data set.

36. The method of claim 34, where the aggregator function
determines a maximum value from a data set.

37. The method of claim 34, where the aggregator function
sums values in a data set.

38. The method of claim 34, where the aggregator function
is a count function.

39. The method of claim 34, where the aggregator function
is a standard deviation function.

US 7,818,313 Bl

9

40. The method of claim 34, where, in generating the
partial outputs, the aggregator function operates on the input
messages in accordance with a time-based window.

41. The method of claim 34, where, in generating the
partial outputs, the aggregator function operates on the input
messages in accordance with a row-based window.

42. In a continuous computation system, a method for
distributing processing of a first query over a cluster of serv-
ers, where the first query subscribes to at least one input data
stream, the method comprising:

determining whether the first query includes a subquery by

analyzing the semantics of the query; and

in response to determining that the first query includes a

subquery:
replacing the subquery in the first query with a new input
data stream;

15

10

creating a second query based on the subquery, where
the second query generates messages into the new
input data stream, wherein logic for the second query
is installed on a separate server than logic for the first
query and such installation is performed prior to pro-
cessing input messages;
continuously running the first and second queries on
separate servers;
receiving streaming input messages needed for the second
query at the continuous computation system, wherein
such input messages can arrive continuously; and
sending such input messages to the server with the second
query, while the first and second queries are running.

