wO 2016/102180 A 1[I I 0F V00 000 0000 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

30 June 2016 (30.06.2016)

WIPOIPCT

(10) International Publication Number

WO 2016/102180 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
GO6F 21/14 (2013.01) HO4L 9/00 (2006.01)

International Application Number:
PCT/EP2015/078894

International Filing Date:
8 December 2015 (08.12.2015)

Filing Language: English
Publication Language: English
Priority Data:

14199750.2 22 December 2014 (22.12.2014) EP

Applicant: KONINKLIJKE PHILIPS N.V. [NL/NL]J;
High Tech Campus 5, 5656 AE Eindhoven (NL).

Inventors: SCHEPERS, Hendrik Jan Jozef Hubertus;
c/o High Tech Campus 5, 5656 AE Eindhoven (NL).
GORISSEN, Paulus Mathias Hubertus Mechtildis Ant-
onius; c/o High Tech Campus 5, 5656 AE Eindhoven
(NL).

Agents: NIESSEN, Arnoldus Jeroen et al.; High Tech
Campus 5, 5656 AE Eindhoven (NL).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

Published:

with international search report (Art. 21(3))

(54) Title: HIDING OF A PROGRAM EXECUTION

Fig. 1

[/ [/

e 101

,_’ w'=f{w) ; :’ w'=g(w) ;

1, =E(w,00) ()

Q(w;) = {E(w;,s)|s EZ} M)

E

(57) Abstract: A system for hiding a change to a set of variables of a program is provided. A value representing means (902) repres-
ents a value w;of a variable v; of the variables vi, v,,..., va, Wherein w is an element of a set 7, by means of a representation 7; whetrein
r; = E(W;, 6;), and 1; is an element of a set of representations (w;) = {E(vv;s) |s €3}, wherein o; is a state variable that is an element
of a set > and that provides a redundancy to the representation r; of w; and E is a one-to-one cryptographic mapping from W x> to a
predetermined set. An action representing means (903) represents an action on values of variables in a subset 7" of V' by means of an
action on ¥ and an action on V'\V, to obtain updated representations. The action on V' changes the representation 1; of each variable
V; in the set of variables.

10

15

20

25

WO 2016/102180 PCT/EP2015/078894

Hiding of a program execution

FIELD OF THE INVENTION

The invention relates to hiding of details of a program execution. More
particularly, the invention relates to hiding a conditional operation. More particularly, the
invention relates to hiding a program flow and data flows in a program containing a

conditional computation.

BACKGROUND OF THE INVENTION

Computing with encrypted values, not using operators which reveal their
functionality, may be realized with a table driven approach. The program code, i.c. its
operation, can be hidden through the use of look-up tables. Applying these tables to
encrypted data gives an encrypted result, the outcome of the hidden operation.

However, recognizing operators like comparisons (<, =, ...) is fairly easy since those
instructions are limited in number, typically result in a change in the control flow, and their
outcome is of type encrypted Boolean. If this encrypted Boolean guards a conditional
operation, ¢.g. in the case of an if-then or if-then-else construct, an attacker could recognize
from the control flow aspects of the operation. Further, an attacker could create an ordering
on the encrypted values that were compared. Eventually, this could lead to breaking the
encryption.

In a software program it is often necessary to perform a comparison. For
instance, to check if a certain threshold value has been reached or if some input is equal to a
predetermined value. In obfuscated programs, such comparisons may help an attacker to
break the encoding.

US 7,809,135 B2 discloses methods and systems related to increasing the
cryptographic security of keys used by software with cryptographic functions. This is done
by increasing the mathematical complexity of the software. The components and functions
used by the software are first determined and, using these components, functions, and the
data exchanged between them, the software is made more resistant to analysis. The methods

used in increasing analytical resistance are grouped into 3 general types: adjusting the

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
2

information exchanged between the components, replacing some components with different

but related components, and adjusting the data flow between the components.

SUMMARY OF THE INVENTION

It would be advantageous to have an improved method and system to prevent
information to leak from a program during execution of the program.

To address this issue, in a first aspect a system for hiding a change to a set of
variables V = {v,, v,, ..., v, } of a program is provided. The system comprises:

a value representing means for representing a value w; of a variable v; of the
variables vy, v,, ..., ¥, wherein w; is an element of a set W, by means of a representation 13,
wherein r; = E(w;, 0;), and r; is an element of a set of representations Q(w;) =
{E(w;, s)|s € L}, wherein o; is a state variable that is an element of a set ¥ and that provides
a redundancy to the representation 1; of w;, and E is a one-to-one cryptographic mapping
from W X X to a predetermined set; and

an action representing means for representing an action on values of a subset
V' of ¥ by an action on V' and an action on V\V’, wherein

the action on V' changes the representation r; of each variable v; in the set of
variables V' according to a changed value w'; of variable v}, so that r; = E'(w';, 0;), wherein
E' is a one-to-one cryptographic mapping from W X £ to a predetermined set, and

wherein the action on V\V’ changes the representation 1;, of each variable vy,
in V\V' according to a changed value o', of gy, so that r, = E'(wy, a'y).

Using this system, it is difficult for an attacker to discover which of the
variables were actually changed in the program, because the representations of the variables
that have not changed are also altered, by changing the state variable o.

For example, the action comprises an if-statement, that defines an action on a
set of variables V; if a condition holds, and an action on a set of variables V, if the condition
does not hold, wherein the set of variables V' is the union of V; and V;,, so that V. =V, U V,,
and the action representing means is configured to use the set of variables V; or the set of
variables V, as the set of variables V' according to whether the condition holds. This helps to
avoid leaking information about the conditional and which branch of a conditional code
segment was chosen. The action representing means may use the chosen set V' when
representing the action on the subset V' by the action on V' and the action on V\V’, as

described above.

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
3

The set of variables V; and the set of variables V, may have an intersection Vs
of variables that are affected by both the actions, so that V; = V; N V,, wherein the action
changes each variable v, of the set V3 according to a function f if the condition holds and
according to a function g if the condition does not hold, wherein the action representing
means is configured to determine the representation r',,, = E'(W',,,, ') of each variable v,
of the set V5 such that based on whether the condition holds according to the input, either:

W' = fn(Wy) and 'y, = g (W (Wp, 012)), OF

Won = G (W) and 6y = fr (on Wiy 03)),
wherein h,, is a mapping from W X Zto W.

Using this feature, it is difficult for an attacker to discover whether f,,, was
actually applied to the variable w,, or g,, was applied to the variable w,,.

The action representing means may be configured to cause a look-up of the
representations r’; corresponding to an input regarding the condition and the representations
1; using at least one look-up table that maps a tuple of the input regarding the condition and
the representations 1; to the corresponding representations ;. The input may, for example,
comprise an (optionally encrypted) Boolean variable . Alternatively, the input may comprise
variables occurring in a predicate that defines the condition. This predicate and the actual
actions may be hidden in the at least one look-up table.

In a particular example, |Z| = |W|, and the action representing means (103) is
configured to identify one or more input variables which determine the condition b, and
wherein the action representing means (103) comprises a swap unit (305) for performing a
hidden swap operation, based on at least one representation r, wherein r = r;, of a variable v;
in the set 7, and the one or more input variables, such that for p € W and q€ W with
r=E(p q,

,,_{ E”(p,q) ifb holds
| E"(q,p) ifbdoesnothold’

wherein E” is a one-to-one cryptographic mapping from W X I to a predetermined set,
wherein E” is different from E, wherein r” is a representation,

and/or a swap unit (306) for performing a hidden swap operation, based on a representation
r"’" and the one or more variables, such that for p € W and q€ W with '’ = E" (p, q),

. { E'(p,q) ifbholds
| E'(q,p) ifbdoesnothold’

wherein E'” is a one-to-one cryptographic mapping from W X X to a predetermined set,

r

wherein E' is different from E’, and 1’ is the updated representation ;.

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
4

These swap operations can be used as pre-processing and/or post-processing
steps, respectively, when computing the representation r', so that the hidden implementation
of the actual functions f'and/or g can be simplified. If only one of the swap units is used, the
role of w and o before and after the action may be interchanged. This may be dealt with by
taking this into account in the remainder of the system, for example by suitable program code
that assumes that the encoding E has changed.

The action representing means may further comprise a function evaluation unit

i

for computing a function to obtain the representation r'”’’ based on the representation r”, such

that for p € W and g€ W with r”" = E" (p, q),
r'" = E"(f(p), g (@),
wherein f'is a mapping defined on # and g is a mapping defined on W.

This way, the functions f'and g may be applied to the w or o aspect of
representation r'’, depending on the swap operation performed before, so that the hidden
implementation of f'and g can be the same regardless of whether the condition holds. The
swap operation that may be performed thereafter swaps the w and o aspects back depending
on the condition, to undo the swap operation performed by the first swap operation.

In a particular example, E”" = E. This means, that the two swap operations use
identical cryptographic encodings. Thus, the same code and/or tables may be re-used for both
swap operations.

In an example, h,,,(w,g) = o, for all values of w and ¢ and at least one m in
{1,2,3, ..., n}. This may provides a simplified and/or more symmetric implementation.

In an example, the action on V' is configured to change the representation 7; of

each variable v; in the set of variables V' so that w’; = f;(w;) and ¢’; = o}, and

wherein the action on V\V’ is configured to change the representation 7, of
each variable vy, in V\V' so that w';, = wy, and o'}, = f;, (hy (Wi, 03.));

wherein f;, fori = 1,2, ..., n, is a function defined on W and h;, for each
variable vy, in V\V’, is a function mapping elements of W X Z to W.

This is an example of what changes to make to the representations.

The system of claim 2 or 3, further comprising a nested conditional
representing means for representing a nested conditional operation involving a first plurality
of nested conditions into a functionally equivalent sequence of non-nested conditional

operations involving a second plurality of conditions.

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
5

The system may further comprise a converting unit for converting a nested
conditional operation involving a first plurality of nested conditions into a functionally
equivalent sequence of non-nested conditional operations involving a second plurality of
conditions. This helps to improve the prevention of information leakage, because each of the
non-nested conditional operations is evaluated, for example by means of the code generated
by the first and second generating units, so that all expressions occurring in the conditional
operations are evaluated and may influence the representation r’. Fewer branches are skipped.

For example, the converting unit may be configured to combine respective
expressions of respective conditional branches of the nested conditional operation into terms
of an auxiliary expression, wherein the respective expressions are associated with alternative
values to be assigned to a particular variable; repeat the step to combine respective
expressions of respective conditional branches into terms of an auxiliary expression, such
that a plurality of auxiliary expressions is generated in which the terms are combined in
different ways, generate code to evaluate the auxiliary expressions and store their results; and
generate code to combine the results of the auxiliary expressions in dependence on a
combined condition, wherein the combined condition is a combination of the plurality of
conditions, such that the terms corresponding to branches that are not relevant in view of the
condition cancel out. Such a system can be used to hide nested if statements by flattening
these to a sequence of if statements that are not nested. By combining expressions occurring
in different conditional branches into auxiliary expressions, and then combining the auxiliary
expressions in such a way that expressions that are not relevant in view of the conditions
cancel out, many of the expressions are evaluated in the program and may influence the
encrypted outcome, making it difficult to analyze which expressions actually influence the
decrypted value w' corresponding to the encrypted outcome.

The action representing means may be configured to identify at least one
conditional operation of the sequence of non-nested conditional operations and the
corresponding condition of the second plurality of conditions, and wherein the action
representing means is configured to use the identified conditional operation as the action and
the identified corresponding condition as the condition of the if-statement. Such a
combination provides particularly good hiding of what happens in a piece of conditional code.
Further, the identifying unit may be configured to identify each conditional operation of the
sequence of non-nested conditional operations and each corresponding condition of the

second plurality of conditions, wherein the first generating unit and the second generating

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
6

unit are configured to process each identified conditional operation and corresponding
condition.

In another aspect, a method is provided for hiding a change to a set of
variables V = {v,, v,, ..., v, } of a program, the method comprising

representing a value w; of a variable v; of the variables v, v,, ..., v,,, wherein
w is an element of a set 7, by means of a representation r;, wherein r; = E(wy;, 0;), and 1 is
an element of a set of representations Q(w;) = {E(w;, s)|s € X}, wherein o; is a state
variable that is an element of a set X and that provides a redundancy to the representation r;
of w;, and E is a one-to-one cryptographic mapping from W X X to a predetermined set; and

representing an action on values of a subset V' of ¥ by means of an action on
V' and an action on V\V’, to obtain updated representations r’; = E'(w';, ¢';), fori =
1,2, ...,n, wherein E’ is a one-to-one cryptographic mapping from W X Z to a predetermined
set, and wherein

the action on V' is configured to change the representation 7; of each variable
v; in the set of variables V' according to a changed value w'; of variable v;, and

the action on V\V' is configured to change the representation 3, of each
variable vy, in V\V' according to a changed value o'y of gy,.

According to another aspect, a system for hiding a conditional operation is
provided, the system comprising

a representing unit for representing a value w, wherein w is an element of a set
W, by means of a representation », wherein r = E(w, o), and r is an element of a set of
representations Q(w) = {E(w, s)|s € I}, wherein o is a state variable that is an element of a
set X and that provides a redundancy to the representation » of w, and E is a one-to-one
cryptographic mapping from W X X to a predetermined set; and

a deriving unit for deriving a representation r’ of a value w' from the
representation 7 based on an input regarding a condition, wherein w’ is an element of the set
W, wherein ' is an element of a set of representations Q'(w’) = {E'(w’, s)|s € X}, wherein
r' = E'(W,0"), wherein ¢’ is a state variable that is an eclement of the set £ and that provides
a redundancy to the representation " of w', wherein E' is a one-to-one cryptographic
mapping from W X X to a predetermined set, wherein based on whether the condition holds
according to the input, either w’ is associated with f(w) or ¢’ is associated with f (h(w, o)),

wherein f is a nontrivial mapping defined on W, and h is a mapping from W X £ to W.

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
7

The representing unit provides for a representation r that is a redundant
representation of the value w. That is, any single value of w has many different
representations r, because r can be any element of Q(w). This means, that a change of r does
not necessarily mean a change of w, because r could just be changed to a different element of
Q(w) for the same value of w. Such a representation allows a conditional operation, e.g. if
condition b holds, update wto w' = f(w), to be hidden. That is, if the condition indeed holds,
the representation r is updated to become a representation 1’ that is a representation of f{w),
i.e. a member of the set Q'(f(w)). On the other hand, if the condition does not hold, the
representation r 1s still updated, but to a different representation of the same value w, i.c. a
(different) member of the set Q'(w). Since in the latter case, the function fis used to select
the specific member of the set Q'(w), the same function based on f'influences the operation
that is performed and applied to the representation » regardless of whether the condition holds
or not. Any entropy effect provided by the function fis therefore propagated in the
representation w’ regardless of whether the condition holds. That is, even when an attacker
would change the value r or the condition b and look at any effects thereof on the result 7', it
is still difficult to extract information about the program and its variables. Further, it is also
difficult for a malicious observer to find out whether the function f'has been applied to the
value w or not.

The determining unit may be configured to determine the representation
r’ = E'(w’, ") such that based on whether the condition holds according to the input, either
w' is associated with f{w) and ¢’ is associated with g(h(w, 0)), or w' is associated with g(w)
and ¢’ is associated with f(h(w, 0)), wherein g is a (nontrivial) mapping defined on W. This
is particularly useful to create a hidden implementation of for example an if-statement that
has an else part: if b then w=fw) else w=g(w). Both functions f and g influence the end result
r’, although only one of these functions influences the w portion, or the set Q' from which the
representation ' is selected. The other function merely influences which element of Q' is
selected. Therefore, only one of the functions fand g (as determined by the condition)
determines the underlying decrypted value w’ of the representation .

The deriving unit may be configured to look up the representation r’
corresponding to the input regarding the condition and the representation r, using at least one
look-up table that maps a tuple of the input and the representation 7 to the corresponding
representation r’. The implementation by means of look-up tables allows to prevent leaking

any information involved in computing the condition from the input variables and the

10

15

20

25

WO 2016/102180 PCT/EP2015/078894
8

function f. Moreover, any if statement or jump instruction that depends on the condition can
be avoided.

For example, |Z| = |W|. The deriving unit may be configured to identify one
or more variables which determine the condition b, and the deriving unit may comprises a
swap unit for performing a hidden swap operation, based on the representation » and the one
or more variables, such that for p € W and q€ W with r = E(p, q),

,,_{ E”(p,q) ifb holds
e E"”(q,p) ifb doesnothold’

wherein E” is a one-to-one cryptographic mapping from W X I to a predetermined set,
wherein E” is different from [E, wherein "’ is a representation,

and/or performing a hidden swap operation, based on a representation r''* and the one or
more variables, such that for p € W and q€ W with '’ = E""" (p, q),

,_{ E'(p,q) ifbholds
" =1 E'(q,p) ifbdoes nothold’

wherein E'” is a one-to-one cryptographic mapping from W X X to a predetermined set,

r

wherein E"' is different from E’.

These swap operations can be used as pre- and/or post processing steps,
respectively, when computing the representation 1, so that the hidden implementation of the
actual functions f and/or g can be simplified.

The deriving unit may further comprise a function evaluation unit for

i

computing a function to obtain the representation '’ based on the representation r”, such

that for p € W and g€ W with r”" = E" (p, q),
r' = E" (f(p). g(a),
wherein g is a mapping defined on W.

This way, the functions f'and g may be applied to the w or o aspect of
representation r'’, depending on the swap operation performed before, so that the hidden
implementation of f'and g can be the same regardless of whether the condition holds.

For example, h(w, o) = o, for all values of w and o. In this example, when
the condition is not true, the o aspect of the representation is not influenced by the w aspect
of the representation. This improves the symmetry of the scheme.

The determining unit may be configured to determine the representation
E'(w', ¢") such that based on the condition either: w' = f(w) and ¢’ = o, or w' = w and
o' = f(h(w, 0)). This may be used to create a hidden implementation of for example an if

statement that does not have an else part: if b then w=f(w).

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
9

According to another aspect of the invention, a method of performing an
operation conditionally is provided. The method comprises steps of

representing a value w, wherein w is an element of a set 7, by means of a
representation », wherein ¥ = E(w, 0), and r is an element of a set of representations
Q(w) = {E(w, s)|s € Z}, wherein o is a state variable that is an element of a set £ and that
provides a redundancy to the representation » of w, and E is a one-to-one cryptographic
mapping from W X X to a predetermined set; and

deriving a representation r’ of a value w' from the representation r based on an
input regarding a condition, wherein w' is an element of the set /7, wherein r' is an element
of a set of representations Q'(w') = {E'(w', s)|s € £}, wherein ' = E'(w’, ¢"), wherein o’ is
a state variable that is an element of the set X and that provides a redundancy to the
representation 1’ of w’, wherein E' is a one-to-one cryptographic mapping from W X Z to a
predetermined set, wherein based on whether the condition holds according to the input,
cither w' is associated with f(w) or ¢’ is associated with f(h(w, o)), wherein f is a
nontrivial mapping defined on W, and h is a mapping from W X X to W.

According to another aspect of the invention, a system for creating computer
code to perform an operation conditionally is provided. The system comprises

an identifying unit for identifying a condition and a conditional operation f that
is to be performed on a variable w so that, if the condition holds, a variable w' is computed
such that w’' = f(w), wherein w’ is an element of the set ¥, and wherein f is a mapping
defined on W,

a first generating unit for generating first computer code, wherein the first
computer code is configured to, when executed, represent the variable w, wherein w is an
clement of a set 7, by means of a representation r, wherein r = E(w, 0) and r is an element
of a set of representations Q(w) = {E(w, s)|s € L}, wherein o is a state variable that is an
clement of a set X and that provides a redundancy to the representation » of w, and E is a one-
to-one cryptographic mapping from W X X to a predetermined set; and

a second generating unit for generating second computer code, wherein the
second computer code is configured to, when executed, determine a representation 7’ of the
value w' based on an input regarding the condition, wherein ' is an element of a set of
representations Q' (w') = {E'(w',s)|s € £}, wherein r' = E'(w', ¢"), wherein ¢’ is a state
variable that is an element of the set £ and that provides a redundancy to the representation 1’

of w', wherein E’ is a one-to-one cryptographic mapping from W X £ to a predetermined set;

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
10

and wherein, if the condition holds according to the input, w' = f(w), and if the condition
does not hold according to the input, ¢’ = f (h(w, o)), wherein h is a mapping from W x X
toW.

Such a system can be used to convert plain (non-hidden) operations into
hidden code. For example, the system can be implemented as part of a compiler that
generates hidden code. For example, the generated computer code can comprise machine
code, pseudo code, or virtual machine code.

According to another aspect, a method of creating machine code to perform an
operation conditionally is provided, the method comprising

identifying a condition and a conditional operation fthat is to be performed on
a variable w so that, if the condition holds, a variable w' is computed such that w' = f(w),
wherein w' is an element of the set ¥, and wherein f is a mapping defined on 17,

generating first computer code, wherein the first computer code is configured
to, when executed, represent the variable w, wherein w is an element of a set /7, by means of
a representation r, wherein r = E(w, o) and r is an element of a set of representations
Q(w) = {E(w, s)|s € Z}, wherein o is a state variable that is an element of a set £ and that
provides a redundancy to the representation » of w, and E is a one-to-one cryptographic
mapping from W X X to a predetermined set; and

generating second computer code, wherein the second computer code is
configured to, when executed, determine a representation 1’ of the value w' based on an input
regarding the condition, wherein 7’ is an element of a set of representations Q'(w') =
{E'(W',s)|s € £}, wherein ' = E'(w’,0"), wherein ¢’ is a state variable that is an element of
the set 2 and that provides a redundancy to the representation r’ of w', wherein E' is a one-to-
one cryptographic mapping from W X X to a predetermined set; and wherein, if the condition
holds according to the input, w' = f(w), and if the condition does not hold according to the
input, ¢’ = f(h(w,0)), wherein h is a mapping from W X X to W.

According to another aspect, a computer program product comprising
instructions for causing a processor to perform one or more of the methods set forth above is
provided.

It will be appreciated by those skilled in the art that two or more of the above-
mentioned embodiments, implementations, and/or aspects of the invention may be combined

in any way deemed useful.

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
11

Modifications and variations of the methods and/or the computer program
product, which correspond to the described modifications and variations of the systems, can

be carried out by a person skilled in the art on the basis of the present description.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects of the invention are apparent from and will be
elucidated with reference to the embodiments described hereinafter.

Fig. 1 is a block diagram of a system for performing a transformation
depending on a condition.

Fig. 2 is a block diagram of a system for hiding a conditional operation.

Fig. 3 is a block diagram of a deriving unit for hiding a conditional operation.

Fig. 4 is a flowchart of a method of hiding a conditional operation.

Fig. 5 is a block diagram of a system for creating machine code to perform an
operation conditionally.

Fig. 6 is a block diagram of another system for creating machine code to
perform an operation conditionally.

Fig. 7 is a flowchart of a method of converting a nested conditional operation.

Fig. 8 is a flowchart of a method of creating machine code to perform a hidden
operation conditionally.

Fig. 9 is a block diagram of a system for hiding a change to a set of variables.

Fig. 10 is a flowchart of a method of hiding a change to a set of variables.

DETAILED DESCRIPTION OF EMBODIMENTS

In the following, a description is given in how to improve encryption of data
values and hiding the inner working of a program. Such techniques could be applied to create
a secure virtual machine, for example. Also other kinds of systems can be protected against
information leakage using the techniques disclosed herein. Throughout this document, the
word hiding is used to indicate that a functionality of a program is difficult to find out, for
example by reverse engineering. Obfuscating is another term used to indicate that it is
difficult to find out what functional operations are performed in a program code.

Fig. 1 illustrates a system comprising a transformation unit 101 configured to
perform a conditional operation. That is, the transformation unit 101 receives a value w and a
condition b, and outputs w' depending on b. In case the condition b is true, the transformation

unit outputs w' = f(w). In case condition b is false, the transformation unit 101 outputs
P p

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
12

w' = g(w). Herein, f'and g are different functions. In an alternative arrangement, the
transformation unit 101 is configured to receive some variables (not shown) instead of the
condition itself, and the transformation unit 101 first evaluates an expression to determine
whether the condition b is true based on these variables. After that the transformation unit

101 outputs w' = f(w) (if the condition is true) or w' = g(w) (if the condition is false). In
the following, embodiments will be disclosed in which the values of w and w’, and possibly b,
are encrypted.

Fig. 2 illustrates a system for performing a conditional transformation in a
hidden way. The system comprises a representing unit 102 for identifying a cryptographic
representation of a value w. For example, the value of w is provided at an input 105 of the
representing unit 102, and the representing unit 102 is configured to encrypt the value of w to
generate the encrypted representation » of w. Alternatively, the representing unit 102 can be
configured to receive the representation r as an input value 101, and forward the
representation to the deriving unit 103. In either case, an example relationship between the
value w and its cryptographic representation r can be explained as follows.

Let W denote a set of operands (input values of an operation) that should be
encoded. Define a finite set X of states and a finite set V with cardinality equal to the product
of the cardinalities of W and X. The elements of W X X are mapped in a one-to-one manner
to V by a secret encoding function E. The encoded representatives of the element w € W are
the members of the set

Qw)={ E(w,0) | 0 €Z }.

The number of representatives of each element w € W thus equals the cardinality of £. As a
result, data paths carrying symbols from V are equal (cardinality of £ = 1) or wider
(cardinality of £ > 1) than data paths for carrying symbols from W. In other words, when the
cardinality of X is greater than one, there are more values that can represent any particular
value of w, because the representation E(w, o) depends not only on w, but also on a state
variable o which does not necessarily have any meaning but can be chosen randomly. This
state variable o is merely introduced to encrypt the value of w and hide any operations
performed on w. Preferably, W = X, or at least the cardinality of W equals the cardinality of
2. However, this is not a limitation.

Consider the function f: W — W to be encoded (or hidden). Construct a
function F: V — V such that Vw € W and o € X we have F(E(w,0)) € Q(f(w)). So F maps

a representative of w to a representative of f(w). A general definition could be:

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
13

F(E(w,0)) = E(f(w),g(w,0)). (Equation 1)

In this example, the representative]E(fw), glw, 0)) of f(w) is in part determined by a
function g(w, o). That is, the state value associated with the representative of f(w) can
depend on both the value w and the state o associated with the representative of w, using a
relation g: W X ¥ — X. In a particular example, g only depends on o, so that g: £ — X.
However, the following is not limited to this particular example.

The value representation E(w, o) and the encoding of an operation f(w) as
defined in Equation 1 is thus further hidden using some mapping g. This mapping g can be
different for each and every operation that occurs in a program. Accordingly, a plurality of
instructions with respective operations f; introduce a corresponding plurality of instructions
with, respectively, relations g;. The execution order of the instructions with operations f;
may induce an order of execution on the instructions with the relations g;. In fact, apart from
the calculation constituted by the operations f;, a new calculation comes into existence to
compute g;. This latter calculation is referred to hereinafter as the o calculation or the o
trajectory. Similarly, the encryption function E can be different for each and every operation
in the program by introducing a sequence of respective encryption functions E; (w, 0), so that
the representation of any value w can be different after every operation. In such a case,

Equation 1 generalizes to Equation 1a:

Fi(E;(w,0)) = Ej41(i(w), g:(w, 0)). (Equation la)

For the description of an instruction a symmetrical generalization of Equation
1 can be employed. Consider a function go: W X £ - W, arelation g,: W X £ — X. Equation

1 can be generalized to:
F(E(w,0)) = E(qo(w,0),q.(W,0)) (Equation 2)

In such a case, possibly partial information of f (w) in Equation 1 can be passed as part of g,
or q,. Two observations can be made. The first observation is that in a particular example, g,

as well as g, could be encryptions and that E "only" combines the values. The second

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
14

observation is that the role of w as value and o as state could be seen as diminishing. It
suffices to be able to determine f(w) or w, g(o) or o.

To obscure program flow, jump operations may be eliminated and replaced
with alternative operations on the above-described representations. However, unlike in the
case of if-conversion features of modern processor architectures, this if-conversion is not
done to prevent a costly pipeline disruption, but to remove any observable change in the
control flow. This way, an analysis of the control flow does not reveal any selections made in
the program. Further, when encoding a conditional program such as “if Boolean b is true,
then operation F else operation G, it can be ensured by means of the techniques disclosed
herein that both branches (“operation 7’ and “operation G”’) contribute to E(w, o), regardless
of the outcome of the condition (“if Boolean b is true”). By doing so a statistical spread of the
condition over the total program can be achieved. For example,

+ the development of w is determined by the branch that corresponds to the outcome of
the condition,

» the development of o is determined by the branch that does not correspond to the
outcome of the condition.

Both w and o can be computed at the same time and/or can be inseparably
connected to each other by means of E. By analysis of the resulting data, neither the branch
taken, nor the value of the condition can be determined. The jump operation that would be
implemented in prior art based on the outcome of the conditional may be eliminated, thus
making it difficult to extract information from control flow of the program. The value
E(w, o) can be made to depend on both branches of an if-then-else construction. In terms of
information theory, the entropy of w and o is spread very well.

For example, a program representation of the transformation performed by the
transformation unit 101 of Fig. 1 may be as follows:

if b then w' == flw) else w':= g(w).

In the example embodiment shown in Fig. 2, the deriving unit 103 receives an
encrypted representation of a value w, as explained above, and input information regarding
a condition b 104. This input information could be a Boolean or an encrypted Boolean
variable. Alternatively, the input information could comprise one or more variables that can
be combined, by e.g. the transformation unit 101, in a predicate that defines the condition.

The above conditional program of Fig. 1 can be re-programmed, by
introducing redundancy using the state variable as described above, with r = E;(w, o) is the

representation of the operand w, and r’ is the representation of the outcome w’, so that
1Y P 1Y

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
15

r' =E;;, (W, 0"), for some values of o and ¢’. The output of the deriving unit 103 can be
summarized as follows:

if b

then r":= E;11 (f (W), g (0));

clse r':= Ej11 (W), f (0)).

The operations E; ., (f(w),g(0)) and E;,(g(w), f (0)) can each be implemented in form of
a look-up table. However, to avoid execution of the if statement and corresponding
conditional jump operation inside the deriving unit 103, it is possible to implement the
deriving unit 103 by means of a look-up table that maps combinations of » and representation
r directly to corresponding values of r’. Herein, b may be an encrypted Boolean variable.
Moreover, b may be replaced with one or more input variables, wherein the condition b is a
function of those variables. In such a case, combinations of these variables and representation
r can be mapped by a look-up table to corresponding values of . In such a case, the function
defining the condition » may be encoded together with f and g in the look-up table. Instead of
a look-up table, a network of look-up tables may be used. Ways to implement a function as a
network of look-up tables are known in the art by itself.

As can be seen from the above, both operations f'and g have an influence on
the representation r’ regardless of the outcome of the conditional (“if 5”’). Therefore, both f°
and g contribute to the “entropy” of r’, making it difficult to extract information from these
conditional operations.

Fig. 3 illustrates an example implementation of the deriving unit 103. In this
particular implementation, the if statement (or conditional jump operation) is replaced by two
swap operations 305 and 306. Such a swap operation can be implemented, for example, in
form of a look-up table. The operations described in each respective line of the following

three lines may be implemented, for example, by a respective look-up table.

Input: b and r, wherein r = E;(w, 0).

line 1:if b then r":= E; 1 (w, 0) else r':= E;, (o, w) fi
line 2: 7"":= Ey42 (fi (p), 9: (D).

line 3:if b then r'"" = E;;3(u,v) else r'"'=E; 3 (v, u) fi

Output: "', wherein 7" = Ey,3(f;(w), g:(9)) or """ = E3(fi(0), g:(w))

Line 1 of the above code fragment explains the functionality of swap operation

305, which conditionally swaps the value (w) and state (o) parts of the representation r =

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
16

E;(w, o), based on the condition » (numeral 104). Line 2 of the above code fragment
explains how the functions f'and g are applied to the representation r’ in block 307. Line 3
explains the functionality of swap operation 306, which again conditionally swaps the value
(w) and state (o) parts of the representation r = E;(w, o), based on the condition » (numeral
104).

Note that after line 1, r’ can be either E; ., (w, o) or E;,; (o, w), depending on
b. In line 2, the symbols p and q are defined such that ' = E;,,(p,q). In line 2, the function /'
is effectively applied to w in case b is true. However, if b is not true, the function g is
effectively applied to w, but due to the preceding swap operation of line 1, w has become is
part of the ‘state’ or ‘o’ portion of the representation r’. Therefore, an additional swap
operation is provided in line 3 to exchange the ‘w” and the ‘o’ portions of ', In line 3, the
symbols u and v are defined such that r'' = E;,,(u,v). Thatis, u = f;(p) and v = g;(q). In
line 3, in case b is not true, the desired value, which was captured in the ‘state’ or ‘o’ portion
of the representation r”', is moved to the ‘w’ portion of the representation "',

Lines 1 and 3 each denote a swap function. Such a swap function may be
implemented as a look-up table, wherein the correct value is looked up based on the value of
b and the representation 7 (or r'’, respectively). It is possible to use the same look-up table for
both line 1 and 3, by selecting E;, E; 4, E;4», and E;, 5 such that E; = E;,, and E;;; = E; 3.
It is also possible to encode the outcome of lines 1 to 3 in a single look-up table that directly
maps the values of 7 and b to corresponding values of r'"'.

Referring to Fig. 2, The deriving unit 103 that performs a hidden computation
corresponding to this code fragment may also be configured to determine the output as

follows:

Input: condition b and representation r, wherein r = E;(w, o).
if b
then r':= E;q (f (W), g (h(w, 0)));
else r':= E;j1 (g(w), f (h(w, 0))).

Herein, h is a mapping from W X X to W. No swap operation is used in this case. Also, this
implementation is suitable for cases where W # X, or when the cardinality of W differs from
the cardinality of X. It is possible to implement both branches of the if clause in form of a

look-up table, and apply one of the look-up tables in dependence on the condition . The

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
17

functions f'and g will influence the outcome 1’ regardless of the condition b. Alternatively,
one look-up table may be implemented that maps tuples of b (or variables which determine b)
and r onto corresponding representations 1.

A special case is that where there is no else branch in the non-hidden version

of the program, i.c. consider a program

if b then w' == f{lw) end.

In that case the function g(w) of the previous examples is equal to the identity. That is, the
determining unit 103 is configured to determine the representation E'(w’, ¢”) such that based
on the condition either:

!

w' = f(w) and o’ = o (when the condition is true), or

w' =w and ¢’ = f(h(w, 0)) (when the condition is false).
This does not pose a security risk per se as there is always some development and the
entropic spread is maintained by applying the function f either to w or to the state o of the
encrypted domain. However, this situation can be further improved by balancing both
branches by inserting dummy operations for the variables that are not affected. Consider an
operation “Balance”, whose purpose is to further hide the program by balancing any if-
statement, where different variables may be affected in dependence on a condition.

Balance(if b then Assgn, else Assgn, fi;) =
if bthen Balance(Assgn,,Assgn,) else Balance(Assgn,, Assgn,) fi;

wherein, for instance, Balance(x: = x + 1,y:= f(5)) means x: = x + 1; Dummy(y).

Herein, Dummy(y) can represent any operation on a variable, which does not change that

variable. For example, Dummy(y) can mean anyone of: y:=y* 1L, y:=y +0,y: = ;*TJ;

Other dummy operations will be apparent to the person skilled in the art in view of the
present disclosure.

In other words, a conditional code segment comprising a plurality of branches,
wherein each branch is conditionally executed in dependence on a condition, can be
‘balanced’ by:

» determining a variable that is changed in at least one branch of the conditional
branches, but not in at least one other branch of the conditional branches;

» creating a dummy operation for that determined variable;

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
18

* including the dummy operation into the at least one other branch of the conditional
branches.
The above three steps may be repeated for each variable involved in the conditional branches.

Fig. 4 illustrates a method of performing an operation conditionally. In step
401, a value w, wherein w is an element of a set W, is represented by means of a
representation », wherein ¥ = E(w, 0), and r is an element of a set of representations
Q(w) = {E(w, s)|s € Z}, wherein o is a state variable that is an element of a set £ and that
provides a redundancy to the representation » of w, and E is a cryptographic mapping from
W X X to a predetermined set. This representation » could be received, for example.
Alternatively, the representation can be generated from an input value w by determining a
state variable o as a random number and computing, or looking up, E(w, o).

In step 402, a representation 1’ of a value w' is determined, wherein w' is an
element of the set /7, wherein r’ is an element of a set of representations Q'(w') =
{E'(W',s)|s € £}, wherein ' = E'(w’,0"), wherein ¢’ is a state variable that is an element of
the set 2 and that provides a redundancy to the representation r’ of w', wherein E’ is a one-to-
one cryptographic mapping from W X I to a predetermined set. For example, the value of 1’
is looked up in a look-up table based on one or more input variables that determine the
condition b and the representation r. Optionally, a sequence of table lookups are performed,
as described hereinabove, involving a swap operation, a function operation, and another swap
operation. The tables are designed in such a way that in dependence on the condition b, either
w' is associated with f(w) or ¢’ is associated with f(h(w, 0)). Herein, f is a mapping
defined on W7, and h is a mapping from W X Z to W.

In a particular example, the above method applies f'to the ‘w’ portion of the
encrypted representation r = E(w, 0), so that r' = E'(f (w), o) based on the condition, for
example if the condition is true. Otherwise, f'is applied to the ‘o’ portion of r = E(w, 0), so
that ' = E'(w, f(h(w, 0))), for example if the condition is false. Further variants of the
method may be provided, as explained above with reference to Fig. 1 to 3. For example,
variants with an ‘clse” branch may be made such that based on the condition, either r’ =
E'(f(w),g(0)) orr’ = E'(g(w), f(0)).

Fig. 5 illustrates a system for creating machine code to perform an operation
conditionally. The system comprises an identifying unit 501 for identifying a condition and a
conditional operation f'that is to be performed on a variable w so that, if the condition holds, a
variable w' is to be computed such that w' = f(w), wherein w' is an element of the set 17,

and wherein f is a mapping defined on . For example, the identifying unit 501 may be

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
19

connected to a parser module of a compiler (not shown), that extracts expressions of a
computer program in order to identify the condition and the conditional operation.

The identifying unit 501 may provide the information regarding the identified
condition and the conditional operation to a first generating unit 502 which generates
machine code. The generated machine code, when executed, represents the variable w,
wherein w is an element of a set 7, by means of a representation r, wherein r = E(w, 0) and
7 is an element of a set of representations Q(w) = {E(w, s)|s € X}, wherein o is a state
variable that is an element of a set X and that provides a redundancy to the representation » of
w, and E is a one-to-one cryptographic mapping from W X X to a predetermined set. For
example, the machine code may generate the representation » from the actual input value w
and a random number o. Alternatively, the machine code generated by the first generating
unit 502 may, when executed, reference a memory location in which the representation is
stored or receive the representation » from another software component or input device.

The system further comprises a second generating unit 503. The second
generating unit 503 generates machine code for determining a representation r’ of the value
w', based on the representation r and an input regarding a condition, wherein 1’ is an element
of a set of representations Q'(w') = {E'(w', s)|s € £}, wherein ' = E'(w’, ¢"), wherein o’ is
a state variable that is an element of the set X and that provides a redundancy to the
representation 1’ of w’, wherein E' is a one-to-one cryptographic mapping from W X Z to a
predetermined set. If the condition holds, w’ = f(w), and if the condition does not hold,

o' = f(h(w, o)), wherein h is a mapping from W X X to W. The generating unit 503 may
comprise a table generator (not shown) which generates one or more of the look-up tables, as
described above, which may be used to implement the function. The system may be extended
to generate the machine code necessary to perform the calculations or table look-ups as
described above.

Fig. 6 illustrates a further embodiment of the system for generating machine
code to perform an operation conditionally. Items that are similar as in Fig. 5 have been given
the same reference numerals and do not need to be discussed again in detail. The system
comprises a converting unit 601 for converting a nested conditional operation involving a
plurality of conditions into a sequence of non-nested conditional operations. Specifically, the
sequence of non-nested conditional operations with corresponding conditions is equivalent to
the nested conditional operations, in the sense that the output value is the same. Further, the
non-nested conditional operations with corresponding conditions may be processed by the

identifying unit 501, and the code generating units 502 and 503.

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
20

Fig. 7 illustrates an example method of converting a nested conditional
operation involving a plurality of conditions into a sequence of non-nested conditional
operations. The converting unit 601 of Fig. 6 may be configured to perform the method
illustrated in Fig. 7.

In step 701, respective expressions of respective conditional branches of the
nested conditional operation are converted into terms of an auxiliary expression. These
respective expressions are associated with alternative values to be assigned to a particular
variable, in dependence on the condition. That is, the expressions are destined to be assigned
to the same variable of the generated code, but the conditions determine which expression
will finally be assigned to the variable. In step 702, if it is determined that the step 701 should
be repeated, the flow returns to step 701, such that a plurality of auxiliary expressions is
generated in which the terms are combined in different ways. If in step 702 it is determined
that enough auxiliary expressions have been generated, such that each conditional operation
is equivalent to a particular combination of the auxiliary terms, the method proceeds from
step 703. In step 703, code is generated to evaluate the auxiliary expressions and storing their
results. This step may involve generating code for evaluating a combination of at least one of
the plurality of conditions. Next, in step 704, code is generated to combine the results of the
auxiliary expressions in dependence on a combined condition, wherein the combined
condition is a combination of the plurality of conditions, such that the terms corresponding to
branches that are not relevant in view of the condition cancel out.

Consider again the conditional code segment “if 5> then F else G fi”. The
conditional branches F and G of such a statement may comprise multiple expressions, for
example a sequence of operations, denoted for example as “F 4 ; F ,”, contain loops,
recursion, or an additional conditional code segment, such as an additional if-statement. The
latter situation presents a nested Boolean guarded selection.

Define the program P as:

if by then{ if b, then F else G fi;} else{ if by then H else] fi;} fi;

Py P

Now, there are four alternatives (F, G, H, and J), of which only one should be
executed. When the above described techniques are applied to P; and P,, the main branch
which depends on b is still not necessarily fully covered by the hidion technique.

One way to address this is to replace nested if statements by a sequence of

non-nested if statements, and doing that in such a way that the expressions of each branch (F,

10

15

20

WO 2016/102180 PCT/EP2015/078894
21

G, H,J) are all evaluated in the process of executing this sequence of non-nested if
statements.

To transform a program in this way, expressions may first be balanced by
inserting dummy operations.

A systematic method may be applied to flatten the program so that it no longer
contains nested if-clauses.

As we have seen before, our method works cryptographically best if the
program is entropically fully balanced, especially the pair of branches of an if-clause.
In case a branch contains both (unconditional) assignments and one or more nested if-clauses
we can "flatten" those by distributing a copy of such assignments in each branch of the if-

clause as follows:

* Flatten(if bthenFelse G fi;x:=x+ 1) =
if bthenF; x:=x+1lelse G; x:=x + 1 fi;

* Flatten(x:=x + 1; if bthen F else G fi) =
if bthenx:=x+1; Felsex:=x+1; G fi;

Consider the following nested if-clause which is preferably balanced with respect to the

variable x:

if bo

then if by
then x = expo;
else X = expi;
fi,

else if by
then x :=expy;
else X = exps;

fi; fi;

Herein, expo, expi1, expa, and exps are expressions that depend on x.
Introducing p := expi+expir1and q := expi—expi+1 as auxiliary variables this
program can be transformed into:

if bo

10

15

WO 2016/102180 PCT/EP2015/078894

22
then p:=expo+ exp1; q:=expo— exp1;
if by
then x:= %;
else x:= M;
2
fi;

else p:=exp2+exps; q:=exp2— exps;

if b
then x:= %;
else x:= ?;
fi;

fi;

Since the continuations after the two second level if-clauses have now become identical, the

program can be ‘flattened’ into:

Program 1:
if bo
then p =expot expi; q == expo— exp1;

else p =exprt exps; q = expr— exps;
fi,

if (bo A b]) \ (bo A bz)

+
then x:=21 q;

2
else x: =24

2
fi

or, using a multiplicative variant:

if bo

then p:=expy * expy; q: = expy/exp:;

else p:=exp, x exps; q: = exp,/exp;

fi,

if (bo A b]) \ (bo bz)

then X:=.,pP*q;

10

15

20

25

30

35

40

45

WO 2016/102180 PCT/EP2015/078894
23

else xX:i= \/m I
fi
The resulting two if-statements, may be implemented using the

techniques in respect of encrypted representations r = E(w, 0)) above. For example, for the
first if-statement of Program 1 above, a representation » may be used to represent input
variable x, and representations r; and r, may be used to represent p and q. A further
representation may be used to represent the output x of the second if-statement of Program 1.

When if-statements are nested to a deeper level, then similar techniques may
be applied to convert them to a series of sequential if-statements. For example, consider the

following example program in which if statements are double nested:

if bo
then if b1
then if b2
then x := expo;
else X = exp1;
fi;
else if b3
then x := expz;
else X = exps;
fi;
fi;
else if b4
then if bs
then X := exps4;
else X = exps;
fi;
else if bs
then x := exps;
else X = expr;
fi;
fi;
fi;

This example program may be converted into a series of non-nested if-statements. To do that,
a two step approach may be adopted. First, similar to the case of single-nested if statements,
the continuations from the third level if-clauses may be unified by introducing auxiliary
variables p and q as follows: p = exp; + expi+1, and q = exp; - expi+1. This is illustrated in

more detail in the following code:

if bo
then if b1
then p :=expo+ exp1;
g = expo— exp1;
if b2
then x:=(p+q)2;
else x:=(p-q)2

10

15

20

25

30

35

40

45

50

WO 2016/102180

24

fi;
else p = exp2 + exps;
q = exp2— exps;
if b3
then x:=(p+q)2;
else x:=(p-q)2

fi;
fi;
else if b4
then p :=exps+ exps;
g = exp4 — exps;
if bs
then x:=(p+q)2;
else x:=(p-q)2
fi;
else p = exps + exp7,
g = expe — exp7;
if bs
then x:=(p+q)2;
else x:=(p-q)2
fi;
fi;
fi;

PCT/EP2015/078894

This program can be flattened to obtain the following code without any nested if-clauses:

if bo

then r:= expo+ exp1+ exp2+ exps;
S 1= expo+ exp1— exp2+ exps;

else r:=exps+ exps+ exps+ expr;
S 1= exp4 + exps— exps + expz;

fi;

if (bo” b1) v (mbo” ba)

then p:=(r+s)2;

else p:=(r—s)z;

fi;

if bo

then v := expo— exp1+ exp2— exps;
W 1= eXpo— exp1— exp2— exps;

else v :=exps— exps+ exps— expr;
W 1= eXp4— eXp5— EXPs — eXpP7;

fi;

if (bo” b1) v (mbo” ba)

then q:=(v+w)2

else q:=(v-w)2;

fi;

if (bo™ ((b1” b2) v (mb1 2 bs))) v (Tbo” ((ba* bs) v (b4 ” bs))))

then x:=(p+q)z;

else x:=(p—-q)2;

fi;

The above conversion procedure to convert a program with double nested if
clauses into a program with sequential, non-nested if clauses can be applied to any program

that has the above format, for any expressions expo to exps.

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
25

Fig. 8 illustrates a method of creating computer code to perform an operation
conditionally. Step 801 involves identifying a condition and a conditional operation f that is
to be performed on a variable w so that, if the condition holds, a variable w’ is computed such
that w' = f(w), wherein w’ is an element of the set W, and wherein f is a mapping defined
on W. Step 802 involves generating first computer code, wherein the first computer code is
configured to, when executed, represent the variable w, wherein w is an element of a set /7,
by means of a representation r, wherein r = E(w, o) and r is an element of a set of
representations Q(w) = {E(w, s)|s € I}, wherein o is a state variable that is an element of a
set X and that provides a redundancy to the representation » of w, and E is a one-to-one
cryptographic mapping from W X X to a predetermined set. Step 803 involves generating
second computer code, wherein the second computer code is configured to, when executed,
determine a representation r’ of the value w'’ based on an input regarding the condition,
wherein 1’ is an element of a set of representations Q' (w') = {E'(w’, s)|s € £}, wherein
r' = E'(W,0"), wherein ¢’ is a state variable that is an element of the set ¥ and that provides
a redundancy to the representation " of w', wherein E' is a one-to-one cryptographic
mapping from W X X to a predetermined set; and wherein, if the condition holds according to
the input, w' = f(w), and if the condition does not hold according to the input, o’ =
f(h(w,)), wherein h is a mapping from W X Zto W.

The removal of jumps in a program may be used to prohibit analysis of the
control flow or the values involved. Computing the computations made in all branches of an
if-statement, even the branches that are not relevant in view of the condition, and combining
the results of those computations in one data element, can help to reach this goal.

A system of table-driven machines in which jumping is suppressed may be
created to remove changes in the control flow of a program, wherein the encoding in the form
of E(w, 0) in the case of a Boolean guarded selection develops along the non-taken branch
by at most o and along the taken branch by at least w.

Fig. 9 illustrates a system for hiding a change to a set of variables V =
{v1,v,, ..., v} of a program. The system comprises a value representing means 902 for
representing a value w; of a variable v; of the variables vy, v,, ..., v, wherein w is an element
of a set W, by means of a representation r;, wherein r; = E(w;, g;), and r; is an element of a
set of representations Q(w;) = {E(w;,s)|s € £}, wherein o; is a state variable that is an
clement of a set £ and that provides a redundancy to the representation r; of w;, and E is a

one-to-one cryptographic mapping from W X X to a predetermined set. This value

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
26

representing means 902 may be implemented using techniques disclosed hereinabove. The
value representing means 902 may be configured to represent all of the variables vq, v,, ..., v,
by respective representations wy, w,, ..., W, in the specified way. The values of o4, 0, ..., 0y,
may be selected randomly, for example. The value representing means 902 may be
configured to compute the representations r; based on the underlying values w;. The value
representing means 902 may also be configured to receive the representations r; from another
device or from another component of the system. # is a positive integer. That is, in general
the set of variables /" contains at least one variable.

The system may further comprise an action representing means 903 for
representing an action on values of variables in a subset V' of 7 by means of an action on V'
and an action on V\V’, to obtain updated representations r’; = E'(w';,0';), fori = 1,2, ..., n,
wherein E' is a one-to-one cryptographic mapping from W X Z to a predetermined set. E’
may be equal to E. Alternatively, E’ may be a cryptographic mapping that is different from E.
Thus, it 18 possible to change the cryptographic mapping when changing the representation.

Further, the action representing means may be configured to perform the
action on V' and the action on V\V'. Alternatively, the action representing means may be
configured to merely represent these actions by generating program code that, when executed,
performs the actions. In the latter case, the action representing means 903 may be configured
to identify (e.g. by means of a parser) program code defining the action on the values of the
variables in the subset V', and transform that program code into program code that defines the
action on V' and the action on V\V".

The action on V' is configured to change the representation 7; of each variable
v; in the set of variables V' according to a changed value w'; of variable v;, and the action on
V\V' is configured to change the representation 7y, of cach variable vy, in V\V' according to a
changed value o'), of state variable g;. In particular, the representation 7y, of each variable vy,
in V\V' is changed to a representation that represents the same value of wy,. The
representation r; of each variable v; in the set of variables V' may be changed according to a
changed value w'; of variable v}, keeping the same value of o; (or optionally a different value
of).

The action can comprise an if-statement, that defines an action on a set of
variables V; if a condition holds, and an action on a set of variables V, if the condition does
not hold, wherein both V; and V, are subsets of V. In other words, the set of variables V'

comprises the union of V; and V,, so that V; UV, c V. The action representing means 903

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
27

may be configured to use the set of variables V; as the set of variables V' if the condition
holds. This means that the action representing means 903 performs the action on V; by
changing the representation 7; of each variable v; in the set of variables V; according to a
changed value w'; of variable v}, and performs the action on V\V; by changing the
representation 1, of each variable vy, in V\V; according to a changed value o'j, of state
variable oy,.

Further, the action representing means 903 may be configured to use the set of
variables V, as the set of variables V' if the condition does not hold. This means that the
action representing means 903 performs the action on V, by changing the representation 7; of
each variable v; in the set of variables V, according to a changed value w'; of variable v;, and
performs the action on V\V, by changing the representation r;, of each variable v, in V\V,
according to a changed value ¢'j, of state variable oy,.

Some of the variables may be changed by a conditional code segment, whether
the condition holds or not. In such a case, the set of variables V; and the set of variables V,
have an intersection V3, wherein V; = V; N V,. The action changes the value of each variable
v, of the set V; according to a function f,,, if the condition holds and according to a function
Im if the condition does not hold. The action representing means is configured to represent
these actions by an action that determines the representation r',,, = E'(w',,,0',,) of each
changed variable v, of the set V5 such that if the condition holds, w',,, = f,(w,,) and
o' = Gm (M (Wi, 0,2)), but if the condition does not hold, w',,, = ¢,,(W,,,) and o'}, =
fin (R (W, 0,)). Herein, h,, is a mapping from W X £ to W.

The action representing means 903 can be implemented by means of look-up
operations. To that end, one or more look-up tables may be prepared and stored in a memory
of the system. Whether the condition holds does not need to be determined explicitly by the
system. Rather, an input may be received of values that determine the condition. The one or
more look-up table may map these input values, together with the representations, to the
corresponding changed representations. The action representing means 903 may thus be
configured to cause a look-up of the representations r'; corresponding to an input regarding
the condition and the representations r; using at least one look-up table that maps a tuple of
the input regarding the condition and the representations 7; to the corresponding
representations ;.

The action representing means 903 may also be implemented by means of one

or more swap operations that have been described above with reference to Fig. 3. The action

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
28

representing means 903 may be configured to identify one or more input variables which
determine the condition b, and may contain a first swap unit 305, a function evaluation unit
307, and/or a second swap unit 306, as described above, for each of the variables in the set of
variables V = {v,,v,, ..., v, }.

The value representing means 902 and the action representing means 903,
described above, may be operatively coupled to the converting unit 601, described above.
The converting unit 601 represents a nested conditional operation involving a first plurality
of nested conditions by a functionally equivalent sequence of non-nested conditional
operations involving a second plurality of conditions. For example, the sequence of non-
nested conditional operations can be generated by the converting unit 601 by processing the
nested conditional operation. Each of the resulting non-nested conditional operations can be
individually represented by the action representing means 903 in the way set forth.

Fig. 10 illustrates a method of hiding a change to a set of variables V =
{v1,v,, ..., v} of a program. In step 1001, a value w; of a variable v; of the variables
Vq,V,, ..., Uy, Wherein w is an element of a set 17, is represented by a representation 17,
wherein r; = E(w;, 0;), and r; is an element of a set of representations Q(w;) =
{E(w;, s)|s € L}, wherein o; is a state variable that is an element of a set T and that provides
a redundancy to the representation 1; of w;, and E is a one-to-one cryptographic mapping
from W X X to a predetermined set. In step 1002, an action on values of a subset V' of V' is
represented by an action on V' and an action on V\V’, to obtain updated representations
r'y=EW'",d}), fori =12,..,n, wherein E’ is a one-to-one cryptographic mapping from
W X I to a predetermined set, and wherein the action on V' is configured to change the
representation r; of each variable v; in the set of variables V' according to a changed value

w'; of variable v}, and the action on V\V’ is configured to change the representation 7, of

cach variable v;, in V\V’ according to a changed value o'y, of .

It will be appreciated that the invention also applies to computer programs,
particularly computer programs on or in a carrier, adapted to put the invention into practice.
An embodiment relating to a computer program product comprises computer-executable
instructions corresponding to cach processing step of at least one of the methods set forth
herein. These instructions may be sub-divided into sub-routines and/or stored in one or more
files that may be linked statically or dynamically. Another embodiment relating to a
computer program product comprises computer-executable instructions corresponding to

cach unit of at least one of the systems and/or products set forth herein. These instructions

10

15

20

WO 2016/102180 PCT/EP2015/078894
29

may be sub-divided into sub-routines and/or stored in one or more files that may be linked
statically or dynamically.

The carrier of a computer program may be any entity or device capable of
carrying the program. For example, the carrier may include a storage medium, such as a
ROM, for example, a CD ROM or a semiconductor ROM, or a magnetic recording medium.
Furthermore, the carrier may be a transmissible carrier such as an electric or optical signal,
which may be conveyed via electric or optical cable or by radio or other means. When the
program is embodied in such a signal, the carrier may be constituted by such a cable or other
device or means. Alternatively, the carrier may be an integrated circuit in which the program
is embedded, the integrated circuit being adapted to perform, or to be used in the
performance of, the relevant method.

It should be noted that the above-mentioned embodiments illustrate rather than
limit the invention, and that those skilled in the art will be able to design many alternative
embodiments without departing from the scope of the appended claims. In the claims, any
reference signs placed between parentheses shall not be construed as limiting the claim. Use
of the verb "comprise" and its conjugations does not exclude the presence of elements or
steps other than those stated in a claim. The article "a" or "an" preceding an element does not
exclude the presence of a plurality of such elements. The invention may be implemented by
means of hardware comprising several distinct elements, and by means of a suitably
programmed computer. In the device claim enumerating several means, several of these
means may be embodied by one and the same item of hardware. The mere fact that certain
measures are recited in mutually different dependent claims does not indicate that a

combination of these measures cannot be used to advantage.

10

15

20

25

WO 2016/102180 PCT/EP2015/078894
30

CLAIMS:

1. A system for hiding a change to a set of variables V = {v;,v,, ...,v,} of a
program, the system comprising

a value representing means (902) for representing a value w; of a variable v;
of the variables v, v,, ..., 1, wherein w is an element of a set W, by means of a
representation r;, wherein r; = E(w;, 0;), and 1; is an element of a set of representations
Q(w;) = {E(w;,s)|s € I}, wherein o; is a state variable that is an element of a set £ and that
provides a redundancy to the representation r; of w;, and E is a one-to-one cryptographic
mapping from W X X to a predetermined set; and

an action representing means (903) for representing an action on values of
variables in a subset V' of 7 by means of an action on V' and an action on V\V’, to obtain
updated representations r'; = E'(w';, 0';), fori = 1,2, ..., n, wherein E' is a one-to-one
cryptographic mapping from W X X to a predetermined set, and wherein

the action on V' is configured to change the representation 7; of each variable
v; in the set of variables V' according to a changed value w'; of variable v;, and

the action on V\V' is configured to change the representation ry, of each

variable vy, in V\V' according to a changed value o'} of state variable oy.

2. The system of claim 1, wherein the action on the values of the variables in the
subset V' comprises an if-statement, that defines an action on a set of variables V; if a
condition holds, and an action on a set of variables V, if the condition does not hold, wherein
the set of variables V] is a subset of the set of variables J and the set of variables V,, is also a
subset of the set of variables V, and the action representing means (903) is configured to use
the set of variables V; as the set of variables V' if the condition holds, and to use the set of

variables V, as the set of variables V' if the condition does not hold.

3. The system of claim 2, wherein the set of variables V; and the set of variables
V, have an intersection V; of variables that are affected by both the action on the set of
variables V; and the action on the set of variables V,, so that V; = V; N V,, wherein the action

changes each variable v, of the set V5 according to a function f,,, if the condition holds and

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
31

according to a function g, if the condition does not hold, wherein the action representing
means is configured to determine the representation r',,, = E'(W',,,,0',,) of each variable v,
of the set V5 such that based on whether the condition holds, either:

W = fmnWy) and ', = g (M, (Wi, 072)), OF

W = gm(Wy) and o', = fr, (W, (Wi, 0)),

wherein h,, is a mapping from W X Zto W.

4. The system of claim 1, wherein the action representing means (903) is
configured to cause a look-up of the representations r'; corresponding to an input regarding
the condition and the representations r; using at least one look-up table that maps a tuple of
the input regarding the condition and the representations 7; to the corresponding

representations ;.

5. The system of claim 1, wherein |Z| = |W|, and wherein the action
representing means (903) is configured to identify one or more input variables which
determine the condition b, and wherein the action representing means (103) comprises a first
swap unit (305) for performing a hidden swap operation, based on at least one representation
r, wherein r = 1;, of a variable v; in the set V, and the one or more input variables, such that
for p € W and q€ W with r = E(p, q),

" _{ E”(p,q) ifbholds
~ | E"(q,p) ifbdoesnothold’

wherein E” is a one-to-one cryptographic mapping from W X I to a predetermined set,
wherein E” is different from E, wherein r” is a representation,

and/or a second swap unit (306) for performing a hidden swap operation, based on a
representation r'”’ and the one or more variables, such that for p € W and g€ W with

P =E"(p,q).

) _{ E'(p,q) ifbholds
~ | E'(q,p) ifbdoesnothold’

wherein E'” is a one-to-one cryptographic mapping from W X X to a predetermined set,

wherein E'"’

is different from E’, and r' is the updated representation ;.
6. The system of claim 5, wherein the action representing means (103) comprises
a function evaluation unit (307) for computing a function to obtain the representation r'’’

based on the representation r”’, such that forp € W and g€ W with r"” = E"(p, q),

10

15

20

25

30

WO 2016/102180 PCT/EP2015/078894
32

r'" =E" (f(p), g(@)),

wherein f'is a mapping defined on # and g is a mapping defined on W.

7. The system of claim 5 or 6, wherein E'” = E and E” = E’.

8. The system of claim 3, wherein h,,(w, o) = g, for all values of w and o and at

least one value of m in {1,2,3, ..., n}.

9. The system of claim 1, wherein the action on V' is configured to change the

representation r; of each variable v; in the set of variables V' so that w’; = f; (w;) and

r
o' = o0j, and

wherein the action on V\V’ is configured to change the representation 7, of
each variable vy, in V\V' so that w';, = wy, and o'}, = f;, (hy (Wi, 03.));
wherein f;, fori = 1,2, ..., n, is a function defined on W and h;, for each

variable vy, in V\V’, is a function mapping elements of W X Z to W.

10. The system of claim 2 or 3, further comprising a converting unit (601) for
representing a nested conditional operation involving a first plurality of nested conditions by
a functionally equivalent sequence of non-nested conditional operations involving a second

plurality of conditions.

11. The system of claim 10, wherein the converting unit (601) is configured to

combine (701) respective expressions of respective conditional branches of the
nested conditional operation into terms of an auxiliary expression, wherein the respective
expressions are associated with alternative values to be assigned to a particular variable;

repeat (702) the step to combine respective expressions of respective
conditional branches into terms of an auxiliary expression, such that a plurality of auxiliary
expressions is generated in which the terms are combined in different ways,

generate code (703) to evaluate the auxiliary expressions and store their results;
and

generate code (704) to combine the results of the auxiliary expressions in
dependence on a combined condition, wherein the combined condition is a combination of
the plurality of conditions, such that the terms corresponding to branches that are not relevant

in view of the condition cancel out.

10

15

20

25

WO 2016/102180 PCT/EP2015/078894
33

12. The system of claim 10, wherein the action representing means (903) is
configured to identify at least one conditional operation of the sequence of non-nested
conditional operations and the corresponding condition of the second plurality of conditions,
and wherein the action representing means (903) is configured to use the identified
conditional operation as the action and the identified corresponding condition as the

condition of the if-statement.

13. A method of hiding a change to a set of variables V = {v,, v,, ...,v,} of a
program, the method comprising

representing (1001) a value w; of a variable v; of the variables vy, v,, ..., v,
wherein w is an element of a set ¥, by a representation r;, wherein r; = E(w;, 0;), and 1; is an
element of a set of representations Q(w;) = {E(w;, s)|s € I}, wherein o; is a state variable
that is an element of a set £ and that provides a redundancy to the representation r; of w;, and
E is a one-to-one cryptographic mapping from W X X to a predetermined set; and

representing (1002) an action on values of a subset V' of ¥ by an action on V'
and an action on V\V’, to obtain updated representations r'; = E'(w';, 0';), fori = 1,2, ..., n,
wherein E’ is a one-to-one cryptographic mapping from W X I to a predetermined set, and
wherein

the action on V' is configured to change the representation 7; of each variable
v; in the set of variables V' according to a changed value w'; of variable v;, and

the action on V\V' is configured to change the representation 3, of each

variable v, in V\V' according to a changed value o', of gy,.

14. A computer program product comprising instructions for causing a processor

to perform the method of claim 10 or 13.

WO 2016/102180 PCT/EP2015/078894
1/3

Fig. 1 /[v/ [

e 101

/ w'=f] (W) / / W':g(W) /

Fig. 2

105 f Input ;

102~
104
/ r=g(wso) / Condition b

/ r'=g W' c’) /

WO 2016/102180 PCT/EP2015/078894
2/3

Fig. 3

L OV /T
/\

306 ~_L- CD 'ﬁ/ b 74/104

312 313

.

/ P=E"(Tw), 9(c) / / r=E"(o(W). 7o) /

WO 2016/102180

Fig. 4

401

402

Fig. 7

701

702

703

704

3/3

Fig. 5

501

502

503

Fig. 8

801

802

803

PCT/EP2015/078894

Fig. 6

601

501

502

503

Fig. 9

902

903

Fig. 10

1001

1002

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2015/078894

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/14 HO4L9/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F HOA4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 2010/115287 Al (BETOUIN PIERRE [FR] ET 1-14
AL) 6 May 2010 (2010-05-06)
abstract

paragraph [0007]

paragraphs [0021] - [0032]
figure 5

Y US 2013/232323 Al (LEROUGE JULIEN [US] ET 1-14
AL) 5 September 2013 (2013-09-05)
abstract

paragraph [0004]

paragraphs [0023] - [0033]

figure 1b

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other

. e "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified)

considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

8 January 2016 15/01/2016

Name and mailing address of the ISA/ Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, .)
éx%mq&smsme Di Felice, M

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2015/078894

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Obfuscating Transformations",

TECHNICAL REPORT DEPARTMENT OF COMPUTER
SCIENCE UNIVERSITY OFAUCKLAND, XX, XX,
no. 148, 1 July 1997 (1997-07-01), pages
1-36, XP002140038,

the whole document

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2010/199354 Al (EKER JOHAN [SE] ET AL) 1-14

5 August 2010 (2010-08-05)

abstract

paragraphs [0015] - [0017]

paragraphs [0056] - [0064]
A COLLBERG C ET AL: "A Taxonomy of 1-14

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2015/078894
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2010115287 Al 06-05-2010 NONE
US 2013232323 Al 05-09-2013 NONE
US 2010199354 Al 05-08-2010 AT 432507 T 15-06-2009
CA 2673075 Al 26-06-2008
EP 1947584 Al 23-07-2008
W 200837604 A 16-09-2008
US 2010199354 Al 05-08-2010
WO 2008074382 Al 26-06-2008

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - wo-search-report
	Page 39 - wo-search-report
	Page 40 - wo-search-report

